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Abstract:  In this paper, we discuss modified three level implicit difference methods of order two in 

time and four in space for the numerical solution of two and three dimensional telegraphic equation with 
Robin boundary conditions. Ghost points are introduced to obtain fourth order approximations for 
boundary conditions. Matrix stability analysis is carried out to prove stability of the method for 
telegraphic equations in two and three dimensions with Neumann boundary conditions. Numerical 
experiments are carried out and the results are found to be better when compared with the results obtained 
by other existing methods. 

Keywords: matrix stability, Neumann boundary conditions, Numerov type approximation, Robin 
boundary conditions, telegraphic equation, unconditionally stable 

1. Introduction

Telegraphic equation describes an electrical signal travelling along a transmission cable. Besides, it has 
many applications in various other fields of sciences. It is being encountered in the field of mathematical 
modeling of random walk of animals [1]. Problem of solving telegraphic equation continually arises in the 
study and development of Magnetic Resonance Imaging (MRI) technique which is used in clinical 
diagnosis [2]. Hence, solving telegraphic equation is of major interest. In recent past, several techniques 
[3]-[16] are discovered to solve telegraphic equation in one, two and three dimensions. Dehghan and 
Mohebbi in [3] proposed an implicit collocation method for the solution of two-dimensional linear 
hyperbolic equation with Dirichlet boundary conditions. In [4], authors use variational multiscale 
element-free Galerkin method for solving various partial differential equations. Dehghan et al in [5]-[7], 
respectively discuss methods based on dual reciprocity integral equation method, Chebyshev tau method 
and He’s variational iteration method for solving telegraph equation. Authors in [8], [12] discussed 
algorithms based on B-spline differential quadrature method to solve two dimensional hyperbolic 
telegraph equation.  In [9], a combination of meshless local weak and strong (MLWS) forms is applied to 
solve two dimensional telegraphic equation. In [13], the author obtained unconditionally stable alternating 
direction implicit (ADI) methods for the solution of multi-dimensional telegraphic equations. It must be 
noted that major emphasis is given to the solution of problems with Dirichlet boundary conditions and 
hence Von Neumann stability analysis is usually carried out to verify the stability of the methods which 
does not bring into account the effect of boundary conditions. Very recently, Singh et al [16] proposed 
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stable schemes of 𝑂(𝑘 + 𝑘 ℎ + ℎ ) and 𝑂(𝑘 + 𝑘 ℎ ) for the solution of one dimensional telegraphic 
equation subject to Neumann boundary conditions and employed matrix stability method to test the 
stability of the proposed schemes. Matrix stability method analysis is more general stability analysis and 
can be applied to variable coefficient problem also while Von Neumann stability can usually be applied 
only to constant coefficient case. We, in this paper discuss methods of 𝑂(𝑘 + 𝑘 ℎ + ℎ ) for solving 
telegraphic equation in two and three dimensions subject to appropriate initial and Robin boundary 
conditions. The proposed methods are three level implicit difference methods which are based on 
Numerov type approximations proposed in [14] and [15]. We discuss in detail the stability of the 
proposed methods by matrix stability method for solving telegraphic equation with Neumann boundary 
conditions. The methods are shown to be solvable by reducing each of them to two level problem. We 
further convert these methods into ADI methods suitable to facilitate the computation. The organization 
of the paper is as follows: 

Section 2 is divided into three subsections. First subsection contains details of approximation for two 
dimensional problem and high order approximations for boundary conditions. Next two subsections carry 
details of stability analysis of the proposed method and corresponding ADI method.  Likewise, section 3 
also comprises of three subsections carrying details of approximation for three dimensional problem and 
high order approximations for boundary conditions; stability analysis of the proposed method; and ADI 
method.  In section 4, we present numerical experiments to demonstrate the efficiency and accuracy of the 
modified methods. Finally, concluding remarks are given in section 5. 

2. Two dimensional telegraphic equation  
2.1. Numerical Method 

In this section, we consider the following two-dimensional telegraphic equation 

𝑢 + 2𝛼𝑢 + 𝛽 𝑢 = 𝑢 + 𝑢 + 𝑓(𝑥, 𝑦, 𝑡), 0 ≤ 𝑥, 𝑦 ≤ 1, 𝑡 > 0                                                             (2.1.1) 

subject to the initial conditions 

𝑢(𝑥, 𝑦, 0) = 𝜙(𝑥, 𝑦), 𝑢 (𝑥, 𝑦, 0) = 𝜓(𝑥, 𝑦), 0 ≤ 𝑥, 𝑦 ≤ 1                                                                            (2.1.2) 

and the Robin boundary conditions  

𝑎 𝑢(0, 𝑦, 𝑡)+𝑏 𝑢 (0, 𝑦, 𝑡) = ℎ (𝑦, 𝑡), 0 ≤ 𝑦 ≤ 1, 𝑡 > 0                                                                              (2.1.3) 

𝑎 𝑢(1, 𝑦, 𝑡)+𝑏 𝑢 (1, 𝑦, 𝑡) = ℎ (𝑦, 𝑡), 0 ≤ 𝑦 ≤ 1, 𝑡 > 0                                                                             (2.1.4) 

𝑎 𝑢(𝑥, 0, 𝑡)+𝑏 𝑢 (𝑥, 0, 𝑡) = ℎ (𝑥, 𝑡), 0 ≤ 𝑥 ≤ 1, 𝑡 > 0                                                                              (2.1.5) 

𝑎 𝑢(𝑥, 1, 𝑡)+𝑏 𝑢 (𝑥, 1, 𝑡) = ℎ (𝑥, 𝑡), 0 ≤ 𝑥 ≤ 1, 𝑡 > 0                                                                              (2.1.6) 

where 𝛼 > 0, 𝛽 ≥ 0 are constants and the functions ℎ , ℎ , ℎ , ℎ  and the forcing function 𝑓(𝑥, 𝑦, 𝑡) are 
assumed to be sufficiently smooth to maintain the order of accuracy of the difference method discussed. 
In boundary conditions (2.1.3)-(2.1.6) 𝑎 ′𝑠 and 𝑏 ′𝑠 are scalars. Consider the domain {(𝑥, 𝑦, 𝑡)|0 ≤ 𝑥, 𝑦 ≤

1, 𝑡 > 0} which is discretized uniformly into 𝑁 subintervals along 𝑥 and 𝑦 directions with spacing 
of ℎ > 0 such that 𝑁ℎ = 1 and 𝐽 subintervals in time direction with spacing of 𝑘 > 0, where 𝑁 and 𝐽 are 
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positive integers. Then, the discretized domain is Ω = {(𝑥 , 𝑦 , 𝑡 )|0 ≤ 𝑙, 𝑚 ≤ 𝑁, 0 < 𝑗 ≤ 𝐽}. The grid 

point 𝑥 , 𝑦 , 𝑡 = (𝑙ℎ, 𝑚ℎ, 𝑗𝑘) is denoted by (𝑙, 𝑚, 𝑗) and the approximate solution of (2.1.1) at the grid 

point (𝑙, 𝑚, 𝑗) is denoted by 𝑈 , . Let 𝑝 = > 0 be the grid ratio parameter. 

A Numerov type approximation [14] with accuracy of 𝑂(𝑘 + 𝑘 ℎ + ℎ ) for the solution of (2.1.1) for 
𝑙, 𝑚 = 1(1)𝑁 − 1, 0 < 𝑗 ≤ 𝐽 may be written as 

𝛿 𝑈 , + √𝑎(2𝜇 𝛿 )𝑈 , +
√𝑎

12
𝛿 + 𝛿 (2𝜇 𝛿 )𝑈 , + 𝑏𝑈 , +

𝑏

12
− 𝑝 𝛿 + 𝛿 𝑈 ,

−
𝑝

6
𝛿 𝛿 𝑈 , +

1

12
𝛿 + 𝛿 𝛿 𝑈 ,

=
𝑘

12
𝑓 , + 𝑓 , + 𝑓 , + 𝑓 , + 8𝑓 , + 𝑂(𝑘 + 𝑘 ℎ + 𝑘 ℎ )            (2.1.7) 

where 𝑎 = 𝛼 𝑘 , 𝑏 = 𝛽 𝑘  and 𝛿  and 𝜇  are central and averaging operators with respect to time 
direction respectively. Similarly, operators with respect to spatial directions are defined. 

In case, where all 𝑏 ′𝑠 = 0, we obtain Dirichlet boundary conditions and so the given problem can be 
easily solved by using approximation (2.1.7) whereas in case where not all 𝑏 ′𝑠 = 0, we introduce ghost 
points. We will discuss in detail the case when none of  𝑏 ′𝑠 are equal to zero. We extend the spatial 
domain by introducing two ghost points outside both 𝑥 and 𝑦 domains at each time level and assume that 
the method (2.1.7) holds on the extended domain  Ω′ = {(𝑥 , 𝑦 , 𝑡 )| − 1 ≤ 𝑙, 𝑚 ≤ 𝑁 + 1, 0 < 𝑗 ≤ 𝐽}. We 

derive approximations at ghost points in such a way that accuracy of the method is not degraded. For 

deriving an explicit approximation for 𝑈 ,  where 𝑚 = 0(1)𝑁, we make use of Taylor’s expansion 

about the grid point (0, 𝑚, 𝑗), which provides us 

𝑈 , − 𝑈 ,

2ℎ
= 𝑈 , +

ℎ

6
𝑈 , + 𝑂(ℎ )                                                                                               (2.1.8) 

Making use of (2.1.1) and (2.1.3) we get  

𝑈 , = 𝜔
,

 + 2𝛼𝜔
,

+ 𝛽 𝜔
,

− 𝜔
,

− 𝑓 , , where 𝜔
,

= , . 

