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Abstract 

Hippocampal sclerosis is a common acquired disease that is a major cause of drug resistant 

epilepsy. A mechanism that has been proposed to lead from a brain insult to hippocampal 

sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial 

failure.  

Here we use a novel strategy to increase endogenous antioxidant defenses by using RTA 408, 

which we show activates nuclear factor erythroid 2-related factor 2 through inhibition of Kelch-

like ECH associated protein 1 (Keap 1) through its primary sensor C151. Activation of nuclear 

factor erythroid 2-related factor 2 with RTA 408 inhibited reactive oxygen species production, 

mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 

408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and 

dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least four 

months following status epilepticus.  

Thus, acute Keap1 inhibition following status epilepticus exerts a neuroprotective and disease 

modifying effect, supporting the hypothesis that reactive oxygen species generation is a key 

event in the development of epilepsy. 

 
Keywords: Epilepsy, Epileptogenesis, Nrf2-KEAP1 pathway, oxidative stress, mitochondrial 
dysfunction 
 

Abbreviations: ARE = antioxidant response elements; FCCP = carbonylcyanide-p-
trifluoromethoxyphenyl hydrazine; GSH = Glutathione; HEt = dihydroethidium; HS = 
Hippocampal sclerosis; KA = Kainic acid; Keap1 = Kelch-like ECH associated protein 1; MCB 
= Monochlorobimane; NQO1 = NADPH:quinone oxidoreductase; Nrf2 = nuclear factor 
erythroid 2-related factor 2; ROS = reactive oxygen species ; SE = status epilepticus; 
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Introduction 

Epilepsy remains one of the commonest serious neurological diseases, affecting over 50 million 

people worldwide(de Boer et al., 2008). This represents a considerable health care burden not 

just because of the impact of seizures, but also because of the increased morbidities and mortality 

associated with epilepsy. However, the medications that we presently have are designed to target 

the symptom, seizures, rather than modify the disease(Galanopoulou et al., 2012). Many of the 

epilepsies are acquired conditions following an insult to the brain such as a prolonged seizure, 

traumatic brain injury or stroke, and an important challenge is to determine and treat the major 

pathways that lead from the insult to epilepsy (termed epileptogenesis)(Pitkanen and Lukasiuk, 

2011). A number of potential strategies have been identified including targeting inflammation, 

disruption of the blood brain barrier, and gene expression with microRNAs(Vezzani et al., 2011; 

Heinemann et al., 2012; Reschke and Henshall, 2015). However, most of these treatments have 

modest effects or have only been shown to be effective if given during or before the insult 

(substantially lessening their translational potential). 

A common sequela of brain injury is the generation of reactive oxygen species (ROS) and 

induction of oxidative stress. There is growing evidence that inhibiting ROS generation can 

ameliorate neuronal damage in seizures and epilepsy(Kim et al., 2013; Kovac et al., 2014; 

Williams et al., 2015). However, the effects of antioxidant therapy on seizure development have 

been mixed. This may be partly explained by the short-lived neuroprotective effects of direct 

antioxidants, because of their consumption in the process of ROS scavenging. An alternative 

strategy is to increase the endogenous antioxidant defenses of cells by upregulating the 

transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Activation of Nrf2 has 

been shown to be protective against oxidative stress in a number of pathologies(Esteras et al., 
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2016). In addition, activation of Nrf2 provides substrates for mitochondria and so increases ATP 

production, which can be protective for cells(Holmstrom et al., 2013; Dinkova-Kostova and 

Abramov, 2015). Nrf2 has been shown to increase in kindled animals and after status epilepticus 

(SE) (Wang et al., 2013), and overexpressing Nrf2 neuroprotects following SE (Mazzuferi et al., 

2013).  

Sulforaphane, a naturally occurring Nrf2 activator, has therefore been proposed as a possible 

disease-modifying treatment in epilepsy(Pauletti et al., 2017). However, sulforaphane is non-

selective, affecting many off-target proteins(Clulow et al., 2017), and can itself exhibit both 

anticonvulsant(Carrasco-Pozo et al., 2015) and proconvulsant  activity(Socala et al., 2017). 

Moreover, sulforaphane is toxic at high dose, and has probable poor penetration of the blood 

brain barrier(Clarke et al., 2011). Together, these may explain why a convincing effect on the 

development of seizures has only been shown when sulforaphane is administered with high dose 

antioxidants(Pauletti et al., 2017).  

In contrast to sulforaphane, cyanoenone triterpenoids are specific for Nrf2(Walsh et al., 2014) 

and 200-400 times more potent than sulforaphane with a much higher therapeutic index(Copple 

et al., 2014). One member of this chemical class, RTA 408, a close structural analog of 

bardoxolone methyl, is a novel Nrf2 activator that has undergone clinical trials in non-small cell 

lung cancer and, in part because of its CNS penetration properties, is now undergoing a clinical 

trial in Friedreich's Ataxia(SHEIKH, 2014). Here we show that RTA 408 activates Nrf2 through 

inhibition of Keap1 through its primary sensor C151. We further observed that RTA 408 inhibits 

ROS production, mitochondrial depolarization and cell death in an in vitro model of seizure-like 

activity. Importantly, our studies demonstrate that, given after SE in vivo, RTA 408 increases 

glutathione and ATP, and prevents neuronal death. Moreover, acute RTA 408 treatment alone 
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results in a dramatic reduction in spontaneous seizures for at least four months following SE. 

Acute inhibition of Keap1 by RTA 408 represents a novel approach to reduce neuronal death and 

modify the development of seizures. 

 

Materials and methods 

Cortical cell cultures 

Mixed cortical neurons and glial cells cultures were prepared from postnatal (P0-P1) Sprague-

Dawley rat pups (UCL breeding colony) according to a modified protocol described by 

Haynes(LW., 1999). The pups were sacrificed by cervical dislocation, and rat brains were 

quickly removed; neocortical tissue was isolated and submerged in ice-cold HBSS (Ca2+, Mg2+-

free, ThermoFisherInvitrogen, Paisley, UK). The tissue was treated with 1% trypsin for 10 

minutes at 37°C to dissociate cells. The final neuronal cell suspension was plated on 25 mm 

round coverslips coated with poly-L-lysine (1 mg/ml, Sigma), and cultured in Neurobasal A 

medium supplemented with B-27 (ThermoFisherInvitrogen) and 2 mM L-glutamine. 

Neocortical cultures were fed once a week and maintained in a humidified atmosphere of 5% 

CO2 and 95% air at 37 °C in a tissue culture incubator. 

The cultures were used for experiments at 13-17 days in vitro (DIV). Neurons were distinguished 

from glia by their typical appearance using phase-contrast imaging. 

 

Recording solutions 
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Preincubations and experiments were performed at room temperature (RT), unless otherwise 

mentioned, and were performed in an HEPES-buffered salt solution (aCSF), composition (in 

mM): 125 NaCl, 2.5 KCl, 2 MgCl2, 1.25 KH2PO4, 2 CaCl2, 30 glucose and 25 HEPES, pH 

adjusted to 7.4 with NaOH.  

Experiments were carried out in the HEPES buffered salt solution including (aCSF) or excluding 

MgCl2 (low-Mg2+) to induce seizure-like activity.  

 

Imaging of intracellular Ca2+ ([Ca2+]c) and mitochondrial membrane potential 

(Δψm) 

Before recording, neocortical neuronal cultures were incubated for 30 minutes with 5 µM Fura-

2-AM (ThermoFisher-Invitrogen, Paisley, UK), and 0.005% pluronic acid in aCSF.  

For simultaneous measurement of [Ca2+]c and Δψm, Rhodamine123 (Rh123) (Sigma, UK) (1 

µM) was added into the culture dishes during the last 15 minutes of the Fura-2-AM loading 

period. Cells were then washed 3 times prior to recordings. [Ca2+]c was expressed by the Fura-2 

ratio. An increase of Rh123 signal indicates depolarization of mitochondria. Rh123 signals were 

normalized to the baseline level (set 0) and maximum signal produced by mitochondrial 

oxidative phosphorylation uncoupling with carbonylcyanide-p-trifluoromethoxyphenyl 

hydrazone (FCCP, 1 µM; set to 100). Cells were then washed 3 times prior to recordings. Seizure 

activity was induced by excluding MgCl2 from the medium. 

Experiments were repeated at 5-7 times with > 3 different cultures. 

