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Highlights

• Detection of efficiency and TFP changes depends on the inefficiency
specification

• The dynamic model captures efficiency and TFP shocks without yield-
ing erratic results

• The dynamic model outperforms three standard parametric efficiency
models
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Abstract

Standard parametric models for efficiency and total factor productivity growth measurement

either impose strict structures on the time-evolution of efficiency scores or no structure

at all. When the data capture a sector in turbulent periods both specifications may be

inappropriate. The dynamic stochastic frontier model takes a middle way in terms of the

time-structure it imposes on efficiency scores. We apply the dynamic stochastic frontier

model to the case of German dairy farms in a period that is characterized by high milk price

volatility. The model is able to capture time-specific efficiency and total factor productivity

growth shocks that may have been induced by this high volatility. Furthermore, the dynamic

stochastic frontier model is favored by the data when compared to a model that imposes a

very restrictive time structure on efficiency and two models that do not impose any time

structure at all.

Keywords: OR in agriculture; productivity growth; German dairy farms; dynamic stochastic

frontier
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1 Introduction

The evaluation of the competitiveness of a sector has, traditionally, been based on the measure-

ment of Total Factor Productivity (TFP) growth, defined as the ratio of output growth rate to

input growth rate. In agriculture, TFP growth is used as an indicator of the ability of farms

to generate high income and factor employment levels, while being exposed to both domestic

and international competition (Newman and Matthews 2007). High productivity growth is,

therefore, essential to assure that a country’s agricultural sector survives competitive pressures

from abroad, but also from other sectors within the country. Assessing the critical role that TFP

growth plays in determining whether a sector will survive or perish in a competitive environment

requires that precise estimates are obtained. Given that TFP growth is a dynamic concept, the

modelling approach should be able to capture potential shocks that may be due to bad weather

conditions, pest outbreaks or high price volatility. For instance, in the specific context of dairy

farms, Germany (as well as most of the European Union countries), has experienced large milk

price changes towards the end of the first decade of the 21st century. More specifically, milk

prices have steeply increased from 2007 to 2008, reaching a peak of 35.01e/100kg in 2008, while

in 2009, they sunk to 25.25e/100kg (EUROSTAT 2016). All the aforementioned price changes

make German dairy farms an interesting case for measuring changes in farm efficiency and, more

generally, TFP growth. This is because abrupt changes in output prices motivate farmers to

rapidly alter their production levels, and potentially the efficiency of their resource utilization.

Detecting efficiency changes that can result in TFP growth volatility depends on the specifi-

cation of inefficiency. In a parametric setting, measurement and decomposition of TFP growth

relies on the estimation of the production frontier using the technique of Stochastic Frontier

Analysis (SFA), introduced by Aigner et al. (1977) and Meeusen and Broeck (1977). The most

challenging task while measuring the efficiency of the decision making units concerns the as-

sumptions made for the inefficiency component. In a cross-sectional setting, one should only be

concerned with the distributional assumptions made. However, when panel data are available,

the assumptions of time-invariant versus time-varying inefficiency become the focus of atten-

tion. Since the assumption of time-invariant inefficiency is very restrictive, several models have

been developed that relax this assumption. For instance, Cornwell et al. (1990) and Kumbhakar

(1990) specified inefficiency as a quadratic function of time, while Battese and Coelli (1992)

assumed that time-invariant inefficiency is scaled by a simple function of time. Specification

of inefficiency as a quadratic function of time turns out to be more flexible than the Battese

and Coelli model, which allows inefficiency to be either always increasing or decreasing with the

passage of time. Furthermore, the Battese and Coelli model imposes uniform efficiency trends,

while Cornwell et al. (1990) allow for heterogeneity between observations1. However, parametric

efficiency studies that have attempted to measure and decompose TFP growth have mostly con-

sidered the Battese and Coelli (1992) approach. For instance, Newman and Matthews (2007),

1Cuesta (2000) extended the Batesse and Coelli model in a way that firm-specific efficiency scores are obtained.
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Emvalomatis (2012b) and Kellermann (2015) used the aforementioned inefficiency specification

to measure and decompose the productivity growth of Irish agricultural enterprises and German

dairy farms. This is primarily because the Battese and Coelli (1992) inefficiency specification

usually produces smooth efficiency change results. Furthermore, the approach proposed by Corn-

well et al. (1990) requires a large number of parameters to be estimated and consistency can only

be met if the time dimension of the panel goes to infinity, while the model of Kumbhakar (1990)

may be problematic as the identification of two parameters from a latent process is questionable.

However, the major flaw of all the aforementioned specifications is that inefficiency is treated as

a deterministic function of time and cannot capture abrupt shocks in the environment in which

firms operate. This implies that these models may be unable to capture potential changes in

efficiency and TFP growth that could result from the steep milk price changes mentioned above.

An alternative specification for time-varying inefficiency that does not impose any time

structure on inefficiency assumes that, for each time period, inefficiency is a random draw from

an one-sided distribution. This specification offers also the option to examine the potential

drivers of inefficiency by allowing the mean of the distribution to be a function of firm-specific

characteristics. For instance, Battese and Coelli (1995) assumed that for each time period,

inefficiency is a random draw from a truncated normal distribution, while Koop et al. (1997) use

an exponential distribution, as it behaves better when Bayesian techniques are employed. In the

efficiency and productivity measurement literature, this approach has been used by Brümmer

et al. (2002), Alvarez and Corral (2010), and Sauer and Latacz-Lohmann (2015), who evaluated

the productive performance of dairy farms. Meanwhile, Cechura et al. (2016) used it to perform

TFP country comparisons for the European dairy sector. A similar (in the sense that inefficiency

is a random draw from a one-sided distribution) but more recent model adds to the specification

described above a one-sided non-negative time-invariant error component that aims to capture

time-invariant (persistent) inefficiency and separate it from time-varying (transient) inefficiency.

This model was introduced by Tsionas and Kumbhakar (2014) and is called the Gernaralized

True Random Effects (GTRE) model. Recent applications of this model include Badunenko

and Kumbhakar (2016) and Badunenko and Kumbhakar (2017). Irrespective of disentangling or

not time-invariant from time-varying inefficiency, such specifications, in contrast to the Battese

and Coelli (1992) model that imposes a very restrictive time structure on inefficiency, have

the potential of capturing time-specific shocks in firm-level efficiency. However, they may also

produce erratic results due to the complete absence of a time structure for inefficiency.

A more flexible specification for the inefficiency component that does not lie on the extremes

of either imposing a very restrictive or a non-existing time structure on inefficiency, is one that

allows for autocorrelation in firm-specific efficiency scores. The economic justification of this

specification stems from the fact that firms’ decisions have an intertemporal nature and concern

an objective that extends in the long-run. Examples of such an objective is the maximization

of discounted cash flows or the minimization of discounted costs. In such a dynamic setting,

2
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farmers face adjustment costs that make investing on a regural basis too costly (Stefanou 2009).

Therefore, if a firm is inefficient at a certain point in time, becoming fully efficient may not be

optimal due of the existence of adjustment costs. This implies that it’s optimal strategy may be

to remain inefficient in the short-run, and therefore it’s inefficiency will persist. The dynamic

specification that is employed in the paper accounts for this persistence by assuming that in-

efficiency is autocorrelated. The first study that attempted to account for persistent shocks in

firms’ efficiency is the study of Ahn and Sickles (2000), who specified an autoregressive process

on firm-specific efficiency scores. To overcome the complications that arise when specifying an

autoregressive process on a non-negative variable, Tsionas (2006) specified an autoregressive

process on transformed efficiency that can take any value on the real line. Subsequent studies

on dynamic efficiency have followed the latter approach, with minor adjustments concerning

the way that efficiency is transformed (Emvalomatis et al. 2011; Emvalomatis 2012a; Galán

et al. 2015). All studies find strong autocorrelation in efficiency scores, adding credibility to the

adjustment cost theory. In contrast to the restrictive time structure for inefficiency that the Bat-

tese and Coelli (1992) model assumes, the dynamic efficiency specification offers a less restrictive

time structure that can capture abrupt changes in firm-level efficiency and TFP growth. On the

other hand, since it does not allow for the time evolution of efficiency scores to be completely

arbitrary, the results should be more stable compared to models that do not impose any time

structure on inefficiency scores.

