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Abstract Sensing and reciprocating cellular systems (SARs) are important
for the operation of many biological systems. Production in interferon (IFN)
SARs is achieved through activation of the Jak-Stat pathway, and downstream
upregulation of IFN regulatory factor (IRF)-3 and IFN transcription, but the
role that high and low affinity IFNs play in this process remains unclear.
We present a comparative between a minimal spatio-temporal partial differ-
ential equation (PDE) model and a novel spatio-structural-temporal (SST)
model for the consideration of receptor, binding, and metabolic aspects of
SAR behaviour. Using the SST framework, we simulate single- and multi-
cluster paradigms of IFN communication. Simulations reveal a cyclic process
between the binding of IFN to the receptor, and the consequent increase in
metabolism, decreasing the propensity for binding due to the internal feed-
back mechanism. One observes the effect of heterogeneity between cellular
clusters, allowing them to individualise and increase local production, and
within clusters, where we observe ‘subpopular quiescence’; a process whereby
intra-cluster subpopulations reduce their binding and metabolism such that
other such subpopulations may augment their production. Finally, we observe
the ability for low affinity IFN to communicate a long range signal, where
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high affinity cannot, and the breakdown of this relationship through the in-
troduction of cell motility. Biological systems may utilise cell motility where
environments are unrestrictive and may use fixed system, with low affinity
communication, where a localised response is desirable.

Mathematics Subject Classification (2000) AMS Subject Classification:
22E46, 53C35, 57S20

Keywords Population dynamics; structured models; interferon signalling.

1 Introduction

1.1 Sensing and Reciprocating Systems and their Mathematical Treatment

In order for biological systems to initiate changes in behaviour at the scale of
a group of cells or of a tissue in response to a localized event, it is necessary
for small signals to be transformed into large signals and sequentially commu-
nicated to other cells. This is no more apparent than in the human immune
response where T-cells are actively recruited to the site of infection through
the amplification and dispersion of the precursor signal [24]. The intermediate
signal must be received and amplified, in order that distant cells may receive
the signal with sufficient veracity as to respond.

In the case of the immune system, the cell-to-cell communication can be
at least partially orchestrated by dynamic changes of the cell membrane re-
ceptors and by secretion of communication proteins such as chemokines [24]
and cytokines [28]. Other cell-to-cell communication and amplification mech-
anisms are used by bacteria in a phenomenon known as “quorum sensing”
[26] and by yeast to optimize mating efficiency [2]. In order to synchronise the
phenotypes expressed by a local group of cells, bacteria and yeast posses inter-
nal feedback loops that amplify incoming diffusible chemical signals. Similar
examples where local behavior spreads by cell-to-cell communication can be
found in animal development, when blocks of tissues can be developed from
sheets of cells by a phenomenon called “community effect” [12] or when cell
fate is specified by “sequential patterning” such as in the spatial regulation
of Delta-Notch signalling [17,15]. Collective synchronous behaviour of cells is
also needed in insulin secretion by pancreatic islets but, in this case, the possi-
ble cell-to-cell communication mechanisms are still under debate [29]. We call
such systems sensing and reciprocating systems (SARs), on the basis that the
initial chemical signals are replicated and amplified, which is similar to the
concept of secrete and sensing cells [25,27].

SARs are ubiquitous in biology and some mathematical models dealing
with properties of such systems exist. The versatility of collective properties
of secrete and sensing cells was studied using phenomenological, compartment
based models and ordinary differential equations (ODEs) [38]. The same type
of formalism was used for metabolic synchronisation of insulin secretion in
islets [29] and for studying cell-to-cell communication in the immune system
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[7]. ODE based models allow rather detailed descriptions of intracellular sig-
nalling and metabolic dynamics but do not cope accurately with cell prolifer-
ation, migration, and cell-to-cell interactions.

Although not yet used for SARs, frameworks based on partial differential
equations (PDEs) could integrate many of these processes and explain aspects
related to spatial heterogeneity such as the role played of spatial arrangement
of cells in determining the conveyance of these signals [28]. However, in PDE
models, non-spatial heterogeneity, resulting from the fact that cells in close
spatial proximity do not necessarily respond synchronously to stimuli, is lost
by averaging. This “structural heterogeneity” can be an essential part of a
complex cell dynamics, in which cell sub-populations behave differently to the
average, and may be essential to understanding the complicated dynamics of
biological systems. As an example, such models have predicted that below a
certain threshold value, interferon (IFN) signalling allows the activity of the
cellular population to decay entirely [14].

A paradigm which seems appropriate to exploring the possible structural
dimensions of biological problems, in a mathematical context, is that of the
continuous structural approach [3,23,22]. This approach encompasses the ge-
netic or epigenetic state of a cell, under temporal conditions which are consis-
tent with the continuous nature of dynamic biological problems by employing
the application of PDEs in structure, rather than in spatial position. On the
other hand, these approaches neglect the spatial dimensions associated with
chemical communication between cells and, thusly, do not provide the descrip-
tive breadth necessary to analyse these situations.

One recent “spatio-structural-temporal” (SST) framework, which demon-
strates the potential to represent greater details of dynamical processes in
dimensions of both structure and space, was developed in order to model the
urokinase plasminogen activator system in breast cancer [5,35]. Herein, we
present a similar derivation in order to augment the generality of this frame-
work and present a modelling form capable of capturing the intricacies, and
important heterogeneous features of SARs. Compared to [5,35] we introduce
new metabolic structural variables and conjugated advection fluxes that are
derived from the continuity equation and Liouville’s theorem. These variables
are needed for modelling stimulated amplification in SARs. The use of Liou-
ville theorem is a major advance in the SST framework as it can relate any
single cell ODE dynamics to population dynamics in structure space.

1.2 An example of a SAR system: Cellular Interferon (IFN) System

We look, here, specifically at a detailed model for the IFN binding process of a
given cell and the concurrent metabolic processes that result from this binding
process. This SAR shall serve as an exemplar biological system on which to
base models that will explore the efficacy of the framework to be proposed.

There are 13 forms of IFNα and 1 of IFNβ, which we subcategorise as
low and high affinity and denote as IFNα and IFNβ respectively. Their abil-
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ity to activate a cell’s internal infrastructure is dependent on their ability to
concurrently bind the IFN-α/β receptors 1 (IFNAR1) and 2 (IFNAR2) on
the surface of the cell. The association rate of IFN with IFNAR2 is approx-
imately 10× that of IFNAR1, therefore the primary interaction is with the
jak1 signalling complex of IFNAR2 [10,9]. It is also essential, however, that
IFN bind the lower affinity IFNAR1 and so IFNAR1 is recruited to the loca-
tion of the bound IFN/IFNAR2 complex [10,9]. These tyk2 and jak1 protein
phosphorylate one another to initiate what is known as the Jak-Stat pathway
[34].

The Jak-Stat pathway is predicated on the fact that the phosphorylated
Jak1-tyk2 complex is capable of phosphorylating the transcription factors
Stat1 and Stat2. These two factors are then able to bind the IFN regula-
tory (transcription) factor (IRF)-9 in order to form the IFN stimulated gene
factor (ISGF)-3 complex [34,31], which is capable of entering the nucleus [20].
Having achieved this step, this complex can bind to the promoter region of
IFN stimulated genes (ISGs) and effectively initiate their transcription [34,
31].

One particularly significant ISG is the IRF-7 protein who is capable of the
downstream binding of and IRF-3. This IRF-7-3 complex is directly respon-
sible for the promotion of IFN-α and IFN-β genes [13]. Another effect of
transcribing ISGs is the transcription of USP18, which will compete with jak1
for binding of the intracellular domain of IFNAR2 [6]. IFNAR2s bound by
USP18 have also been shown to be ineffective at affecting the transcription of
IRF-7 [30,37,1].

Therefore, this system can be looked at through the simplified lens of two
major and important processes:

(a) the binding of IFN to the surface of the cell, and
(b) the activation of the metabolic pathway which eventually leads to the cre-

ation of new IFN molecules.

We use the phrase ‘metabolic activation’ in order to characterise the state of
the cell in terms of the chemical activity levels of those proteins involved in
the Jak/Stat pathway and, ultimately, the transcription of the genes necessary
for the synthesis of IFN. Thus, when one describes the metabolic activation of
the cell, with regards to the IFN pathway, one is actually describing, in some
way, the spatially differentiated presence of IRF-7-3 within the cell (Figure 2).

