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ABSTRACT 14 

Extreme fluctuations in abiotic conditions can induce a biological stress response (e.g. bleaching) detrimental to an 15 

organism’s health. In some instances, organisms can recover if conditions are alleviated, such as through co-16 

occurrence with other species that confer protection. Biodiverse, multitrophic communities are increasingly 17 

recognised as important promoters of species persistence and resilience under environmental change. On 18 

intertidal shores, the role of grazers as top-down determinants of algal community structure is well recognised. 19 

Similarly, the harvesting of grazers for human consumption is increasingly prevalent with potential to greatly alter 20 

the community dynamics. Here, we assess how differences in harvesting pressure of grazers under three 21 

management regimes (no-take; managed access; open-access) alters the trophic interactions between grazers, and 22 

algal communities. Grazer density and body size frequencies were different among regimes leading to changes in 23 

the photosynthetic performance and recovery of crustose coralline algae (CCA) post-bleaching, as well as their 24 

presence altering the strength of interactions between species. The exclusion of grazers from patches using cages 25 

led to different emergent communities and reduced negative correlations between taxa. The absence of larger 26 

grazers (>9cm) at the managed access site led to macroalgal overgrowth of bleached CCA negatively affecting its 27 

recovery, whereas no-take or open-access led to a moderated algal growth and a shift from competitive to 28 

facilitative interactions between algal species. Given that CCA play an important role in the population growth and 29 

development of other species, the choice of management measure should be carefully considered before 30 

implementation, depending on objectives. 31 

 32 
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INTRODUCTION 36 

Climate change is expected to increase the intensity and frequency of extreme weather events (Field et al. 2012) 37 

affecting marine ecosystems and the economies and societies that depend on them (Harley et al. 2006, Jones et al. 38 

2010). In addition to the background of gradual ocean warming (a ‘press’ perturbation), temporally brief but 39 

extreme departures from typical conditions (‘pulse’ perturbations) can lead to significant disruptive stress for 40 

many organisms that may severely affect the functioning of biological systems (Russell et al. 2009). For intertidal 41 

organisms, the combination of low tides, calm seas, elevated air temperatures and high solar radiation (UV) may 42 

act as short-term, but extreme departures from typical conditions causing severe and widespread damage or 43 

mortality (e.g. Bender et al., 1984).  44 

 45 

Bleaching of corals (Ampou et al., 2017) and algae (Hawkins and Hartnoll, 1985; Scrosati and DeWreede, 1998; 46 

Wieters et al., 2013) are particularly clear biological stress responses associated with exposure to anomalous 47 

environmental conditions (Brown, 1997). Manifested as the loss of symbiotic zooxanthellae or damage to 48 

photosynthetic pigments (Davison and Pearson, 1996), bleaching events are occurring worldwide at historically 49 

unprecedented rates (Anthony, 2016) leading to marked reductions in primary productivity (Harley et al., 2012; 50 

Irving et al., 2004; Kayanne et al., 2005), and negative impacts on food web structure and ecosystem functioning 51 

(Graham et al., 2015).  52 

 53 

Recovery following bleaching is, however, possible if stressful conditions are alleviated (Baker et al., 2008). Stress 54 

may be alleviated in several ways including individual behavioural responses, such as physical relocation, that limit 55 

the duration of exposure to detrimental environmental conditions (Littler, 1972), or associational defences 56 

whereby other co-occurring species provide protection (Irving et al., 2004). Increasingly, the importance of 57 

biologically-diverse, multitrophic communities is being recognised as a mechanism for species persistence in 58 

environments that ordinarily would be stressful to an individual (Griffin et al., 2009; Steiner et al., 2006). For 59 

instance, in intertidal systems, crustose coralline algae (CCA) can compete for resources with turf-forming algae or 60 

macroalgal canopy species that can reduce the availability of light by shading (Irving et al., 2004). However, 61 

‘shading’ has also been shown to limit damage to CCA from high irradiance levels by reducing the risk of 62 

desiccation (Figueiredo et al., 2000; Melville and Connell, 2001). Competitors may therefore act as ‘buffers’ against 63 

environmental change, facilitating the persistence of individuals (e.g. see Przeslawski & Benkendorff, 2005; Wahl 64 

et al. 2004 and Bulleri et al. 2018 for examples in other taxa) and entire assemblages via the provision of refugia 65 

from environmental stress. The role of facilitation is increasingly recognised as enhancing food web topology and 66 

stability by reducing the strength of negative competitive interactions (Rooney and McCann, 2012), and enhancing 67 

species fitness (Bertness and Callaway, 1994; Leonard, 2000).  68 

 69 
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On intertidal rocky shores, it has long been known that grazers can play a critical role in reducing algal biomass 70 

(Steneck, 1982; Wanders, 1977), preventing recovery from a bleaching event. Grazers have been shown to prevent 71 

colour restoration through the removal of epiphytes that provide shade (Figueiredo et al., 2000). The size and 72 

density of grazers has also been correlated with changes in algal biomass loss, with higher densities of large grazers 73 

reducing algal biomass, which in turn, reduces the abundance of healthy CCA (Cattaneo and Mousseau, 1995). In 74 

many areas, intertidal grazers important in controlling the abundance and distribution of algae are removed by 75 

humans for food (Espinosa et al., 2014; Moreno et al., 1984). Large-scale changes in the population structure, size 76 

distributions and density of grazers can occur (Oliva and Castilla, 1986) in turn, directly affecting lower trophic 77 

levels (Paine, 1980; Polis et al., 2000) and indirectly affecting the entire system by decoupling fast (small, fast 78 

growing populations with high biomass turnover and strong interactions) and slow (low biomass turnover and 79 

weak community interactions) energy channels (Rooney and McCann, 2012). The most profound change directly 80 

mediated through harvesting is highlighted on rocky shores where the removal of grazers often leads to algal 81 

proliferation (Moreno et al., 1984; Oliva and Castilla, 1986). The effect of top-down pressure from predators 82 

including humans on grazer densities can therefore alter the outcome of conservation efforts that directly or 83 

indirect influence grazer assemblages with knock-on consequences for primary producers including CCAs (O'Leary 84 

and McClanahan, 2010; Paine, 1980; Polis et al., 2000). 85 

 86 

Efforts to balance biodiversity conservation with sustainable harvesting practices are on-going worldwide 87 

(Espinosa et al., 2014). Conservation strategies like Marine Protected Areas (MPAs) can result in altered 88 

demographic structure of populations, influencing species size distributions and the density of grazers (Oliva and 89 

Castilla, 1986), and indirectly influencing lower trophic levels via top-down cascading effects(O'Leary and 90 