The main objective of this paper is to measure and decompose TFP growth of German dairy

farms for the period 2001-2009, using the dynamic (autoregressive) efficiency specification, which

accounts for persistence of the effect of shocks on farm-level efficiency. The main contribution to

the literature is that, to the best of our knowledge, this is the first study that uses this specifica-

tion to calculate and deconompose TFP growth. Furthermore, given that the time period under

consideration is characterized by high price volatility, the dynamic efficiency specification could

reveal abrupt changes in efficiency and TFP growth, as it can capture (persistent) time-specific

efficiency shocks. The results from the dynamic efficiency specification are compared with those

from a model that imposes the time structure of Battese and Coelli (1992), and two models that

impose no time structure on efficiency. Additionally, formal model comparisons are performed

to infer which of the models fit the data better. The remainder of the paper proceeds as fol-

lows: the next section describes the modelling approach, while Section 3 provides details on the

estimation of the models. Section 4 describes the data, and Section 5 presents and discusses the

results. Finally, Section 6 offers some concluding remarks.
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2 Modelling approach

2.1 Distance functions and efficiency

We use an output distance function to measure efficiency in a multi-output production technol-

ogy. Assuming that a vector of inputs x̃ ∈ RN+ is used to produce a vector of outputs ỹ ∈ RM+ ,

the output distance function is defined as:

Do(x̃, ỹ, t) = min

{
θ :

ỹ

θ
can be produced by x̃ in period t

}
(1)

The output distance function assumes values in the unit interval and the locus of points for

which Do(x̃, ỹ, t) = 1 defines the boundary of the production possibilities set. The technical

efficiency of firm i in period t is then defined as2:

TEit = Do(x̃it, ỹit, t). (2)

Taking the logarithm in both sides, imposing the condition of linear homogeneity in the outputs

of the distance function, and appending group-specific and time-varying error terms, leads to

the following econometric version of the output distance function:

− log ỹMit = αi + logDo

(
x̃it,

ỹit
ymit

, t

)
+ vit − log(TEit) (3)

where ỹMit is the normalizing output, αi is a farm-effect that captures unobserved heterogeneity

and vit is an error term that accounts for statistical noise. Letting yit denote the dependent

variable in equation (3) and the logarithm of the distance function a linear function of its

arguments, the estimable form of the distance function can be written as:

yit = αi + x
′
itβ + vit − log(TEit), αi ∼ N (0, σ2α) vit ∼ N (0, σ2v) (4)

where yit is the negative value of the logarithm of the normalizing output, x is a vector of

firm and time-varying covariates, β is a vector of parameters to be estimated, and TEit is the

technical efficiency of firm i in time t.

2.2 Alternative efficiency specifications

The most popular efficiency specification in a static context and when panel data are available

was introduced by Battese and Coelli (1992). Following the conventional way that this specifi-

cation is presented in the literature, it would be convenient to define uit = − log TEit, so that

2Note that this is the inverse of Farell output technical efficiency. Hence, technical efficiency scores are bounded
in the unit interval.
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uit is non-negative. The structure proposed by Battese and Coelli has the following form:

uit = γ(t) · ui (5)

where ui is the time-invariant inefficiency component that is assumed to follow an one-sided

distribution and γ(t) = exp{η(T − t)}. In our case, we assume that ui follows an exponential

distribution with rate parameter λ. The popularity of this model stems from the fact that it

relaxes the assumption of time-invariant inefficiency by estimating only one additional parame-

ter (η). However, it imposes a very restrictive time structure as inefficiency can either be only

increasing or decreasing for all groups and all time-periods, depending on the sign of η. Ad-

ditionally, it does not allow for time-specific shocks to be taken into account, as inefficiency is

specified as a deterministic function of time.

The second model that we consider was used by Koop et al. (1997) and assumes that for each

time-period inefficiency is a random draw from an exponential distribution with rate parameter

λit:

uit ∼ Exp(λit) (6)

The following specification is used for λit:

λit = ew
′
itγ (7)

where wit is a vector of firm and time-varying covariates and γ is a vector of parameters to be

estimated. Note that the variables in wit associated with a positive parameter have a positive

impact on λit and, therefore, a negative impact on inefficiency. In contrast to the Battese and

Coelli model, this specification does not impose any time structure on inefficiency and could,

therefore, capture time-specific shocks on farm-level efficiency. However, by allowing for the

time evolution of inefficiency to be completely random, it may produce erratic results. From

now on, this model will be called the ”unstructured” model.

The next model that this study is concerned with is the GTRE model. As also stated

above, this model aims to separate persistent (time-invariant) from transient (time-varying)

inefficiency. In practice, this model departs from the standard SFA model presented in equa-

tion (4) by including an additional one-sided non-negative time-invariant error component to

capture persistent inefficiency. In our setting, persistent inefficiency is represented by ui, while

transient inefficiency by uit. One-sided distributions need to be imposed on the two inefficiency

components, and as in the unstructured model, we impose an exponential distribution with rate

parameters λi and λit on both of them :

ui ∼ Exp(λi), uit ∼ Exp(λit) (8)

5
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The following relationships are assumed for λi and λit:

λi = ed
′
iζ , λit = ed

′
itµ (9)

where d is a vector of covariates and ζ and µ are vectors of parameters to be estimated. As

in the unstructured model, a positive coefficient associated with a variable in di or dit implies

a negative impact on inefficiency. Furthermore, despite being more flexible compared to the

unstructured model, the GTRE model does not impose any time structure on time-varying

efficiency either. Therefore, while it may be able to capture time-specific shocks on farm-level

efficiency, it may also produce extreme results when compared with models that impose a time

structure on inefficiency.

Moving to the dynamic efficiency specification, we specify a dynamic stochastic frontier by

allowing for firm-specific efficiency scores to follow an autoregressive process. As mentioned in

the introduction, the assumption of autocorrelated efficiency stems from the fact that a firm that

is inefficient at a given point in time, may find it optimal to remain inefficient in the short-run

due to the presence of high adjustment costs. Technically speaking, the inverse of the logistic

function is used to transform TEit so that we project it from the unit interval to the real line3.

More precisely, we define sit = log( TEit
1−TEit ) as the latent-state variable and assume the following

autoregressive process on sit:

sit = z
′
iδ + ρsi,t−1 + ξit, ξit ∼ N (0, σ2ξ) (10)

si1 =
z
′
iδ

1− ρ + ξi1, ξi1 ∼ N (0, σ2ξ1) (11)

where zi is a vector of time-invariant covariates, δ is a vector of parameters to be estimated, ξit

is a two-sided error term that accounts for statistical noise and σ2ξ1 =
σ2
ξ

1−ρ2 , due to stationarity.

Stationarity of the s series assures that the expected value of s does not diverge to either

positive or negative infinity and, therefore, technical efficiency will not approach unity or zero.

Furthermore, since s is a latent-state variable, a distribution for the initial period (equation

(11)) needs to be defined, which can be achieved by imposing stationarity (Wooldridge 2005).

Imposing stationarity justifies the specification of time-invariant covariates in z. Finally, based

on the specification presented in equation (10) and the way efficiency is transformed, ρ is an

elasticity that measures the percentage change in the efficiency to inefficiency ratio that is

carried from one period to the next. This inefficiency specification may be able to capture

(persistent) time-specific efficiency shocks, as it does not specify a very restrictive time structure

on inefficiency. Additionally, it could produce more reasonable results compared to models that

allow the time evolution of efficiency scores to be completely random.