Ignoring the fourth order truncation error term, we obtain a fourth order approximation for 𝑈 ,  from 

(2.1.8) as 

𝑈 , = 𝑈 , − 2ℎ 𝜔
,

+
ℎ

6
𝜔

,
 + 2𝛼𝜔

,
+ 𝛽 𝜔

,
− 𝜔

,
− 𝑓 ,                 (2.1.9) 

Similarly, to obtain fourth order approximation at (𝑁 + 1, 𝑚, 𝑗), for 𝑚 = 0(1)𝑁 we make use of Taylor’s 
expansion about the grid point (𝑁, 𝑚, 𝑗), which provides us 

𝑈 , − 𝑈 ,

2ℎ
= 𝑈 , +

ℎ

6
𝑈 , + 𝑂(ℎ )                                                                                    (2.1.10) 
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Making use of (2.1.1) and (2.1.4) we get  

𝑈 , = 𝜔
,

 + 2𝛼𝜔
,

+ 𝛽 𝜔
,

− 𝜔
,

− 𝑓 , , where 𝜔
,

= , . 

Ignoring the fourth order truncation error term, we obtain a fourth order approximation for 𝑈 ,  from 

(2.1.10) as 

𝑈 , = 𝑈 , + 2ℎ 𝜔
,

+
ℎ

6
𝜔

,
 + 2𝛼𝜔

,
+ 𝛽 𝜔

,
− 𝜔

,
− 𝑓 ,  (2.1.11) 

Similarly, approximations at points (𝑙, −1, 𝑗) and (𝑙, 𝑁 + 1, 𝑗) for 𝑙 = 0(1)𝑁 are obtained. Next, we 

derive an approximation for 𝑈 , . 

Taylor’s expansion about grid point (0,0, 𝑗) provides us 

𝑈 , − 𝑈 ,

2ℎ
= 𝑈 , + 𝑈 , +

ℎ

6
𝑈 , + 3𝑈 , + 3𝑈 , + 𝑈 , + 𝑂(ℎ )         (2.1.12) 

Making use of (2.1.3), (2.1.5) and (2.1.1) and ignoring the fourth order truncation error term we obtain 

fourth order approximation for 𝑈 ,  as  

𝑈 , = 𝑈 , − 2ℎ 𝜔
,

+ 𝜔
,

+
ℎ

6
𝜔

,
+ 2𝛼𝜔

,
+ 𝛽 𝜔

,
+ 2𝜔

,
− 𝑓 , + 𝜔

,
+ 2𝛼𝜔

,

+ 𝛽 𝜔
,

+ 2𝜔
,

− 𝑓 ,                                                                                        (2.1.13) 

where  𝜔
,

= , , 𝜔
,

= ,  

Similarly, approximations at other ghost points (𝑁 + 1, 𝑁 + 1, 𝑗), (−1, 𝑁 + 1, 𝑗) and (𝑁 + 1, −1, 𝑗) are 
obtained. Finally, eliminating approximations at all the ghost points from above obtained approximations 
and (2.1.7) on extended domain Ω′, we obtain a method of 𝑂(𝑘 + 𝑘 ℎ + ℎ ) for the telegraphic 
equation (2.1.1) with Robin boundary conditions, which maintains the block tri-diagonal structure of the 
coefficient matrices. 

2.2. Stability Analysis  

In this section we discuss the matrix stability analysis of the proposed method subject to Neumann 
boundary conditions, that is, the case when all 𝑎 ′𝑠 are zero and none of 𝑏 ′𝑠 are zero. Without loss of 
generality, we may take each 𝑏 = 1, such that 

𝑢 (0, 𝑦, 𝑡) = ℎ (𝑦, 𝑡), 𝑢 (1, 𝑦, 𝑡) = ℎ (𝑦, 𝑡) 0 ≤ 𝑦 ≤ 1, 𝑡 > 0                                                                  (2.2.1)  
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𝑢 (𝑥, 0, 𝑡) = ℎ (𝑥, 𝑡), 𝑢 (𝑥, 1, 𝑡) = ℎ (𝑥, 𝑡) 0 ≤ 𝑥 ≤ 1, 𝑡 > 0                                                                  (2.2.2)                                     

High order approximations for Neumann boundary conditions are obtained from the previous section. In 
order to obtain an unconditionally stable method, suitable for obtaining ADI method, we follow the ideas 
given by Chawla [17] and rewrite the method (2.1.7) in the modified form for 𝑙, 𝑚 = 0(1)𝑁 as 

1 + 𝐴 𝛿 (𝐴 + 𝐴 𝛿 )𝛿 𝑈 , + √𝑎 1 +
1

12
𝛿 (2𝜇 𝛿 )𝑈 ,

=
𝑝

6
𝛿 𝛿 + 𝑝 −

𝑏

12
𝛿 + 𝛿 − 𝑏 𝑈 ,

+  
𝑘

12
𝑓 , + 𝑓 , + 𝑓 , + 𝑓 , + 8𝑓 , + 𝑂(𝑘 + 𝑘 ℎ + 𝑘 ℎ )           (2.2.3) 

where, 𝐴 = (1 + 𝜂𝑏 ), 𝐴 = (1 − 12𝛾𝑝 ). 

where 𝜂 and 𝛾 are free parameters to be determined. The additional terms are of high order and do not 
affect the accuracy of the method. Now, when the scheme (2.2.3) is expanded for 𝑙, 𝑚 = 0(1)𝑁, we get 
ghost points which are being eliminated by using the derived high order approximations we obtained in 
Section 2.1. For stability, we consider the homogeneous part of the thus obtained equation, which in 
matrix form together with Neumann boundary conditions can be written as 

𝒁𝑼𝒋 𝟏 + 𝑿𝑼𝒋 + 𝒀𝑼𝒋 𝟏 = 𝑪                                                                                                                                (2.2.4) 

where,  

𝒁 =
√

𝓐𝟏 + (1 + 𝜂𝑏 )𝛾𝑝 𝓐𝟐 +
√

𝓐𝟑 +
√

+ 𝛾 𝑝 𝓐𝟒 + 𝓐𝟓 + 𝛾𝑝 𝓐𝟔,  

𝑿 = 𝓐𝟏 − 2(1 + 𝜂𝑏 )𝛾𝑝 𝓐𝟐 − 2 + 𝛾 𝑝 𝓐𝟒 − 𝓐𝟓 + (𝑝 − 2𝛾𝑝 )𝓐𝟔,  

𝒀 =
√

𝓐𝟏 + (1 + 𝜂𝑏 )𝛾𝑝 𝓐𝟐 −
√

𝓐𝟑 +
√

+ 𝛾 𝑝 𝓐𝟒 + 𝓐𝟓 + 𝛾𝑝 𝓐𝟔,  

𝓐𝟏 =

⎣
⎢
⎢
⎢
⎡
𝐀′ 𝐀 𝟎
𝐀 2𝐀′ 𝐀

⋱ ⋱ ⋱
𝐀 2𝐀′ 𝐀

𝟎 𝐀 𝐀′⎦
⎥
⎥
⎥
⎤

, 𝐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

2
0 0

0 1 0
⋱
0 1 0

0 0
1

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 𝑨 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 2 0

4

⋱ ⋱ ⋱

4

0 2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝓐𝟐 =

⎣
⎢
⎢
⎢
⎡

𝑨 −𝐀 𝟎
−𝐀 2𝐀 −𝐀

⋱ ⋱ ⋱
−𝐀 2𝐀 −𝐀

𝟎 −𝐀 𝐀 ⎦
⎥
⎥
⎥
⎤

, 𝓐𝟑 =

⎣
⎢
⎢
⎢
⎡

𝐄 −𝐄 𝟎
−𝐄 2𝐄 −𝐄

⋱ ⋱ ⋱
−𝐄 2𝐄 −𝐄

𝟎 −𝐄 𝐄 ⎦
⎥
⎥
⎥
⎤

,   
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𝐄 =

⎣
⎢
⎢
⎢
⎡

5 1 0
1 10 1

⋱
1 10 1

0 1 5 ⎦
⎥
⎥
⎥
⎤

, 𝓐𝟒 =

⎣
⎢
⎢
⎢
⎡
−2𝐁 𝟐𝐁 𝟎
𝟐𝐁 −4𝐁 𝟐𝐁

⋱ ⋱ ⋱
𝟐𝐁 −𝟒𝐁 𝟐𝐁

𝟎 𝟐𝐁 −2𝐁⎦
⎥
⎥
⎥
⎤

, 𝐁 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡− 0

−1

⋱ ⋱ ⋱

−1

0 − ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 

 𝓐𝟓 =

⎣
⎢
⎢
⎢
⎡
−𝐁 𝟎 𝟎
𝟎 −𝟐𝐁 𝟎

⋱ ⋱ ⋱
𝟎 −𝟐𝐁 𝟎

𝟎 𝟎 −𝐁⎦
⎥
⎥
⎥
⎤

, 𝓐𝟔 =

⎣
⎢
⎢
⎢
⎡
−4𝐁 −𝟐𝐁 𝟎
−𝟐𝐁 −8𝐁 −𝟐𝐁

⋱ ⋱ ⋱
−𝟐𝐁 −𝟖𝐁 −𝟐𝐁

𝟎 −𝟒𝐁 −2𝐁⎦
⎥
⎥
⎥
⎤

, 

𝑪 is the column vector corresponding to the boundary conditions,  

𝑼𝒋 = [𝑈 , 𝑈 , … 𝑈 , 𝑈 , 𝑈 , … 𝑈 , … … 𝑈 , 𝑈 , … 𝑈 , ]′. The matrix 𝓐𝟏 is strictly diagonally 

dominant real-symmetric matrix with all main diagonal entries positive, so all the eigen values of 𝓐𝟏 are 
real and positive. Also the eigenvalues of the matrices 𝓐𝒊, 𝑖 = 2(1) 6 are real and non-negative. Thus it 
can be seen that all the eigen values of the matrix  𝒁 are positive and hence the matrix  𝒁 is invertible. 
Now, the equation (2.2.4) can be rewritten as 