Moreover, one review of experimental data plotted the relationship over
time between the activation of genes within the cell and the fractional levels
of bound and unbound surface receptors, for both IFNα2 and IFNβ [33]. This
graph importantly showed that, for low levels of IFNα2, as the number of
surface receptors decreased, the metabolic activation level rose concurrently.
Further, as genetic activation levels decreased, one could observe a correspond-
ing normalisation of the fractional surface receptor levels [19]. Comparably, for
high levels of IFNβ, one finds that the cells genetic mechanism is activated
in a locally irreversible process and that the fraction of IFNAR1 receptors is
maintained at approximately 40% [33].
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In order to demonstrate the descriptive power within the existing modelling
frameworks, we choose the biological IFN system in T-cells as an illustrative
example of such a system of SARs. This will serve as a comparative case for
the development of a framework, which is capable of significantly improving
upon one’s existing capacity.

2 A Simple, Continuous Mathematical Model for the IFN System

If one were to create the simplest possible system of SARs, one would begin
with only the population of SARs, themselves, and the molecular population of
SAR diffusing ligands. In reality, however, these systems are rarely as simplistic
as this and often require consideration of spatially intermediate cells which may
mediate the levels of the SAR ligands, by consuming these proteins without
reciprocally producing them. This is the case in the biological IFN system
and, as such, we call such intermediate cells ‘consumers’ and the SAR cells as
‘producers’, within a system that considers only such a responsive protein.

Therefore, begin by defining a temporal domain, given by I = [0, T ] with
t ∈ I, and a two-dimensional spatial domain, given by D ⊆ R2 with x ∈
D. We then write cellular population functions such that c1 : I ×D → R
gives the population of IFN producing cells and c2 : I ×D → R gives the
global population of consumer cells, whilst m : I ×D → R gives the non-
dimensionalised concentration of IFN molecules.

In order to write as simple a model as is possible, we begin by ignoring all
dynamics in the cellular populations are given simply by c1(t, x) := c1(0, x)
and c2(t, x) := 1, respectively. This is so that one might analyse only the
communicative capabilities of the IFN itself.

We then write the dynamics of the system as a whole as a spatio-temporal
partial differential equation (PDE) in m(t, x), such that the spatial dynamics
are given entirely by the diffusion of this molecule in the solution. Interferon is
then systematically consumed by c2, at a rate λ, and is autoreplicated within
c1 cells, at a rate φ2, and where this autoreplication is further stabilized by
negative self-regulation, with the rate constant φ3. Therefore, we have that

∂m

∂t
= Dm∇2

xm− λmc2 + (φ2m
2 − φ3m

3)c1 (1)

where Dm is the coefficient for diffusion of IFN.

Simulations were performed for this system using a 4th order Runge-Kutta
predictor and MacCormack corrector, with a central difference formula used
for the calculation of diffusion terms. Initial conditions for the producer cells
are given by

c1(0, x) =

5∑
j=1

5∑
i=1

exp

[
−(x1 −

1

2
i)2 − (x2 −

1

2
j)2

]
,
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λ t = 0 t = 25 t = 50 t = 75 t = 100

0.01

0.1

0.15

Fig. 1: Multi-cluster results in the concentration of molecular species
m(t, x) from simulation of the simple model (1) for varying affinities, λ ∈
{0.01, 0.1, 0.15}, and for t ∈ {0, 25, 50, 75, 100} respectively.

and for the IFN concentration is given by the Gaussian distribution

m0 := m(0, x) = exp

[
−(x1 −

1

2
)2 − (x2 −

1

2
)2

]
,

with the rate constants given by Dm = 10−3, φ2 = 3
4 , and φ3 = 1

8 and λ being
variable between simulations. Moreover, zero-Neumann boundary conditions
are used in order to conserve the molecular population.

The results for the simulation of system (1) show, most simply, that com-
municative capability increases with decreasing values for affinity of IFN for
its consumer cells (Fig. 1). The approximate threshold value for which this is
true falls in the interval λ ∈ (0.1, 0.15) (Fig. 1), given the values chosen for
Dm, λ, φ2, φ3.

This may, to some extent, give a mathematical explanation for why it may
be biologically advantageous to maximise the utilisation of lower affinity IFN
in a system where one wishes to stop the spread of the infection. It could be
that cells employ this methodology in order to spread a panic signal upon the
initial detection of a virus and initialisation of a local IFN signal.

The explanation given by this simple model, however, does not explain the
nature of the interaction between molecules and cells that allows this system to
proffer communicative capabilities as it does. For example, we artificially intro-
duce the notion that increasing the affinity of IFN molecules will increase their
consumption but must still question what effect this alteration should have on
the interaction with producer cells. It is difficult to intuit, also, how this in-
crease in affinity should change the interactions that impact the metabolism
of IFN within the cell. One might expect that affinity would increase produc-
tion but would it also increase feedback sufficiently to dampen that response?
Alterations to equation 1, however, require suppositions on the desired final
behaviour of the system, rather than a priori biological assumptions.
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Therefore, in response to this fundamental issue, we aim to create a more
biologically descriptive model that will serve to quantify dynamics in the cell-
surface receptors; the binding of these receptors by free molecules; and the
consequential alterations in metabolism in a spatial context. We will also re-
alise the interactions between these various dynamical behaviours, in order
that one might better understand how the biological reality is affected by
changing individual characteristics.

3 General SAR model within the SST framework

We introduce here a general SST model for SAR systems. Various instances
of this model can serve to study different biological problems.

In this framework we consider that cells of the same type can differ in their
states. The cell state is described by three variables ξ ∈ Υ ⊂ Rυ, y ∈ P ⊂ Rp
and α ∈ Γ ⊂ Rγ , where ξ, y, α represent the total density of receptors on
the cell membrane; the part of receptors that have bound ligands; and the
metabolic variables, respectively. We consider that there are q different dif-
fusible ligands of concentrations ml(t, x), 1 ≤ l ≤ q. As a simplifying assump-
tion we consider that ligands mk bind with no competition to their cognate
receptors ξi, 1 ≤ i ≤ υ. Competition could be easily introduced by considering
that the same receptor can bind several ligands, but in this case the y space
has to be supplemented with extra dimensions corresponding to the simple and
double charge of the receptors. The binding event can trigger the signalling
and activation of metabolic variables αk, 1 ≤ k ≤ γ that are responsible of the
production of the ligands mj , 1 ≤ j ≤ q.

A spatially and structurally heterogenous cell population is described by a
structured cell density, namely by a positive, integrable function ĉ(t, x, ξ, y, α),
with t ∈ (0, T ], x ∈ D ⊂ Rd, ξ ∈ Υ , y ∈ P, and α ∈ Γ .

The spatial cell density c(t, x) can be obtained as the marginal distribution
of the structured cell density

c(t, x) =

∫
Υ×P×Γ

ĉ(t, x, ξ, y, α)dξ dy dα. (2)

The dynamics of the structured cell density is described by

∂
∂t ĉ(t, x, ξ, y, α) = Ŝ(t, x, ξ, y, α)−∇x · F̂ (t, x, ξ, y, α)−∇ξ · Ĝ(t, x, ξ, y, α)

−∇y · Ĥ(t, x, ξ, y, α)−∇α · K̂(t, x, ξ, y, α)
(3)

whose full derivation is based upon work by Domschke et al.[5] and is given
in A, along with a novel derivation of a structural source term, where Ŝ is
a source term and where F̂ , Ĝ, Ĥ, K̂ are space-structure fluxes conjugated to
the variables x, ξ, y, α, respectively.

We then proceed to more clearly define each of the flux terms in (3) as
follows.
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3.1 Spatial Flux

The general form of the spatial flux equation is commonly obtained from Fick’s
law and is given by

F̂ (t, x, ξ, y, α) = −Dc∇xĉ(t, x, ξ, y, α)

+ĉ(t, x, ξ, y, α)χv∇xv(t, x)

+ĉ(t, x, ξ, y, α)
q∑
i=1

χi(y)∇xmi(t, x),

(4)

where the first term represents the spatial undirected diffusion of cells, the sec-
ond term and third terms correspond to directed haptotactic and chemotactic
cell migration, respectively.

3.2 Structural Fluxes

We consider here the dynamics of a cell population in structure space. Each
cell of the population is characterised by its structure state vector s = (ξ, y, α)
and by its location x ∈ D. We consider that cells in the same location follow a
dynamics defined by the vector field Ψ on s ∈ Υ×P×Γ , with c(t, x), m(t, x),
v(t, x) as parameters defining the local environment

ds

dt
= Ψ(s; c(t, x),m(t, x), v(t, x)). (5)

Different cells have different initial conditions at t = t0, whose distribution
is given by ĉ(t0, x, s). Let s(t) = Φt,t0(s0) be the unique solution of (5) starting
from s0 at t0.