 

Imaging of intracellular ROS generation 
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To evaluate rates of ROS production in the cytosol, dihydroethidium (HEt; 5 µM) was present in 

all solutions throughout the experiments. No pre-incubation was used to avoid accumulation of 

oxidized products. Experiments were conducted using 2-3 separate cultures and repeated on 4-6 

coverslips.  

 

Imaging of Glutathione (GSH) 

For GSH measurements, the media was replaced with either aCSF or low-Mg2+ aCSF and cells 

were incubated with 50 µM Monochlorobimane (MCB) (Sigma, St. Louis, MO) for 1 h at room 

temperature. The cells were then washed with aCSF, and images of the fluorescence of the 

MCB-GSH adduct were acquired using a cooled CCD imaging system. Experiments were 

repeated on 9-10 coverslips using > 3 separate cultures. 

 

Neuronal death 

Neurotoxicity was determined following incubation with low-Mg2+ for 2 h at 37 °C, by co-

staining cells with propidium iodide (20 µM) and Hoechst 33342 (4.5 µM) (Sigma, St. Louis, 

MO) in a fluorescent live/dead assay. Experiments were conducted on 3 separate cortical cultures 

and repeated on 9 coverslips for each treatment. In each treated culture coverslip, 5 random 

fields were counted. 

 

Live imaging and analysis 
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Fluorescence images were obtained on an epifluorescence inverted microscope with a 20× 

fluorite objective. Excitation light provided by a xenon arc lamp, the beam passing 

monochromator at 340, 380, 490 or 530 nm (HEt) (Cairn Research, Kent, UK). Emitted 

fluorescence was detected by a cooled CCD camera (Retiga; QImaging). 

 [Ca2+]c and mitochondrial membrane potential were measured in single cells and traces are 

presented as the ratio of excitation at 340 and 380 nm, both with emission at 515 nm. An 

increase of Rhodamine123 signal indicates depolarisation of mitochondria. Rhodamine123 

signals were normalised to the baseline level (set 0) and maximum signal produced by 

mitochondrial oxidative phosphorylation uncoupling with carbonylcyanide-p-

trifluoromethoxyphenyl hydrazone (FCCP, 1 µM; set to 100). Phototoxicity and photobleaching 

of cells was minimized by limiting light exposure to the time of acquisition of the images. 

Fluorescent images were acquired with a frame interval of 10 s. Data were analyzed using Andor 

software (Belfast, UK). 

HEt was excited by illumination at 530 nm. For most of the experiments, we chose to perform 

measurements of ROS production rates with HEt at a single wavelength, first to avoid 

photobleaching and phototoxicity from excitation of cells in the range of UV light. Rates of ROS 

increase were calculated at different time points (2, 10 and 15 min) after exposure to low-Mg2+ 

and were compared with rates recorded during a 1-3 min aCSF exposure period referred to as 

baseline.  

Images of the fluorescence of the MCB-GSH adduct were acquired using a cooled CCD imaging 

system as described using excitation at 380 nm and emission at 400 nm. 

In all the experiments, each culture coverslip represents the average of 70-120 neurons. 
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NQO1 Bioassay 

Hepa1c1c7 murine hepatoma cells were grown in α-MEM supplemented with heat- and 

charcoal-treated 10% (v/v) fetal bovine serum. Mouse embryonic fibroblasts isolated from WT 

or Nrf2-KO mice were grown in in Iscoves Modified Dulbecco's Medium (with L-glutamine), 

supplemented with 10% (v/v) heat-inactivated fetal bovine serum, 1 x insulin-transferrin-

selenium, and 10 ng/ml epidermal growth factor (Gibco-Invitrogen, Paisley, UK)(Higgins and 

Hayes, 2011). Cultured cells were maintained in a humidified atmosphere at 37oC, 5% CO2. For 

evaluation of the NQO1 inducer activity, cells (104 per well) were grown for 24 h in 96-well 

plates. The medium was then replaced with RTA 408-containing fresh medium, and the cells 

were further grown for either 48 h (Hepa1c1c7) or 24 h (MEFs). There were eight replicates of 

each treatment of eight different concentrations of the inducer. RTA 408 was dissolved in 

acetonitrile, and diluted in the cell culture medium at a ratio of 1:1000. The final acetonitrile 

concentration in the medium was 0.1% (v/v) in all wells. At the end of the treatment period, cell 

lysates were prepared in digitonin and the specific activity of NQO1 was determined using 

menadione as a substrate as described(Fahey et al., 2004).  

 

Generation of stable Keap1-rescued MEF cell lines and Keap1C151S/C151S knock-in 

mice 

All mouse experiments were performed according to the regulations of The Standards for Human 

Care and Use of Laboratory Animals of Tohoku University (Sendai, Japan) and the Guidelines 

for Proper Conduct of Animal Experiments of the Ministry of Education, Culture, Sports, 
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Science, and Technology of Japan. Immortalized Keap1-knockout (KKO) MEF cells were grown 

in low glucose Dulbecco modified Eagle medium (Wako Chemical, Japan) supplemented with 

9% (v/v) fetal bovine serum at 37°C and 5% CO2. The PiggyBac transposon system (PB514B-2; 

System Biosciences, California, USA) was utilized to generate stable cell lines expressing HA-

tagged mouse Keap1 (HA-Keap1) or cysteine mutants of HA-Keap1 as described(Saito et al., 

2015). Keap1C151S/C151S knock-in mice were generated using the CRISPR/Cas9 technology(Saito 

et al., 2015). Thioglycollate-elicited peritoneal macrophages were collected by lavage from 

Keap1C151S/C151S knock-in mice and their WT counterparts. The primary peritoneal macrophage 

cells were grown at 37°C and 5% CO2 in RPMI 1640 medium supplemented with 10% (v/v) fetal 

bovine serum and penicillin-streptomycin (10 U/0.1 mg/ml). 

 

Immunoblotting 

For immunoblotting analysis, cells were grown for 24 h in 6-well plates, and then treated with 

RTA 408 for a further 3 h. Cells were then washed with PBS, and lysed in 200 µl of lysis buffer 

[100 mM Tris-HCl, pH 6.8; 4% (w/v) sodium dodecyl sulfate (SDS); 20% (v/v) glycerol; 

0.001% (w/v) Bromophenol Blue]. The cell lysates were subjected to sonication for 30 seconds, 

and then heated at 95°C for 5 min. After cooling, dithiothreitol (DTT) was added to a final 

concentration of 20 mM, and the lysates were incubated at 37°C for 10 min. Protein 

concentrations were determined by the BCA assay (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA( . Proteins (15-20 µg) were resolved by electrophoresis on an 8% SDS–

polyacrylamide gel, and electrophoretically transferred to a polyvinylidene difluoride (PVDF) 

membrane. After blocking with 10% non-fat milk at room temperature for 1 h, immunoblotting 

was performed with the following antibodies and dilutions: rat monoclonal Nrf2 antibody(Saito 
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et al., 2015) (1:100), rat monoclonal HA antibody (Roche, 3F10, California, USA, 1:1000), rat 

monoclonal Keap1 antibody(Saito et al., 2015) (1:100), and mouse monoclonal α-tubulin 

antibody (Sigma–Aldrich, DM1A, 1:5000-1:10000 dilution). The western blot data are 

representative of three independent experiments. 

 

Animals 

Animal experiments were conducted in accordance with the Animals (Scientific Procedures) Act 

1986, and approved by the local ethics committee. Male Sprague-Dawley rats (Charles River 

Laboratories, UK; 160-180 g) were individually housed with free access to food and water in 12 

h light/dark cycles throughout the study. Animals were acclimatised to the animal house for at 

least 7 days before experimental use. There was no difference in weight between the animals 

randomised to vehicle or RTA 408 (248±8 vs. 257±9 grams, respectively). 

