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Abstract 

This thesis describes the synthesis and characterisation of polyamino– and 

polyphosphinoboranes, targeting the use of catalytic dehydropolymerisation as a route to 

obtain polymers with varied structures.  

Chapter 1 puts into context of the area of metal-catalysed dehydrocoupling chemistry of 

main group compounds with an emphasis on amine– and phosphine–boranes as 

precursors to polymeric materials, and the properties and potential applications of the 

related inorganic polymers. 

Chapter 2 describes the synthesis of a family of aryl-substituted phosphine–boranes with 

electron-donating and electron-withdrawing groups and the polymerisation of these 

monomers by metal-catalysed dehydropolymerisation using [CpFe(CO)2OTf] as a 

precatalyst. The discussion focuses on the influences of the electronics of the substituents 

in the side chains on the properties of the polymers, and the study of their thermal 

properties, as well as their potential applications. 

Chapter 3 describes the expanded use of [CpFe(CO)2OTf] as a versatile precatalyst for the 

dehydropolymerisation of a range of alkyl-substituted phosphine–boranes with varied 

structures. Although preliminary investigation was hampered by monomer purity, the 

discussion focuses on the potential factors that could affected the monomer’s reactivity. 

The thermal properties of poly(alkylphosphinoboranes) are also discussed. 

Chapter 4 presents the use of amine–boranes substituted by aryl-containing alkyl groups 

at nitrogen via catalytic dehydropolymerisatiom aided by transition metal precatalysts. 

The formation of high molar mass homopolymers and copolymers is described along with 

thermal stability and cross-linking studies. Discussion on the molar mass characterisation 

of polyaminoboranes by different analytical techniques is also described. 
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Chapter 5 describes the unprecedented synthesis and characterisation of the BN inorganic 

analogues of polystyrene, poly(B-arylaminoboranes) through metal-catalysed 

dehydropolymerisation of B-substituted amine–boranes. In addition, the stability studies 

in the solid state and in solution for these polymers is presented.   

Chapter 6 presents ongoing and potential ideas for future work based upon the results 

presented in Chapter 2–5. 
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Chapter 1.  

Introduction 

1.1 Research Objectives 

In recent years, the investigation on the catalytic dehydrocoupling of amine– and 

phosphine–boranes has primarily focused on the study of the release and potential storage 

of molecular hydrogen for fuel-cell applications. In addition, the catalytic dehydrocoupling 

reaction of amine– and phosphine–boranes has been found to provide a viable route for 

the synthesis of macromolecules containing B–N and P–B bonds in the main chain. These 

materials possess diverse potential applications as, for example, precursors to ceramic 

materials or elastomers and thermoplastics. Although there are well-established catalytic 

routes to access these types of inorganic polymers, the range of monomers that undergoes 

the dehydropolymerisation reaction is relatively restricted thereby limiting the materials 

available. In the case of amine–boranes, only monomers with small alkyl groups attached 

to nitrogen have been successfully polymerised to polyaminoboranes. On the other hand, 

until now, the polymerization of phosphine–borane monomers has only been efficient with 

aryl substituents at the phosphorus centre for the synthesis of polyphosphinoboranes, 

The aim of the research described in this thesis is to continue the investigation on the 

dehydropolymerisation of primary amine– and phosphine–boranes using metal-catalysed 

systems in order to tackle the synthesis of more structurally diverse polyaminoboranes 

and polyphosphinoboranes, respectively. This introductory chapter describes the general 

aspects of dehydrocoupling chemistry and places the work on the aforementioned 

inorganic polymers in context. Moreover, each chapter has detailed background associated 

with the dehydrocoupling of the array of amine– and phosphine–boranes used in this work.   
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1.2 Background Introduction 

1.2.1 Catalytic Bond Formation for Main Group Elements: Historic Aspects 

The ability to form or break C–C bonds by transition-metal-catalysed routes has played a 

pivotal role in the development of the area of synthetic organic chemistry since the 1950s. 

This has led to breakthroughs in olefin metathesis,1 the establishment of different 

palladium-based cross-coupling systems,2 and olefin polymerisation.3 Many efficient 

catalytic processes have also been developed for the formation of bonds between carbon 

and other elements. 

In contrast, analogous catalytic bond-forming routes to non-carbon main group elements 

E–E’ (E, E’ = p-block element) are still emerging. In particular, salt metathesis and 

reductive coupling routes have traditionally provided the main routes to the formation of 

main group element–element bonds. These involve the generation of unwanted byproducts 

and often require aggressive reaction conditions. For example, the use of the Wurtz 

reaction to prepare polysilanes [SiR2]n from organochlorosilanes and stoichiometric 

amounts of alkali metals requires forcing conditions which has hindered the expansion of 

the field as this methodology was found to be non-catalytic and element-dependant with a 

limited scope and lack of generality.4 

Catalytic dehydrocoupling chemistry has emerged as a versatile approach to the formation 

of p-block element–element bonds with concurrent elimination of molecular hydrogen 

(H2).5 Pioneering examples in the mid-1980s of the utilisation of metal-catalysed 

dehydrocoupling routes were applied to prepare homonuclear bonds between main group 

elements (E–E). For example, the formation of B–B bonds was achieved by platinum-based 

catalytic dehydrocoupling of boranes and carboranes to prepare linked borane clusters 

(Scheme 1.1A)6 and, around the same time, an analogous process to yield Si–Si bonds from 

primary silanes using titanocene precatalysts was described (Scheme 1.1B).7  
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Scheme 1.1. a) Formation of a B–B bond by Pt-based catalytic dehydrocoupling of borane cluster 

[B5H9]. b) Synthesis of polysilanes by Ti-based catalytic dehydrocoupling of silanes.  

 

Metal-catalysed dehydrocoupling reactions to form main group heteronuclear bonds (E–

E’) were reported shortly thereafter. For example, the formation of Si–N bonds to prepare 

oligosilazanes (Scheme 1.2A)8 and the formation of Si–P bonds to prepare silylphosphines 

(Scheme 1.2B)9 was achieved by the Ti-catalysed heterodehydrocoupling of silanes with 

ammonia and phosphines, respectively.   

 

Scheme 1.2. a) Formation of oligosilazanes using Cp2TiMe2 by dehydrocoupling of silanes and NH3. b) 

Synthesis of P–Si bonds by catalytic dehydrocoupling of phosphines and silanes with Cp2TiMe2.  

 

Since then, the area of catalytic dehydrocoupling to form homo- and hetero-nuclear main 

group bonds (E–E or E–E’) has become a promising methodology for the synthesis of a 

variety of inorganic molecules and materials (e.g. cyclic species, cages, main group 

multiple bonds, ceramics, etc.).5a  
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1.2.2 Synthesis of Inorganic Polymers: A Synthetic Challenge 

Polymeric organic materials are ubiquitous in our everyday modern life. Their 

technological applications vary from packaging materials, medical implants, and 

electronics, to their use in the textile, automotive and aerospace industries.10 This can be 

attributed to relatively easy access to monomers from petroleum-based sources and to the 

existence of well-established synthetic organic methodologies (e.g. free radical, anionic and 

cationic, and addition or condensation polymerisation reactions).11  

Addition polymerisation (Scheme 1.3A) is a widely used protocol that involves the use of 

unsaturated organic molecules (e.g. α-olefins such as ethylene and styrene) generally via 

a chain-growth mechanism. However, the application of an analogous technique to 

synthesise inorganic polymers is usually difficult as the preparation of inorganic molecules 

with element–element multiple bonds is difficult and, additionally, such species are 

generally highly reactive and challenging to handle in the absence of sterically bulky 

substituents which prevent further oligomerisation events.12 Despite these issues, 

significant progress in this area has been achieved over the past two decades.13 

 

Scheme 1.3. Common routes to prepare inorganic polymers. 

 

The alternative polycondensation protocol (Scheme 1.3B) for all-carbon systems involves 

a step growth mechanism and requires the use of highly pure difunctional substrates 
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which are generally easy to access. Moreover, the underlying step-growth mechanism 

entails the use of strict conditions of stoichiometric balance together with high conversion 

of monomers to access high molar mass polymers. When this condensation protocol is 

translated to bifunctionalised inorganic synthons it is found that such species are 

frequently challenging to synthesise and to purify (e.g. involving preparation of dilithiated 

monomers) and thus, it leads to low molar mass, oligomeric products.14  

Despite the challenges in the synthesis of inorganic monomers, the formation of inorganic 

polymers with main-group elements in their backbones have been circumvented by two 

alternative synthetic routes: catalytic dehydrocoupling polymerisation (which can be 

perceived as a catalysed self-condensation reaction) (Scheme 1.3C); and ring-opening 

polymerisation (ROP) of cyclic monomers (Scheme 1.3D).15 Both protocols usually follow a 

chain-growth mechanism with an efficient propagation step which allows for the facile 

formation of high molar mass polymers. As a consequence, the inorganic polymer field has 

expanded beyond the classical inorganic polymeric systems (e.g. polysilanes, polysiloxanes 

and polyphosphazenes) which have been used in a number of different applications such 

as electroluminescent materials for devices, high-performance elastomers, and flame-

retardant materials.16 Since then, new polymers based on main group elements have been 

developed: polycarbosilanes, polystannanes, polycarbophosphazenes, metallocene-based 

polymers, etc. Nevertheless, the exciting prospects of inorganic materials are the 

remarkable potential related to their unique physical properties, which differ from purely 

organic carbon-based polymers, as a consequence of the inherent chemistry of main group 

elements.17  

Recently, there has been widespread interest in catalytic heterodehydrocoupling 

strategies for compounds of group 13/15 elements to access novel molecules and 

materials.18 Typically, these have involved species such as amine–boranes RNH2·BH3 and 

phosphine–boranes RPH2·BH3 (R = alkyl, aryl, H). Group 13/15 polymers are relatively 
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unexplored, yet are important as analogues of polymeric all-carbon systems (e.g. 

polyolefins). For example, polyaminoboranes [RNH–BH2]n and polyphosphinoboranes 

[RPH–BH2]n could potentially have novel thermophysical, preceramic and other useful 

materials properties of technological relevance.   