Let us consider the cell sub-population located in bounded spatial V ⊂ D
and structural U ⊂ Υ×P×Γ boxes. A population in which each cell follows
(5) fulfils the continuity equation, namely∫
V

∫
Φt,t0 (U)

ĉ(t, x, s) ds dx =

∫
V

∫
U

ĉ(t0, x, s) ds dx−
t∫

t0

∫
∂V

∫
Φt′,t0 (U)

F̂ (t′, x, s) · n(x) ds dσ(x) dt′

+

t∫
t0

∫
V

∫
Φt′,t0 (U)

Ŝ(t′, x, s) ds dx dt′ ,

(6)
where Φt,t0(U) is the image of U by Φt,t0 , ∂V is the boundary of V , n(x) is the
normal vector and dσ(x) is the surface measure on this boundary. Performing
a change of variables in the left hand side of (6) we get∫

Φt,t0 (U)

ĉ(t, x, s) ds =

∫
U

ĉ(t, x, Φt,t0(s))Jt,t0 ds , (7)
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where Jt,t0 = |det
dΦt,t0
ds | is the Jacobian determinant.

Using Stokes theorem and the first fundamental theorem of calculus in (6)
and further using (7) it follows∫

V

∫
U

d

dt
[ĉ(t, x, Φt,t0(s))Jt,t0 ] ds dx = −

∫
V

∫
Φt,t0 (U)

∇x · F̂ (t, x, s) ds dx

+

∫
V

∫
Φt,t0 (U)

Ŝ(t, x, s) ds dx.

(8)

After changing the structure variables in the two integrals in the right hand
side of (8) we get

d

dt
[ĉ(t, x, Φt,t0(s))Jt,t0 ] = −∇x · F̂ (t, x, s)Jt,t0 + Ŝ(t, x, s)Jt,t0 . (9)

Using 1
J
dJ
dt = ∇s · Ψ(s, c(t, x),m(t, x), v(t, x)), from (9) we obtain the Li-

ouville equation

∂ĉ(t, x, s)

∂t
= −∇s·(ĉ(t, x, s)Ψ(s, c(t, x),m(t, x), v(t, x)))−∇x·F̂ (t, x, s)+Ŝ(t, x, s).

(10)
Comparing this result to (3) it follows that the structural fluxes Ĝ, Ĥ, K̂ are
advection fluxes

Ĝ = ĉΨξ(ξ, y, α; c(t, x),m(t, x), v(t, x)), (11)

Ĥ = ĉΨy(ξ, y, α; c(t, x),m(t, x), v(t, x))), (12)

K̂ = ĉΨα(ξ, y, α; c(t, x),m(t, x), v(t, x)), (13)

where Ψξ, Ψy, Ψα are the components of the vector Ψ on the directions ξ, y,
α, respectively.

3.3 Dynamics in receptoro-binding space

Notice that each ligand binds to the available cognate receptors. Thus, the
binding rate depends on the free receptor amount ξi − yi and is proportional
to the ligand concentration mi

bi(ξ, y,m) = βiϑ(ξi − yi)mi, (14)

where ϑ is a function allowing to cope with the situation when binding is
thresholded in the concentration of free receptors. The unbinding rate is simply
proportional to the fraction of the carrying capacity of bound receptors

ui(y) = ηiyi. (15)

Bound receptors are internalised with a rate

ιi(y) = kiyi. (16)
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A subset of these internalised receptors are recycled. The timescale ζ−1
i of

this process results from complex interactions between receptors and scaffolds
inside the endosome [11] and depends nonlinearly on y. Therefore, the recycling
rate reads

ri(y) = ζi(y)yi, 0 ≤ ζi(y) ≤ ki. (17)

Receptors are synthesised by the cell with a rate pi(α, ξ) that depends on the
metabolic variables α and also on actual concentration of receptors ξ and are
lost by various mechanisms with a rate proportional to ξ

di(ξ) = diξi. (18)

In summary, the receptoro-binding variables of a single cell follow the differ-
ential equations

dξ

dt
= Ψξ(ξ, y, α) = P(α, ξ)−Dξ + (R(y)− I)y (19)

dy

dt
= Ψy(ξ, y) = βB(ξ − y)m− (U + I)y, (20)

where P, D, R, I,β, B, U are diagonal matrices with diagonal entries pi, di,
ζi, ki, βi, ϑ(ξi − yi), ηi, respectively.

It follows that the advection fluxes in receptor and binding spaces are

Ĝ(t, x, ξ, y, α) = ĉ(t, x, ξ, y, α)[P(α, ξ)−Dξ + (R(y)− I)y] (21)

Ĥ(t, x, ξ, y, α) = ĉ(t, x, ξ, y, α)[βB(ξ − y)m− (U + I)y]. (22)

3.4 Dynamics in metabolic space

The part of internalisation flux that is not recycled and that escapes lysosome
degradation triggers signaling and induces changes of the metabolic variables
α. We use a flux-based description of these variables that considers that there
are γ irreversible metabolic fluxes each one producing a different molecule. The
reversible case can be simply obtained by doubling the number of variables
for each reversible flux. To each one of these fluxes we associate a scalar vari-
able 0 ≤ αi ≤ 1, meaning no production activity and maximum production
activity for αi = 0 and αi = 1, respectively. In order to represent competition
between fluxes we impose the condition

∑r
i=1 αi ≤ 1. Thus α ∈ Γ , where

Γ = {(α1, . . . , αr) | 0 ≤ αi ≤ 1,
∑r
i=1 αi ≤ 1} is a simplex. This description

is equivalent to the space of admissible fluxes in stoichiometric and flux bal-
ance analysis of metabolic networks where αi, 1 ≤ i ≤ r represent activities
of extreme pathways or currents [4,32]. The dynamics in the metabolic space
is described phenomenologically imposing the invariance of the simplex Γ as
fundamental property. A possible such choice is

dαi
dt

= Ψαi(y, α) = fi(y)(1− αi)− µiαi , (23)
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where µi ≥ µ0 > 0, fi ≤ f0, f0 > 0, rf0 < (f0 + 1). The corresponding
advection flux in the metabolic structure space is K̂ = (K1, . . . ,Kγ) with the
components

Ki = ĉ[fi(y)(1− αi)− µiαi] . (24)

3.5 Spatial dynamics of diffusible ligands

Begin by denoting m̄ := [m1, . . . ,mp,mp+1, . . . ,mq]
T , with mj := mj(t, x), as

the total vector of molecular species, where there exist q molecular species of
which the first p ≤ q species are binding ligands.

Then, the spatial dynamics of all molecular species are defined by a diffu-
sive process, and with a species specific diffusion coefficient Dmj for mj(t, x).
The binding ligands, within the molecular species, are removed from the pop-
ulation of free molecules through binding. All molecules are produced by the
cellular population, in a metabolic-activity-dependent manner, and are ei-
ther contributed to or detracted from by a situation specific sink or source
function Θ̄(t, x). Therefore, denoting the q-dimensional vectors of parameters
·̄ := [·1, . . . , ·q]T , we obtain the relations for molecular species as

∂m̄

∂t
=∇x · diag(Dm̄)∇xm̄− ε

∫
Γ

∫
P

∫
Υ

(diag(β̄ϑ(ξ − y))m̄− diag(η̄)ȳ)ĉ dξ dy dα

+

∫
Γ

∫
P

∫
Υ

φ̄α(α)(1− m̄)ĉ dξ dy dα+ Θ̄(t, x) ,

(25)
with φ̄α(·) : Υ → Rq defining a vector of production values for each molecular

species given the cellular metabolic activity level, α; β̄ = [β1, . . . , βp, 0, . . . , 0]T ;
and η̄ = [η1, . . . , ηp, 0, . . . , 0]T ; ε is a constant converting surface to volume
binding/unbinding rates.

3.6 Summary of the Derived Modelling Framework

The modelling framework derived above has been given in its most general
form to allow applicability to most any problem in cell-cell communication.
The major contribution of this model is its completeness, in relation to other
such models. The spatial partial derivative form allow the description of cell
migration, including directional motility resulting from chemotactic and hap-
totactic interactions. The Liouville equation form in structure variables can
cope with distribution dynamics of heterogeneous cellular populations. The
dynamics of the cellular population in space and structure is described by
major flux functions given by

Ŝ(t, x, ξ, y, α)– who can be used to specify the precise nature of the mitotic
process within the cellular population (for which a suggestion for cell-cycle
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based mitosis is given in Sections A.1 & A.2);

F̂ (t, x, ξ, y, α)– who specifies the spatial movements and interactions of the
cellular populations within its micro- and macro-environment, such as dif-
fusive, hapto- or chemotactic dynamics;

Ĝ(t, x, ξ, y, α)– who particularises the dynamic mechanisms through which
the cell alters its receptor expression pattern and who may depend on spa-
tial, binding, or metabolic considerations;

Ĥ(t, x, ξ, y, α)– who intimates the binding dynamics of the particular molec-
ular species to the cellular population in question and who, in previous
treatments [5,16], has been used to describe even binding-contingent in-
hibitory dynamics;

K̂(t, x, ξ, y, α)– who describes the metabolic dynamics of the cellular pop-
ulation in response to binding or other dynamics.

