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Abstract: Previous research on quantum computing / mechanics and the arts has usually been in 

simulation. The small amount of work done in hardware or with actual physical systems has not 

utilized any of the advantages of quantum computation: the main advantage being the potential speed 

increase of quantum algorithms. This paper introduces a way of utilizing Grover’s algorithm – which 

has been shown to provide a quadratic speed-up over its classical equivalent – in algorithmic rule-

based music composition. The system introduced – qgMuse – is simple but scalable. It lays some 

groundwork for new ways of addressing a significant problem in computer music research: 

unstructured random search for desired music features. Example melodies are composed using 

qgMuse using the ibmqx4 quantum hardware, and the paper concludes with discussion on how such 

an approach can grow with the improvement of quantum computer hardware and software. 
 

 

1. Introduction 

 

Why are quantum computers (QC) 

attracting so much government and private 

funding? The answer is speed. Shor’s 

algorithm (Shor 2006) is exponentially 

faster at breaking public key encryption 

than the fastest non-quantum algorithm. 

This is seen as a serious potential security 

threat (Perlner and Cooper 2009). 

Grover’s algorithm (Grover 2001) is 

quadratically faster than the best classical 

algorithm at performing an unstructured-

database search or function inversion. 

Another feature of QC is its 

probabilistic nature. The non-deterministic 

nature of QC has an interesting conceptual 

implication for algorithmic artists. Artistic 

algorithms have utilized pseudo-random 

algorithms since the first computer arts 

were created, right up to some of the most 

recent creations. This is because 

randomness helps to prevent the algorithm 

producing overly repetitive output. Many 

computer artists prefer to use complexity 

algorithms rather than randomness, for 

example cellular automata (Kirke and 

Miranda 2007). However, at the heart of 

many of these systems is a pseudo-random 

choice still. The same parameters will 

create the same result. So the parameters 

of the complex algorithm are sometimes 

pseudo-randomized.  

QC is not pseudo-random. The most 

prevalent interpretation of QC amongst 

researchers is that it is non-deterministic 

and has randomness at its heart. A 

quantum algorithm for which there is a 

desired deterministic result needs to be run 

multiple times to get a statistically 

significant final output. The final output is 

some averaging of all the intermediate 

outputs. Such a form of computation 

provides a new way of thinking about 

computer arts. Rather than trying to create 

complexity and randomness from 

determinism - as in classical computing, 

QC requires determinism and complexity 

to be built from randomness. The 

implications of this reversal of thinking for 

the arts are hard to imagine at this stage. 

These questions can only be answered by 

starting to apply basic quantum algorithms 

to the arts. 
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As already mentioned, two main 

potentially useful algorithms – Shor and 

Grover - have been identified, but neither 

has been implemented in hardware in a 

way that utilizes their quantum speed-up. 

The purpose of this paper is to develop 

and test a computer music algorithm 

qgMuse, that is implementable on a 

hardware quantum computer, and that 

does utilize QC as a solution – i.e. it aims 

to use QC to do things in a way a non-QC 

could not do.  

The reality is that no quantum 

computer exists that can deal with useful 

versions of the quantum algorithms 

mentioned above. For example, the most 

powerful QC algorithm - Shor's Algorithm 

for factoring into primes - has been used 

on a hardware computer recently to factor 

15 into 3 and 5 (Monz et al. 2016). This is 

a factorization that is trivial can clearly be 

done by hand. The only QCs which claim 

to be ready for commercial work are the 

quantum annealers mentioned earlier – 

made by D-Wave (Kirke and Miranda 

2018). These quantum annealers cannot 

run Shor’s or Grover’s algorithm – the 

future “killer apps” of QC. 

Faced with this, a computer music 

researcher may be tempted to simply drop 

all investigation into gate-based quantum 

computers - those that can run Shor and 

Grover - and focus only on quantum 

annealers, until more powerful and stable 

gate-based quantum computers are 

available. This view seems ignorant of 

musical history. Computer music began its 

"research" with simple bleeped tunes on 

early mainframes, and developed in 

parallel with the development of 

computing. This paper argues for a similar 

approach for gate-based quantum 

computer music. Much previous research 

in gate-based QC has been done in 

simulation or theory. There are a couple of 

exceptions - for example (Kirke 2018) - 

but none attempted to utilize the quantum 

algorithms known to give definite and 

large quantum speed-ups. Work needs to 

be done on actual quantum computers in 

these early stages, to ensure that quantum 

computer music keeps pace with advances 

in quantum computing, and also to see 

exactly what is feasible on a quantum 

computer in computer music terms. 

Furthermore by reporting such work, it 

will help to develop a knowledgebase 

within the arts community.  

 

2. Related Quantum Music Work 

 

Previous designs for performances and 

music involving quantum mechanical 

processes have either been metaphorical, 

based on simulations (online or offline), 

not utilized the quantum speed-up, or - in 

the case of actual real-time physics 

performances - not been directly 

concerned with quantum effects. It is 

important to take a moment to define what 

is meant in this paper by "utilizing the 

quantum speed-up". There are no 

algorithms on gate-based quantum 

computers available that perform tasks 

faster than a classical computer. The killer 

quantum computer algorithms have been 

proved to be faster only in theory. The 

speed increases, however, are so vast that 

this has led to the large amount of money 

being poured into quantum technology 

research. Furthermore, the 

implementations of the algorithms on 

current gate-based quantum computers are 

at a level where the problems they solve 

are trivial - for example searching a 

database of sixteen 1-bit entries, or 

showing that 15 can be written as 3 times 

5. However these implementations are 

theoretically scalable. Thus when this 

paper refers to a system "utilizing the 

quantum speed-up", it means: (a) that the 

system is based on a quantum algorithm 



that has been proved to be theoretically 

much faster than its classical counterpart, 

and (b) that the system is in theory 

scalable so that even if it is a trivial 

example, it could eventually incorporate 

examples that will run faster than their 

classical counterpart.  

