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Light transport through a multimode optical waveguide undergoes changes when subjected to bending
deformations. We show that optical waveguides with a perfectly parabolic refractive index profile are
almost immune to bending, conserving the structure of propagation-invariant modes. Moreover, we show
that changes to the transmission matrix of parabolic-index fibers due to bending can be expressed with only
two free parameters, regardless of how complex a particular deformation is. We provide detailed analysis
of experimentally measured transmission matrices of a commercially available graded-index fiber as well
as a gradient-index rod lens featuring a very faithful parabolic refractive index profile. Although parabolic-
index fibers with a sufficiently precise refractive index profile are not within our reach, we show that
imaging performance with standard commercially available graded-index fibers is significantly less
influenced by bending deformations than step-index types under the same conditions. Our work thus
predicts that the availability of ultraprecise parabolic-index fibers will make endoscopic applications with
flexible probes feasible and free from extremely elaborate computational challenges.

DOI: 10.1103/PhysRevLett.120.233901

With the availability of high-performance spatial light
modulation, new imaging techniques based on holographic
control of light through multimode fibers (MMFs) has
emerged recently [1–3]. With extremely compact dimen-
sions, MMF-based imaging techniques are particularly
suited to various forms of endoscopy. Several techniques
of endomicroscopy, especially laser-scanning-based
approaches [4,5] including multiphoton excitation [6],
superresolution [7], as well as wide-field techniques such
as bright-field, dark-field, and light-sheet microscopy
[5,8,9], have already been demonstrated.
These approaches have been treating MMFs as random

media [10,11] and therefore they required a calibration
step, in which the light transport through MMF is quanti-
tatively analyzed. This is typically based on interferometric
approaches [2] or by employing phase conjugation [12],
and it consists of a sequence of measurements where the

number of measurements exceeds the number of modes
allowed to propagate through the MMF. These measure-
ments then lead to the reconstruction of a transmission
matrix (TM) [2,13–15]—a linear relation between conven-
iently chosen representations of input and output modes
containing the complete information about light transport
through the MMF. During this procedure and subsequent
imaging, the MMF is required to remain locked to the same
position (contortion) since any deformation would intro-
duce changes to the TM and as a result affect the imaging
quality [5,16,17].
In 2015, it was shown that commercially available step-

index MMFs, at length scales relevant for imaging appli-
cations, are of sufficient quality to allow for prediction of
the TM based on numerical simulations [18]. Moreover,
this study demonstrated that the influence of significant
bending deformations can be theoretically predicted and
taken into account in imaging applications. However,
implementing such corrections is computationally very
demanding and it requires very precise knowledge of the
fiber layout.
In this work we show that employing MMFs with a

perfect parabolic refractive index profile (PI) eliminates both
of these problems. Unlike in step-index MMFs, bending of
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PI MMFs is not associated with cross-coupling of power
between idealized propagation invariant modes (PIMs).
Moreover, the influence of bending is equivalent to a

minuscule increase in fiber length to a good approximation,
regardless of the radius of curvature and the length of
the bent segment. The associated deformation operators
describing the changes to the TM due to bending are
diagonal in the representation of PIMs and commute with
one another. Therefore, the order of bends in the fiber is
unimportant, and the deformation operators for any three-
dimensional adiabatic contortion of a PI MMF can be
expressed upon the knowledge of only two parameters, one
describing the overall curvature, the other the overall twist.
Below we introduce a rigorous theoretical model for light
propagation through PI MMFs undergoing bending, which
results in conservation of PIMs. We then experimentally
verify conservation of PIMs using a large core parabolic-
index medium with a high-quality refractive index pattern.
Furthermore, we demonstrate that commercially available
graded-index MMFs suffer from strong deviations from
the parabolic refractive index profile. Finally, we demon-
strate that even with the manufacturing imperfections, the
imaging performance of graded-index MMFs is indeed
significantly less affected by deformation when compared
to step-index MMFs.
We consider an idealized fiber with cylindrically sym-

metric refractive index nðrÞ satisfying

n2ðrÞ ¼ n20

�
1 −

r2

b2

�
; ð1Þ

where radial coordinate r extends to infinity. Here, n0 is the
refractive index on the axis and b is a scaling parameter.
In real fibers, n becomes constant beyond a certain radius
(in the cladding), which, however, affects only the highest
order guided modes. Solving the scalar Helmholtz equation
for a straight waveguide [19,20] leads to identification of
scalar PIMs as

ψ l;mðr;φ; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

2π

2m!

