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Two-scale Moving Boundary Dynamics of Cancer

Invasion: Heterotypic Cell Populations Evolution

in Heterogeneous ECM

Robyn Shuttleworth and Dumitru Trucu

Abstract Cancer cell invasion, recognised as one of the hallmarks of cancer, is a complex process

involving the secretion of matrix-degrading enzymes that have the ability to degrade the surround-

ing extracellular matrix (ECM). Combined with cell proliferation and migration, and changes in

cell-cell and cell-matrix adhesion, the tumour is able to spread into the surrounding tissue. The

multiscale character of this process is highlighted here through the double feedback link between

the cell-scale molecular processes and those occurring at the tissue level. In this chapter, we build

on the multiscale moving boundary framework proposed in [30] by developing the modelling of

the tissue-scale dynamics to include cell-cell and cell-matrix adhesion in a heterogeneous cancer

cell population. To that end, we consider here two cancer cell sub-populations, namely a primary

tumour cell distribution and a second cancer cell sub-population that arises due to mutations from

the primary tumour cells and exhibits higher malignancy. We explore the multiscale moving bound-

ary dynamics of this heterogeneous tumour cell population in the presence of cell-adhesion at the

tissue-scale and matrix degrading enzyme molecular processes considered at cell-scale. Using com-

putational simulations we examine the effect of different levels of adhesion and matrix remodelling

on the invasion of cancer cells.
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1 Introduction

Cancer invasion of tissue is a complicated, multiscale process which plays an essential role in tumour

progression. Through a combination of adhesion, secretion of various matrix degrading enzymes,

right from the early stages, cancer cells acquire the ability to spread locally and invade the sur-

rounding tissue, this is further exacerbated by later secretion of growth factors that lead to the

angiogenesis process that paves the way for metastatic spread, leading to the creation of secondary

tumours at different locations in the human body [17]. These new colonies are known as metastases,

or secondary tumours, and are the cause of 90% of human cancer deaths [10]. The most common

site for breast cancer metastasis, for example, is the bone; followed by the liver and lungs [32]. Once

a tumour has invaded the bone or any of these other vital organs, it is fatal and cannot be cured,

only treated by various forms of cancer therapy such as surgical intervention, chemotherapy and

radiation [29].

1.1 Biological Background

Recognised as one of the hallmarks of cancer [17], cancer invasion is a key process in tumour

development that uses a combination of cell-cell and cell-matrix adhesion, alongside the secretion

of proteolytic enzymes to degrade the surrounding tissue and this way expand on the affected area.

This enables the cells at the invasive edge of the tumour to colonise new, initially healthy regions

of the peritumoural tissue, where in the first instance there is no restriction in nutrients or changes

in tissue structure. The ultimate success of invasion relies heavily on the capabilities of the other

hallmarks of cancer [17], namely: the ability to sustain proliferative signalling, to evade growth

suppressors, to enable limitless replicative potential, to induce angiogenesis and the ability to resist

cell death. After a decade of further research on cancer, a wider understanding of its processes

sparked the addition of another four hallmarks [18] to the original six, namely: the ability to avoid

immune destruction, to deregulate cellular energetics, tumour-promoting inflammation, along with

genetic instability and mutation.

A malignant tumour is comprised of a complex community of cells (fibroblasts, endothelial cells,

stromal cells), all of which are mixed in with the extra-cellular matrix (ECM). The extra-cellular
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matrix is a key biologically structure that provides not only support to surrounding cells and

tissues [21], but also acts as a framework in which the cells can communicate and exercise spatial

movement. The formation of the ECM is an essential process, particularly in wound healing and

tumour invasion. The ECM is comprised of a variety of secreted proteins which can vary depending

on the type of tissue or the location in which we are investigating. Such components include: collagen

fibres and elastin which provide necessary structure and elasticity of the ECM, glycoprotiens such

as fibronectin, laminins, and proteogylcans which bind to the collagens and to receptors on the cell

surface.

Cells bind to the ECM through cell-matrix adhesion [23]. This process is regulated by a family

of specific molecules on the cell surface known as cell adhesion molecules (CAM) that enable the

binding process to various ECM components. These give rise to conditions in which the tumour

microenvironment contributes towards cell migration within the surrounding tissue. The migratory

character of the invading cells is further strengthened through the loss of cell-cell adhesion that

causes these particular tumour cells to become even more motile and spread further in the tissue

[9]. An important role in cell-cell adhesion is played by the cell-cell signalling pathways based

on the interactions between the distribution of calcium-sensing receptors and Ca2+ ions from the

extracellular matrix [20]. In normal, healthy cells, this calcium-dependent cell-cell adhesion process

is mediated by a large family of transmembrane glycoproteins known as cadherins. Cadherins are

split into many groups; the most relevant being known as E-cadherins. In order for normal cellular

adhesion to take place, E-cadherin will form binds with proteins found inside the cell known as

catenins, most typically the β-catenin, forming an E-cadherin/catenin complex. Any alteration to

the function of β-catenin will result in the loss of ability of the E-cadherin to initiate cell-cell

adhesion [33]. The direct correlation between this calcium-based cell signalling mechanism and the

regulation of E-cadherin and β-catenin was first discovered in colon carcinoma [7]. This loss of

cell-cell adhesion paired with a quick spread of the cells due to enhanced cell-matrix adhesion [6]

enables these cancerous cells to invade the surrounding tissue [12].