In terms of offline simulations, one of 

relevance to this paper is the web page 

Listen to the Quantum Computer Music 

(Weimer 2014). Two pieces of music are 

playable online through MIDI simulations. 

Each is a sonification of the two key 

quantum computation algorithms: Shor’s 

and Grover’s. The offline sonification of 

quantum mechanics equations have also 

been investigated in (Sturm 2000; Sturm 

2001) and (O’Flaherty 2009), with the 

third sonifying LHC data from CERN to 

create a musical signature for the (at-the-

time) undiscovered Higgs Boson. Another 

paper defines what it calls Quantum Music 

(Putz and Svozil 2014) in simple theory 

form, though once again this is by analogy 

to the equations of quantum mechanics, 

rather than directly concerned with 

quantum computing. It examines what one 

might call the “trivial” representation in 

quantum music. Each note in a melody is a 

superposition of all possible notes. It has 

not been implemented on a hardware QC. 

It would need to be mapped into the QC 

realm and then into the hardware QC 

realm. After that, working with, say, two 

melodies that are superpositions of 8 notes 

each – for example entangling them - 

would require significant circuit 

complexity. Current hardware quantum 

computers would not be able to cope with 

them, purely from a stability point of view 

(as will be seen later). Most importantly, 

even if it could be implemented, the 

presented formalism does not utilize the 

quantum speed-up. 

 Certain equations of quantum 

mechanics have also been used to 

synthesize new sounds in simulation 

(Cadiz and Ramos 2014). The orchestral 

piece “Music of the Quantum” (Coleman 

2003) was written as an outreach tool for a 

physics research group, and has been 

performed multiple times. The melody is 

carried between violin and accordion. The 

aim of this was as a metaphor for the wave 

particle duality of quantum mechanics, 

using two contrasting instruments.  

The most impressive quantum 

simulation performance has been 

Danceroom Spectroscopy (Glowacki 

2012) in which quantum molecular models 

generate live visuals. Dancers are tracked 

by camera and their movements treated as 

the movement of active particles in the 

real-time molecular model. Thus the 

dancers act as a mathematically accurate 

force field on the particles, and these 

results are seen in large scale animations 

around the dancers. 

There have been performances and 

music that use real-world quantum-related 

data. However most of these have been 

done offline (not using physics occurring 

during the performance). These include 

the piece Background Count: a pre-

recorded electroacoustic composition that 

incorporates historical Geiger counter data 

into its creation (Brody 1997). Another 

sonification of real physics data, but done 

offline, was the LHChamber Music project 

(Hetherton 2014). It was instrumented for 

a harp, a guitar, two violins, a keyboard, a 

clarinet and a flute. Different instruments 

played data from different experiments. 

Flute and guitar were CMS, Clarinet and 

Violin I were ATLAS, Violin II was 

LHCb, Piano was ALICE, and harp was 

CCC.  

The first real-time use of subatomic 

physical processes for a public 

performance was Cloud Chamber (Kirke 

et al. 2011). In Cloud Chamber physical 

cosmic rays are made visible in real-time, 



and some of them are tracked by visual 

recognition and turned in to sound. A 

violin plays along with this, and in some 

versions of the performance, the violin 

loudness level triggered a continuous 

proportional electric voltage that changed 

the subatomic particle tracks, and thus the 

sounds (creating a form of duet). Cloud 

Chamber was followed a few years later 

by a CERN-created system which worked 

directly, without the need to use a camera. 

Called the Cosmic Piano, it detects cosmic 

rays using metal plates and turns them into 

sound (Culpan 2015). However it had no 

feedback loop from the acoustic 

instrument to the cosmic ray tracks, unlike 

Cloud Chamber. 

The previous two discussed 

performances were live, and the data was 

not quantum as such. It was quantum-

related in that the cosmic rays and cloud 

chambers are subatomic quantum 

processes. But the performances do not 

incorporate actual controlled quantum 

dynamics or computation in their music. 

(Kirke et al. 2015) created sound with 

quantum computing but was primarily 

about connecting other forms of 

unconventional computing (PMAP) to a 

quantum computer. It was designed for use 

with an online photonic quantum 

computer, however for technical reasons 

the computer was taken offline, and so the 

final results were generated using the 

online simulator. The paper included the 

use of the system to compose an orchestral 

piece of music that musified a photon-

based quantum gate called a CNOT, 

approaching maximum entanglement. 

The first use of controlled quantum 

dynamics in hardware quantum 

computation to make music was the 

algorithm qHarmony (Kirke and Miranda 

2017). It was implemented on an adiabatic 

quantum computer and also utilized in 

real-time in a live music performance with 

a mezzo-soprano (Kirke 2016). The first 

use of gate-based quantum computer 

hardware to make music was the algorithm 

GATEMEL (Kirke 2018; Kirke 2018b). 

This algorithm does not utilize the 

quantum speed-up but only the non-

deterministic nature of QC. A second 

algorithm tested on a gate-based hardware 

QC that utilizes the non-determinism is 

Quantum Music Composer (Weaver 

2018), which is a step on from GATEMEL 

in that it implements a Markov chain and 

harmonies, but does not utilize the 

quantum speed-up. 

 

3. Rule-based Algorithmic Music 

Composition 

 

The quantum algorithm introduced in this 

paper is utilized to support rule-based 

algorithmic composition. The use of rule-

based or knowledge-based methods for 

algorithmic composition have been 

common for many years (Papadopoulos 

and Wiggins 1999). In such an approach, 

the composer/user predefines a set of rules 

that can generate or constrain musical 

features. One of the first algorithmic 

compositions, the Illiac Suite (Hiller and 

Isaacson 1957) involved randomly 

generating notes and then dropping notes 

which did not fit the rules of certain 

composition styles – for example textbook 

counterpoint for the second movement. 

Since then rule-based systems have 

developed where the rules can be used to 

partially or fully generate the actual music 

features. 