ðmþ jljÞ!

s
exp

�
−
αr2

2

�

× ðαr2Þjlj=2Ljlj
mðαr2Þeilφeiβl;mz: ð2Þ

Here, Ljlj
m are associated Laguerre polynomials, α ¼ kn0=b,

k ¼ 2π=λ is the vacuum wave number, l ∈ Z is the orbital
angular momentum (OAM) index of the PIM, and the index
m ∈ N0 determines the number of radial nodes [21]. The
propagation constants are

βl;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n20 − 2αðjlj þ 2mþ 1Þ

q

≈ kn0 −
jlj þ 2mþ 1

b
; ð3Þ

where the approximation corresponds to the weak-guidance
approximation [21].
As detailed in the Supplemental Material ([22], Sec. S1),

full vectorial solution of a fiber, uniformly bent in the xz
plane with curvature ρ, leads to similar PIMs, but shifted
towards the outer side of the bend, and with propagation
constants modified as

β0l;m;σ ¼ kn0

�
1þ ρ2b2

2

�
−
�
1

b
þ 9ρ2b

4

�
ðjlj þ 2mþ 1Þ

−
lσ þ 1

2kn0b2
; ð4Þ

where σ ¼ �1 for the right- and left-handed circular
polarization state, respectively, and making the same
weak-guidance approximation as for Eq. (3). The first
term is the same for all PIMs, corresponding just to an
unimportant global phase. The mode-dependent phase
change is given by the other two terms. The total phase
accumulated by the PIM ðl; m; σÞ upon propagating the
distance L in the fiber is β0l;m;σL; its mode-dependent part is

ϕ ¼ −L
�
1

b
þ 9ρ2b

4

�
ðjlj þ 2mþ 1Þ − Lðlσ þ 1Þ

2kn0b2
: ð5Þ

The first part of the phase is the same as if the fiber were
straight but of length L0 ¼ Lð1þ 9ρ2b2=4Þ instead of L.
On the other hand, the second part corresponding to spin-
orbital interaction is the same as in a straight fiber of the
original length L. To demonstrate that the effect of fiber
bending is equivalent to a slight fiber stretching, we
compare the phase ϕ with the phase ϕ0 of the mode with
the same indices ðl; m; σÞ in a straight fiber (ρ ¼ 0) of
length L0. The difference is

ϕ − ϕ0 ¼ 9ρ2Lðlσ þ 1Þ
8kn0

: ð6Þ

This difference becomes of order of π for fiber lengths of
order of hundreds of meters for practical fibers and curva-
tures of order of cm−1. The effect of bending is indeed
equivalent to a slight increase of the fiber length, combined
with a slight shift of the center of the PIMs towards the outer
side of the bend. The spin-orbital interaction is typically
much larger than the effect of the bend. For strong bending
(the condition is given in Ref. [22], Sec. S1), a solution in
Cartesian coordinates would be required.
When the fiber is not bent uniformly but the curvature

and the orientation of the curvature changes along the fiber,
there may also be a torsion. Since the fiber deformation is
a result of forces (or more precisely, torques) between
neighboring parts of the fiber, these changes are not abrupt
but smooth. Thanks to the adiabatically changing curva-
ture, the PIMs are continuously adapting to the new bend
conditions. Therefore, if we send an arbitrary PIM into
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one fiber end, its center will become shifted transversely
from the fiber axis to different directions and by different
amounts according to the actual fiber curvature, but its form
will be retained. Therefore, the cross talk between the PIMs
will stay very small. The effective length of the fiber is
calculated by summing the effective lengths of infinitesimal
fiber elements for which the curvature can be considered to
be constant, which gives

L0 ¼ Lþ 9b2

4

Z
L

0

ρ2ðzÞdz: ð7Þ

In case of torsion, there will be an additional effect of
geometric phase that will rotate the whole pattern by the
angle corresponding to the solid angle swept by the fiber
axis. For moderate curvatures, the influence of an arbitrary
contortion is therefore governed by just two parameters: an
effective change of fiber length and a rotation of the pattern.
Before attempting to verify the predicted behavior, we