Finally, a key player in the invasion process is the over-production and secretion of proteolytic

enzymes. These enzymes can be categorised as matrix-degrading enzymes (MDEs) with such sub-

groups as matrix metalloproteinases (MMPs) [26] and the urokinase-type plasminogen activator

(uPA). The interaction of these enzymes with the ECM components results in the degradation

and remodelling of the ECM. MDEs have the ability to open migratory pathways and alter cell-



4 Robyn Shuttleworth and Dumitru Trucu

cell and cell-matrix adhesion properties. One of the first MMPs to interact with the ECM is the

membrane-tethered MT1-MMP. Once in the stroma, MT1-MMP will begin to cleave collagen type

I into smaller pieces. As well as cleaving, MT1-MMP has another role in that it can activate pro-

MMP-2. Molecules of pro-MMP-2 present in the extra-cellular matrix are recruited by the cancer

cells and cleaved by MT1-MMP to promote MMP-2 activation. Once activated, MMP-2 is then

available to breakdown the previously cleaved smaller pieces of collagen type I, as well as degrade

the surrounding fibres in order to create a path in which the cancer cells can advance.

1.2 Mathematical Models of Cancer Invasion

The past few decades have witnessed great interest in the mathematical modelling of cancer inva-

sion [5, 8, 11, 35]. There are many models which investigate different aspects of cancer invasion,

particularly using in vitro models, however the in vivo process is much more complicated and less

understood. In vivo models capture the complexity of tumour spread, however it is very difficult to

visualise the individual steps of invasion. On the other hand, in vitro models are easier to construct

and they allow us to control a lot of the experimental values we obtain and this allows for easier

quantitative analysis. One disadvantage to in vitro models however is the inability to see the global

effect of invasion, i.e., in vitro models only contain a partial expression of the interactions between

the cancer cells and the ECM [22]. Great effort has been made to understand the interactions that

are occurring during the invasion process, and the experiments, both in vivo and in vitro have

helped to advance this knowledge. Links between cell migration processes and MMPs that are pro-

duced by the cancer cells have been discovered [24], as well as links between cell migration and the

structure of the extracellular matrix [34]. There has been many attempts to model these interac-

tions, using both continuum and discrete models, however these are “one-scale” based models, and

do not consider the overall aspects of a multiscale invasion model.

The model proposed in [3] describes the invasion of tissue by cancer cells whilst considering the

tumour cells, tissue (extracellular matrix) and matrix-degrading enzymes. There are two models

proposed, the first a continuum model which considers the tumour mass as a whole, and a second

individual-based model to investigate the invasive effects on the level of individual cells. The con-

tinuum model here describes how the tumour cells respond to haptotactic effects produced within
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the ECM. It has been shown that the tumour cells will split into two groups, one driven by random

migration, and the other spurred by haptotaxis. The individual-cell based model confirms this and

it is concluded that haptotaxis is important for cancer cell invasion.

The first continuum approach for modelling cell-cell adhesion was proposed in [4] which considers

the directed movement of cells in response to the adhesive forces made through binding. The PDE

model in [3] was used as a basis for the models in [16] where a continuum model of cancer cell invasion

was derived which accounts for both cell-cell and cell-matrix adhesion. These models used non-local

terms for both cell-cell and cell-matrix adhesion and they introduced the notion of adhesive flux and

cell sensing radius, which was to detect the immediate spatial environment. Analytical results of

these models were proved by [12] using a system of nonlinear, non-local partial integro-differential

equations describing the spatio-temporal dynamics of cancer invasion. The behaviours of cancer

cells under different adhesion coefficients were stated.

A model describing the mesenchymal motion of cells in a fibre network was developed by [19].

Mesenchymal migration involves significant matrix remodelling, where the cell will leave a trail

of aligned fibres along its path. Both mesoscopic (individual based) and macroscopic (population

based) models were described and these both form a good foundation for modelling on hetereogenous

orientated environments. This approach was continued by [25] using an individual-cell based model

where two different forms of cell migration were investigated. Here it is shown that in terms of

mesenchymal migration, the actions of both contact-guidance and ECM remodelling are sufficient

processes for invasion to occur.

All of these models have been proposed at a single scale level and not do not incorporate a

multiscale approach. Multiscale modelling of cancer invasion has only recently become an area of

interest, where the first instance can be seen in [2]. Here, three scales were identified; extracellular,

cellular and subcellular, and the effect of the microenvironment on tumour development was ex-

plored. It is shown how the three different biological scales can overlap and work together to form a

more concise model of tumour invasion. Multiscale modelling was then utilised in [28] where focus

lay on the interactions between E-cadherin and β-catenin and how cell migration may control cell

adhesion was investigated. Both intracellular and extracellular dynamics were considered, with the

conclusion that the tumour cells themselves are facilitating progression.

More recently, a multiscale moving boundary method of tumour invasion was proposed in [30] us-

ing three scale modelling; macroscale occurring at the tissue level, microscale occurring at a cellular
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level and a naturally arising third scale which is used to characterise the invasive boundary of the

tumour. We propose a model which builds on this original framework [30] in order to incorporate

the adhesive nature of cancer cells [15] with both themselves and the surrounding microenviron-

ment. This multiscale modelling will focus on exploring the evolution of tumour morphology whose

importance is justified by clinical considerations, namely that it is not necessarily the overall size

but the morphology of the tumour that creates huge surgical challenges. This is mainly due to the

deficiencies in all current imaging techniques, which are only able to capture between 65% and 90%

of the tumour, enabling the real possibility of not resecting the true extent of the tumour during

the surgical process by leaving behind small but complicated leading-edge tumour morphological

patterns that are not captured by the imaging, which subsequently lead to an aggressive tumour

relapse.