Rules can be applied in a bottom-up or 

top-down approach. For the bottom-up 

approach the rules are the generative 

engine themselves. For example, let r(t) be 

a function that generates a pseudo-random 

non-negative integer at time t. Then a rule 

to generate an even numbered musical 

feature at time t would be F(t) = 2r(t). Or 



rules to generate two pitches p(t) and p*(t) 

with 5 semi-tones difference would be: 

 

 𝑝(𝑡) = 𝑟(𝑡)  𝑚𝑜𝑑 12   (1) 

 𝑝∗(𝑡) = 𝑝(𝑡) + 5    (2) 

 

Now consider the top-down approach. 

In these cases a feature is generated - 

usually pseudo-randomly - and then 

checked against the rule. For example, to 

implement the rule F(t) = 2r(t) as a top-

down rule, a random number R can be 

generated. Then it can be factored to 

examine if there exists an integer n such 

that R = 2n to fulfill the rule. Or for an 

intervallic example, if two pitches p(t) and 

p*(t) are randomly generated, it can then 

be checked if they fulfil the rule: 

 

 |𝑝(𝑡) − 𝑝∗(𝑡)| = 5   (3) 

  

This paper is inspired by the top-down rule 

approach. Such rules can be highly 

contextual as well – for example the 

allowed pitch distance between adjacent or 

coincident notes could be constrained 

based on the previous 5 distances looking 

back in time. Rules can cross reference 

each other – the allowed adjacent pitch 

distance could be limited by the allowed 

coincident distance. The compositional 

style in such a top-down rule-based system 

usually comes not only from the individual 

rules, but how they are logically 

combined. For example, suppose two sub-

rules are defined for randomly generated 

pitches: 

 

 |𝑝(𝑡) − 𝑝(𝑡 − 1)| > 0   (4) 

 𝑝(𝑡) − 𝑝(𝑡)∗ > 1    (5) 

 

Two of the possible methods of combining 

these sub-rules to make a rule could be: 

 

 (|𝑝(𝑡) − 𝑝(𝑡 − 1)| > 0) ∙  
(𝑝(𝑡) − 𝑝(𝑡)∗ > 1) = 1  (6)   (6) 

(|𝑝(𝑡) − 𝑝(𝑡 − 1)| > 0) ⊕  
(𝑝(𝑡) − 𝑝(𝑡)∗ > 1) = 1  (7) 

  

The first version ANDs the sub-rules - it 

only gives value 1 if both sub-rules are 

satisfied. The second version XORs the 

sub-rules - it only gives value 1 if only one 

of the sub-rules is satisfied. These are 

clearly going to give significantly different 

musical outcomes. It is this Boolean 

approach to rule specification that is 

usually taken in top-down rule-based 

systems. A significant part of the 

generative process in such systems is 

solving equations such as (6) and (7) to 

check if the features satisfy the equations. 

A simple generate-and-check approach is 

generally considered naive. When the 

number of sub-rules and their 

combinations grows - as is required for 

musically interesting and relevant systems 

- the generate-and-test approach becomes 

too slow.  

 For example, the groundbreaking 

CHORAL system (Ebcioglu 1988) used 

350 rules in a Boolean-type form. These 

rules are designed to capture the style of J. 

S. Bach for four-part harmonies. Once 

these levels of complexity are reached, 

simple generate-and-test is unfeasible, and 

methods such as constraint programming 

and backtracking are used (Anders 2018) 

to speed up the search for musical 

solutions. At this point the rules become 

labeled as constraints. The musical 

problem in general is in fact so complex, 

that musical constraint programming has 

at times helped to drive research in general 

constraint programming. However, there is 

a key assumption behind the use of 

constraint programming in rule-based 

algorithmic composition that makes 

quantum computing relevant. This 

assumption is the speed of unstructured 

random search. Boolean equations (6) and 

(7) are extremely simple, and can be 



solved by eye. In general a Boolean 

equation of sub-rules sri could be more 

complex, such as: 

 

((𝑠𝑟1 ∙ 𝑠𝑟2 ∙ 𝑠𝑟3′) ⊕ (𝑠𝑟2′ + 𝑠𝑟4) ∙ 𝑠𝑟3) 

+((𝑠𝑟1 ∙ 𝑠𝑟5′ ∙ 𝑠𝑟6) ⊕ (𝑠𝑟6 + 𝑠𝑟8)) + 

 ((𝑠𝑟9 ∙ 𝑠𝑟10′ ∙ 𝑠𝑟11) ⊕ (𝑠𝑟10 + 𝑠𝑟12))  

     = 1 (8) 

  

(Note that the apostrophe ' is a logical 

NOT operation). To find the truth values 

of the sri by eye is not simple. Another 

option for solving equation (8) is 

unstructured random search. In this case 

all possible values of the sri are tried (0 or 

1) until the solutions are found. This takes, 

in the worst case, 2
12

 = 4096 iterations. 

Easily do-able on a fairly old desktop in a 

trivial amount of time. But as the number 

of sub-rules grows, the number of average 

iterations needed to find a solution grows 

rapidly.  If there are 30 sub-rules, then the 

number of iterations required to find the 

solution is, on average, (2
30

)/2 = 

536,870,912. If each calculation of an 

iteration takes a 10th of a millisecond, that 

would be about 16 hours to generate one 

time-step of the music features in the rule-

based system. As already mentioned, such 

a naive approach is not usually used.  

However, suppose one can create a 

search algorithm that is quadratically 

faster at unstructured random search – i.e. 

rather than taking N iterations it took √𝑁 

searches. For a system that is quadratically 

faster, the 30 sub-rule example above 

would take under an hour. If there were 40 

sub-rules, a quadratic speed up would be 

relatively more dramatic. Such a fast 

unstructured random search could have a 

significant effect on top-down rule-based 

composition, given that an underlying 

assumption of much of much previous 

research is that unstructured random 

search and generate-and-test is too slow. 

Such a quadratically faster search does 

theoretically exist and can be 

implemented, currently for a much smaller 

number of sub-rules, but in a scalable way. 

