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Abstract 

Plants encounter biotic and abiotic stresses many times during their life cycle and this limits 

their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures 

that are lethal in the naïve state. Once temperature stress subsides, the memory of the priming 

event is actively retained for several days preparing the plant to better cope with recurring 

HS. Recently, chromatin regulation at different levels has been implicated in HS memory. 

Here we report that the chromatin protein BRUSHY1/TONSOKU/MGOUN3 

(BRU1/TSK/MGO3) plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also 

involved in transcriptional gene silencing and DNA damage repair. This corresponds with the 

functions of its mammalian orthologue TONSL/NFBIL2. During HS memory, BRU1 is 

required to maintain sustained induction of HS memory-associated genes, whereas it is 

dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is 

required for HS memory in A. thaliana, and propose a model where BRU1 mediates the 

epigenetic inheritance of chromatin states across DNA replication and cell division. 

 

 

 

Summary statement: Plants can be primed by a heat stress exposure to deal more efficiently 

with a future heat stress incident, that occurs after a lag phase at normal growth temperatures. 

Studying the molecular basis of priming and memory in response to heat stress, we show here 

that the chromatin protein BRUSHY1 is required for heat stress memory and that it acts 

through sustaining the activation of heat stress-memory related gene expression during the 

lag phase. Our findings suggest a model where heat stress memory is mediated through the 

epigenetic inheritance of chromatin states across cell divisions.  
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Introduction 

As sessile organisms, plants are frequently exposed to environmental conditions that are 

stressful in the sense that they interfere with their optimal growth and development. Such 

extreme environmental conditions are likely to increase in frequency and severity with 

climate change (Battisti and Naylor, 2009, Lobell et al., 2011). In recent years, it has become 

increasingly clear that plants can be primed by stress exposure and that this enhances their 

response to a second stress exposure, which may be qualitatively the same or different, after a 

stress-free period (Bruce et al., 2007, Conrath et al., 2015, Hilker et al., 2016). The molecular 

basis of priming and memory is still not well understood (Lämke and Bäurle, 2017). 

However, evidence is emerging that priming of stress-induced gene expression is a crucial 

component of stress priming that is at least in part mediated by epigenetic regulation. Indeed, 

several studies indicate that chromatin organization and modifications distinguish genes in 

the primed state from those in the naïve state (Ding et al., 2012, Mozgova et al., 2015, 

Brzezinka et al., 2016, Lämke et al., 2016). In dividing tissues, this process involves the 

inheritance of the primed state across DNA replication and cell division. How this is 

mediated remains unclear. 

Due to the high economic relevance and recurring nature of heat stress (HS), both 

acute responses as well as longer-term responses including priming and memory have been 

investigated (Bäurle, 2016, Lämke and Bäurle, 2017, Ohama et al., 2017). The immediate 

responses to HS have been intensively studied in in all kingdoms; a conserved core module, 

collectively referred to as the heat shock response (HSR) (Richter et al., 2010), comprises the 

rapid activation of heat shock transcription factors (HSFs) that in turn induce the expression 

of heat shock proteins (HSPs), which act as chaperones and prevent or repair protein damage 

(Akerfelt et al., 2010, Anckar and Sistonen, 2011). In plants the HSR results in the 

acquisition of thermotolerance and is mediated by a subset of the strongly radiated HSF 
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family (Scharf et al., 2012, Yeh et al., 2012, Ohama et al., 2017). In A. thaliana, seven of the 

21 HSF genes have been implicated in the acquisition of thermotolerance, among them three 

HSFA1 isoforms that act as master regulators of the HSR (Mishra et al., 2002, Schramm et 

al., 2008, Ikeda et al., 2011, Liu et al., 2011, Yoshida et al., 2011, Scharf et al., 2012, Yeh et 

al., 2012). 

Notably, at the physiological level, HS primes a plant to subsequently withstand a 

stronger HS even after a lag phase of 3 days at normal growth temperatures (Charng et al., 

2006, Charng et al., 2007). This process is called maintenance of acquired thermotolerance or 

HS memory and is an active process that is genetically separable from the acquisition of 

thermotolerance, as evidenced by a (growing) list of mutants that are specifically defective in 

the maintenance rather than the acquisition of thermotolerance (Charng et al., 2006, Charng 

et al., 2007, Stief et al., 2014, Brzezinka et al., 2016). 

