
Application of Grover’s Algorithm on the ibmqx4 Quantum

Computer to Rule-based Algorithmic Music Composition

Alexis Kirke

Interdisciplinary Centre for Computer Music Research, University of Plymouth, UK,

alexis.kirke@plymouth.ac.uk

Abstract: Previous research on quantum computing / mechanics and the arts has usually been in

simulation. The small amount of work done in hardware or with actual physical systems has not

utilized any of the advantages of quantum computation: the main advantage being the potential speed

increase of quantum algorithms. This paper introduces a way of utilizing Grover’s algorithm – which

has been shown to provide a quadratic speed-up over its classical equivalent – in algorithmic rule-

based music composition. The system introduced – qgMuse – is simple but scalable. It lays some

groundwork for new ways of addressing a significant problem in computer music research:

unstructured random search for desired music features. Example melodies are composed using

qgMuse using the ibmqx4 quantum hardware, and the paper concludes with discussion on how such

an approach can grow with the improvement of quantum computer hardware and software.

1. Introduction

Why are quantum computers (QC)

attracting so much government and private

funding? The answer is speed. Shor’s

algorithm (Shor 2006) is exponentially

faster at breaking public key encryption

than the fastest non-quantum algorithm.

This is seen as a serious potential security

threat (Perlner and Cooper 2009).

Grover’s algorithm (Grover 2001) is

quadratically faster than the best classical

algorithm at performing an unstructured-

database search or function inversion.

Another feature of QC is its

probabilistic nature. The non-deterministic

nature of QC has an interesting conceptual

implication for algorithmic artists. Artistic

algorithms have utilized pseudo-random

algorithms since the first computer arts

were created, right up to some of the most

recent creations. This is because

randomness helps to prevent the algorithm

producing overly repetitive output. Many

computer artists prefer to use complexity

algorithms rather than randomness, for

example cellular automata (Kirke and

Miranda 2007). However, at the heart of

many of these systems is a pseudo-random

choice still. The same parameters will

create the same result. So the parameters

of the complex algorithm are sometimes

pseudo-randomized.

QC is not pseudo-random. The most

prevalent interpretation of QC amongst

researchers is that it is non-deterministic

and has randomness at its heart. A

quantum algorithm for which there is a

desired deterministic result needs to be run

multiple times to get a statistically

significant final output. The final output is

some averaging of all the intermediate

outputs. Such a form of computation

provides a new way of thinking about

computer arts. Rather than trying to create

complexity and randomness from

determinism - as in classical computing,

QC requires determinism and complexity

to be built from randomness. The

implications of this reversal of thinking for

the arts are hard to imagine at this stage.

These questions can only be answered by

starting to apply basic quantum algorithms

to the arts.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/195285798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

As already mentioned, two main

potentially useful algorithms – Shor and

Grover - have been identified, but neither

has been implemented in hardware in a

way that utilizes their quantum speed-up.

The purpose of this paper is to develop

and test a computer music algorithm

qgMuse, that is implementable on a

hardware quantum computer, and that

does utilize QC as a solution – i.e. it aims

to use QC to do things in a way a non-QC

could not do.

The reality is that no quantum

computer exists that can deal with useful

versions of the quantum algorithms

mentioned above. For example, the most

powerful QC algorithm - Shor's Algorithm

for factoring into primes - has been used

on a hardware computer recently to factor

15 into 3 and 5 (Monz et al. 2016). This is

a factorization that is trivial can clearly be

done by hand. The only QCs which claim

to be ready for commercial work are the

quantum annealers mentioned earlier –

made by D-Wave (Kirke and Miranda

2018). These quantum annealers cannot

run Shor’s or Grover’s algorithm – the

future “killer apps” of QC.

Faced with this, a computer music

researcher may be tempted to simply drop

all investigation into gate-based quantum

computers - those that can run Shor and

Grover - and focus only on quantum

annealers, until more powerful and stable

gate-based quantum computers are

available. This view seems ignorant of

musical history. Computer music began its

"research" with simple bleeped tunes on

early mainframes, and developed in

parallel with the development of

computing. This paper argues for a similar

approach for gate-based quantum

computer music. Much previous research

in gate-based QC has been done in

simulation or theory. There are a couple of

exceptions - for example (Kirke 2018) -

but none attempted to utilize the quantum

algorithms known to give definite and

large quantum speed-ups. Work needs to

be done on actual quantum computers in

these early stages, to ensure that quantum

computer music keeps pace with advances

in quantum computing, and also to see

exactly what is feasible on a quantum

computer in computer music terms.

Furthermore by reporting such work, it

will help to develop a knowledgebase

within the arts community.

2. Related Quantum Music Work

Previous designs for performances and

music involving quantum mechanical

processes have either been metaphorical,

based on simulations (online or offline),

not utilized the quantum speed-up, or - in

the case of actual real-time physics

performances - not been directly

concerned with quantum effects. It is

important to take a moment to define what

is meant in this paper by "utilizing the

quantum speed-up". There are no

algorithms on gate-based quantum

computers available that perform tasks

faster than a classical computer. The killer

quantum computer algorithms have been

proved to be faster only in theory. The

speed increases, however, are so vast that

this has led to the large amount of money

being poured into quantum technology

research. Furthermore, the

implementations of the algorithms on

current gate-based quantum computers are

at a level where the problems they solve

are trivial - for example searching a

database of sixteen 1-bit entries, or

showing that 15 can be written as 3 times

5. However these implementations are

theoretically scalable. Thus when this

paper refers to a system "utilizing the

quantum speed-up", it means: (a) that the

system is based on a quantum algorithm

that has been proved to be theoretically

much faster than its classical counterpart,

and (b) that the system is in theory

scalable so that even if it is a trivial

example, it could eventually incorporate

examples that will run faster than their

classical counterpart.

In terms of offline simulations, one of

relevance to this paper is the web page

Listen to the Quantum Computer Music

(Weimer 2014). Two pieces of music are

playable online through MIDI simulations.