The purpose of this paper is to introduce a 

small sub-rule system in a scalable way, 

and implement it on hardware. 

 The fast search requires that the 

Boolean function can be implemented on a 

quantum computer. It is the already-

mentioned Grover's algorithm (Grover 

2001). The fact that Grover's algorithm is 

implemented on a quantum computer will 

lead to it being both generative and soft - 

which will be seen to be useful features of 

the system introduced later in this paper. 

Each time Grover is run and collapsed, it 

generates a suggested solution to the 

Boolean function, with those that satisfy 

the rule having the highest probability of 

being generated. Suppose there are, say, 

1,000 correct solutions to a combined rule, 

and 1 billion incorrect solutions. Then 

Grover will - most of the time - randomly 

select one of the correction solutions, but 

with a lower probability it may output one 

of the incorrect values. This type of 

feature is desirable in soft rules, and such 

soft rules are sometimes desirable in 

computer music systems (Anders 2018). 

 

4. Grover’s Algorithm 

 

At the heart of Grover’s algorithm is a 

representation of the Boolean function to 

be inverted – called the Oracle. Usually a 

quantum form of the function to be solved. 

In the case of rule-based composition, it 

represents the rule to be solved. The first 

step is to define the rule inputs as qubits. 

So if the rule has three binary inputs, then 

the classical version could be written: 

 

 𝑟(𝑖0, 𝑖1, 𝑖2) = 1   (9) 

  

The quantum version is written: 

 



 𝑅|𝑖0𝑖1𝑖2⟩ or 𝑅|𝑞0𝑞1𝑞2⟩  (10) 

  

since the inputs will have to be represented 

as qubits and the rule as a quantum 

operator R. In the algorithm, the inputs [i0, 

i1, i2] are initialized to 0-valued qubits, 

giving 

 

 |𝑞0𝑞1𝑞2⟩ = |000⟩    (11) 

  

Next in the Grover algorithm, the qubits 

are put into a superposition of all their 

possible values of [i0, i1, i2] (these are 000, 

001, 010, 011, 100, 101, 110, 111). This is 

done using three "parallel" H gates. 

Applying them across the 3 qubit state in 

(11) (and ignoring the scalar multipliers 

for brevity) will give: 

 

 𝐴 = 𝐻⨂ 3|000⟩ = |000⟩ + |001⟩ + 

|010⟩ + |011⟩ + |100⟩ + 

  |101⟩ + |110⟩ +|111⟩ (12) 

 

The notation 𝐻⨂3 represents the fact the H 

is acting on a three qubit state. Next the 

Oracle operation R is performed on this 

superposition A. The Oracle must be 

represented as a unitary matrix that 

multiplies the superposition: 

 

 𝐵 =  𝑅(𝐴) = 

  

𝑅(|000⟩ + |001⟩ + |010⟩ +
|011⟩ + |100⟩ +

|101⟩ + +|110⟩ +|111⟩)
 (13) 

 

     = 𝑅|000⟩ + 𝑅|001⟩ + 𝑅|010⟩ + 

𝑅|011⟩ + 𝑅|100⟩ + 

  𝑅|101⟩ + 𝑅|110⟩ +𝑅|111⟩  (14) 

 

The Oracle has one key function: it must 

flip the phase of the part of the 

superposition A in equation (12) that 

represents the correct solution to the rule - 

i.e. for which 𝑟(𝑖0, 𝑖1, 𝑖2) = 1. This can be 

done by calculating a quantum version of r 

in such a way that the state for which r is 

satisfied has a negative phase. Suppose the 

correct solution to 𝑟(𝑖0, 𝑖1, 𝑖2) = 1 is 0,1,0. 

Then applying R in equation (48) should 

give: 

 

  𝐵 = |000⟩ + |001⟩ − |𝟎𝟏𝟎⟩ + 
|011⟩ + |100⟩ + 

  |101⟩ + |110⟩ +|111⟩ (15) 

  

Next comes the key part. A quantum 

function is applied, that moves the 

superposition of (i0, i1, i2) towards a value 

that, if measured, now has a higher 

probability of giving 𝑟(𝑖0, 𝑖1, 𝑖2) = 1 (the 

desired result). The operator that does this 

is called the Grover diffusion operator, and 

is (in the 3 qubit case): 

 

 𝑅0 = 𝐻⨂3 (2|000⟩⟨000| − 𝐼)𝐻⨂3  

      (16) 

 

I is the identity matrix. Applying the R0 

operator to the superposition B in equation 

(14) has one key effect. It inverts the 

weightings of B around their mean. The 

mean of the weightings will have been 

reduced by making the solution states have 

negative weightings, so inverting all 

weightings around the mean will increase 

the size of the negative weighted items. 

These are the items which are solutions to 

equation (9). The combination 𝑅0𝑅(𝐴) 

can also be thought of as a rotation of the 

superposition in a complex vector space in 

such a way as to move the superposition 

vector 𝐴 of equation (12) towards the 

solution. These operations amplify the 

probability of observing the (i0, i1, i2) 

which satisfy equation (9). This 

amplification is very rapid. After less than 

three applications of Grover (in the 3 input 

rule case), if the quantum state of the 

Grover output is observed, then the most 

likely result will be the values (i0, i1, i2) 

that give r(i0, i1, i2) = 1.  

 The fact that quantum algorithms are 



probabilistic raises another issue. After 

less than 3 iterations of a 3 qubit input 

Grover’s algorithm, although the most 

likely observation will be values of (i0, i1, 

i2) that obey (9), there is a non-zero 

probability of measuring the wrong values. 

This means that if r is meant to be a "hard" 

rule, a quantum algorithm needs to be 

sampled multiple times in order to get the 

result required. However observing the 

output of a quantum algorithm leads to a 

collapse of the superposition. Thus the 

algorithm needs to be run again to get 

another sample output. This can - of 

course - cancel out the quantum speed up 

for hard rules. For example, using only 3 

inputs as above, the quantum algorithm 

might have to be run 20 times on the 

ibmqx4 to give confidence in the result. 