2 The Multiscale Modelling Approach

We will now briefly describe the multiscale framework initially introduced in [30] for modelling

cancer cell invasion and then develop the macroscopic dynamics incorporating cell-adhesion. Can-

cer invasion occurs at many spatial and temporal scales. The multiscale framework introduced in

[30] was developed to consider detailed interactions taking place at the cellular- and tissue-scales

alongside the linking between these different scales.

Within a maximal environmental tissue cube Y , at initial time t0, Ω(t0) represents the snapshot

of the tumour domain where the combined distributions of cancer cells c1(t, x) and c2(t, x) exercise

their dynamics, with c1 and c2 representing the sub-populations 1 (primary tumour cells) and 2

(representing mutated cells), and their combined vector being denoted by c(t, x) = [c1(t, x), c2(t, x)]

(as illustrated in Figure 1). The tumour cell population exercise their activity within a supporting

density of ECM that is denoted here with v(t, x), and for compact notation, we will consider the

combined vector of cancer cells, c and ECM, v, defined as

u(t, x) := (c(t, x)T , v(t, x))T .

The spatial considerations play an important role in this model. We assume that the concentra-

tion of MDEs occupy a negligible amount of space within the tissue scale tumour, and similar to
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Fig. 1: Schematic diagram showing the spatial cubic region Y centred at the origin in R3. The solid

green lines represent the family of macroscopic εY cubes placed on the boundary of the tumour

∂Ω(t0), and the pale pink region represents the initial mass of cancer cells Ω(t0).

the approach in [15], we shall define the volume fraction of occupied space as

ρ(t, x) ≡ ρ(u(t, x)) := ϑvv(t, x) + ϑc

2∑
n=1

cn(t, x)

where ϑv represents the fraction of physical space occupied by the ECM and ϑc is the fraction of

physical space occupied by cn.

However, while for the purpose of this work, at the tissue scales (macro-scale) we consider only

cancer cells and ECM, the crucial activity of the MDEs and their dynamics is described at cell-

scale (micro-scale) by accounting for spatial dynamics of proteolytic processes that occur along the

invasive edge of the tumour.

2.1 Macro-scale Dynanamics

The dynamics of the two cell populations are similar in flavour. In the presence of a logistic prolifer-

ation law, per unit time, the primary tumour cells c1(t, x) are assumed to exercise spatial movement

that is a combined effect of local brownian movement (approximated here through diffusion) and

cell adhesion, and lose some of the cell population through certain level of mutation towards a

second more motile and agressive population c2(t, x). Once mutations have started occurring, un-

der the presence of a logistic proliferation law, population c2 begin its own dynamics, and so per



8 Robyn Shuttleworth and Dumitru Trucu

unit time, this is also experiencing a spatial redistribution dictated by a local brownian movement

(approximated again through diffusion) and cell adhesion. Therefore, mathematically, the dynamics

can be re-casted as

∂c1
∂t = ∇ · [D1∇c1 − c1A1(t, x,u(t, ·))] + µ1c1(1− ρ(u))−M1(t,u)c1,

∂c2
∂t = ∇ · [D2∇c2 − c2A2(t, x,u(t, ·))] + µ2c2(1− ρ(u)) +M1(t,u)c1.

(1)

where: Dn, n = 1, 2 are the non-negative diffusion coefficients; An(t, x,u(t, ·)) is the non-local term

accounting for cell adhesion incorporating both cell-cell and cell-matrix adhesion; µn describes

the proliferation coefficient, here; and M1 the final term describes the mutation from c1(t, x). To

account for the physical space available and avoid overcrowding, we adopt here the proliferation

term 1 − ρ(u) introduced in [16]. Furthermore, the non-local term An(t, x,u(t, ·)), known as the

adhesive flux, has a form of the type proposed in [15, 16], and is given as

An(t, x,u(t, ·)) =
1

R

∫
B(0,R)

n(y) · K(||y||2) · gn(t,u(t, x+ y))χ
Ω(t)

(x+ y) dy, n = 1, 2. (2)

This describes the motion of cells due to both cell-cell and cell matrix adhesion, which occurs as

a result of the forces produced when adhesion bonds are both produced and broken. Here R > 0

is the sensing radius of cell-cell and cell matrix interations, B(0, R) ⊂ R2 denotes the usual ball

centred at zero and of radius R, and χ
Ω(t)

(·) represents the characteristic function of Ω(t). At any

time instance t, for any x ∈ Ω(t), the set x + B(0, R) is known as the sensing region on which

all the cells distributed at x, interact and form or break adhesion bonds with the cells located at

y ∈ B(x,R) ∩ Ω(t). Further, n(y) denote the unit vector pointing from x to x + y, which is given

by

n(y) :=

 y/||y||2 if y ∈ B(0, R) \ {(0, 0)},

(0, 0) otherwise.
(3)

The radially dependent spatial kernel K(·) enable us to account for spatial distribution of the cells

for both cell-cell and cell matrix adhesion within the sensing region B(x,R), and in the simulations

we specifically use the form of K(·) proposed in [16], namely

K(r) := 1− r

R
, (4)

where r is the radial distance between the centre point x and y ∈ B(x,R). This implies that for

points in the sensing region B(x,R), as the distance r from x increases, the influence on adhesion-
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driven migration decreases. The adhesion function g(t,u(t, x+ y)) describes the local cell-cell and

cell matrix adhesion. This explores the adhesion velocity of the cells at x is in the direction at which

the cells can form the most bonds both among themselves and with components of the ECM within

the sensing region around x. Here, gi(t,u(t, x+ y)), i = 1, 2 denotes the i−th component of

g(t,u) = [Sccc + Scvv] · (1− ρ(u))+, (5)

and represents the cell-cell and cell matrix adhesion properties for population i, which are explicitly

enable via the associated cell-cell and cell-matrix adhesion matrices, Scc, Scv ∈ R2,2, given by

Scc =

Sc1,c1 Sc1,c2
Sc2,c1 Sc2,c2

 and Scv =

Sc1,v 0

0 Sc2,v

 .
Furthermore, the overcrowding of the cell population and ECM is avoided through the term

(1−ρ(u))+ := max{(1−ρ(u)), 0}, which ensures that if a point in the domain is already overcrowded

(with cells and/or ECM), then that space point does not contribute towards biasing the tumour

cells migration due to adhesion.