𝑼𝒋 𝟏

…
𝑼𝒋

=
−𝒁 𝟏𝑿 ⋮ −𝒁 𝟏𝒀

… … …
𝐈 ⋮ 𝟎

𝑼𝒋

…
𝑼𝒋 𝟏

+
𝒁 𝟏𝑪

⋯
𝟎

                                                                                (2.2.5) 

Writing 
𝑼𝒋 𝟏

…
𝑼𝒋

= 𝐕𝐣 𝟏, 
𝑼𝒋

…
𝑼𝒋 𝟏

= 𝐕𝐣, 
−𝒁 𝟏𝑿 ⋮ −𝒁 𝟏𝒀

… … …
𝐈 ⋮ 𝟎

= 𝐃, 
𝒁 𝟏𝑪

⋯
𝟎

= 𝐆, we get 

𝐕𝐣 𝟏 = 𝐃𝐕𝐣 +  𝐆                                                                                                                                                    (2.2.6) 

Hence, the three-time level problem has now reduced to two time level problem. Thus, the proposed 
method is solvable. 

Now, if 𝝀𝒋𝒊
=eig 𝓐𝟏

𝟏𝓐𝒋 , 𝑗 = 2,3,…6, then  

𝑏 − 2 − 2𝜂𝑏
12

− 2(𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 − 2
1

144
+ 𝛾 𝑝 𝜆 −

2𝜂𝑏
12

𝜆 + (𝑝 − 2𝛾𝑝 )𝜆

1 + √𝑎 + 𝜂𝑏
12

+ (𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 +
√𝑎𝛾𝑝

12
𝜆 +

1 + √𝑎
144

+ 𝛾 𝑝 𝜆 +
𝜂𝑏
12

𝜆  + 𝛾𝑝 𝜆

 

and 

1 − √𝑎 + 𝜂𝑏
12

+ (𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 −
√𝑎𝛾𝑝

12
𝜆 +

1 − √𝑎
144

+ 𝛾 𝑝 𝜆 +
𝜂𝑏
12

𝜆  + 𝛾𝑝 𝜆

1 + √𝑎 + 𝜂𝑏
12

+ (𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 +
√𝑎𝛾𝑝

12
𝜆 +

1 + √𝑎
144

+ 𝛾 𝑝 𝜆 +
𝜂𝑏
12

𝜆  + 𝛾𝑝 𝜆
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are the eigen values of 𝑍 𝑋 and 𝑍 𝑌 respectively, having the common set of corresponding linearly 
independent eigen vectors. Now, the eigen values of the matrix 𝐃 are given by the eigen values of the 
matrix  
 

−M −N
1 0

                                                                                                                                                            (2.2.7)  

where −M, −N, 1 and 0 are the 𝑖  eigen values of  −𝒁 𝟏𝑿, −𝒁 𝟏𝒀, 𝐈 and 𝟎 respectively corresponding 

to 𝑖  eigen vector common to all the matrices −𝒁 𝟏𝑿, −𝒁 𝟏𝒀, 𝐈 and 𝟎. If 𝚲 is an eigen value of 𝐃 then 
the characteristic equation of (2.2.7) is 

𝚲 + M𝚲 + N = 0.                                                                                                                                                (2.2.8) 

Using the transformation 𝚲 =  , the characteristic equation (2.2.8) reduces to 

(1 − M + N)𝑧 + 2(1 − N)𝑧 + (1 + M + N) = 0. 

The necessary and sufficient condition for |𝚲| < 1 is that  

(1 − M + N) > 0, (1 − N) > 0, (1 + M + N) > 0. 

Now, 

(1 + M + N)

=

𝑏
12

+ 𝑝 𝜆

1 + √𝑎 + 𝜂𝑏
12

+ (𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 +
√𝑎𝛾𝑝

12
𝜆 +

1 + √𝑎
144

+ 𝛾 𝑝 𝜆 +
𝜂𝑏
12

𝜆  + 𝛾𝑝 𝜆  

> 0.  

Further, 

(1 − N)

=

2√𝑎
12

+
2√𝑎
144

𝜆 +
2√𝑎𝛾𝑝

12
𝜆

1 + √𝑎 + 𝜂𝑏
12

+ (𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 +
√𝑎𝛾𝑝

12
𝜆 +

1 + √𝑎
144

+ 𝛾 𝑝 𝜆 +
𝜂𝑏
12

𝜆  + 𝛾𝑝 𝜆  

> 0.  

Now, 

(1 − M + N)

=

−𝑏 + 4 + 4𝜂𝑏
12

+ 𝟒(𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 +
4

144
+ 4𝛾 𝑝 𝜆 +

4𝜂𝑏
12

𝜆 − 𝑝 (1 − 4𝛾)𝜆

1 + √𝑎 + 𝜂𝑏
12

+ (𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 +
√𝑎𝛾𝑝

12
𝜆 +

1 + √𝑎
144

+ 𝛾 𝑝 𝜆 +
𝜂𝑏
12

𝜆  + 𝛾𝑝 𝜆
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=

(64𝜂 − 1)(1 − 8𝜂𝑏)
192𝜂

− 𝑝 (1 − 4𝛾)𝜆 +
4

144
+ 4𝛾 𝑝 𝜆 +

4𝜂𝑏
12

𝜆 + 4(1 + 𝜂𝑏 )𝛾𝑝 𝜆

1 + √𝑎 + 𝜂𝑏
12

+ (𝟏 + 𝜂𝑏 )𝛾𝑝 𝜆 +
√𝑎𝛾𝑝

12
𝜆 +

1 + √𝑎
144

+ 𝛾 𝑝 𝜆 +
𝜂𝑏
12

𝜆  + 𝛾𝑝 𝜆

 

> 0 

for 𝜂 ≥ , 𝛾 ≥ . Hence, |𝚲| < 1 for 𝜂 ≥ , 𝛾 ≥  and we conclude that for all choices of ℎ, 𝑘 the 

proposed method is unconditionally stable. In the similar manner, stability can be achieved in Robin 
boundary case. 

2.3. Alternating Direction Implicit Method 

The structure of the matrices in equation (2.2.3) is block tri-diagonal type which cannot be solved directly 

for 𝑈 , . So, in order to facilitate the computation, we split equation (2.2.3) into two equations to obtain 

tri-diagonal matrices which can be easily handled. Ignoring the truncation error term, the method (2.2.3) 
in two-step ADI form can be written as 

1 + 𝐴 𝛿 𝑈 ,
∗ = 𝐵                                                                                                                                         (2.3.1) 

 [𝐴 + 𝐴 𝛿 ]𝛿 𝑈 , + √𝑎 1 +
1

12
𝛿 (2𝜇 𝛿 )𝑈 , = 𝑈 ,

∗                                                                   (2.3.2) 

where 𝑈 ,
∗  is an intermediate value, 𝐵 = 𝛿 𝛿 + 𝑝 − 𝛿 + 𝛿 − 𝑏 𝑈 , + 𝑓 , +

𝑓 , + 𝑓 , + 𝑓 , + 8𝑓 , . For each fixed 𝑙, equation (2.3.1) can be written in matrix form as  

⎣
⎢
⎢
⎢
⎡
1 − 2𝐴 𝐴

𝐴 1 − 2𝐴 𝐴

⋱ ⋱ ⋱
𝐴 1 − 2𝐴 𝐴

𝐴 1 − 2𝐴 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑈 ,
∗

𝑈 ,
∗

⋮
𝑈 ,

∗

𝑈 ,
∗

⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

𝐵 − 𝐴 𝑈 ,
∗

𝐵
⋮

𝐵

𝐵 − 𝐴 𝑈 ,
∗

⎦
⎥
⎥
⎥
⎤

(2.3.3) 

and for each fixed 𝑚, equation (2.3.2) can be written in matrix form as 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐴 − 2𝐴 +

5√𝑎

6
𝐴 +

√𝑎

12

𝐴 +
√𝑎

12
𝐴 − 2𝐴 +

5√𝑎

6
𝐴 +

√𝑎

12
⋱ ⋱ ⋱

𝐴 +
√𝑎

12
𝐴 − 2𝐴 +

5√𝑎

6
𝐴 +

√𝑎

12

𝐴 +
√𝑎

12
𝐴 − 2𝐴 +

5√𝑎

6 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑈 ,

𝑈 ,

⋮

𝑈 ,

𝑈 , ⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑈 ,

∗ − 𝐿 , − 𝐴 +
√𝑎

12
𝑈 ,

𝑈 ,
∗ − 𝐿 ,

⋮
𝑈 ,

∗ − 𝐿 ,

𝑈 ,
∗ − 𝐿 , − 𝐴 +

√𝑎

12
𝑈 , ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

(2.3.4) 
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where,𝐿 , = −2𝐴 𝑈 , + 𝑈 , − 2(𝐴 − 2𝐴 )𝑈 , + 𝑈 , 𝐴 − 2𝐴 −
√

+ 𝑈 , +

𝑈 , 𝐴 −
√

−, 𝑙 = 1,2, … 𝑁 − 1. We first solve (2.3.3) for 𝑈 ,
∗  and the intermediate 

approximations for boundary required for solving 𝑈 ,
∗  are obtained from (2.3.4). Then equation (2.3.4) is 

solved for obtaining the required solution. Clearly, both these equations carry tri-diagonal matrices and 
hence can be easily solved by tri-diagonal solver. 