 

1.2.3 Catalytic Formation of Nitrogen–Boron Bonds 

1.2.3.1 Synthesis of Amine–Borane Adducts 

Amine–boranes are a classical representation of a Lewis acid-base adduct formed between 

a borane Lewis acid (e.g. BH3) and amine Lewis base (e.g. NH3) connected by a dative 

bond. After the discovery of NH3·BF3 in 1809 by Gay-Lussac,19 different synthetic 

methodologies to prepare amine–boranes have been developed.  The more frequently 

employed routes to synthesise amine–boranes involve either the direct reaction of amines 

and borane adducts with labile donors BH3·L (e.g. L = THF or SMe2) (Scheme 1.4A),20 or a 

salt metathesis reaction between ammonium salts and borohydrides (Scheme 1.4B).21 By 

the latter route, B-substituted amine–boranes can be produced from reduction of boronic 

acids to form borohydrides that react with commonly available amine hydrochloride 

salts.22  

 

Scheme 1.4. Synthetic routes to amine–boranes. 
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This metathesis protocol enables the access of a range of amine–boranes with substituents 

at either boron or nitrogen atoms. Recently, an open-flask synthesis of amine–boranes 

with high functional group tolerance was described. The reaction involves the formation 

of alkylammonium carbonate (prepared in situ from NaHCO3 and H2O in the presence of 

an amine) which subsequently undergoes metathesis with NaBH4 to form the amine–

borane (Scheme 1.4C).23   

1.2.3.2 Reactivity and Applications of Amine–Boranes 

Amine–boranes feature a B–N bond with electronegativity difference of 1.0 (χB = 2 and χN 

= 3)24 which induces overall polarisation in these adducts (Figure 1.1).25 As a consequence, 

ammonia–borane and related amine–boranes featuring hydrogen substituents at B and N 

present two fundamental reactions that are dictated by their polar nature; the former is 

the attack at protic hydrogens at nitrogen by basic reagents, leading to deprotonation; and 

the latter is the attack at the hydridic hydrogens at boron by acids to lead to loss of a 

hydride. Furthermore, amine–boranes have been traditionally utilised as reducing and 

hydroboration reagents,18a, 26 and in hydrogen storage27 and transfer.28 In recent years, 

amine–boranes have been tested as part of hypergolic rocket fuel components.29 

 

Figure 1.1. Schematic representation of bond polarisation in the Lewis acid/base adduct NH3·BH3. 

 

Moreover, extensive research on the dehydrogenation reaction of ammonia–borane 

NH3·BH3 has been described,27b, 30 and this species has been considered to be a potential 

candidate as a hydrogen storage material due to its high gravimetric hydrogen content 

(19.6 wt%), low molar mass (30.7 g mol−1) and its thermal stability under ambient 
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conditions. Although the dehydrogenation of NH3·BH3 by thermal31 and catalytic routes32 

produces a relatively high yield of H2, the BN products of such reactions have been found 

to be difficult to rehydrogenate. The regeneration of the “spent fuel” is one of the critical 

steps to be addressed if NH3·BH3 is to be used as a realistic hydrogen storage compound 

for most applications.21a, 33   

Alternative applications of amine–boranes have been developed in different areas. In 

materials science, they are ceramic precursors of boron nitride (BN) which exits commonly 

in two polymorphs, the cubic boron nitride (c-BN) and the hexagonal boron nitride (h-

BN).34 The former allotropic form has found applications as an abrasive due to its inherent 

hardness which is similar to diamond.35 Atomic layers of h-BN have been prepared from 

NH3·BH3 by means chemical vapor deposition (CVD)36 and have potential applications in 

graphene-based electronics as a 2D dielectric substrate.37 

In polymer science, the catalytic dehydrocoupling of amine–boranes has led to the 

formation of polyaminoboranes which are boron–nitrogen analogues of polyolefins. 

Although the development of synthetic routes to form high molar mass polyaminoboranes 

is still nascent, potential applications of these materials have been noted in a few reports. 

These include precursors to boron nitride38 or borate nanowires,39 piezoelectric materials,40 

and for boron neutron capture therapy.41   

 

1.2.3.3 General Aspects of Metal-Catalysed Dehydrocoupling of Amine–Boranes 

Dehydrocoupling is pivotal to many of the proposed applications of amine–boranes and 

involves the formation of new B–N bonds with concomitant release of H2. Amine–boranes 

can undergo this process either thermally, usually at temperatures above 100 °C,42 or 

catalytically at reduced and/or ambient temperatures, usually through the use of a metal 

catalyst.18b, 32     
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The study of dehydrocoupling reactions has focused to a great extent on secondary amine–

boranes R2NH·BH3 for mechanistic investigations on the metal-catalysed reaction.18b This 

is owing to the formation of relatively well-defined intermediates and products. For 

example, linear diborazanes R2NH·BH2NR2·BH3 or cyclodiborazanes [R2N–BH2]2 can be 

detected (e.g. R = Me). The exception is when R is a bulky group (e.g. iPr, Cy) and only 

monomeric aminoboranes, R2N=BH2 are formed.  

 

Scheme 1.5. General scheme for the catalytic dehydrocoupling of primary amine–boranes. 

 

In the case for NH3·BH3 and primary amine–boranes RNH2·BH3, the initial loss of H2 can 

lead to the formation of an aminoborane RNH=BH2 (R = H, Me) (Scheme 1.5A) which has 

been proposed to be an intermediate in the formation of either cyclic oligomers or linear 

polymeric material (Scheme 1.5B).18b However, the subsequent reactivity of the 

aminoborane RNH=BH2 (R = H, Me) once formed, is poorly understood. One possibility is 

the initial trimerisation to form borazane [RNH–BH2]3 (Scheme 1.5C), after which 

subsequent dehydrogenation processes lead to the formation of the thermodynamic 

product, borazine [RN–BH]3 (Scheme 1.5D). Nevertheless, an understanding of the 

fundamental chemistry of free RNH=BH2 (R = H, Me) can be approached through their 

observation as transient intermediates in reactions by in situ nuclear magnetic resonance 

(NMR) spectroscopy,43 or indirect observation by trapping of stable products (using 
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hydroboration of cyclohexene),28a, 44 studies of polymer growth kinetics45 and catalytic 

redistribution reactions,28a or via their coordination to metal centres.46  

 

 1.2.3.4 Dehydrocoupling of Amine–Boranes by Transition Metal Catalysts 

The number of metal catalysts that mediate dehydrocoupling/dehydrogenation 

transformations of amine–boranes has increased dramatically in the last decade and are 

mainly focused on NH3·BH3 and Me2NH·BH3. Among the catalytic systems described, we 

can find catalysts based on early,47 mid28c, 47j, 48 and late transition metals18b, 32 from the d 

block, and recently, some examples from the f block.49 Moreover, the use of main-group 

catalysts from the s-50 and p-51 blocks are attracting more attention, and systems based on 

frustrated Lewis pairs (FLPs)52 are also emerging as dehydrocoupling agents.  

The Manners group have contributed significantly to the amine–borane dehydrocoupling 

area and the main work in this thesis is based on some metal-catalysed systems developed 

by our group. For example, Manners and co-workers reported the first example of the 

metal-catalysed dehydrocoupling of Me2NH·BH3 using Rh-based precatalysts at room 

temperature to form the cyclic dimer [Me2N–BH2]2. When the same catalytic system was 

applied to primary amine–boranes RNH2·BH3 (R = H, Me, Ph) the successive formation of 

borazane [RBH–NH2]3 to borazine [RB–NH]3 was observed. In the case of NH3·BH3, the 

formation of B–N oligomers and/or polymers was also detected.20a  

The catalytic dehydrocoupling reaction has been extended to other amine–borane 

substrates using [Rh(µ-Cl)(1,5-COD)]2 (COD = cyclooctadiene) as a precatalyst under mild 

conditions (Scheme 1.6).20a For example, this precatalyst has yielded the formation of four-

membered B–N rings [RR’N–BH2]2 from dehydrocoupling of asymmetric 

((PhCH2)(Me)NH·BH3) or cyclic (1,4-(C4H8)NH·BH3) amine–borane substrates. The 

monomeric aminoborane iPr2N=BH2 was isolated from dehydrogenation of iPr2NH·BH3.  
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Scheme 1.6. Catalytic dehydrocoupling of amine–boranes by [Rh(µ−Cl)(1,5-COD)]2. 

 

Manners and co-workers suggested through subsequent investigations that the 

dehydrocoupling by the Rh-based precatalysts was mediated by Rh(0) colloids which were 

formed in situ.20a, 28h, 53  These investigations were based on multiple factors: observation 

of a sigmoidal-shaped kinetic curve, an initial induction period and by a change of colour 

from yellow/orange to black in the solution. Additionally, reaction inhibition was observed: 

1) after addition of Hg(0) which suppressed catalysis by amalgam formation, 2)  after 

fractional addition of coordinating ligands and 3) after microfiltration of the reaction 

mixture through pore membrane filters. After completion of the reaction, the Rh(0) colloids 

were characterised by transmission electron microscopy (TEM) showing particles of 2 nm 

in size.   