HS memory requires HSFA2, which is so far the only HSF gene in A. thaliana that 

functions specifically in HS memory (Charng et al., 2007). HSFA2 expression is induced by 

HSFA1 isoforms, and HSFA2 prolongs and amplifies the HS-induction at a subset of 

HSFA1-target genes (Charng et al., 2007, Liu et al., 2011, Nishizawa-Yokoi et al., 2011, 

Lämke et al., 2016). The target genes of HSFA2 are enriched in genes that show sustained 

activation of gene expression after HS; after a short HS pulse, these genes remain induced for 

at two to three days, and while their initial induction is not changed in hsfa2 mutants their 

transcriptional activity declines faster in hsfa2 mutants (Stief et al., 2014, Lämke et al., 

2016). Interestingly, HSFA2 binds transiently to memory-gene loci and presumably recruits 

sustained chromatin modifications, in particular the hyper-methylation of histone H3K4 

(Lämke et al., 2016). This hyper-methylation correlates closely with the duration of the 

memory period. A second link between HS memory and chromatin organization has been 

reported through the finding that the FORGETTER1 (FGT1) gene is required for sustained 
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induction of HSA32 and other memory genes after HS (Brzezinka et al., 2016). FGT1 is a 

highly conserved helicase-domain protein that maintains low nucleosome occupancy 

throughout the memory phase through the interaction with chromatin remodelers of the 

SWI/SNF and ISWI classes (Farrona et al., 2004, Li et al., 2014, Brzezinka et al., 2016). 

Taken together, the current model is that the sustained induction of HS memory-associated 

genes is mediated through chromatin modifications and involves both nucleosome occupancy 

and posttranslational modification of nucleosomes. As the sustained induction of gene 

expression is maintained for several days, an interesting question is whether and how the 

primed chromatin states are inherited through DNA replication and cell division. 

Chromatin regulation also plays an important role in the regulation of somatic stress 

memory in response to other biotic and abiotic stresses (Bruce et al., 2007, Sani et al., 2013, 

Hilker et al., 2016, Vriet et al., 2015, Lämke and Bäurle, 2017). In particular, histone H3K4 

hyper-methylation has been implicated in stress memory after dehydration and pathogen 

infection (Jaskiewicz et al., 2011, Ding et al., 2012, Kim et al., 2012, Singh et al., 2014, Feng 

et al., 2016). The regulation of nucleosome occupancy was implicated in the priming of 

defence genes (Mozgova et al., 2015).    

The BRUSHY1 (BRU1)/ TONSOKU (TSK)/ MGOUN3 (MGO3) gene was originally 

identified based on its fasciated stems and loss of transcriptional silencing (Guyomarc'h et al., 

2004, Suzuki et al., 2004, Takeda et al., 2004). It encodes a nuclear protein with 

tetratricopeptide-repeat (TPR) and leucine-rich repeats (LRR) protein interaction domains. 

Bru1 mutant plants have disorganized meristems due to altered WUSCHEL expression, and 

the stems tend to enlarge and separate into multiple stems (fasciation) (Guyomarc'h et al., 

2004, Suzuki et al., 2004). As bru1 is hypersensitive to DNA damage, it was also suggested 

that BRU1 is involved in DNA damage repair pathways (Takeda et al., 2004). Since mutants 

in Chromatin assembly factor (CAF-1) components (FASCIATA1 (FAS1) and FAS2) have 
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similar phenotypes with respect to both developmental aspects and DNA damage hyper-

sensitivity, it was suggested that BRU1 has a similar function (Takeda et al., 2004). CAF-1 

deposits H3 and H4 into newly assembling nucleosomes after DNA replication and repair 

(Smith and Stillman, 1989, Probst et al., 2009). Thus, BRU1 was proposed to function in the 

epigenetic inheritance of chromatin states. This is in line with the observation that in 

synchronized cell cultures BRU1 expression peaks during S-phase (Suzuki et al., 2005). 

More recently, a BRU1 orthologue was identified in mammals and named 

TONSOKU-LIKE (TONSL)/NFBIL (Duro et al., 2010, O'Connell et al., 2010, O'Donnell 

et al., 2010). TONSL interacts with MMS2L and is involved in DNA repair, where the 

complex binds to ssDNA and facilitates loading of RAD51 (Huang et al., 2018). TONSL also 

regulates DNA replication and acts as a H3-H4 histone chaperone (Piwko et al., 2010, 

Campos et al., 2015). Interestingly, a connection to the epigenetic inheritance of chromatin 

modifications remains elusive, although the Ankyrin repeat domain of TONSL acts as a 

histone reader domain (Saredi et al., 2016). 