3. Three dimensional telegraphic equation  
3.1. Numerical Method 

In this section, we consider the following three-dimensional telegraphic equation 

𝑢 + 2𝛼𝑢 + 𝛽 𝑢 = 𝑢 + 𝑢 + 𝑢 + 𝑓(𝑥, 𝑦, 𝑧, 𝑡), 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1, 𝑡 > 0                                         (3.1.1) 

subject to the initial conditions 

𝑢(𝑥, 𝑦, 𝑧, 0) = 𝜙(𝑥, 𝑦, 𝑧), 𝑢 (𝑥, 𝑦, 𝑧, 0) = 𝜓(𝑥, 𝑦, 𝑧), 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1                                                       (3.1.2) 

and the Robin boundary conditions  

𝑐 𝑢(0, 𝑦, 𝑧, 𝑡)+𝑑 𝑢 (0, 𝑦, 𝑧, 𝑡) = 𝑔 (𝑦, 𝑧, 𝑡), 0 ≤ 𝑦, 𝑧 ≤ 1, 𝑡 > 0                                                              (3.1.3) 

𝑐 𝑢(1, 𝑦, 𝑧, 𝑡)+𝑑 𝑢 (1, 𝑦, 𝑧, 𝑡) = 𝑔 (𝑦, 𝑧, 𝑡), 0 ≤ 𝑦, 𝑧 ≤ 1, 𝑡 > 0                                                              (3.1.4) 

𝑐 𝑢(𝑥, 0, 𝑧, 𝑡)+𝑑 𝑢 (𝑥, 0, 𝑧, 𝑡) = 𝑔 (𝑥, 𝑧, 𝑡), 0 ≤ 𝑥, 𝑧 ≤ 1, 𝑡 > 0                                                              (3.1.5) 

𝑐 𝑢(𝑥, 1, 𝑧, 𝑡)+𝑑 𝑢 (𝑥, 1, 𝑧, 𝑡) = 𝑔 (𝑥, 𝑧, 𝑡), 0 ≤ 𝑥, 𝑧 ≤ 1, 𝑡 > 0                                                              (3.1.6) 

𝑐 𝑢(𝑥, 𝑦, 0, 𝑡)+𝑑 𝑢 (𝑥, 𝑦, 0, 𝑡) = 𝑔 (𝑥, 𝑦, 𝑡), 0 ≤ 𝑥, 𝑦 ≤ 1, 𝑡 > 0                                                            (3.1.7) 

𝑐 𝑢(𝑥, 𝑦, 1, 𝑡)+𝑑 𝑢 (𝑥, 𝑦, 1, 𝑡) = 𝑔 (𝑥, 𝑦, 𝑡), 0 ≤ 𝑥, 𝑦 ≤ 1, 𝑡 > 0                                                            (3.1.8) 

The functions 𝑔 , 𝑖 = 1(1)6 and the forcing function 𝑓(𝑥, 𝑦, 𝑧, 𝑡) are assumed to be sufficiently smooth to 
maintain the order of accuracy of the difference method discussed. In boundary conditions (3.1.3)-
(3.1.8) 𝑐 ′𝑠 and 𝑑 ′𝑠 are scalars. The domain {(𝑥, 𝑦, 𝑧, 𝑡)|0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1, 𝑡 > 0} is discretized uniformly 
into 𝑁 subintervals along 𝑥, 𝑦 and 𝑧 directions with spacing of ℎ > 0 such that 𝑁ℎ = 1 and 𝐽 subintervals 
in time direction with spacing of 𝑘 > 0, where 𝑁 and 𝐽 are positive integers such that the discretized 
domain is  Φ = {(𝑥 , 𝑦 , 𝑧 , 𝑡 )|0 ≤ 𝑙, 𝑚, 𝑛 ≤ 𝑁, 0 < 𝑗 ≤ 𝐽}. For 𝑙, 𝑚, 𝑛 = 0(1)𝑁 and 0 < 𝑗 ≤ 𝐽, the grid 

point 𝑥 , 𝑦 , 𝑧 , 𝑡 = (𝑙ℎ, 𝑚ℎ, 𝑛ℎ, 𝑗𝑘) is denoted by (𝑙, 𝑚, 𝑛, 𝑗). The grid spacing along 𝑥, 𝑦 and 𝑧 

directions are chosen to be equal.  

A Numerov type approximation [15] with accuracy of 𝑂(𝑘 + 𝑘 ℎ + ℎ )  for the solution of (3.1.1) for 
𝑙, 𝑚, 𝑛 = 1(1)𝑁 − 1, 0 < 𝑗 ≤ 𝐽 may be written as 
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𝛿 𝑈 , , + √𝑎(2𝜇 𝛿 )𝑈 , , +
√𝑎

12
𝛿 + 𝛿 + 𝛿 (2𝜇 𝛿 )𝑈 , , + 𝑏𝑈 , ,

+
𝑏

12
− 𝑝 𝛿 + 𝛿 + 𝛿 𝑈 , , −

𝑝

6
𝛿 𝛿 + 𝛿 𝛿 + 𝛿 𝛿 𝑈 , ,

+
1

12
𝛿 + 𝛿 + 𝛿 𝛿 𝑈 , ,

=
𝑘

12
𝑓 , , + 𝑓 , , + 𝑓 , , + 𝑓 , , + 𝑓 , , + 𝑓 , , + 6𝑓 ,

+ 𝑂(𝑘 + 𝑘 ℎ + 𝑘 ℎ )                                                                                                       (3.1.9) 

As discussed in section 2.1, in this section also we will give details of the case when none of 𝑑 ′𝑠 are zero. 
Since, if any of the 𝑑 ′𝑠 are zero, then in that case we have Dirichlet boundary condition to deal with and 
no extra effort is required. So, for the derivation of approximations for boundary conditions when all 
𝑑 ≠ 0, we extend the spatial domain by introducing two ghost points outside each of 𝑥, 𝑦 and 𝑧 domains 
at each time level and assume that the method (3.1.9) holds on the extended domain 
Φ = {(𝑥 , 𝑦 , 𝑧 , 𝑡 )| − 1 ≤ 𝑙, 𝑚, 𝑛 ≤ 𝑁 + 1, 0 < 𝑗 ≤ 𝐽}. We derive approximations at ghost points in 

such a way that accuracy of the method is not degraded. For deriving an explicit approximation for 

𝑈 , , , we make use of Taylor’s expansion about the grid point (0, 𝑚, 𝑛, 𝑗), which provides us 

𝑈 , , − 𝑈 , ,

2ℎ
= 𝑈 , , +

ℎ

6
𝑈 , , + 𝑂(ℎ )                                                                                (3.1.10) 

Using (3.1.1) and (3.1.3), we get  

𝑈 , , = 𝜎
, ,

 + 2𝛼𝜎
, ,

+ 𝛽 𝜎
, ,

− 𝜎
, ,

− 𝜎
, ,

− 𝑓 , ,   

where 𝜎
, ,

= , , , . 

Ignoring the fourth order truncation error term, we obtain a fourth order approximation for 𝑈 , ,  as 

𝑈 , , = 𝑈 , ,

− 2ℎ 𝜎
, ,

+
ℎ

6
𝜎

, ,
 + 2𝛼𝜎

, ,
+ 𝛽 𝜎

, ,
− 𝜎

, ,
− 𝜎

, ,
− 𝑓 , ,   (3.1.11) 

Similarly, the approximations at (𝑁 + 1, 𝑚, 𝑛, 𝑗), (𝑙, −1, 𝑛, 𝑗), (𝑙, 𝑁 + 1, 𝑛, 𝑗), (𝑙, 𝑚, −1, 𝑗), (𝑙, 𝑚, 𝑁 + 1, 𝑗) 
for 𝑙, 𝑚, 𝑛 = 0(1)𝑁 are obtained. 

Now, we derive an approximation for 𝑈 , ,  with 𝑛 = 0(1)𝑁. Taylor’s expansion about grid point 

(0,0, 𝑛, 𝑗) provides us 
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𝑈 , , − 𝑈 , ,

2ℎ

= 𝑈 , , + 𝑈 , , +
ℎ

6
𝑈 , , + 3𝑈 , , + 3𝑈 , , + 𝑈 , ,

+ 𝑂(ℎ )                                                                                                                                                                  (3.1.12) 

Making use of (3.1.3), (3.1.5) and (3.1.1) and ignoring the fourth order truncation error term we obtain 

fourth order approximation for 𝑈 , ,  as  

𝑈 , , = 𝑈 , ,

− 2ℎ 𝜎
, ,

+ 𝜎
, ,

+
ℎ

6
𝜎

, ,
+ 2𝛼𝜎

, ,
+ 𝛽 𝜎

, ,
+ 2𝜎

, ,
− 𝜎

, ,
− 𝑓 , , + 𝜎

, ,

+ 2𝛼𝜎
, ,

+ 𝛽 𝜎
, ,

+ 2𝜎
, ,

− 𝜎
, ,

− 𝑓 , ,                                    (3.1.13) 

where  𝜎
, ,

= , , ,
, 𝜎

, ,
= , , , . 