verify that the considered modes are indeed supported by
the waveguide. We start with a 56-mm-long glass rod with a
highly accurate parabolic index profile (PI rod), with a
diameter of 350 μm and a numerical aperture of 0.12. To
characterize the rod, a laser focus (circularly polarized,
1064 nm) is scanned over the proximal end of the rod using
a spatial light modulator (SLM). The optical field leaving
the distal end is captured (by means of phase-shifting
interferometry using an external reference pathway [2,4])
for every input position, schematically depicted in Fig. 1,
and explained more thoroughly in Sec. S2 of Ref. [22].
The resulting field is stored in the columns of a trans-
mission matrix. For any incident field Ein, such as a
PIM, the expected output field Eout is computed using
Eout ¼ TM · Ein [10,13,23].
On the measured TM, we performed a basis trans-

formation from the representation of points to the repre-
sentation of PIMs, as defined by Eq. (2), shown in Fig. 1(a).
As PIMs should remain conserved, this matrix should be
diagonal. However, PIMs are very sensitive to alignment
and mode preservation can only be expected for a perfectly
aligned system. Further deviations are expected due to
parameters of the rod being known with limited precision.
While it is impossible to align the system with sufficient
accuracy and ascertain refractive index profile parameters
with sufficient precision, alignment errors and refractive
index parameters can be corrected numerically through an
optimization procedure (Ref. [18] and Sec. S3 of Ref. [22]).
We optimized five degrees of freedom on both rod facets,

three corresponding to the spatial location of the rod
and two to the incidence angle. Lastly, we optimized the
steepness of the refractive index profile (b), which deter-
mines the overall scaling of all PIMs.
After numerical optimization of the alignment parame-

ters, Fig. 1(b), the TM in the PIM basis (M) appears to
be diagonal, indicating almost no cross talk between the

PIMs. The optimization procedure maximizes the relative
power on the diagonal P ¼ P

ijMiij2=
P

i;jjMijj2. Before
alignment, P was only about 1.4%; however, after numeri-
cal optimization, P reached 95%. The overall phase delay
measured of all different PIMs, which we call the modal
phase, is plotted in Fig. 1(c). Modes with the same
combined mode number jlj þ 2mþ 1 arrive with roughly
the same modal phase, which is in accordance with the
predicted propagation constants by Eq. (3).
Sampling all modes that are supported by the rod was

unfeasible due to acquisition time. Therefore, several
selection criteria were applied, as explained in Sec. S2
of Ref. [22]. Because the measured TM does not cover the
full extent of the rod, some misalignment parameters can be
coupled, depending on the waveguide length, which is
discussed in Sec. S3 of Ref. [22].
To quantitatively evaluate the agreement between the

measured and expected modal phases, the phase agreement
was computed in the following way:

PAðLÞ ¼
���X

i
Mii exp ð−iβiLÞ

���2
��X

i
jMiij

�
2

: ð8Þ

Here, PA is the phase agreement, βi is the expected
propagation constant for the ith l, m mode, and L is the rod
length. This quantity represents the squared ratio between
the phasor sum and the amplitude sum of the modal phase

(c)

(b)(a)

FIG. 1. Top: Diagram of transmission matrix measurement. A
SLM is used to project a series of focal spots across a grid on the
proximal end of the rod. The distal end output fields are measured
and stored in the columns of a TM. (a) TM of the PI rod before
numerical alignment, in a propagation-invariant mode (PIM)
basis, ordered by l and then m in Eq. (2), as per Fig. 1(c) of
Ref. [18]. Amplitude and phase color scale indicated in lower
left. For clarity, only every third mode is displayed. (b) TM after
numerical alignment. Inset shows enlarged area around the
diagonal, demonstrating that only the diagonal carries significant
power. (c) Measured phases and amplitudes of PIMs.
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differences. According to Eq. (3), the optimization pro-
cedure cannot optimize both L and n0 simultaneously, as
their influence is indistinguishable. Therefore, only L was
optimized and we used a fixed value for n0 provided by
the manufacturer.
Phase agreement reached 95.8% after optimizing L, with

residual modal phase differences shown in Fig. 2(a). They
are caused by small deviations to the refractive index
profile from the parabolic refractive index profile.
To estimate this deviation, we employ first order per-

turbation theory to compute the altered propagation speeds
for a refractive index profile with a small perturbation, and
optimize the shape of this perturbation on phase agreement.
As a convenient basis, we chose Zernike polynomials Z0

4,
Z0
6, and Z0

8. After optimization, PA exceeds 99.3%, with
residual phase aberrations shown in Fig. 2(b). This results
in a slightly different optimal rod length L [Fig. 2(c)]. The
optimized refractive index profile is shown in Fig. 2(d). We
can therefore conclude that for the PI rod the model agrees
very well with the observed TM.
However, PI rods do not allow bending by a significant

amount. To verify our bending predictions we progressed
to a graded-index MMF. These fibers typically suffer from
a dip in the refractive index profile near the core axis. We
measured the TM of 20 mm of a 50-μm-diameter graded-
index MMF, using the same setup but with slightly altered
imaging optics (see Table S1 in Ref. [22]). The TM in PIM
modes before and after alignment is shown in Figs. 3(a) and
3(b). Although the fiber is shorter, the refractive index
profile is much steeper and so individual modes acquire
larger phase differences [22].