 

Surgery 

Male Sprague–Dawley rats were anaesthetized using isoflurane and placed in a sterotaxic frame 

(Kopf, CA, USA). At the start of surgery, Buprenorphine (0.2 mg/kg; SC) and Metacam (1 

mg/kg; SC) were administered for pain relief. An EEG transmitter (A3028, Open Source 

Instruments)(Chang et al., 2011) was implanted subcutaneously. A subdural intracranial 

recording electrode was positioned above the right hippocampus (2.5 mm lateral and 4 mm 

posterior of bregma(Paxinos G., 1998)), and a reference electrode was implanted in the 

contralateral hemisphere (2.5 mm lateral and 6 mm posterior of bregma). The electrodes were 

fixed to the skull with three skull screws and tissue glue, followed by dental cement. 
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Immediately after surgery, 3-5 ml of warmed Ringer’s solution and Amoxicillin (Betamox LA, 

100 mg/kg) was administered subcutaneously. Rats recovered for 7-10 days before initiation of 

the experiment. Rats were housed separately in Faraday cages and EEG was recorded 

continuously for up to 18 weeks post-surgery.  

 

KA induced SE epilepsy model 

For induction of SE, kainic acid (KA) treatment was used according to a protocol described by 

Hellier et al(Hellier et al., 1998). This model has a low mortality rate and reliably leads to later 

spontaneous recurrent seizures(Williams et al., 2009; Jupp et al., 2012; Liu et al., 2016). Rats 

were injected intraperitoneally with KA (Tocris Bioscience, Bristol, UK) dissolved in sterile 

0.9% saline (10 mg/mL) at a dose of 5 mg/kg. Rats were continuously monitored for convulsive 

motor seizures and for EEG in those rats with implanted transmitters. Hourly KA treatment 

continued in animals without convulsive seizures until class III, IV, or V seizures were evoked 

(scored according to a modified Racine’s scale(Racine, 1972; Ben-Ari, 1985)). Once an animal 

began showing excessive inactivity or excessive activity (i.e. exaggerated running or jumping), 

or had more than 10 class IV/V seizures/h, subsequent injections were delayed or reduced to 2.5 

mg/kg to avoid excessive toxicity and mortality. The endpoint for KA treatment was considered 

either when animals reached class V seizure (i.e. excessive rearing with concomitant forelimb 

clonus and falling) or when the total dose of KA reached 45 mg/kg.  

Animals were included in the study if there was continuous epileptiform activity for 2 h, during 

which spike frequencies were more than 2 Hz, and spike amplitude was at least 3 times 

background. For rats that were not EEG monitored, duration of SE was measured based on 

behavioral manifestation. Start of the status was considered when the rat experienced full motor 
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seizure with loss of postural control and falling. The SE was terminated in all animals at 2 hours 

by intraperitoneal administration of diazepam (5mg/kg ip). All animals were randomized to 

treatment group prior to SE to prevent any bias in length of SE or number of doses of KA. 

 

Drugs administration  

Following 2 h of SE, rats were randomized to treatment with either vehicle (10% DMSO/sterile 

saline) or RTA 408 dissolved in the same vehicle. RTA 408 was synthesized by Reata 

Pharmaceuticals, Inc. In multiple dose experiments, control animals were treated with an 

equivalent volume and number of injections of vehicle as the RTA 408 treated animals. 

 

EEG analysis 

The seizure detection analysis was performed in an automated manner with custom-written 

software to minimize the potential for bias. EEG was processed with the Neuroarchiver tool 

(Open Source Instruments), which determined EEG power for different frequency bands. 

Seizures were characterized by the appearance of high frequency (>2 Hz) with progression of the 

spike frequency, rhythmic spike wave discharges with amplitudes at least three times that of 

baseline EEG (see Fig. 5b) that lasted for a minimum of 10 s. All electrographic seizures were 

confirmed by visual inspection. The majority of seizures were confirmed by video monitoring. 

 

Video monitoring  
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Out of 18 rats recorded for EEG used in this study, 14 rats were simultaneously video monitored 

24 h/d throughout the study with video IP cameras. The time stamps for cameras were 

synchronized to the EEG digitizing computer. Cameras were placed 30-40 cm from each rat. The 

behavioral data were used in this study in cases where EEG seizure activity needed to be 

distinguished from electrical noise generated by movement artifacts.  

 

in vivo Glutathione measurements 

Total (oxidized and reduced forms) Glutathione concentrations were determined by Glutathione 

Assay Kit (Cat No. CS0260, Sigma). The brain tissue was collected from sham rats (Sham, n = 7 

for cortex and n = 6 for hippocampus) and from treated rats 7 days following KA-induced SE for 

2 h, followed by treatment with vehicle (10% DMSO/Saline, KA + vehicle; n = 5), RTA 408 

groups at doses: 17.5 mg/kg once daily for 3 days (KA + RTA 17.5; n = 6), 25mg/kg once daily 

for 3 days (KA + RTA 25; n = 5) and 50mg/kg once daily for 2 days (KA + RTA 50; n = 6). 

Immediately following dissection, tissue was flash frozen by immediate immersion in liquid 

nitrogen.  Tissue (200 mg of lateral part of frontal cortex and 50 mg of dorsal hippocampus) then 

was homogenized in 5 % SSA solution. After centrifuging at 10,000×g for 10 min, 10 µL 

supernatant was used for reaction with 150 µL working mixture (glutathione reductase and 

DTNB solution) at room temperature for 5 min. After that 50 µL nicotinamide adenine 

dinucleotide phosphate (NADPH) solutions were added to initiate the reaction. The glutathione 

content was determined by kinetic measurement with 1 min intervals for 5 min at 412 nm and 

calculated by comparison with standards. For the analysis, investigators were blinded to 

treatment. 
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in vivo ATP measurements 

ATP was measured in rat brain (cortex and hippocampus) using ATP-luciferase-based 

bioluminescence assay kit (Lonza, Basel, Switzerland). The brain tissue was collected from sham 

rats (Sham, n = 6) and from treated rats 7 days following KA-induced SE for 2 h, followed by 

treatment with vehicle (10% DMSO/Saline, KA + vehicle; n = 5), RTA 408 groups at doses: 

17.5 mg/kg once daily for 3 days (KA + RTA 17.5; n = 5), 25mg/kg once daily for 3 days (KA + 

RTA 25; n = 5) and 50mg/kg once daily for 2 days (KA + RTA 50; n = 6). Briefly, immediately 

following dissection, tissue was flash frozen by immediate immersion in liquid nitrogen. Tissue 

(50 mg) was lysed in 500 µl of lysis reagent (for 10 min at room RT) and centrifuged at 10,000 × 

g for 2 minutes to pellet insoluble materials. To 100µl of resulting supernatant, 100 µl of ATP 

monitoring reagent was added in a 96-well plate. After 2 min incubation, luminescence was 

measured using Fluostar Omega microplate reader. ATP standard curve was created, and ATP 

concentration in the tissue lysed from animals was calculated relative to the standard curve, and 

expressed in nmols/g tissue. Analysis was performed blinded to treatment. 

 

Immunohistochemistry 

One week or 15 weeks post KA-induced SE, rats were perfused transcardially under terminal 

anesthesia (Pentobarbital sodium) with heparinized phosphate-buffered saline (PBS; 8 IU/ml), 

followed by 4% paraformaldehyde (PFA) in PBS (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA). Brains were removed and left in 4% PFA/PBS overnight at 4°C, and then 

cryoprotected with a 10-20-30% sucrose PBS gradient over 3-4 days until tissue sinks. After 

cryoprotection, brains were embedded in OCT Compound (Sakura Finetek, CA, USA) and 
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stored at -80 °C. For each animal, coronal sections (50 µm) selected from bregma -3.1 to 4 

mm were cut in a cryostat (Leica CM1950) at -20C and fixed on poly-L-lysine coated slides 

(Thermo Fisher Scientific), then left to air dry at RT for 2 h. Brian sections were then circled 

with a water repellent pen (Dako pen; Agilent, CA, USA), permeabilized with PBS, 0.3% 

Triton X-100 for 30 min, blocked with 4% goat serum (Sigma) for 1 h and washed three times 

for 10 min each with PBS. Sections were incubated overnight at 4 °C with a rabbit primary 

antibody against NeuN (1:1000, MAB377, Millipore) in a solution of PBS and 0.3% Triton X-

100. Following three washes with PBS (10 min each), the sections were incubated with Alexa 

fluor-488 goat anti mouse secondary antibody (1:1000; Abcam) for 2 h at RT. The sections 

were washed three times with PBS (10 min each) and mounted with Vectashield and 4',6-

diamidino-2-phenylindole (DAPI) mounting medium (Vector Labs). In some sections, we also 

immunostained for the astrocytic marker glial fibrillary acidic protein (GFAP; Sigma, 1:400) 

followed by secondary antibody (Alexa fluor 594, Invitrogen). Images were obtained at a 

resolution of 1024 × 1024 on Zeiss confocal microscope using 20× objective. Images were 

acquired at 405 nm excitation wavelength and 455nm emission wavelength for DAPI; at 

excitation of 488 nm and emission of 510-613 nm for NeuN; and at excitation of 591 nm and 

emission of 605-652 nm wavelength for GFAP. Image analysis was performed using ImageJ 

software in an automatic cell counting image-based tool, and investigators were blinded to 

treatment. Neurons were identified as NeuN-positive cells with relatively large (>8 µm) soma. 