McClanahan, 2010; Paine, 1980; Polis et al., 2000), especially algae (Moreno et al., 1984; Oliva and Castilla, 1986). 91 

The level of protection afforded to species and habitats within a reserve can, however, vary depending on the 92 

reserve objectives (Lester and Halpern, 2008; Lester et al., 2009). In some instances, this is complete protection 93 

(no-take) for all species; in others, partial protection (restrictions) for certain species or control of activities 94 

considered harmful (Knights et al., 2015; Piet et al., 2015). Differences in the level of protection can result in 95 

emergent communities with varying structural (biomass, density, diversity) and functional (trophic interactions) 96 

properties depending on the type of reserve implemented (Lester and Halpern, 2008). It is therefore difficult to 97 

differentiate the effect of conservation strategies from the natural biological structuring of communities due to 98 

changes in multitrophic species interactions.  99 

 100 

Here, we explore how different management objectives can alter multitrophic interactions among humans 101 

(harvesting), grazers, macroalgae, and crustose coralline algae (CCA). We explore the extent to which changes in 102 

harvesting pressure associated with different ecosystem management measures alters the structure of the grazing 103 
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community, and by way of a series of cage experiments, make links between the effect of harvesting and the 104 

capacity for primary producers (i.e. CCA) to withstand pulse perturbations associated with intertidal living.  105 

 106 

MATERIALS AND METHODS 107 

Study sites 108 

Experiments were conducted at three wave-exposed rocky intertidal sites of relatively weak upwelling along the 109 

coast of central Chile (Fig. 1). Estación Costera de Investigaciones Marinas (ECIM) is a no-take marine reserve 110 

established in October 1982, covering approximately 500m of rocky shore and 10 hectares of subtidal rocky reefs. 111 

Immediately adjacent, Las Cruces (LC) applies seasonal closures but otherwise access and harvesting is 112 

unrestricted, while, 18km north, El Quisco (EQ) is a territorial users rights fisheries management area (MA) 113 

assigned by the government to the Fishermen’s Union in 1993. The fishing union works alongside marine ecologists 114 

to develop a management plan and conduct annual assessments to assess and set changes in the total allowable 115 

catch of benthic resources and minimum size limits for harvested species (Gallardo Fernández, 2008). 116 

Across the three sites, epibenthic communities of the low intertidal zone are characterised by canopy kelp 117 

(Lessonia and Durvillaea antartica), crustose (mostly Hildebrandia spp.) and calcified coralline (Lithothamnion spp.) 118 

and corticated algae (Gelidium spp.) as well as mobile consumers including patellid gastropods (Scurria), chitons 119 

(predominantly Chiton granosus) and keyhole limpets (Fissurella spp.)(Broitman et al. 2001).  120 

 121 

 122 
Fig. 1. Location of the three experimental sites: Estación Costera de Investigaciones Marinas (ECIM) - no-take 123 

marine reserve; Las Cruces (LC) - open access harvest area; and El Quisco (EQ) – managed access area. 124 

 125 

Experimental design and set-up 126 

Biodiversity management tools, such as marine MPAs, are largely absent throughout Chile (see www.mpatlas.org 127 

for a review) curtailing our ability to 'replicate' this study across management regimes. As such, this study 128 

undertakes an exploratory comparison of the three locations, describing the community structure and associated 129 

changes in structure and functioning in each following our experiment, rather than attempting to formally 130 
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compare management strategies by including 'management' as a factor in our analyses. Instead, we compare sites, 131 

either in a one-factor analysis (i.e. grazer density and length), or as a random factor (photosynthetic yield and 132 

percentage cover analyses) to test the null hypothesis of no difference among sites. Any differences were thus 133 

inferred to be a result of management rather than direct causation. 134 

 135 

To test the effect of grazers on CCA bleaching, cages were used to exclude potential algal grazers from patches of 136 

bleached CCA (BCCA hereafter) and the recovery of the BCCA to healthy CCA (HCCA) was assessed over time. Cage 137 

treatments were compared with open (full-access) and procedural controls to test for artefacts of the cage (e.g. 138 

Knights et al. 2012). At each site, up to fifteen 225 cm2 independent patches containing BCCA were randomly 139 

assigned in equal numbers to one of three treatments (control, cage or procedural control).  For the cage 140 

treatment, square cages (15 x 15 x 3 cm) made of metal mesh (~1 cm diameter) were placed over each BCCA plot 141 

once all grazers were removed. Control and procedural control plots, which allow full access by grazers, were 142 

identified using screws and tags to indicate the corners of each experimental patch. The procedural control used 143 

the same cage material, but only half of the structure was installed to allow grazer entry. The number of replicates 144 

in each treatment was limited by the number of naturally-occurring BCCA plots and site restrictions, such that 3, 4 145 

and 5 replicates of each treatment were established at ECIM, LC and EQ respectively (for a total of 36 plots). Cages 146 

were installed in November 2015 and were monitored for up to 104 days.   147 

 148 

Grazer density and length 149 

Due to differences in harvesting restrictions among sites, density and sizes of individual grazers potentially 150 

affecting local algal assemblages was expected to differ. To evaluate this, 25 quadrats (0.25m2) were haphazardly 151 

placed in the low intertidal zone. For each quadrat, the density of all grazers, including Fissurella spp., Scurria spp., 152 

Siphonaria spp. and several chiton species (e.g., Chiton spp. and Enoplochiton niger) was determined, and the shell 153 

length (greatest distance between anterior and posterior ends) of all individuals was measured using Vernier 154 

callipers.  155 

 156 

Photosynthetic performance 157 

Point measurements of effective quantum yield (Ɣ) from each CCA patch were carried out weekly for the duration 158 

of the experiment using a DIVING-PAM fluorometer (Walz, Germany) to evaluate changes in CCA photosynthesis-II 159 

between treatments over time. Effective quantum yield was determined by the following (Genty et al., 1989):  160 