Then in real terms 40 iterations have been 

performed, rather than the up-to-8 

iterations with the classical version. 

However this disadvantage quickly 

disappears as the number of inputs 

increases, given the speed-up factors 

demonstrated earlier. Also, if a soft rule is 

desired, then the user may be happy to 

select the first output given. 

 

5. Implementing Rules on a Hardware 

QC 

 

Grover's algorithm was introduced in the 

context of larger-scale rule based systems 

such as CHORAL, that use constraint 

programming or advanced Boolean 

solving tools to deal with the larger 

numbers of rules and inputs. Using a 

Grover of this scale would be too complex 

to provide an introductory example or 

implement on hardware. Hence a small-

scale Grover is utilized in this paper to 

build the foundations of scalable approach. 

 

 

 

5.1 qgMuse 

 

qgMuse is a scalable hybrid hardware 

classical/quantum algorithm implemented 

using an IBM quantum computer. qgMuse 

implements two rules, partly inspired by 

the Narmour Implication-Realisation (I-R) 

model (Narmour 1992). It is designed to 

demonstrate a scalable quantum model of 

composition that will be able to utilize 

practical speedups from Grover's 

algorithm once they become available. It is 

done in the spirit of Monz et al. (2016) 

which used Shor's quantum algorithm to 

factor 15 into 5 and 3 on quantum 

hardware - as a vital and scalable link in 

quantum computer music research. The 

fact Shor's algorithm can be used in a 

simplified form on current QC hardware, 

is a major step towards using it in 

situations where the quantum speed-up 

becomes relevant. Similarly with qgMuse: 

although it is implemented in a way that 

doesn't require a quantum speed-up, it lays 

the framework for a future computer 

music system based around the same 

algorithm, that does.  

 The Narmour I-R model is a proposed 

approach utilizing soft rules for the 

behavior of sequences of musical notes. 

One of the I-R "rules", and one of its 

assumptions will be interpreted into soft 

Boolean rules. Firstly the I-R "Registral 

direction" rule, which states that large 

pitch intervals tend to precede a pitch 

direction change, whereas small intervals 

tend to be continued in the same direction. 

A large interval will be defined here as 

spanning 4 white piano notes or more. So 

the pitch jump c -> f is large, whereas c -> 

e is small.  Or f -> b is large, whereas f -> 

a is small. qgMuse only uses white notes 

here as it can only have a limited number 

of rules for practical quantum 

implementation. Hence the tonality is 

restricted at the outset, rather than 



implementing it on the QC hardware as a 

rule.  The large interval flag 𝐿𝐼(𝑡) will be 

defined as 1 if the number of white notes 

of the current pitch to the previous pitch at 

𝑡 − 1, including both end pitches, is 4 or 

more, and 𝐿𝐼(𝑡) is 0 otherwise. Define the 

direction change flag 𝐷𝐶(𝑡) as 1 if the 

interval at 𝑡 is in the opposite direction to 

the interval at 𝑡 − 1, and 𝐷𝐶(𝑡) is 0 

otherwise. Then consider the XOR-based 

rule: 

 

 (𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))′ = 1  (17) 

 

This is satisfied if 𝐿𝐼(𝑡 − 1) and 𝐷𝐶(𝑡) 

are equal, i.e. if a large interval is followed 

by a direction change, or if a small interval 

is followed by a no direction change. So if 

this is implemented as a fuzzy or soft rule, 

it is compatible with the "Registral 

Direction" tendencies. The following rule 

will also be softly implemented: 

 

 𝐿𝐼(𝑡 − 1)′ ∙ 𝐿𝐼(𝑡)′ = 1   (18) 

 

which says that all intervals are small 

(non-large) intervals following small (non-

large) intervals. Such a rule would not be 

useful in a hard-rule generative music 

system, but is useable in a soft-rule system 

to make small intervals dominate over 

large ones - an assumption in Narmour I-R 

approach. The two rules between them use 

3 variables, which requires a 3-input 

Grover to solve equation (53), made up 

from the two sub-rules above: 

 

 (𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))
′
.  

  𝐿𝐼(𝑡 − 1)′. 𝐿𝐼(𝑡)′ = 1 (19) 

 

The quantum part of qgMuse is shown in 

Figure 2. Figure 2's circuit solves the rule 

(𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))′. 𝐿𝐼(𝑡 − 1)′. 
 𝐿𝐼(𝑡)′ = 1 using Grover's algorithm. The 

oracle is marked up with three rectangles 

(1), (2) and (3). Everything after the 

markups is part of the Diffusion operation, 

and then measurement of the outputs.  

 𝐿𝐼(𝑡), 𝐷𝐶(𝑡), and 𝐿𝐼(𝑡 − 1) are 

represented by q0, q1 and q2 respectively. 

The qubit “inputs” are all initialized to |0⟩. 
Rectangle (1) uses a CNOT gate to take 

the XOR of q2 and q1, represented on q1. It 

then uses an X gate to take the NOT of q1. 

Thus q1 now represents (𝐿𝐼(𝑡 −
1) ⨁ 𝐷𝐶(𝑡))′. The X gates on q0 and q2 

perform a NOT on q0 and q2 to represent 

𝐿𝐼(𝑡 − 1)′ and 𝐿𝐼(𝑡)′ respectively. 

Rectangle (2) implements a control-

control-Z (ccz) gate, specifically 

𝑐𝑐𝑧(𝑞2, 𝑞1, 𝑞0). This can be seen by 

multiplying out the matrices of the 

operations, but will not be demonstrated 

here for space reasons. 