Each is a sonification of the two key

quantum computation algorithms: Shor’s

and Grover’s. The offline sonification of

quantum mechanics equations have also

been investigated in (Sturm 2000; Sturm

2001) and (O’Flaherty 2009), with the

third sonifying LHC data from CERN to

create a musical signature for the (at-the-

time) undiscovered Higgs Boson. Another

paper defines what it calls Quantum Music

(Putz and Svozil 2014) in simple theory

form, though once again this is by analogy

to the equations of quantum mechanics,

rather than directly concerned with

quantum computing. It examines what one

might call the “trivial” representation in

quantum music. Each note in a melody is a

superposition of all possible notes. It has

not been implemented on a hardware QC.

It would need to be mapped into the QC

realm and then into the hardware QC

realm. After that, working with, say, two

melodies that are superpositions of 8 notes

each – for example entangling them -

would require significant circuit

complexity. Current hardware quantum

computers would not be able to cope with

them, purely from a stability point of view

(as will be seen later). Most importantly,

even if it could be implemented, the

presented formalism does not utilize the

quantum speed-up.

 Certain equations of quantum

mechanics have also been used to

synthesize new sounds in simulation

(Cadiz and Ramos 2014). The orchestral

piece “Music of the Quantum” (Coleman

2003) was written as an outreach tool for a

physics research group, and has been

performed multiple times. The melody is

carried between violin and accordion. The

aim of this was as a metaphor for the wave

particle duality of quantum mechanics,

using two contrasting instruments.

The most impressive quantum

simulation performance has been

Danceroom Spectroscopy (Glowacki

2012) in which quantum molecular models

generate live visuals. Dancers are tracked

by camera and their movements treated as

the movement of active particles in the

real-time molecular model. Thus the

dancers act as a mathematically accurate

force field on the particles, and these

results are seen in large scale animations

around the dancers.

There have been performances and

music that use real-world quantum-related

data. However most of these have been

done offline (not using physics occurring

during the performance). These include

the piece Background Count: a pre-

recorded electroacoustic composition that

incorporates historical Geiger counter data

into its creation (Brody 1997). Another

sonification of real physics data, but done

offline, was the LHChamber Music project

(Hetherton 2014). It was instrumented for

a harp, a guitar, two violins, a keyboard, a

clarinet and a flute. Different instruments

played data from different experiments.

Flute and guitar were CMS, Clarinet and

Violin I were ATLAS, Violin II was

LHCb, Piano was ALICE, and harp was

CCC.

The first real-time use of subatomic

physical processes for a public

performance was Cloud Chamber (Kirke

et al. 2011). In Cloud Chamber physical

cosmic rays are made visible in real-time,

and some of them are tracked by visual

recognition and turned in to sound. A

violin plays along with this, and in some

versions of the performance, the violin

loudness level triggered a continuous

proportional electric voltage that changed

the subatomic particle tracks, and thus the

sounds (creating a form of duet). Cloud

Chamber was followed a few years later

by a CERN-created system which worked

directly, without the need to use a camera.

Called the Cosmic Piano, it detects cosmic

rays using metal plates and turns them into

sound (Culpan 2015). However it had no

feedback loop from the acoustic

instrument to the cosmic ray tracks, unlike

Cloud Chamber.

The previous two discussed

performances were live, and the data was

not quantum as such. It was quantum-

related in that the cosmic rays and cloud

chambers are subatomic quantum

processes. But the performances do not

incorporate actual controlled quantum

dynamics or computation in their music.

(Kirke et al. 2015) created sound with

quantum computing but was primarily

about connecting other forms of

unconventional computing (PMAP) to a

quantum computer. It was designed for use

with an online photonic quantum

computer, however for technical reasons

the computer was taken offline, and so the

final results were generated using the

online simulator. The paper included the

use of the system to compose an orchestral

piece of music that musified a photon-

based quantum gate called a CNOT,

approaching maximum entanglement.

The first use of controlled quantum

dynamics in hardware quantum

computation to make music was the

algorithm qHarmony (Kirke and Miranda

2017). It was implemented on an adiabatic

quantum computer and also utilized in

real-time in a live music performance with

a mezzo-soprano (Kirke 2016). The first

use of gate-based quantum computer

hardware to make music was the algorithm

GATEMEL (Kirke 2018; Kirke 2018b).

This algorithm does not utilize the

quantum speed-up but only the non-

deterministic nature of QC. A second

algorithm tested on a gate-based hardware

QC that utilizes the non-determinism is

Quantum Music Composer (Weaver

2018), which is a step on from GATEMEL

in that it implements a Markov chain and

harmonies, but does not utilize the

quantum speed-up.

3. Rule-based Algorithmic Music

Composition

The quantum algorithm introduced in this

paper is utilized to support rule-based

algorithmic composition. The use of rule-

based or knowledge-based methods for

algorithmic composition have been

common for many years (Papadopoulos

and Wiggins 1999). In such an approach,

the composer/user predefines a set of rules

that can generate or constrain musical

features. One of the first algorithmic

compositions, the Illiac Suite (Hiller and

Isaacson 1957) involved randomly

generating notes and then dropping notes

which did not fit the rules of certain

composition styles – for example textbook

counterpoint for the second movement.

Since then rule-based systems have

developed where the rules can be used to

partially or fully generate the actual music

features.

Rules can be applied in a bottom-up or

top-down approach. For the bottom-up

approach the rules are the generative

engine themselves. For example, let r(t) be

a function that generates a pseudo-random

non-negative integer at time t. Then a rule

to generate an even numbered musical

feature at time t would be F(t) = 2r(t). Or

rules to generate two pitches p(t) and p*(t)

with 5 semi-tones difference would be:

 𝑝(𝑡) = 𝑟(𝑡) 𝑚𝑜𝑑 12 (1)

 𝑝∗(𝑡) = 𝑝(𝑡) + 5 (2)

Now consider the top-down approach.