As a tumour becomes increasingly malignant, it can obtain the ability to mutate to a more

aggressive form of cancer cell. For this reason, M1(t,u) represents the mutation rate from population

1 to population 2. This mutation term is modelled as in [1, 15], namely

M1(t,u) = δH(t− t1,2) ·H(v(t, x)− vmin).

where H(·) denotes the usual Heaviside function and explore the fact that mutations from the

primary tumour occur at a rate δ > 0 after a certain time t1,2 and in the presence of a minimal

level vmin of ECM.

Within the tissue level, we must account the activity of the surrounding environment of the

tumour; the extra-cellular matrix. Per unit time, the ECM exhibits degradation in the presence

of cancer cells, along with a general remodelling of itself. Thus, this dynamics can be described

mathematically as

∂v

∂t
= −γc + ω(1− ρ(u)), (6)
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where: γ is the degradation coefficient multiplied by the current cancer cell distributions, and ω

is the remodelling constant, here the matrix remodelling is controlled by the volume filling factor

(1−ρ(u)). Biological evidence suggests that the remodelling of the ECM is not only an essential role

of development and wound healing, but also in the development of cancer, contributing to processes

such as metastasis and tumour cell invasion [14].

2.2 Top-down tissue- to cell-scale link and the resulting microscopic

dynamics.

As discussed previously, cancer cell invasion is a multiscale process in which the micro-dynamics

of the matrix-degrading enzymes (MDEs) are responsible for the degradation of the ECM. The

macroscopic processes defined by the equations (1) and (6) give rise to a micro-scale dynamics

occurring along the invasive edge of the tumour, which, in turn, causes the macroscale boundary of

the tumour to advance further into the healthy tissue, as schematically illustrated in Figure 2.

Fig. 2: Schematic of macro-micro interactions.

The MDEs, such as matrix metalloproteinasses (MMPs) of type 2, are produced within the cancer

cells and distributed on the outer proliferating rim of the tumour, with their activity occurring
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within the area directly surrounding the tumour. Specifically, during a time interval [t0, t0 + ∆t],

the cancer cells arriving within the outer proliferating rim of the tumour secrete these MDEs giving

rise to a source of such proteolytic enzymes that then exercise a cross-interface transport process

within a cell-scale (microscale) size neighbourhood of ∂Ω(t0), this way getting to interact directly

and as a consequence significantly alter the ECM density that it meets in the peritumoural region.

Hence, proceeding as described in [30], we denote by ε > 0 the size of the micro-scale and we

explore this MDEs micro-dynamics on an appropriate ε−size neighbourhood of ∂Ω(t0) given as the

complete cover enabled by a union of half-way overlapping micro-cubes εY centred at the tumour

interface. Thus, while assuming that we have no source for the cell-scale dynamics being formed

outside Ω(t0), at each instance τ ∈ [0, ∆t] of the microdynamics and at each given micro-scale

point y ∈ εY ∩Ω(t0) the source of MDEs is arising as a collective contribution of the cells from the

outer proliferating rim that is located within a given distance δ > 0 with respect to y. Therefore,

denoting the source by fεY (y, τ), this is mathematically formulated as

1. fεY (y, τ) =
1

λ(B(y, δ) ∩Ω(t0))

∫
B(y,δ)∩Ω(t0)

α1c1(x, t0 + τ) + α2c2(x, t0 + τ)dx, y ∈ εY ∩Ω(t0),

2. fεY (y, τ) = 0, y ∈ εY \
(
Ω(t0) + {z ∈ Y | ||z||2 < γ}),

(7)

where λ(·) is the standard Lebesgue measure on R2, B(y, δ) := {x ∈ Y | ||y−x||∞ ≤ δ}, αi, i = 1, 2

are MDEs secretion rates by each of the two cell sub-populations, and γ is a small parameter

enabling us to capture a sharp but smooth decay to 0 of the MDEs source immediately outside the

tumour boundary.

Finally, as the ε−size neighbourhood of ∂Ω(t0) given by the bundle of half-way overlapping

micro-cubes εY enables a decoupling of the micro-dynamics on individual εY s, in the presence of

the source (7), we assume in this work that the MDEs are simply locally diffusing. Hence, denoting

the density for MDEs by m(y, τ), in each εY the micro-dynamics exercised by the MDEs is described

by:

∂m

∂τ
= ∆m+ fεY (y, τ), y ∈ εY, τ ∈ [0, ∆t]. (8)
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Macroscopic boundary movement induced by microscale. During their micro-dynamics,

the MDEs interact with the ECM components in the peritumoural region captured by each εY .