 Given that q1 represents (𝐿𝐼(𝑡 −
1) ⨁ 𝐷𝐶(𝑡))′, q2 represents 𝐿𝐼(𝑡 − 1)′ 

and q0 represents 𝐿𝐼(𝑡)′ then - by the 

definition of 𝑐𝑐𝑧(|𝑞0𝑞1𝑞2⟩) - |𝑞0𝑞1𝑞2⟩ has 

its phase flipped if 𝑞0 = 1 and 𝑞1 = 1 and 

𝑞2 = 1. In other words, if  (𝐿𝐼(𝑡 −
1) ⨁ 𝐷𝐶(𝑡))′ = 1 and 𝐿𝐼(𝑡 − 1)′ = 1 

and 𝐿𝐼(𝑡)′ = 1. Thus, as required, the 

Oracle represents equation (19). Rectangle 

(3) simply reverses the operations 

performed in Rectangle (1) before going 

through the Diffusion operations, which 

need q0 and q1 to have the same values that 

had before rectangle (1). The Diffusion 

operations represent R0 in equation (16). 

When this circuit has its output observed, 

it should provide, with the highest 

probability, solutions to equation (19).

 

 

 



 
 

Figure 2: Quantum circuit implementing the rule (𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))′. 𝐿𝐼(𝑡 −
1)′. 𝐿𝐼(𝑡)′ = 1 on the ibmqx4 

 

The non-quantum part of the qgMuse 

works as follows. It starts on a base note – 

middle C will be used - at time step 𝑡 = 0. 

Then it runs the quantum circuit to invert 

equation (19) - to get the allowed values of 

𝐿𝐼(𝑡 − 1), 𝐷𝐶(𝑡) and 𝐿𝐼(𝑡). Backtracking 

is not utilized in qgMuse, so if the allowed 

𝐿𝐼(𝑡 − 1) from the QC is different to the 

actual 𝐿𝐼(𝑡 − 1) from the previous time 

step, then the whole generation process is 

skipped and new candidates are requested 

from the QC. In other words if the 

previous white note interval was large but 

the quantum algorithm returns a solution 

involving the previous interval being small 

- or vice versa - then qgMuse calls the 

quantum part of the algorithm again. If the 

rules were hard rules, then the returned 

solution would not change on this second 

call. But for the non-deterministic Grover, 

the solutions can change. 

 If the generation continues (as opposed 

to requesting new candidates from the QC) 

then a second set of checks are done. If the 

returned solution for 𝐿𝐼(𝑡) is 1 (i.e. a large 

interval is required) then the generated 

white note interval will be limited to a size 

of 8 (including both notes in the interval), 

otherwise it will be limited to a size of 3. 

If the returned solution for 𝐷𝐶(𝑡) is 1 (i.e. 

a direction change is required) then a 

white note interval is generated between -8 

and 8 (for large interval allowed) or 

between -3 and 3 (for large interval not 

allowed). Otherwise the generated interval 

will be in the same direction as the 

previous generated interval. The limiting 

of large intervals to white note size 8 is 

arbitrary, allowing for octave jumps at the 

most.  

 It can be seen that this implementation 

of the Grover approach in qgMuse is not 

generate-and-test. It would be more 

accurately described as solve-and-

generate. The future quantum increase in 

speed would come from solving the 

Boolean equation. The process of turning 

the solution into pitches is implemented 

classically. This requires thoughtful 

designing of the sub-rules. The easy case 

is when the returned solution cannot be 

satisfied by the music generated thus far - 

in which case the Grover can be called 

again. Suppose a solution is found, and it 

involves returned values from the QC a 

large number of variables for which 



Grover is relevant - say 30 variables. Then 

depending on the nature of these variables, 

a classical rule-based search may need to 

be run, to find solutions that give the 

allowed values for the variables. This 

could involve constraint satisfaction 

techniques. Thus the qgMuse approach 

does not replace constraint-based 

approaches, it provides a possible method 

for redesigning such approaches to speed 

up the parts that could involve generate-

and-search sub-processes. For example, 

suppose the qgMuse quantum element 

returns 1, 1 and 0 for 𝐿𝐼(𝑡), 𝐿𝐼(𝑡 − 1) and 

𝐷𝐶(𝑡). This could be viewed as setting up 

another rule: 

 

 (𝐿𝐼(𝑡) = 1) ∙ (𝐿𝐼(𝑡 − 1) = 1) ∙ 
  (𝐷𝐶(𝑡) = 0) = 1   (20) 

 

or 

 

 𝐿𝐼(𝑡) ∙ 𝐿𝐼(𝑡 − 1) ∙ 𝐷𝐶(𝑡)′ = 1  (21) 

 

This is simpler to solve than the full 

combined rule defined earlier as:  

 

 (𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))′.  
  𝐿𝐼(𝑡 − 1)′. 𝐿𝐼(𝑡)′ = 1 (22) 

 

It is so simple that it is easily 

implementable programmatically, as done 

in this version of qgMuse. Also - as has 

already mentioned - the quantum approach 

provides "softness" for free. It is worth 

mentioning at this point that the softness is 

not as controllable as that available in 

some soft rule-based systems. A classical 

soft rule-based system could use defined 

probability distributions to ensure that the 

softness is controlled. Whereas the 

softness produced by Grover is a function 

of the quantum indeterminacy and errors 

in quantum hardware - a less controllable 

combination. But in terms of speed it is 

"instant" - it does not require probability 

distribution or pseudorandom algorithms - 

the quantum mechanics provides it 

instantly. 

   

6. Results 

 

Two runs of qgMuse of eight 4/4 bars each 

on the ibmqx4 quantum computer are 

shown in Figures 3 and 4. Looking at the 

melodies it is not clear how well the rules 

are being followed. To give further 

insight, Figure 5 shows a plot of the output 

of the Grover algorithm in Figure 2 

sampled 4096 times. IBM's Qiskit API 

converts the qubit observations to 

hexadecimal. So in Figure 5, 0x0 is 000 

binary - i.e. all qubits are observed as 0. 