3This transformation is done to avoid specifying an autoregressive process directly on a bounded variable (uit or
TEit).
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2.3 Measurement and decomposition of TFP growth

After estimating the four alternative models, we can calculate and decompose TFP growth

following Orea (2002) and Lovell (2003), who have extended the Malmquist productivity index

introduced by Caves et al. (1982). The TFP growth rate is defined as the weighted growth rate

of outputs minus the weighted growth rate of inputs and can be written as:

d log TFP

dt
=

M∑

m=1

∂ logDo

∂ log ym
ŷm −

N∑

n=1

εn
ε
x̂n (12)

where εn = ∂ logDo/∂ log xn, ε = −∑N
n=1 εn is the scale elasticity and a hat over a variable

indicates growth rate. The weights that we use for outputs are the corresponding distance

elasticities, and for inputs, the shares of distance elasticities in scale elasticity. Taking the

logarithm of both sides of (2), and totally differentiating with respect to time, yields:

M∑

m=1

∂ logDo

∂ log ym
ŷm +

N∑

n=1

∂ logDo

∂ log xn
x̂n +

∂ logDo(x,y, t)

∂t
=
d log TE

dt
(13)

Finally, substituting
∑M

m=1
∂ logDo
∂ log ym

ŷm from equation (13) to equation (12) yields:

d log TFP

dt
=
d log TE

dt
− ∂ logDo(x,y, t)

∂t
− (ε− 1)

N∑

n=1

εn
ε
x̂n (14)

Based on equation (14), productivity growth is decomposed into three components: (i)

technical efficiency change (d log TEdt ) that measures changes in the technical efficiency of farms

over time, (ii) technical progress (−∂ logD0(x,y,t)
∂t ) that accounts for frontier shifts over time, and

(iii) scale effect (−(ε− 1)
∑N

n=1
εn
ε x̂n) that concerns changes in the scale that farms operate.

3 Estimation approach

3.1 Empirical specification

Calculation and decomposition of TFP growth is based on an output distance function. The

use of a distance function is justified on the grounds of the multi-output (milk, meat etc.)

nature of German dairy farms’ production technology. We use an output distance function

instead of an input distance function for the following reasons: (i) despite the restrictions on

milk production from the milk quota system, German dairy farms can lease and purchase milk

quota, (ii) given that the dynamic efficiency specification assumes that inputs like capital are

considered as quasi-fixed, an input distance function may be an inappropriate specification

tool. A translog specification of the output distance function is used as, in contrast to the

Cobb-Douglas functional form, it is more flexible because it does not impose restrictions on

7
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substitution possibilities between inputs and outputs. Hence, the output distance function is

specified as translog in inputs (x), outputs (y), and time trend (t). Using the estimable form of

equation (3), the output distance function is written as4:

− log yMit = α0 +
∑

n

αn log xnit +
∑

m

βm log

(
ymit
yMit

)

+
1

2

∑

n

∑

r

αnr log xnit log xrit

+
1

2

∑

l

∑

m

βlm log

(
ylit
ymit

)
log

(
ylit
yMit

)

+
1

2

∑

n

∑

l

ζnl log xnit log

(
ylit
yMit

)

+ µ1t+ µ2t
2 +

∑

n

γnt log xnit

+
∑

m

φmt log

(
ymit
yMit

)
+ αi + vit − log(TEit)

(15)

A time trend is included in the specification to capture technological progress, while its

interaction with outputs and inputs allows this progress to be nonneutral. Prior to estimation,

the data for all outputs and inputs are normalized by their respective geometric means, so

that the parameters associated with the first-order terms are directly interpretable as distance

function elasticities, evaluated at the geometric mean of the data.

3.2 Bayesian inference

Bayesian techniques are used to estimate the four alternative models. For the Battese and

Coelli (1992) model we gather all parameters in a vector θ1 = [β
′
, σ2v, σ

2
α, η, λ]

′
. The posterior

distribution of the model can be written as:

π(θ1, {αi}, {ui}|y,X) ∝ p(y, {αi}, {ui}|θ1,X)× p(θ1) (16)

where y is the stacked vector of the dependent variable over years and farms andX is the matrix

of variables in equation (4). The term p(y, {αi}, {ui}|θ1,X) corresponds to the complete data

likelihood of the model, and p(θ1) is the prior density of the parameters. The following priors

are imposed on the parameters:

- A multivariate normal density is used for the prior density of the vector β in all four

models. Prior means are set equal to zero while the prior covariance matrix is diagonal

4As also mentioned above, the output distance function for the GTRE includes the additional component ui that
accounts for persistent inefficiency.

8
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with a value of 1000 on the diagonal entries. This prior is conjugate.

- In each of the four models, an Inverse-Gamma prior is used for σ2v and σ2α since this prior

is conjugate. The shape and scale hyper-parameters are both set equal to 0.001.

- A normal prior is used for the η parameter with prior mean equal to zero and prior variance

equal to 0.1.

- A Gamma prior is used for the rate parameter λ, which defines the shape of the density

function of ui. We follow the typical approach where we set the shape parameter equal to

unity and the scale parameter equal to − log(r∗), where r∗ is equal to the prior median

efficiency (van den Broeck et al. 1994).

For the unstructured model, all parameters are gathered in a vector θ2 = [β
′
, σ2v, σ

2
α,γ]

′
.

The posterior density of this model is as follows:

π(θ2, {αi}, {uit}|y,X,W) ∝ p(y, {αi}, {uit}|θ2,X,W)× p(θ2) (17)

where p(y, {αi}, {uit}|θ2,X,W) is the complete data likelihood of the model, W is the matrix

of covariates in equation (7), and p(θ2) corresponds the prior density of the parameters. A

multivariate normal density is imposed for the prior density of the vector γ. Prior means are set

equal to zero and the diagonal entries of the diagonal covariance matrix are set equal to 1000.

This is a non-conjugate prior but Metropolis-Hastings updates can be used when sampling from

the posterior.

For the GTRE model, all parameters to be estimated are gathered in the vector θ3 =

[β
′
, σ2v, σ

2
α, ζ,µ]

′
. The posterior density of this model is written in the following way:

π(θ3, {αi}, {ui}, {uit}|y,X,D) ∝ p(y, {αi}, {ui}, {uit}|θ3,X,D)× p(θ3) (18)

where p(y, {αi}, {ui}, {uit}|θ3,X,D) corresponds to the complete data likelihood of the model,

D is the matrix of covariates in equation (9), and p(θ3) is the prior density of the parameters.

A multivariate normal density is imposed for the prior densities of the vectors ζ and µ. The

prior means are set equal to zero and the diagonal entries of the diagonal covariance matrix are

set equal to 1000. Metropolis-Hastings updates are used when sampling from the posterior as

this is a non-conjugate prior.

Finally, for the dynamic efficiency model we define si to be a T × 1 vector of the latent-state

variable of the transformed technical efficiency for firm i, where T is the number of time periods,

and we collect all parameters to be estimated in a vector θ4 = [β
′
, σ2v, σ

2
α, δ

′
, σ2ξ , ρ]

′
. The model’s

posterior distribution can be written as follows:

π(θ4, {αi}, {sit}|y,X,Z) ∝ p(y, {αi}, {sit}|θ3,X,Z)× p(θ3) (19)
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where p(y, {αi}, {sit}|θ4,X,Z) is the complete data likelihood, Z is the matrix of covariates in

equations (10-11) and p(θ4) is the prior density of the parameters. The priors that we impose

to the parameters are the following:

- A multivariate normal density is used for the prior density of δ. As in the case of the β

priors, prior means are set equal to zero and the diagonal entries of the diagonal covariance

matrix are set equal to 1000. The prior is again conjugate.

- An Inverse-Gamma prior is used for σ2ξ as this is conjugate. The shape and scale hyper-

parameters are set equal to 0.1 and 0.01 respectively.

- A Beta prior is used for the inefficiency persistence parameter ρ to restrict it in the unit

interval (ρ ∼ Beta(α, β)). The prior hyper-parameters α and β are set equal to 4 and

2 respectively. This prior is non-conjugate and Metropolis-Hastings updates are used to

sample from the posterior.

The posterior moments of the four models’ parameters are estimated using Markov Chain

Monte Carlo (MCMC) techniques (Koop et al. (1995) illustrate an application of MCMC in

stochastic frontier models). The latent variables (ui, uit or sit, depending on the model) are

integrated out from the posterior using data augmentation techniques (see Tanner and Wong

1987). Furthermore, Metropolis-Hastings updates are used for γ, ζ, µ, sit and ρ as their complete

conditionals do not belong to any known distributional family. Finally, the fact that the same

priors are imposed on the common parameters of all four models makes model comparison more

reasonable.