In addition to the Rh-based precatalyst, a heterogenous skeletal nickel system was proved 

to be active in the dehydrocoupling reaction of amine–boranes by Manners and co-workers 

(Scheme 1.7).54  The catalytic dehydrocoupling reaction (5 mol% skeletal Ni) of different 

secondary amine–boranes R2NH·BH3 (R = Me, Et) was demonstrated at room temperature 

(20 °C) in toluene and produced [R2N–BH2]2. The heterogeneous nature of the catalytic 

system was confirmed by the effects of filtration and addition of mercury to the reaction 

mixture. Both tests completely ceased the activity of skeletal Ni. This Ni-based catalyst is 
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an effective alternative for the dehydrogenation of amine–boranes substrates due to its 

low cost, facile accessibility and simple removal from reaction mixtures by filtration.  

 

Scheme 1.7. Catalytic dehydrocoupling of amine–boranes by skeletal nickel. 

 

The catalytic dehydrocoupling of MeNH2·BH3 with skeletal Ni (5 mol%) in THF yielded 

borazane [MeNH–BH2]3, contrary to dehydrocoupling of MeNH2·BH3 with [Rh(µ-Cl)(1,5-

COD)]2 that produced borazine [MeN–BH]3.  The formation of high molar mass 

poly(methylaminoborane) [MeNH–BH2]n (Mw = 78,000 g mol−1, PDI = 1.52) was observed 

when skeletal Ni was used in stoichiometric quantities. The observation that different 

products are formed upon changing the catalyst loading is significant in the Ni-based 

system as it reinforces the idea of the participation of the aminoborane intermediate 

MeNH=BH2 in the metal-catalysed polymerisation. It is proposed when catalytic amounts 

of skeletal Ni are used the aminoborane is found in low quantities, and undergoes 

subsequent formation of cyclic or linear oligomers. On the contrary, when equimolar 

amounts of the skeletal Ni are used, the dehydrogenation process is expected to increase, 

and therefore the aminoborane is likely to be in higher quantities, which allows the 

formation of polymeric material.  

Moreover, Goldberg, Heinekey, and co-workers have shown that the homogenous 

precatalyst [IrH2(POCOP)] (POCOP = κ3-1,3-(OPtBu2)2C6H3) was very active for the 
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dehydrogenation of NH3·BH3 which resulted in the rapid elimination of one equivalent of 

H2 to produce insoluble [NH2–BH2]5, designated as a cyclic pentamer.55   

When the [IrH2(POCOP)] catalyst was applied to MeNH2·BH3 in THF in low concentration 

(0.5 M), the formation of cyclic oligomers [MeNH–BH2]x (x = 2–20) and oligomeric linear 

species MeNH2BH2[MeNH–BH2]xNH2Me (x = 4–48) was observed by electrospray 

ionisation mass spectrometry (ESI-MS).56 However, when Manners and co-workers 

utilised the same catalytic system with MeNH2·BH3 in THF at higher initial 

concentrations (10 M) high molar mass poly(methylaminoborane) was isolated and 

characterised.57 Further discussion on the synthesis of polyaminoboranes using the  

[IrH2(POCOP)] catalyst will be given in further detail in section 1.4.5.     

  

1.2.4 Polymers Containing Boron–Nitrogen Moieties 

Over the past decades, the synthesis of macromolecules containing B–N moieties has 

found applications in the field of inorganic polymers as new materials with interesting 

properties. For example, B–N cyclolinear polymers containing rings in the main chain 

have been used as precursors of preceramic materials.33c, 58 In this case, polyborazylene, a 

B–N cyclic polymer is structurally formed through fused borazine rings and polycyclic 

fragments (Figure 1.2A).33c The first synthesis of polyborazylene was described by 

Sneddon from thermolysis (70 °C) of NH3·BH3 under vacuum for 48 h.58a Later on, 

Babonneau, Massiot and co-workers structurally characterised polyborazylene by 

multinuclear solid-state NMR spectroscopy; and found that this material is formed by 

tricoordinated boron and nitrogen atoms. The 11B NMR spectrum showed two types of B 

environments (BHN2, BN3) and the 15N NMR showed two types for N sites (NHB3, NB3).38a 

Thereafter, the synthesis of polyborazylene from the catalytic dehydrocoupling of NH3·BH3 

has been reported from other groups, however, limited characterisation was provided.59  
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In the area of metallopolymers, Wagner and co-workers synthesised coordination polymers 

based on the ready formation of B–N bonds in the backbone from reaction of diborylated 

ferrocenyl and bifunctional aromatic nitrogen heterocycles (e.g. 4,4’-bypyridine and 

pyrazine) (Figure 1.2B).60 These polymeric materials have promising electrical and optical 

characteristics.   

 

Figure 1.2. Polymers containing BN moieties. 

 

Polymers comprising a cyclic [B2–N2] unit have shown to possess nonlinear optical 

properties. These polymers were described by Chujo and co-workers, and were synthesised 

by hydroboration polymerisation between triallylboranes and dicyano compounds;61 and 

also by polyaddition of dicyano compounds with amine–boranes (Figure 1.2C).62 The N–

B–N polymers synthesised by these methodologies are stable under air and moisture.    

Additionally, the synthesis of polymers comprising π systems along the backbone has been 

explored. Chujo and co-workers prepared copolymers containing B=N units in the 

backbone with acyl groups substituted at nitrogen, using an alternating haloboration-
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phenylboration polymerisation technique (Figure 1.2D).63 These copolymers presented low 

π-conjugation and no bathochromic effect was detected by ultraviolet-visible (UV-Vis) 

absorption spectroscopy. The results are attributed to the presence of cross-linked points 

which break the polymer conjugation 

Recently, the substitution of C=C units by isoelectronic B=N bonds into polycyclic aromatic 

hydrocarbon molecules64 or in polymeric materials,65 has emerged as an alternative 

strategy to produce a new catalogue of hybrid organic-inorganic materials with structural 

similarities to classical all-carbon frameworks.  

In this context, the functionalisation of polystyrene by replacement of the phenyl ring by 

borazinyl groups have been achieved via radical polymerization by Allen66 and Sneddon67 

in the 1990s. The interest in these new types of borazine-containing polymeric materials 

arose from the potential applications as flame-retardant materials, materials with high 

thermal stability, and boron-nitride precursors.  

Recently, the synthesis of B–N analogues of polystyrene containing 1,2-azaborininines 

groups were the subject of recent interest by Jäckle and Liu,68 Staubitz69 and Klausen,70 

as these materials can present interesting electronic properties (Figure 1.3A). Also, 

further post-polymerisation functionalisation reactions have allowed for a variety of 

different polymeric architectures to be achieved.70b-d   

Helten and coworkers synthesised BN analogues of para-phenylene71 and poly(p-

phenylene vinylene) (PPV)72 by the use of Si/B exchange of silazanes with boron-containing 

precursors as an alternative B–N coupling method (Figure 1.3B). These two polymers 

displayed π-conjugation extended over the B=N bonds and aryl groups.  Lacôte, Raynaud 

and coworkers reported a new pathway to prepare polymers with –BH2–NH2– units 

alternating with organic spacers from the reductive one-step polycondensation of 

bisboronic acids with diammonium salts (Figure 1.3C).73 These polymers acted as H2 
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reservoirs which were applied in the transfer hydrogenation to reduce imines and carbonyl 

molecules.   

 

Figure 1.3. Hybrid BN containing polymers. 

 

Among the examples of hybrid BN polymers which have interesting potential properties, 

the synthesis of inorganic polymers containing exclusively main chain B–N bonds has not 

been extensively studied (Figure 1.4). In 1984, the isolation of polyiminoboranes, 

[RN=BR]n, which are isoelectronic to polyacetylene, was reported by Paetzold and 

coworkers from the thermolysis reaction of azidoboranes to generate monomeric 

iminoboranes in the gas phase which were trapped at −196 °C.74 These materials were 

described as air- and moisture stable waxy solids which were insoluble in common organic 

solvents. Nevertheless, the limited characterisation reported was based on elemental 

analysis and mass spectrometry. Recently, the preparation and convincingly structural 

characterised oligoiminoborane was achieved by Helten and coworkers by the Si/B 

exchange of 1,3-TMS-1,3,2-diazaborolidine with OctBCl2.75 By GPC, the oligomeric nature 

of the material was determine (Mn = 1800 g mol−1) and by SAXS it was suggested that the 

oligomers adopt a helical conformation in solution. Another example of a class of B–N main 

chain polymers is the inorganic analogues of polyolefins, the so-called polyaminoboranes. 
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Figure 1.4. Polymers containing exclusively B–N bonds in the main chain. 

 

1.2.5 Synthesis of High Molar Mass Polyaminoboranes 

Polyaminoboranes are characterised by the presence of alternating sigma-bonded boron 

and nitrogen atoms in the backbone. Historically, attempts to prepare polyaminoborane 

[NH2–BH2]n by noncatalytic methods, have involved the thermal decomposition of 

NH3·BH3
76 or borazane77 or subjecting borazine to a radio frequency discharge.78 However, 

the products from this reaction were insoluble materials and poorly characterised.     