Cell densities for individual animals represent the average densities of the particular region for 4-

6 brain sections. Results are expressed as neurons (or astrocytes) per mm2.  We quantified 

neuronal damage in the dorsal and ventral hippocampus, and we focused on the hippocampus as 

this is the brain area in which there is the greatest atrophy in this model as measured by 
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volumetric MRI(Jupp et al., 2012). The cell counts were performed in the pyramidal cell/dentate 

granule cell layers where the predominant cell types are excitatory neurons. 

 

Statistical analysis.  

Data are expressed as the mean ± SEM. Data were analyzed using unpaired Student’s t test, 

Mann-Whitney U test, one-way ANOVA with Bonferroni post hoc test, or one-way repeated 

measures ANOVA with sequential Bonferroni post hoc test, as appropriate using SPSS 22 

(IBM). The comparison of seizure frequency was analyzed using a generalized log-linear 

mixed model with random effect of animal (autoregressive covariance) and fixed effects of 

treatment group, week, and the interaction between treatment group and week. Sample sizes 

were chosen based on our previous experiences in the calculation of experimental variability. 

The numbers of animals used are described in the corresponding figure legends. 

 

Results 

RTA 408 activates Nrf2 by inhibition of its main negative regulator, Keap1 

Using a Hepa1c1c7 murine hepatoma cell culture, we first tested whether the pentacyclic 

cyanoenone triterpenoid RTA 408 (Fig. 1a) induced the prototypic Nrf2 target enzyme NQO1, 

and demonstrated that it did so with a CD (Concentration that Doubles the specific activity of 

NQO1) of 2.5 nM (Fig. 1b) and that its ability to induce NQO1 was lost in the absence of Nrf2 

(Fig. 1c).  
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Induction of Nrf2 is predominantly triggered by inactivation of Keap1, the mammalian cysteine-

based sensor for electrophiles and oxidants (Dinkova-Kostova et al., 2017). Chemical 

modification(s) of the cysteine sensor(s) of Keap1 inactivate its substrate adaptor function, 

leading to Nrf2 stabilization and subsequent upregulation of Nrf2-dependent transcription. We 

therefore next sought to identify the cysteine sensor(s) within Keap1 for RTA 408(Cleasby et al., 

2014; Huerta et al., 2016).  We used Keap1 knockout (KKO) mouse embryonic fibroblast (MEF) 

cells rescued with N-terminally hemagglutinin (HA)-tagged murine Keap1 ligated to the 

PiggyBac transposon system(Saito et al., 2015). Expression plasmids encoding wild-type (WT) 

or cysteine mutants of three different types (i.e. C151S, C273E/C288W and 

C151S/C273W/C288W) HA-Keap1 were transfected into KKO MEF cells, and stable HA-

Keap1 expressing lines were established.   

 

We found that upon a 3-h exposure to 25 nM or 50 nM RTA 408, Nrf2 is stabilized in the WT 

and in the double mutant C273W/C288E Keap1-rescued KKO MEF cells (WT-KKO MEFs and 

C273W/C288E-KKO MEFs respectively) (Fig. 1d). By contrast, in the single mutant C151S 

Keap1-rescued KKO MEFs (C151S-KKO MEFs) and the triple mutant C151S/C273W/C288W 

Keap1-rescued KKO MEF cells (C151S/C273W/C288W-KKO MEFs), these concentrations of 

RTA 408 were unable to cause stabilization of Nrf2 (Fig. 1d).  Furthermore, we used primary 

peritoneal macrophage cells isolated from WT or Keap1C151S/C151S knock-in mice that were 

generated using the CRISPR/Cas9 technology(Saito et al., 2015). In agreement to the results 

obtained in Fig 1d, exposure of these cells to 15 nM or 30 nM RTA 408 for 3-h led to Nrf2 

stabilization only in the WT, but not in the Keap1C151S/C151S primary peritoneal macrophage cells 
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(Fig. 1e). Taken together, these results establish that C151 in Keap1 is the primary sensor for 

RTA 408. 

 

RTA 408 prevents mitochondrial depolarization without altering calcium 

oscillations during epileptiform activity  

We next determined the functional effect of Keap1 inhibition by RTA 408 in an in vitro model of 

epileptiform activity. We induced epileptiform activity through removal of magnesium from the 

medium; this promotes NMDA receptor activation by vesicular glutamate release and results in 

seizure-like activity and calcium oscillations in neurons(Kovac et al., 2012). The omission of 

magnesium from the solution induced synchronised calcium signals in the control neuronal 

culture (Fig. 2a, n = 70 neurons, 1 experiment (exp.)). Pre-incubation (24 hours) of the cells with 

200 nM RTA 408 did not change the frequency or coastline of low magnesium-induced calcium 

spikes in neuronal culture (Fig. 2 b-d). These data suggest that activation of Nrf2 with 200 nM 

RTA 408 did not change vesicular glutamate release or activation of NMDA receptors in the low 

magnesium model.  

Prolonged seizure-like activity in neurons leads to mitochondrial depolarization, which may be 

the result of a low level of mitochondrial substrates, and/or opening of the mitochondrial 

permeability transition pore(Schuchmann et al., 1999; Kovac et al., 2012). Omission of 

magnesium from the recording medium induced slow and progressive mitochondrial 

depolarization in primary neurons resulting in ~30 % decrease in mitochondrial membrane 

potential (∆ψm) in 30 min (Fig. 2e). Pre-incubation of the cells with 200 nM RTA 408 for 24 

hours protected neurons against a decrease ∆ψm (Fig. 2e). 
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Importantly, incubation of cells with a lower concentration of RTA 408 (50 nM) also effectively 

reduced the effect of low magnesium on mitochondrial membrane potential (Fig. 2e). Thus, 

activation of Nrf2 by incubation with RTA 408 supports mitochondrial metabolism that makes 

neuronal mitochondria less vulnerable to seizure-like activity.  

 

RTA 408 reduces epileptiform activity-induced ROS production and protects 

neurons against oxidative stress and excitotoxicity 

In agreement with previously published studies(Kovac et al., 2014; Williams et al., 2015), we 

found that activation of epileptiform activity by omitting magnesium from the medium induced 

more than a 5-fold increase in the rate of ROS production (n = 403 neurons, 5 exp., Fig. 2f). 

Incubation of co-culture of neurons and astrocytes with 200 nM RTA 408 for 24 hours 

significantly reduced the rate of ROS production in neurons during seizure-like activity 2, 10 and 

15 min after exposure to low-Mg2+ (from 192%, 357% and 564% to 113%, 186 and 291% 

respectively, F(2,12) = 49.415, p < 0.001, Fig. 2f). There was no difference in ROS production 

between RTA 408 pre-treated neurons and low Mg2+ condition at all time points (2 and 10 min: p 

= 1.000; 15 min:  p= 0.107). 

Generation of ROS in brain cells has physiological roles(Angelova and Abramov, 2016) and it 

becomes pathological only when it starts to reduce cellular antioxidants. Epileptiform activity 

significantly decreases the level of the major endogenous antioxidant in the central nervous 

system, glutathione (GSH; Fig. 2g), which indicates oxidative stress. Preincubation (for 24 

hours) of the cortical neurons and astrocytes with 200 nM RTA 408 completely restored the 

GSH pool in cells with seizure-like activity (Fig. 2g).  
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We subsequently determined if this reduction of ROS production translated to a neuroprotective 

effect. Incubation of the cortical primary co-cultures of neurons and astrocytes in low 

magnesium medium for 2 hours induced neuronal loss (32% ± 2.4; Fig. 2h). Activation of Nrf2 

by a 24-h preincubation of the cells with RTA 408 (200 nM) almost completely prevents seizure-

like activity induced neuronal cell death (Fig. 2h).  

