

University of Dundee

Evolution of protein trafficking in kinetoplastid parasites

Venkatesh, Divya; Zhang, Ning; Zoltner, Martin; Canavate Del Pino, Ricardo; Field, Mark C.

Published in: Traffic

DOI: 10.1111/tra.12601

Publication date: 2018

Document Version Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA): Venkatesh, D., Zhang, N., Zoltner, M., Canavate Del Pino, R., & Field, M. C. (2018). Evolution of protein trafficking in kinetoplastid parasites: complexity and pathogenesis. Traffic, 19(11), 803-812. https://doi.org/10.1111/tra.12601

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
 You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Evolution of protein trafficking in kinetoplastid parasites: complexity and pathogenesis

Divya Venkatesh, Ning Zhang, Martin Zoltner, Ricardo Canavate del Pino and Mark C. Field $^{\!\!^*}$

School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK

*Corresponding author: Telephone: +44 (0)751-550-7880, email: mfield@mac.com

Running head: Evolution of kinetoplastid trafficking

Key words: Endomembrane system, evolution, trypanosomes, kinetoplastida, parasitism, plasma membrane, endocytosis, pathogenesis, drug mode of action. **Synopsis**

The major differentiation between prokaryotic and eukaryotic cells is a sophisticated system of subcellular organelles in the latter. The vast majority are the product of endogenous evolutionary events, and several paralogous families (Rabs, SNAREs and others) with specific localisations to one or more compartments has allowed predictions of intracellular structure based on gene complements and comparative genomics. Here we consider one lineage, the kinetoplastids, that have been rather well studied, to extract how evolutionary events can mould trafficking.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/tra.12601

Abstract

The kinetoplastida and their close relatives are unicellular organisms prevalent within the eukarvotic biosphere and important for significant impacts on global health, economy and ecosystems. They are, under most models, an early branching lineage. Individual species adapted to highly diverse environments by adopting complex life styles; parasitic species can infect a wide range of eukaryotic hosts, while many relatives are freeliving and some autotrophic from acquiring a plastid for photosynthesis. Adaptation is especially evident in the evolution of kinetoplastid cell surface and is supported architecture by endomembrane trafficking and serves a platform for interaction with as environment. Here we summarize and discuss recent genomic and experimental studies of the protein trafficking system in kinetoplastids, with focus on the composition and function of the surface as well as mechanisms constructing, for maintaining and regulating the cell surface proteome. We hope this provides a broad view of how protein trafficking contributes to the intricate and dynamic host-parasite interfaces that are critical for successful environmental adaptation of this highly important lineage.

Introduction

The Kinetoplastida are among a group of highly adaptive organisms, with an extraordinary wide spectrum of habitats ranging from fresh water to parasites of multi-cellular and unicellular hosts (Table 1, Figure 1A). This astonishing capacity for adaptation is greatly reflected in the complex lifestyles developedby individual species, which exhibit an array of morphological changes during life cycle transitions. Along with metabolic adaption, changes in cell architecture play critical roles in establishing such rich biological diversity. Here we consider insights from recent genome annotations and molecular cell biology to propose an atlas for understanding the evolution of trafficking and surface molecules of kinetoplastids in the context of adaption to their individual unique niches.

Taxonomy, parasitism and lifestyles

Kinetoplastids are members of the Euglenazoa, within the Excavata supergroup. With numerous lineagespecific features (Figure 1A), they are among the most divergent taxa from their animal and plant hosts Significantly, most known kinetoplastids are parasitic, and it is likely that parasitism evolved within Euglenozoa more than once as a result of ^{2,3}. The most familiar adaptation examples are the trypanosomes and Leishmania in the order Trypanosomatida. As causative agents of high-profile human diseases, considerable effort has been dedicated towards management, treatment and understanding of fundamental biology⁴.

Most of the studied parasitic kinetoplastids dwell in two hosts through their life cycles. This complex digenous life style requires significant alterations to cellular functions to facilitate host transition and environmental adaptation. Embedded within the Trypanosomatida, and closely related to the Leishmanias. are Crithidia and Phytomonas infecting insects and plants respectively ^{5,6}. Freeliving bodonids are less well-studied but nearly ubiquitously present in aquatic environments and soil, and form the dominant kinetoplastids in the global oceans ⁷. Their ecological significance and full impact to agriculture is almost certainly currently underestimated.

Each trypanosomatid lineage has unique cell surface. lt is of а considerable importance to obtain molecular details of the specific

architectural compositions and functional contributions for these distinct surfaces as they are involved in host recognition, cell invasion cell and evasion of host defense systems in mammalian, arthropod and plant hosts. The endomembrane trafficking system builds the surface architecture and supports the complicated and dynamic functions ranging from macromolecule secretion, uptake of nutrients and other materials from the environment, to detection and transduction of external systematic stimuli. Therefore. а understanding of how the endomembrane system in trypanosomatids differentiates between lineages has the threefold potential of providing unique insights into universal functionality, pathogenic mechanisms and evolutionary change.

African American and trypanosomes (T. brucei and T. cruzi respectively) have surfaces dominated by glycosylphosphatidylinositol or GPIanchored proteins, a common feature kinetoplastids. amongst Remaining extracellular throughout their entire lifecycle, T. brucei and close relatives evolved a highly sophisticated system involving antigenic variation and antibody clearance high via flux endocytosis ^{8,9} to facilitate survival in the host. In the mammalian stage, the surface of *T. brucei* is dominated by the variant surface glycoprotein (VSG) and is also decorated by a number of lower trans-membrane abundance and lineage-specific GPI-anchored proteins, several of which are likely receptors for immune effectors ^{10,11}. In the insect stage, T. brucei remodels its entire surface. characterized by the replacement of VSGs by procyclins that are important for persistence within the insect vector¹². In contrast, T. cruzi invades the cells of its host, and its own surface is dominated by mucin-like molecules that defend the parasite from immune and proteolytic attack and are

persistent through the life cycle ¹³. There are also multiple additional proteins present within the *T. cruzi* mucin coat performing adhesion functions during invasion of host cells.