As mentioned before, the first demonstration of metal-catalysed methods to prepare 

oligoaminoboranes was achieved by Goldberg, Heinekey and co-workers by 

dehydrogenation of amine–boranes in low concentrations.56 [IrH2(POCOP)] was found to 

be highly active in the dehydrogenation of NH3·BH3 and MeNH2·BH3, and the isolated 

materials were tentatively assigned as the cyclic pentamer [NH2–BH2]555 in the former 

case (in 2006), and as a product formulated as oligo(methylaminoborane) [MeNH–BH2]x (x 

= 2–48) assigned as a mixture of cyclic and linear species based on mass spectrometric 

evidence (in 2008), in the latter.  

The formation of high molar mass polyaminoborane [MeNH–BH2]n by catalytic 

dehydrocoupling of MeNH2·BH3 using [IrH2(POCOP)] was accomplished in 2008  around 

the same time by Manners and coworkers using both low and high concentrations (Scheme 

1.8).45, 57 The products were characterised by GPC and also by dynamic light scattering 

which confirmed the high molar mass nature of the materials. Thereafter, a variety of 
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other metal-based precatalysts have found use in the dehydropolymerisation reaction to 

synthesise high molar mass polyaminoboranes.47e, 79  

 

Scheme 1.8. Synthesis of polyaminoboranes by catalytic dehydrocoupling of amine–boranes by 

[IrH2POCOP]. 

 

The polyaminoborane [MeNH–BH2]n formed from the dehydropolymerisation of 

MeNH2·BH3 via [IrH2(POCOP)] at low catalyst loading (0.3 mol%) was found to be high 

molar mass (Mn = 160,000 g mol−1, PDI = 2.9) by gel permeation chromatography (GPC) 

versus polystyrene standards and by dynamic light scattering (DLS), the value of the 

hydrodynamic radius (RH = 3 nm) supports the polymeric nature of the material.45, 80 

Analysis of the resulting polyaminoboranes by multinuclear (13C, 11B and 1H) NMR 

spectroscopy both in solution and in solid state, suggested that the polymers are 

essentially linear based on the simplicity of the NMR data. The same catalytic system was 

applied to nBuNH2·BH3 to produce polymer [nBuNH–BH2]n as a very soluble material 

with high molar mass (Mn = 400,000 g mol−1, PDI = 1.6).  The dehydropolymerisation of 

the parent NH3·BH3 yielded the insoluble polymer [NH2–BH2]n, which was characterised 

by solid state 11B NMR spectroscopy. It was determined that this material is also linear 

and possessed a degree of polymerisation of around 20 units as suggested by end group 

analysis.45  
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Scheme 1.9. Synthesis of random copolymers via catalytic dehydrocoupling of amine–boranes by 

[IrH2POCOP]. 

 

The Ir-based precatalyst was also found to be efficient for the formation of random 

copolymers (Scheme 1.9) by dehydrocoupling of different amine–borane monomers. For 

example, when MeNH2·BH3 and nBuNH2·BH3 were mixed in different ratios (3:1 and 1:1), 

the resulting copolymers in each case were very soluble with high molar masses, as 

determined by GPC. In contrast, for copolymers made from mixtures of MeNH2·BH3 and 

NH3·BH3 both the molar mass and solubility of the resulting materials decreased when 

the incorporation of NH3·BH3 was increased from 25% to 50% (Table 1.1). 

Copolymerisation is an alternative strategy to efficiently incorporate [NH2–BH2]n units 

into the backbone of polyaminoboranes. Nevertheless, the incorporation of more than 50% 

of [NH2–BH2]n units into copolymers produced insoluble materials.45    

 

Table 1.1. Polyaminoboranes synthesised via catalytic dehydrocoupling of amine–boranes by 

[IrH2POCOP]. 

Polyaminoboranes  Monomer Precursors (Ratio) Mw (PDI) / Da 

(GPC) 

RH / nm 

(DLS)  

[MeNH–BH2]n  MeNH2·BH3 160,000 (2.9) 3 

[MeNH–BH2]n–r–[NH2–BH2]m  MeNH2·BH3/NH3·BH3 (3:1) 156,000 (11.0) 3 

[MeNH–BH2]n–r–[NH2–BH2]m  MeNH2·BH3/NH3·BH3 (1:1) 47,000 (3.9) 4 

[nBuNH–BH2]n  nBuNH2·BH3 405,000 (1.6) 5 

[nBuNH–BH2]n–r–[MeNH–BH2]m   nBuNH2·BH3/ MeNH2·BH3 (3:1) 183,000 (1.9) 4 

[nBuNH–BH2]n–r–[MeNH–BH2]m   nBuNH2·BH3/ MeNH2·BH3 (1:1) 244,000 (2.2) 4 
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1.2.6 Mechanistic Aspects on the Dehydropolymerisation Reaction of Primary 

Amine–Boranes. 

Mechanistic studies of the B–N coupling step in the dehydropolymerisation reaction of 

amine–boranes are fundamental to understanding the formation of polyaminoboranes. 

Manners and coworkers studied the polymer growth kinetics (molecular weight versus 

conversion) for the [IrH2(POCOP)]/MeNH2·BH3 system and concluded that the 

polymerisation followed a modified chain-growth mechanism.45 They suggested that this 

process involves both slow metal-mediated initial dehydrogenation of the adduct with 

subsequent fast insertion of the resulting aminoborane MeNH=BH2. Additionally, the 

mechanism of polymerisation of [IrH2(POCOP)]/NH3·BH3 system was studied by means of 

DFT calculations by Paul and coworkers (Scheme 1.10),81 and a chain growth mechanism 

was proposed. They suggested the initial formation of complex [Ir(η2-H2B=NH2)] is crucial 

for subsequent chain propagation. This process occurs by interaction of the lone pair from 

the NH2 terminus of a sigma complex with the BH2 end of a second arriving NH2BH2 unit.  

 

Scheme 1.10. Mechanistic proposal of dehydropolymerisation reaction of NH3·BH3 and [IrH2(POCOP)] 

by DFT calculations. 

 

Another approach to study the [IrH2(POCOP)] system was the use of linear diborazane 

based on kinetic modelling and redistribution reactions by Manners, Weller and Lloyd-



Chapter 1 

21 

 

Jones.28a, 82 An initial step was the study of dimer Me3N·BH2NMe2·BH3 as a model adduct, 

which showed a redistribution process to form Me3N·BH3 and [Me2N–BH2]2, respectively. 

This redistribution process proceeds both under thermolysis (THF, 70 °C) or at ambient 

temperature by metal catalysis (THF, 1 mol% [Ir]) to form identical products. When the 

linear dimer MeNH2·BH2MeNH·BH3 was studied, a similar redistribution of products 

MeNH2·BH3/MeNH=BH2 was observed. In this particular case, formation of MeNH=BH2 

led to formation of borazane under thermolysis, and to polymeric material under catalytic 

conditions (Scheme 1.11).   Under thermolysis, the MeNH=BH2 fragment could be trapped 

via the hydroboration reaction with cyclohexene which evidenced the presence of free 

monomeric aminoborane in solution. By contrast, no evidence of trapping of aminoborane 

could be detected in the Ir-catalysed reaction which suggests two viable options: either the 

polymerisation only proceeds “on metal” or the rate of the trapping reaction is much slower 

relative to the polymerisation of free aminoborane that could be produced in solution. 

 

Scheme 1.11. Proposed redistribution process of linear amine–borane dimer by [IrH2POCOP]. 

 

Likewise, the mechanism of polymerisation with the [IrH2(POCOP)] system can be 

approached by the use of [Ir(PCy3)2(H)2(η2-H2)][BArF4] (ArF = 3,5-C6H3(CF3)2)  as a model 

compound, which reacts with one equivalent of MeNH2·BH3 to produce the complex 

[[Ir(PCy3)2(H)2(η2-H3B·NMeH2)][BArF4]. In this respect, Manners, Weller and coworkers 

reacted [[Ir(PCy3)2(H)2(η2-H3B·NMeH2)][BArF4] with a second equivalent of MeNH2·BH3 



Chapter 1 

22 

 

that led to the single oligomerisation product [Ir(PCy3)2(H)2(η2-H3B·MeNH–

BH2·NMeH2)][BArF4] which suggests that the oligomerisation process can occur “on metal” 

(Scheme 1.12).83 The latter complex was found to be active in the catalytic 

dehydrogenation of MeNH2·BH3 to form the linear dimer MeNH2·BH2MeNH·BH3. When 

the same precursor [Ir(PCy3)2(H)2(η2-H2)][BArF4] was studied with the parent NH3·BH3, 

the oligomeric intermediates [Ir(PCy3)2(H)2(η2-H3B·(NH2–BH2)n·NH3)][BArF4] could be 

detected by ESI (n = 1–4) and structurally characterised by X-ray crystallography (n = 0–

2).84 A computational study of such species revealed the following mechanistic steps: 1) an 

initial dehydrogenation of NH3·BH3, 2) dehydrogenation of a second adduct NH3·BH3 and 

3) final B–N coupling. The initial dehydrogenation step was found to possess a higher 

barrier than subsequent B–N coupling processes which promotes the oligomerisation 

reaction. Significantly, when MeNH2·BH3 was studied, the barrier of the B–N coupling 

step was higher and is similar to the two consecutive dehydrogenation processes in this 

adduct. This is in accordance with the experimental observation of only one B–N coupling 

process. 

 

Scheme 1.12. Synthesis of a η2-amine-borane complex from the reaction of [Ir(PCy3)2(H)2(η2-

H3B·NMeH2)]+ and MeNH2·BH3. Counterion [BArF4] is not shown. 