3.3 Log-marginal likelihood and Bayes factors

We compare the four alternative models using Bayes factors (Kass and Raftery 1995). Con-

sidering two competing models M1 and M2, their relative posterior probability can be written

as:
p(M1|D)

p(M2|D)
=
p(D |M1)

p(D |M2)

Prob(M1)

Prob(M2)
(20)

where D represents the observed data, p(D |Mj) is the density of the data given Mj and

Prob(Mj) is the prior probability of Mj being the true model. The marginal density of p(D |Mj)

with respect to the latent-state variables and parameters is:

p(D |Mj) =

∫
p(D |θj ,Mj) p(θj |Mj) dθj (21)

where θj is the vector of parameters for model j and p(θj |Mj) is the prior density of θj under

model j. The logarithm of the marginal density of the data with respect to the latent-state

variables and parameters can be obtained using the Laplace-Metropolis estimator (Lewis and
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Raftery 1997):

log
[
p(D |Mj)

]
≈ P

2
log[2π] +

1

2
log
[∣∣H∗|

]
+ log π

[
θ∗j
]

+ log p
[
D |θ∗j

]
(22)

where P is the dimension of θj , θ
∗
j is an MCMC-based estimator of θj that maximizes the

integrated likelihood p(D |θ∗j ) and H is the Hessian of the integrated likelihood evaluated at

θ∗j . Following the conventional practice of equal prior model probabilities, model comparison

reduces to calculating Bayes factors. Assuming that the set of models considered is exhaustive,

posterior model probabilities can be obtained using the posterior odds ratio and the fact that

the four posterior model probabilities sum to unity.

4 Data

The data used in this application are obtained from the Farm Accountancy Data Network

(FADN)5. The dataset contains farm-level information on physical units, such as outputs and

inputs, economic and financial data, such as product-specific production costs and debt, geo-

graphical information, as well as characteristics of the farm’s primary operator. The part of

the dataset that is used here contains such information for German dairy farms and covers the

period from 2001 to 2009. This study focuses on farms primarily engaged in dairy production,

and for this purpose we have selected farms whose revenue from sales of cow’s milk, beef, and

veal comprise at least 66% of their total revenues, for every year the farm is observed. This is

the classification that FADN uses to define specialized dairy farms. Furthermore, due to the

dynamic nature of our modelling approach, we retained farms that are observed for nine consec-

utive years. The final dataset is a balanced panel consisting of 706 farms with a total of 6,354

observations.

Two outputs are specified in the output distance function represented by equation (3):

1. Deflated revenues from sales of cow’s milk (milk), treated as the normalizing output

2. Deflated revenues plus change in valuation of beef and veal, pigmeat, sheep and goats, and

poultry meat, plus deflated revenues from sales of other livestock and products (other)

The reported revenues are deflated with price indices obtained from EUROSTAT, using 2005

as the base year. Milk was deflated using its own price index. Concerning the ”other” output

the following strategy was followed: a price index for meat outputs and a price index for crop

outputs were retrieved from EUROSTAT. Based on them, a Törnqvist index was constructed

and the total reported value was deflated using this Törnqvist index.

Six input categories are specified in equation (3):

5Data source: EU-FADN - DG AGRI.
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1. Buildings and machinery (K) are measured in deflated book value. For each input subcat-

egory (buildings and machinery), its own price index was retrieved from EUROSTAT and

a Törnqvist index was constructed. The total reported value was then deflated using the

Törnqvist index.

2. Total labor (L) is measured in man-hours and consists of both family and hired labor.

3. Total utilized agricultural area (A) is measured in hectares and includes owned and rented

land.

4. Materials and services (M) are measured in deflated value. This category of input is com-

posed of ten other subcategories: seeds and plants, fertilizers, crop protection, energy,

other livestock-specific costs, other crop-specific costs, forestry-specific costs, feed for pigs

and poultry, contract work and other direct inputs. For each input subcategory, the rele-

vant price indices were obtained from EUROSTAT and a Törnqvist index was constructed.

The total reported value was then deflated using the Törnqvist index.

5. Total livestock units (S) is measured in livestock units and consists of the total number of

equines, cattle, sheep, goats, pigs and poultry of the holding.

6. Purchased feed (F) is measured in deflated value. It includes concentrated feedingstuffs

and coarse fodder for grazing stock. Feed produced within the farm is excluded. The

variable was deflated based on its own price index obtained from EUROSTAT.

The deflation process described above is tailored to the way FADN defines the ”accounting

year” and the definition of the price indices provided from EUROSTAT. On the one hand, the

accounting year for German dairy farms according to FADN extends from July of a certain year

until June of the following year. On the other hand, EUROSTAT provides average price indices

per year. Therefore, the geometric mean of the EUROSTAT price indices of two consequtive

years is used to deflate the outputs and the inputs, so that it is consistent with the time-period

that the FADN data cover. For example, the FADN data for 2001 cover the period between July

2001 and June 2002. Therefore, the geometric mean of the EUROSTAT price indices of 2001

and 2002 is used to deflate the data for 2001. The same procedure is followed for the remaining

years.

Back to the covariates specified in the output distnce function, dummy variables for eastern,

western, northern, and southern (base category) Germany are included to capture differences

in technology and climatic conditions across different regions in the country. Furthermore, a

dummy variable (called dummy) that aims to capture the effect of changes in milk prices on

farms’ production technology is included in the distance function. Given that increases in prices

were manifested in mid 2007-early 2008 and decreases in prices in mid-late 2008, the dummy

variable takes the value of 1 in 2007 and 2008 and the value of zero for the remaining years.
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The w vector in equation (7), the d vector in equation (9) and the z vector in equations (10-11)

consist of the following variables: farms’ economic size measured in hundreds of European Size

Units (ESU)6, farms’ specialization in milk production measured as the ratio of revenues from

milk production to total revenues, and farms’ stock density, defined as the volume of livestock

units per hectare of land. Operators that own large (in economic size) farms are expected to

attain higher technical efficiency levels due to their higher managerial effort (Latruffe et al. 2008;

Zhu et al. 2012). Higher specialization in milk production can increase efficiency due to farmers’

higher level of experience when engaging in a single production activity (Zhu et al. 2012; Sauer

and Latacz-Lohmann 2015). Finally, higher stock density that is associated with the adoption of

intensive production techniques can have a positive contribution to technical efficiency (Alvarez

and Corral 2010). Since persistent inefficiency in the GTRE is time-invariant, the covariates (in

d) that affect it in the first part of equation (9) are specified as time-invariant. Furthermore,

imposing stationarity on the s series in equation (11) requires that the covariates in z are also

time-invariant7. Summary statistics of the model’s variables appear in Table 1.

Table 1: Summary statistics of the model’s variables

Variable Mean Std. dev 5% 95%

Revenues from cows’ milk (1,000e) 104.93 117.48 29.70 259.30
Revenues from other output (1,000e) 28.98 39.19 5.32 73.56
Capital (1,000e) 168.54 151.23 28.98 416.56
Labor (1,000 man-hours) 3.29 3.16 1.80 5.47
Land (hectares) 59.34 58.77 18.47 140.26
Materials (1,000e) 45.66 50.86 12.98 107.92
Livestock (livestock units) 92.58 83.59 32.69 212.65
Purchased feed (1,000e) 19.18 28.72 1.85 53.17
Size (100 ESU) 0.75 0.79 0.25 1.69
Specialization (milk revenues/total revenues) 0.73 0.11 0.54 0.89
Density (livestock units/hectare) 2.03 0.66 1.13 3.19

5 Results and discussion

The results reported in this section are based on 120,000 draws from the posterior distribution of

the parameters for each model. A burn-in of 50,000 iterations is used to remove the influence of

the initial values, while every one in ten draws is retained to mitigate potential autocorrelation

of the draws. The full set of results from the four alternative models is provided in the Appendix

6This is not a measure of output but an aggregate factor endowment.
7Variation of the variables over time is negligible. We derive farm-specific coefficients of variation for size,
specialization and stock density by dividing each farm’s standard deviation in the respective variable by the
farm’s mean, taken over time. Figure A1 in the Appendix presents histograms of the coefficients of variation for
size, specialization and stock density.
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in Tables A1, A2, A3 and A4 along with standard errors, Monte Carlo Standard Errors (MCSE)8

and 90% credible intervals for each parameter. Table 2 reports the parameter estimates of the

first-order terms, and the rest of the parameters from the four alternative models9.