Leishmania and the Phytomonads share the capacity to express а dominant surface glycoconjugate, the lipophosphoglycan (LPG) ¹⁴. LPG is restricted to the insect stages of the life cycle and appears critical in insect transmission and potentially initial entry into the mammalian host. A similar case of functionality is also found in Crithidia for LPG-related macromolecule an Therefore, the GPI-anchor structure, conserved in LPG, VSG, procyclins and mucins, provides a common mechanism for presenting the macromolecules that crucial for host interactions. are Leishmania is also capable of secretion of highly glycosylated proteins, facilitating transmission by the sandfly vector. Beyond the trypanosomatida, free-living Bodo saltans the and Euglena gracilis both possess elements of the LPG biosynthetic pathway within their genomes ^{16,17}. It is plausible that the parasitic species evolved from freeliving forms to initially infect arthropods and only later acquired the ability to infect mammals or vascular plants, and that LPG has a rather fundamental role that is unconnected to parasitism per se, perhaps as a general protective molecule.

The majority of these organisms undergo developmental changes critical survival, maximal for fitness or manipulation of host responses. One fundamental aspect focuses on specific cohorts of surface macromolecules that predominantly are lipid anchored proteins of high abundance and immense diversity. Therefore, individual organisms evolve highly efficient systems for protein trafficking, modification and homeostasis, which likely differentiate functionally in each

organism to match the unique demands for each host. Are such modifications observable in the genomes and/or cell biology of these organisms?

An endomembrane system sculpted by reduction

Over one hundred Kinetoplastida genomes have been sequenced, providing an excellent opportunity to reconstruct transport pathways and predict likely courses of evolution of transport. membrane Sampling is significantly less dense beyond the Trypanosomatida, but is rapidly improving, allowing for more robust predictions.

Many of the major groups of trafficking proteins are paralogous, including Rab and ARF GTPases, SNAREs, tethers, coats and adaptins ¹⁸. In general, functions are well conserved between orthologs across eukaryotes, for example Rab7 is almost always functionally associated with late endocytic/pre-lysosomal transport This enables the prediction of transport routes with an acceptable and useful of accuracy, albeit precise level functions and interactions for specific proteins are somewhat harder to ascertain. Another general tendency of trafficking systems is that paralog numbers scale with genome size This simple correlation holds for many kinetoplastids and related euglenozoids (Figure 1B), but with notable exceptions such as E. gracilis (belonging to class Euglenoidea) in which a massive genome expansion is likely responsible ²⁰. There anomaly is for the а remarkable similarity in the configuration of the endomembrane system between the last kinetoplastid common ancestor (LKCA) and E. gracilis based on comparisons of their Rab and SNARE paralogs. For several Rabs such as Rab1, Rab5, Rab7 and Rab11 in Euglena, multiple paralogs are present suggesting a highly complex endocytic sorting, recycling, ER exit and vacuolar system, consistent with its free-living and flexible lifestyle involving autotrophy and heterotrophy. both However, the Rab cohort of kinetoplastids is reduced compared to the last eukaryotic common ancestor (LECA): orthologs for Rab 8, 20, 22, 24, 50 and RabTitan are absent from the LKCA (Figure 2), despite being present in LECA ²¹. By contrast the SNARE cohort is well retained, with Use1 and Syn17 as the only paralogs lost in the LKCA.

At the opposite end of this spectrum lies Perkinsela, which belongs to the group Prokinetoplastida (Figure This curious organism is an 1). inhabitant intracellular of Neoparamaeoba, a parasite of fish. Ultrastructural images suggest а reduced cytoplasmic volume and paucity of distinguishable endomembrane compartments, raising the possibility that Perkinsela lacks much of the canonical organellar apparatus Another remarkable feature is a highly reduced nuclear genome of less than 10Mb, which encodes only three recognisable Rab proteins, the smallest reported to date. These Rabs resemble Rab1 and Rab2 and hence are likely involved in early exocytosis, begging the question of whether endocytic and intra-Golgi transports occur in this organism, and if so how they are achieved.

Between these two extremes lie the Bodonids, with more conventional genomes and predicted transport pathways. B. saltans possesses 35 SNAREand 34 Rab/Rab-related considerable genes. There are expansions of SNARE Syp7 (6 copies), Rab7 (3 copies) and Rab32-like (5 copies) genes, in addition to a cohort of lineage-specific Rabs. Together these genomic compositions give rise to a highly expanded endosomal/digestive apparatus and also suggest autophagic

pathways, all of which reflect needs to accommodate a variable food supply and survive periods of austerity in a free-living organism (Figure 3).

As trypanosomes gained the parasitic lifestyle, rather than an abrupt collapse of pathways, there is stepwise evolution, with gradual loses and very few gains. The vast majority of changes simple paralog expansions are suggesting no radical rise of novel transport pathways in the lineage, at least since the LKCA. Specially, loss of Rab24 and a tendency to lose both Rab32 and Rab32-like proteins differentiate Typanosomatida from the Bodonids. This feature indicates а decreased flexibility in survival during lean times, likely as a result of adaption to a constant environment provided by the host. A recent addition to the kinetoplastids sequenced is Paratrypanosoma confusum, a parasite of mosquitos that diverged prior to the evolution of digenous forms ²³. This organism fits well within the general trend, and possesses 26 Rabs, two copies each of Rab5, 11, 21 and 32 (MCF, unpublished analysis), in concordance with the close relationship Significantly Ρ. to Leishmania. confusum also cojtains ten Rab proteins that are sufficiently divergent to suggest novel functions.

Continued but distinct losses accompany the emergence of the African trypanosome and Leishmania/Phytomonas clades: paralogs of post-Golgi trafficking Rabs such as Rab11, Rab21, Rab32 and SNAREs featured by SynPM, Syx6, VAMP7, suggest simplified Npsn. endocytic and recycling pathways. A similar case occurred in the parasitic Bodonid Trypanoplasma borreli where Syx6, VAMP7, Rab32-like genes are lost. Interestingly, the contrary occurs in the American trypanosome, T. cruzi, where additional Rab11 and VAMP7 paralogs are potentially associated with

the contractile vacuole ²⁴. Overall, these data support the notion that there are gradual evolutionary changes in species, represented parasitic by Bodonida. Leishmania and Trypanosomatida, in which flexibility in acquisition and possible energy austerity pathways are diminished ²⁰.