 

1.2.7 Metal-free Dehydropolymerisation of Amine–Boranes  

The synthesis of amine–boronium cations from the parent amine-borane has been reported 

by Manners and coworkers.43 These amine–boronium species undergo deprotonation with 

sterically hindered bases to yield free aminoborane monomers RR´N=BH2 (R, R’ = alkyl, 

H), which are detected by low temperature 11B NMR spectroscopy. When a primary 
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amine–borane precursor is used, poly(methylaminoborane) with notably lower molar mass 

compared to the transition metal-catalysed dehydropolymerization is obtained (Scheme 

1.13A).   

 

Scheme 1.13. Synthesis of polyaminoboranes by metal-free routes. 

 

Very recently, Alcaraz and coworkers developed an innovative synthetic strategy to 

produce ultra-high molar mass polyaminoboranes [RNH–BH2]n by reaction of iPrNH=BH2 

with a variety of primary amines in solventless conditions (Scheme 1.13B).85 A significant 

contribution is the synthesis of a functional polyaminoboranes such as [(allyl)NH–BH2]n, 

which are otherwise difficult to prepare through transition metal catalysed routes. 

However, further work on establishing the mechanism is needed and the resulting 

polymers are of low solubility, possibly due to their high molar mass. 

 

1.2.8 Catalytic Formation of Phosphorus–Boron Bonds 

1.2.8.1 Synthesis of Phosphine–Borane Adducts 

Phosphine–boranes are adducts consisting of a phosphine Lewis base (e.g. PH3) and a 

borane Lewis acid (e.g. BH3) connected by a dative bond. The first phosphine–borane 

adduct PH3·BCl3 was reported by Besson in 1890,86 and since then further methodologies 

have been established similar to the synthesis of amine–boranes. The most common route 

is the direct addition of primary, secondary, or tertiary phosphines to BH3·L (L = THF or 

SMe2) where replacement of the labile donor by the phosphine occurs (Scheme 1.14A).87 



Chapter 1 

24 

 

Another route is the preparation of phosphine–boranes by reduction of chlorophosphines 

with NaBH4 (Scheme 1.15B).88   

 

Scheme 1.14. Synthetic routes to obtain phosphine–boranes. 

 

1.2.8.2 Reactivity and Applications of Phosphine–Boranes 

The fundamental reactivity of amine–boranes shows similarity to that of phosphine–

boranes. However, in the context of dehydrogenation, the P–H bond is significantly non-

polar (χP =2.19 and χH = 2.20)24 which makes that hydrogen less acidic and, for similar 

reasons, the hydride at boron is also less basic. This makes hydrogen release less 

favourable kinetically.  

By analogy to amine–boranes, a single dehydrogenation process with phosphine–boranes 

would yield the intermediate phosphinoborane PH2=BH2. In the 1990s, computational 

studies suggested that the π-component of PH2=BH2, where the phosphorus atom is in a 

planar disposition, possesses similar bond strengths to NH2=BH2.89 However, it was 

determined that PB molecules do not present the same facility to form planar structures 

as BN compounds, as the phosphorus atom on the P=B fragment presents a strong 

tendency to have a pyramidal geometry. Other computational calculations proposed that 

the high inversion barrier of the PH3 group is related to the lack of planarity of the PH2BH2 

moiety.90 

In the pyramidalization process in phosphines a hybridisation change of the P atom from 

sp3 to sp2 takes place. The latter process is involved in the pyramidal inversion in 
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phosphines and amines,91 and the stereoisomerisation process in phosphines has higher 

energy barriers 30 kcal mol−1 (or noticeably greater in the case of trihalophosphines)92 than 

the corresponding energy in amines (5−10 kcal mol−1).92a, 92b, 93 The reduction of the 

inversion barrier from 31.8 kcal mol−1 in phosphine, PH3, to 5.9 kcal mol−1, in PH2=BH2, 

strengthens the π component contribution to the B–P bond.89b    

As a consequence, from a hybridisation perspective, the formation of the planar 

conformation of phosphinoborane monomers from the dehydrogenation of phosphine–

boranes would be more hindered than the formation of the aminoborane analogues.  

Nevertheless, applications of phosphine–boranes are diverse and include uses as 

hydrophosphination reagents,94 hydrogen storage materials,95 and also as reducing agents 

under biological conditions.96 Additionally, the formation of phosphine–boranes adducts 

can be used as a methodology to protect phosphines susceptible to oxidation by oxidising 

agents.18a, 97 

 

1.2.8.3 Catalytic Dehydrocoupling of Phosphine–Boranes 

Generally, dehydrocoupling of phosphine–boranes can proceed under thermal conditions 

above 150–200 °C in the absence of a catalyst or at 60–120 °C with the assistance of 

catalysts (Scheme 1.15).   

In the case of the parent phosphine–borane PH3·BH3 and primary phosphine–boranes 

RPH2·BH3 (R = aryl), the catalytic dehydrocoupling reaction affords oligomeric or 

polymeric materials, respectively. Monomeric phosphinoboranes PH2=BH2 or RPH=BH2 

have not been observed experimentally due to their propensity to polymerise, but more 

substituted phosphinoboranes PR2=BR2 compounds have been comprehensively 

studied.12a, 98  
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In pioneer studies on the thermal dehydrogenation (150 °C) of secondary phosphine–

boranes, the formation of cyclic trimers [R2P–BH2]3 or cyclic tetramers [R2P–BH2]4 was 

observed. The cyclic trimers have been reported to possess considerable stability as 

minimal decomposition was reported under thermolysis (300 °C) in the presence of HCl.99 

Manners and coworkers reinvestigated the thermal dehydrocoupling (170 °C) reaction of 

neat secondary phosphine–borane Ph2PH·BH3 which afforded the cyclic trimer [Ph2P–

BH2]3 and the cyclic tetramer [Ph2P–BH2]4 in a 8:1 ratio respectively.95a However, when 

the thermal dehydrocoupling was attempted at a lower temperature (120 °C), negligible 

conversion of the phosphine–borane adduct was observed . 

 

Scheme 1.15. General scheme for the catalytic dehydrocoupling of phosphine–boranes.  

 

When Ph2PH·BH3 was treated with a catalytic amount of [Rh(µ-Cl)(1,5-COD)]2 or [Rh(1,5-

COD)][OTf] (OTf = −SO3CF3) (1 mol%) at 120 °C, the formation of [Ph2P–BH2]3 and [Ph2P–

BH2]4 in a 2:1 ratio was reported. At 90 °C, exclusive formation of the linear 

diphosphinoborane Ph2PH·BH2PPh2·BH3 was observed under otherwise identical reaction 

conditions. It was proposed that this linear dimer is an intermediate in the formation of 

the cyclic products.  Discussion on the catalytic dehydrocoupling of primary phosphine–

boranes will be given with further details in Section 1.5.5.         
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1.2.9 Polymers Containing Phosphorus–Boron in the Backbone 

A limited number of polymers containing P–B moieties in the backbone have been studied 

in the last two decades. For example, polymers containing PB units arise either from post 

functionalisation of macromolecules with tricoordinated phosphorus or from 

oligo/polymerisation of chiral trialkylphosphine–boranes. 

Gates and coworkers developed the synthesis of poly(methylenephosphine) nBu[MesP–

CPh2]nH by anionic polymerisation of phosphaalkene MesP=CPh2.100 This polymer 

containing trivalent phosphorus was treated with BH3·SMe2, to afford the phosphine–

borane polymer (Figure 1.5A). Protection of this polymer by the borane moiety was used 

to increase polymer stability.  

A phosphine–borane metallopolymer was synthesized by Manners and coworkers from 

ROP of P-phenylphosphan[1]ferrocenophane monomer where the BH3 was coordinated 

either before or after polymerisation (Figure 1.5B). However, the polymeric materials 

obtained were poorly soluble.101  

Additionally, Chujo and coworkers developed the synthesis of optically active phosphine–

borane oligomers from a stepwise oxidative coupling process from the enantiomerically 

pure (S,S)-1,2-bis(boranato-(t-butyl)methylphosphino)ethane (Figure 1.5C).102 This 

substrate could be further functionalised to prepare a range of bifunctional monomers 

which were converted into polymeric materials.103  

 

Figure 1.5. Phosphine–borane polymers.  
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Since the early discovery of methodologies towards the synthesis of PB main chain 

macromolecules, only a few examples of phosphinoborane polymers were described in 

patents104 and in rare occasions in some scientific journals that reported low yield and low 

molar mass materials with limited characterisation. For example, from the thermal 

treatment (175–200 °C) of Me2P–PMe2·BH3
105 or RMePH·BH3 (R = Me or Et)106 with 

amines the synthesis of [RMeP–BH2]n with low molar masses was claimed. 

Polyphosphinoboranes, (RR’P·BH2)n (R, R’ = H, alkyl, aryl), received significant attention 

in the 1950’s and 1960’s as these polymeric materials were anticipated to possess valuable 

properties such as high-temperature stability.107 The pioneering synthesis involves the 

thermolysis (150–250 °C) of PhPH2·BH3 for 13 h resulting in the formation of a benzene-

soluble solid which was claimed to be polymeric [PhPH–BH2]n with low molar mass (Mn = 

2,200–2,700 g mol–1).108 

Nevertheless, the synthesis and convincing characterisation of high molar mass 

polyphosphinoboranes comprising only P–B bonds in the main chain was achieved by 

Manners and coworkers in 1999 leading to renewed interest in these materials. 