In these cases a feature is generated -

usually pseudo-randomly - and then

checked against the rule. For example, to

implement the rule F(t) = 2r(t) as a top-

down rule, a random number R can be

generated. Then it can be factored to

examine if there exists an integer n such

that R = 2n to fulfill the rule. Or for an

intervallic example, if two pitches p(t) and

p*(t) are randomly generated, it can then

be checked if they fulfil the rule:

 |𝑝(𝑡) − 𝑝∗(𝑡)| = 5 (3)

This paper is inspired by the top-down rule

approach. Such rules can be highly

contextual as well – for example the

allowed pitch distance between adjacent or

coincident notes could be constrained

based on the previous 5 distances looking

back in time. Rules can cross reference

each other – the allowed adjacent pitch

distance could be limited by the allowed

coincident distance. The compositional

style in such a top-down rule-based system

usually comes not only from the individual

rules, but how they are logically

combined. For example, suppose two sub-

rules are defined for randomly generated

pitches:

 |𝑝(𝑡) − 𝑝(𝑡 − 1)| > 0 (4)

 𝑝(𝑡) − 𝑝(𝑡)∗ > 1 (5)

Two of the possible methods of combining

these sub-rules to make a rule could be:

 (|𝑝(𝑡) − 𝑝(𝑡 − 1)| > 0) ∙
(𝑝(𝑡) − 𝑝(𝑡)∗ > 1) = 1 (6) (6)

(|𝑝(𝑡) − 𝑝(𝑡 − 1)| > 0) ⊕
(𝑝(𝑡) − 𝑝(𝑡)∗ > 1) = 1 (7)

The first version ANDs the sub-rules - it

only gives value 1 if both sub-rules are

satisfied. The second version XORs the

sub-rules - it only gives value 1 if only one

of the sub-rules is satisfied. These are

clearly going to give significantly different

musical outcomes. It is this Boolean

approach to rule specification that is

usually taken in top-down rule-based

systems. A significant part of the

generative process in such systems is

solving equations such as (6) and (7) to

check if the features satisfy the equations.

A simple generate-and-check approach is

generally considered naive. When the

number of sub-rules and their

combinations grows - as is required for

musically interesting and relevant systems

- the generate-and-test approach becomes

too slow.

 For example, the groundbreaking

CHORAL system (Ebcioglu 1988) used

350 rules in a Boolean-type form. These

rules are designed to capture the style of J.

S. Bach for four-part harmonies. Once

these levels of complexity are reached,

simple generate-and-test is unfeasible, and

methods such as constraint programming

and backtracking are used (Anders 2018)

to speed up the search for musical

solutions. At this point the rules become

labeled as constraints. The musical

problem in general is in fact so complex,

that musical constraint programming has

at times helped to drive research in general

constraint programming. However, there is

a key assumption behind the use of

constraint programming in rule-based

algorithmic composition that makes

quantum computing relevant. This

assumption is the speed of unstructured

random search. Boolean equations (6) and

(7) are extremely simple, and can be

solved by eye. In general a Boolean

equation of sub-rules sri could be more

complex, such as:

((𝑠𝑟1 ∙ 𝑠𝑟2 ∙ 𝑠𝑟3′) ⊕ (𝑠𝑟2′ + 𝑠𝑟4) ∙ 𝑠𝑟3)

+((𝑠𝑟1 ∙ 𝑠𝑟5′ ∙ 𝑠𝑟6) ⊕ (𝑠𝑟6 + 𝑠𝑟8)) +

 ((𝑠𝑟9 ∙ 𝑠𝑟10′ ∙ 𝑠𝑟11) ⊕ (𝑠𝑟10 + 𝑠𝑟12))

 = 1 (8)

(Note that the apostrophe ' is a logical

NOT operation). To find the truth values

of the sri by eye is not simple. Another

option for solving equation (8) is

unstructured random search. In this case

all possible values of the sri are tried (0 or

1) until the solutions are found. This takes,

in the worst case, 2
12

 = 4096 iterations.

Easily do-able on a fairly old desktop in a

trivial amount of time. But as the number

of sub-rules grows, the number of average

iterations needed to find a solution grows

rapidly. If there are 30 sub-rules, then the

number of iterations required to find the

solution is, on average, (2
30

)/2 =

536,870,912. If each calculation of an

iteration takes a 10th of a millisecond, that

would be about 16 hours to generate one

time-step of the music features in the rule-

based system. As already mentioned, such

a naive approach is not usually used.

However, suppose one can create a

search algorithm that is quadratically

faster at unstructured random search – i.e.

rather than taking N iterations it took √𝑁

searches. For a system that is quadratically

faster, the 30 sub-rule example above

would take under an hour. If there were 40

sub-rules, a quadratic speed up would be

relatively more dramatic. Such a fast

unstructured random search could have a

significant effect on top-down rule-based

composition, given that an underlying

assumption of much of much previous

research is that unstructured random

search and generate-and-test is too slow.

Such a quadratically faster search does

theoretically exist and can be

implemented, currently for a much smaller

number of sub-rules, but in a scalable way.

The purpose of this paper is to introduce a

small sub-rule system in a scalable way,

and implement it on hardware.

 The fast search requires that the

Boolean function can be implemented on a

quantum computer. It is the already-

mentioned Grover's algorithm (Grover

2001). The fact that Grover's algorithm is

implemented on a quantum computer will

lead to it being both generative and soft -

which will be seen to be useful features of

the system introduced later in this paper.

Each time Grover is run and collapsed, it

generates a suggested solution to the

Boolean function, with those that satisfy

the rule having the highest probability of

being generated. Suppose there are, say,

1,000 correct solutions to a combined rule,

and 1 billion incorrect solutions. Then

Grover will - most of the time - randomly

select one of the correction solutions, but

with a lower probability it may output one

of the incorrect values. This type of

feature is desirable in soft rules, and such

soft rules are sometimes desirable in

computer music systems (Anders 2018).

4. Grover’s Algorithm

At the heart of Grover’s algorithm is a

representation of the Boolean function to

be inverted – called the Oracle. Usually a

quantum form of the function to be solved.

In the case of rule-based composition, it

represents the rule to be solved. The first

step is to define the rule inputs as qubits.

So if the rule has three binary inputs, then

the classical version could be written:

 𝑟(𝑖0, 𝑖1, 𝑖2) = 1 (9)

The quantum version is written:

 𝑅|𝑖0𝑖1𝑖2⟩ or 𝑅|𝑞0𝑞1𝑞2⟩ (10)

since the inputs will have to be represented

as qubits and the rule as a quantum

operator R. In the algorithm, the inputs [i0,

i1, i2] are initialized to 0-valued qubits,

giving

 |𝑞0𝑞1𝑞2⟩ = |000⟩ (11)

Next in the Grover algorithm, the qubits

are put into a superposition of all their

possible values of [i0, i1, i2] (these are 000,

001, 010, 011, 100, 101, 110, 111). This is

done using three "parallel" H gates.