Exocytosis: simplicity with variation

The fundamental configuration of the kinetoplastid secretory pathway is canonical, with coatomer complexes I and II, tethers and the basic exocytic Rab and SNARE complements all present. However, all trypanosomatids are incapable of synthesizing Dol-P-Glc, the essential donor for the terminal tri-athe lipid-linked alucosvl cap of oligomannosyl N-glycan precursors ²⁵. Therefore, the quality control (QC) system within the ER (endoplasmic reticulum) is reduced in comparison to other eukaryotes. Moreover, the oligosaccharyltransferase complex is simplified to single а subunit configuration in trypanosomes, but evolved as two functional paralogs in T. indicating specification brucei, а towards the residues flanking the asparagine critical for the N-glycan attachment ²⁶. Furthermore, as cissplicing is absent in trypanosomes, these organisms lack a conventional ERAD (ER-associated protein degradation) signaling system based on differential splicing and activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) in the ER. This supported by notion is also the insensitivity trypanosomes of to reagents that disrupt the canonical ^{27–30}. However, a ERAD pathways cohort of proteins involved in monitoring protein processing and folding act on VSG and ISG proteins, suggesting some noncanonical protein QC system operates in these organisms 27,30,31

In other eukaryotes, the COP II complex and a group of receptors

termed p24 together facilitate protein exit from the ER, and with potential differentiation between GPI-anchored and *trans*-membrane domain proteins. trypanosome As the surface İS dominated by GPI-anchored proteins (such as VSG in T. brucei), it is of significant interest to understand if this process of selective ER exit is conserved. The first clue is provided by the presence of eight p24 paralogs in the T. brucei genome, suggesting the potential for considerable functional diversity ³². In addition, there are two proteins. trypanosome specific TbERAP32 and TbERAP18 at the ER, specifically associated with monitoring the copy number of VSG targeted to the surface ³³. Further there is an extensive group of lineage-specific lectin-related proteins from the invariant glycoprotein localised in the ER and family, potentially involved in QC ³⁴. In yeast, late steps in exocytosis require the complex. octameric exocyst, and Significantly, a novel subunit of exocyst is present in trypanosomes, and is conserved across the entire lineage ³⁵.

Several paralogs of canonical exocytic SNAREs are present, with up to two Qa-Syx1 and four R-VAMP7 as part of the canonical Syx1-SNAP-25-VAMP7/Synaptobrevin complex in metazoa²⁰. Several paralogs of Qb-Npsn and Qc-Syp7 are found across kinetoplastids, with multiple copies in B. saltans and the American potential trypanosomes, suggesting roles in trafficking to the plasma membrane as described in plants.

Endocytosis: substitution, replacement and refinement

In trypanosomes, surface maintenance and nutrient acquisition are critical for successful immune evasion and survival within the host, which are greatly dependent on the functions of the endocytic apparatus. Interestingly, recent evidence indicates that some species of extracellular trypanosomes (*T. theileri* and *T. grayi*) $^{36-38}$ can survive without VSG, suggesting more diverse mechanisms underlying the immune evasion.

VSG is a homodimer with two GPI-anchors and is distributed over the entire surface of the cell. A second GPIanchored surface protein, the transferrin receptor, is a heterodimer with only one subunit possessing a GPI-anchor and is retained within the flagellar pocket. This has been proposed as a general model for localisation of specific proteins using 'GPI-valance' ³⁹. Tests of this model, including the production of a dual GPIanchored transferrin receptor, lend support. but neither molecular а mechanism nor exhaustive an exploration of the surface protein repertoire have been described. Interestingly, the localization of VSG can be significantly altered by changes to the size of the VSG ectodomain which alone. may suggest that membrane anchoring has a lesser role compared with the architecture of the protein itself 40,41.

Trypanosome endocytosis is exclusively dependent on clathrinmediated mechanisms that are set around ahave conserved functional core but evolved distinctively. Many proteins described in animals and fungi and required for both clathrin-dependent and independent pathways are absent from 42 including trypanosomes AP-5 T-SET, caveolin. adaptin, multiple paralogs of ENTH/ANTH domain proteins, subunits of the ESCRT complex and many more. However, the trypanosomatids also possess several novel clathrin-associated proteins which play significant roles in endocytosis and subcellular targeting, raising an interesting possibility that a more basal system was present in the LECA, upon which different lineages layered cohorts of proteins to facilitate precise tailoring of function ^{42,43}.

Sorting and dynamic protein turnover

invariant The surface glycoproteins (ISGs) have provided most data on surface trans-membrane protein trafficking in trypanosomes. Among this extensive family of type I membrane proteins, ISG75 mediates uptake of the classic trypanocide suramin and ISG65 has utility in 44,45 Notably, compared diagnostics with the ISGs, VSG is turned over rather slowly ⁴⁶, indicating a selective sorting mechanism is operating. Ubiquitylation required for both uptake and is degradation of ISGs, and catalyzed by a ligase acting close to the site of uptake and is regulated by at least two deubiquitinases, orthologs of Usp7 and Vdu1. This suggests that ISG turnover is controlled by a rapid and sensitive switch-like mechanism.

Late endocytic systems: More replacements

Nearly all eukaryotic cells possess a lysosomal/vacuolar terminal compartment that serves as a site for protein degradation along with other functions. Most kinetoplastids appear to have a single or very small number of lysosomes. However, multiple Rab7, Qa-Syx7 and Qb-Vti-like paralogs, generally associate with late endosomal transport, have been identified in kinetoplastids. several suggesting multiple transport routes to the lysosome.

Curiously, an essential type I trans-membrane protein, p67, replaces the mammalian lysosomal LAMP in trypanosomes. p67 is highly glycosylated and is likely transported via an AP-1-dependent pathway that is responsible for maturation and progression through the Golgi complex and to the lysosome 48,49. Protein analog replacement is not unusual in trypanosomes and frequently does not give rise to significant obvious functional alterations ^{50,51}. Therefore, function is possibly conserved between LAMP and p67. Additional lysosomal proteins include the major facilitator superfamily of transporters and mucolipin, a member of the transient receptor potential cation channel family, and which are fully conserved.