 

1.2.10 Synthesis of High Molar Mass Polyphosphinoboranes     

The reinvestigation of the uncatalysed thermolytic reaction of PhPH2·BH3 by the Manners 

group showed that the product [PhPH–BH2]x is oligomeric in nature with undefined 

structure.95a, 109 In contrast, when PhPH2·BH3 was heated in toluene at 110 °C in the 

presence of Rh precatalysts [Rh(µ-Cl)(1,5-COD)]2 or [Rh(1,5-COD)][OTf], well-defined 

polyphosphinoborane [PhPH–BH2]n of low molar mass (Mw = 5,600 g mol–1) was found. The 

formation of high molar mass [PhPH–BH2]n (Mw = 33,000 g mol–1) was achieved at higher 

temperatures (130 °C) in the presence of a Rh catalyst under solventless conditions 

(Scheme 1.16). The resulting polymers were soluble, air- and moisture-stable solids and 
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were structurally characterised by multinuclear NMR spectroscopy. When the high 

temperature catalytic reaction is prolonged, insoluble solids are formed which become 

swellable gels in the presence of solvents. This observation is consistent with the formation 

of cross-linked materials via intermolecular dehydrogenation between P–H and B–H 

bonds. The formation of other polyphosphinoboranes [RPH–BH2]n (R = iBu, p-nBuC6H4, p-

dodecylC6H4) was achieved under similar reaction conditions.110 These polymers had high 

polydispersity index (PDI) values which can be correlated with a certain degree of 

branching and also yielded gels after extended thermolysis.  

Hey-Hawkins and coworkers took inspiration from the [Rh(µ-Cl)(1,5-COD)]2 system to 

extend the synthesis to metal-containing polyphosphinoboranes from the adducts 

FcPH2·BH3 and FcCH2PH2·BH3 (Fc = ferrocenyl) to afford polymers with low molar mass 

when prepared in toluene solution (Mw = 4,000–7000 g mol–1) and moderate molar mass in 

the absence of solvent (Mw = 10,000–16,000 g mol–1) with relatively low PDI values (1.5–

2.1). This methodology was extended to prepare polycationic phosphinoboranes with 

planar chirality from a quaternised ammonium phosphine–borane derivative.111  

Manners and coworkers observed that the temperature of the dehydropolymerisation 

reaction via [Rh(µ-Cl)(1,5-COD)]2 can be reduced to 60 °C when aryl phosphine–boranes 

RPH2·BH3 are substituted with electron withdrawing groups (i.e. R = p-CF3C6H5) to 

produce [RPH–BH2]n with high molar mass (Mn = 56,200 g mol–1, PDI = 1.67).112  

 

Scheme 1.16. Synthesis of polyphosphinoboranes by Rh-based precatalysts.  
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The metal-catalysed dehydropolymerisation works effectively with a limited substrate 

scope, with focus on aryl-containing adducts. Very recently, the reinvestigation of a series 

of alkyl phosphine–boranes were polymerised successfully with the [Rh(µ-Cl)(1,5-COD)]2 

system yielding polyphosphinoboranes [RPH–BH2]n (R= nBu, nHex, 2-Et(Hex)) with low 

molar masses (Mn = 1,700–8,800 g mol–1).113 These polymers presented low glass transition 

temperatures Tg (−68 to −58 °C).     

Recently, the synthesis of polyphosphinoboranes in solution has been reported by Manners 

and coworkers using a precatalyst based on the earth-abundant metal Fe.114 The 

dehydropolymerisation of PhPH2·BH3 catalysed by [CpFe(CO)2OTf] (1 mol%) in toluene 

solution at 100 °C, produced polymer [PhPH–BH2]n with high molar mass (Mn = 59,000 g 

mol–1, PDI = 1.6) in 24 h (Scheme 1.17). Significantly, control over the molar mass of the 

resulting polymer was achieved with this system. For example, when the catalyst loading 

was increased, the molar mass decreased, which suggested a type of chain-growth 

mechanism for the polymerisation.   

 

Scheme 1.17. Thermal catalytic dehydrocoupling of PhPH2·BH3 mediated by [CpFe(CO)2OTf]. 

 

Webster and coworkers explored a different Fe-based system for dehydropolymerisation of 

phosphine–boranes.115 The catalytic dehydrocoupling of RPH2·BH3 (R = Ph, Cy) via Fe(II) 

β-diketiminate precatalyst LFe(CH2SiMe3)], (L = [(DippNC(Me))2CH]-, Dipp = 2,6-

diisopropylphenyl) (10 mol%) afforded the formation of polyphosphinoboranes in solution 

of toluene (100 °C) in 72 h. Although the polymer [PhPH–BH2]n possessed high molar mass 

(Mn = 55,000 g mol–1, PDI = 1.85);  the alkyl phosphine–borane substrate was fully 
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converted to form mainly oligomeric material [CyPH–BH2]x (Mn < 2,000 g mol–1) with a 

minor component (< 10%) of high molar mass (Mn = 55,600 g mol–1, PDI = 1.26).    

Since the breakthrough by Manners and coworkers in the dehydropolymerisation of 

phosphine–boranes, other metal-based catalysts have been found to be effective. For 

example, Weller and coworkers synthesised [PhPH–BH2]n (Mn = 15,000 g mol–1, PDI = 2.2) 

from the dehydrocoupling of PhPH2·BH3 using [Cp*RhMe(PMe3)(CH2Cl2)][BArF4] (Cp* = 

η5-C5Me5) (1 mol%) in solution of toluene at 100 °C for 72h.116  

Recently, the use of the catalytic system [IrH2(POCOP)] was applied in the 

dehydropolymerisation reaction of aryl phosphine–boranes by Braunschweig, Radius and 

coworkers.117 They produced poly(arylphosphinoboranes) [RPH–BH2]n (R = Ph, p-Tol, Mes) 

at high temperatures in benzene (80 °C) or toluene (100 °C) with varied molar masses  (Mn 

= 5,000–33,000 g mol–1) and PDI values (1.8–30).  

 

1.2.11 Mechanistic Aspects of the Dehydropolymerisation Reaction of Primary 

Phosphine–Boranes. 

As noted previously, the dehydrocoupling of amine–boranes with Rh-based precatalyst 

was determined to be a heterogeneous reaction based on different experiments and 

observations. In the catalytic dehydrocoupling of phosphine–boranes with [Rh(µ-Cl)(1,5-

COD)]2, a change of colour from yellow/orange to red was observed with no evidence of 

black material in the solution which could imply the formation of Rh nanoparticles. 

Besides these observations, no initial induction period was reported and also no reaction 

suppression was observed from filtration or from the addition of Hg(0). All these factors 

lead to the conclusion that the dehydrocoupling of phosphine–boranes is homogeneous in 

nature.53  
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Additionally, it has been suggested that the dehydropolymerisation of phosphine–boranes 

using [Rh(µ-Cl)(1,5-COD)]2 precatalyst  proceeds via a homogeneous step-growth 

mechanism.110 A common problem arising in this system is that high monomer conversion  

(> 99%) is required to produce high molar mass polymers. Since the reaction requires melt 

conditions as the polymerisation proceeds the viscosity of the reaction mixture increases, 

this leads to inefficient stirring and generally to the production of materials with 

uncontrolled molar mass (Mn) ranging from 3,000 to 10,000 g mol−1. Moreover, the use of 

melt conditions hinders the effective mechanistic study of intermediates. For example, 

Weller and coworkers studied the mechanism of the dehydrocoupling of secondary–

phosphine boranes with [Rh(1,5-COD)2][BArF4] under melt conditions. The observation of 

the intermediates, [Rh(PR2H)2(η2-H3BR2PBH2PR2H)][BArF4] and the designated active 

catalytic fragment {Rh(PR2H)2}+ that arose from the decomposition of the phosphine–

borane adduct, could be observed by in situ sampling ESI-MS.118  

Afterwards, a model of the catalytically active fragment {Rh(PR2H)2}+ was generated by 

replacement of the monodentate phosphine ligands by a bidentate phosphine, 

[Rh(dppp)(η6-C6H5F)][BArF4]  (dppp = Ph2P(CH2)3PPh2), which permitted a better 

observation of intermediates.119 In this manner, it was observed that [Rh(dppp)(η6-

C6H5F)]+ promotes P–H activation of Ph2PH·BH3 to form a Rh(III)-hydride complex 

[Rh(dppp)H(σ,η-PPh2BH3)(η1-H3B·Ph2PH)]+ (Scheme 1.18A). This complex underwent 

dehydrogenation to form a P–B bond in the complex [Rh(dppp)H(σ,η2-

PPh2·BH2PPh2·BH3)]+. Although these initial processes occur in solution of 1,2-

difluorobenzene at ambient temperature within 16 h, melt conditions are required for 

complete conversion of the substrate. It was also determined that phosphine–boranes 

substituted with electron withdrawing groups tended to increase the rate of the reaction, 

meanwhile the opposite is true for adducts substituted with electron donating groups.120  
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Similar intermediates were observed when the complex [Rh(dppp)(η6-C6H5F)]+ was 

applied to primary phosphine–boranes, where the P–H activation process can lead to the 

formation of diastereoisomers.120 For example, when CyPH2·BH3 was reacted with the 

Rh(I) complex, the reaction proceeded faster (1 h) and hydride Rh(III)-hydride complexes 

were found to be in an equimolar mixture of two diastereoisomers as a consequence of the 

activation of the P–H bond at the prochiral phosphorus centre. Furthermore, after the 

dehydrocoupling process, formation of a P–B bond is also observed, but the subsequent 

complexes are found in a 6:1 ratio mixture which suggests that a stereocontrol process in 

the formation of the P–B bond is occurring (Scheme 1.18B).   