Similarly, approximations at all other such points with ghost points along any two directions and interior 
point along third direction are obtained. Finally, approximations at points with ghost points occurring 
simultaneously along all three 𝑥, 𝑦 and 𝑧 directions are obtained. For example, 

𝑈 , , = 𝑈 , ,

− 2ℎ 𝜎
, ,

+ 𝜎
, ,

+ 𝜎
, ,

+
ℎ

6
𝜎

, ,
+ 2𝛼𝜎

, ,
+ 𝛽 𝜎

, ,
+ 2𝜎

, ,
+ 2𝜎

, ,
− 𝑓 , , +𝜎

, ,

+ 2𝛼𝜎
, ,

+ 𝛽 𝜎
, ,

+ 2𝜎
, ,

+ 2𝜎
, ,

− 𝑓 , , + 𝜎
, ,

+ 2𝛼𝜎
, ,

+ 𝛽 𝜎
, ,

+ 2𝜎
, ,

+ 2𝜎
, ,

− 𝑓 , ,                                                           (3.1.14) 

where,  𝜎
, ,

= , , ,
, 𝜎

, ,
= , , ,

, 𝜎
, ,

= , , ,  

Finally, eliminating all the approximations at ghost points and (3.1.9) which is assumed to hold on 
extended domain Φ , we obtain a method of 𝑂(𝑘 + 𝑘 ℎ + ℎ ) for the telegraphic equation (3.1.1) with 
Robin boundary conditions. 

3.2. Stability Analysis  

In this section, we discuss the stability of the proposed method when applied to (3.1.1) subject to 
Neumann boundary conditions, i.e., when all 𝑎 ′𝑠 are zero and all 𝑏 𝑠 = 1. 
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In order to obtain an unconditionally stable method, we rewrite (3.1.9) in modified form for 𝑙, 𝑚, 𝑛 =

0(1)𝑁 as 

1 + 𝐴 𝛿 [1 + 𝐴 𝛿 ] [𝐴 + 𝐴 𝛿 ]𝛿 𝑈 , , + √𝑎 1 +
1

12
𝛿 (2𝜇 𝛿 )𝑈 , ,

=
𝑝

6
(𝛿 𝛿 + 𝛿 𝛿 + 𝛿 𝛿 ) + 𝑝 −

𝑏

12
𝛿 + 𝛿 + 𝛿 − 𝑏 𝑈 , ,

+
𝑘

12
𝑓 , , + 𝑓 , , + 𝑓 , , + 𝑓 , , + 𝑓 , , + 𝑓 , , + 6𝑓 , ,

+ 𝑂(𝑘 + 𝑘 ℎ + 𝑘 ℎ )                                                                                                (3.2.1) 

where, 𝐴 = (1 + 𝜂𝑏 ), 𝐴 = (1 − 12𝛾𝑝 ), 𝜂 and 𝛾 are free parameters to be determined. The 

additional terms are of high order and do not affect the accuracy of the method. For stability, we consider 
the homogeneous part of the method (3.2.1) which in matrix form together with Neumann boundary 
conditions can be written as 

𝒁𝑼𝒋 𝟏 + 𝑿𝑼𝒋 + 𝒀𝑼𝒋 𝟏 = 𝑪                                                                                                                              (3.2.2) 

where,  

𝒁 =
1

12
1 + √𝑎 𝑩𝟏𝟖 +

𝜂𝑏

144
𝑩𝟏𝟕 + (𝛾 𝑝 )𝑩𝟐𝟒 +

𝛾𝑝

144
(𝑩𝟐𝟖 + 𝑩𝟏𝟑 + 𝑩𝟏𝟗) + 𝜂𝑏 𝛾 𝑝 𝑩𝟐𝟐

+
𝜂𝑏 𝛾𝑝

12
(𝑩𝟐𝟕 + 𝑩𝟏𝟐) +

𝛾 𝑝

12
(𝑩𝟐𝟑 + 𝑩𝟐𝟗 + 𝑩𝟏𝟒) +

√𝑎𝛾𝑝

144
(𝑩𝟐𝟖 + 𝑩𝟏𝟑)

+
√𝑎𝛾 𝑝

12
𝑩𝟐𝟑, 

𝑿 = −
2

12
𝑩𝟏𝟖 −

2𝜂𝑏

144
𝑩𝟏𝟕 − 𝟐(𝛾 𝑝 )𝑩𝟐𝟒 −

2𝛾𝑝

144
(𝑩𝟐𝟖 + 𝑩𝟏𝟑 + 𝑩𝟏𝟗) − 2𝜂𝑏 𝛾 𝑝 𝑩𝟐𝟐

−
2𝜂𝑏 𝛾𝑝

12
(𝑩𝟐𝟕 + 𝑩𝟏𝟐) −

2𝛾 𝑝

12
(𝑩𝟐𝟑 + 𝑩𝟐𝟗 + 𝑩𝟏𝟒) +

𝑝

6
(𝑩𝟐𝟐 + 𝑩𝟐𝟓 + 𝑩𝟑𝟒) + (𝑝

−
𝑏

12
)(𝑩𝟏𝟏𝟎 + 𝑩𝟑𝟓 + 𝑩𝟑𝟐), 

𝒀 =
1

12
1 − √𝑎 𝑩𝟏𝟖 +

𝜂𝑏

144
𝑩𝟏𝟕 + (𝛾 𝑝 )𝑩𝟐𝟒 +

𝛾𝑝

144
(𝑩𝟐𝟖 + 𝑩𝟏𝟑 + 𝑩𝟏𝟗) + 𝜂𝑏 𝛾 𝑝 𝑩𝟐𝟐

+
𝜂𝑏 𝛾𝑝

12
(𝑩𝟐𝟕 + 𝑩𝟏𝟐) +

𝛾 𝑝

12
(𝑩𝟐𝟑 + 𝑩𝟐𝟗 + 𝑩𝟏𝟒) −

√𝑎𝛾𝑝

144
(𝑩𝟐𝟖 + 𝑩𝟏𝟑)

−
√𝑎𝛾 𝑝

12
𝑩𝟐𝟑 

where 

𝑩𝟏𝒊 =

⎣
⎢
⎢
⎢
⎡
𝟓𝓐𝐢 𝓐𝐢 𝟎

𝓐𝐢 10𝓐𝐢 𝓐𝐢

⋱ ⋱ ⋱
𝓐𝒊 10𝓐𝒊 𝓐𝒊

𝟎 𝓐𝐢 𝟓𝓐𝐢⎦
⎥
⎥
⎥
⎤

, 𝑖 = 2,3,4,5,7,8,9,10  



13 
 

𝑩𝟐𝒊 =

⎣
⎢
⎢
⎢
⎡

𝓐𝐢 −𝓐𝐢 𝟎

−𝓐𝐢 𝟐𝓐𝐢 −𝓐𝐢

⋱ ⋱ ⋱
−𝓐𝒊 2𝓐𝒊 −𝓐𝒊

𝟎 −𝓐𝐢  𝓐𝐢 ⎦
⎥
⎥
⎥
⎤

, 𝑖 = 2,3,4,7,8,9, 

𝑩𝟑𝒊 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝟏

𝟐
𝓐𝐢 𝟎 𝟎

𝟎 𝓐𝐢 𝟎

⋱ ⋱ ⋱
𝟎 𝓐𝒊 𝟎

𝟎 𝟎
𝟏

𝟐
𝓐𝐢⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 𝑖 = 2,4,5 

𝓐𝟕 =

⎣
⎢
⎢
⎢
⎡
𝟓𝐀 𝐀 𝟎
𝐀 𝟏𝟎𝐀 𝐀

⋱ ⋱ ⋱
𝐀 10𝐀 𝐀

𝟎 𝐀 𝟓𝐀⎦
⎥
⎥
⎥
⎤

, 𝓐𝟖 =

⎣
⎢
⎢
⎢
⎡
𝟓𝐄 𝐄 𝟎
𝐄 𝟏𝟎𝐄 𝑬

⋱ ⋱ ⋱
𝐄 10𝐄 𝑬

𝟎 𝐄 𝟓𝐄⎦
⎥
⎥
⎥
⎤

, 

𝓐𝟗 =

⎣
⎢
⎢
⎢
⎡
−𝟏𝟎𝐁 −𝟐𝑩 𝟎
−𝟐𝑩 −𝟐𝟎𝐁 −𝟐𝑩

⋱ ⋱ ⋱
−𝟐𝐁 −𝟐𝟎𝐁 −𝟐𝑩

𝟎 −𝟐𝐁 −𝟏𝟎𝐁⎦
⎥
⎥
⎥
⎤

, 𝓐𝟏𝟎 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝟏

𝟐
𝑨 𝟎 𝟎

𝟎 𝐀 𝟎
⋱ ⋱ ⋱

𝟎 𝐀 𝟎

𝟎 𝟎
𝟏

𝟐
𝑨⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 

matrices 𝓐𝐢, 𝑖 = 1,2, … 6, 𝑨, 𝑩, 𝑬 are as defined in Section 2.2 and 𝑪 is the column vector corresponding 
to the boundary conditions, 

𝑼𝒋 = [𝑈 , , 𝑈 , , … 𝑈 , , 𝑈 , , 𝑈 , , … 𝑈 , , … … 𝑈 , , 𝑈 , , … 𝑈 , , … 𝑈 , , 𝑈 , , … 𝑈 , , ]′. Matrix 

𝑩𝟏𝟖 is strictly diagonally dominant real symmetric matrix with all main diagonal entries positive, so all 
the eigen values of 𝑩𝟏𝟖 are real and positive [20] and hence invertible. The eigenvalues of the matrices 
𝑩𝟏𝒊 and  𝑩𝟐𝒊  are real and non-negative. Thus all the eigen values of the matrix 𝒁 are positive and hence 
𝒁 is invertible. Now, equation (3.2.2) can be rewritten as 

 

𝑼𝒋 𝟏

…
𝑼𝒋

=
−𝒁 𝟏𝑿 ⋮ −𝒁 𝟏𝒀

… … …
𝐈 ⋮ 𝟎

𝑼𝒋

…
𝑼𝒋 𝟏

+
𝒁 𝟏𝑪

⋯
𝟎

                                                                                (3.2.3) 

Writing 
𝑼𝒋 𝟏

…
𝑼𝒋

= 𝐕𝐣 𝟏, 
𝑼𝒋

…
𝑼𝒋 𝟏

= 𝐕𝐣, 
−𝒁 𝟏𝑿 ⋮ −𝒁 𝟏𝒀

… … …
𝐈 ⋮ 𝟎

= 𝐃, 
𝒁 𝟏𝑪

⋯
𝟎

= 𝐆, we get 

𝐕𝐣 𝟏 = 𝐃𝐕𝐣 +  𝐆                                                                                                                                                 (3.2.4) 



14 
 

Hence, similar to two dimensional case, we obtain that the difference method is solvable. 