Together, these flux functions allow one to describe the dynamics of cellular
populations in oncological, immunological, and many other scenarios.

The totality of the above propositions are summarised as the system of
equations

∂c

∂t
=Ŝ(t, x, ξ, y, α)

−∇x ·
[
−Dc∇x + χv∇xv(t, x) +

q∑
i=1

χi(y)∇xmi(t, x)

]
ĉ(t, x, ξ, y, α)︸ ︷︷ ︸

F̂

−∇ξ · [P(α, ξ)−Dξ + (R(y)− I)y] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
Ĝ

−∇y · [βB(ξ − y)m− (U + I)y] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
Ĥ

−∇α · [fi(y)(1− αi)− µiαi] ĉ(t, x, ξ, y, α)︸ ︷︷ ︸
K̂

∂m̄

∂t
=∇x · diag(Dm̄)∇xm̄

− ε
∫
Γ

∫
P

∫
Υ

(diag(β̄ϑ(ξ − y))m̄− diag(η̄)ȳ)ĉ(t, x, ξ, y, α) dξ dy dα

+

∫
Γ

∫
P

∫
Υ

φ̄α(α)(1− m̄)ĉ(t, x, ξ, y, α) dξ dy dα+ Θ̄(t, x) ,

(26)
and shall be used as the basis of the particular models used throughout the
remainder of this paper.
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4 Particularised IFN-Based Model

It is necessary to first have a discussion about the context into which we shall
place this model, with respect to the generalised SST framework for SARs.
First of all, and for simplicity, we neglect the receptor space and source terms
in the IFN case. This is due to the fact that we do not consider the creation of
IFN SARs, but rather their behaviour and spatial recruitment, and the change
in binding in the IFN case appears to be related to affinity rather than flux of
the binding proteins themselves.

It should be clear, that a main concern in modelling the IFN system is the
numerical simplification involved in the reduction of the number of necessary
dimensions under consideration. This has succeeding consequences in terms of
our ability to intuit the results of the system and better understand both the
SST framework, and the internal processes for communicative SARs. For this
reason, we also neglect, initially, the spatial dynamics of the SAR cells and
concentrate first on cell-cell communication mediated by the diffusible ligand.

Now, we contextually define the binding variable, y ∈ P with v = p = 1,
0 ≤ y ≤ ξ = 1, such that increasing values of y correspond to the increas-
ing concentration of bound IFN-IFNAR1-IFNAR2 complexes for some given
(t, x, α) ∈ I×D×Γ .

The metabolic variable, α ∈ Γ , is somewhat more complicated in biological
terms since we wish to encapsulate a state of the cell under which a certain
reaction is more likely to take place. In the particular case of IFN, for example,
we understand the metabolic variable as describing a state of the cell wherein
ISGs implicated in the production of or response to IFN (such as IRF-7, im-
plicated in production, or USP18, a key regulator of the cellular response to
IFN) are more frequently transcribed. Therefore, begin by describing α = 0 as
a state in which ISGs are not transcribed and α = 1 as some state where ISGs
are transcribed at their physiologically maximal rates. Then we understand
α, itself, as encapsulating the propensity for the cell to proactively transcribe
ISGs through the activity of the Jak-Stat pathway.

Within this paradigm, then, these two variables will interact in the follow-
ing way. Begin by considering a scenario in which one cluster of IFN SARs are
stimulated by a single initial dosage of IFN. The cell will bind these IFN
molecules and increase in binding state of the cell, y, will form the IFN-
IFNAR1-IFNAR2 complex and initiate the reactions of the Jak-Stat pathway.
This will subsequently increase the cells metabolic state, α, of the cell and
cause the increased production of IFN. The increase in transcription of ISGs,
specifically USP18, will also cause a decrease in the efficacy of the ternary
complex (IFNAR1-IFN-IFNAR2) assembly [37] or maximal effective binding,
y. This, in turn, will subsequently lead to a decrease the physiological con-
centration of the Jak-Stat reactions and reduce the metabolic state, α, of the
cell.
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Fig. 2: Diagram describing the simplified IFN cell-regulatory system. Unbound
IFN (top left) will attempt to bind unbound receptors (‘Y’s) on the surface of
the cell (circle), in accordance with its affinity for these receptors, with binding
rate β. Likewise, these bound IFN-receptor complexes unbind with some rate
η. The other way in which the proportion of surface bound molecules may
decrease in through the internalisation of IFN receptor complexes with rate δ.
The internalisation of IFN, through a complicated biological pathway, leads to
a metabolic switching of the IFN-producing cell infrastructure from the default
state of dormant (OFF) to active (ON), in which state the cell produces greater
levels of IFN with rate φ (centre). The cell infrastructure attempts to return
to the default (OFF) state with a constant rate µ0. In the active (ON) state
the conformation of receptors, in the presence of IFN, is reduced which can be
modelled through the reduction of the ability of IFN molecules to bind their
receptors (i.e. β ↓, bottom right).

4.1 Unthresholded Binding Model

Throughout this model, we assume a homogeneous and constant concentration
of biological pathogen, such that IFN response is consistently encouraged. We
have chosen illustrative values for the binding rates, consistently with previous
models [5,35], but with the difference that we consider here the negative feed-
back loop of the IFN system between the metabolic state of the cell and the
binding of molecular species to the surface. In this respect, we consider binding
to be non-dimensionalised and that feedback causes the maximal binding rate
to decrease linearly with the metabolic state of the cell such that the range
of values of y for which positive binding exists is given by y < 1 − α. Thus,
we consider that the binding dynamics of molecular species to the surface,
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b : I×D×P×Γ → R, can be given by

b(m, y, α) := β(1− y − α)m

where β is the binding rate constant for IFN.
When we say ’binding’ in this context, we actually make a generalisation

of the concept of ’meaningful binding’ which is to say that binding is sufficient
to allow for recruitment of the secondary complex (IFNAR2) and subsequent
co-phosphorylation of their protein tails.

The rate of removal of bound molecular species from the surface of the cell
has a first component corresponding to unbinding and a second component
corresponding to internalisation and degradation of bound receptors. There-
fore, we consider that the removal of species from the cell surface, d : P → R,
can be given by

d(y) := (η + δ)y ,

where η gives the unbinding rate of molecules from the surface of c1(t, x, y, α)
and δ gives the rate of cellular degradation of bound IFN.

Further, we make the assumption that the gene responsible for regulating
the production of IFN has a default transcriptional state of ‘off’, such that
the gene is not transcribed unless appropriately upregulated. Therefore we
arrive at a relation for the advective rate for change in metabolic profile,
µ : P × Γ → R, of the cells which is given by

µ(y, α) := δy(1− α)− µ0α

where δy is the internalisation-degradation rate (as above) and µ0 is the
intrinsic metabolic restoration rate, the purpose of which is to restore the
default metabolic position of the cell α = 0. The term (1− α) is chosen such
that the metabolic state of the cell might never exceeds a maximum value
normalized to one.

Production of m with respect to the metabolic state of the cell is given by
the production rate function φ : Γ → R and is assumed to be of the form

φ(α) := φαα(α− θα) ,

where φα is the rate constant for metabolic production of m and θα is some
thresholding value above which the cell become metabolically active with re-
spect to the production of IFN, m.

For reasons that will become clear in the following subsection we call this
model the unthresholded binding model, which is then written

∂c1
∂t = −∇y · [β(1− y − α)m− (η + δ)y] c1 −∇α · [δ(1− α)y − µ0α] c1

∂c2
∂t = 0

∂m
∂t = ∇x ·Dm∇xm−

∫
Γ

∫
P

(β(1− y − α)m− ηy)εc1(t, x, y, α) dy dα∫
P

∫
Γ

φαα(α− θα)(1−m)c1(t, x, y, α) dα dy − λmc2 .