Applying them across the 3 qubit state in

(11) (and ignoring the scalar multipliers

for brevity) will give:

 𝐴 = 𝐻⨂ 3|000⟩ = |000⟩ + |001⟩ +

|010⟩ + |011⟩ + |100⟩ +

 |101⟩ + |110⟩ +|111⟩ (12)

The notation 𝐻⨂3 represents the fact the H

is acting on a three qubit state. Next the

Oracle operation R is performed on this

superposition A. The Oracle must be

represented as a unitary matrix that

multiplies the superposition:

 𝐵 = 𝑅(𝐴) =

𝑅(|000⟩ + |001⟩ + |010⟩ +
|011⟩ + |100⟩ +

|101⟩ + +|110⟩ +|111⟩)
 (13)

 = 𝑅|000⟩ + 𝑅|001⟩ + 𝑅|010⟩ +

𝑅|011⟩ + 𝑅|100⟩ +

 𝑅|101⟩ + 𝑅|110⟩ +𝑅|111⟩ (14)

The Oracle has one key function: it must

flip the phase of the part of the

superposition A in equation (12) that

represents the correct solution to the rule -

i.e. for which 𝑟(𝑖0, 𝑖1, 𝑖2) = 1. This can be

done by calculating a quantum version of r

in such a way that the state for which r is

satisfied has a negative phase. Suppose the

correct solution to 𝑟(𝑖0, 𝑖1, 𝑖2) = 1 is 0,1,0.

Then applying R in equation (48) should

give:

 𝐵 = |000⟩ + |001⟩ − |𝟎𝟏𝟎⟩ +
|011⟩ + |100⟩ +

 |101⟩ + |110⟩ +|111⟩ (15)

Next comes the key part. A quantum

function is applied, that moves the

superposition of (i0, i1, i2) towards a value

that, if measured, now has a higher

probability of giving 𝑟(𝑖0, 𝑖1, 𝑖2) = 1 (the

desired result). The operator that does this

is called the Grover diffusion operator, and

is (in the 3 qubit case):

 𝑅0 = 𝐻⨂3 (2|000⟩⟨000| − 𝐼)𝐻⨂3

 (16)

I is the identity matrix. Applying the R0

operator to the superposition B in equation

(14) has one key effect. It inverts the

weightings of B around their mean. The

mean of the weightings will have been

reduced by making the solution states have

negative weightings, so inverting all

weightings around the mean will increase

the size of the negative weighted items.

These are the items which are solutions to

equation (9). The combination 𝑅0𝑅(𝐴)

can also be thought of as a rotation of the

superposition in a complex vector space in

such a way as to move the superposition

vector 𝐴 of equation (12) towards the

solution. These operations amplify the

probability of observing the (i0, i1, i2)

which satisfy equation (9). This

amplification is very rapid. After less than

three applications of Grover (in the 3 input

rule case), if the quantum state of the

Grover output is observed, then the most

likely result will be the values (i0, i1, i2)

that give r(i0, i1, i2) = 1.

 The fact that quantum algorithms are

probabilistic raises another issue. After

less than 3 iterations of a 3 qubit input

Grover’s algorithm, although the most

likely observation will be values of (i0, i1,

i2) that obey (9), there is a non-zero

probability of measuring the wrong values.

This means that if r is meant to be a "hard"

rule, a quantum algorithm needs to be

sampled multiple times in order to get the

result required. However observing the

output of a quantum algorithm leads to a

collapse of the superposition. Thus the

algorithm needs to be run again to get

another sample output. This can - of

course - cancel out the quantum speed up

for hard rules. For example, using only 3

inputs as above, the quantum algorithm

might have to be run 20 times on the

ibmqx4 to give confidence in the result.

Then in real terms 40 iterations have been

performed, rather than the up-to-8

iterations with the classical version.

However this disadvantage quickly

disappears as the number of inputs

increases, given the speed-up factors

demonstrated earlier. Also, if a soft rule is

desired, then the user may be happy to

select the first output given.

5. Implementing Rules on a Hardware

QC

Grover's algorithm was introduced in the

context of larger-scale rule based systems

such as CHORAL, that use constraint

programming or advanced Boolean

solving tools to deal with the larger

numbers of rules and inputs. Using a

Grover of this scale would be too complex

to provide an introductory example or

implement on hardware. Hence a small-

scale Grover is utilized in this paper to

build the foundations of scalable approach.

5.1 qgMuse

qgMuse is a scalable hybrid hardware

classical/quantum algorithm implemented

using an IBM quantum computer. qgMuse

implements two rules, partly inspired by

the Narmour Implication-Realisation (I-R)

model (Narmour 1992). It is designed to

demonstrate a scalable quantum model of

composition that will be able to utilize

practical speedups from Grover's

algorithm once they become available. It is

done in the spirit of Monz et al. (2016)

which used Shor's quantum algorithm to

factor 15 into 5 and 3 on quantum

hardware - as a vital and scalable link in

quantum computer music research. The

fact Shor's algorithm can be used in a

simplified form on current QC hardware,

is a major step towards using it in

situations where the quantum speed-up

becomes relevant. Similarly with qgMuse:

although it is implemented in a way that

doesn't require a quantum speed-up, it lays

the framework for a future computer

music system based around the same

algorithm, that does.

 The Narmour I-R model is a proposed

approach utilizing soft rules for the

behavior of sequences of musical notes.

One of the I-R "rules", and one of its

assumptions will be interpreted into soft

Boolean rules. Firstly the I-R "Registral

direction" rule, which states that large

pitch intervals tend to precede a pitch

direction change, whereas small intervals

tend to be continued in the same direction.