Table 2: Posterior means of the first-order terms and the parameters in the four θ vectors

BC92 Unstructured GTRE Dynamic

Variable Mean Mean Mean Mean

intercept 0.051 -0.038 -0.164 -0.152

log y2 0.162 0.133 0.129 0.126

log K -0.016 -0.021 -0.024 -0.023

log L -0.039 -0.042 -0.044 -0.057

log A -0.107 -0.126 -0.136 -0.131

log M -0.198 -0.209 -0.201 -0.193

log S -0.426 -0.376 -0.348 -0.372

log F -0.162 -0.163 -0.156 -0.152

trend -0.003 -0.018 -0.018 -0.018

dummy 0.015 0.017 0.016 0.022

σv 0.089 0.073 0.072 0.071

σα 0.166 0.165 0.104 0.137

η -0.215 - - -

λ 7.356 - - -

σξ - - - 0.314

ρ - - - 0.844

RTS 0.948 0.937 0.909 0.928

Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification.

The point estimates of the distance function elasticities across the four specifications differ

slightly in magnitude. This results in different estimates for the scale elasticities (RTS). However,

the distance elasticities have the expected signs and their 90% credible intervals do not include

zero10. The positive sign of the distance function elasticity with respect to other output means

8In simple models such that of Battese and Coelli (1992), autocorellation of the draws from the posterior is
normally low. In more complicated models that make use of the Metropolis-Hastings algorithm (i.e. the un-
structured, the GTRE and the dynamic efficiency models), autocorrelation of the posterior draws may be an
issue. However, the reported MCSE are small for all parameters in all four models, which implies a good
approximation of the associated posterior moments.

9Since the main objective of the paper is to compare the results from the four alternative specifications, the
determinants of efficiency in the unstructured, the GTRE and the dynamic models are not discussed but are
presented in Tables A5, A6, A7 and A8 in the Appendix. Note that all estimates have the expected signs and
their corresponding 90% credible intervals do not contain zero.

10Credible intervals are presented in Tables A1, A2, A3 and A4 in the Appendix.
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that an increase in output, other than milk, ceteris paribus will cause an increase in the distance

function and farms will move closer to the frontier. On the other hand, the negative signs of

the distance function elasticities with respect to inputs imply that increases in inputs push the

frontier outwards and farms become less efficient. All four models suggest that German dairy

farms experience technological progress since the frontier moves outwards with the passage of

time. Additionally, the dummy variable that captures the effect of rapid changes in milk prices on

farms’ production technology has a positive sign in all four models and implies that in 2007 and

2008 the frontier is shifted inwards compared to the remaining years. This is probably because

in 2007 and 2008 the prices of milk changed, farmers moved out of their comfort zone (what

they have learned to do by experience), and started misusing their resourses, which ultimately

limited their production possibilities.

Concerning the Battese and Coelli model, the negative sign of η implies that farms become

less efficient over time, with the average efficiency score being 94%. The unstructured model

produces a mean efficiency score of 95%. In the GTRE model, average persistent efficiency

is estimated at 89% and average transient efficiency at 95%. Finally, the dynamic efficiency

model produces a mean efficiency estimate of 86%. These differences are due to the different

inefficiency structure that is imposed in each of the four models. Furthermore, inefficiency is

highly autocorrelated and the dynamic efficiency model produces an estimate for ρ of 84%. This

result is a bit lower when compared to the finding of Emvalomatis et al. (2011) for the case of

German dairy farms. A possible explanation is that, in contrast to the study of Emvalomatis

et al. (2011), this study accounts also for farm-effects, which free the persistence of inefficiency

from capturing also part of unobserved heterogeneity. However, the persistence of inefficiency is

still high, adding credibility to the adjustment cost theory, which states that under the existence

of high adjustment costs, the optimal decision for farms is to remain inefficient in the short-run.

Moving to the TFP growth rate and it’s decomposition into technical progress, technical

efficiency change and scale effect, Table 3 reports the corresponding estimates for each of the

four models, averaged over farms. Apart from the Battese and Coelli model, the remaining

three models suggest that technical progress is the main driver of TFP growth. This result

is in accordance with the findings of Brümmer et al. (2002), Emvalomatis (2012b) and Sauer

and Latacz-Lohmann (2015) for the case of German dairy farms. On average, the scale effect

contributes very little to TFP growth under all specifications. Overall, the Battese and Coelli

model produces an average TFP growth estimate of approximately -1%, while the other three

models an estimate around 1.7%. The last result is in line with previous empirical studies that

have reported average TFP growth rates of German dairy farms above 1%.

The reason behind the average TFP growth estimate in the Battesse and Coelli model being

that lower when compared to the unstructured, the GTRE and the dynamic models is twofold:

(i) the average estimate of the technical progress component in the Battesse and Coelli model is

smaller. This result should not be surprising as the estimate with respect to the trend variable
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in the distance function specification of the Battesse and Coelli model is deflated because the

trend variable appears also in the specification of inefficiency, (ii) the average technical efficiency

change estimate is much smaller in the Battesse and Coelli specification as it is always decreasing.

This results in a further deflation of average TFP growth11.

Table 3: TFP growth rate and decomposition (%)

Year Technical progress TE change Scale effect TFP growth

BC92

2001-2002 1.857 -0.586 0.065 1.337

2002-2003 1.407 -0.726 0.081 0.762

2003-2004 0.970 -0.899 -0.021 0.050

2004-2005 0.556 -1.115 0.048 -0.511

2005-2006 0.129 -1.382 0.012 -1.241

2006-2007 -0.310 -1.713 0.125 -1.898

2007-2008 -0.748 -2.125 0.057 -2.816

2008-2009 -1.209 -2.636 -0.064 -3.909

Average 0.331 -1.398 0.038 -1.029

Unstructured

2001-2002 1.900 -0.489 0.079 1.490

2002-2003 1.842 -0.350 0.099 1.591

2003-2004 1.806 0.862 -0.024 2.643

2004-2005 1.794 -0.916 0.062 0.940

2005-2006 1.767 1.095 0.011 2.873

2006-2007 1.724 0.992 0.146 2.862

2007-2008 1.681 -4.546 0.064 -2.800

2008-2009 1.615 2.092 -0.084 3.623

Average 1.766 -0.158 0.044 1.652

GTRE

2001-2002 1.852 -0.524 0.112 1.440

2002-2003 1.809 -0.325 0.144 1.628

2003-2004 1.787 0.912 -0.033 2.666

2004-2005 1.786 -0.942 0.093 0.938

2005-2006 1.773 1.168 0.014 2.955

2006-2007 1.746 0.991 0.209 2.946

2007-2008 1.719 -4.896 0.092 -3.085

11The Battesse and Coelli model without farm-effects (αi) produces more plausible results (closer in magnitude
(although still lower) to the ones obtained with the remaining models), which however, are qualitatively similar
and differ only in magnitude when compared to the model that includes farm-effects.
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2008-2009 1.668 2.319 -0.122 3.865

Average 1.768 -0.162 0.064 1.670

Dynamic

2001-2002 2.214 -0.403 0.080 1.891

2002-2003 2.034 -0.295 0.109 1.847

2003-2004 1.966 0.285 -0.024 2.227

2004-2005 1.914 -0.218 0.070 1.767

2005-2006 1.856 0.484 0.013 2.353

2006-2007 1.758 0.322 0.162 2.242

2007-2008 1.692 -1.991 0.073 -0.227

2008-2009 1.598 0.235 -0.086 1.747

Average 1.879 -0.198 0.050 1.731

Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification.