As described in [30], according to the spatial distribution of their advancing front on εY \ Ω(t0),

the MDE cause specific spatial patterns of degradation of the ECM components that determine

completely a direction of movement η
εY

and displacement magnitude ξ
εY

for the tumour boundary

progression within each εY . As illustrated schematically in Figure 3, this choreographic movement

of the tumour boundary captured by the micro-domain εY is represented back at macro-scale

through the relocation of the tumour boundary midpoint x∗εY , which is located at the intersection

of ∂Ω(t0)∩ εY with the median of εY perpendicular to the side of εY inside the cancer region, this

being chosen as the inner most point in this intersection with respect to the cancer region. Thus,

following the derivation in [30], using an appropriately chosen dyadic decomposition of εY in a union

of small dyadic cubes {Dl}i=1,p
εY

, with p
εY

:= 2kεY , that ensure uniformity of the approach across

all the boundary micro-domains εY , the direction of movement η
εY

and displacement magnitude

ξ
εY

for the point x∗εY are determined mathematically, and are given by

ηεY = x∗εY + ν
∑
l∈I∗εY

(∫
Dl
m(y, τf ) dy

)
(y∗l − x∗εY ),

ξεY =
∑
l∈I∗εY

∫
Dl m(y, τf ) dy∑

l∈I∗εY

∫
Dl m(y, τf ) dy

|
−−−→
x∗εY yl|.

where, I∗εY are the family of indices of the dyadic cubes that track the tip of the advancing MDEs

front in εY , and yl represents the baricenter of Dl for any l ∈ I∗εY .

Although a movement direction and displacement have been derived for each x∗εY , movement

will only occur if the ECM degradation is of a certain local strength. The strength of this local

ECM degradation is explored through the transitional probability q∗ defined in [30] and it is a

quantification of the amount of MDE in εY \ Ω(t0) relative to the total amount of MDE in the

micro domain εY . Therefore the midpoint x∗εY will only move to a new spatial position if and

only if q∗(x∗εY ) := q∗(εY \ Ω(t0)) exceeds a certain threshold ωεY ∈ (0, 1) that captures local

peritumoural tissue characteristics. Hence, we find that the new invasive boundary ∂Ω(t0 + ∆t)

will be an interpolation of the new locations for the points that exercised the movement and those

boundary points x∗εY that did not move. The invasion process will continue on the newly expanded

domain Ω(t0 +∆t) with a new set of macro-micro stage dynamics on the next multiscale time step
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Fig. 3: Schematic of one macro-micro stage in the multiscale process. The projected εY cube from

macro- to micro-scale with boundary point reallocation occuring through the micro dynamics and

the new relocated boundary position projected back into the macroscopic scale at the tissue level.

[t0 + ∆t, t0 + 2∆t]. The initial conditions on the expanded domain Ω(t0 + ∆t) are determined by

the solution at the final time of the previous invasion step, as detailed in [30].

2.3 Summary of the Global Multiscale Model

At each stage of the invasion process, the macroscale dynamics govern the spatial distributions of

both cancer cell populations and the ECM density. The initial distribution of cancer cells Ω(t0)

induce a source of MDEs (7) on the boundary at each microdomain εY . The microscopic dynamics

induce a change in the boundary position as illustrated in Figure 3. This movement is then translated

back into the macroscale, where the new spatial positions of the boundary x̃∗εY are interpolated with

the spatial positions that could not be moved and a new invading edge in obtained as illustrated

in Figures 2 and 3. The next macro-micro stage will then proceed using the solution from the

previous step as the new initial conditions and invasion will continue. Once the invasion process

has advanced, mutations will begin to occur between cell populations. The mutated population c2

carries a higher malignancy than population c1, thus it secretes a higher volume of MDEs, which

in turn will allow the second population to advance quicker.
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3 Numerical approaches and simulations

The numerical scheme developed for the multiscale model described above is structured on two

big components corresponding to the macro- and micro- scales processes involved, namely: (1) a

finite differences based macro-solver that addresses the macro-dynamics; and (2) a finite element

micro-slover exploring the micro-dynamics that is based on a standard approach involving bilinear

shape functions on a squared mesh for each micro-domain. As the macro-solver involves a special

treatment for the adhesion terms An, in the following we will highlight the main features that this

involves.

3.1 Brief description of scheme developed for the macro-scale solver

As already mentioned above, an important aspect within the macroscopic part of our solver is the

numerical approach for the adhesive fluxes An (that explores the effects of cell-cell and cell-matrix

adhesion of population cn), which involves off-grid computations and we address these as follows.

We decompose the sensing region B(x,R) in s2m annulus radial sectors S1, . . . ,S2m (obtained by

intersecting s annuli with 2m uniform radial sectors of B(x,R), as shown in Figure 4, with the radius

of the central circle taken small enough so that this is neglected in the subsequent computation

steps). Then, for each Sl, we evaluate the total population c1, total population c2, and the total

ECM mass distributed on Sl that are given by

ωSl,c1(t) :=
1

λ(Sl)

∫
Sl

c1(t, x)dx, ωSl,c2(t) :=
1

λ(Sl)

∫
Sl

c2(t, x)dx, and ωSl,v(t) :=
1

λ(Sl)

∫
Sl

v(t, x)dx,

respectively. Finally, denoting by bSl the barycenter of Sl, ∀l = 1, . . . , s2m and evaluating the unit

vector n(bSl ) :=
bSl
−x

‖bSl−x‖2
, the adhesion flux An, n = 1, 2, is approximated by

An(t, x,u(t, ·)) =

s2m∑
l=1

bSl
∩Ω(t0)6=∅

λ(Sl)
R

n(bSl ) · K(bSl )gn(ũ(t,bSl ))

where
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ũ(t,bSl ) := [ωSl,c1(t), ωSl,c2(t), ωSl,v(t)]
T

and

gn(ũ(t,bSl )) = [Scc[ωSl,c1(t), ωSl,c2(t)]T + ScvωSl,v(t)] · (1− ρ(ũ(t,bSl )))
+

Fig. 4: Sensing region B(x,R) approximated by the annulus radial sectors with the barycentre bSl

associated to each sector Sl highlighted with a blue dot.