 

Scheme 1.18. Stoichiometric reaction of [Rh(dppp)(η6-C6H5F)][BArF4] with primary and secondary 

phosphine–boranes. 

 

The reaction of CyPH2·BH3 with an ‘Rh(dppp)’ analogue containing a chiral bidentate 

ligand [Rh(S,S-bdpp)(η6-C6H5F)][BArF4] (S,S-bdpp = (2S,4S)-2,4-

bis(diphenylphosphino)pentane), resulted in the bias towards the formation of one of the 

diastereoisomers of the Rh(III)-hydride complex [Rh(S,S-bdpp)H(σ,η-PCyHBH3)(η1-
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H3B·PCyH2)]+ in a 1:3 ratio, as opposed to the 1:1 ratio observed with the Rh(dppp) system.  

This result suggests that selection of appropriate chiral ligands can lead to some 

diastereoselective control. 

Manners and coworkers reported an Fe-based catalytic system that proceeds in solution 

to produce high molar mass material by a homogeneous chain growth mechanism, in 

which some aspects were explored by multinuclear NMR, model reaction compounds, DFT 

computational studies and ESI-MS.114 It was suggested that the initial protonolysis of the 

triflate ligand from the complex [CpFe(CO)2OTf] is followed by the formation of a 

phosphidoborane complex (Scheme 1.19A). Subsequently, CO dissociation from the former 

complex is proposed to open a vacant site which is filled by agostic coordination of a σ-

bound BH3 end (Scheme 1.19B).  

 

Scheme 1.19. Proposed coordination growth mechanism of the dehydropolymerisation of primary 

phosphine–boranes via [CpFe(CO)2OTf]. 

 

After ligand reorganisation, a second PhPH2·BH3 unit is σ-bound to the Fe centre (Scheme 

1.19C) with subsequent B–H activation and P–B coupling to produce Fe-hydride species 

(by insertion into the [Fe]–P bond) (Scheme 1.19D), in which the phosphine–borane chain 

is bound by the BH2 end group to the iron centre. This intermediate undergoes a second 
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P–H activation to produce phosphidoborane chain species with bound η2-H2 (Scheme 

1.19E). The final step is the release of molecular hydrogen which allows the formation of 

a new vacant site for subsequent catalysis (Scheme 1.19).    

Weller and coworkers explored the mechanism of dehydrocoupling of phosphine–boranes 

via [RhCp*(PMe3)Me(ClCH2Cl)][BArF4], which proceeded in solution, using both model 

compounds and computational studies.116  Initial B–H activation of a PhPH2·BH3 adduct 

is followed by P–H activation to produce an intermediate hydrido phosphinoborane Rh 

complex which after ligand reorganisation forms a σ1-phosphidoborane species. From the 

formation of this complex, two different polymerisation mechanisms can arise: the first is 

proposed to be a coordination chain growth mechanism, analogous to the [CpFe(CO)2OTf] 

system. Interestingly, the second mechanism is proposed to be a reversible chain transfer 

process, which is based on early detection of significant quantities of the dimer 

PhPH2·BH2PhPH·BH3 and rapid consumption of monomer PhPH2·BH3, similar to a step 

growth process (Scheme 1.20).  

 

Scheme 1.20. Proposed reversible chain transfer of the dehydropolymerisation of primary phosphine–

boranes via [RhCp*(PMe3)Me(ClCH2Cl)][BArF4]. 

 

Braunschweig, Radius and coworkers proposed simultaneous mechanisms for the 

homogeneous dehydropolymerisation of arylphosphine–boranes using [IrH2POCOP] in 
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solution.117 By initial screening of the catalyst loading, they suggested a step-growth 

mechanism as higher catalyst loadings led to higher molar mass polymers. Moreover, 

isolation of high molar mass polymer at low conversion of the monomer, indicated a chain 

growth mechanism. They concluded that the mechanism can proceed in two different 

stages. The former, is the initial formation of a phosphinoborane monomer RPH=BH2 

assisted by the metal centre (similar to the proposed dehydropolymerisation mechanism 

of amine–boranes) which is followed by rapid chain growth, presumably also metal 

mediated. No intermediate sigma phosphine–borane complexes or phosphidoborane 

species were detected in this system.  

 

1.2.12 Metal-Free Dehydropolymerisation of Phosphine–Boranes  

Metal-free polymerisation methodologies of phosphine–boranes have been described using 

catalytic reactions or by stoichiometric reactions of phosphanylboranes in thermal 

conditions.  

 

Scheme 1.21. Synthesis of polyphosphinoboranes by metal-free routes. 

 

Gaumont and coworkers reported the dehydropolymerisation reaction of PhPH2·BH3 

catalysed by B(C6F5)3 (0.5 mol%) in toluene to produce polymers with low molar mass (Mw 

= 830–3,900 g mol–1) at ambient temperatures (20 °C), however, the full consumption of 

monomer required 3 days. When the dehydropolymerisation of the parent PH3·BH3 was 

used at higher temperatures (70–90 °C), formation of an oligomeric material sensitive to 

air- and moisture was described (Scheme 1.21A).121  
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In a different approach to synthesise polyphosphinoboranes, Scheer, Manners and 

coworkers developed a head-to-tail polymerisation methodology by mild thermolysis (20–

40 °C) of phosphanylboranes RR’PBH2·NMe3.122 This methodology produced the parent 

oligophosphinoborane [PH2–BH2]n as a waxy solid with poor solubility and alkyl-

susbtituted polyphosphinoboranes with high molar mass (Mn = 27,800–35,000 g mol–1, PDI 

= 1.6–1.9) in the case for [tBuPH–BH2]n and some oligomeric materials ([MePH–BH2]n and 

[Ph2P–BH2]n) (Scheme 1.21B).  

Very recently, a computational study related to the metal-free head-to-tail polymerisation 

described that oligomeric chains arising from PH2–BH2 units possessed marked electronic 

differences between the cyclic and linear chains for isomers [PH2–BH2]15.123 For example, 

the band gap for the cyclic species (>5 eV) is significantly higher than the linear structure 

(<0.2 eV). And the molecular orbitals in the oligomeric rings are highly delocalised, 

whereas for the oligomeric chain, the HOMO and LUMO are localised at the chain ends of 

the oligomer.  

Although the synthesis of polyphosphinoborane materials that could not be accessed to 

date by catalytic dehydrocoupling can be achieved through this innovative metal-free 

polymerisation technique, no generalisation on the substrate scope has been accomplished 

yet.  
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1.3 Thesis Summary and Collaborators Acknowledgments  

The work described in this PhD thesis compiles several research projects on the synthesis, 

characterisation and properties of polyaminoboranes and polyphosphinoboranes. This 

thesis is composed of four additional chapters along with a conclusion and future work 

chapter which are ordered as follows: 

• Chapter 2 explores the iron-catalysed dehydropolymerisation of a range of different 

aryl-substituted phosphine–boranes. Also, the study of the properties of the polymeric 

materials obtained is described. 

• Chapter 3 discusses the reinvestigation on the homogeneous Fe-catalyzed 

dehydropolymerisation of alkyl P-monosubstituted phosphine–boranes.  

• Chapter 4 details the synthesis and characterisation of polyaminoboranes with aryl-

substituted alkyl groups at nitrogen via catalytic dehydrocoupling. 

• Chapter 5 describes the synthesis and characterisation of boron–nitrogen main chain 

analogues of polystyrene, referred as poly(B-aryl)aminoboranes, via catalytic 

dehydrocoupling. 

• Chapter 6: Conclusions and Future Work  

 

In accordance with the research system implemented by Prof. Ian Manners, each chapter 

of this thesis can be read as a self-contained manuscript which is targeted for potential 

publication in peer-reviewed scientific journals.  The most part of the body of the work was 

performed by the author. Additionally, and in favour of the spirit of collaboration as is 

common practice in strong international groups, this work has been benefited of 

contributions of other members that are either current or former members within the 

Manners’ research group. These contributions are outlined below: 
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Chapter 2 has been reproduced from Macromol. Chem. Phys. 2017, 218, 1700120, in 

which initial work was performed by Dr. James R. Vance, Dr. Titel Jurca and Dr. Andre 

Schäfer. The author and Dr. Joshua Turner synthesised and characterised the monomers 

and polymers. X-ray crystallography was performed by Dr. Rebecca A. Musgrave and Dr. 

Hazel A. Sparkes. The contact angles measurements were determined by Laura Beckett. 

Dr. Sean Davis assisted with the TEM and EDX experiments. Dr. George R. Whittell 

performed powder X-ray diffraction experiments. All of the authors have read and 

commented on the manuscript. 

Chapter 3 contains as yet unpublished results. Dr. Saurabh S. Chitnis conducted the 

synthesis and characterisation of [nHexPH–BH2]n. The author and Dr. Vincent T. 

Annibale contributed equally in the synthesis and characterisation of the various 

monomers and polymers used. In addition, the analysis of the results and the manuscript 

was co-wrote by the author and Dr. Vince T. Annibale. 

Chapter 4 contains as yet unpublished results. Initial work was performed by Dr. Erin 

M. Leitao. The author performed the synthesis and characterisation of the various 

monomers and polymers. The author analysed the results and wrote the manuscript. 

Scientific insight was added by Dr. George R. Whittell.   

Chapter 5 has been reproduced from Chem. Commun., 2017, 53, 11701-11704, in which 

initial work was performed by Dr. Naomi E. Stubbs. The author performed the synthesis 

and characterisation of monomers and polymers. The author and Dr. Marius Arz analysed 

the results and co-wrote the manuscript. Scientific insight and input were added by Dr. 