Here, we report that BRU1 is required for the memory of HS. We show that BRU1 is 

required for sustained activation of HS memory-associated genes and that this occurs at the 

transcriptional level. The moderate HS used in this study induced only very low amounts of 

cell death and did not induce the expression of DNA damage marker genes RAD51 and 

PARP2. Neither cell death nor DNA damage marker gene expression is increased in bru1, 

indicating that the DNA damage hyper-sensitivity is unlikely to be responsible for the HS 

memory defects. In addition, the acquisition of thermotolerance is not affected in bru1, and 

mutants in CAF-1 do not display a HS memory defect. The effect on memory-gene 

expression is confirmed by our global transcriptome analysis. In summary, we find that 

BRU1 is specifically required for HS memory and propose a model where BRU1 acts in the 
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inheritance of chromatin-based memory components through chromatin reassembly that is 

necessitated by nucleosome turnover and DNA replication. 

 

Materials and Methods 

Plant Materials and Growth Conditions 

Seedlings of the Col-0 or Wassilewskaja (Ws) backgrounds were germinated on GM medium 

(1 % (w/v) glucose) under a 16/8 h light/dark cycle at 23/21°C. hsa32 and hsp101 were 

described previously (Stief et al., 2014). bru1-1 (Ws) and BRU1::BRU1-GFP in bru1-1 

background were obtained from S. Takeda (Ohno et al., 2011). bru1-2, bru1-4 (N534207, 

(Takeda et al., 2004)), fas1-4 (SAIL662_D10) and fas2-4 (N533228, both (Exner et al., 

2006)) were obtained from the Nottingham Arabidopsis Stock Center.  

 

Thermotolerance assays 

Heat treatments were performed on 4 d-old seedlings. Seedlings were treated with an 

acclimatizing HS (ACC) of 37°C, followed by 90 min at room temperature, and by 45 min at 

44°C, starting 8 h after light onset. As tester HS a 44°C treatment for the indicated duration 

was applied at the indicated number of days after ACC. After HS, plants were returned to 

normal growth conditions until analysis. Acquisition of thermotolerance and basal 

thermotolerance were assayed as described (Stief et al., 2014). For all thermotolerance 

assays, all genotypes of one treatment were grown on the same plate. 

 

Gene expression analysis 

Transcript levels were quantified by qRT-PCR analysis as described previously (Stief et al., 

2014, Brzezinka et al., 2016). In brief, total RNA from flash-frozen seedlings was extracted 

using the Hot Phenol method, residual DNA was removed using Turbo DNAse (Ambion) and 
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the RNA was reverse transcribed using oligo-dT primers and SuperScript III (Invitrogen). 

Quantitative PCR was performed on 1:20 diluted cDNA using GoTaq SybrGreen 

qPCRMasterMix (Promega). Oligonucleotide sequences are listed in Supplemental Table S1. 

Transcript levels were quantified using the Ct method. Transcript levels were normalized 

to the reference genes TUB6 or At4g26410 (Czechowski et al., 2005). 

 

Trypan blue staining for cell death 

Trypan Blue staining was performed 96 h after ACC treatment as described (Inagaki et al., 

2009). In brief, seedlings were incubated in 0.5 mg/ml trypan blue, dissolved in 

phenol/glycerol/lactic acid/water/ethanol (1:1:1:1:8), in a boiling water bath for 1 min. The 

tissues were left in staining solution at room temperature for 1 h, cleared in chloral hydrate 

solution, and examined with a Leica stereomicroscope. 

 

Microscopy 

GFP fluorescence was imaged using a Zeiss LSM710 confocal microscope.  

 

Microarray Analysis 

For microarray hybridization, 4 d-old seedlings of Col-0 or bru1-2 were either treated with 

ACC (see above) and harvested 4 h or 52 h after the end of the treatment (three biological 

replicates). As control, No-HS samples (three biological replicates) were harvested together 

with the 4 h ACC samples. The bru1-2 samples described here were part of a larger 

experiment reported previously, in which the Col-0 samples were already described (Stief et 

al., 2014).  RNA extraction, probe preparation and hybridization of Affymetrix GeneChip 

ATH1 microarrays and their analysis was described previously (Stief et al., 2014). The 

clustered heat map analysis was performed using Heatmapper (Babicki et al., 2016) with 
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settings value, average linkeage, and Euklidean distance. The microarray data are deposited 

as GSE83136 and GSE112161. 