In close proximity the to lysosome, late ิล endosome/multivesicular body is present, in which the ESCRT complex is responsible for recognition and processing of ubiquitylated proteins en route to the lysosome, and is regulated bv the Vps4 AAA-ATPase in a conserved manner 52-54. However, the ESCRT 0 complex is absent and restricted to animals and fungi⁵² raising an interesting question as to how ubiguitylated surface molecules, such ISGs. are recognised, and as presumably deubiquitylated prior to turnover.

Deviations: The cytostome and contractile vacuole

almost all ciliates, In phagocytosis takes place at the cytostome, a surface organelle defined by a microtubule-supported funnel or groove. Similar structures also exist in some Euglenoids and Dinoflagellates ⁵⁵, although these are generally less elaborated. While feeding on bacteria, B. saltans wafts prey into a cytostome ⁵⁶, which is surrounded by flap-like lips to collect current produced by a flagellum. The cytostome is also present Crithidia and the basal in trypanosomatid P. confusum 23, but appears to have been lost in most trypanosomatids, where endocytosis is generally restricted to the flagellar pocket. However, T. cruzi epimastigotes possess a cytostome/cytopharynx-like organelle which has an elongated stiletto-shaped structure formed by an invagination of the plasma membrane

along with sub-pellicular microtubules ⁵⁷. The structure contains a distinct membrane region that is separated from the neighboring flagellar pocket by the preoral ridge and disappears during metacyclogenesis ⁵⁸.

Another distinct feature in T. cruzi is the contractile vacuole (CV) 59 absent in African trypanosomes and most Leishmania species, despite being described in some early work on *Leishmania* ⁶⁰. The CV is associated with osmoregulation ⁶¹, serving as an membranous internal bladder. periodically filling with hypotonic liquid being discharged by and abrupt contraction through a pore in the plasma membrane. Acidocalcisomes, storage organelles for cations that maintain high concentrations of polyphosphates, also contribute to osmoregulation $^{\rm 62}.$ In fact, these two types of organelles are often associated other with each physically and functionally 63,64, and while maintaining their membrane identities, are both subject to regulation by Rab8 (absent in all kinetoplastids) and the exocyst complex⁶⁵. Additionally, there are other lines of evidence that suggest selective trafficking of proteins between CVs and the plasma membrane ⁶²; several trafficking and vacuolar fusion proteins were also observed in the T. cruzi CV including SNARE VAMP7A, Rab11, Rab2 and Rab1 66-69.

Interactions of the trafficking system with therapeutics.

It has recently emerged that several frontline drugs interact with the trafficking system of African trypanosomes, either directly or Evolutionary indirectly. divergence provides a key to selective toxicity and hence therapeutic utility. For example, suramin, a drug first introduced against trypanosomiasis in the first quarter of last century, is recognised by ISG75, entering the cell via receptor-mediated endocytosis, crossing the lysosomal membrane through a major facilitator superfamily transporter ^{45,47}. The presence of ISG75 and the high rate of endocytosis in *T. brucei* accounts for the selective toxicity of suramin.

Similar mechanisms also underly cross-resistance to melarsoprol and further frontline pentamidine, two therapeutics. There are two transporters, P1 and P2, for purine uptake in *T. brucei* where the *de novo* synthesis pathway is absent. Mutations in TbAT1, encoding P2, gives rise to resistance to melarsoprol ^{70,71}. P2 also contributes to uptake of diamidines including pentamidine, which is primarily dependent on aquadlyceroporin-2 (AQP2) ^{45,72,73}. Interestingly, in African trypanosomes, AQP2 and AQP3 paralogs have ~90% amino acid identity, indicating recent duplication. These two paralogs are differentially located, with AQP2 to the flagellar pocket and AQP3 to the entire plasma membrane, and the mutations in AQP2 are exclusively associated with pentamidine sensitivity ⁷⁴. Furthermore, uptake of pentamidine is at least partially mediated by endocytosis as the affinity of AQP2 to the drug is exceedingly high 75. This is thus a second example of a specific and recent evolutionary underpinning event selective drug sensitivity.

Exploitation of the unique aspects of the trypanosome surface and trafficking has underpinned much of the classical therapeutic arsenal, and recent applications of nanobodies has the potential to extend this in a rational manner. Nanobodies (Nbs) are derived from heavy chain-only antibodies of camelids (see recent review ⁷⁶), and can be utilized for delivery of drugs and toxins with high efficiency and specificity owing to their biochemical and physical features. An immunotoxin consisting of coupled а nanobody to serum trypanolytic factor Apolipoprotein L-1

(ApoL-1) circumvented resistance dependent on the ApoL-I-neutralising $resistance-associated__ (SRA)$ serum protein in T. b. rhodesiense 77, whilst nanobodies coupled to pentamidine not potencv only enhanced the of pentamidine overcome but also resistance to pentamidine dependent on aquaglyceroporin-2 (AQP2) In addition to targeting, the killing mechanisms for nanobodies also include directly blocking the endocytotic pathway 79. Overall, identification of additional diverse surface antigens could greatly extend the potential of nanobodies as therapeutics.

Conclusions

Among kinetoplastids, members of protein families associated with delivery or removal of material from the cell surface exhibit the greatest levels of divergence, while those mediating the early secretory/biosynthetic pathways appear to be largely conserved. T. cruzi is the only parasitic trypanosomatid that has retained both the cytostome and contractile vacuole. as well as possessing the largest cohort of Rab GTPases and SNAREs from the LKCA. It is yet unclear if this retention has a role to play in the wider range of cells that T. cruzi is able to infect in their vertebrate hosts. compared to Leishmania spp which are restricted to macrophages (see Table 1).

all eukaryotic In cells. intracellular transport pathways support a wide spectrum of essential activities, and modifying these to suit distinct environments and lifestyles is a key aspect of cellular evolution and adaptation. In the kinetoplastids, we have an exceptionally well sampled group of unicellular organisms, with defined lifecycles and differentiation pathways. Considerable progress has been made in understanding the detailed evolution of transport, and its potential for exploitation for

therapeutics. However, it is essential that we extend these analyses to additional kinetoplastids. The large diversity of bodonids and their impact on the environment remains unexplored, and P. confusum which appears to link the former with the more derived parasitic trypanosomatids, may further insights into provide the evolution of parasitism in this lineage. CRISPR/Cas9 The advent of technology for gene editing ⁸⁰ heralds the opportunity to rapidly dissect trafficking and its impact to disease. It is exciting that these fascinating organisms are becoming more and more tractable, and will provide unique insights into basic cell biology and pathology in the years to come.