A large interval will be defined here as

spanning 4 white piano notes or more. So

the pitch jump c -> f is large, whereas c ->

e is small. Or f -> b is large, whereas f ->

a is small. qgMuse only uses white notes

here as it can only have a limited number

of rules for practical quantum

implementation. Hence the tonality is

restricted at the outset, rather than

implementing it on the QC hardware as a

rule. The large interval flag 𝐿𝐼(𝑡) will be

defined as 1 if the number of white notes

of the current pitch to the previous pitch at

𝑡 − 1, including both end pitches, is 4 or

more, and 𝐿𝐼(𝑡) is 0 otherwise. Define the

direction change flag 𝐷𝐶(𝑡) as 1 if the

interval at 𝑡 is in the opposite direction to

the interval at 𝑡 − 1, and 𝐷𝐶(𝑡) is 0

otherwise. Then consider the XOR-based

rule:

 (𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))′ = 1 (17)

This is satisfied if 𝐿𝐼(𝑡 − 1) and 𝐷𝐶(𝑡)

are equal, i.e. if a large interval is followed

by a direction change, or if a small interval

is followed by a no direction change. So if

this is implemented as a fuzzy or soft rule,

it is compatible with the "Registral

Direction" tendencies. The following rule

will also be softly implemented:

 𝐿𝐼(𝑡 − 1)′ ∙ 𝐿𝐼(𝑡)′ = 1 (18)

which says that all intervals are small

(non-large) intervals following small (non-

large) intervals. Such a rule would not be

useful in a hard-rule generative music

system, but is useable in a soft-rule system

to make small intervals dominate over

large ones - an assumption in Narmour I-R

approach. The two rules between them use

3 variables, which requires a 3-input

Grover to solve equation (53), made up

from the two sub-rules above:

 (𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))
′
.

 𝐿𝐼(𝑡 − 1)′. 𝐿𝐼(𝑡)′ = 1 (19)

The quantum part of qgMuse is shown in

Figure 2. Figure 2's circuit solves the rule

(𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))′. 𝐿𝐼(𝑡 − 1)′.
 𝐿𝐼(𝑡)′ = 1 using Grover's algorithm. The

oracle is marked up with three rectangles

(1), (2) and (3). Everything after the

markups is part of the Diffusion operation,

and then measurement of the outputs.

 𝐿𝐼(𝑡), 𝐷𝐶(𝑡), and 𝐿𝐼(𝑡 − 1) are

represented by q0, q1 and q2 respectively.

The qubit “inputs” are all initialized to |0⟩.
Rectangle (1) uses a CNOT gate to take

the XOR of q2 and q1, represented on q1. It

then uses an X gate to take the NOT of q1.

Thus q1 now represents (𝐿𝐼(𝑡 −
1) ⨁ 𝐷𝐶(𝑡))′. The X gates on q0 and q2

perform a NOT on q0 and q2 to represent

𝐿𝐼(𝑡 − 1)′ and 𝐿𝐼(𝑡)′ respectively.

Rectangle (2) implements a control-

control-Z (ccz) gate, specifically

𝑐𝑐𝑧(𝑞2, 𝑞1, 𝑞0). This can be seen by

multiplying out the matrices of the

operations, but will not be demonstrated

here for space reasons.

 Given that q1 represents (𝐿𝐼(𝑡 −
1) ⨁ 𝐷𝐶(𝑡))′, q2 represents 𝐿𝐼(𝑡 − 1)′

and q0 represents 𝐿𝐼(𝑡)′ then - by the

definition of 𝑐𝑐𝑧(|𝑞0𝑞1𝑞2⟩) - |𝑞0𝑞1𝑞2⟩ has

its phase flipped if 𝑞0 = 1 and 𝑞1 = 1 and

𝑞2 = 1. In other words, if (𝐿𝐼(𝑡 −
1) ⨁ 𝐷𝐶(𝑡))′ = 1 and 𝐿𝐼(𝑡 − 1)′ = 1

and 𝐿𝐼(𝑡)′ = 1. Thus, as required, the

Oracle represents equation (19). Rectangle

(3) simply reverses the operations

performed in Rectangle (1) before going

through the Diffusion operations, which

need q0 and q1 to have the same values that

had before rectangle (1). The Diffusion

operations represent R0 in equation (16).

When this circuit has its output observed,

it should provide, with the highest

probability, solutions to equation (19).

Figure 2: Quantum circuit implementing the rule (𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))′. 𝐿𝐼(𝑡 −
1)′. 𝐿𝐼(𝑡)′ = 1 on the ibmqx4

The non-quantum part of the qgMuse

works as follows. It starts on a base note –

middle C will be used - at time step 𝑡 = 0.

Then it runs the quantum circuit to invert

equation (19) - to get the allowed values of

𝐿𝐼(𝑡 − 1), 𝐷𝐶(𝑡) and 𝐿𝐼(𝑡). Backtracking

is not utilized in qgMuse, so if the allowed

𝐿𝐼(𝑡 − 1) from the QC is different to the

actual 𝐿𝐼(𝑡 − 1) from the previous time

step, then the whole generation process is

skipped and new candidates are requested

from the QC. In other words if the

previous white note interval was large but

the quantum algorithm returns a solution

involving the previous interval being small

- or vice versa - then qgMuse calls the

quantum part of the algorithm again. If the

rules were hard rules, then the returned

solution would not change on this second

call. But for the non-deterministic Grover,

the solutions can change.

 If the generation continues (as opposed

to requesting new candidates from the QC)

then a second set of checks are done. If the

returned solution for 𝐿𝐼(𝑡) is 1 (i.e. a large

interval is required) then the generated

white note interval will be limited to a size

of 8 (including both notes in the interval),

otherwise it will be limited to a size of 3.

If the returned solution for 𝐷𝐶(𝑡) is 1 (i.e.

a direction change is required) then a

white note interval is generated between -8

and 8 (for large interval allowed) or

between -3 and 3 (for large interval not

allowed). Otherwise the generated interval

will be in the same direction as the

previous generated interval. The limiting

of large intervals to white note size 8 is

arbitrary, allowing for octave jumps at the

most.

 It can be seen that this implementation

of the Grover approach in qgMuse is not

generate-and-test. It would be more

accurately described as solve-and-

generate. The future quantum increase in

speed would come from solving the

Boolean equation. The process of turning

the solution into pitches is implemented

classically. This requires thoughtful

designing of the sub-rules. The easy case

is when the returned solution cannot be

satisfied by the music generated thus far -

in which case the Grover can be called

again. Suppose a solution is found, and it

involves returned values from the QC a

large number of variables for which

Grover is relevant - say 30 variables. Then

depending on the nature of these variables,

a classical rule-based search may need to

be run, to find solutions that give the

allowed values for the variables. This

could involve constraint satisfaction

techniques. Thus the qgMuse approach

does not replace constraint-based

approaches, it provides a possible method

for redesigning such approaches to speed

up the parts that could involve generate-

and-search sub-processes. For example,

suppose the qgMuse quantum element

returns 1, 1 and 0 for 𝐿𝐼(𝑡), 𝐿𝐼(𝑡 − 1) and

𝐷𝐶(𝑡). This could be viewed as setting up

another rule:

 (𝐿𝐼(𝑡) = 1) ∙ (𝐿𝐼(𝑡 − 1) = 1) ∙
 (𝐷𝐶(𝑡) = 0) = 1 (20)

or

 𝐿𝐼(𝑡) ∙ 𝐿𝐼(𝑡 − 1) ∙ 𝐷𝐶(𝑡)′ = 1 (21)

This is simpler to solve than the full

combined rule defined earlier as:

 (𝐿𝐼(𝑡 − 1) ⨁ 𝐷𝐶(𝑡))′.
 𝐿𝐼(𝑡 − 1)′. 𝐿𝐼(𝑡)′ = 1 (22)

It is so simple that it is easily

implementable programmatically, as done

in this version of qgMuse. Also - as has

already mentioned - the quantum approach

provides "softness" for free. It is worth

mentioning at this point that the softness is

not as controllable as that available in

some soft rule-based systems. A classical

soft rule-based system could use defined

probability distributions to ensure that the

softness is controlled. Whereas the

softness produced by Grover is a function

of the quantum indeterminacy and errors

in quantum hardware - a less controllable

combination. But in terms of speed it is

"instant" - it does not require probability

distribution or pseudorandom algorithms -

the quantum mechanics provides it

instantly.

6. Results

Two runs of qgMuse of eight 4/4 bars each

on the ibmqx4 quantum computer are

shown in Figures 3 and 4. Looking at the

melodies it is not clear how well the rules

are being followed. To give further

insight, Figure 5 shows a plot of the output

of the Grover algorithm in Figure 2

sampled 4096 times. IBM's Qiskit API

converts the qubit observations to

hexadecimal. So in Figure 5, 0x0 is 000

binary - i.e. all qubits are observed as 0.

Similarly 0x7 is 111 binary - i.e. all qubits

observed as 1, and 0x5 is binary 101 - i.e.

q1 is observed as 0, but q0 and q2 are

observed as 1. The solution of equation

(19) can be seen by eye to be: all variables

are 0. In the quantum world, this means

that the most likely result of a

measurement is all variables as 0. Figure 5

shows that the ibmqx4 returns all 0

approximately 52% of the time. The other

48% of the time, the incorrect values will

be returned. It was initially desired that for

soft rules, correct values be returned only

most of the time. However a likelihood of

52% for a correct value, and 48% for a

random one, is probably lower than

desired for most soft rules. However,

running the Grover 4096 times on the IBM

online simulator gives Figure 6. This

shows that the correct results are returned

approximated 77% of the time, with a

roughly equal spread across the incorrect

results - totalling up to around 23%. This

demonstrates that of the approximately

48% of incorrect results in the ibmqx4,

around half of them are due to quantum

hardware errors, rather than designed

quantum effects. 23% error in soft rules

seems a more reasonable figure - and is

approximately what the ibmqx4 would

give if it was a perfectly engineered

quantum computer (i.e. more like the

simulator).

Figure 3: 8 bars of qgMuse running on the IBM quantum hardware - Melody A

Figure 4: 8 bars of qgMuse running on the IBM quantum hardware - Melody B

Figure 5: Grover rule outputs shown for the IBM quantum hardware ibmqx4

Figure 6: Grover rule outputs shown for the IBM online simulator

Figure 7: 8 bars of qgMuse running on the IBM quantum simulator - Melody C

Figure 8: The melody in Figure 6 - Melody A, harmonised by an independent harmony

algorithm qHarmony on a DWave 2X

Thus given that Figures 3 and 4 should

only exhibit 52% correct behaviour, it is

not feasible to use them to evaluate the

statistical results. Generating larger and

larger tunes to increase statistical clarity is

pointless - Figure 5 (together with the

deterministic behaviour of the classical

computer code part of qgMuse) fully

characterises qgMuse, and Figures 3 and 4

simply prove the feasibility of a musical

output. However, the Figure 7 score of the

online quantum simulator running qgMuse

does allow some judgement by eye of its

musical output (in terms of rule-

following). The vast majority of intervals

in Figure 7 are non-large / small intervals -

showing one sub-rule (equation (18)) is

having an impact in a way that was not so

clear in the hardware results. However - as

would be expected - the sub-rule of

direction changes coinciding with a

previous large interval (equation (17)) is

not obviously visible.

 It has been observed in the past that

without some independent harmonic

context, algorithmic melodies are difficult

to evaluate (Papadopoulos and Wiggins

1999). Figure 8 shows the run of 8 bars

output from Figure 3, this time with an

independently generated harmonic

context. The chords are generated using

qHarmony - an algorithm for generating

simple white note harmonies without any

temporal context. It takes as input one or

two white notes, and outputs a white note

chord to play with the notes. In this case

two notes - the first and third note of each

bar - are sent to qHarmony to select the

chord for the whole bar. It does not use

context of the previous or following

chords. It is interesting to note that

qHarmony is also run here on quantum

hardware - it was in fact the first quantum

hardware music algorithm - but on a very

different system to the ibmqx4. It is a D-

Wave 2X adiabatic quantum computer,

referred to in the introduction to this paper

as a quantum annealer. The algorithm is

beyond the scope of this paper, but more

information about qHarmony and

adiabatic quantum computing can be

found here (Kirke and Miranda 2017).

qHarmony has previously been utilized in

both live performance (Kirke 2016) and

offline testing. There is one slight artistic

license taken with the harmonies in Figure

8. When qHarmony returns a

harmonisation - it actually returns a

selection of harmonisation solutions,

together with their energy level for each.

In theory, the lower the energy level, the

better the solution. Bars 7 and 8 both

returned the same solution chords at the

lowest energy level. To create a small

sense of movement between the

penultimate bar and the final bar, the

second lowest energy (energy -54)

solution for Bar 7 was selected instead of

the lowest energy solution (energy -56).

 The tunes sound reasonably

presentable, including the harmonized

version. Some of this is due to the fact of

the implicit rule of qgMuse - using only

piano white notes. However a high level of

musical quality is not expected from the

limited sub-rule-set size feasible on

current hardware QCs.