 

  

Results 

BRU1 is specifically required for HS memory 

From a reverse genetic screen we identified bru1-2 as a mutant with impaired HS memory. 4 

d-old seedlings were treated with a two-step acclimation treatment (consisting of 1 h at 37°C 

and then 45 min at 44°C, see Methods for details), which was followed by a 2 d period at 

standard growth temperatures, and then a tester HS that is lethal to a plant that has not been 

acclimated (Figure 1a, (Stief et al., 2014)). As a control we included the hsa32 mutant that 

was previously shown to have a defective HS memory (Charng et al., 2006). Bru1-2 mutants 

displayed reduced growth and survival after the second HS relative to the wild type Col-0 

control (Figure 1a). We next confirmed that the basal thermotolerance (i. e. the level of HS at 

44°C that a not-acclimatized plant can survive) and the acquired thermotolerance (i. e. the 

level of HS at 44°C that a plant can survive after acclimation for 1 h at 37°C) were not 

affected in bru1-2 mutants (Supplementary Figure S1). Together, this indicates that bru1-2 

mutants are specifically defective in the long-term, but not the acute HS responses. 

 

BRU1 mediates sustained transcriptional induction of HSA32 after HS  

To begin to investigate the molecular basis of this loss-of-memory phenotype, we next 

analyzed the expression of HSA32 in bru1-2 mutants. HSA32 is essential for HS memory in 

A. thaliana (Charng et al., 2006) and is highly induced by HS. Interestingly, induction of 

HSA32 is sustained over 3 d following the ACC treatment (Charng et al., 2006, Stief et al., 

2014) and thus the expression pattern correlates well with HS memory. We profiled transcript 
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levels of acclimated plants at the end of the ACC treatment and during a 3 d recovery phase. 

Similar to the Col-0 wild type, bru1-2 mutants displayed high induction of HSA32 and 

sustained high expression levels during the first day of recovery (Figure 1b). However, bru1-

2 thereafter displayed a stronger decline of HSA32 expression compared to wild type, 

consistent with a role in HS memory. 

The sustained induction of HSA32 after ACC occurs at the transcriptional level, as 

was previously found by the quantification of unspliced transcripts (Brzezinka et al., 2016). 

Since splicing occurs in close proximity to transcription, quantifying unspliced transcript 

levels is used as a proxy for transcriptional activity (Bäurle et al., 2007, Stief et al., 2014). 

Unspliced HSA32 transcript levels in bru1-2 were similar to Col-0 until 24h after ACC, but 

thereafter declined faster (Figure 1c), thus confirming the results for the spliced HSA32 

transcripts and indicating that BRU1 acts to sustain induction of HSA32 at the transcriptional 

level.  

 

bru1 mutants are not generally hyper-sensitive to HS 

BRU1 has been previously implicated in DNA damage repair and bru1 mutants are hyper-

sensitive to DNA damage, resulting in increased cell death (Takeda et al., 2004). Thus, we 

tested whether the HS memory defect in bru1-2 could be ascribed to this hyper-sensitivity. 

To this end, we first tested whether ACC increased cell death in bru1-2 cotyledons using 

Trypan Blue staining. This staining visualizes individual dead cells within tissues. Under no-

HS conditions, we did not observe any lesions in Col-0 and only very few in bru1-2 (Figure 

2). After ACC the proportion of wild type seedlings that showed individual dead cells on 

their cotyledons increase to 39 % (Figure 2).  In contrast, only 18 % of bru1-2 seedlings 

displayed lesions on their cotyledons, indicating that the ACC treatment does not induce 

increased cell death in bru1-2 compared to Col-0. 
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BRU1 has also been implicated in cell cycle control; BRU1 is expressed during the S-

phase of the cell cycle and its loss delays cell cycle progression (Suzuki et al., 2005). To 

estimate cell division dynamics after ACC, we assayed the expression levels of histone H4, 

whose expression is limited to the S-phase. In wild type, histone H4 transcript levels were 

roughly halved after ACC and remained slightly reduced during the 3 d recovery period that 

was assayed. In bru1-2 mutants, histone H4 transcript levels in non-stressed seedlings were 

roughly halved compared to Col-0 (Figure 3), confirming a general reduction in cell cycle 

progression (Suzuki et al., 2005). In contrast to wild type, H4 transcript levels in bru1-2 were 

not further reduced after HS (Figure 3). 