 161 

Ɣ = (F’m - F)/F’m  162 

 163 

where: F’m is the maximal fluorescence yield in a light-adapted plant following saturating-light pulse and F is the 164 

normal fluorescence in the light (see Harrington et al., 2005). All point measurements were collected under 165 
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ambient light with the main optical fibre placed at a distance of 10mm from the CCA at an angle of 60° to avoid 166 

shading or darkening (Beer et al., 1998). To ensure that photosynthesis of CCA alone was measured, a small brush 167 

was used to clear epiphytic growth from three small, randomly selected areas on the surface of CCA immediately 168 

before measurements (Short et al., 2014).  169 

 170 

Percentage cover 171 

In the first 3 months of the study when algal overgrowth and density did not inhibit photographic analyses, a 172 

photograph of each plot was taken weekly and the percentage cover of BCCA and HCCA along with other algae 173 

present in the plot were estimated using the image analysis software ImageJ (Abramoff et al., 2004). After 3 174 

months, algal overgrowth made such image analyses difficult and therefore percentage cover was estimated in the 175 

field using point sampling. Percentage covers of habitat/species were pooled into one of 11 functional groups 176 

based on morphology and resource-use strategies (see Broitman et al., 2001). Estimates of bleaching intensity 177 

were calculated as the percentage of CCA cover that was visually bleached and thus was independent of local 178 

abundance. 179 

 180 

Data analysis 181 

Grazer density and body size 182 

All data analyses described were performed using the open source software, R (R Development Core Team, 2017). 183 

Grazer densities and body size among sites were compared using one-way ANOVA and Kruskal-Wallis tests 184 

respectively. For ANOVA tests, homogeneity of variance was tested using Levene’s test and data square-root 185 

transformed where relevant to remove heterogeneity. Where significant differences were identified, Tukey HSD 186 

post-hoc pairwise comparisons were used to identify significant differences between groups.  187 

 188 

Change in photosynthetic performance and percent cover of CCA  189 

A linear mixed effects model testing change in (i) photosynthetic yield, and (ii, iii and iv) percentage cover of 190 

bleached, healthy and total cover of CCA in different treatments (control; procedural control; cage) with site 191 

included as a random factor was developed. Model reduction was undertaken (using AIC goodness of fit 192 

comparisons) to reveal the best-fitting model. For photosynthetic yield, this was a generalised least squares (GLS) 193 

additive model with an autoregression-moving average correlation structure (AR1) excluding site as a factor, and 194 

for percentage cover, this was the maximal (lme) model including site as a factor and also updated to include an 195 

autoregression-moving average correlation structure (AR1). Linear regression was used to test for significance of 196 

model fit slopes and intercepts for each percent cover estimate of HCCA and BCCA (Fig. 4). Moving-average 197 

(localised regression) was used to illustrate change in total percentage cover of CCA over time by site and 198 

treatment (Fig. 5)     199 

 200 
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If CCA recovers, a negative correlation in the percent cover of CCA classified as ‘bleached’ or ‘healthy’ was 201 

predicted. However, overgrowth by other algae may also occur on the surface of BCCA, so that the percentage 202 

cover of HCCA may not return to pre-bleached levels. Using data from the last time point, percentage cover of 203 

BCCA was correlated against the percentage cover of HCCA and functional algal groups to assess if BCCA is 204 

replaced by other algal species in the presence or absence of grazing pressure. Pearson’s correlations are 205 

presented using correlation matrices (corrplot package; Friendly, 2002). 206 

 207 

To test if local consumer treatment affects the composition of algal communities, permutational multivariate 208 

analysis of variance (PERMANOVA; McArdle and Anderson, 2001) and non-metric multidimensional scaling (nMDS) 209 

was used with functional groups as variables. PERMANOVA was conducted using the adonis function (vegan 210 

package; see Oksanen et al., 2016), and where significant results were found, similarity of percentages analysis 211 

(Clarke and Warwick, 1998) was used to determine the functional groups most responsible for dissimilarity in 212 

community composition. nMDS (conducted using vegdist with the Bray-Curtis index of similarity) was used to 213 

graphically portray similarity/dissimilarity function in the vegan package. Environmental fitting (envfit procedure in 214 

vegan) was used to indicate correlation between the time vector and factor centroids.  215 

 216 

Results 217 

Grazer density and length 218 

Grazer density was significantly different among sites (F2,72 = 7.23, p < 0.001) with post-hoc pairwise comparisons 219 

revealing a significantly higher grazer density (2.5 x greater) at the open access site (LC), compared with the 220 

managed access sites of ECIM and EQ (Fig. 2a). While densities were marginally higher at the no-take reserve site 221 

(ECIM) than the fisher-managed MA site (EQ), the difference in total grazer density was not statistically significant. 222 

There was no significant difference in median grazer body length at different sites (F2,377 = 1.95, p = 0.15, Fig. 2b) 223 

although at the no take site (ECIM), a number of considerably larger individuals were recorded that were not 224 

present at the open-access and managed-access sites (Fig. 2b). The maximum recorded size at ECIM was 17.5cm, 225 

largely contributed by Fissurella spp., whereas largest sizes in the managed access and open access sites were 6 226 

and 9 cm respectively.  227 

 228 

CCA Recovery of Photosynthetic capacity 229 

Changes in photosynthetic yield over time were dependent on treatment and time (F2, 302 = 3.2, p < 0.05). There 230 

were significant differences in the rate of increase in quantum yield over time between ‘cage’ treatments 231 

excluding grazers, and ‘control’ or ‘procedural control’ treatments (p < 0.05) allowing access to grazers (Fig. 3). 232 

Quantum yield increased 2.3x faster in caged treatments (a rate of 1.8 x 10-3 Ɣ per day) than in the control 233 

treatments (7.7 x 10-4 Ɣ per day). There was no significant difference in quantum yield over time between control 234 
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and procedural control treatments, nor any difference in initial quantum yield between treatments (mean yield at 235 

Day 0 for all treatments = 0.19 ± 0.07).  236 

 237 

Change in ratio of healthy and bleached CCA over time 238 

The percentage of CCA that was bleached was dependent on site (AIC fit), treatment (F2,266 = 3.92, p < 0.05; Fig. 4), 239 

and time (F1,266 = 267, p < 0.001; Fig. 4). Analysis and subsequent post-hoc tests revealed that the percent of 240 

bleached CCA at the managed access site (EQ; 42%) was approximately 2.5x and 1.7x greater than at the open 241 

access site (LC; 16%) and no-take site (ECIM; 25%) respectively (Fig. 4). The percentage of CCA bleached was ~1.5x 242 

greater at the no take site than the open access site. The percentage of bleached CCA decreased significantly over 243 

time at a mean rate of 4.3% day-1, irrespective of treatment (F1, 266 = 267.2, p < 0.0001; Fig. 4).   244 

 245 

Change in percentage cover of healthy CCA was dependent on site, and varied among treatments over time (F2, 268 246 

= 5.18, p < 0.01) and varied idiosyncratically. The percentage cover of HCCA increased in the control treatment at 247 

the no-take and managed access sites only (Fig. 4a, d). In three other treatments (control, procedural control and 248 

cage depending on site), percentage cover of HCCA declined (Fig. 4b, g & i) at a mean rate of ~0.3% cover per day. 249 