(27)
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4.2 Thresholded Binding Model

There are several alternative interpretations of potency of a ligand for mean-
ingful binding and signaling triggering [18]. One interpretation associate this
potency to the product between concentration and affinity of the ligand, sug-
gests that ligands are detected irrespective to their quality as long as their
concentration is above a threshold. Thresholds in the number of triggered re-
ceptors have been observed for immune T cells [36]. The second interpretation
is based on kinetic proof-reading and suggests that a minimal binding time
is needed for a given ligand to trigger signaling [7]. The correlation between
binding time characteristics and immune cell activation is confirmed by sev-
eral studies [18,8]. Furthermore, recent dynamical studies demonstrated the
phosphorylation of STAT2 to follow the formation of the complex (which is
more or less instantaneous, < 1 second) by approximately 8 seconds [21] for
complete activation. All these studies suggest the intrinsic assumption that
meaningful binding requires that receptor-ligand complex to be bound for at
least a minimal time τmin. In general, depending on the comparison between
the timescales of meaningful complex formation and dissolution and those of
activation of the signaling processes it is possible that both concentration and
temporal thresholds apply to the ligand recognition. We do not aim to resolve
this issue here. Because our model does not account for binding time het-
erogeneity, we simply replace the temporal threshold by a concentration one,
considering that there is a function τb(m) relating the concentration of ligands
to the binding time. Then, for some concentration m(t, x) = θm we have that

τb(θm) = τmin

such that θm gives the concentration of m sufficient for effective binding of the
IFNAR2 protein and IFNAR1-IFNAR2 complex. In order to cope with this
threshold effect, we rewrite the binding flux term as

b(y, α,m) := β(1− y − α)(m− θm).

Substituting this new relation back into our model, we obtain the thresh-
olded binding model



∂c1
∂t =−∇y ·[β(1− y − α)(m− θm)− (η + δ)y] c1−∇α ·[δ(1− α)y − µ0α] c1

∂c2
∂t = 0

∂m
∂t = ∇x ·Dm∇xm−

∫
Γ

∫
P

(β(1− y − α)m− ηy)εc1(t, x, y, α) dy dα∫
P

∫
Γ

φαα(α− θα)(1−m)c1(t, x, y, α) dα dy − λmc2 .

(28)
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4.2.1 Spatially Dynamic, Thresholded Binding Model

Finally, we consider a spatially dynamic system wherein cells are able to move
through the spatial domain. We choose to endow this system with 2 primary
functions of migration:

(i) diffusion, by virtue of immune cells’ natural inclination to motility, and
(ii) chemotaxis, by virtue of immune cells’ ability to actively respond to an

immune-response signal as a recruitment signal.

In stating this, we therefore assume that the immune cell will interpret the
presence of IFN as a response to, for example, a viral threat to the body and
respond to this signal by migrating towards its origin. We further assume that
even in the absence of an IFN gradient, cell Brownian motion will generate
spatial fluxes leaving regions of highest cell concentration.

We thusly rewrite the system as

∂c1
∂t = ∇x ·Dc1∇xc1 −∇y · [β(1− y − α)(m− θm)− (η + δ)y] c1

−χm∇x · c1∇xm−∇α · [µ̆+(1− α)y − µ−] c1

∂c2
∂t = 0

∂m
∂t = ∇x ·Dm∇xm−

∫
Υ

∫
P

(β(1− y − α)− (η + νrδ)y)εc1(t, x, y, α) dy dα∫
P

∫
Υ

φαα(α− θα)(1−m)c1(t, x, y, α) dα dy − λmc2 ,

(29)

5 Results from Numerical Simulations

Spatially static, single-cluster results were generated by simulating (27), whilst
multi-cluster results generate by simulating (28) with Neumann zero bound-
ary conditions in spatial variables and Neumann zero boundary conditions in
structural variables. Spatially-dynamics results were generated by simulating
(29). A full description of numerical techniques used, methods, and parameters
for simulating this system of equations is given in B, where parameters were
used as appropriate for the simulated model.

In the following we will refer to two types of numerical simulations that
differ by the type of initial condition. Single cluster simulations start with a
localized cell distribution having a single maximum. Multiple cluster simula-
tions start with an initial cell distribution having several maxima periodically
positioned in space.

5.1 Spatially-static, single-cluster simulations

Single-cluster results (Fig. 3 & 4) demonstrate an initial rise in average bind-
ing position, cy, of the cellular population with a concurrent rise in aver-
age metabolic position, cα. In c̆ we also observe the rise in metabolo-binding
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cα

cy

c̆

m1

t = 0 t = 5 t = 10 t = 15

Fig. 3: Single-cluster results from simulation of model (27) for low affinity
(λ = 0.1) are given for c(t, x, y, α) in the spatio-metabolic domain (1st row,
cα), with x on the horizontal plane and α on the vertical axis; in the spatio-
binding domain (2nd row, cy), with x on the horizontal plane and y on the
vertical axis; in the metabolo-binding domain (3rd row, c̆), with α on the
horizontal axis and y on the vertical axis; and for m(t, x) in space (4th row),
for t ∈ {0, 5, 10, 15} respectively.

state with a focus developing at approximately (y, α) ≈ (0.45, 0.55), with
a negatively graduated non-linear ridge, and a tail between the focus and
(y, α) = (0, 0).

Beyond t = 20, the average distribution in the binding space remains
largely static, whilst the population continues to redistribute itself into a
teardrop geometry, around the average position. This indicates, firstly, that
the cell is capable of sustaining its own binding state, through production,
upon initial stimulation with IFN. The formation of this geometry could be
as a result of the maximal concentration of producer cells being central, and
thusly producing greater levels of IFN which can be bound by the population,
itself.

The distribution in the metabolic space exhibits oscillation, around its
average position, for all time points t ≥ 15 (Fig. 4 cα). This oscillation is
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cα

cy

c̆

m1

t = 20 t = 25 t = 30 t = 35

Fig. 4: Single-cluster results from simulation of model (27) for low affinity
(λ = 0.1) are given for c(t, x, y, α) in the spatio-metabolic domain (1st row,
cα), with x on the horizontal plane and α on the vertical axis; in the spatio-
binding domain (2nd row, cy), with x on the horizontal plane and y on the
vertical axis; in the metabolo-binding domain (3rd row, c̆), with α on the
horizontal axis and y on the vertical axis; and for m(t, x) in space (4th row),
for t ∈ {20, 25, 30, 35} respectively.

both transverse and longitudinal, and is likely to occur as a result of the
SAR-cycling between the metabolic and binding states of these cells. This
demonstrates the importance of the establishment of heterogeneity within the
cellular population as it acts to regulate the IFN output of the system, whilst
concurrently maximising metabolic expedition from the available and bound
IFN supplies. Interferon producer cells do not act in unison and, indeed, use
heterogeneity to co-regulate cells within such a cluster.

The final observation that one wishes to make in the results for the single-
cluster case is the visible SAR-cycle displayed within the metabolo-binding
space (Fig. 3 & 4 c̆). Regions of the solution for the cellular population ap-
pear to increase their binding state of IFN; before concurrently increasing
their metabolic state and slightly decreasing their binding state; subsequently
decreasing their metabolic and binding states, together; and beginning this
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cα

cy

m1

t = 0 t = 15 t = 30

Fig. 5: Multi-cluster results from simulation of model (28) for low affinity
(λ = 0.01) are given for c(t, x, y, α) in the spatio-metabolic domain (1st row,
cα), with x on the horizontal plane and α on the vertical axis; in the spatio-
binding domain (2nd row, cy), with x on the horizontal plane and y on the
vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 15, 30} respectively.

cycle, once more. Whilst the majority of the population maintains its position
within the bulk of this distribution, there exist cells (or subpopulations of the
cellular population) that are affected by this feedback cycle.

5.2 Spatially-static, multi-cluster simulations

In the multi-cluster results (Fig. 5–8) we observe a significant difference in
the behaviour of the metabolic and binding spaces, in comparison to those of
the single cluster. One observes the appearance of stable regions within the
metabolic space, at high values for α; a phenomenon that we term ‘metabolic
trapping’. In the low affinity case, where the focal point for metabolo-binding
dynamics would be lower in value, this effect is likely due to the feeding back
of IFN proteins between clusters that lead the internal feedback mechanism
to be ineffective at downregulating the metabolic state of the cell. In the high
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cα

cy

m1

t = 45 t = 60 t = 75

Fig. 6: Multi-cluster results from simulation of model (28) for low affinity
(λ = 0.01) are given for c(t, x, y, α) in the spatio-metabolic domain (1st row,
cα), with x on the horizontal plane and α on the vertical axis; in the spatio-
binding domain (2nd row, cy), with x on the horizontal plane and y on the
vertical axis; and form(t, x) in space (3rd row), for t ∈ {45, 60, 75} respectively.

affinity case, this is likely to be due to the high binding and retention rates,
in comparison to the unbinding rate, which causes the internalisation rate to
remain high.

The binding state (Fig. 5–8 cy), on the other hand, demonstrate oscillatory
dynamics which were before characteristic of the metabolic state. Upon the
establishment of stable metabolic dynamics, at high values for α, one expects
that the conflict between the high rates of binding (caused by high rates of
production and subsequent values for free chemical concentrations) and the
feedback mechanism of the metabolic gene circuitry would cause such a be-
haviour. Cells will attempt to bind the high levels of IFN whilst the feedback
mechanism continually acts to diminish the affinity of producer cells for IFN.