Consistent with a role in DNA damage repair, it was previously reported that the 

DNA damage marker PARP2 was hyper-induced in bru1-2 mutants (Takeda et al., 2004). 

Thus, we were interested to test whether ACC (further) induced the expression level of the 

DNA damage markers RAD51 and PARP2 (Breuer et al., 2007). Interestingly, neither gene 

displayed increased expression levels in bru1-2 under our no-HS conditions. After HS, 

RAD51 and PARP2 transcript levels did not change in wild type (Figure 3). The same was 

true for bru1-2 mutants. Together, our findings indicate that the ACC treatment, which is a 

moderate HS, does not induce ectopic DNA damage or sustained repression of cell division. 

Moreover, they indicate that DNA damage responses that are mediated by RAD51 and/or 

PARP2 are not ectopically triggered by our NHS growth conditions or by the ACC treatment 

in bru1-2. This corroborates the idea that BRU1 has a specific function in sustaining HS 

memory gene expression, and that the observed HS memory defects are not caused by a 

generic HS hyper-sensitivity. 
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FAS1 and FAS2 are not required for HS memory 

Mutants in two subunits of the histone chaperone CAF-1 in A. thaliana, fas1 and fas2, have 

similar developmental phenotypes as bru1, such as fascinated stems (Kaya et al., 2001), and 

the mammalian orthologues of BRU1 and CAF-1 interact functionally (Huang et al., 2018). 

To test whether CAF-1 is also required for HS memory, we tested mutants in the FAS1 and 

FAS2 subunits for their ability to maintain acquired thermotolerance with the assay described 

above (Figure 4). In contrast to bru1-2 and bru1-4, the loss-of-function mutants fas1-4 and 

fas2-4 displayed normal HS memory. This indicates that BRU1 function during HS memory 

is independent of CAF-1 and that the common developmental aberrations of the mutants do 

not cause the phenotype. 

 

BRU1 is required for sustained activation of HS memory genes  

To confirm that the mutation in BRU1 was responsible for the phenotype observed in bru1-2, 

we tested two additional alleles, bru1-4 (in the Col-0 background, Figure 4) and bru1-1 (in 

the Ws background, Figure 5a) (Suzuki et al., 2004, Takeda et al., 2004, Ohno et al., 2011). 

Both alleles showed a similar phenotype as bru1-2 in the HS memory assay. Moreover, 

reintroduction of a functional BRU1 copy (pBRU1::BRU1-GFP) into bru1-1 (Ohno et al., 

2011) complemented the HS memory defects (Figure 5a). We also confirmed nuclear 

expression of the BRU1-GFP transgene (Figure 5b, c). 

Besides HSA32 a number of other genes display sustained activation after ACC and 

are together referred to as HS memory genes (Charng et al., 2006, Charng et al., 2007, Stief 

et al., 2014, Brzezinka et al., 2016). To analyze whether BRU1 affects expression of other 

memory genes besides HSA32, we analyzed their transcript levels during a 3 d recovery 

phase after ACC. We investigated transcript levels of the HS memory-associated genes 

APX2, HSA32, HSP22.0, and HSP21 (Stief et al., 2014, Lämke et al., 2016), as well as the 
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putative upstream regulator HSFA2 (Nishizawa et al., 2006, Charng et al., 2007, Lämke et 

al., 2016), and the HS-inducible non-memory gene HSP101 (Hong and Vierling, 2000) in the 

Ws wild type, bru1-1 and the complementation line. For HSP101, no significant difference 

was found in bru1-1 relative to Ws (Figure 6). For HSFA2, we observed a slightly reduced 

induction at 0 and 4 h after ACC in bru1-1, but later no significant difference relative to the 

Ws control. In contrast, for APX2, HSA32, HSP22.0, and HSP21 induction after ACC was 

more highly sustained in Ws wild type between 28 and 76 h after ACC relative to HSP101 

and HSFA2. However, in bru1-1 the expression started to decrease already between 4 h and 

28 h and declined significantly faster than in either Ws or the complemented line. This 

indicates that BRU1 is widely required for sustained activation of HS memory-associates 

genes, but it is dispensable for the initial activation of these genes.  