In the remaining four treatments (Fig. 4c, e, f & h), there was no change in the percentage cover of HCCA over 250 

time.  251 

 252 

In all plots, there was a reduction in the total areal extent of CCA at all sites over time depending on treatment 253 

(F2, 534 = 3.40, p < 0.05)(Fig. 5). At the managed site, the exclusion of grazers led to greater reductions in cover (e.g. 254 

mean loss of 73% at the managed access site, Fig. 5f), in comparison to plots with grazers (e.g. mean loss of 49% at 255 

the managed access site, Fig. 5d). Change in extent over time at the no-take site was more variable among plots 256 

than at the managed and open access sites, irrespective of treatment. This was especially true in the cage 257 

treatment where individual plots displayed significant reductions or little change in cover over time (Fig. 5c). 258 

 259 
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 260 
Fig. 2. (a) Mean (± S.E.) grazer density, and (b) distribution of body lengths of intertidal grazers at three sites with 261 

differing management regimes. Different letters above bars indicate significant differences (p < 0.05) between 262 

groups as revealed by Tukey post-hoc tests. 263 

 264 
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 265 
Fig. 3. Change in effective quantum yield (Ɣ) from CCA over time grouped by cage treatment. Significant linear 266 

regressions are shown as solid lines. Shading indicates 95% confidence interval. Regression line equations are: 267 

Control (Ɣ control = 0.00077x + 0.16), Procedural Control (Ɣ cage = 0.0001x + 0.22), and Cage (Ɣ cage = 0.0018x + 0.21).  268 

 269 

Community analyses 270 

Both positive and negative correlations were found between HCCA, BCCA and other sessile functional groups at 271 

each site (Fig. 6), although relatively weak relationships were observed at the open access LC site. At all sites, HCCA 272 

and especially, BCCA, were negatively correlated with the abundance of corticated, ephemeral and/or fleshy 273 

crustose algae. The most consistent and distinctive pattern of relationships was observed where consumers were 274 

excluded: here, strongest negative correlations of BCCA and HCCA were associated with ephemeral algae at all 275 

sites. In contrast, where consumers were present (control and procedural control treatments), relationships were 276 

more variable among sites and strong negative correlations of BCCA and/or HCCA were associated with either 277 

fleshy crusts and filter feeders (no-take, ECIM), corticated and ephemeral macroalgae (managed access, EQ), or 278 

filter feeders (open-access, LC) (Fig. 6). There was only a weak negative correlation between HCCA and BCCA 279 

suggesting limited evidence of recovery of BCCA at all sites. 280 
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 281 

The emergent communities were different among sites, treatments and time (3-way interaction term, F-perm4, 251 282 

= 2.25, p < 0.01) (Fig. 7). Adding terms sequentially, site accounted for the greatest variability in composition 283 

(15%), followed by treatment explaining a further 5% of the variance (Fig. 7). Time (R2, p < 0.001) played was a 284 

relatively important determinant of emergent community structure at each site, explaining ~21% of the variation 285 

in composition. SIMPER analysis revealed differences in algal functional groups between cage and control 286 

treatments (65.5% overall dissimilarity) driven by differences in ephemeral (cage plots (∆) at all sites showed a 287 

transition toward a prevalence of ephemeral algae over time), BCCA and corticated algae (Table S1, Fig. 7). 288 

Procedural control and control plots showed broadly similar communities. The communities at each site were 289 

characteristically different in terms of composition. The no-take site (ECIM) were 61% different from those at the 290 

managed site (EQ), and 76% different from the open access site (LC), with certain functional groups more strongly 291 

associated with each site (Fig. 7). Biggest differences were driven by the presence/absence of non-calcareous 292 

crustose algae and BCCA at the managed site, and by corticated and non-calcareous crustose algae at the open 293 

access site. Communities at EQ and LC were 69% different, driven by differences in BCCA and corticated algal 294 

abundance (Table S1). 295 

 296 
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 297 

 298 
Fig. 4. Percentage of CCA that is healthy (green) or bleached (red) over time (days) in control, procedural control, 299 

and cage treatments at sites with different management. Significant linear regressions are shown as solid lines (p < 300 

0.05).  301 

 302 
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 303 
Fig. 5. Change in total percent cover of CCA per 225 cm2 plot in control, procedural control and caged treatment 304 

plots over time. Regressions lines show moving-average with an AR1 correlation structure and associated 95% 305 

confidence intervals (shaded area). Light grey lines trace change in percent cover of individual CCA plots. 306 

 307 

 308 

 309 

 310 
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 311 
Fig. 6. Correlation between functional groups at the no-take (ECIM; top row), managed access (EQ; middle row) 312 

and open access (LC; bottom row) sites. Colour (positive or negative) and circle size (numeric value) indicates the 313 

strength of correlation. Only functional groups recorded at each site are shown.  314 

 315 
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 316 
Fig. 7. Dissimilarity in community assemblages based on percentage cover data at each site (indicated by colour 317 

points). Text labels indicate the centroid for each taxon and the arrow indicates the strength and direction of 318 

correlation between community composition over time (R2 = 0.21, p. < 0.001). 319 

 320 

DISCUSSION 321 

Current rates of resource exploitation are widely considered unsustainable (Airoldi and Beck, 2007; Halpern et al., 322 

2008) and efforts to find conservation/sustainable solutions ever increasing (Fernandes et al., 2005). The 323 

application of no-take areas that set aside areas of the marine environment in which extraction activities are 324 

prevented (Hughes et al., 2003) are advocated but when implemented have shown limited success (Airame et al., 325 

2003). Alternatively, the use of ‘customary practice’ management (Johannes, 2002) that is utilitarian in aim, is also 326 

common place using approaches such as the temporary closure of areas to restrict harvesting (Aswani and Weiant, 327 

2004) in an effort to improve yields (Cinner et al., 2006). In Chile, there is a notable absence of biodiversity 328 

conservation measures, like MPAs (www.mpatlas.org), and consequently, a paucity of studies describing their 329 

potential value to conservation objectives. Here, we examined differences in the structure of marine communities, 330 

and in particular, change in the health of crustose coralline algae at three locations where three different 331 
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management regimes have been employed (no-take, managed access (i.e. customary management), and open 332 

access) to restrict human harvesting of a variety of benthic resources, particularly gastropods.  333 

 334 

Unexpectedly, we found that grazer densities in no-take and managed access sites were considerably lower than at 335 

the open-access site despite management restrictions. While the median size was not significantly different among 336 

locations, a number of larger individuals were apparent at the no-take site while smallest individuals were 337 

recorded at the open-access site. An inverse relationship between size and abundance is well documented in a 338 

range of taxa (Damuth, 1981; White et al., 2007) although this relationship is often not shown in no-take reserves. 339 