For the actual implementation, we discretise the entire domain Y by considering a uniform spatial

mesh of size h, i.e., ∆x = ∆y = h as well as the time interval [t0, t0 + ∆t] into k uniformly

distributed time steps, i.e., δτ = ∆t
k . In order to approximate the reaction-diffusion equations (1),

we develop a predictor-corrector in time scheme; whilst the term ∇ · [∇cn − cnAn(t, x,u(t, ·))] will

be approximated by a second-order mid-point rule.

In brief, for any time step of index p = 0, ..., k and for the spatial nodes (i, j), where i = 1, ..., q,

j = 1, ..., q are the indices for the x− and y-direction, respectively, we introduce the midpoint

approximations as:

cp
n,i,j+ 1

2

:=
cpn,i,j+c

p
n,i,j+1

2

cp
n,i,j− 1

2

:=
cpn,i,j+c

p
n,i,j−1

2

cp
n,i+ 1

2 ,j
:=

cpn,i,j+c
p
n,i+1,j

2

cp
n,i− 1

2 ,j
:=

cpn,i,j+c
p
n,i−1,j

2

and



Ap
n,i,j+ 1

2

:=
Apn,i,j+A

p
n,i,j+1

2

Ap
n,i,j− 1

2

:=
Apn,i,j+A

p
n,i,j−1

2

Ap
n,i+ 1

2 ,j
:=
Apn,i,j+A

p
n,i+1,j

2

Ap
n,i− 1

2 ,j
:=
Apn,i,j+A

p
n,i−1,j

2
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We also have the following notation for the central differences:

[cn,y]p
i,j+ 1

2

:=
cpn,i,j−c

p
n,i,j+1

∆y

[cn,y]p
i,j− 1

2

:=
cpn,i,j−c

p
n,i,j−1

∆y

[cn,x]p
i+ 1

2 ,j
:=

cpn,i,j−c
p
n,i+1,j

∆x

[cn,x]p
i− 1

2 ,j
:=

cpn,i,j−c
p
n,i−1,j

∆x

Using this notation, the approximation for (ignoring the constant parameters at the moment)

∇ · [∇cn − cnAn(t, x,u(t, ·))] in (1) is as follows:

∇ · [∇cn − cnAn(t, x,u(t, ·))] = div[∇cn − cnAn(t, x,u(t, ·))]pi,j

'
[cn,x]p

i+ 1
2 ,j
− [cn,x]p

i− 1
2 ,j
− cp

n,i+ 1
2 ,j
· Ap

n,i+ 1
2 ,j

+ cp
n,i− 1

2 ,j
· Ap

n,i− 1
2 ,j

∆x

+
[cn,y]p

i,j+ 1
2

− [cn,y]p
i,j− 1

2

− cp
n,i,j+ 1

2

· Ap
n,i,j+ 1

2

+ cp
n,i,j− 1

2

· Ap
n,i,j− 1

2

∆y

(9)

For the time discretisation of equation (6), following [30], we have used a predictor-corrector method,

where the predictor is given by a second-order Adams-Bashforth scheme and the corrector uses a

second-order trapezoidal approximation.

3.2 Simulations in two spatial dimensions

To explore numerically multiscale model of cancer invasion given in (1)-(8), we consider region

Y := [0, 4] × [0, 4] discretised uniformly with macroscopic spatial step size h = 0.03125, while the

time step is taken here as δτ = 10−3. Assuming that initially population c2 has no distribution and

population c1 occupies a region Ω(0) := B((2, 2), 0.5) positioned at the centre of the domain Y .

The initial condition for cancer cell population c1 is taken as in [30] and is given by

c1(0, x) = 0.5

(
exp

(
−||x− (2, 2)||22

0.03

)
− exp(−28.125)

)(
χB((2,2),0.5−γ) ∗ ψγ

)
,
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where ψγ is the mollifier defined in [30] with γ << ∆x
3 . Population c2 initially has zero density, so

c2(0, x) = 0 and we assume a heterogeneous distribution for the initial ECM density based on the

initial condition proposed in [15] and given by

v(0, x) = min

{
h(x1, x2),

1− ϑcc(0, x)

ϑv

}
, (10)

where

h(x1, x2) =
1

2
+

1

2
sin(ζx1x2)3 · sin(ζ

x2
x1

), (11)

with

(x1, x2) =
1

3
(x+ 1.5) ∈ [0, 1]2 for x ∈ D, ζ = 7π.

Here we consider the volume fraction of cells and ECM to be ϑc ∈ [π6 , 1] and ϑv ∈ [0, 5π6 ]. The

initial condition for MDEs is m(0, x) = 0.5c1(0, x), however since this closely resembles the profile

of the cancer cell distribution, we shall not present the simulation results of MDE concentration.

The initial conditions of the combined cell populations and ECM density can be seen in Figure 5.

Throughout these simulations, unless otherwise stated, we use the following parameter set for

the non-dimensionalised system of equations (1) and (6), which were estimated based on those used

in [15], namely:

P:
D1 = 10−3, D2 = 10−3, γ = 2, t1,2 = 10, δ = 0.3,

µ1 = 0.25, µ2 = 0.25, ω = 0, vmin = 0.3

We also have here the adhesive strengths matrices Scc and Scv given by

Scc =

0.5 0

0 0.3

 and Scv =

 0.3 0

0 0.6

 . (12)

Initially, we have no cross-adhesion occurring, so Sc1,c2 = 0 = Sc2,c1 .