Hence, if 𝝀𝒎𝒋𝒊
=eig 𝑩𝟏𝟖

𝟏𝑩𝒎𝒋 , 𝑚 = 1,2,3, 𝑗 = 2,3,…10, 𝑖 = 1(1)(𝑁 + 1)  and 

P= 1 + √𝑎 + 𝝀𝟏𝟕𝒊 + (𝛾 𝑝 )𝝀𝟐𝟒𝒊 + (𝝀𝟐𝟖𝒊 + 𝝀𝟏𝟑𝒊 + 𝝀𝟏𝟗𝒊) + 𝜂𝑏 𝛾 𝑝 𝝀𝟐𝟐𝒊 + (𝝀𝟐𝟕𝒊 +

𝝀𝟏𝟐𝒊) + (𝝀𝟐𝟑𝒊 + 𝝀𝟐𝟗𝒊 + 𝝀𝟏𝟒𝒊) +
√

(𝝀𝟐𝟖𝒊 + 𝝀𝟏𝟑𝒊) +
√

𝝀𝟐𝟑𝒊, 

Q= 1 − √𝑎 + 𝝀𝟏𝟕𝒊 + (𝛾 𝑝 )𝝀𝟐𝟒𝒊 + (𝝀𝟐𝟖𝒊 + 𝝀𝟏𝟑𝒊 + 𝝀𝟏𝟗𝒊) + 𝜂𝑏 𝛾 𝑝 𝝀𝟐𝟐𝒊 + (𝝀𝟐𝟕𝒊 +

𝝀𝟏𝟐𝒊) + (𝝀𝟐𝟑𝒊 + 𝝀𝟐𝟗𝒊 + 𝝀𝟏𝟒𝒊) −
√

(𝝀𝟐𝟖𝒊 + 𝝀𝟏𝟑𝒊) −
√

𝝀𝟐𝟑𝒊 

R= − 𝝀𝟏𝟕𝒊 − 𝟐(𝛾 𝑝 )𝝀𝟐𝟒𝒊 − (𝝀𝟐𝟖𝒊 + 𝝀𝟏𝟑𝒊 + 𝝀𝟏𝟗𝒊) − 2𝜂𝑏 𝛾 𝑝 𝝀𝟐𝟐𝒊 − (𝝀𝟐𝟕𝒊 +

𝝀𝟏𝟐𝒊) − (𝝀𝟐𝟑𝒊 + 𝝀𝟐𝟗𝒊 + 𝝀𝟏𝟒𝒊), 

Then  and   are the eigen values of 𝒁 𝟏𝑿 and 𝒁 𝟏𝒀 respectively, having the common set of 

corresponding linearly independent eigen vectors. Now, the eigen values of the matrix 𝐃 are given by the 
eigen values of the matrix 

−M −N
1 0

                                                                                                                                                            (3.2.5) 

where  −M, −N, 1 and 0 are the 𝑖  eigenvalues of  −𝒁 𝟏𝑿, −𝒁 𝟏𝒀, 𝐈 and 𝟎 respectively corresponding 
to 𝑖  eigenvector common to all these matrices. If 𝚲 is an eigenvalue of 𝐃 then the characteristic 
equation of matrix (3.2.5) is 

𝚲 + M𝚲 + N = 0                                                                                                                                               (3.2.6) 

Using the transformation 𝚲 =  , the characteristic equation (3.2.6) reduces to 

(1 − M + N)𝑧 + 2(1 − N)𝑧 + (1 + M + N) = 0 

The necessary and sufficient condition for | 𝚲 | < 1 is that  

(1 − M + N) > 0, (1 − N) > 0, (1 + M + N) > 0 

Now, as in two dimensional case by rearranging the terms it can be shown that 

(1 + M + N) > 0, (1 − N) > 0  and (1 − M + N) > 0 

for 𝜂 ≥ , 𝛾 ≥  and we conclude that for all choices of ℎ, 𝑘 the proposed method is unconditionally 

stable. In the similar manner, stability can be achieved in Robin boundary case. 

3.3.  Alternating Direction Implicit Method 
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The structure of the matrices in equation (3.2.1) is block tri-diagonal type which cannot be solved directly 

for 𝑈 , , . So, in order to facilitate the computation, we split equation (3.2.1) into three equations to 

obtain tri-diagonal matrices which can be easily handled. Ignoring the truncation error term, the method 
(3.2.1) in three-step ADI form can be written as 

[1 + 𝐴 𝛿 ]𝑈 , ,
∗∗ = 𝐵                                                                                                                                       (3.3.1) 

1 + 𝐴 𝛿 𝑈 , ,
∗ = 𝑈 , ,

∗∗                                                                                                                                 (3.3.2) 

(𝐴 + 𝐴 𝛿 )𝛿 𝑈 , , + √𝑎 1 +
1

12
𝛿 (2𝜇 𝛿 )𝑈 , , = 𝑈 , ,

∗                                                            (3.3.3) 

where, 𝐵 = (𝛿 𝛿 + 𝛿 𝛿 + 𝛿 𝛿 ) + 𝑝 − 𝛿 + 𝛿 + 𝛿 − 𝑏 𝑈 , , + 𝑓 , , +

𝑓 , , + 𝑓 , , + 𝑓 , , + 𝑓 , , + 𝑓 , , + 6𝑓 , ,  and  

𝑈 , ,
∗  and 𝑈 , ,

∗∗  are intermediate values.  

For fixed 𝑙, 𝑚, equation (3.3.1) can be written in matrix form as  

⎣
⎢
⎢
⎢
⎡
1 − 2𝐴 𝐴

𝐴 1 − 2𝐴 𝐴

⋱ ⋱ ⋱
𝐴 1 − 2𝐴 𝐴

𝐴 1 − 2𝐴 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑈 , ,
∗∗

𝑈 , ,
∗∗

⋮
𝑈 , ,

∗∗

𝑈 , ,
∗∗

⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

𝐵 − 𝐴 𝑈 , ,
∗∗

𝐵
⋮

𝐵

𝐵 − 𝐴 𝑈 , ,
∗∗

⎦
⎥
⎥
⎥
⎤

(3.3.4) 

For fixed 𝑙, 𝑛, equation (3.3.2) can be written in matrix form as  

⎣
⎢
⎢
⎢
⎡
1 − 2𝐴 𝐴

𝐴 1 − 2𝐴 𝐴

⋱ ⋱ ⋱
𝐴 1 − 2𝐴 𝐴

𝐴 1 − 2𝐴 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑈 , ,
∗

𝑈 , ,
∗

⋮
𝑈 , ,

∗

𝑈 , ,
∗

⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

𝑈 , ,
∗∗ − 𝐴 𝑈 , ,

∗

𝑈 , ,
∗∗

⋮
𝑈 , ,

∗∗

𝑈 , ,
∗∗ − 𝐴 𝑈 , ,

∗
⎦
⎥
⎥
⎥
⎥
⎤

(3.3.5) 

and for fixed 𝑚, 𝑛, equation (3.3.3) can be written in matrix form as  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐴 − 2𝐴 +

5√𝑎

6
𝐴 +

√𝑎

12

𝐴 +
√𝑎

12
𝐴 − 2𝐴 +

5√𝑎

6
𝐴 +

√𝑎

12
⋱ ⋱ ⋱

𝐴 +
√𝑎

12
𝐴 − 2𝐴 +

5√𝑎

6
𝐴 +

√𝑎

12

𝐴 +
√𝑎

12
𝐴 − 2𝐴 +

5√𝑎

6 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑈 , ,

𝑈 , ,

⋮

𝑈 , ,

𝑈 , , ⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑈 , ,

∗ − 𝐿 , , − 𝐴 +
√𝑎

12
𝑈 , ,

𝑈 , ,
∗ − 𝐿 , ,

⋮
𝑈 , ,

∗ − 𝐿 , ,

𝑈 , ,
∗ − 𝐿 , , − 𝐴 +

√𝑎

12
𝑈 , , ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

(3.3.6) 
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where, 𝐿 , , = −2𝐴 𝑈 , , + 𝑈 , , − 2(𝐴 − 2𝐴 )𝑈 , , + 𝑈 , , 𝐴 − 2𝐴 −
√

+

𝑈 , , + 𝑈 , , 𝐴 −
√

−, 𝑙 = 1,2, … 𝑁 − 1.We first solve (3.3.4) for 𝑈 , ,
∗∗  and the intermediate 

approximations for boundary required for solving (3.3.4) are obtained from (3.3.5), then equation (3.3.5) 
is solved and the required approximations for boundary are obtained from (3.3.6). Finally, equation 
(3.3.6) is solved for obtaining the required solution. Each of the system involved in these equations has 
tri-diagonal structure and hence can be easily solved using tri-diagonal solver. 