For instance, in fish, reserves have been shown to increase both abundance and biomass (Aburto-Oropeza et al., 340 

2011; Williamson et al., 2004) whereas in invertebrates, reserves have been shown to lower size and have little 341 

effect on biomass (Halpern, 2003). Our results fit neither of these ‘reserve’ models, instead suggesting deviation 342 

from energetic equivalence in the local-size density relationships (White et al., 2007); patterns that could be driven 343 

by size asymmetries in competition for resources (e.g. Munger and Brown, 1981; Russo et al., 2003) or differences 344 

in the availability of resources to different size species (Ernest, 2005; Holling, 1992).  345 

 346 

Over the course of the study, photosynthetic yield (ɸ) was found to increase in all treatments at all sites over time 347 

and at a faster rate in areas where grazers were excluded suggesting herbivory is playing a direct role in 348 

suppressing photosynthesis (Nabity et al., 2009; Qiang and Richmond, 1996). Analysis of the algal community 349 

composition indicated that the exclusion of grazers supported increased algal colonization, especially that of 350 

ephemeral algae, most likely due to their release from direct grazing pressure (Steneck, 1982; Wanders, 1977). 351 

Previous studies have shown that overgrowth of bleached CCA by other algal species when grazers are removed 352 

can facilitate colour restoration and photosynthesis by providing shade (Figueiredo et al., 2000; Irving et al., 2004). 353 

Wetherbee & Verbruggen (2016) argue that this allows the re-distribution of metabolites from uncovered to 354 

shaded portions of the thallus. Improvement in photosynthetic capacity, was not however, linked to an increase in 355 

areal extent of healthy CCA despite a decrease in the percent cover of bleached CCA (which occurred at a similar 356 

rate irrespective of location or treatment) suggesting a temporal increase in photosynthetic yield, perhaps driven 357 

by a seasonal increase in light intensity (Qiang and Richmond, 1996). In fact, the extent of healthy CCA was shown 358 

to decline at the open access site when predators were excluded. The presence of macroalgal stands can create a 359 

photosynthetic deficit caused by light attenuation, resulting in a lack of energetic capacity to drive calcification, 360 

pigmentation and maintain levels of defence production. This can mean a physical disconnect between the 361 

photosynthetically-active portions of the thallus, leading to a decrease in spatial extent when compared to patches 362 

left connected to unshaded (not overgrown) thalli (Bulleri, 2006). Here, the failure of bleached CCA to transition 363 

back to healthy CCA coupled with a reduction in the overall spatial extent of patches despite some recovery of 364 

photosynthetic potential suggests that photosynthetic performance and its role in sustaining tissue metabolic 365 

activity is not a principal constraint upon spatial dominance.  366 
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 367 

The density and size of grazers has been recognised as an important determinant of algal community composition 368 

on these shores (Cattaneo and Mousseau, 1995) and is not a new concept having been shown in numerous studies 369 

(e.g. Kordas et al., 2017; Sousa, 1979). Here, differences in grazer assemblage structure among sites likely 370 

contributed to the change in spatial dominance of CCA over time and ultimately change in community 371 

composition. Relationships among sessile functional groups were stronger in the presence of grazers (Bertness and 372 

Callaway, 1994; Cavieres and Badano, 2009), especially at the no-take and managed access site where grazer 373 

densities were lower. The absence of large grazers and/or increase in density of small grazers at the open access 374 

site led to a general weakening of these relationships. Indeed, change or reversal of competitive hierarchies 375 

mediated by herbivores has been shown in a number of previous studies (e.g. Lubchenco and Menge, 1978; 376 

Steneck et al., 1991) and is reinforced here. In this system, the presence of grazers seems to have a particularly 377 

strong role in ensuring a positive correlation between bleached CCA and healthy CCA cover with both articulated 378 

and corticated species of algae and avoiding overgrowth by ephemeral algae. Grazer-induced bioerosion has been 379 

also shown to reduce percent cover of CCA (O'Leary and McClanahan, 2010), although here, the exclusion of 380 

grazers using cages has had no impact on preventing the loss of CCA cover over time suggesting bio-erosion is not 381 

influencing CCA areal extent here. When grazers were excluded, there were marked shifts toward a few strong 382 

negative correlations, particularly between bleached CCA and corticated and ephemeral algae, and reduction in 383 

relative importance of crustose algae and filter-feeding organisms (non-calcareous crustose algae is often 384 

prevalent in areas of high grazing pressure; Duffy and Hay, 1990; Jara and Moreno, 1984).  385 

 386 

It is well known that CCA plays an important role in the population growth and development of species that 387 

depend on CCA as a substrate for colonisation (Huggett et al., 2005; Tahil and Dy, 2016) and as part of their diets 388 

(Asnaghi et al., 2015; Maneveldt et al., 2006). The persistence of healthy CCA is likely to underpin the persistence 389 

of higher trophic levels and species important to humans. Activities that lead to the removal of canopy-forming 390 

algae that protect CCA from harmful UV radiation, or grazers that prevent overgrowth by ephemeral algal growth, 391 

should be carefully considered (Ojeda and Santelices, 1984). Here, persistence of CCA was observed only at the 392 

managed access site (EQ), where grazers played an important role in preventing overgrowth.  Surprisingly, similar 393 

facilitation by grazers was not observed in the adjacent no-take marine reserve, where fleshy crustose algae 394 

(predominantly Hildenbrandtia) appeared to obtain greater benefits. At the open access site, it could be argued 395 

that large grazers are removed by humans to the extent that they are in such critically low abundance that they are 396 

unable to prevent overgrowth of CCA by other algal species. Elsewhere, the removal of grazers by humans when 397 

sufficiently widespread can lead to species becoming critically endangered (e.g. Patella ferruginea, Coppa et al., 398 

2016). However, differences in grazer population structure among sites defined by different levels of management 399 

led to the emergence of different communities, especially when grazers were excluded. Interestingly, it was at the 400 

managed access site (El Quisco) where the greatest percentage cover of bleached CCA occurred which suggests a 401 
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disproportionately important role of larger grazers (rather than density) in algal herbivory and structuring of 402 

intertidal communities. 403 

 404 

This study supports the proposition that under certain conditions, interactions that are typically considered 405 

competitive (negative) may become facilitative (Bertness and Callaway, 1994). Specifically, ephemeral and 406 

corticate algae that often compete with CCA appear to positively influence colour restoration of bleached CCA. The 407 

health of CCA in areas of pulse environmental perturbations may therefore be reliant on the buffering capacity of 408 

certain macroalgal species to mitigate environmental stress. Those interactions, however, appear strongly 409 

mediated by the population structure of grazers (Lindberg et al., 1998). Unlike other studies, our results show that 410 

an absence of large grazers can lead to overgrowth and shading of CCA by macroalgae leading to a decrease in 411 

percent cover and replacement by other species. This balance is likely determined by the density, and probably, 412 

species-specific size distributions of grazing species which may be influenced by the level of harvesting. Given that 413 