 

RTA 408 increases glutathione and ATP and prevents neuronal death following 

status epilepticus in vivo 

We next asked if the antioxidant effects of RTA 408 observed in vitro translate to increased 

glutathione and ATP in vivo. We induced SE using KA, and the animals were randomised to 

either vehicle once a day for three days, or RTA 408 either as three dosing regimens: 17.5 mg/kg 

or 25 mg/kg over three days, or 50 mg/kg for two days. Although glutathione levels drop 

immediately following SE(Cock et al., 2002), we found that in our SE model, they are normal by 

one week (Fig. 3a). However, in the RTA 408 treated SE animals, there was a significant dose-

dependent increase in glutathione to supra-normal levels by one week post-SE (Fig. 3a). This 

was particularly evident in the hippocampus, which at the higher RTA 408 doses demonstrated a 

3-4 fold increase in glutathione levels (Fig. 3a).  Moreover, at one week post-SE, ATP levels 

were reduced in the vehicle treated animals but were restored to supranormal levels in a dose 

dependent fashion by RTA 408 (Fig. 3b). Since 25 mg/kg RTA 408 was well tolerated and 

restored the ATP levels at one week (Fig. 3b), and 50 mg/kg RTA 408 was associated with 

adverse effects (mainly weight loss) in subsequent experiments we used 25mg/kg RTA 408 as 

either a single dose or 3 doses over 3 days. 
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Is this increase in glutathione and protection against ATP depletion associated with 

neuroprotection? KA-induced SE results in significant neuronal damage in the hippocampus that 

can continue to progress for up to 8 weeks(Hopkins et al., 2000; Jupp et al., 2012). We, 

therefore, measured cell densities in the hippocampal subfields of the dorsal hippocampus one 

week and 15 weeks after SE. Significant neuronal loss in the hilus and CA3 is evident at 1 week 

post-SE (Fig. 4c,d) and does not progress by 15 weeks (Fig. 4a,f,g) . This loss was significantly 

ameliorated by RTA 408 (Fig. 4 a,c,d,f,g). There was only a non-significant trend for decreased 

neuronal densities in CA1 at one week (Fig. 4b); however, at 15 weeks there had been 

progressive CA1 neuronal loss, resulting in a significant decrease in neuronal density (p < 0.001 

by unpaired two-tailed Student t-test, Fig. 4a,e). RTA 408 prevented this progressive neuronal 

loss in CA1 in a dose dependent fashion (Fig. 4a,e). We also analysed the effects of RTA408 on 

neuronal and glial damage in the ventral hippocampus at 15 weeks (Supplementary Figure 1) and 

found a similar degree of damage and protective effect in CA1 and CA3 (Supplementary Fig 2). 

 

RTA 408 modifies seizure progression 

Although neuronal loss in the hippocampus is associated with cognitive and neurological deficits 

following SE, decreasing neuronal loss does not necessarily affect the development of 

epilepsy(Khalil et al., 2017). We therefore separately tested if RTA 408 given after SE could 

prevent the development of epilepsy. Animals were randomly assigned to treatment with vehicle 

or RTA 408. Seizures were recorded in 9 animals (per group) for 12 weeks, and in 4 out of 9 

animals in each group recordings were continued to 15 weeks.   

All animals had SE lasting at least 2 hours, terminated with diazepam (5mg/kg ip) (Fig. 5a).  

Following SE, the rats developed spontaneous seizures (Fig. 5b). There was no significant 
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difference between the two groups in terms of total dose of KA (vehicle 16 ± 6 mg/kg, RTA 408 

15 ± 4 mg/kg; p = 0.8) or duration of SE (vehicle 125±15 mins, RTA 408 130±10 mins; p = 0.5). 

For those that developed seizures, there was no significant difference in the latency period 

between SE and the first seizure for the two groups (median delay 13 days, interquartile range 

7.25 days for vehicle treated animals; median delay 17.5 days, interquartile range 18 days for 

RTA 408 treated animals, p = 0.4 Mann-Whitney U test).  In vehicle treated animals, the seizure 

frequency increased up to about 9 weeks (after first spontaneous seizure) and then plateaued. 

Although there was no significant difference in seizure frequency over the first 2 weeks between 

those animals given RTA 408 or vehicle, thereafter the seizure frequency was significantly less 

in those treated with RTA 408 (Fig. 5c,d). From weeks 9-12, there was a 94% reduction in 

median seizure frequency (from 23 to 1 per week, p < 0.01). Those animals treated with RTA 

408 spent 60-80% of days with no seizures compared to 10-30% of days with no seizure for 

those animals that received vehicle (p < 0.05, Fig. 5e,f). There was, however, no difference in the 

distribution of seizure durations between the two groups (Fig. 5g). One out of 9 animals in the 

vehicle treated group did not develop epilepsy. The odds ratio for not developing epilepsy for 

RTA 408 versus vehicle groups was 4 (95% confidence interval 0.3-49), but this did not reach 

significance. 

 

Discussion 

We have thus shown that the cyclic cyanoenone RTA 408 activates Nrf2 through inhibition of 

Keap1. Using an in vitro model of persistent seizure-like activity, we demonstrate that RTA 408 

can prevent mitochondrial depolarization, ROS production, oxidative stress and consequent 

neuronal death. We translated these findings to an in vivo model of prolonged seizure activity, in 
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which we show that RTA 408 increases glutathione levels, increases ATP to supranormal levels, 

and similarly neuroprotects. Importantly, we found that RTA 408 administration has a disease-

modifying effect, dramatically modifying the later development of spontaneous seizures. 

Nrf2 is primarily negatively regulated by Kelch-like ECH associated protein 1 (Keap1)(Itoh et 

al., 1999). Dimeric Keap1 sequesters Nrf2 in the cytoplasm and promotes degradation of Nrf2 

through the ubiquitin-proteasome pathway(Cullinan et al., 2004; Kobayashi et al., 2004; Zhang 

et al., 2004). Electrophiles and oxidants inactivate Keap1 by chemically modifying critical 

cysteine sensors within the protein(Dinkova-Kostova et al., 2002), leading to Nrf2 accumulation 

and increased transcription of Nrf2 target genes(Baird and Dinkova-Kostova, 2011). The 

versatility and relatively long half-lives of the upregulated proteins ensure long-lasting protection 

against many different types of oxidants(Gao et al., 2001). The cyclic cyanoenones are the most 

potent Nrf2 activators known to date(Dinkova-Kostova et al., 2005; Honda et al., 2011). The 

activated Michael acceptor functionality within their structures renders them highly reactive with 

sulfhydryl groups, and they belong to the category of drugs with reversible covalent mode of 

action, a property that makes them suitable for chronic administration(Kostov et al., 2015). 

Although the mechanism of action of RTA 408 had been unclear, we show that it binds to C151 

in Keap1, and so inhibits the interaction of Keap1 with Nrf2, enabling Nrf2 translocation to the 

nucleus(Cleasby et al., 2014; Huerta et al., 2016). In the nucleus, Nrf2 binds to the cis-acting 

antioxidant response elements (ARE), specific promoter sequences in genes encoding phase II 

and antioxidant cytoprotective proteins, including glutathione S-transferase, NADPH:quinone 

oxidoreductase (NQO1), and enzymes involved in the biosynthesis and regeneration of 

glutathione. 
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During prolonged seizures (SE), ROS are produced through activation of NADPH oxidase via 

NMDA receptor activation(Kovac et al., 2014; Williams et al., 2015). ROS and consequent 

peroxynitrite formation can contribute to cell death though lipid peroxidation, inactivation of 

enzymes, mitochondrial permeability transition pore opening (and mitochondrial depolarization) 

and DNA damage(Szabo et al., 2007). Moreover, ROS can directly inhibit mitochondrial 

complex 1 activity, further impeding ATP production(Ryan et al., 2012; Rowley et al., 2015). 