 The results of qgMuse above support

the idea of the non-deterministic nature of

quantum computers being a potential

"feature rather that a bug" - in terms of

implementing soft rules. Furthermore,

Figures 3 to 7 are consistent with the idea

that the rules are being followed the

majority of the time. Given the usage of a

quantum computer with a similar level of

hardware error (in the final outputs), but

with a much larger number of qubits, then

qgMuse can be scaled in a simple way.

The number of sub-rules can be increased.

This can be done with conjunction or

disjunction - i.e. by ANDing the rules (as

described earlier) or ORing them, or a

combination (a quantum OR can be built

using x gates and ccx gates). Then each

Boolean input can be assigned to a qubit.

 Note that the proviso above about the

level of error in the final outputs is key.

Just increasing the number of qubits and

the size of the Boolean functions, at the

current level of gate error, will create an

essentially random output. The input /

output error refers to this: given a certain

input - and given the resulting output -

how far away are the outputs from the

outputs of a perfect simulator? To achieve

the same level of error as seen in Figure 5

for 100 gates is beyond current quantum

technology. However if the gate errors can

be kept small enough, so that perhaps 500

gates can be combined with the same level

of input / output error as seen in Figure 5,

then more interesting musical problems

become possible using Grover. Given this

level of error, exactly the same methods

can be used as used in this paper, the main

challenge becoming - how to implement

Oracles for the various musical rules.

 Of course, at the current level of

simplicity of qgMuse required by quantum

technology, the whole rule-based process

in qgMuse process could have been done

trivially. Rather than running the Grover,

the results of the randomly generated notes

and of calculating LI and DC could have

been inserted into the classical Boolean

equations. If they failed to fulfil those

equations, then 75% of the time (say, to

allow for softness) the proposed interval

could have been ignored and a new one

generated. This approach works fine until

the number of equations and inputs grows

large. Then various heuristics and

optimisation methodologies need to be

introduced. Gradually as the number of

rules and inputs grows, the result becomes

very slow to generate on a classical

system. At this point the problem moves

into the domain where a Grover-assisted

algorithm using the ideas of qgMuse, on a

sufficiently powerful future quantum

computer, could have an advantage.

 The reality is that a future quantum

computer music top-down rule-based

system will probably be a hybrid between

constraint programming and quantum

computer unstructured search. The

quantum part will be the Grover methods

used in this paper, but implemented in

more error-tolerant ways and utilizing

quantum error reduction algorithms (Singh

et al. 2018). But whatever the precise

balance and approach used, the basic

structure of a Grover solving of a Boolean

rule will remain the same, as described in

this paper. It can in fact be proved that

Grover's algorithm is optimal for

unstructured search (Zalka 1997).

7. Conclusions

In evaluating the design and results of

qgMuse, context is key. For example,

qgMuse is slower than a fully classical

version. The quantum advantage of Grover

is superseded by the simplicity of the

rules, and the small number of inputs. A

classical version will be faster, as

accessing the small number of quantum

computers sometimes involves a queue

time, and obviously running the simulator

is slower than the classical equivalent.

Similarly, from a musical point of view,

there are only two simplistic rules being

used, that are applied to a musical context

of one previous note and a small number

of music features.

 Thus the evaluation context is as

follows: (a) Shor's algorithm is currently

only factoring numbers of the order of 15;

(b) qgMuse is scalable as a concept; and

(c) qgMuse has a natural soft non-

deterministic nature. Examining the

second point, which is overwhelmingly the

most important: suppose there is a

conjunction of 150 Boolean musical sub-

rules with 30 inputs, similar to that

discussed earlier. Finding solutions to that

conjunction by classical unstructured

search would be unfeasible, and may never

become feasible given the limitations of

Moore's law (Waldrop 2016). However

quantum computing is moving forward at

a significant rate in 3 key areas: number of

qubits, stability of processing, and error

reduction methods. When the 16 qubit

IBM Melbourne was released, it came

rapidly on the heels of the 5 qubit ibmqx4.

Other companies claim to have QCs with

greater than 60 qubits, but many are not

publically available to use yet. The

instability of hardware quantum computers

is not a new issue, and there have been

many years of research (Lidar and Brun

2013) into how to reduce the susceptibility

of quantum computing to errors such as

those encountered in this paper, including

on the ibmqx4 itself (Singh et al. 2018). In

the next couple of years, someone may

publish an error tolerant version of the 3-

input Grover for the IBM q 16 Melbourne.

It is not unfeasible that in 4 years the IBM

q 16 Melbourne will be superseded by a

much more stable q 30, with versions of

the Grover algorithm that allow input and

processing juggling on the machine

leading to the use of perhaps 10-20 inputs.

There are researchers who say that the

demonstrating of quantum supremacy over

classical computers in hardware for certain

algorithms is only a matter of years away

(Harrow and Montanaro 2017). Though it

is not clear yet how this might relate to

timescales for a similar demonstration

with Grover’s algorithm.

 The ibmqx4 has one qubit gate and

two qubit gate fidelity of 99.7% and

95.8% (Finke 2018). These are measures

of the accuracy of the single input and two

input gates. Two input gates such as cx are

vital, but are much harder to implement

than single input gates such as x. The 16

qubit Melbourne has 99.7% and 92.8% for

these values - more error prone than the

ibmqx4 (in fact the experiments in this

paper were first run on the Melbourne, but

then discarded due to impractical error

rates). Google have built a 72-qubit

quantum computer and report accuracies

of 99.9% and 99.4%. Recently IonQ

announced a 79 qubit machine and report

rates of 99.97% and 99.3% (IonQ 2018).

While all of this is happening, it is

expected that the research community will

develop a strong quantum subset of

research looking at how to implement

Boolean solving problems on quantum

computers. IBM have released a machine

learning kit for their computers, but they

have not tested it running Grover on

Boolean equations on hardware.

 The Grover approach taken in qgMuse

is fairly simplistic and linear. CHORAL

and its progeny utilize many ingenious

methods to speed up the search for

solutions. Quantum-enhanced versions of

these methods are sure to emerge. The

computer music community can utilize

such advantages.

 The computer music world can also

contribute to the quantum computing

research world. This paper remains one of

the few in existence that attempts to give a

mid-level insight into Grover’s algorithm.

Most papers on Grover’s algorithm are

either entirely non-expert, non-practical or

too complex for the average programmer.