Acknowledgements

Work in the authors' laboratory is supported by the Wellcome Trust (Investigator award 204697/Z/16/Z) and the Medical Research Council (Project grants MR/N010558/1, MR/K008749/1, MR/P009018/1), which we gratefully acknowledge.

References

- Adl SM, Simpson AGB, Lane CE, et al. The revised classification of eukaryotes. *Journal of Eukaryotic Microbiology*. 2012;59(5):429-493. doi:10.1111/j.1550-7408.2012.00644.x.
- Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. *Molecular and Biochemical Parasitology*. 2014;195(2):115-122. doi:10.1016/j.molbiopara.2014.05. 007.
- 3. Yazaki E, Ishikawa SA, Kume K, et al. Global Kinetoplastea phylogeny inferred from a large-

scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle. *Genes & Genetic Systems*. 2017;92(1):35-42. doi:10.1266/ggs.16-00056.

- Field MC, Horn D, Fairlamb AH, et al. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. *Nature Reviews Microbiology*. 2017;15(4):217-231. doi:10.1038/nrmicro.2016.193.
- Schmid-Hempel P, Aebi M, Barribeau S, et al. The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. Yurchenko V, ed. *PLOS ONE*. 2018;13(1):e0189738. doi:10.1371/journal.pone.0189738
- Jaskowska E, Butler C, Preston G, Kelly S. Phytomonas: Trypanosomatids Adapted to Plant Environments. Chitnis CE, ed. *PLOS Pathogens*. 2015;11(1):e1004484. doi:10.1371/journal.ppat.1004484.
- Geisen S, Mitchell EAD, Adl S, et al. Soil protists: a fertile frontier in soil biology research. *FEMS Microbiology Reviews*. 2018;42(3):293-323. doi:10.1093/femsre/fuy006.
- Manna PT, Boehm C, Leung KF, Natesan SK, Field MC. Life and times: synthesis, trafficking, and evolution of VSG. *Trends in Parasitology*. 2014;30(5):251-258. doi:10.1016/j.pt.2014.03.004.
- Engstler M, Pfohl T, Herminghaus S, et al. Hydrodynamic Flow-Mediated Protein Sorting on the Cell Surface of Trypanosomes. *Cell*. 2007;131(3):505-515. doi:10.1016/j.cell.2007.08.046.
- 10. Horáková E, Changmai P, Vancová M, et al. The

Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. *Journal of Biological Chemistry*. 2017;292(17):6998-7010.

doi:10.1074/jbc.M116.762997.

- Higgins MK, Lane-Serff H, MacGregor P, Carrington M. A Receptor's Tale: An Eon in the Life of a Trypanosome Receptor. Gubbels M-J, ed. *PLOS Pathogens*. 2017;13(1):e1006055. doi:10.1371/journal.ppat.1006055.
- Knüsel S, Roditi I. Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei. *Molecular and Biochemical Parasitology*. 2013;191(2):66-74. doi:10.1016/j.molbiopara.2013.09. 004.
- Belew AT, Junqueira C, Rodrigues-Luiz GF, et al. Comparative transcriptome profiling of virulent and nonvirulent Trypanosoma cruzi underlines the role of surface proteins during infection. Taylor M, ed. *PLoS Pathogens*. 2017;13(12):e1006767. doi:10.1371/journal.ppat.1006767.
- Porcel BM, Denoeud F, Opperdoes F, et al. The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants. McDowell JM, ed. *PLoS Genetics*. 2014;10(2):e1004007. doi:10.1371/journal.pgen.1004007
- 15. Schneider P, Treumann A, Milne KG, McConville MJ, Zitzmann N, Ferguson MA. Structural studies on a lipoarabinogalactan of Crithidia fasciculata. *The Biochemical journal*. 1996;313 (

Pt 3:963-971. doi:10.1042/bj3130963.

- Jackson AP, Otto TD, Aslett M, et al. Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism. *Current Biology*. 2016;26(2):161-172. doi:10.1016/j.cub.2015.11.055.
- Ebenezer TE, Zoltner M, Burrel A, et al. Unlocking the biological potential of Euglena gracilis: evolution, cell biology and significance to parasitism. *bioRxiv*. December 2017:228015. doi:10.1101/228015.
- Dacks JB, Field MC. Evolution of the eukaryotic membranetrafficking system: origin, tempo and mode. *Journal of Cell Science*. 2007;120(17):2977-2985. doi:10.1242/jcs.013250.
- 19. Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology—function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. *Molecular and Biochemical Parasitology*. 2016;209(1-2):88-103.

doi:10.1016/j.molbiopara.2016.07. 003.

- 20. Venkatesh D, Boehm C, Barlow LD, et al. Evolution of the endomembrane systems of trypanosomatids – conservation and specialisation. *Journal of Cell Science*. 2017;130(8):1421-1434. doi:10.1242/jcs.197640.
- Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. *Journal of Cell Science*. 2012;125(10):2500-2508. doi:10.1242/jcs.101378.
- 22. Tanifuji G, Cenci U, Moog D, et al.

Genome sequencing reveals metabolic and cellular interdependence in an amoebakinetoplastid symbiosis. *Scientific Reports.* 2017;7(1):11688. doi:10.1038/s41598-017-11866-x.

- Skalický T, Dobáková E, Wheeler RJ, et al. Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. *Proceedings of the National Academy of Sciences*. 2017;114(44):201712311. doi:10.1073/pnas.1712311114.
- 24. Niyogi S, Docampo R. A novel role of rab11 in trafficking GPIanchored trans-sialidase to the plasma membrane of trypanosoma cruzi. *Small GTPases*. 2015;6(1):8-10. doi:10.4161/21541248.2014.9787 12.
- Castro O, Movsichoff F, Parodi AJ. Preferential transfer of the complete glycan is determined by the oligosaccharyltransferase complex and not by the catalytic subunit. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(40):14756-14760. doi:10.1073/pnas.0607086103.
- Jinnelov A, Ali L, Tinti M, Güther MLS, Ferguson MAJ. Singlesubunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities. *Journal of Biological Chemistry*. 2017;292(49):20328-20341. doi:10.1074/jbc.M117.810945.
- Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. *Cellular Microbiology*. 2016;18(11):1673-1688. doi:10.1111/cmi.12605.
- 28. Koumandou VL, Natesan SKA,

Sergeenko T, Field MC. The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. *BMC Genomics*. 2008;9(1):298. doi:10.1186/1471-2164-9-298.