One should also notice that in the low affinity case (Fig. 5 & 6), as opposed
to the high affinity case (Fig. 7 & 8), one observes that the signal is conveyed to
the neighbouring cells. This can only be achieved through the implementation
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cα

cy

m1

t = 0 t = 15 t = 30

Fig. 7: Multi-cluster results from simulation of model (28) for high affinity
(λ = 0.5) are given for c(t, x, y, α) in the spatio-metabolic domain (1st row,
cα), with x on the horizontal plane and α on the vertical axis; in the spatio-
binding domain (2nd row, cy), with x on the horizontal plane and y on the
vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 15, 30} respectively.

of a threshold in the binding dynamics for c(t, x, y, α) and this same threshold
mediates the distance at which the signal can be conveyed.

Moreover, a simple comparative between the high affinity multi-cluster
(Fig. 7 & 8), low affinity multi-cluster (Fig. 5 & 6), and single-cluster (Fig.
3 & 4) results will show that the concentrations of IFN produced by the low
affinity multi-cluster system were far in excess of those in the other two cases.
This is likely as a result of the cumulative production but also as a result of the
production of the two, or more, clusters feeding back the IFN to one another,
causing a metabolic trapping effect. This metabolic trapping is manifest as an
emergence of the population at the upper boundary of the metabolic space
and retention of this position. This effect is opposed to that of the metabolo-
binding SAR-cycling that one observes in the single cluster case and is as a
direct result of inter-cluster heterogeneity, where the promotion of the primed
state in one cluster will facilitate the priming of the second, and so on.
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cα

cy

m1

t = 45 t = 60 t = 75

Fig. 8: Multi-cluster results from simulation of model (28) for high affinity
(λ = 0.5) are given for c(t, x, y, α) in the spatio-metabolic domain (1st row,
cα), with x on the horizontal plane and α on the vertical axis; in the spatio-
binding domain (2nd row, cy), with x on the horizontal plane and y on the
vertical axis; and form(t, x) in space (3rd row), for t ∈ {45, 60, 75} respectively.

5.3 Spatially-dynamic, multi-cluster simulations

Consider, now, the numerically generated results for the system (29), with pa-
rameters given as in above sections (B). We give the simulated solutions for the
high-affinity, multi-cluster IFN case (Fig. 9 & 10), only, as the spatio-metabolo-
binding dynamics are similar at both high and low affinities. One immediately
observes the dissolution of the discrepancy between the two species in terms
of their communicative capability. The high affinity SARs are able to commu-
nicate with one another under a spatially-dynamic, chemotactic regime.

In order to best understand these dynamics, one must observe them in the
passage of time. The chosen initial conditions impose a stimulus on the central
cluster of cells, whilst peripheral clusters are in a state of metabolic relaxation
(Fig. 9). The spatial dynamics of the central cluster, at early time-points,
will be mainly balanced between diffusive processes and chemotactic auto-
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cα

cy

m1

t = 0 t = 10 t = 20

Fig. 9: Multi-cluster results from simulation of model (29) for high affinity
(λ = 0.5) are given for c(t, x, y, α) in the spatio-metabolic domain (1st row,
cα), with x on the horizontal plane and α on the vertical axis; in the spatio-
binding domain (2nd row, cy), with x on the horizontal plane and y on the
vertical axis; and for m(t, x) in space (3rd row), for t ∈ {0, 10, 20} respectively.

aggregation. In the peripheral clusters, however, the absence of IFN means
that the spatial dynamics are mainly dictated by diffusive processes.

This diffusion in the cellular population allows some small subpopula-
tion of cells to migrate sufficiently towards the central cluster so as to over-
come the thresholding in the metabolic dynamics. Coupling this subpopula-
tion with high affinity molecules, one achieves a fast dynamics in the bind-
ing and metabolic spaces on the perimeter of the peripheral clusters (Fig. 9,
t = 20). Once these peripheral subpopulations have been potentiated to the
point where they are capable of producing high affinity IFN, the cluster at-
tains an intra-cluster supply and is capable of maintaining its own levels of
IFN (Fig. 9, m(20, x)), resulting in initially peaked levels of IFN concentration
at peripheral sites.

In the chemotactic simulations, one can more clearly see the elements of
inter-cluster oscillation as an illustration of similar intra-cluster events. One
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cα
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m1

t = 30 t = 40 t = 50

Fig. 10: Multi-cluster results from simulation of model (29) for high affinity
(λ = 0.5) are given for c(t, x, y, α) in the spatio-metabolic domain (1st row, cα),
with x on the horizontal plane and α on the vertical axis; in the spatio-binding
domain (2nd row, cy), with x on the horizontal plane and y on the vertical axis;
and for m(t, x) in space (3rd row), for t ∈ {30, 40, 50} respectively.

observes an initially raised production dynamics in the central clusters (Fig.
9, t = 10); followed by fast metabolic dynamics within, and a concurrent
raising of the local concentrations around, the peripheral clusters (Fig. 9, t =
20); a subsequent response from the central cluster as the peripheral clusters
feedback IFN to elevate binding rates (Fig. 10, t = 30); and the resolution of
this oscillatory behaviour in the establishment of a quasi-equilibrium (Fig. 10,
t ≥ 40), where intra-cluster dynamics prevail but result in little macroscopic
change. The initial inter-cluster heterogeneity is a necessary precursive state
for the establishment of this uniformity in behavioural dynamics.

Moreover, the establishment of this synchronicity between the clusters
leads to another effect stemming from the chemotactic dynamic. Not only
are cells capable of communicating in the chemotactic paradigm but they also
self-attenuate their diffusion and auto-aggregate upon the establishment of
intra-cluster activation. This may have profound implications for immunity:
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If, as one might intuitively predict, cells who are inclined to utilise chemotactic
dynamics were attracted to the first cluster, and activated at some gradual-
istic pace, then the infection of the organism by a pathogen would result in
the accumulation of IFN excreting cells. The decay of the spatial diversity in
the cells would then lead the body to become more vulnerable to infection at
novel sites, as there would no longer be IFN SARs present. If, however and
as predicted by our model, we have a slight diffusive process which allows
the signal to be passed but followed by auto-aggregation, then the cells would
remain mostly in situ and would propogate the signal without compromising
their position in the event of a further wave of infection.

6 Discussion

The model and framework that we have herein developed is sufficiently general
so as to be useful in cases that extend beyond the IFN system and even
beyond the more general category of SARs. Generality is achieved through
the biologically global forms of the binding and unbinding functions as well
as the particularly general form chosen for the metabolic flow function, which
describes a whole metabolic pathway in a reasoned but condensed single ODE
form.

The single-cluster model demonstrates a qualitative biological SAR-cycling
between binding and metabolic dynamics of a SAR (Fig. 3 & 4). More basic, or
simplistic, models may be capable of producing quantitatively similar results
but could not capture the mechanistic heterogeneity within biological systems
which cause them to function as they do. Alone, this illustrates the potential
for SST systems to differentially mimic biological systems to a far greater
accuracy than can current modelling techniques.

In terms of the biology, this model makes two important realisations: That
low affinity molecules may be necessary, for the functioning of the system,
in order that the concentrations of such molecules, at long range, are suffi-
ciently high so as to activate distant clusters of producer cells. In other words,
low affinity molecules allow cell-cell communication, at a distance. Also, the
biological system actually has two important functions of heterogeneity inter-
nally, in order to self regulate clusters and maintain sensible levels of IFN, and
externally between clusters, so as to convey the activation signal of one cluster
by firstly priming an initially excited cluster at a distance.

The internal heterogeneity established by clusters informs one that the abil-
ity for a cluster of SARs (specifically those for IFN) to maintain optimal levels
of metabolism and reciprocal output, it is necessary for some subpopulation
of cells to sacrificially reduce their levels of binding. This appears to be as a
consequence of the feedback between metabolism, α, and binding, y, such that
as one subpopulation rapidly increases its metabolism it will feel and subse-
quent inhibition of its ability to bind and will sacrifice itself such that another
subpopulations may rapidly increase its binding and metabolism, due to the
increased availability of local IFN. This is an important effect of intra-popular
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heterogeneity which we term ‘subpopular quiescence’, and may explain several
of the inter-cellular, intra-popular oscillatory events in biology.

The latter of these two realisations recognises the importance of hetero-
geneity to the biological system. We demonstrate that in order that a primary
cluster be primed, upon excitation, it must be allowed to be internally het-
erogeneous such that more active cells serve to activate less active cells whilst
down regulating their own activity. This is essential for maintenance of activity
levels and eventually for switching the system off. We further show that this
ability for one cluster to self-activate and autoregulate is essential to maintain
the long range signal and activate further clusters, at a distance. This nuancing
is not possible within the simple spatial model (1).