4. Numerical Experiments 

In this section we will apply the proposed methods to various test problems. In each of the example, we 
compute root mean square (𝑅𝑀𝑆) error, 𝐿∞ error or Relative (Rel.) error by using the formulae 

𝑅𝑀𝑆 error=
∑ | |

,  𝐿  error= max |𝑢 − 𝑈 |, Rel. error=
∑ | |

∑ | |
  

where 𝑢  and 𝑈  denote analytical and numerical solutions respectively. Order of convergence of 
the method is calculated by using the formula 

log
𝑒
𝑒

log(
ℎ
ℎ

)
 

where 𝑒  and 𝑒  are 𝐿∞ errors for grid sizes ℎ  and ℎ  respectively. 

Example 1. Consider the following two dimensional telegraphic equation  

𝑢 + 2𝑢 + 𝑢 = 𝑢 + 𝑢 − 2𝑒  

subject to initial conditions 

𝑢(𝑥, 𝑦, 0) = 𝑒 , 𝑢 (𝑥, 𝑦, 0) = −𝑒 , 0 ≤ 𝑥, 𝑦 ≤ 1 

and the boundary conditions 

𝑢(0, 𝑦, 𝑡) = 𝑒 , 𝑢(1, 𝑦, 𝑡) = 𝑒 , 0 ≤ 𝑦 ≤ 1, 𝑡 > 0  
𝑢 (𝑥, 0, 𝑡) = 𝑒 , 𝑢(𝑥, 1, 𝑡) = 𝑒 , 0 ≤ 𝑥 ≤ 1, 𝑡 > 0  

The analytical solution of this example is 𝑢(𝑥, 𝑦, 𝑡) = 𝑒 . 𝑅𝑀𝑆 and 𝐿∞ errors are computed with 
𝑘 = 0.01, ℎ = 0.1 in Table 1. Comparison is done with the 𝐿∞ errors obtained in [8]. Clearly, results 
obtained with the proposed method are much better than the results obtained in [8]. We also compute 
errors with and 𝑘 = 0.001, ℎ = 0.05 and register our results in Table 2. 𝐿∞ and relative errors are 
compared with the errors obtained in [8] and [9]. It can be seen that the proposed method produces much 
better results. 
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Table 1: 𝐄𝐫𝐫𝐨𝐫𝐬 𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 𝐟𝐨𝐫 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏 𝐰𝐢𝐭𝐡 𝒌 = 𝟎. 𝟎𝟏, 𝒉 = 𝟎. 𝟏, 𝜼 =. 𝟓, 𝜸 = 𝟏/𝟑 

𝑡(sec) Proposed Method  Mittal and 
Bhatia[8] 

𝑅𝑀𝑆 error 𝐿∞ error CPU Time 
(in sec) 

 𝐿∞ error 

1 1.12016e-05 2.4904e-05 1.22  2.9996e-02 

2 6.8015e-07 2.4001e-06 2.71  3.9711e-03 

3 1.3001e-06 2.6090e-06 4.16  2.2178e-03 

5 9.5245e-08 2.4211e-07 6.97  2.0618e-05 

7 6.2980e-09 1.8679e-08 10.11  3.0052e-05 

10 1.4571e-09 3.0008e-09 14.45  2.5354e-06 

 

Table 2: 𝐄𝐫𝐫𝐨𝐫𝐬 𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 𝐟𝐨𝐫 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟏 𝐰𝐢𝐭𝐡 𝒌 = 𝟎. 𝟎𝟎𝟏, 𝒉 = 𝟎. 𝟎𝟓, 𝜼 =. 𝟓, 𝜸 = 𝟏/𝟑 

𝑡(sec) Proposed Method  Mittal and Bhatia[8]  Dehghan and 
Ghesmati[9] 

𝑅𝑀𝑆 error 𝐿∞ error Rel. error  𝐿∞ error Rel. error  Rel. error 

.5 6.1700e-07 1.9132e-06 3.2256e-07  9.5129e-03 8.4225e-05  8.014e-05 

1 5.4281e-07 1.2010e-06 4.6904e-07  7.4749e-03 1.2906e-04  2.020e-04 

2 4.0111e-08 1.7234e-07 9.4998e-08  1.0361e-03 3.0957e-05  9.791e-05 

3 5.4191e-08 1.3982e-07 3.5020e-07  5.7859e-04 9.1555e-05  7.029e-04 

 

Example 2. Consider the following telegraphic equation  

𝑢 + 2𝑢 + 𝑢 = 𝑢 + 𝑢 +  2𝜋 𝑒 sin(𝜋𝑥) sin(𝜋𝑦) 

subject to initial conditions 

𝑢(𝑥, 𝑦, 0) = sin(𝜋𝑥)sin(𝜋𝑦), 𝑢 (𝑥, 𝑦, 0) = −sin(𝜋𝑥)sin(𝜋𝑦), 0 ≤ 𝑥, 𝑦 ≤ 1 

and the boundary conditions 

𝑢 (0, 𝑦, 𝑡) = 𝜋𝑒 sin(𝜋𝑦), 𝑢(1, 𝑦, 𝑡) = 0, 0 ≤ 𝑦 ≤ 1, 𝑡 > 0  
𝑢(𝑥, 0, 𝑡) = 0, 𝑢 (𝑥, 1, 𝑡) = −𝜋𝑒 sin(𝜋𝑥), 0 ≤ 𝑥 ≤ 1, 𝑡 > 0  
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The analytical solution of this example is 𝑢(𝑥, 𝑦, 𝑡) = 𝑒 sin(𝜋𝑥) sin(𝜋𝑦). We compute 𝑅𝑀𝑆 and 𝐿∞ 
errors with 𝑘 = 0.01, ℎ = 0.1, 𝜂 = .5, 𝛾 = 1 at various time levels in Table 3. Our results are found to be 
better when compared with the results obtained by Mittal and Bhatia in [8]. Graphs of analytical and 
numerical solution with 𝑘 = 0.01, ℎ = 0.05, 𝜂 = .5, 𝛾 = 1 at 𝑡 = 5 are given in Figure 1. Moreover, we 

compute 𝑅𝑀𝑆 and 𝐿∞ errors at 𝑡 = 1 for = 3.2 and 𝜂 = 1, 𝛾 = 0.5 in Table 4 and show that the 

proposed method is fourth order convergent. 

Table 3: 𝐄𝐫𝐫𝐨𝐫𝐬 𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐝 𝐟𝐨𝐫 𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟐 𝐰𝐢𝐭𝐡 𝒌 = 𝟎. 𝟎𝟏, 𝒉 = 𝟎. 𝟏, 𝜼 =. 𝟓, 𝜸 = 𝟏 

𝑡(sec) Proposed Method Mittal and 
Bhatia[8] 

𝑅𝑀𝑆 error 𝐿∞ error CPU Time 
(in sec) 

𝐿∞ error 

1 1.1923e-03 2.6000e-03 1.28 3.6006e-03 

2 2.5043e-04 5.2501e-04 2.99 5.7068e-03 

3 1.4985e-04 2.7854e-04 4.24 1.2479e-03 

5 2.4200e-05 6.1759e-05 7.14 2.1003e-04 

10 1.4729e-08 4.5999e-08 14.63 1.4083e-06 
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Figure 1: Graphs of analytical and numerical solution of Example 2 at 𝒕 = 𝟓 

Table 4: Errors calculated for Example 2 at 𝒕 = 𝟏 for 
𝒌

𝒉𝟐
= 𝟑. 𝟐, , 𝜼 = 𝟏, 𝜸 = 𝟎. 𝟓 

ℎ 𝑅𝑀𝑆 error  𝐿∞ error CPU Time 

 (in sec) 

Order 

1/8 2.0001e-04 3.1638e-04 0.04 - 

1/16 1.1289e-05 2.1534e-05 0.09 3.90 

1/32 1.0712e-05 1.3046e-06 0.41 4.02 

1/64 9.7456e-07 1.0011e-06 1.01 3.74 

 

 

Example 3. Consider the following telegraphic equation for 𝛼 = 1, 𝛽 = 1 

𝑢 + 2𝛼𝑢 + 𝛽 𝑢

= 𝑢 + 𝑢 + (1 + 𝑥 + 𝑦 + 𝑡) (1 + 2𝛼(1 + 𝑥 + 𝑦 + 𝑡)

+ 𝛽 (1 + 𝑥 + 𝑦 + 𝑡) log(1 + 𝑥 + 𝑦 + 𝑡)) 
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subject to initial conditions 

𝑢(𝑥, 𝑦, 0) = log(1 + 𝑥 + 𝑦) , 𝑢 (𝑥, 𝑦, 0) =
1

1 + 𝑥 + 𝑦
, 0 ≤ 𝑥, 𝑦 ≤ 1 

and the boundary conditions 

𝑢(0, 𝑦, 𝑡) = log(1 + 𝑦 + 𝑡) , 𝑢 (1, 𝑦, 𝑡) =
1

2 + 𝑦 + 𝑡
, 0 ≤ 𝑦 ≤ 1, 𝑡 > 0  

𝑢 (𝑥, 0, 𝑡) =
1

1 + 𝑥 + 𝑡
, 𝑢(𝑥, 1, 𝑡) = log(2 + 𝑥 + 𝑡) , 0 ≤ 𝑥 ≤ 1, 𝑡 > 0  

The analytical solution of this example is 𝑢(𝑥, 𝑦, 𝑡) = log(1 + 𝑥 + 𝑦 + 𝑡). We tabulate errors for this 
example in Table 5 for  𝑘 = 0.001, ℎ = 0.05, 𝜂 = .1, 𝛾 = 1/3 at various time levels and compare our 
results with results obtained in [8] and [9]. The results obtained by the proposed method are found to be 

much better. Moreover, we compute 𝑅𝑀𝑆 and 𝐿∞ errors at 𝑡 = 1 for = 3.2 and 𝜂 = .1, 𝛾 = 1/3 in 

Table 6 and show that the proposed method is fourth order convergent. It is evident from the tables that 
whether the chosen grid sizes are big or small, the proposed methods produce accurate results. 