Striking differences in the time variation of TFP growth across the four specifications are

observed. This is due to the differences in the technical efficiency change component. In the

Battese and Coelli case, efficiency is, on average, decreasing over time. However, since the

unstructured, the GTRE and the dynamic efficiency models do not restrict efficiency to be

either only increasing or decreasing, they allow for efficiency changes to go in either direction.

In contrast to the Battese and Coelli specification, these models can capture steep efficiency

changes. These changes are observed during the period that milk price changes have occurred in

the German dairy sector. More specifically, a big efficiency change occurs between 2007 and 2008.

The milk price peak of 35.01e/100kg in 2008 is accompanied by a large negative contribution

(almost -2%) of the efficiency change effect in TFP growth in the dynamic efficiency model, and

a -4.5% and -4.9% contribution in the unstructured and the GTRE models, respectively. In all

three specifications this results to a steep decline in TFP growth12. High milk prices motivate

farmers to increase their short-run production so that they take advantage of the associated

profits. To raise production in the short-run, farmers need to increase the use of variable inputs.

However, since farmers are probably experienced in employing a particular range of variable

inputs, a rapid increase in their use that goes beyond their comfort zone may make them prone

to committing mistakes. For instance, farmers may overuse inputs such as feedingstuffs or labor,

which will result in increased production, but also inefficient use of these inputs.

On the other hand, an average efficiency increase of approximately 0.2% in the dynamic

efficiency model and 2.1% and 2.3% in the unstructured and the GTRE models, respectively, is

observed from 2008 to 2009, which is the period where prices plummeted from 35.01e/100kg to

12Since technical efficiency change is always negative in the Battese and Coelli model, a negative technical efficiency
and TFP change is also observed. However, this coincidence is not observed in the following period, where, in
contrast to the remaining models that report positive technical efficiency and TFP changes, the Battese and
Coelli model continues reporting negative changes.
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25.25e/100kg. This efficiency increase results to a high TFP growth rate under all three models

(particularly when compared to the period before). A logical consequence of such a price fall

is that farmers are no longer motivated to increase production by employing large quantities of

variable inputs, since the associated profit gains are smaller. On the contrary, given the price

decrease, farmers are motivated to produce less by returning to their normal levels of variable

input use. This return may decrease short-run production, but farmers will probably make a

more efficient use of their variable inputs, which will compensate for the lower profits associated

with the milk price fall.

As expected, the Battese and Coelli model is not able to capture these efficiency changes

that may come from milk price volatility that occurred during the period of our study. On the

other hand, the unstructured, the GTRE and the dynamic efficiency models are more flexible,

and therefore able to capture such efficiency changes. However, in contrast to the dynamic

efficiency model, the unstructured and the GTRE models produce more extreme results due to

the complete absence of a time structure from the inefficiency specification. To offer a clearer

picture of the differences in efficiency change and TFP growth volatility between the four models,

Figure 1 presents the evolution of the components of TFP growth.

Figure 1: Decomposition of TFP growth under the four alternative models

Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification and Unstr. to the
unstructured model.

While the technical change component and, particularly, the scale effect component vary little

particularly in the unstructured, GTRE and dynamic models, striking differences across the four
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alternative specifications are observed for the period 2007-2009 in the technical efficiency change

component (DTE effect) and in TFP growth. These two components are only decreasing in the

Battese and Coelli model, while the dynamic efficiency, the GTRE and the unstructured models

indicate sharp efficiency and TFP growth changes in the period 2007-2009 in both directions.

The magnitude of these changes is much larger in the unstructured and the GTRE models.

A more formal model comparison is performed to infer which of the four models fits the data

better. Note that the same dependent variable is used in all four specifications, while the prior

model probability of 1/4 is placed in each of the four models. Table 4 reports the estimates of

the marginal log-likelihood and the posterior model probabilities.

Table 4: Marginal log-likelihoods and posterior model probabilities

Model Marginal log-likelihood Posterior probability

BC92 2084.07 0.000
Unstructured 2767.88 0.000
GTRE 3230.93 0.000
Dynamic 4706.77 1.000

Note: BC92 refers to the Battese and Coelli (1992) inefficiency specification.

The dynamic efficiency model is favored by the data as, on the one hand, it imposes a less

restrictive time structure on inefficiency compared to the Battese and Coelli specification, while,

on the other hand, it does not allow efficiency scores to evolve completely arbitrarily over time,

as the unstructured and the GTRE models do.

6 Conclusions

This article estimates and decomposes TFP growth of German dairy farms for the period 2001-

2009. The study period is characterized by steep milk price changes that took place toward the

end of the period. Such a shock motivates the measurement of efficiency and TFP growth and

their expected time variation. However, detection of efficiency and TFP growth shocks depends

on the modelling approach followed. Most studies that have examined TFP growth have relied

on models that specify inefficiency as a deterministic function of time, with the most popular

one being that of Battese and Coelli (1992). Additionally, models that do not impose any time

structure on efficiency may be able to capture efficiency shocks, but are likely to produce erratic

results. We argue that a dynamic inefficiency specification that allows for inefficiency scores

to be autocorrelated, allows for a more flexible time structure that can account for (persistent)

efficiency shocks that may be induced by the high milk price volatility observed during our study

period, without producing erratic results.

Large discrepancies are observed in the TFP growth rate’s evolution over time across the

four models. While the technical change components and particularly the scale components do

not vary significantly over time, important differences occur in the efficiency change components.
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On the one hand, in the Battese and Coelli model, efficiency is only decreasing over time. This

is something to be expected, as this approach restricts inefficiency to be either only increasing

or decreasing for all farms with the passage of time. Furthermore, it is unable to capture

steep efficiency changes (in either directions) because it treats the evolution of inefficiency as

a deterministic function of time. On the other hand, in the unstructured, the GTRE and

the dynamic efficiency models, the direction of efficiency change is stochastic and can reveal

time-specific efficiency shocks. However, the unstructured and the GTRE models produce more

erratic results, since they do not impose any time structure on the efficiency scores.

The efficiency shocks occur when steep milk prices changes take place. In particular, the

peak of milk prices in 2008 coincides with a sharp efficiency decrease. Since high milk prices offer

the potential of making high profits, farmers are motivated to increase the short-run production

of milk. To achieve this, they need to increase the use of variable inputs beyond the traditional

level, running the risk of making mistakes, such as overusing them. This results in inefficient use

of resources, which is evident in the observed efficiency decrease. However, the following year,

the decrease in milk price is accompanied by an efficiency increase, that only the unstructured,

the GTRE and the dynamic efficiency models can capture. Farmers no longer have the incentive

to produce large quantities of milk, as its low price will now result in relatively smaller profit

margins. This implies that farmers are probably using their variable inputs in a more parsimo-

nious way that increases efficiency and partly compensates for the profit loss compared to the

year before.

The results confirm that the detection of sharp efficiency and TFP growth changes heavily

depends on the specification of inefficiency. Models such as the Battese and Coelli (1992) that

consider the evolution of inefficiency as a deterministic function of time are not able to capture

shocks in the environment in which firms operate, and which may have a large impact on

efficiency. Models that do not impose any time structure on efficiency scores are able to account

for period-specific efficiency shocks, but can produce erratic results. The dynamic efficiency

model belongs to the category of models that impose a time structure on efficiency scores, but

not a very restrictive one. Such a model can account for period-specific efficiency shocks without

running the risk of producing erratic results, which is evident in our study. Additionally, the

dynamic efficiency model is favored by our data when tested against the Battese and Coelli

specification, and two models that impose no time structure on efficiency.
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Appendix