One phenomenon, observed within the multi-dimensional model, which
cannot be recreated within more simple mathematical models is that of ‘metabolic
trapping’, and therefore, production in the presence of inter-cluster coopera-
tivity. In the simple models, one has a mechanism of feedback wherein a clus-
ter will create IFN in the presence of IFN, amplifying a given local signal.
This return, however, always achieves a maximal concentration and the rate is
dependent only on local IFN concentration. In the SST context, one observes
that the inter-cluster supply of IFN protein between clusters actually increases
the metabolic state of all involved clusters causing the productions rates to
increase, concurrently. This is a qualitative result which makes a qualitative
difference to the final resting state of IFN concentration.

We recognise, also, that the conveyance of the signal in the low affinity
cases (Fig. 5 & 6) is dependent on some thresholding parameter in the binding
space, and can be justified through the biological realisation that sufficiently
low quantities of chemical are insufficient to bind the receptor for long enough
durations so as to cause co-phosphorylation of the internal proteins. This is
a further major difference between this and previous modelling techniques,
since previous modelling techniques make no comment on this phenomenon.
A demonstrable advantage of this modelling framework is the ability to flag up
novel biological problems, not necessarily perceptible to simpler state-variable
frameworks.

Spatially dynamic results demonstrated a breakdown in the different abil-
ities of high and low affinity IFN to affect inter-cluster cell communication.
This demonstrates that communication can be achieved either by means of
reducing the barriers to the travelling molecule (affinity to consumer cells)
or by cellular migration, reducing the distance between SARs themselves. In
biology these dynamics may occur in environments which have more freedom
for the cells to migrate and may not be achievable in many instances. In cases
where migration is not possible it may be advantageous to increase production
of lower affinity IFN, where high affinity IFN may be advantageous otherwise,
due to the resultant increase in dynamic rate.

The biological significance of these processes are underscored by the in-
tricate intra- and inter-cluster spatial and metabolo-binding dynamics. The
major features are an intra-cluster oscillatory dynamic and a intra-cluster,
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post-potentiation auto-aggregation which may be immunologically advanta-
geous (depending on the paradigm considered). In the paradigm where cells
are capable of migration, however, one will immediately notice that any given
signal is much harder to contain or confine to a local spatial domain. This may
be important in organs, such as he brain, where the body wishes to localise
inflammatory response and antiviral behaviour as far as is possible. Therefore,
local biological considerations may effect the evolutionary choice of method
for communication chosen.

Finally, this framework is far more approachable for the biological commu-
nity, in terms of understanding. The internal and inter-cluster heterogeneity
described by the SST framework is relatable to biologists in a way that is
conducive to dialogue. In line with this a further explanation proffered to the
thresholding problem, however, could be that there are two such IFN molecules
involved in this process; one of high and one of low affinity. The high affin-
ity molecules may serve to perpetuate the activation of the considered cell,
or cluster, whilst the low affinity molecule may serve to convey this signal to
other producer cells. This is a theme that the authors intend to explore in a
further publication.

A Derivation of the Spatio-Structural-Temporal Model with
Receptor and Metabolic Spaces

Following the same form as the derivation given in Domschke et al. [5], we derive of a
spatio-structural-temporal (SST) model presented in (3).

Let D ⊂ Rd with d ∈ {1, 2, 3} be a bounded spatial domain, I = [0, T ] ⊂ R, with T > 0
be an arbitrary time interval. Further, let Υ ⊂ Rυ with υ ∈ N characterise the available
binding sites, and corresponding binding space, for given receptor ξi for i ∈ {1, ..., υ}, which
may differ in structure dependent on the molecules capable of binding each ξi and let
P ⊂ Rp characterise the binding space for the biological complexes bound to these available
sites. Finally, let Γ ⊂ Rγ with γ ∈ N characterise the metabolic subspace of each Υ whose
boundary is given by the corresponding extreme currents for the effected metabolic gene
network. Herein, the space defined by Υ ×P shall be referred to as the elementary-state (e-
state) space and will give a characterisation of the total structure of an individual element’s
state.

Now, let the variables x ∈ D ⊂ Rd represent space; ξ ∈ Υ ⊂ Rυ represent receptoral
state; y ∈ P ⊂ Rp represent the binding state of these receptors; and α ∈ Γ ⊂ Rγ represent
the metabolic state of these cells. Therefore, we have also that (ξ, y) ∈ Υ ×P gives the
receptoro-binding state of the population, at any given point in the spatial domain, D.

Further, let U , V , W be rectangles in D, Υ×P, and Γ respectively (i.e. U×V ×W ⊆
D×Υ×P×Γ ). Then the total amount of cells at a given time t is given by

ĉ(t) =
∫
W

∫
V

∫
U

c(t, x, (ξ, y), α) dx d(ξ, y) dα (30)
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the change in c̄ := ĉ(t, x, (ξ, y), α) per unit time in the spatio-metabolo-receptoro-binding
region U×V ×W is given by

dc̄(t)
dt

=
∫
W

∫
V

∫
U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
W

∫
V

∫
∂U

F̂ (t, x, (ξ, y), α) · n(x) dσd−1(x) d(ξ, y) dα

−
∫
W

∫
U

∫
∂V

[Ĝ(t, x, (ξ, y), α), Ĥ(t, x, (ξ, y), α)]T · n(ξ, y) dσυ+p−1(ξ, y) dx dα

−
∫
V

∫
U

∫
∂W

K̂(t, x, (ξ, y), α) · n(α) dσγ−1(y) dx d(ξ, y) dα

(31)

where σd−1, σ2r−1, and σγ−1 are surface measures on ∂D, ∂P, and ∂Γ , respectively.
Supposing, now, that F , G, H, and J , are in the class of continuously differentiable vector
fields, C1, one can use Stokes’ Theorem to write

dc̄(t)
dt

=
∫
W

∫
V

∫
U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
W

∫
V

∫
U

∇x · F̂ (t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
W

∫
U

∫
V

∇(ξ,y) · [Ĝ(t, x, (ξ, y), α), Ĥ(t, x, (ξ, y), α)]T d(ξ, y) dx dα

−
∫
U

∫
V

∫
W

∇α · K̂(t, x, (ξ, y), α) dα d(ξ, y) dx

(32)

and using Lebesgue’s Dominated Convergence Theorem, one can move the time derivative
within the integral for ĉ

∫
W

∫
V

∫
U

∂ĉ
∂t
dx d(ξ, y) dα =

∫
W

∫
V

∫
U

Ŝ(t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
W

∫
V

∫
U

∇x · F̂ (t, x, (ξ, y), α) dx d(ξ, y) dα

−
∫
V

∫
U

∫
W

∇(ξ,y) ·
(
Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

)
d(ξ, y) dx dα

−
∫
U

∫
V

∫
W

∇α · K̂(t, x, (ξ, y), α) dα d(ξ, y) dx ,

(33)

which can be written

∫
Rd+υ+p+γ

[ ∂ĉ
∂t

]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ
[Ŝ(t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ
[∇x · F̂ (t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[
∇(ξ,y) ·

(
Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

)]
1U×V×W (x, (ξ, y), α) dx d(ξ, y)α

−
∫

Rd+υ+p+γ
[∇α · K̂(t, x, (ξ, y), α)]1U×V×W (x, (ξ, y), α) dx d(ξ, y) dα .

(34)
Then, since we have that

{U×V ×W | U, V,W - compact with piecewise smooth boundaries}
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is a family of generators for the Borelian σ-algebra on U×V ×W we can denote 1A as the
indicator function for any arbitrary A ⊆ D×Υ×P×Γ and write∫

Rd+υ+p+γ
[ ∂ĉ
∂t

]1A(x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ
[Ŝ(t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ
[∇x · F̂ (t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[
∇(ξ,y) ·

(
Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

)]
1A(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ
[∇α · K̂(t, x, (ξ, y), α)]1A(x, (ξ, y), α) dx d(ξ, y) dα

(35)
for any arbitrary Borelian set A in the σ-algebra on D×Υ×P×Γ . Then we can replace 1A
with any simple function, as so∫

Rd+2r+γ

[ ∂ĉ
∂t

]ν(x, (ξ, y), α) dx d(ξ, y) dα

=
∫

Rd+υ+p+γ
[Ŝ(t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ
[∇x · F̂ (t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ

[
∇(ξ,y) ·

(
Ĝ(t, x, (ξ, y), α)

Ĥ(t, x, (ξ, y), α)

)]
ν(x, (ξ, y), α) dx d(ξ, y) dα

−
∫

Rd+υ+p+γ
[∇α · K̂(t, x, (ξ, y), α)]ν(x, (ξ, y), α) dx d(ξ, y) dα

∀ν ∈ C∞0 (D×P×Γ ) .
(36)

Then, since this relation holds for any C∞ test function, ν(x, (ξ, y), α), we obtain the
equation

∂ĉ
∂t

= Ŝ(t, x, (ξ, y), α)−∇x · F̂ (t, x, (ξ, y), α)

−∇(ξ,y) · [Ĝ(t, x, (ξ, y), α), Ĥ(t, x, (ξ, y), α)]T −∇α · K̂(t, x, (ξ, y), α) ,
(37)

where the functions on the right-hand side describe fluxes in the cellular population density.