Seizures and seizure-like activity are energy demanding processes with high ATP consumption 

by ion pumps; lower ATP production induced by ROS-induced mitochondrial dysfunction 

rapidly results in energy deprivation and cell death(Kovac et al., 2012). In addition to increasing 

antioxidant cytoprotective proteins, overexpression or activation of Nrf2 can also suppress 

NADPH oxidase activity(Kovac et al., 2015), and so should decrease ROS production and 

accumulation during seizure-like activity. We tested this in an in vitro model of seizure-like 

activity. Importantly, RTA 408 had no direct anti-seizure effect and did not alter the calcium 

dynamics of seizure-like activity, yet RTA 408 decreased ROS production, increased 

glutathione, restored ATP levels and neuroprotected. Thus the protective effect of RTA 408 can 

be explained by stimulation of mitochondrial bioenergetics and reduction of ROS production but 

not through inhibition of the calcium oscillations. However, these protective effects were 

observed in an in vitro model of prolonged seizure-like activity and caution has to be exercised 

in extrapolating this to the in vivo condition.  

We, therefore, asked whether these in vitro results translate to an in vivo effect? To address this, 

we used an established in vivo model of SE, which results in neuronal death in the hippocampus 

in a similar pattern to that observed in human hippocampal sclerosis (the commonest cause of 

drug resistant epilepsy in humans)(Hellier et al., 1998)  and the development of chronic epilepsy. 
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In this model, RTA 408 administration over 3 days increased glutathione levels and rescued ATP 

decreases to supranormal levels by 1 week. This increase in antioxidants and cellular energy 

function resulted in neuroprotection in CA3 and the hilus. In this model, neuronal damage in 

CA1 was not evident until many weeks after the SE and since RTA 408 modified the 

development of epilepsy after 4 weeks, then it is unclear if the later neuroprotection in CA1 is a 

direct effect of RTA 408 or the result of decreasing the later seizure frequency. However, 

evidence in other models seems to indicate that the progression of damage after status epilepticus 

is not solely due to the occurrence of seizures(Pitkanen et al., 2002), and it is also possible that 

the apparent progression that we observed could be due to such processes as the removal of dead 

or dying neurons. In addition, we (as others)(Gualtieri et al., 2012) found evidence of loss of 

astrocytes with chemoconvulsant-induced status epilepticus; in our study, RTA 408 also 

effectively prevented this. 

Acute RTA 408 administration reduced seizure frequency >8 weeks after the SE by > 90%. (at a 

time when RTA 408 would no longer be present) (SHEIKH, 2014). This compares very 

favourably to other disease modifying treatments. Although there was a tendency for there to be 

a greater number of seizure-free animals in the RTA 408 treated group, this did not reach 

significance. An unanswered question is whether longer administration could prevent the 

development of epilepsy altogether. Since the mechanism of action of RTA 408 is through 

modifying gene expression, it is noteworthy that it has a profound effect even when given after 

the epileptogenic insult, markedly increasing the translational potential of this intervention. RTA 

408 is already undergoing clinical trials in other conditions, and the remarkable evidence of 

efficacy presented herein suggests potential for this drug as a disease-modifying treatment in 

epilepsy. 



 27 
 

 

Acknowledgments 

We thank Dr. Andreas Lieb (UCL Institute of Neurology) for his assistance with the EEG 

analysis. The authors thank Reata Pharmaceuticals for their support and for providing RTA 408. 

 

Funding 

This work was supported by the European Union’s Seventh Framework Programme (FP7/2007-

2013) under grant agreement n°602102 (EPITARGET) and Epilepsy Research UK and the 

Biotechnology and Biological Sciences Research Council (Project Grant BB/L01923X/1).   

 
References 
 
Angelova PR, Abramov AY. Functional role of mitochondrial reactive oxygen species in 

physiology. Free Radic Biol Med 2016; 100: 81-5. 

Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch 

Toxicol 2011; 85(4): 241-72. 

Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and 

relevance to human temporal lobe epilepsy. Neuroscience 1985; 14(2): 375-403. 

Carrasco-Pozo C, Tan KN, Borges K. Sulforaphane is anticonvulsant and improves 

mitochondrial function. J Neurochem 2015; 135(5): 932-42. 

Chang P, Hashemi KS, Walker MC. A novel telemetry system for recording EEG in small 

animals. J Neurosci Methods 2011; 201(1): 106-15. 



 28 
 

Clarke JD, Hsu A, Williams DE, Dashwood RH, Stevens JF, Yamamoto M, et al. Metabolism 

and Tissue Distribution of Sulforaphane in Nrf2 Knockout and Wild-Type Mice. Pharm Res-

Dordr 2011; 28(12): 3171-9. 

Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, et al. Structure of the BTB 

domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One 2014; 

9(6): e98896. 

Clulow JA, Storck EM, Lanyon-Hogg T, Kalesh KA, Jones LH, Tate EW. Competition-based, 

quantitative chemical proteomics in breast cancer cells identifies new target profiles for 

sulforaphane. Chem Commun (Camb) 2017; 53(37): 5182-5. 

Cock HR, Tong X, Hargreaves IP, Heales SJ, Clark JB, Patsalos PN, et al. Mitochondrial 

dysfunction associated with neuronal death following status epilepticus in rat. Epilepsy Res 

2002; 48(3): 157-68. 

Copple IM, Shelton LM, Walsh J, Kratschmar DV, Lister A, Odermatt A, et al. Chemical tuning 

enhances both potency toward nrf2 and in vitro therapeutic index of triterpenoids. Toxicol Sci 

2014; 140(2): 462-9. 

Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that 

bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol 

Cell Biol 2004; 24(19): 8477-86. 

de Boer HM, Mula M, Sander JW. The global burden and stigma of epilepsy. Epilepsy Behav 

2008; 12(4): 540-6. 

Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free 

Radic Biol Med 2015; 88(Pt B): 179-88. 



 29 
 

Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, et al. Direct 

evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 

enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 2002; 

99(18): 11908-13. 

Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian 

intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys 2017; 617: 84-93. 

Dinkova-Kostova AT, Liby KT, Stephenson KK, Holtzclaw WD, Gao X, Suh N, et al. 

Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection 

against oxidant and inflammatory stress. Proc Natl Acad Sci U S A 2005; 102(12): 4584-9. 

Esteras N, Dinkova-Kostova AT, Abramov AY. Nrf2 activation in the treatment of 

neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. 

Biol Chem 2016; 397(5): 383-400. 

Fahey JW, Dinkova-Kostova AT, Stephenson KK, Talalay P. The "Prochaska" microtiter plate 

bioassay for inducers of NQO1. Methods Enzymol 2004; 382: 243-58. 

Galanopoulou AS, Buckmaster PS, Staley KJ, Moshe SL, Perucca E, Engel J, Jr., et al. 

Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia 2012; 

53(3): 571-82. 

Gao X, Dinkova-Kostova AT, Talalay P. Powerful and prolonged protection of human retinal 

pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: 

the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci U S A 2001; 98(26): 

15221-6. 



 30 
 

Gualtieri F, Curia G, Marinelli C, Biagini G. Increased perivascular laminin predicts damage to 

astrocytes in CA3 and piriform cortex following chemoconvulsive treatments. Neuroscience 

2012; 218: 278-94. 

Heinemann U, Kaufer D, Friedman A. Blood-brain barrier dysfunction, TGFbeta signaling, and 

astrocyte dysfunction in epilepsy. Glia 2012; 60(8): 1251-7. 

Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE. Recurrent spontaneous motor seizures after 

repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal 

lobe epilepsy. Epilepsy Res 1998; 31(1): 73-84. 

Higgins LG, Hayes JD. The cap'n'collar transcription factor Nrf2 mediates both intrinsic 

resistance to environmental stressors and an adaptive response elicited by chemopreventive 

agents that determines susceptibility to electrophilic xenobiotics. Chem Biol Interact 2011; 

192(1-2): 37-45. 

Holmstrom KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, et al. Nrf2 impacts 

cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol 

Open 2013; 2(8): 761-70. 

Honda T, Yoshizawa H, Sundararajan C, David E, Lajoie MJ, Favaloro FG, Jr., et al. Tricyclic 

compounds containing nonenolizable cyano enones. A novel class of highly potent anti-

inflammatory and cytoprotective agents. J Med Chem 2011; 54(6): 1762-78. 

Hopkins KJ, Wang G, Schmued LC. Temporal progression of kainic acid induced neuronal and 

myelin degeneration in the rat forebrain. Brain Res 2000; 864(1): 69-80. 



 31 
 

Huerta C, Jiang X, Trevino I, Bender CF, Ferguson DA, Probst B, et al. Characterization of 

novel small-molecule NRF2 activators: Structural and biochemical validation of stereospecific 

KEAP1 binding. Biochim Biophys Acta 2016; 1860(11 Pt A): 2537-52. 

Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear 

activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal 

Neh2 domain. Genes Dev 1999; 13(1): 76-86. 

Jupp B, Williams J, Binns D, Hicks RJ, Cardamone L, Jones N, et al. Hypometabolism precedes 

limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia 2012; 

53(7): 1233-44. 

Khalil A, Kovac S, Morris G, Walker MC. Carvacrol after status epilepticus (SE) prevents 

recurrent SE, early seizures, cell death, and cognitive decline. Epilepsia 2017; 58(2): 263-73. 

Kim JH, Jang BG, Choi BY, Kim HS, Sohn M, Chung TN, et al. Post-treatment of an NADPH 

oxidase inhibitor prevents seizure-induced neuronal death. Brain Res 2013; 1499: 163-72. 

Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor 

Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation 

of Nrf2. Mol Cell Biol 2004; 24(16): 7130-9. 

Kostov RV, Knatko EV, McLaughlin LA, Henderson CJ, Zheng S, Huang JT, et al. 

Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic 

bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action. 

Biochem Biophys Res Commun 2015; 465(3): 402-7. 



 32 
 

Kovac S, Angelova PR, Holmstrom KM, Zhang Y, Dinkova-Kostova AT, Abramov AY. Nrf2 

regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta 

2015; 1850(4): 794-801. 

Kovac S, Domijan AM, Walker MC, Abramov AY. Prolonged seizure activity impairs 

mitochondrial bioenergetics and induces cell death. J Cell Sci 2012; 125(Pt 7): 1796-806. 

Kovac S, Domijan AM, Walker MC, Abramov AY. Seizure activity results in calcium- and 

mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell 

Death Dis 2014; 5: e1442. 

Liu SJ, Zheng P, Wright DK, Dezsi G, Braine E, Nguyen T, et al. Sodium selenate retards 

epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and 

hyperphosphorylated tau. Brain 2016; 139(Pt 7): 1919-38. 

Hayens LW. H. The Neuron in Tissue Culture. New York, NY, USA: Wiley; 1999. 

Mazzuferi M, Kumar G, van Eyll J, Danis B, Foerch P, Kaminski RM. Nrf2 defense pathway: 

Experimental evidence for its protective role in epilepsy. Ann Neurol 2013; 74(4): 560-8. 

Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, et al. Targeting 

oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2017. 

Paxinos G. WC. The Rat Brain in Stereotaxic Coordinates. 4th ed. San Diego: Academic Press; 

1998. 

Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet 

Neurol 2011; 10(2): 173-86. 



 33 
 

Pitkanen A, Nissinen J, Nairismagi J, Lukasiuk K, Grohn OH, Miettinen R, et al. Progression of 

neuronal damage after status epilepticus and during spontaneous seizures in a rat model of 

temporal lobe epilepsy. Prog Brain Res 2002; 135: 67-83. 

Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. 

Electroencephalogr Clin Neurophysiol 1972; 32(3): 281-94. 

Reschke CR, Henshall DC. microRNA and Epilepsy. Adv Exp Med Biol 2015; 888: 41-70. 

Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M. Mitochondrial respiration deficits 

driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 

2015; 75: 151-8. 

Ryan K, Backos DS, Reigan P, Patel M. Post-translational oxidative modification and 

inactivation of mitochondrial complex I in epileptogenesis. J Neurosci 2012; 32(33): 11250-8. 

Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, et al. Characterizations of Three 

Major Cysteine Sensors of Keap1 in Stress Response. Mol Cell Biol 2015; 36(2): 271-84. 

Schuchmann S, Buchheim K, Meierkord H, Heinemann U. A relative energy failure is associated 

with low-Mg2+ but not with 4-aminopyridine induced seizure-like events in entorhinal cortex. 

J Neurophysiol 1999; 81(1): 399-403. 

SHEIKH AYPS, Deerfield, Illinois, 60015, US), MATTEI, Alessandra (130 S. Canal Street, Apt. 

701Chicago, Illinois, 60606, US), WANG, Xiu C. (1649 Saddle Hill Road, Green Oaks, 

Illinois, 60048, US), inventor ABBVIE INC. (1 North Waukegan Road, North Chicago, 

Illinois, 60064, US), assignee. 2,2-DIFLUOROPROPIONAMIDE DERIVATIVES OF 

BARDOXOLONE METHYL, POLYMORPHIC FORMS AND METHODS OF USE 

THEREOF. 2014. 



 34 
 

Socala K, Nieoczym D, Kowalczuk-Vasilev E, Wyska E, Wlaz P. Increased seizure 

susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice. 

Toxicol Appl Pharmacol 2017; 326: 43-53. 

Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and 

development of therapeutics. Nat Rev Drug Discov 2007; 6(8): 662-80. 

Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 

2011; 7(1): 31-40. 

Walsh J, Jenkins RE, Wong M, Olayanju A, Powell H, Copple I, et al. Identification and 

quantification of the basal and inducible Nrf2-dependent proteomes in mouse liver: 

biochemical, pharmacological and toxicological implications. J Proteomics 2014; 108: 171-

87. 

Wang W, Wang WP, Zhang GL, Wu YF, Xie T, Kan MC, et al. Activation of Nrf2-ARE signal 

pathway in hippocampus of amygdala kindling rats. Neurosci Lett 2013; 543: 58-63. 

Williams PA, White AM, Clark S, Ferraro DJ, Swiercz W, Staley KJ, et al. Development of 

spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci 2009; 

29(7): 2103-12. 

Williams S, Hamil N, Abramov AY, Walker MC, Kovac S. Status epilepticus results in 

persistent overproduction of reactive oxygen species, inhibition of which is neuroprotective. 

Neuroscience 2015; 303: 160-5. 

Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate 

adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 2004; 24(24): 

10941-53. 



 35 
 

 

Figure legends 

 
Figure 1. RTA 408 increases Nrf2 through inhibition of KEAP1. (a) Chemical structure of 

RTA 408. (b, c) Induction of NQO1 by RTA 408 in Hepa1c1c7 cells (b), and wild-type (WT)and 

Nrf2-knockout MEF cells (c). Cells (104 per well) were grown for 24 h in 96-well plates, and 

subsequently exposed to RTA 408 for 48 h (b) or 24 h (c). There were eight replicates of each 

treatment of eight inducer concentrations. At the end of the treatment period, cell lysates were 

prepared in digitonin and the specific activity of NQO1 was determined using menadione as a 

substrate. Mean values for the eight replicate wells are shown. The standard deviation for each 

data point was within 5% of the value. (d, e) Western blot analyses of total cell lysates of Keap1-

knockout MEF cells rescued with either WT, single cysteine mutant C151S, double cysteine 

mutant C273W/C288E, or triple cysteine mutant C151S/C273W/C288E of mouse N-terminally 

tagged HA-Keap1 (d) or primary peritoneal macrophages isolated from WT or Keap1C151S/C151S 

knock-in mice (e). Cells grown for 24 h in 6-well plates were exposed to vehicle (0.1% DMSO) 

or RTA 408 for a further 3 h, after which the cells were lysed. Immunoblotting was performed 

on whole cell lysates using antibodies against Nrf2, HA, Keap1 and α-tubulin. 

 
Figure 2. RTA 408 decreases ROS production, and prevents mitochondrial membrane 

depolarization and neuronal death during seizure-like activity in cortical neurons.  