- 29. Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, Michaeli S. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. Mansfield JM, ed. *PLoS Pathogens*. 2010;6(1):e1000731. doi:10.1371/journal.ppat.1000731.
- 30. Tiengwe C, Brown AENA, Bangs JD. Unfolded Protein Response Pathways in Bloodstream-Form Trypanosoma brucei? *Eukaryotic Cell*. 2015;14(11):1094-1101. doi:10.1128/EC.00118-15.
- Wang YN, Wang M, Field MC. Trypanosoma brucei: Trypanosome-specific endoplasmic reticulum proteins involved in variant surface glycoprotein expression. *Experimental Parasitology*. 2010;125(3):208-221. doi:10.1016/j.exppara.2010.01.01 5.
- Kruzel EK, Zimmett GP, Bangs JD. Life Stage-Specific Cargo Receptors Facilitate Glycosylphosphatidylinositol-Anchored Surface Coat Protein Transport in Trypanosoma brucei. Mitchell AP, ed. *mSphere*. 2017;2(4):e00282-17. doi:10.1128/mSphere.00282-17.
- Field MC, Sergeenko T, Wang YN, Böhm S, Carrington M. Chaperone requirements for biosynthesis of the trypanosome variant surface glycoprotein. Rénia L, ed. *PLoS ONE*. 2010;5(1):e8468. doi:10.1371/journal.pone.0008468

- Allison H, O'Reilly A, Sternberg J, Field M. An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids. *Microbial Cell*. 2014;1(10):325-345. doi:10.15698/mic2014.10.170.
- Boehm CM, Obado S, Gadelha C, et al. The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. Engstler M, ed. *PLoS Pathogens*. 2017;13(1):e1006063. doi:10.1371/journal.ppat.1006063.
- Ngomtcho SCH, Weber JS, Ngo Bum E, Gbem TT, Kelm S, Achukwi MD. Molecular screening of tsetse flies and cattle reveal different Trypanosoma species including T. grayi and T. theileri in northern Cameroon. *Parasites and Vectors*. 2017;10(1):631. doi:10.1186/s13071-017-2540-7.
- 37. Kelly S, Ivens A, Manna PT, Gibson W, Field MC. A draft genome for the African crocodilian trypanosome Trypanosoma grayi. *Scientific Data*. 2014;1:140024. doi:10.1038/sdata.2014.24.
- 38. Kelly S, Ivens A, Mott GA, et al. An alternative strategy for trypanosome survival in the mammalian bloodstream revealed through genome and transcriptome analysis of the ubiquitous bovine parasite trypanosoma (megatrypanum) theileri. Genome Biology and Evolution. 2017;9(8):2093-2109. doi:10.1093/gbe/evx152.
- 39. Tiengwe C, Bush PJ, Bangs JD. Controlling transferrin receptor trafficking with GPI-valence in bloodstream stage African trypanosomes. Hill KL, ed. *PLoS Pathogens*. 2017;13(5):e1006366. doi:10.1371/journal.ppat.1006366.
- 40. Hartel AJW, Glogger M, Guigas G, et al. The molecular size of the

extra-membrane domain influences the diffusion of the GPI-anchored VSG on the trypanosome plasma membrane. *Scientific Reports*. 2015;5(1):10394. doi:10.1038/srep10394.

- 41. Bartossek T, Jones NG, Schäfer C, et al. Structural basis for the shielding function of the dynamic trypanosome variant surface glycoprotein coat. *Nature Microbiology*. 2017;2(11):1523-1532. doi:10.1038/s41564-017-0013-6.
- 42. Manna PT, Obado SO, Boehm C, et al. Lineage-specific proteins essential for endocytosis in trypanosomes. *Journal of Cell Science*. 2017;130(8):1379-1392. doi:10.1242/jcs.191478.
- Adung'a VO, Gadelha C, Field MC. Proteomic Analysis of Clathrin Interactions in Trypanosomes Reveals Dynamic Evolution of Endocytosis. *Traffic*. 2013;14(4):440-457. doi:10.1111/tra.12040.
- 44. Sullivan L, Wall SJ, Carrington M, Ferguson MAJ. Proteomic Selection of Immunodiagnostic Antigens for Human African Trypanosomiasis and Generation of a Prototype Lateral Flow Immunodiagnostic Device. Tschudi C, ed. *PLoS Neglected Tropical Diseases*. 2013;7(2):e2087.
- doi:10.1371/journal.pntd.0002087.
 45. Alsford S, Eckert S, Baker N, et al. High-throughput decoding of antitrypanosomal drug efficacy and resistance. *Nature*. 2012;482(7384):232-236. doi:10.1038/nature10771.
- 46. Leung KF, Riley FS, Carrington M, Field MC. Ubiquitylation and developmental regulation of invariant surface protein expression in trypanosomes.

Eukaryotic Cell. 2011;10(7):916-931. doi:10.1128/EC.05012-11.

- Zoltner M, Leung KF, Alsford S, Horn D, Field MC. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. Hill KL, ed. *PLoS Pathogens*. 2015;11(10):e1005236. doi:10.1371/journal.ppat.1005236.
- Tazeh NN, Silverman JS, Schwartz KJ, Sevova ES, Sutterwala SS, Bangs JD. Role of AP-1 in developmentally regulated lysosomal trafficking in trypanosoma brucei. *Eukaryotic Cell.* 2009;8(9):1352-1361. doi:10.1128/EC.00156-09.
- 49. Peck RF, Shiflett AM, Schwartz KJ, McCann A, Hajduk SL, Bangs JD. The LAMP-like protein p67 plays an essential role in the lysosome of African trypanosomes. *Molecular Microbiology*. 2008;68(4):933-946. doi:10.1111/j.1365-2958.2008.06195.x.
- Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. *Cell*. 2014;156(6):1247-1258. doi:10.1016/j.cell.2014.01.049.
- Koreny L, Field MC. Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. *Genome Biology and Evolution*. 2016;8(9):2663-2671. doi:10.1093/gbe/evw087.
- 52. Leung KF, Dacks JB, Field MC. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. *Traffic*. 2008;9(10):1698-1716. doi:10.1111/j.1600-0854.2008.00797.x.
- 53. Lumb JH, Leung KF, DuBois KN, Field MC. Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. *Journal of Cell Science*.