Similarly 0x7 is 111 binary - i.e. all qubits 

observed as 1, and 0x5 is binary 101 - i.e. 

q1 is observed as 0, but q0 and q2 are 

observed as 1. The solution of equation 

(19) can be seen by eye to be: all variables 

are 0. In the quantum world, this means 

that the most likely result of a 

measurement is all variables as 0. Figure 5 

shows that the ibmqx4 returns all 0 

approximately 52% of the time. The other 

48% of the time, the incorrect values will 

be returned. It was initially desired that for 

soft rules, correct values be returned only 

most of the time. However a likelihood of 

52% for a correct value, and 48% for a 

random one, is probably lower than 

desired for most soft rules. However, 

running the Grover 4096 times on the IBM 

online simulator gives Figure 6. This 

shows that the correct results are returned 

approximated 77% of the time, with a 

roughly equal spread across the incorrect 

results - totalling up to around 23%. This 

demonstrates that of the approximately 

48% of incorrect results in the ibmqx4, 

around half of them are due to quantum 

hardware errors, rather than designed 

quantum effects. 23% error in soft rules 

seems a more reasonable figure - and is 



approximately what the ibmqx4 would 

give if it was a perfectly engineered 

quantum computer (i.e. more like the 

simulator). 

 

 
Figure 3:  8 bars of qgMuse running on the IBM quantum hardware - Melody A 

 

 
Figure 4: 8 bars of qgMuse running on the IBM quantum hardware - Melody B 

 

 
Figure 5: Grover rule outputs shown for the IBM quantum hardware ibmqx4



 
Figure 6: Grover rule outputs shown for the IBM online simulator 

 

 
Figure 7: 8 bars of qgMuse running on the IBM quantum simulator - Melody C 

 

 

 
Figure 8: The melody in Figure 6 - Melody A, harmonised by an independent harmony 

algorithm qHarmony on a DWave 2X 



Thus given that Figures 3 and 4 should 

only exhibit 52% correct behaviour, it is 

not feasible to use them to evaluate the 

statistical results. Generating larger and 

larger tunes to increase statistical clarity is 

pointless - Figure 5 (together with the 

deterministic behaviour of the classical 

computer code part of qgMuse) fully 

characterises qgMuse, and Figures 3 and 4 

simply prove the feasibility of a musical 

output. However, the Figure 7 score of the 

online quantum simulator running qgMuse 

does allow some judgement by eye of its 

musical output (in terms of rule-

following). The vast majority of intervals 

in Figure 7 are non-large / small intervals - 

showing one sub-rule (equation (18)) is 

having an impact in a way that was not so 

clear in the hardware results. However - as 

would be expected - the sub-rule of 

direction changes coinciding with a 

previous large interval (equation (17)) is 

not obviously visible.  

 It has been observed in the past that 

without some independent harmonic 

context, algorithmic melodies are difficult 

to evaluate (Papadopoulos and Wiggins 

1999). Figure 8 shows the run of 8 bars 

output from Figure 3, this time with an 

independently generated harmonic 

context. The chords are generated using 

qHarmony - an algorithm for generating 

simple white note harmonies without any 

temporal context. It takes as input one or 

two white notes, and outputs a white note 

chord to play with the notes. In this case 

two notes - the first and third note of each 

bar - are sent to qHarmony to select the 

chord for the whole bar. It does not use 

context of the previous or following 

chords. It is interesting to note that 

qHarmony is also run here on quantum 

hardware - it was in fact the first quantum 

hardware music algorithm - but on a very 

different system to the ibmqx4. It is a D-

Wave 2X adiabatic quantum computer, 

referred to in the introduction to this paper 

as a quantum annealer. The algorithm is 

beyond the scope of this paper, but more 

information about qHarmony and 

adiabatic quantum computing can be 

found here (Kirke and Miranda 2017). 

qHarmony has previously been utilized in 

both live performance (Kirke 2016) and 

offline testing. There is one slight artistic 

license taken with the harmonies in Figure 

8. When qHarmony returns a 

harmonisation - it actually returns a 

selection of harmonisation solutions, 

together with their energy level for each. 

In theory, the lower the energy level, the 

better the solution. Bars 7 and 8 both 

returned the same solution chords at the 

lowest energy level. To create a small 

sense of movement between the 

penultimate bar and the final bar, the 

second lowest energy (energy -54) 

solution for Bar 7 was selected instead of 

the lowest energy solution (energy -56).  

 The tunes sound reasonably 

presentable, including the harmonized 

version. Some of this is due to the fact of 

the implicit rule of qgMuse - using only 

piano white notes. However a high level of 

musical quality is not expected from the 

limited sub-rule-set size feasible on 

current hardware QCs.  

 The results of qgMuse above support 

the idea of the non-deterministic nature of 

quantum computers being a potential 

"feature rather that a bug" - in terms of 

implementing soft rules. Furthermore, 

Figures 3 to 7 are consistent with the idea 

that the rules are being followed the 

majority of the time. Given the usage of a 

quantum computer with a similar level of 

hardware error (in the final outputs), but 

with a much larger number of qubits, then 

qgMuse can be scaled in a simple way. 

The number of sub-rules can be increased. 

This can be done with conjunction or 

disjunction - i.e. by ANDing the rules (as 



described earlier) or ORing them, or a 

combination (a quantum OR can be built 

using x gates and ccx gates). Then each 

Boolean input can be assigned to a qubit. 

 Note that the proviso above about the 

level of error in the final outputs is key. 

Just increasing the number of qubits and 

the size of the Boolean functions, at the 

current level of gate error, will create an 

essentially random output. The input / 

output error refers to this: given a certain 

input - and given the resulting output - 

how far away are the outputs from the 

outputs of a perfect simulator? To achieve 

the same level of error as seen in Figure 5 

for 100 gates is beyond current quantum 

technology. However if the gate errors can 

be kept small enough, so that perhaps 500 

gates can be combined with the same level 

of input / output error as seen in Figure 5, 

then more interesting musical problems 

become possible using Grover. Given this 

level of error, exactly the same methods 

can be used as used in this paper, the main 

challenge becoming - how to implement 

Oracles for the various musical rules. 