CCA plays an important role in the population growth and development of species that depend on CCA as 414 

substrate or food (Asnaghi et al., 2015; Huggett et al., 2005; Maneveldt et al., 2006; Tahil and Dy, 2016), 415 

consideration of how harvesting might change the population structure (density and size) of grazers and the 416 

consequential changes in the functioning of lower trophic levels is needed in any decision to implement 417 

conservation management tools such as MPAs.  418 

 419 

Acknowledgements 420 

We would like to thank Teresa Navarrete, Gabriela Salinas and Joon Kim for their tremendous assistant in the field 421 

during less than ideal conditions. This research was supported by ECIM, the University of Plymouth and Santander 422 

Universities, as well as Fondecyt 1130167 to Evie Wieters. 423 

 424 

REFERENCES 425 

Abramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics International 11, 36-426 
42. 427 

Aburto-Oropeza, O., Erisman, B., Galland, G.R., Mascarenas-Osorio, I., Sala, E., Ezcurra, E., 2011. Large recovery of 428 
fish biomass in a no-take marine reserve. Plos One 6. 429 

Airame, S., Dugan, J.E., Lafferty, K.D., Leslie, H., McArdle, D.A., Warner, R.R., 2003. Applying ecological criteria to 430 
marine reserve design: A case study from the California Channel Islands. Ecological Applications 13, S170-S184. 431 

Airoldi, L., Beck, M.W., 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanography and 432 
Marine Biology, Vol 45 45, 345-405. 433 

Ampou, E.E., Johan, O., Menkes, C.E., Nio, F., Birol, F., Ouillon, S., Andrefouet, S., 2017. Coral mortality induced by 434 
the 2015-2016 El-Nino in Indonesia: the effect of rapid sea level fall. Biogeosciences 14, 817-826. 435 

Anthony, K.R.N., 2016. Coral reefs under climate change and ocean acidification: Challenges and opportunities for 436 
management and policy. Annu Rev Env Resour 41, 59-81. 437 

Asnaghi, V., Thrush, S.F., Hewitt, J.E., Mangialajo, L., Cattaneo-Vietti, R., Chiantore, M., 2015. Colonisation 438 
processes and the role of coralline algae in rocky shore community dynamics. J Sea Res 95, 132-138. 439 



Managing human harvesting enhances multitrophic marine communities 

  19 

Aswani, S., Weiant, P., 2004. Scientific evaluation in women's participatory management: Monitoring marine 440 
invertebrate refugia in the Solomon Islands. Human Organization 63, 301-319. 441 

Baker, A.C., Glynn, P.W., Riegl, B., 2008. Climate change and coral reef bleaching: An ecological assessment of long-442 
term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80, 435-471. 443 

Beer, S., Ilan, M., Eshel, A., Weil, A., Brickner, I., 1998. Use of pulse amplitude modulated (PAM) fluorometry for in 444 
situ measurements of photosynthesis in two Red Sea faviid corals. Mar Biol 131, 607-612. 445 

Bender, E.A., Case, T.J., Gilpin, M.E., 1984. Perturbation experiments in community ecology: Theory and practice. 446 
Ecology 65, 1-13. 447 

Bertness, M.D., Callaway, R., 1994. Positive interactions in communities. TREE 9, 191-193. 448 
Broitman, B.R., Navarrete, S.A., Smith, F., Gaines, S.D., 2001. Geographic variation of southeastern Pacific intertidal 449 

communities. Mar Ecol Prog Ser 224, 21-34. 450 
Brown, B.E., 1997. Coral bleaching: causes and consequences. Coral Reefs 16, S129-S138. 451 

Bulleri, F., 2006. Duration of overgrowth affects survival of encrusting coralline algae. Mar Ecol Prog Ser 321, 79-452 
85. 453 

Bulleri, F., Eriksson, B.K., Queirós, A., Airoldi, L., Arenas, F., Arvanitidis, C., Bouma, T.J., Crowe, T.P., Davoult, D., 454 
Guizien, K. and Iveša, L., 2018. Harnessing positive species interactions as a tool against climate-driven loss of 455 
coastal biodiversity. PLoS Biology, 16(9), e2006852. 456 

Cattaneo, A., Mousseau, B., 1995. Empirical-analysis of the removal rate of periphyton by grazers. Oecologia 103, 457 
249-254. 458 

Cavieres, L.A., Badano, E.I., 2009. Do facilitative interactions increase species richness at the entire community 459 
level? Journal of Ecology 97, 1181-1191. 460 

Cinner, J., Marnane, M.J., McClanahan, T.R., Almany, G.R., 2006. Periodic closures as adaptive coral reef 461 
management in the Indo-Pacific. Ecology and Society 11. 462 

Clarke, K.R., Warwick, R.M., 1998. Quantifying structural redundancy in ecological communities. Oecologia 113, 463 
278-289. 464 

Coppa, S., De Lucia, G.A., Massaro, G., Camedda, A., Marra, S., Magni, P., Perilli, A., Di Bitetto, M., Garcia-Gomez, 465 
J.C., Espinosa, F., 2016. Is the establishment of MPAs enough to preserve endangered intertidal species? The case 466 
of Patella ferruginea in Mal di Ventre Island (W Sardinia, Italy). Aquat Conserv 26, 623-638. 467 

Damuth, J., 1981. Population density and body size in mammals. Nature 290, 699-700. 468 

Davison, I.R., Pearson, G.A., 1996. Stress tolerance in intertidal seaweeds. J Phycol 32, 197-211. 469 
Duffy, J.E., Hay, M.E., 1990. Seaweed adaptations to herbivory: Chemical, structural, and morphological defenses 470 

are often adjusted to spatial or temporal patterns of attack. Bioscience 40, 368-375. 471 

Ernest, S.K.M., 2005. Body size, energy use, and community structure of small mammals. Ecology 86, 1407-1413. 472 
Espinosa, F., Rivera-Ingraham, G.A., Maestre, M., Gonzalez, A.R., Bazairi, H., Garcia-Gomez, J.C., 2014. Updated 473 

global distribution of the threatened marine limpet Patella ferruginea (Gastropoda: Patellidae): an example of 474 
biodiversity loss in the Mediterranean. Oryx 48, 266-275. 475 