Table A1: Estimates of the parameters from the Battese and Coelli (1992) model

Variable Mean Std. dev. MCSE 90% Credible Interval

intercept 0.051 0.012 0.000 [0.027, 0.074]

log y2 0.162 0.004 0.000 [0.154, 0.171]

log K -0.016 0.005 0.000 [-0.026, -0.006]

log L -0.039 0.011 0.000 [-0.060, -0.017]

log A -0.107 0.013 0.000 [-0.132, -0.081]

log M -0.198 0.010 0.000 [-0.218, -0.179]

log S -0.426 0.015 0.000 [-0.455, -0.396]

log F -0.162 0.006 0.000 [-0.174, -0.150]

trend -0.003 0.001 0.000 [-0.005, -0.001]

dummy 0.015 0.003 0.000 [0.008, 0.021]

east -0.034 0.043 0.000 [-0.120, 0.050]

west -0.070 0.020 0.000 [-0.110, -0.031]

north 0.020 0.019 0.000 [-0.017, 0.057]

log KK 0.011 0.003 0.000 [0.006, 0.017]

log KL -0.002 0.013 0.000 [-0.028, 0.023]

log KA 0.005 0.014 0.000 [-0.022, 0.032]

log KM 0.024 0.010 0.000 [0.004, 0.043]

log KS -0.028 0.015 0.000 [-0.058, 0.002]

log KF 0.006 0.005 0.000 [-0.004, 0.016]

log LL -0.008 0.020 0.000 [-0.047, 0.030]

log LA -0.014 0.032 0.000 [-0.076, 0.048]

log LM 0.096 0.026 0.000 [0.045, 0.147]

log LS -0.091 0.037 0.000 [-0.164, -0.019]

log LF 0.021 0.013 0.000 [-0.005, 0.046]

log AA -0.014 0.021 0.000 [-0.056, 0.028]

log AM -0.076 0.026 0.000 [-0.126, -0.025]

log AS 0.051 0.041 0.000 [-0.028, 0.131]

log AF 0.030 0.012 0.000 [0.006, 0.054]

log MM 0.068 0.014 0.000 [0.039, 0.096]

log MS -0.242 0.032 0.000 [-0.305, -0.179]
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log MF 0.033 0.010 0.000 [0.013, 0.052]

log SS 0.160 0.031 0.000 [0.099, 0.222]

log SF -0.027 0.015 0.000 [-0.055, 0.001]

log FF -0.033 0.002 0.000 [-0.037, -0.029]

log y2y2 0.042 0.002 0.000 [0.039, 0.046]

log Ky2 -0.029 0.004 0.000 [-0.037, -0.022]

log Ly2 -0.019 0.011 0.000 [-0.040, 0.002]

log Ay2 -0.024 0.011 0.000 [-0.045, -0.003]

log My2 0.066 0.009 0.000 [0.048, 0.084]

log Sy2 0.013 0.014 0.000 [-0.014, 0.041]

log Fy2 -0.013 0.004 0.000 [-0.021, -0.004]

trend2 0.002 0.000 0.000 [0.002, 0.003]

trend log K -0.001 0.001 0.000 [-0.002, 0.001]

trend log L -0.004 0.002 0.000 [-0.008, 0.001]

trend log A 0.012 0.002 0.000 [0.008, 0.016]

trend log M -0.012 0.002 0.000 [-0.017, -0.008]

trend log S 0.002 0.003 0.000 [-0.004, 0.007]

trend log F 0.002 0.001 0.000 [0.001, 0.004]

trend log y2 -0.001 0.001 0.000 [-0.003, 0.001]

σv 0.089 0.001 0.000 [0.088, 0.091]

σα 0.166 0.005 0.000 [0.156, 0.177]

η -0.215 0.014 0.000 [-0.244, -0.188]

λ 7.356 0.519 0.001 [6.399, 8.430]

Table A2: Estimates of the parameters from the unstructured model

Variable Mean Sd.dev. MCSE 90% Credible Interval

intercept -0.038 0.010 0.000 [-0.058, -0.018]

log y2 0.133 0.005 0.000 [0.124, 0.142]

log K -0.021 0.005 0.000 [-0.030, -0.012]

log L -0.042 0.010 0.000 [-0.061, -0.023]

log A -0.126 0.012 0.000 [-0.150, -0.102]

log M -0.209 0.010 0.000 [-0.228, -0.190]

log S -0.376 0.015 0.000 [-0.405, -0.347]

log F -0.163 0.005 0.000 [-0.174, -0.153]

trend -0.018 0.001 0.000 [-0.019, -0.016]
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dummy 0.017 0.003 0.000 [0.011, 0.024]

east -0.024 0.042 0.000 [-0.105, 0.056]

west -0.051 0.019 0.000 [-0.089, -0.012]

north 0.012 0.018 0.000 [-0.023, 0.047]

log KK 0.003 0.003 0.000 [-0.002, 0.007]

log KL -0.016 0.011 0.000 [-0.037, 0.007]

log KA 0.011 0.012 0.000 [-0.014, 0.034]

log KM 0.018 0.010 0.000 [-0.002, 0.038]

log KS -0.018 0.014 0.000 [-0.045, 0.010]

log KF -0.002 0.005 0.000 [-0.011, 0.007]

log LL -0.018 0.018 0.000 [-0.052, 0.017]

log LA 0.014 0.028 0.000 [-0.041, 0.070]

log LM 0.019 0.025 0.000 [-0.029, 0.068]

log LS 0.034 0.033 0.000 [-0.032, 0.099]

log LF 0.002 0.012 0.000 [-0.021, 0.025]

log AA -0.025 0.020 0.000 [-0.063, 0.013]

log AM -0.041 0.027 0.000 [-0.095, 0.011]

log AS -0.009 0.038 0.000 [-0.082, 0.064]

log AF 0.050 0.012 0.000 [0.027, 0.073]

log MM 0.047 0.015 0.000 [0.017, 0.076]

log MS -0.179 0.035 0.000 [-0.247, -0.111]

log MF 0.026 0.010 0.000 [0.006, 0.045]

log SS 0.116 0.032 0.000 [0.053, 0.178]

log SF -0.024 0.015 0.000 [-0.053, 0.004]

log FF -0.034 0.002 0.000 [-0.037, -0.030]

log y2y2 0.031 0.002 0.000 [0.027, 0.034]

log Ky2 0.005 0.004 0.000 [-0.004, 0.013]

log Ly2 -0.014 0.010 0.000 [-0.034, 0.006]

log Ay2 -0.020 0.010 0.000 [-0.040, 0.000]

log My2 0.044 0.009 0.000 [0.025, 0.062]

log Sy2 0.003 0.014 0.000 [-0.024, 0.030]

log Fy2 -0.001 0.004 0.000 [-0.010, 0.007]

trend2 0.000 0.000 0.000 [0.000, 0.001]

trend log K -0.002 0.001 0.000 [-0.003, 0.000]

trend log L -0.007 0.002 0.000 [-0.010, -0.003]

trend log A 0.012 0.002 0.000 [0.008, 0.015]

trend log M -0.013 0.002 0.000 [-0.017, -0.010]

trend log S 0.004 0.002 0.000 [-0.001, 0.008]
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trend log F 0.003 0.001 0.000 [0.001, 0.004]

trend log y2 -0.001 0.001 0.000 [-0.003, 0.001]

σv 0.073 0.002 0.000 [0.070, 0.077]

σα 0.165 0.005 0.000 [0.155, 0.175]