The optimization procedure increased the power pre-
served in PIMs from 5.4% to 53%, significantly less than
could be measured for the PI rod. Analogous modal
analysis of a step-index fiber showed over 95% conserva-
tion of modal power [18]. Repeating the experiment with
longer fiber lengths did not significantly improve modal
preservation. In Fig. 3, lower left, some typical fiber modes
reveal that output modes are severely distorted. Low order
radial PIMs perform better than higher order ones, espe-
cially those with a high orbital angular momentum, even
though we suspect that they suffer from fiber ellipticity.
Clearly, the optical performance of a “real-life” graded-
index fiber does not match the performance of a perfectly
parabolic refractive index medium. We suspect that this is
caused by imperfections in the refractive index profile of
the GRIN MMF.
Despite these deviations, the refractive index profile of

such fibers is much closer to the parabolic distribution
than step-index types, and shall exhibit better resilience to
bending [24]. To verify this, we conducted a spot-scanning
imaging experiment. The required input fields to scan a
spot over the distal end of the fiber are measured for a
straight fiber. Afterwards these input fields are projected
and the total transmitted intensity through a transmissive
part of a reflective sample inserted on the distal end is
recorded. The fiber is then bent, but the input fields for a
straight fiber are projected, repeating the imaging experi-
ment as if no bending had taken place. Such an experiment
was conducted for a step-index and two graded-index fibers
with a comparable number of modes, shown in Fig. 4. This
leads to severe imaging aberrations when employing the
step-index MMF. However, the imaging performance is
much less affected in the graded-index MMFs, where the
fiber with a larger number of modes seems more bending

(a)

(b)

(c) (d)

FIG. 2. (a) Modal phase difference between expected and
measured PIMs after optimizing PI rod length, assuming a
parabolic refractive index profile. PA is given in the figure.
(b) Phase difference between expected modal phases and mea-
sured modal phases after fitting fine scale modulations to the
refractive index profile. (c) PA as a function of rod length before
(black) and after (red) optimizing refractive index profile.
(d) Refractive index profile (blue), the detected perturbation
(red), with 95% confidence interval indicated in gray; see Sec. S3
of Ref. [22]. All color scales are the same as in Fig. 1.

(c)

(b)(a)

FIG. 3. Initial TM of the graded-index fiber in a PIM basis
before (a) and after (b) the optimization procedure. (c) Measured
phase retardations. Lower right: Predicted responses for the
ðl; mÞ ¼ ð−6; 0Þ, ð−3; 2Þ, (0,0), and (2,0) modes at the output
facet of the fiber. All color scales are the same as in Fig. 1.
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resilient. The effective length increase according to Eq. (5)
is only 17 μm for the tight bend, too small for a significant
effect in imaging. We attribute the decrease in imaging
quality to limitations of the refractive index profile.
Numerical simulations reveal that the effect becomes
significant for longer fiber lengths [22].
In this Letter we show that parabolic-index multimode

fibers are very resilient to bending deformation. When
bending curvatures are relatively small, our theoretical
study indicates that all possible three-dimensional contor-
tions can be expressed by two free parameters describing
overall curvature and overall torque. The foundations of the
theoretical model have been experimentally verified using a
graded-index rod with a very precise refractive index
profile. As this medium does not lend itself to bending
deformations, we have progressed to analogous studies on
commercially available fiber. These have indicated very
strong deviations from the ideal parabolic refractive index
profile, dramatically exceeding those of the graded-index
rod as well as those observed in our previous studies in
step-index fibers [18]. Since the insufficient quality of the
fiber precluded a direct experimental verification of the
bending resilience, we have provided a further semiempiric
proof by studying the bending influence on the imaging
quality achieved while using different types of fibers,
clearly showing a superior performance of graded-index
MMFs. This work thus demonstrates an urgent need to
develop new graded-index MMFs with a higher-quality
refractive index profile. This will enable numerous new
possibilities in minimally invasive imaging, including
highly advanced observations or optogenetic stimulation
in awake and unrestrained animal models.
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