A.1 Derivation of a Structural Source Term

The source term accounts for cell multiplication by division. It is clear that for the source
term, therefore, one must consider the full, continuous transition from mother-cell to 2
daughter-cell and, finally, back to 2 second generation mother-cell. We achieve this by con-
sidering mitosis as time dependent process that occurs on a normalised micro-temporal scale,
τ ∈ [0, 1).

Therefore, assuming uniform splitting of the receptors on the cell surface during cell
differentiation, at a given spatio-temporal node (t, x), the amount of cells whose binding
structure reside within an arbitrary rectangle W ∈ P is given by the difference between the
cells that arrived within W due to mitosis and those that leave W through mitosis, and we
re-cast this mathematically as∫

W

Ŝ(t, x, y) dy = 2
∫

[0,1)

∫
(2−τ)W

φ(ỹ, c, v)ĉ(t, x, ỹ) dỹ dτ

−
∫
W

φ(y, c, v)ĉ(t, x, y) dy
(38)
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Using the change of variable
ỹ(y) = (2− τ)y
dỹ = (2− τ) dy

(39)

we can obtain∫
W

Ŝ(t, x, y) dy = 2
∫

[0,1)

(2− τ)p
∫
W

φ((2− τ)y, c, v)ĉ(t, x, (2− τ)y) dy dτ

−
∫
W

φ(y, c, v)ĉ(t, x, y) dy

=
∫
W

2
∫

[0,1)

(2− τ)pφ((2− τ)y, c, v)ĉ(t, x, (2− τ)y) dτ dy

−
∫
W

φ(y, c, v)ĉ(t, x, y) dy .

(40)

Thus, as this equality holds true for any rectangle W , via a standard measure theoretical
argument, we obtain that

Ŝ(t, x, y) = 2

∫
[0,1)

(2− τ)pφ((2− τ)y, c, v)ĉ(t, x, (2− τ)y) dτ − φ(y, c, v)ĉ(t, x, y). (41)

A.2 Derivation of a Structural Source Term for Systems with Receptors

We proceed similarly to derive the source term in the case when the dynamics of the receptors
is also accounted for. Consider again that mitosis is a time dependent process that occurs
on a normalised micro-temporal scale, τ ∈ [0, 1) and that we have uniform splitting of
the receptors on the cell surface during cell differentiation, at a given spatio-temporal node
(t, x). Then the amount of cells whose receptoral-binding structure reside within an arbitrary
rectangle V×W ∈ Υ×P is given by the difference between the cells that arrived within v×W
due to mitosis and those that leave V ×W through mitosis, which can be expressed as∫

V×W
Ŝ(t, x, ξ, y, α) dy = 2

∫
[0,1)

∫
(2−τ)V×W

φ((ξ̃, ỹ), c, v)ĉ(t, x, ξ, ỹ, α) d(ξ̃, ỹ) dτ

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y)

(42)

and using the change of variable

(ξ̃, ỹ)(ξ, y) = (2− τ)(ξ, y)

d(ξ̃, ỹ) = (2− τ) d(ξ, y)
(43)

we obtain∫
V×W

Ŝ(t, x, ξ, y, α) d(ξ, y)

=2
∫

[0,1)

(2−τ)(p+γ)
∫

V×W
φ((2−τ)(ξ, y), c, v)ĉ(t, x, (2−τ)(ξ, y), α) d(ξ, y) dτ

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y)

=
∫

V×W
2
∫

[0,1)

(2−τ)(p+γ)φ((2−τ)(ξ, y), c, v)ĉ(t, x, (2−τ)(ξ, y), α) dτ d(ξ, y)

−
∫

V×W
φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) d(ξ, y) .

(44)
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Since this relation holds for any rectangle V ×W , then using the standard measure theory
density argument as in the 2 preceding appendix sections, we arrive at our final expression
of source flux for the total population as

S(t, x, ξ, y, α)

= 2
∫

[0,1)

(2− τ)(p+γ)φ((2− τ)(ξ, y), c, v)ĉ(t, x, (2− τ)(ξ, y), α) dτ

−φ((ξ, y), c, v)ĉ(t, x, ξ, y, α) .

(45)

B Numerical Methods & Parameters

B.1 Numerical methods

We use the 4th order Runge-Kutta predictor for this system, given by

c̄τ+1
1 := cτ1 +

dτ

6

(
F (kτc1,1) + 2F (kτc1,2) + 2F (kτc1,3) + F (kτc1,4)

)
,

with

kτc1,1 := cτ1 , kτc1,2 := cτ1 +
h

2
kτc1,1,

kτc1,3 := cτ1 +
h

2
kτc1,2, kτc1,4 := cτ1 + dτkτc1,3 ,

where F (cτ1 ) := F (cτ1 ,m
τ ) are given by the local central difference approximation of the

spatio-structural dynamics for cτ1 := c1(tτ , x, y, α) at the given time point tτ . We then use
a MacCormack corrector, of the form

ĉτ+1
1 :=

cτ1 + c̄τ+1
1

2
+
dτ

2
F (c̄τ+1

1 ) .

Likewise, these formulae are used for the calculation of the solution for the IFN molecular
species, m(t, x).

We further apply the population-based constraint

cτ+1
1 := ĉτ+1

1

∫
P

∫
Γ

c01 dα dy∫
P

∫
Γ

ĉτ+1
1 dα dy

, (46)

in order to constrain growth in the population due to the advective term under condition
c(t, x, ξ, y, α) ≥ 0. We can write this in the particular case give since S(t, x, ξ, y, α) = 0 and
therefore we have that there is no overall change in population. Otherwise, however, this
can be achieved by stepwise accumulation and conformity.

In order to compute accurate solutions to the multi-cluster distribution arrays, we denote
one individual cluster as c1,i(t, x, y) for any i ∈ {1, . . . , k}, where k is the total number of
clusters or initial distributions. Then we have that the entire cellular population distribution
is defined as

c1(t, x, y, α) :=
k∑
i=1

c1,i(t, x, y, α).

Observe that from the fundamental theorem of calculus we, therefore, have

∇x · c1(t, x, y, α)∇xm = ∇x ·
(

k∑
i=1

c1,i(t, x, y, α)

)
∇xm

=
k∑
i=1

∇x · c1,i(t, x, y, α)∇xm

(47)
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Since we have that the overall population does not change with respect to changes time
(S(t, x, y, α) = 0), we can use that (46) and (47) imply that the population constraint holds
on each individual cluster of IFN producer cells

cτ+1
1,i := ĉτ+1

1,i

∫
P

∫
Γ

c01,i dα dy∫
P

∫
Γ

ĉτ+1
1,i dα dy

, ∀i. (48)

and then the total population changes with

cτ+1
1 := ĉτ+1

1

∫
P

∫
Γ

k∑
i=1

c01,i dα dy∫
P

∫
Γ

ĉτ+1
1 dα dy

, ∀i. (49)

These constraints should either leave the population c(t, x, y, α) unaltered or correct for any
small instabilities arising from the long-term cumulation of O(δ2) spatial advective errors,
which are not adequately dealt with by the predictor-corrector methodology.

We also introduce the notations

cα :=

∫
P

c(t, x, y, α) dy and cy :=

∫
Γ

c(t, x, y, α) dα

as quantifying the spatio-metabolic and spatio-binding distributions, respectively, and

c̆ :=

∫∫
D

c(t, x, y, α) dx

as quantifying the non-spatial metabolo-binding distribution of the cellular population
c(t, x, y, α).

B.2 Parameters

Here we give the table of parameters for the complete, SST system:

dependent independent parameters
variable variable

ĉ x Dc = 10−5 χm = 10−4

y β = 2λ υ = 10−1 θm = 10−1

α d = 1
4
β µ0 = 10−1

m x Dm = 4×10−3

ε = 10−2 θα = 10−1 φ = 1

Table 1: Table of parameters

Acknowledgements

AH would like to acknowledge the PhD training funding provided by the École Doctorale
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