Synchronous Ca2+ oscillatory indicates seizure-like activity in neurons induced by replacement of 

aCSF with low-Mg2+ aCSF in control (a, n = 70 neurons, 1 experiment (exp.)) and in RTA 408 

(200 nM, 24 h) treated culture (b, n = 72 neurons, 1 exp.). RTA 408 changed neither the 
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frequency (c, t(11) = 1.644, p = 0.129, n = 627 neurons from 7 exp. for low Mg2+; n = 536 

neurons from 6 exp. for RTA 408 (200 nM, 24 h)) nor the coastline (d, t(11) = 2.245, p=0.811) 

of Ca2+ oscillations. (e) Left panel: Representative traces of mitochondrial membrane potential 

(Δψm) in neurons (mean ± SEM) in aCSF (black line; n=112 neurons, 1 exp.), low-Mg2+ (red; 

n=120 neurons, 1 exp.) and neurons exposed to low magnesium preincubated with RTA 408 

(200 nM) for 24 h (blue; n=106 neurons, 1 exp.). FCCP (1 µM; set to 100%) was added to 

cultures at the end of each experiment. Arrow indicates replacement of aCSF with low-Mg2+ 

aCSF. Right panel: bar chart showing normalized Rhodamine123 fluorescence of neurons in 

aCSF (n = 559 neurons, n=6 exp.) during low-Mg2+ treatment (n=627 neurons, 7 exp), RTA 408 

preincubated cultures with 50 nM for 24 h (n = 410 neurons, 5 exp.) and for 48 h (n = 416 

neurons, 5 exp.) and with 200nM for 24 h (n = 536 neurons, 6 exp.), at different time points 

following exposure low-Mg2+. (f) Left panel:  Representative experiments of neuronal HEt 

fluorescence measurements in aCSF (black, n=91 neurons, 1 exp.), low-Mg2+ condition (red line, 

n=88 neurons, 1 CS), and in neurons exposed to low-Mg2+ preincubated with RTA 408 (200 nM, 

24 h) (blue line, n = 96 neurons, 1 exp.). Right panel: bar chart summarizing the rates (mean ± 

SEM) of ROS production at 2, 10 and 15 minutes in aCSF (n = 353 neurons, 4 exp.), after 

omission of Mg2+ from the extracellular solution (low-Mg2+; n =4 03 neurons, 5 exp.,) and RTA 

408 treated neurons in low-Mg2+ condition (n = 496 neurons, 6 exp.). (e-f) Data were analyzed 

by repeated measures one-way ANOVA (e: F(4,24) = 26.689, p < 0.001; f: F(2,12) = 49.415, p < 

0.001) followed by Bonferroni post hoc tests. **p < 0.01, *** p< 0.001 relative to low-Mg2+ 

condition. (g) Low-Mg2+ (n = 9 exp.) treatment significantly decreases the level of GSH 

(measured using MCB fluorescence) compared to aCSF (n = 10 exp.) and RTA 408 (200 nM, 24 

h) pretreated cultures (n = 10 exp.). (h) Percentage of dead neurons in cultures exposed to low-
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Mg2+ (n = 9 exp.) is significantly higher when compared with exposure to aCSF (2 h; n = 9 exp.) 

and RTA 408 (200 nM, 24 h) preincubated cultures exposed to low-Mg2+ (2 h; n=9 exp.). (g-h) 

Data were analyzed by one-way ANOVA (g: F(2,26) = 12.425,  p< 0.001; h: F(2,24) = 22.100,  p 

< 0.001) with Bonferroni post hoc test **p < 0.01, *** p < 0.001 relative to low-Mg2+ condition. 

 

Figure 3. RTA 408 rescues total glutathione (GSH) and ATP levels following KA-induces 

SE in vivo. (a) Total (oxidized and reduced forms of GSH) were measured in the cortex and 

hippocampus of sham rats (Sham; n = 7 for cortex and n = 6 for hippocampus), and from treated 

rats 7 days following KA-induced SE (2 h), followed by vehicle (10% DMSO/Saline KA + 

vehicle; n = 5), RTA 408 groups at doses: 17.5 mg/kg once daily for 3 days (KA + RTA 17.5; n 

= 6), 25mg/kg once daily for 3 days (KA + RTA 25; n = 5) and 50mg/kg once daily for 2 days 

(KA + RTA 50; n = 6). (b) ATP levels measured in the same animals (Sham; n = 6), vehicle (KA 

+ vehicle; n = 5), RTA 408 17.5 mg/kg once daily for 3 days (KA + RTA 17.5; n = 5), RTA 408 

25 mg/kg once daily for 3 days (KA + RTA 25; n = 5) and RTA 408 50 mg/kg once daily for 2 

days (KA + RTA 50; n= 6). 

Data are expressed as mean±SEM. *p < 0.05, **p < 0.01 and ***p < 0.001 versus KA group, by 

one-way ANOVA with Bonferroni post hoc test. In a, cortex: F(4,24) = 18.197, p < 0.001; 

Hippocampus : F(4,22) = 101.409, p < 0.001; In b, cortex: F(4,21) = 11.738, p < 0.001; 

Hippocampus: F(4,21) = 20.262, p < 0.001. 

 

Figure 4. RTA 408 prevents neuronal cell death following KA-induced SE in rats. (a) 

Representative images for CA1, CA3 and hilus of coronal sections from vehicle (10% 

DMSO/Saline) treated and RTA 408 treated rats 15 weeks after SE; scale bar = 100 µM. (b-g) 
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Cell densities in CA1, CA3 and hilus of sham (n=6), and vehicle (n = 5) and RTA 408 (25 

mg/kg/day for 3 days; n = 5) treated rats 1 week (b-d) and 15 weeks (e-g); in sham (n = 6), 

vehicle (n = 7), RTA 408 (25 mg/kg/day for 1 day; n = 5) and RTA 408 (25 mg/kg/day for 3 

days; n = 7)  following 2 h KA induced SE. Data are expressed as mean ± SEM numbers of 

animals. *p < 0.05, **p < 0.01 and ***p < 0.001 compared to vehicle group by one-way 

ANOVA followed by Bonferroni post hoc test. b: F(2,13) = 2.806, p = 0.097; c: F(2,13) = 9.220, 

p = 0.003; d: F(2,13) = 42.138, p < 0.001; e: F(2,13) = 20.536, p < 0.001; f: F(2,13) = 10.236, p 

< 0.001; g: F(2,13) = 24.550, p < 0.001. 

 

  

Figure 5. RTA 408 modifies seizure progression. (a) EEG sample traces recorded for status 

epilepticus (SE): An asterisk indicates the beginning of SE whereas an arrow indicates 

termination with Diazepam. (b) Typical EEG example of a spontaneous seizure post SE, 

expanded in the right panel. Note the rhythmical high frequency discharges at the beginning of 

the seizure (2) when compared to baseline (1). This rhythmic fast activity increases in amplitude 

(3) and decreases in frequency (4) towards the end of the seizure thus fulfilling the criteria for 

EEG seizure activity. (c-d) Bar charts of mean frequency (± SEM) of electrographically recorded 

seizures following KA induced SE for control rats, treated with vehicle (10% DMSO/Saline) 

once daily for 3 days (n = 9) and RTA 408 treated rats (RTA 408 25 mg/kg once daily for 3 

days; n = 9) 1-12 weeks (c; F(1,192) = 5.828, p < 0.05) and 13-15 weeks following the first 

spontaneous seizure (d; F(1,18) = 10.163, p < 0.01); Animal numbers in d: n = 4 for both groups. 

* p < 0.05, ** p < 0.01 and *** p < 0.001 by generalized log-linear mixed model followed by 

sequential Bonferroni post hoc test. (e) Probability distribution illustrating the probability of 0-10 
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seizures/day for each individual vehicle (n = 9) and RTA 408 treated rat (n = 9). (f) Bar chart 

summarizing mean ± SEM seizure probability across time ** p < 0.01 probabilities of seizure 

free days were compared using Mann-Whitney U. (g) Seizure duration distribution for the same 

animals as in panel c, demonstrating no significant difference between vehicle or RTA408 

treated animals. 
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Supplementary Figure 1. Immunohistochemical analyses of the rat ventral hippocampus 15 weeks after 
SE. (A) Coronal section of the rat ventral hippocampus immunostained for a neuronal marker (NeuN), 
the astrocytic marker glial fibrillary acidic protein (GFAP) and DAPI in RTA 408 treated rat. (B) 
Representative images for immunostaining in the CA1 and CA3 regions of the hippocampus of rats 
treated with vehicle or RTA 408 (25 mg/kg) for 3 days after KA induced SE.   
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Supplementary Figure 2. Neuronal and astrocytic cell densities in CA1 and CA3 of the rat ventral 
hippocampus 15 weeks after SE. Neuronal cell densities in CA1 (A) and CA3 (B) and astrocytic cell density 
of CA1 (C) and CA3 (D) (of the same areas analysed in A and B, respectively) of sham (black, n=5), and 
vehicle (red, n=5) and RTA 408 (25 mg/kg/day for 3 days; blue, n = 5) treated rats 15 week following 2 h 
KA induced SE. Data are expressed as mean±SEM. *p < 0.05, **p < 0.01 and ***p < 0.001 compared to 
sham group by one-way ANOVA followed by Tukey’s post hoc test.  

 

 