Table 5: Errors calculated for Example 3 with 𝒌 = 𝟎. 𝟎𝟎𝟏, 𝒉 = 𝟎. 𝟎𝟓, 𝜼 =. 𝟏, 𝜸 = 𝟏/𝟑 

 Proposed Method  Mittal and Bhatia [8] Dehghan and 
Ghesmati[9] 

𝑡 𝑅𝑀𝑆 error 𝐿∞ error Rel. error  𝐿∞ error Rel. error Rel. error 

.5 1.7004e-08 3.3510e-08 1.5689e-08  2.4738e-03 1.1088e-03 7.939e-05 

1 1.2752e-08 2.1329e-08 1.0012e-08  3.3082e-03 1.3266e-03 9.098e-05 

2 4.4320e-09 7.1962e-09 3.1980e-09  1.1380e-03 3.1954e-04 8.705e-04 

3 8.2202e-10 1.6545e-09 5.0203e-10  4.3577e-04 1.3024e-04 9.931e-04 

4 1.0062e-09 1.7215e-09 6.1867e-10  5.4141e-04 1.4435e-05 4.703e-03 

5 2.3210e-10 3.7920e-10 1.0587e-10  3.4812e-04 8.4225e-05 7.302e-03 
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Table 6: Errors calculated for Example 3 at 𝒕 = 𝟏 for 
𝒌

𝒉𝟐
= 𝟑. 𝟐 

ℎ 𝑅𝑀𝑆 error  𝐿∞ error CPU Time 

 (in sec) 

Order 

1/4 5.1103e-04 8.4595e-04 0.06 - 

1/8 4.1699e-05 6.3657e-05 0.08 3.65 

1/16 2.3321e-06 3.3209e-06 0.32 4.07 

1/32 1.4978e-07 2.1032e-07 1.19 3.98 

 

Example 4. Consider the following telegraphic equation for 𝛼 = 10, 𝛽 = 5 

𝑢 + 2𝛼𝑢 + 𝛽 𝑢 = 𝑢 + 𝑢 + (2 − 2𝛼 + 𝛽 )𝑒 cosh(𝑥) sinh(𝑦) 

subject to initial conditions 

𝑢(𝑥, 𝑦, 0) = cosh(𝑥) sinh(𝑦) , 𝑢 (𝑥, 𝑦, 0) = −2 cosh(𝑥) sinh(𝑦) , 0 ≤ 𝑥, 𝑦 ≤ 1 

and the boundary conditions 

3𝑢(0, 𝑦, 𝑡) + 2𝑢 (0, 𝑦, 𝑡) = 3𝑒 sinh(𝑦) , 0 ≤ 𝑦 ≤ 1, 𝑡 > 0 
𝑢 (1, 𝑦, 𝑡) = 𝑒 sinh(1) sinh(𝑦) , 0 ≤ 𝑦 ≤ 1, 𝑡 > 0  

𝑢(𝑥, 0, 𝑡) = 0, 𝑢(𝑥, 1, 𝑡) = 𝑒 cosh(𝑥) sinh(1) , 0 ≤ 𝑥 ≤ 1, 𝑡 > 0  

The analytical solution of this example is 𝑢(𝑥, 𝑦, 𝑡) = 𝑒 cosh(𝑥) sinh(𝑦). In Table 7, 𝑅𝑀𝑆 and 𝐿∞ 
errors are obtained at 𝑡 = 1 for  𝜂 = 1, 𝛾 = 0.5 It can be seen that the method behaves as fourth order 

method for a fixed ratio = 3.2. Graphs of analytical as well as numerical solution at 𝑡 = 1 for ℎ =

1/16 are shown in Figure 2. It is evident from the graphs that the numerical solution agrees with the 
analytical solution. 
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Table 7: Errors calculated for Example 4 at 𝒕 = 𝟏 for  
𝒌

𝒉𝟐
= 𝟑. 𝟐, 𝜼 = 𝟏, 𝜸 = 𝟎. 𝟓 

ℎ 𝑅𝑀𝑆 error  𝐿∞ error CPU Time 

(in sec) 

Order 

1/8 6.1001e-05 1.1080e-04 0.06 - 

1/16 5.1892e-06 5.6001e-06 0.08 4.44 

1/32 1.4627e-07 3.0200e-07 0.33 4.02 

1/64 5.0912e-09 1.1002e-08 1.19 4.96 

 

Figure 2: Graphs of analytical and numerical solution of Example 4 at 𝒕 = 𝟏 

Example 5. Consider the following three dimensional telegraphic equation for 𝛼 = 10, 𝛽 = 5 

𝑢 + 2𝛼𝑢 + 𝛽 𝑢 = 𝑢 + 𝑢 + 𝑢 + (1 − 4𝛼 + 𝛽 )𝑒 cosh(𝑥) sinh(𝑦) cosh(𝑧) , 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1, 𝑡

> 0 

subject to initial conditions 

𝑢(𝑥, 𝑦, 𝑧, 0) = cosh(𝑥) sinh(𝑦) cosh(𝑧) , 𝑢 (𝑥, 𝑦, 𝑧, 0) = −2 cosh(𝑥) sinh(𝑦) cosh(𝑧) , 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1 

and the boundary conditions  
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3𝑢(0, 𝑦, 𝑧, 𝑡)+2𝑢 (0, 𝑦, 𝑧, 𝑡) = 3𝑒 sinh(𝑦) cosh(𝑧) , 0 ≤ 𝑦, 𝑧 ≤ 1, 𝑡 > 0 
𝑢(1, 𝑦, 𝑧, 𝑡) = 𝑒 cosh(1) sinh(𝑦) cosh(𝑧) , 0 ≤ 𝑦, 𝑧 ≤ 1, 𝑡 > 0 
𝑢(𝑥, 0, 𝑧, 𝑡) = 0, 0 ≤ 𝑥, 𝑧 ≤ 1, 𝑡 > 0 
𝑢(𝑥, 1, 𝑧, 𝑡) = 𝑒 cosh(𝑥) sinh(1) cosh(𝑧) , 0 ≤ 𝑥, 𝑧 ≤ 1, 𝑡 > 0 

𝑢(𝑥, 𝑦, 0, 𝑡)+𝑢 (𝑥, 𝑦, 0, 𝑡) = 𝑒 cosh(𝑥) sinh(𝑦) , 0 ≤ 𝑥, 𝑦 ≤ 1, 𝑡 > 0 
𝑢(𝑥, 𝑦, 1, 𝑡) = 𝑒 cosh(𝑥) sinh(𝑦) cosh(1) , 0 ≤ 𝑥, 𝑦 ≤ 1, 𝑡 > 0 

The analytical solution of this example is 𝑢(𝑥, 𝑦, 𝑡) = 𝑒 cosh(𝑥) sinh(𝑦) cosh(𝑧). 𝑅𝑀𝑆, 𝐿∞ errors and 
CPU time are shown in Table 8 for 𝑘 ∝ ℎ , 𝜂 = 1/3, 𝛾 = 1/3 at 𝑡 = 1. Order of convergence has also 
been calculated in the table. It is observed from the table that the order of convergence of the method is 
four. 

Table 8: Errors calculated for Example 5 at 𝒕 = 𝟏 for 
𝒌

𝒉𝟐
= 𝟑. 𝟐, 𝜼 = 𝟏/𝟑, 𝜸 = 𝟏/𝟑 

ℎ 𝑅𝑀𝑆 error  𝐿∞ error CPU Time 

(in sec) 

Order 

1/4 2.2502e-03 3.4900e-03 1.50 - 

1/8 1.1725e-04 2.2555e-04 2.02 3.84 

1/16 8.4909e-06 1.5097e-05 75.18 3.73 

1/32 5.0472e-07 1.0074e-06 2452 3.99 

 

5. Concluding Remarks 

In this paper, we started with methods of 𝑂(𝑘 + 𝑘 ℎ + ℎ ) proposed in [14] and [15] for the solution 
of telegraphic equation with Dirichlet boundary conditions. We modified the methods appropriately for 
the solution of telegraphic equation subject to Robin boundary conditions by obtaining fourth order 
approximations at the Robin boundaries and obtained respective ADI methods. For both two and three 
dimensional problems subject to Neumann boundary conditions, the proposed ADI methods are shown to 
be unconditionally stable by using matrix stability method. The parameters introduced in the process of 
proving the stability are obtained to be independent of the grid sizes whereas parameters introduced in 
methods discussed in [13], [14] and [15] depend upon the grid sizes. Various numerical experiments are 
carried out in order to show the efficiency and accuracy of the proposed methods. It is seen that the 
proposed methods behave well with both small and large grid sizes. Moreover, the methods behave as 
fourth order methods for 𝑘 ∝ ℎ . 
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