  

Global transcriptome analysis indicates that BRU1-dependent genes are enriched 

among HS memory genes  

We next sought to investigate the requirement of BRU1 for HS-dependent gene expression at 

the global level. To this end we performed transcriptome analysis using ATH1 microarray 

technology on Col-0 wild type and bru1-2 seedlings sampled at either 4 h or 52 h after ACC, 

and a no-HS control that was sampled together with the 4 h time point (Stief et al., 2014). We 

first identified ACC-responsive genes (based on log2FC ˃ 2 or ˂ -2 and FDR corrected p 

value ˂0.05) in Col-0 for either ACC time point relative to NHS (Stief et al., 2014). Figure 7a 

displays a clustered heat map analysis of the log2FC changes of these genes in Col-0 and 

bru1-2 relative to the NHS control. Overall, the data cluster by treatment rather than genotype 

indicating that treatment-specific effects outweigh genotype effects. Moreover, the genotype 

differences at 52 h appear more pronounced than at 4 h (see below for a more detailed 

analysis). We next investigated the expression correlation at either time point for the genes 
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that are significantly changed in Col-0. At 4 h, genes that are upregulated in Col-0 tend to be 

more strongly upregulated in bru1-2 whereas downregulated genes seem to be less strongly 

downregulated (Figure 7b). In contrast, at 52 h genes that are upregulated in Col-0 tend to be 

upregulated less strongly or not at all in bru1-2 and downregulated genes are less strongly or 

not at all downregulated in bru1-2. Thus, the response at 52 h is dampened in bru1-2. These 

findings confirm the hypothesis that bru1-2 mutants have a reduced HS memory response. 

This was next quantified in Figure 7c; the three classes of genes that are differentially 

expressed in Col-0 at 4 h ACC or 52 h ACC relative to NHS (4 h only, 4 h and 52 h, 52 h 

only) are all enriched in genes that are differentially expressed in bru1-2 versus Col-0 

(ACC/NHSbru1-2 at least two-fold different from ACC/NHSCol-0) compared to the whole 

genome (8-75 % versus 1 % of all other genes). More specifically, more than half of the 

genes that are upregulated in Col-0 ACC versus NHS at 52 h only (54 %), and more than half 

of the genes that are downregulated at either both time points (75 %) or 52 h only (60 %), are 

differentially expressed in bru1-2 compared to the corresponding Col-0 time point. The genes 

that are differentially expressed in bru1-2 under control conditions are listed in Supplemental 

Data Set S1. In summary, BRU1 is required for the correct expression of HS-responsive 

genes at a global level. Notably, both upregulated and downregulated genes were strongly 

affected at 52 h and for both groups the differential expression in bru1-2 was dampened 

(Figure 7b). This trend was not observed for the genes upregulated at 4 h, corroborating the 

idea that BRU1 is mostly required for the memory phase rather than for acute HS responses.  

 

Discussion 

Here, we have identified a role for the chromatin-regulatory protein BRU1 during HS 

memory in A. thaliana. Interestingly, BRU1 is not required for the acquisition of 

thermotolerance or basal thermotolerance, and it is dispensable for early HS responses and 
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for the initial HS gene activation. At the molecular level, BRU1 is required to maintain high 

levels of expression in HS memory-associated genes throughout the memory phase. Globally, 

it is also required for sustained repression after HS as revealed by the transcriptome analysis. 

Our observations are in line with the previously established functions of BRU1 (see below). 

BRU1 has been implicated in the epigenetic inheritance of transcriptional silencing 

and in the DNA damage response (Suzuki et al., 2004, Takeda et al., 2004). In addition, it has 

very similar phenotypes as the histone chaperone CAF-1 (Takeda et al., 2004). Together, this 

has led to a model where BRU1 ensures faithful inheritance of chromatin states across DNA 

replication and cell division. Recent mechanistic work from the mammalian field indicates 

that TONSL, the BRU1 orthologue, directly binds to ssDNA during DNA damage repair and 

recruits RAD51 (Huang et al., 2018). In addition, TONSL regulates DNA replication and 

binds to newly incorporated nucleosomes after replication (Saredi et al., 2016). In summary, 

these findings are consistent with the idea that the conserved function of BRU1 may be not 

only in DNA damage repair, but also in the faithful inheritance of chromatin states after 

replication.  