 Of course, at the current level of 

simplicity of qgMuse required by quantum 

technology, the whole rule-based process 

in qgMuse process could have been done 

trivially. Rather than running the Grover, 

the results of the randomly generated notes 

and of calculating LI and DC could have 

been inserted into the classical Boolean 

equations. If they failed to fulfil those 

equations, then 75% of the time (say, to 

allow for softness) the proposed interval 

could have been ignored and a new one 

generated. This approach works fine until 

the number of equations and inputs grows 

large. Then various heuristics and 

optimisation methodologies need to be 

introduced. Gradually as the number of 

rules and inputs grows, the result becomes 

very slow to generate on a classical 

system. At this point the problem moves 

into the domain where a Grover-assisted 

algorithm using the ideas of qgMuse, on a 

sufficiently powerful future quantum 

computer, could have an advantage. 

 The reality is that a future quantum 

computer music top-down rule-based 

system will probably be a hybrid between 

constraint programming and quantum 

computer unstructured search. The 

quantum part will be the Grover methods 

used in this paper, but implemented in 

more error-tolerant ways and utilizing 

quantum error reduction algorithms (Singh 

et al. 2018). But whatever the precise 

balance and approach used, the basic 

structure of a Grover solving of a Boolean 

rule will remain the same, as described in 

this paper. It can in fact be proved that 

Grover's algorithm is optimal for 

unstructured search (Zalka 1997). 

 

7. Conclusions 

 

In evaluating the design and results of 

qgMuse, context is key. For example, 

qgMuse is slower than a fully classical 

version. The quantum advantage of Grover 

is superseded by the simplicity of the 

rules, and the small number of inputs. A 

classical version will be faster, as 

accessing the small number of quantum 

computers sometimes involves a queue 

time, and obviously running the simulator 

is slower than the classical equivalent. 

Similarly, from a musical point of view, 

there are only two simplistic rules being 

used, that are applied to a musical context 

of one previous note and a small number 

of music features. 

 Thus the evaluation context is as 

follows: (a) Shor's algorithm is currently 

only factoring numbers of the order of 15; 

(b) qgMuse is scalable as a concept; and 

(c) qgMuse has a natural soft non-

deterministic nature. Examining the 

second point, which is overwhelmingly the 



most important: suppose there is a 

conjunction of 150 Boolean musical sub-

rules with 30 inputs, similar to that 

discussed earlier. Finding solutions to that 

conjunction by classical unstructured 

search would be unfeasible, and may never 

become feasible given the limitations of 

Moore's law (Waldrop 2016). However 

quantum computing is moving forward at 

a significant rate in 3 key areas: number of 

qubits, stability of processing, and error 

reduction methods. When the 16 qubit 

IBM Melbourne was released, it came 

rapidly on the heels of the 5 qubit ibmqx4. 

Other companies claim to have QCs with 

greater than 60 qubits, but many are not 

publically available to use yet. The 

instability of hardware quantum computers 

is not a new issue, and there have been 

many years of research (Lidar and Brun 

2013) into how to reduce the susceptibility 

of quantum computing to errors such as 

those encountered in this paper, including 

on the ibmqx4 itself (Singh et al. 2018). In 

the next couple of years, someone may 

publish an error tolerant version of the 3-

input Grover for the IBM q 16 Melbourne. 

It is not unfeasible that in 4 years the IBM 

q 16 Melbourne will be superseded by a 

much more stable q 30, with versions of 

the Grover algorithm that allow input and 

processing juggling on the machine 

leading to the use of perhaps 10-20 inputs. 

There are researchers who say that the 

demonstrating of quantum supremacy over 

classical computers in hardware for certain 

algorithms is only a matter of years away 

(Harrow and Montanaro 2017). Though it 

is not clear yet how this might relate to 

timescales for a similar demonstration 

with Grover’s algorithm. 

 The ibmqx4 has one qubit gate and 

two qubit gate fidelity of 99.7% and 

95.8% (Finke 2018). These are measures 

of the accuracy of the single input and two 

input gates. Two input gates such as cx are 

vital, but are much harder to implement 

than single input gates such as x. The 16 

qubit Melbourne has 99.7% and 92.8% for 

these values - more error prone than the 

ibmqx4 (in fact the experiments in this 

paper were first run on the Melbourne, but 

then discarded due to impractical error 

rates).  Google have built a 72-qubit 

quantum computer and report accuracies 

of 99.9% and 99.4%. Recently IonQ 

announced a 79 qubit machine and report 

rates of 99.97% and 99.3% (IonQ 2018). 

While all of this is happening, it is 

expected that the research community will 

develop a strong quantum subset of 

research looking at how to implement 

Boolean solving problems on quantum 

computers. IBM have released a machine 

learning kit for their computers, but they 

have not tested it running Grover on 

Boolean equations on hardware.  

 The Grover approach taken in qgMuse 

is fairly simplistic and linear. CHORAL 

and its progeny utilize many ingenious 

methods to speed up the search for 

solutions. Quantum-enhanced versions of 

these methods are sure to emerge. The 

computer music community can utilize 

such advantages.  

 The computer music world can also 

contribute to the quantum computing 

research world. This paper remains one of 

the few in existence that attempts to give a 

mid-level insight into Grover’s algorithm. 

Most papers on Grover’s algorithm are 

either entirely non-expert, non-practical or 

too complex for the average programmer. 

Computer music can provide an 

environment for utilizing quantum 

algorithms that - because of music's 

relatively lightly structured nature - will 

help non-quantum physicists and non-

mathematicians to gain greater practical 

insight. Machine learning / statistical 

analysis for language processing or 

molecular pattern recognition are highly 



constricted problems leading to extremely 

technical papers, whose results are 

meaningless to most non-experts. Music 

and sound allow for freer output structures 

- that can still produce a sense of meaning 

and pattern, with relatively light-touch 

algorithms. Hence a quantum computer 

musician may write an paper explaining 

their work and its results in a far more 

accessible way than a quantum 

computational chemist.  
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