Figure 7 gives simulations using the initial conditions and parameter set P as stated above. They

are shown at stages 25∆t, 50∆t and 75∆t. Here, we also show the simulations at stage 10∆t, Figure

6, the stage at which mutations occur. By this stage, population c1 has degraded and lowered the

density of the ECM in which the initial cancer distribution was placed. The threshold on which

mutations can occur, δ, is higher than the resulting density of ECM, thus when mutations occur,

they only take place on the outer edge of the tumour, where δ > 0, as the ECM density is too low

inside to support the mutations. The white contour shows the proliferating boundary of the tumour,
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(a) initial ECM density (b) initial cancer distribution

Fig. 5: Initial conditions of the density of ECM (a) and the distribution of cancer cells (b) with the

invasive boundary of the tumour represented by the white contour.

(a) population c1 (b) population c2

(c) combined cell populations (d) ECM density

Fig. 6: Simulation results of model at stage 10∆t when the mutations from population c1 start to

occur.

which, at this stage has consistently expanded outwards into the ECM. Due to the initial conditions

of the ECM, there are patches of high and low density areas throughout the domain. These patches

vary in distance and size from one another, which reflects a non-symmetric microenvironment for
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c1
25∆t 50∆t 75∆t

c2

c 1
+
c 2

v

Fig. 7: Simulation results of model using the parameter set P and adhesion matrices (12). Plots

of both cancer populations c1 and c2, as well as the combined cancer distributions and the ECM

densities at stages 25∆t, 50∆t, and 75∆t.



20 Robyn Shuttleworth and Dumitru Trucu

the cells. The pattern of the advancing front of the tumour loosely follows this pattern of ECM.

Where there are dense patches of low density we see slower cancer progression; this is because there

is a lower overall density of matrix for the cells to adhere.

After 25 macro-micro stages, 25∆t, population c1 and c2 are both increasing in density, with

population c1 changing shape as the cells continue to mutate. As the tumour spreads, a larger region

of ECM is degraded, which is shown in the plot for ECM.

As the cancer continues to invade, a wider region of the ECM is destroyed and the proliferating

edge of the tumour continues to reach outwards, see stages 50∆t and 75∆t in Figure 7. The invasive

edge of the tumour loosely follows the pattern of ECM at each stage, and small islands start to

appear over low density patches of ECM. These islands have zero ECM density and hence cause

the cancer cells to be slow to invade as there is an insufficient level of ECM for which the cells can

adhere. This pattern of the boundary is due to the multiscale nature of the invasion process, where

the macro-dynamics govern the source of the MDEs on the invading edge and then movement of

the boundary is determined in each boundary cube εY by the resulting micro-dynamics. The MDEs

produced by the cancer cells can only degrade locally; this becoming apparent from the resulting

ECM plots.

We now want to consider the effect of matrix remodelling on the progression of cancer. Figure 8

shows simulations again using the parameter set P, but this time with the ECM remodelling rate ω

being increased from 0 to 0.04. Here we see that the spread of cancer is ultimately covering a larger

area than in the absence of remodelling, Figure 7. Population c2 displays a much larger spread of

density surrounding population c1 than in the absence of ECM remodelling. The increased density

of ECM surrounding the cells gives more opportunity for adherence and opens a greater number of

pathways in which the cells can invade. The boundary of the cancer is following the pattern of the

ECM more consistently than in Figure 7, this is due to the higher density of the remodelled ECM

allowing for stronger adhesive qualities between the cancer cells and ECM. We can again see the

invasion briefly halted at patches of lower density, but this is for a shorter period than before, with

the islands being fully invaded by the later stages.

Figure 9 gives simulations where the cell-matrix adhesion between cancer cell population c1

and the ECM, Sc1,v, has been increased from 0.3 to 0.5 and the cell-matrix adhesion between

cell population c2 and the ECM, Sc2,v, has been decreased from 0.6 to 0.5, i.e., the adhesion rate

between the cells and matrix are equal for both populations. The proliferating edge of the tumour
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c1
25∆t 50∆t 75∆t

c2

c 1
+
c 2

v

Fig. 8: Simulation results of model with ECM remodelling introduced, ω = 0.04, with the same

parameter set P and adhesion matrices as in Figure 7.
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is lobular in the way it follows the pattern of the ECM, much like the simulations in Figure 7,

with protrusions pushing out in the direction of high density areas of the matrix. Although the

cell-matrix adhesion term is now equal for both populations, the Sc1,c1 and Sc2,c2 have remained

the same, thus we do not see a great change in the profile of the levels of cancer cell densities of

the main body of the tumour itself, but we instead see a difference in the pattern of the invading

edge of the tumour, due to the further spread of the lower levels of these densities closer to the

invasive edge of the tumour. The increase in adhesion between population c1 and the matrix sees

the invading boundary stick closer to the main body of the tumour, particularly to population c2.

Finally, we investigate the effects of cell-cell adhesion and in particular cross-adhesion. Cross-

adhesion is when different cancer cell populations adhere to one another. Here we set Sc1,c2 = Sc2,c1

as both populations will have the same rate of adherence to each other. We look at the case using

parameter set P and the adhesion matrices

Scc =

 0.5 0.5

0.5 0.3

 and Scv =

 0.3 0

0 0.6

 , (13)

Our simulations in this case, shown in Figure 10, exhibit the same general morphology of the

tumour boundary as in results with no cross-adhesion present, mainly due to the fact that in this

work both cancer cell population are assumed to degrade the ECM at the same rate. However,

the difference with respect to the no cross-adhesion case is emphasized by the spatial distribution

of the two cancer cell populations within the main body of the tumour. Population c1 remains

consistent with results computed in Figure 7, however population c2 exhibits different behaviour.