Fernandes, L., Day, J., Lewis, A., Slegers, S., Kerrigan, B., Breen, D., Cameron, D., Jago, B., Hall, J., Lowe, D., Innes, J., 476 
Tanzer, J., Chadwick, V., Thompson, L., Gorman, K., Simmons, M., Barnett, B., Sampson, K., De'ath, G., Mapstone, 477 
B., Marsh, H., Possingham, H.P., Ball, I., Ward, T., Dobbs, K., Aumend, J., Slater, D., Stapleton, K., 2005. 478 
Establishing representative no-take areas in the Great Barrier Reef: Large-scale implementation of theory on 479 
marine protected areas. Conservation Biology 19, 1733-1744. 480 

Figueiredo, M.A.D., Kain, J.M., Norton, T.A., 2000. Responses of crustose corallines to epiphyte and canopy cover. J 481 
Phycol 36, 17-24. 482 

Friendly, M., 2002. Corrgrams: Exploratory displays for correlation matrices. Am Stat 56, 316-324. 483 



Managing human harvesting enhances multitrophic marine communities 

  20 

Gallardo Fernández, G.L., 2008. From seascapes to extinction to seascapes to confidence. Territorial use rights in 484 
fisheries in Chile: El Quisco and Puerto Oscuro. Co-Action Publishing, Aberystwyth. 485 

Genty, B., Briantais, J.M., Baker, N.R., 1989. The relationship between the quantum yield of photosynthetic 486 
electron-transport and quenching of Chlorophyll fluorescence. Biochim Biophys Acta 990, 87-92. 487 

Graham, N.A.J., Jennings, S., MacNeil, M.A., Mouillot, D., Wilson, S.K., 2015. Predicting climate-driven regime shifts 488 
versus rebound potential in coral reefs. Nature 518, 94-+. 489 

Griffin, J.N., O’Gorman, E.J., Emmerson, M.C., Jenkins, S.R., Klein, A.M., Loreau, M., Symstad, A., 2009. Biodiversity 490 
and the stability of ecosystem functioning., Biodiversity, Ecosystem Functioning, and Human Wellbeing–an 491 
Ecological and Economic Perspective. Oxford University Press, Oxford, pp. 78-93. 492 

Halpern, B.S., 2003. The impact of marine reserves: Do reserves work and does reserve size matter? Ecological 493 
Applications 13, S117-S137. 494 

Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., 495 
Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., 496 
Watson, R., 2008. A global map of human impact on marine ecosystems. Science 319, 948-952. 497 

Harley, C.D.G., Anderson, K.M., Demes, K.W., Jorve, J.P., Kordas, R.L., Coyle, T.A., Graham, M.H., 2012. Effects of 498 
climate change on global seaweed communities. J Phycol 48, 1064-1078. 499 

Harrington, L., Fabricius, K., Eaglesham, G., Negri, A., 2005. Synergistic effects of diuron and sedimentation on 500 
photosynthesis and survival of crustose coralline algae. Mar Pollut Bull 51, 415-427. 501 

Hawkins, S.J., Hartnoll, R.G., 1985. Factors determining the upper limits of intertidal canopy-forming algae. Mar 502 
Ecol Prog Ser 20, 265-271. 503 

Holling, C.S., 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62, 447-502. 504 

Huggett, M.J., de Nys, R., Williamson, J.E., Heasman, M., Steinberg, P.D., 2005. Settlement of larval blacklip 505 
abalone, Haliotis rubra, in response to green and red macroalgae. Mar Biol 147, 1155-1163. 506 

Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S.R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., 507 
Jackson, J.B.C., Kleypas, J., Lough, J.M., Marshall, P., Nystrom, M., Palumbi, S.R., Pandolfi, J.M., Rosen, B., 508 
Roughgarden, J., 2003. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929-933. 509 

Irving, A.D., Connell, S.D., Elsdon, T.S., 2004. Effects of kelp canopies on bleaching and photosynthetic activity of 510 
encrusting coralline algae. J Exp Mar Biol Ecol 310, 1-12. 511 

Jara, H.F., Moreno, C.A., 1984. Herbivory and structure in a midlittoral rocky community: A case in Southern Chile. 512 
Ecology 65, 28-38. 513 

Johannes, R.E., 2002. The renaissance of community-based marine resource management in Oceania. Annual 514 
Review of Ecology and Systematics 33, 317-340. 515 

Kayanne, H., Hata, H., Kudo, S., Yamano, H., Watanabe, A., Ikeda, Y., Nozaki, K., Kato, K., Negishi, A., Saito, H., 2005. 516 
Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Global Biogeochem Cy 19. 517 

Knights, A.M., Piet, G.J., Jongbloed, R., Tamis, J.E., Churilova, T., Fleming-Lehtinen, V., Galil, B.S., Goodsir, F., Goren, 518 
M., Margonski, P., Moncheva, S., Papadopoulou, K.N., Setälä, O., Smith, C., Stefanova, K., Timofte, F., White, L.J., 519 
Robinson, L.A., 2015. An exposure-effect approach for evaluating ecosystem-wide risks from human activities. 520 
ICES Journal of Marine Science 72, 1105-1115. 521 

Kordas, R.L., Donohue, I., Harley, C.D.G., 2017. Herbivory enables marine communities to resist warming. Sci Adv 3. 522 

Leonard, G.H., 2000. Latitudinal variation in species interactions: A test in the New England rocky intertidal zone. 523 
Ecology 81, 1015-1030. 524 

Lester, S.E., Halpern, B.S., 2008. Biological responses in marine no-take reserves versus partially protected areas. 525 
Mar Ecol Prog Ser 367, 49-56. 526 

Lester, S.E., Halpern, B.S., Grorud-Colvert, K., Lubchenco, J., Ruttenberg, B.I., Gaines, S.D., Airame, S., Warner, R.R., 527 
2009. Biological effects within no-take marine reserves: a global synthesis. Mar Ecol Prog Ser 384, 33-46. 528 



Managing human harvesting enhances multitrophic marine communities 

  21 

Lindberg, D.R., Estes, J.A., Warheit, K.I., 1998. Human influences on trophic cascades along rocky shores. Ecological 529 
Applications 8, 880-890. 530 

Littler, M.M., 1972. The Crustose Corallinaceae. Oceanography and Marine Biology: An annual review 10, 311-347. 531 

Lubchenco, J., Menge, B.A., 1978. Community development and persistence in a low rocky inter-tidal zone. Ecol 532 
Monogr 48, 67-94. 533 