- 54. Silverman JS, Muratore KA, Bangs JD. Characterization of the late endosomal ESCRT machinery in trypanosoma brucei. *Traffic*. 2013;14(10):1078-1090. doi:10.1111/tra.12094.
- Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification on protozoa. International Journal of Systematic and Evolutionary Microbiology. 2002;52(2):297-354. doi:10.1099/00207713-52-2-297.
- MITCHELL GC, BAKER JH, SLEIGH MA. Feeding of a Freshwater Flagellate, Bodo saltans, on Diverse Bacteria. *The Journal of Protozoology*. 1988;35(2):219-222. doi:10.1111/j.1550-7408.1988.tb04327.x.
- 57. Porto-Carreiro I, Attias M, Miranda K, De Souza W, Cunha-E-Silva N. Trypanosoma cruzi epimastigote endocytic pathway: Cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. *European Journal of Cell Biology*. 2000;79(11):858-869. doi:10.1078/0171-9335-00112.
- Vidal JC, Alcantara C de L, de Souza W, Cunha-e-Silva NL. Loss of the cytostome-cytopharynx and endocytic ability are late events in Trypanosoma cruzi metacyclogenesis. *Journal of Structural Biology*. 2016;196(3):319-328. doi:10.1016/j.jsb.2016.07.018.
- 59. Rohloff P, Montalvetti A, Docampo R. Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. *Journal of Biological*

Chemistry. 2004;279(50):52270-52281.

doi:10.1074/jbc.M410372200.

- Molyneux DH, Killick Kendrick R, Ashford RW. Leishmania in phlebotomid sandflies. III. The ultrastructure of Leishmania mexicana amazonensis in the midgut and pharynx of Lutzomyia longipalpis. *Proceedings of the Royal Society of London -Biological Sciences*. 1975;190(1100):341-357. doi:10.1098/rspb.1975.0098.
- Heuser J. Evidence for recycling of contractile vacuole membrane during osmoregulation in Dictyostelium amoebae - A tribute to Günther Gerisch. European Journal of Cell Biology. 2006;85(9-10):859-871. doi:10.1016/j.ejcb.2006.05.011.
- 62. Docampo R, Jimenez V, Lander N, Li ZH, Niyogi S. New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. *International Review of Cell and Molecular Biology*. 2013;305:69-113. doi:10.1016/B978-0-12-407695-2.00002-0.
- Marchesini N, Ruiz FA, Vieira M, Docampo R. Acidocalcisomes are functionally linked to the contractile vacuole of Dictyostelium discoideum. *Journal* of Biological Chemistry. 2002;277(10):8146-8153. doi:10.1074/jbc.M111130200.
- 64. Rohloff P, Docampo R. A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. *Experimental Parasitology*. 2008;118(1):17-24. doi:10.1016/j.exppara.2007.04.01 3.
- 65. Essid M, Gopaldass N, Yoshida K, Merrifield C, Soldati T. Rab8a regulates the exocyst-mediated kiss-and-run discharge of the

Dictyostelium contractile vacuole. *Molecular Biology of the Cell.* 2012;23(7):1267-1282. doi:10.1091/mbc.E11-06-0576.

- Ulrich PN, Jimenez V, Park M, et al. Identification of contractile vacuole proteins in Trypanosoma cruzi. Langsley G, ed. *PLoS ONE*. 2011;6(3):e18013. doi:10.1371/journal.pone.0018013
- 67. Harris E, Yoshida K, Cardelli J, Bush J. Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in dictyostelium. *Journal of cell science*. 2001;114(Pt 16):3035-3045.

http://www.ncbi.nlm.nih.gov/pubm ed/11686306. Accessed June 17, 2018.

- 68. Dudek SM, Chiang ET, Camp SM, et al. Abl tyrosine kinase phosphorylates nonmuscle Myosin light chain kinase to regulate endothelial barrier function. *Molecular biology of the cell*. 2010;21(22):4042-4056. doi:10.1091/mbc.E09.
- 69. Maringer K, Yarbrough A, Sims-Lucas S, Saheb E, Jawed S, Bush J. Dictyostelium discoideum RabS and Rab2 colocalize with the Golgi and contractile vacuole system and regulate osmoregulation. *Journal of Biosciences*. 2016;41(2):205-217. doi:10.1007/s12038-016-9610-4.
- Carter NS, Fairlamb AH. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. *Nature*. 1993;361(6408):173-176. doi:10.1038/361173a0.
- 71. Mäser P, Sütterlin C, Kralli A, Kaminsky R. A nucleoside transporter from Trypanosoma brucei involved in drug resistance. *Science*. 1999;285(5425):242-

244.

doi:10.1126/science.285.5425.24 2.

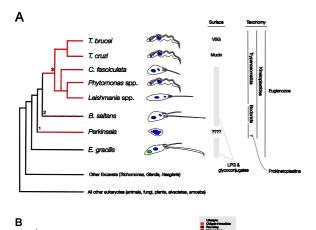
- Berger BJ, Carter NS, Fairlamb AH. Characterisation of pentamidine-resistant Trypanosoma brucei brucei. *Molecular and Biochemical Parasitology*. 1995;69(2):289-298. doi:10.1016/0166-6851(94)00215-9.
- Barrett MP, Fairlamb AH. The biochemical basis of arsenicaldiamidine crossresistance in African trypanosomes. *Parasitology Today*. 1999;15(4):136-140. doi:10.1016/S0169-4758(99)01414-3.
- Baker N, Glover L, Munday JC, et al. Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. *Proceedings of the National Academy of Sciences*. 2012;109(27):10996-11001. doi:10.1073/pnas.1202885109.
- Song J, Baker N, Rothert M, et al. Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2. Hill KL, ed. *PLoS Pathogens*. 2016;12(2):e1005436. doi:10.1371/journal.ppat.1005436.
- 76. Stijlemans B, Baetselier P De, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S. Nanobodies As tools to Understand, diagnose, and treat African trypanosomiasis. *Frontiers in Immunology*. 2017;8(JUN):724. doi:10.3389/fimmu.2017.00724.
- 77. Baral TN, Magez S, Stijlemans B, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. *Nature Medicine*. 2006;12(5):580-584. doi:10.1038/nm1395.