Table A3: Estimates of the parameters from the GTRE model

Variable Mean Sd.dev. MCSE 90% Credible Interval

intercept -0.164 0.012 0.000 [-0.188, -0.140]

log y2 0.129 0.005 0.000 [0.119, 0.138]

log K -0.024 0.005 0.000 [-0.033, -0.014]

log L -0.044 0.009 0.000 [-0.062, -0.025]

log A -0.136 0.013 0.000 [-0.161, -0.112]

log M -0.201 0.009 0.000 [-0.219, -0.182]

log S -0.348 0.014 0.000 [-0.377, -0.320]

log F -0.156 0.005 0.000 [-0.166, -0.145]

trend -0.018 0.001 0.000 [-0.019, -0.016]

dummy 0.016 0.003 0.000 [0.009, 0.022]

east -0.030 0.034 0.000 [-0.097, 0.037]

west -0.030 0.015 0.000 [-0.060, -0.001]

north 0.030 0.015 0.000 [0.001, 0.059]

log KK 0.001 0.003 0.000 [-0.004, 0.006]

log KL -0.014 0.011 0.000 [-0.036, 0.008]

log KA 0.012 0.012 0.000 [-0.012, 0.037]

log KM 0.022 0.010 0.000 [0.002, 0.042]

log KS -0.024 0.015 0.000 [-0.052, 0.005]

log KF -0.002 0.005 0.000 [-0.011, 0.007]

log LL -0.016 0.017 0.000 [-0.050, 0.017]

log LA 0.007 0.028 0.000 [-0.047, 0.064]

log LM 0.022 0.025 0.000 [-0.026, 0.071]

log LS 0.039 0.033 0.000 [-0.025, 0.104]

log LF -0.005 0.012 0.000 [-0.028, 0.018]

log AA -0.025 0.020 0.000 [-0.064, 0.013]

log AM -0.035 0.026 0.000 [-0.085, 0.017]

log AS 0.008 0.037 0.000 [-0.064, 0.080]

log AF 0.056 0.011 0.000 [0.033, 0.078]

log MM 0.032 0.015 0.000 [0.001, 0.061]
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log MS -0.163 0.034 0.000 [-0.227, -0.094]

log MF 0.021 0.010 0.000 [0.002, 0.041]

log SS 0.096 0.031 0.000 [0.035, 0.158]

log SF -0.026 0.015 0.000 [-0.055, 0.002]

log FF -0.033 0.002 0.000 [-0.037, -0.030]

log y2y2 0.030 0.002 0.000 [0.027, 0.033]

log Ky2 0.005 0.004 0.000 [-0.003, 0.013]

log Ly2 -0.014 0.010 0.000 [-0.034, 0.006]

log Ay2 -0.026 0.010 0.000 [-0.046, -0.006]

log My2 0.051 0.009 0.000 [0.033, 0.070]

log Sy2 -0.002 0.014 0.000 [-0.028, 0.025]

log Fy2 0.002 0.004 0.000 [-0.007, 0.010]

trend2 0.000 0.000 0.000 [0.000, 0.000]

trend log K -0.002 0.001 0.000 [-0.003, -0.001]

trend log L -0.007 0.002 0.000 [-0.010, -0.003]

trend log A 0.012 0.002 0.000 [0.009, 0.015]

trend log M -0.013 0.002 0.000 [-0.016, -0.009]

trend log S 0.003 0.002 0.000 [-0.002, 0.008]

trend log F 0.002 0.001 0.000 [0.001, 0.004]

trend log y2 -0.001 0.001 0.000 [-0.002, 0.001]

σv 0.072 0.002 0.000 [0.069, 0.076]

σα 0.104 0.007 0.000 [0.092, 0.117]

Table A4: Estimates of the parameters from the dynamic model

Variable Mean Std. dev. MCSE 90% Credible Interval

intercept -0.152 0.021 0.000 [-0.188, -0.119]

log y2 0.126 0.005 0.000 [0.118, 0.134]

log K -0.023 0.005 0.000 [-0.031, -0.014]

log L -0.057 0.010 0.000 [-0.074, -0.040]

log A -0.131 0.014 0.000 [-0.153, -0.108]

log M -0.193 0.010 0.000 [-0.209, -0.177]

log S -0.372 0.016 0.000 [-0.398, -0.346]

log F -0.152 0.006 0.000 [-0.161, -0.143]

trend -0.018 0.001 0.000 [-0.020, -0.017]

dummy 0.022 0.003 0.000 [0.017, 0.027]

east -0.035 0.038 0.000 [-0.098, 0.029]
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west -0.043 0.018 0.000 [-0.073, -0.014]

north 0.015 0.017 0.000 [-0.012, 0.042]

log KK 0.002 0.003 0.000 [-0.002, 0.007]

log KL -0.013 0.012 0.000 [-0.033, 0.007]

log KA 0.000 0.014 0.000 [-0.022, 0.023]

log KM 0.023 0.010 0.000 [0.006, 0.040]

log KS -0.014 0.016 0.000 [-0.040, 0.012]

log KF -0.000 0.005 0.000 [-0.008, 0.008]

log LL -0.020 0.018 0.000 [-0.049, 0.010]

log LA -0.008 0.030 0.000 [-0.058, 0.041]

log LM 0.038 0.025 0.000 [-0.004, 0.079]

log LS 0.011 0.035 0.000 [-0.046, 0.068]

log LF 0.017 0.012 0.000 [-0.003, 0.038]

log AA -0.017 0.021 0.000 [-0.051, 0.016]

log AM -0.059 0.026 0.000 [-0.101, -0.016]

log AS 0.041 0.039 0.000 [-0.023, 0.105]

log AF 0.052 0.012 0.000 [0.032, 0.072]

log MM 0.049 0.014 0.000 [0.026, 0.072]

log MS -0.179 0.034 0.000 [-0.235, -0.124]

log MF 0.026 0.010 0.000 [0.009, 0.043]

log SS 0.093 0.033 0.000 [0.039, 0.147]

log SF -0.020 0.015 0.000 [-0.045, 0.006]

log FF -0.032 0.002 0.000 [-0.036, -0.029]

log y2y2 0.029 0.002 0.000 [0.026, 0.032]

log Ky2 -0.001 0.004 0.000 [-0.008, 0.007]

log Ly2 -0.017 0.010 0.000 [-0.034, -0.001]

log Ay2 -0.024 0.010 0.000 [-0.040, -0.007]

log My2 0.040 0.009 0.000 [0.024, 0.055]

log Sy2 0.012 0.014 0.000 [-0.010, 0.035]

log Fy2 0.001 0.004 0.000 [-0.006, 0.008]

trend2 0.000 0.000 0.000 [-0.000, 0.000]

trend log K -0.001 0.001 0.000 [-0.003, 0.000]

trend log L -0.005 0.002 0.000 [-0.009, -0.002]

trend log A 0.009 0.002 0.000 [0.005, 0.013]

trend log M -0.013 0.002 0.000 [-0.016, -0.009]

trend log S 0.003 0.003 0.000 [-0.001, 0.008]

trend log F 0.004 0.001 0.000 [0.002, 0.006]

trend log y2 0.001 0.001 0.000 [-0.000, 0.003]
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σv 0.071 0.001 0.000 [0.069, 0.073]

σα 0.137 0.006 0.000 [0.127, 0.148]

σξ 0.314 0.026 0.000 [0.271, 0.358]

ρ 0.844 0.020 0.000 [0.809, 0.876]

Table A5: Determinants of inefficiency in the unstructured model

Variable Mean Sd.dev. MCSE 90% Credible Interval

intercept 2.622 0.114 0.001 [2.441, 2.814]
size 0.529 0.071 0.000 [0.416, 0.649]
specialization 1.483 0.156 0.002 [1.230, 1.743]
density 1.069 0.099 0.001 [0.909, 1.234]

Table A6: Determinants of persistent inefficiency in the GTRE model

Variable Mean Sd.dev. MCSE 90% Credible Interval

intercept 3.353 0.248 0.003 [2.884, 3.864]
size 0.752 0.142 0.002 [0.489, 1.051]
specialization 4.105 0.443 0.006 [3.269, 5.027]
density 1.215 0.209 0.003 [0.812, 1.637]

Table A7: Determinants of transient inefficiency in the GTRE model

Variable Mean Sd.dev. MCSE 90% Credible Interval

intercept 3.155 0.106 0.002 [2.952, 3.372]
size 0.093 0.055 0.000 [0.001, 0.208]
specialization 1.425 0.152 0.002 [1.136, 1.731]
density 0.440 0.086 0.001 [0.269, 0.608]

Table A8: Determinants of transformed efficiency s in the dynamic efficiency model

Variable Mean Std. dev. MCSE 90% Credible Interval

intercept 0.050 0.007 0.000 [0.039, 0.062]
size 0.025 0.004 0.000 [0.019, 0.032]
specialization 0.078 0.010 0.000 [0.063, 0.094]
density 0.021 0.004 0.000 [0.015, 0.028]
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Figure A1: Coefficient of variation for size, specialization and stock density

Note: The data represent farm-specific values obtained by summarizing them over time
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