Maneveldt, G.W., Wilby, D., Potgieter, M., Hendricks, M.G.J., 2006. The role of encrusting coralline algae in the 534 
diets of selected intertidal herbivores. J Appl Phycol 18, 619-627. 535 

McArdle, B.H., Anderson, M.J., 2001. Fitting multivariate models to community data: A comment on distance-536 
based redundancy analysis. Ecology 82, 290-297. 537 

Melville, A.J., Connell, S.D., 2001. Experimental effects of kelp canopies on subtidal coralline algae. Austral Ecol 26, 538 
102-108. 539 

Moreno, C.A., Sutherland, J.P., Jara, H.F., 1984. Man as a predator in the intertidal zone of Southern Chile. Oikos 540 
42, 155-160. 541 

Munger, J.C., Brown, J.H., 1981. Competition in desert rodents - an experiment with semipermeable exclosures. 542 
Science 211, 510-512. 543 

Nabity, P.D., Zavala, J.A., DeLucia, E.H., 2009. Indirect suppression of photosynthesis on individual leaves by 544 
arthropod herbivory. Ann Bot-London 103, 655-663. 545 

O'Leary, J.K., McClanahan, T.R., 2010. Trophic cascades result in large-scale coralline algae loss through differential 546 
grazer effects. Ecology 91, 3584-3597. 547 

Ojeda, F.P., Santelices, B., 1984. Ecological dominance of Lessonia nigrescens (Phaeophyta) in Central Chile. Mar 548 
Ecol Prog Ser 19, 83-91. 549 

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, 550 
M.H.H., Wagner, H., 2016. vegan: Community Ecology Package, R package version 2.3-4 ed. 551 

Oliva, D., Castilla, J.C., 1986. The effect of human exclusion on the population structure of keyhole limpets 552 
Fissurella crassa and Fissurella limbata on the Coast of Central Chile. Marine Ecology-Pubblicazioni Della Stazione 553 
Zoologica Di Napoli I 7, 201-217. 554 

Paine, R.T., 1980. Food Webs - linkage, interaction strength and community infrastructurew - the 3rd Tansley 555 
Lecture. J Anim Ecol 49, 667-685. 556 

Piet, G.J., Jongbloed, R.H., Knights, A.M., Tamis, J.E., Paijmans, A., van der Sluis, M., de Vries, P., Robinson, L.A., 557 
2015. Evaluation of ecosystem-based marine management strategies based on risk assessment. Biological 558 
Conservation 186, 158-166. 559 

Polis, G.A., Sears, A.L.W., Huxel, G.R., Strong, D.R., Maron, J., 2000. When is a trophic cascade a trophic cascade? 560 
TREE 15, 473-475. 561 

Przeslawski, R. and Benkendorff, K., 2005. The role of surface fouling in the development of encapsulated 562 
gastropod embryos. Journal of Molluscan Studies, 71(1), 75-83. 563 

Qiang, H., Richmond, A., 1996. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light 564 
intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol 8, 139-145. 565 

R Development Core Team, 2017. R: A language and environment for statistical computing. R Foundation for 566 
Statistical Computing, Vienna, Austria. 567 

Rooney, N., McCann, K.S., 2012. Integrating food web diversity, structure and stability. TREE 27, 40-46. 568 

Russo, S.E., Robinson, S.K., Terborgh, J., 2003. Size-abundance relationships in an Amazonian bird community: 569 
Implications for the energetic equivalence rule. American Naturalist 161, 267-283. 570 

Scrosati, R., DeWreede, R.E., 1998. The impact of frond crowding on frond bleaching in the clonal intertidal alga 571 
Mazzaella cornucopiae (Rhodophyta, Gigartinaceae) from British Columbia, Canada. J Phycol 34, 228-232. 572 



Managing human harvesting enhances multitrophic marine communities 

  22 

Short, J., Kendrick, G.A., Falter, J., McCulloch, M.T., 2014. Interactions between filamentous turf algae and coralline 573 
algae are modified under ocean acidification. J Exp Mar Biol Ecol 456, 70-77. 574 

Sousa, W.P., 1979. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal 575 
community. Ecol Monogr 49, 227-254. 576 

Steiner, C.F., Long, Z.T., Krumins, J.A., Morin, P.J., 2006. Population and community resilience in multitrophic 577 
communities. Ecology 87, 996-1007. 578 

Steneck, R.S., 1982. A limpet-coralline alga association: Adaptations and defenses between a selective herbivore 579 
and its prey. Ecology 63, 507-522. 580 

Steneck, R.S., 1986. The ecology of coralline algal crusts: convergent patterns and adaptative strategies. Annual 581 
Review of Ecology and Systematics 17, 273-303. 582 

Steneck, R.S., Hacker, S.D., Dethier, M.N., 1991. Mechanisms of competitive dominance between crustose coralline 583 
algae: A herbivore-mediated competitive reversal. Ecology 72, 938-950. 584 

Tahil, A.S., Dy, D.T., 2016. Effects of reduced pH on the early larval development of hatchery-reared Donkey's ear 585 
abalone, Haliotis asinina (Linnaeus 1758). Aquaculture 459, 137-142. 586 

Wahl, M., Molis, M., Davis, A., Dobretsov, S., Dürr, S.T., Johansson, J., Kinley, J., Kirugara, D., Langer, M., Lotze, H.K. 587 
and Thiel, M., 2004. UV effects that come and go: a global comparison of marine benthic community level 588 
impacts. Global Change Biology, 10, 1962-1972. 589 

Wanders, J.B.W., 1977. Role of benthic algae in shallow reef of Curacao (Netherlands-Antilles). 3. Significance of 590 
Grazing. Aquat Bot 3, 357-390. 591 

Wetherbee, R., Verbruggen, H., 2016. Kraftionema allantoideum, a new genus and family of Ulotrichales 592 
(Chlorophyta) adapted for survival in high intertidal pools. J Phycol 52, 704-715. 593 

White, E.P., Ernest, S.K.M., Kerkhoff, A.J., Enquist, B.J., 2007. Relationships between body size and abundance in 594 
ecology. TREE 22, 323-330. 595 

Wieters, E.A., Medrano, A., Quiroga, G., 2013. Spatial variation in photosynthetic recovery of intertidal turf algae 596 
from acute UVB and temperature stress associated with low tides along the central coast of Chile. J Exp Mar Biol 597 
Ecol 449, 340-348. 598 

Williamson, D.H., Russ, G.R., Ayling, A.M., 2004. No-take marine reserves increase abundance and biomass of reef 599 
fish on inshore fringing reefs of the Great Barrier Reef. Environ Conserv 31, 149-159. 600 

 601 