We can distinguish now two higher density patches of c2 densities which do not spread away from

the significantly high levels of c1 cell density and rather build up in their immediate proximity.

Combining the cell populations now gives an increasingly contained spread of the tumour. This

result is to be expected because the cells are now more inclined to stick together, rather than

invade outwards, and although the adherence between cell populations has increased, their adhesion

towards the matrix has stayed the same, hence we observe no difference in the movement of the

boundary. This difference is also consistent with the other no cross-adhesion cases considered in

Figs. 8 and 9.
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c1
25∆t 50∆t 75∆t

c2

c 1
+
c 2

v

Fig. 9: Simulation results of model with parameter set P and Sc1,v = 0.5 = Sc2,v.
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c1
25∆t 50∆t 75∆t

c2

c 1
+
c 2

v

Fig. 10: Simulation results of model with parameter set P with cross-adhesion coefficient Sc1,c2 =

0.5 = Sc2,c1 .
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3.3 Sensitivity to Initial Conditions

To address sensitivity with respect to initial data, we present and discuss here the results of four

different sets of initial conditions for the ECM that are induced (10) with (11) by function h

given in (14), which are gradually convergent towards the case of homogeneous ECM. Figure 11(a)

illustrates a homogenous ECM induced in (10) by the limit case for h that we obtain as n → ∞,

namely h(x1, x2) = 1
2 . Figure 11(b) and 11(c) use the initial condition (10), where the equation for

h(x1, x2) is changed to

h(x1, x2) =
1

2
+

1

2n
sin(ζx1x2)3 · sin(ζ

x2
x1

), (14)

with n = 3, 5 for Figure 11(b) and 11(c), respectively. Using this form effectively flattens down the

high density regions of the heterogeneous ECM, making it progressively closer to a homogeneous

case, who exhibits a symmetric growth. Finally, Figure 11(d) shows the simulations using the initial

conditions (10) with (11), as in Figure 7. The main body of the tumour remains similar from each

initial condition of ECM as all coefficients remain the same as in the no cross-adhesion case shown

in Figure 7. The differences between the invading boundaries are clearly visible, ranging from a

symmetric expansion of the boundary for homogeneous initial conditions to a fingering leading

edge for heterogeneous conditions. We conclude that as the initial condition for the ECM becomes

increasingly heterogeneous, the proliferating edge of the tumour becomes consistently more lobular

in its invasion.

4 Conclusions

We have presented a multiscale moving boundary model which builds on previous framework pro-

posed by [30] by exploring adhesive dynamics [15] between a heterogeneous cancer cell population

and the surrounding microenvironment. This considers both the macro-scale dynamics of two can-

cer cell sub-populations within the ECM and their influence on the micro-scale MDEs molecular

dynamics occurring at the cell-scale along the invasive edge of the tumour. This macro-micro top-

down link is given here via the source of MDEs that are secreted by the cancer cells from both c1

and c2 sub-populations arriving within the outer proliferating rim of the tumour. In turn, the micro-
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(a)
∆t ∆t 75∆t

(b)

(c)

(d)

Fig. 11: Simulation results showing different initial conditions for the ECM. Plots showing ECM

and the combined cancer distribution at their initial stage ∆t, and the tumour at final stage 75∆t.

dynamics occurring on the cell-scale enables a micro-macro feedback in the form of a bottom-up

link by providing the movement direction and displacement magnitude of the tumour boundary.
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Comparing with results from the previous framework proposed in [30], we have shown that

the inclusion of cell-cell and cell-matrix adhesion changes the way in which the cancer progresses.

The computational results presented in this chapter have shown that the initial tumour region

exercises greater movement than in the absence of adhesive qualities. We then incorporate another

cell population and further explore the interactions between both cancer cell populations and their

microenvironment. We have shown that in the presence of ECM remodelling, there is a greater

spread of cancer cells as there is more opportunity for adherence which allows the cells to move.

Increased cell-matrix adhesion, in particular between c1 and v, has shown that a change in cell-

matrix adhesion will not necessarily change the main body of the tumour, but it induces a change

in the invading boundary, becoming very lobular when following the pattern of the ECM. Adding

cross-adhesion to these models has shown how the different cell populations mix with one another

and exhibits a denser region of population c2 which remain in the proximity of highest regions of

c1 density. Finally, we investigated the effects of varying initial conditions of ECM, starting with

a homogeneous distribution and becoming increasingly heterogenous. We have concluded that as

the initial ECM distribution increases in heterogeneity, the proliferating boundary of the tumour

becomes more lobular.

To gain further understanding of how cancer cells invade, focus must be placed on the surrounding

microenvironment. The extracellular matrix is made from many different components, most of which

play a vital role in cancer invasion. The main component of the ECM is collagen, particularly

collagen type I which provides the matrix with its structure and flexibility. Investigations into the

mesenchymal motion of tumour cells [13, 19, 25], shows that the difference between undirected

and directed fibres is of high importance. Undirected fibres are symmetrical along their axes and

their direction is identical at both ends, an example of this type of fibre would be collagen in the

human body. Unlike undirected fibres, directed fibres are unsymmetrical and can be distinguished

at both ends. Recent work considering fibres by [31], focussed on directed fibres, have highlighted

differences between directed and undirected fibres using a one-dimensional model. The addition of

fibres, directed or undirected, into the multiscale model would greatly change the pattern of invasion.

Several other components of the ECM such as fibronectin, laminin and a variety of different MMPs

are also vital in tumour invasion and a greater mathematical understanding of these would allow

for an overall better understanding of cancer progression.
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