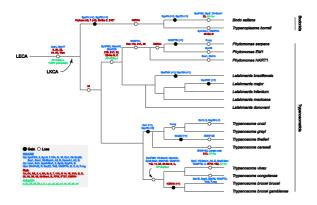
- Arias JL, Unciti-Broceta JD, Maceira J, et al. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. *Journal of Controlled Release*. 2015;197:190-198. doi:10.1016/j.jconrel.2014.11.002.
- 79. Stijlemans B, Caljon G, Natesan SKA, et al. High affinity nanobodies against the trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. Parsons M, ed. PLoS Pathogens. 2011;7(6):e1002072. doi:10.1371/journal.ppat.1002072. 80. Medeiros LCS, South L, Peng D, et al. Rapid, selection-free, highefficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins.

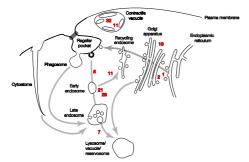
CRISPR-cas9 ribonucleoprote Boothroyd JC, ed. *mBio*. 2017;8(6):e01788-17. doi:10.1128/mBio.01788-17.

Figure legends

Figure 1: Genome, cellular and lifecycle complexity in trypansomatids. Panel A: Phylogenetic relationships between trypanosomes, Euglena and all other eukaryotes. Red branches indicate parasitic lineages and black non-parasitic. To the right are columns indicating dominant surface followed by taxonomic molecules. groupings. Panel B: Specialisation does not correlate with a reduced genome Approximate relative size. genome sizes are plotted against an adaptation index. which is based on broad concepts of metabolic and environmental flexibility together with specialisation for specific hosts or niches. Organisms scoring higher on this index possess more complex lifecycles, hosts and immune evasion mechanisms (complex surfaces and/or antigenic variation) compared with


those lower on the index that are more generalists or, for Bodo saltans, free living. Note the breaks in the abscissa as the genome of *Trypanosoma cruzi* is substantially larger than the other entries, and E. gracilis which is much larger again. For both panels. organisms in red are monogenous (one host), blue or green digenous (two hosts, animal of plants respectively) and brown free living. Blue ovals are the kinetoplastid (small) and nucleus (large) whilst the light green ovals are chloroplast.


Figure 2: Reconstruction of birth and death of SNARE, Rab and adaptin genes in kinetoplastids. The predicted last kinetoplastida common ancestor repertoires are shown in the box at left. Those subtypes that have undergone an expansion are in **bold**. SNAREs are in blue, Rabs in red and adaptins in teal. Putative points of origin (full circles) and loss (empty circles) are overlaid on a schematic kinetoplastid taxonomy. Numbers in brackets indicate the minimum number of copies of genes that are predicted lost (-n) or gained (+n). The evidence for losses and gains are based on data presented in 20 .


Figure 3: Trafficking pathways of kinetoplastids. The endomembrane system of kinetoplastids is broadly conventional, in the sense that recognisable subcompartments. with essentially conserved functions corresponding endosomal to and exocytic trafficking can be readily recognised. These compartments/functions can also be defined at the molecular level with conserved marker proteins; several Rab GTPase locations are shown in red as an example. Major changes/novelties however are present in T. cruzi and include the presence of a cytostome and contractile vacuole (blue). Further, phagocytic activity has been reported

for *Bodo saltans* (brown), *albeit* with no known molecular details.

Table 1: Summary of the diversity of lifestyles of kinetoplastids and relatives. Kinetoplastids are grouped and coloured according to conventional phylogeny. Major cell surface proteins of many newly sequenced kinetoplastids, especially the bodonids and some cruzi group members as well as outgroup species and E. gracilis are as yet essentially described, and descriptions are based in predictions from the genome sequence.

Accepted Article

Organism	Host	Vector	Flagella	Cell surface proteins	Life style
Naegleria gruberi	heterotroph	n/a	Multiple	unknown	Free living
Euglena gracilis	auto+heterotroph	n/a	2 free	unknown	Free living
Perkinsella	Neoamoeba	n.a	0	unknown	Intracellular parasite
B. saltans	heterotroph	n/a	2 free	unknown	Free living
T. borreli	fish	leech	2 free	unknown	extracellular, blood- stream
P. confusum	Mosquito		1 free	unknown	extracellular
P. serpens	plant	hemipteran insects	1 free	gp63	extracellular, phloem
P. EM1	plant, symbiotic	hemipteran insects	1 free	gp63	extracellular, latex tubes
P. HART1	plant	hemipteran insects	1 free	gp63	extracellular, phloem
L. braziliensis	vertebrates	phlebotomine sandfly	1 free	gp63, LPG; amastin	intracellular, macrophag- es
L. major	vertebrates	phlebotomine sandfly	1 free	gp63, LPG; amastin	intracellular, macrophag- es
L. infantum	vertebrates	phlebotomine sandfly	1 free	gp63, LPG; amastin	intracellular, macrophag- es
L. mexicana	vertebrates	phlebotomine sandfly	1 free	gp63, LPG, amastin	intracellular, macrophag- es
L. donovani	vertebrates	phlebotomine sandfly	1 free	gp63, LPG; amastin	intracellular, macrophag- es
T. cruzi	vertebrates	triatomine bugs	1 attached	gp63, mucins, <i>trans</i> -sialidases; amastin	intracellular, many cell types
T. grayi	reptiles, mammals	tsetse fly	1 attached	trans-sialidases	extracellular, blood- stream

This article is protected by copyright. All rights reserved.

Table 1: Summary of the diversity of lifestyles of kinetoplastids and relatives. Kinetoplastids are grouped according to phylogeny as in Figure 1. Major cell surface proteins of many newly sequenced kinetoplastids, especially the bodonids and some cruzi group members as well as outgroup species *N. gruberi* and *E. gracilis* are as yet not described in any detail.