The requirement of the chromatin regulator BRU1 for HS memory strengthens the 

observation that chromatin structure and organization are important for sustained gene 

expression during HS memory. Previously, hyper-methylation of histone H3K4 was 

implicated in this process (Lämke et al., 2016). Histone H3K4 hyper-methylation was also 

implicated in somatic stress memory after drought stress, salt stress and pathogen infection 

(Jaskiewicz et al., 2011, Ding et al., 2012, Feng et al., 2016), as well as in priming 

phenomena in metazoans and yeast (Ng et al., 2003, Guenther et al., 2007, D'Urso and 

Brickner, 2014, D'Urso et al., 2016). It remains to be investigated in future studies, whether 

BRU1 is required for the maintenance of H3K4 methylation at memory genes or for the 

control of nucleosome occupancy at these loci. Due to the heterogeneity of whole seedlings 
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and technical limitations, chromatin immunoprecipitation analyses provide a relatively coarse 

picture and are to be interpreted with caution. Our findings extend previous reports on the 

function of BRU1 in the key point that BRU1 may not only be required for the inheritance of 

repressive chromatin states, but also for the inheritance of active chromatin states that are 

conducive to ongoing transcription. This suggests a mode of action where BRU1 does not 

bind to individual chromatin modifications that are to be copied but may act more generally 

in the faithful inheritance of such chromatin modifications. This may be achieved by 

providing a binding platform for various reader and writer enzymes or by ensuring the 

transmission of the epigenetic information from “old” nucleosomes onto “new” nucleosomes. 

We found that CAF-1 is not required for HS memory. This is a noticeable difference 

to other phenotypic defects that have been observed in bru1, such as stem fasciation and 

DNA damage repair (Kaya et al., 2001, Takeda et al., 2004). It suggests that although CAF-1 

and BRU1 act in connected pathways, their functions do not fully overlap. Notably, CAF-1 

has been implicated in the priming of plant defences, as it modulates nucleosome occupancy 

of primed genes (Mozgova et al., 2015). Whether BRU1 is also required for defence priming 

or stress memory in response to other biotic or abiotic stress cues remains to be investigated. 

HS memory at the physiological level was reported to last for at least three days (Stief 

et al., 2014). At the molecular level, a memory after HS as evidenced by enhanced re-

induction after a second HS has been detected for up to seven days (Liu et al., 2018). The HS 

treatment that is used to activate the memory response (ACC or an even milder treatment) 

does not cause visual damage and only a minimal delay in growth (Stief et al., 2014). Hence, 

considerable growth is taking place during the memory period that may at least partially be 

attributed to ongoing cell division. This is in line with our finding that ACC reduces histone 

H4 expression, as a marker gene for the S-phase, only transiently and moderately. Although 

detailed further investigations will be required to determine cell division rates in different 
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tissues after ACC, it appears plausible that the memory is transmitted over at least a few cell 

divisions. This raises the question of how memory components are inherited during DNA 

replication and cell division. Previous work has demonstrated that histone modifications as 

well as nucleosome occupancy both regulate HS memory (Brzezinka et al., 2016, Lämke et 

al., 2016). It is tempting to speculate that BRU1 may play a role in the inheritance of HS 

memory determinants through DNA replication and their faithful transmission to daughter 

cells. 
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Figure 1 BRU1 is specifically required for HS memory and sustained transcriptional 

induction of HSA32 after HS 

(a) Bru1-2 mutants are impaired in HS memory at the physiological level. 4 d-old seedlings 

of the indicated genotypes were subjected to ACC treatment; two days later they were 

exposed to a tester HS at 44°C for 90 min. All genotypes were grown on the same plate. 
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Photographs were taken 14 d after ACC. One representative of more than three independent 

experiments is shown. 

(b, c) Transcript levels of spliced (b) and unspliced (c) HSA32 were analyzed by quantitative 

RT-PCR in Col-0 and bru1-2 at the indicated time points after the end of ACC or in no-HS 

controls (NHS) harvested at corresponding time points. Expression values were normalized to 

TUB6 and to 0 h NHS. Data are averages of three biological replicates ± SEM. Data are 

plotted on a log10 scale.  
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Figure 2 Cell death after ACC treatment is not increased in bru1-2 mutants relative to 

Col-0 wild type 

(a-h) Cell death was assessed by Trypan Blue staining of 4 d-old seedlings of Col-0 (a, c, e, 

g) and bru1-2 (b, d, f, h) that were treated with ACC (cf. Figure 1a); 96 h after the end of 

ACC, mock- (a, b) or ACC-treated (c-h) seedlings were stained with Trypan Blue to visualize 

cell death and examined under a Leica Stereomicroscope. (g, h) Close-ups of representative 

cotyledons with lesions. Size bars: 5 mm (a-f), 1 mm (g, h). 