Computer music can provide an

environment for utilizing quantum

algorithms that - because of music's

relatively lightly structured nature - will

help non-quantum physicists and non-

mathematicians to gain greater practical

insight. Machine learning / statistical

analysis for language processing or

molecular pattern recognition are highly

constricted problems leading to extremely

technical papers, whose results are

meaningless to most non-experts. Music

and sound allow for freer output structures

- that can still produce a sense of meaning

and pattern, with relatively light-touch

algorithms. Hence a quantum computer

musician may write an paper explaining

their work and its results in a far more

accessible way than a quantum

computational chemist.

8. Acknowledgements

Thanks to Yassine Hamoudi of the

Research Institute on the Foundations of

Computer Science at Université Paris-

Diderot for his optimization and error-

checking of the Grover part of qgMuse.

REFERENCES

Anders, T. (2018) Compositions created with

constraint programming. The Oxford

Handbook of Algorithmic Music, p.133.

Brody, J. (1997) Background Count for

percussion and 2 channel electroacoustic.

Cadiz, R. and Ramos, J. (2014) Sound

Synthesis of a Gaussian Quantum Particle in

an Infinite Square Well, Computer Music

Journal, Vol. 38, No. 4, Pages 53-67, MIT

Press.

Coleman, J. (2003) Music of the Quantum.

Columbia University, New York, 2003.

Culpan, D. (2015) CERN's 'Cosmic Piano'

uses particle data to make music, Wired, 8

Sept 2015.

https://www.wired.co.uk/paper/cern-cosmic-

piano

Ebcioğlu, K. (1988) An expert system for

harmonizing four-part chorales. Computer

Music Journal, 12(3), pp.43-51.

Finke, D (2018)

https://quantumcomputingreport.com/scorecar

ds/qubit-quality/ "Qubit Quality", Last

Accessed Feb 2019

Glowacki, D., Tew, P., Mitchell, T.,

McIntosh-Smith, S. (2012) danceroom

Spectroscopy: Interactive quantum molecular

dynamics accelerated on GPU architectures

using OpenCL In The fourth UK Many-Core

developer conference (UKMAC 2012),

Bristol, UK.

Grover, L. (2001) From Schrödinger's

equation to quantum search algorithm. In:

American Journal of Physics, volume 69(7):

769-777.

Harrow, A.W. and Montanaro, A. (2017)

Quantum computational supremacy. Nature,

549(7671), p.203.

Hetherton, S. (2014) CERN scientists perform

their data, 3 OCTOBER, 2014 | By Sophie

Hetherton, CERN

Hiller Jr, L.A. and Isaacson, L.M. (1957)

Musical composition with a high speed digital

computer. In Audio Engineering Society

Convention 9. Audio Engineering Society.

Kirke, A. and Miranda, E.R. (2007)

Evaluating mappings for cellular automata

music. In Proceedings of ECAL Workshop on

Music and Artificial Life.

Kirke, A., Miranda, E., Chiaramonte, A.

Troisi, A., J. Matthias, J., N. Fry, N., C.

McCabe, C. (2013) Cloud Chamber: A

Performance with Real Time Two-Way

Interaction Between Subatomic Particles and

Violinist. In: Leonardo Journal, volume 46(1).

Kirke, A. (2016) Superposition Symphony,

Port Eliot Festival 29 July 2016

https://www.youtube.com/watch?v=-

S5hU4oMWag

Kirke, A. and Miranda, E.R. (2017)

Experiments in Sound and Music Quantum

Computing. In Guide to Unconventional

Computing for Music (pp. 121-157). Springer,

Cham.

Kirke, A. (2018) Programming Gate-based

Hardware Quantum Computers for Music,

Quantum Music and Beyond, Belgrade,

Serbia, March 2018.

Kirke, A. (2018b) Programming Gate-based

Hardware Quantum Computers for Music,

Muzikologija, 24:21-37.

Monz, T., Nigg, D., Martinez, E.A., Brandl,

M.F., Schindler, P., Rines, R., Wang, S.X.,

Chuang, I.L. and Blatt, R. (2016) Realization

of a scalable Shor algorithm. Science,

351(6277), pp.1068-1070.

Narmour, E. (1992) The analysis and

cognition of melodic complexity: The

implication-realization model. University of

Chicago Press.

O’ Flaherty, E. (2009) LHCsound:

Sonification of the ATLAS data output. STFC

Small Awards Scheme.

Papadopoulos, G. and Wiggins, G. (1999)

April. AI methods for algorithmic

composition: A survey, a critical view and

future prospects. In AISB Symposium on

Musical Creativity (Vol. 124, pp. 110-117).

Edinburgh, UK.

Perlner, R.A. and Cooper, D.A. (2009) April.

Quantum resistant public key cryptography: a

survey. In Proceedings of the 8th Symposium

on Identity and Trust on the Internet (pp. 85-

93). ACM.

Putz, V., Svozil, K. (2015) Quantum Music,

Soft Computing, 1-5.

Shor, P. (2006). Polynomial-Time Algorithms

for Prime Factorization and Discrete

Logarithms on a Quantum Computer. In

SIAM Journal of Computing, volume

26(5):1484–1509.

Singh, R.K., Panda, B., Behera, B.K. and

Panigrahi, P.K. (2018). Demonstration of a

general fault-tolerant quantum error detection

code for (2n+ 1)-qubit entangled state on IBM

16-qubit quantum computer. arXiv preprint

arXiv:1807.02883.

Sturm, B. (2000) Sonification of Particle

Systems via de Broglie’s Hypothesis. In

Proceedings of the 2000 International

Conference on Auditory Display. Atlanta,

Georgia.

Sturm, B., Composing for an Ensemble of

Atoms: The Metamorphosis of Scientific

Experiment into Music. In Organised Sound,

volume 6(2):131-145, 2001.

Waldrop, M.M. (2016) The chips are down for

Moore’s law. Nature News, 530(7589), p.144.

Weaver, J. (2018)

https://github.com/JavaFXpert/quantum-toy-

piano-ibmq, Last Accessed Feb 2019.

Weimer, H. (2010) Listen to Quantum

Computer Music. In Quantenblog, available

from

http://www.quantenblog.net/physics/quantum-

computer-music, last accessed Feb 2019.

Zalka, C. (1999) Grover’s quantum searching

algorithm is optimal. Physical Review A,

60(4), p.2746.