(i) Percentage of seedlings with lesions of the indicated genotypes and treatments shown in 

(a-h). n indicates the number of seedlings that were scored for the analysis.  
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Figure 3 Transcript levels of DNA damage marker genes and histone H4 in bru1-2 

Transcript levels of histone H4, RAD51 and PARP2 were analyzed by quantitative RT-PCR 

in Col-0 and bru1-2 at the indicated time points after the end of ACC or in no-HS controls 

(NHS). Expression values were normalized to TUB6 and Col-0 0 h NHS. Data are averages 

of three biological replicates ± SEM.   
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Figure 4 The FAS1 and FAS2 genes are dispensable for HS memory 

(a - d) 4 d-old seedlings of the indicated genotypes (a) were subjected to ACC treatment; two 

days later they were exposed to a tester HS at 44°C for 90 min (c). The control plates were 

either exposed to ACC only (b) or to the tester HS only (d). For each treatment all genotypes 

were grown and treated on the same plate. Photographs were taken 14 d after ACC. One 

representative of several independent experiments is shown. 
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Figure 5 Complementation of bru1-1 with a pBRU1::BRU1-GFP construct 

(a) BRU1-GFP expressed from pBRU1::BRU1-GFP complements the HS memory defect of 

bru1-1. 4d-old seedlings of the indicated genotypes were subjected to ACC treatment; 3 d 

later they were exposed to a tester HS at 44°C for the indicated times. Photographs were 

taken 14 d after ACC (Supplemental Figure S2) and seedling survival was quantified as 

described previously (Brzezinka et al., 2016). *, p<0.05; **, p<0.01, Fisher’s exact test. Data 

shown are averages of at least two independent biological replicates each containing at least 

43 individuals per genotype. 
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(b) BRU1-GFP expressed from pUBC10::BRU1-GFP is localized to the nucleus of 

transiently transformed A. thaliana protoplasts. The GFP signal is shown in green, 

chlorophyll autofluorescence is shown in blue.  

(c) BRU1-GFP expressed from pBRU1::BRU1-GFP is localized to the nucleus in the roots of 

stably transformed A. thaliana. The GFP signal is shown in green. 

  



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 6 Sustained induction of several memory genes after ACC is impaired in bru1-1 

Expression profiles of HS memory-associated genes (APX2, HSA32, HSP22.0, HSP21), 

HSFA2, and a HS-inducible non-memory gene (HSP101) after ACC in Ws wild type, bru1-1 

mutants and the complementation line. Transcript levels determined by qRT-PCR were 

normalized to the At4g26410 reference gene and the respective NHS control harvested at the 

same time point. At each time point different letters (a, b, c) indicate significant differences 

between the tested genotypes (p˂0.05, Student’s t-test), whereas the same letter indicates that 

there was no significant difference detected. . Data represent averages of at least three 

biological replicates ± SEM. 
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Figure 7 Global gene expression analysis after ACC in bru1-2 
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(a) Clustered heat map analysis including all 452 differentially expressed genes (DEGs) with 

log2FC ˃ 2 or ˂ -2 in Col-0, including 356 “4 h-only” DEGs, 45 “4 and 52” h DEGs, and 51 

“52 h-only” DEGs. Scale indicates log2FC relative to the NHS control for Col-0 and bru1-2. 

(b) Expression correlation analysis of DEGs (log2FC ˃ 2 or ˂ -2) at 4 h (top panel) and 52 h 

(bottom panel) in Col-0 and bru1-2. DEGs that differ in bru1-2 at least two-fold from the 

value of Col-0 are highlighted in orange. 

(c) Percentage of DEGs whose induction or repression differed at least twofold in bru1-2 

compared to Col-0 in the indicated classes. The total number of DEGs in these classes is 

indicated with n. The number of differentially expressed genes is enriched among the HS-

responsive genes compared to the rest of the genome (others).  

 