George R. Whittell. X-ray crystallography was performed by Dr. Hazel A. Sparkes and 

Natalie E. Pridmore.  

 

 



Chapter 1 

40 

 

1.4 References 

1. (a) Chauvin, Y., Angew. Chem. Int. Ed. 2006, 45, 3740-3747; (b) Schrock, R. R., Angew. Chem. 

Int. Ed. 2006, 45, 3748-3759; (c) Grubbs, R. H., Angew. Chem. Int. Ed. 2006, 45, 3760-3765. 

2. (a) Beletskaya, I. P.; Cheprakov, A. V., Chem. Rev. 2000, 100, 3009-3066; (b) Stille, J. K., 

Angew Chem Int Edit 1986, 25, 508-523; (c) Miyaura, N.; Suzuki, A., Chem. Rev. 1995, 95, 2457-2483. 

3. (a) Natta, G.; Pino, P.; Mazzanti, G.; Giannini, U., J. Am. Chem. Soc. 1957, 79, 2975-2976; (b) 

Boor, J., Preface. In Ziegler–Natta Catalysts Polymerizations, Boor, J., Ed. Academic Press: 1979; pp 

xv-xvi. 

4. Jones, R. G.; Holder, S. J., Polym. Int. 2006, 55, 711-718. 

5. (a) Leitao, E. M.; Jurca, T.; Manners, I., Nat. Chem. 2013, 5, 817-829; (b) Waterman, R., Chem. 

Soc. Rev. 2013, 42, 5629-5641; (c) Less, R. J.; Melen, R. L.; Wright, D. S., RSC Adv. 2012, 2, 2191-

2199; (d) Melen, R. L., Chem. Soc. Rev. 2016, 45, 775-788; (e) Hill, M. S.; Liptrot, D. J.; Weetman, C., 

Chem. Soc. Rev. 2016, 45, 972-988. 

6. (a) Corcoran, E. W.; Sneddon, L. G., J. Am. Chem. Soc. 1984, 106, 7793-7800; (b) Corcoran, 

E. W.; Sneddon, L. G., J. Am. Chem. Soc. 1985, 107, 7446-7450. 

7. Aitken, C.; Harrod, J. F.; Samuel, E., J. Organomet. Chem. 1985, 279, C11-C13. 

8. (a) He, J. L.; Liu, H. Q.; Harrod, J. F.; Hynes, R., Organometallics 1994, 13, 336-343; (b) Biran, 

C.; Blum, Y. D.; Glaser, R.; Tse, D. S.; Youngdahl, K. A.; Laine, R. M., J. Mol. Catal. 1988, 48, 183-

197; (c) Blum, Y.; Laine, R. M., Organometallics 1986, 5, 2081-2086. 

9. Shu, R. H.; Hao, L. J.; Harrod, J. F.; Woo, H. G.; Samuel, E., J. Am. Chem. Soc. 1998, 120, 

12988-12989. 

10. Matyjaszewski, K.; Gnanou, Y.; Leibler, L., Macromolecular Engineering: Precise Synthesis, 

Materials Properties, Applications. John Wiley & Sons: 2007. 

11. Mark, H. F.; Kroschwitz, J. I., Encyclopedia of polymer science and engineering. Wiley: 1988. 

12. (a) Power, P. P., Chem. Rev. 1999, 99, 3463-3503; (b) Rivard, E.; Power, P. P., Inorg. Chem. 

2007, 46, 10047-10064. 

13. Priegert, A. M.; Rawe, B. W.; Serin, S. C.; Gates, D. P., Chem. Soc. Rev. 2016, 45, 922-953. 

14. Organo-di-Metallic Compounds (or Reagents): Synergistic Effects and Synthetic Applications. 

Springer International Publishing: 2014. 

15. (a) Chivers, T.; Manners, I.; Chemistry, R. S. o., Inorganic Rings and Polymers of the P-block 

Elements: From Fundamentals to Applications. RSC Pub.: 2009; (b) Rabanzo-Castillo, K. M., Leitao, 

E. M., Main-Group Rings, Chains, and Polymer Compounds. In Encyclopedia of Inorganic and 

Bioinorganic Chemistry, (Ed.)., R. A. S., Ed. 2017; (c) Manners, I., Angew. Chem. Int. Ed. 1996, 35, 

1602-1621. 

16. Mark, J. E.; Allcock, H. R.; West, R., Inorganic polymers. Prentice Hall: 1992. 

17. Clark, T. J.; Lee, K.; Manners, I., Chem. Eur. J. 2006, 12, 8634-8648. 



Chapter 1 

41 

 

18. (a) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I., Chem. Rev. 2010, 110, 4023-

4078; (b) Johnson, H. C.; Hooper, T. N.; Weller, A. S., Top. Organometal. Chem. 2015, 49, 153-220. 

19. Gay-Lussac, J. L., Mem. Phys. Chim. Soc. D'Arcueil 1809, 2, 211. 

20. (a) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I., J. Am. Chem. Soc. 2003, 125, 9424-

9434; (b) Helten, H.; Robertson, A. P. M.; Staubitz, A.; Vance, J. R.; Haddow, M. F.; Manners, I., Chem. 

Eur. J. 2012, 18, 4665-4680. 

21. (a) Ramachandran, P. V.; Gagare, P. D., Inorg. Chem. 2007, 46, 7810-7817; (b) Ramachandran, 

P. V.; Kulkarni, A. S., Inorg. Chem. 2015, 54, 5618-5620. 

22. (a) Beachley, O. T.; Washburn, B., Inorg. Chem. 1975, 14, 120-123; (b) Paul, V.; Roberts, B. 

P., J. Chem. Soc., Perkin Trans. 2 1988, 1183-1193; (c) Robertson, A. P. M.; Whittell, G. R.; Staubitz, 

A.; Lee, K.; Lough, A. J.; Manners, I., Eur. J. Inorg. Chem. 2011, 5279-5287; (d) Campbell, P. G.; 

Ishibashi, J. S. A.; Zakharov, L. N.; Liu, S. Y., Aust. J. Chem. 2014, 67, 521-524; (e) Stubbs, N. E.; 

Schäfer, A.; Robertson, A. P. M.; Leitao, E. M.; Jurca, T.; Sparkes, H. A.; Woodall, C. H.; Haddow, M. 

F.; Manners, I., Inorg. Chem. 2015, 54, 10878-10889. 

23. Ramachandran, P. V.; Kulkarni, A. S.; Zhao, Y.; Mei, J. G., Chem. Commun. 2016, 52, 11885-

11888. 

24. Haynes, W. M., CRC Handbook of Chemistry and Physics, 95th Edition. CRC Press: 2014. 

25. Liu, Z. Q.; Marder, T. B., Angew. Chem. Int. Ed. 2008, 47, 242-244. 

26. (a) Hutchins, R. O.; Learn, K.; Nazer, B.; Pytlewski, D.; Pelter, A., Org. Prep. Proced. Int. 

1984, 16, 337-372; (b) Sanyal, U.; Jagirdar, B. R., Inorg. Chem. 2012, 51, 13023-13033. 

27. (a) Jacoby, M., Chemical & Engineering News 2005, 83, 8-8; (b) Stephens, F. H.; Pons, V.; 

Baker, R. T., Dalton Trans. 2007, 2613-2626; (c) Bluhm, M. E.; Bradley, M. G.; Butterick, R.; Kusari, 

U.; Sneddon, L. G., J. Am. Chem. Soc. 2006, 128, 7748-7749. 

28. (a) Robertson, A. P. M.; Leitao, E. M.; Manners, I., J. Am. Chem. Soc. 2011, 133, 19322-19325; 

(b) Sloan, M. E.; Staubitz, A.; Lee, K.; Manners, I., Eur. J. Org. Chem. 2011, 672-675; (c) Jiang, Y. F.; 

Blacque, O.; Fox, T.; Frech, C. M.; Berke, H., Organometallics 2009, 28, 5493-5504; (d) Yang, X. H.; 

Zhao, L. L.; Fox, T.; Wang, Z. X.; Berke, H., Angew. Chem. Int. Ed. 2010, 49, 2058-2062; (e) Yang, X. 

H.; Fox, T.; Berke, H., Chem. Commun. 2011, 47, 2053-2055; (f) Yang, X. H.; Fox, T.; Berke, H., 

Tetrahedron 2011, 67, 7121-7127; (g) Yang, X. H.; Fox, T.; Berke, H., Org. Biomol. Chem. 2012, 10, 

852-860; (h) Jaska, C. A.; Manners, I., J. Am. Chem. Soc. 2004, 126, 2698-9. 

29. (a) Ramachandran, P. V.; Kulkarni, A. S.; Pfeil, M. A.; Dennis, J. D.; Willits, J. D.; Heister, S. 

D.; Son, S. F.; Pourpoint, T. L., Chem. Eur. J. 2014, 20, 16869-16872; (b) Pfeil, M. A.; Dennis, J. D.; 

Son, S. F.; Heister, S. D.; Pourpoint, T. L.; Ramachandran, P. V., J. Propul. Power 2015, 31, 365-372; 

(c) Pfeil, M. A.; Kulkarni, A. S.; Ramachandran, P. V.; Son, S. F.; Heister, S. D., J. Propul. Power 2016, 

32, 23-31. 

30. (a) Marder, T. B., Angew. Chem. Int. Ed. 2007, 46, 8116-8118; (b) Hamilton, C. W.; Baker, R. 

T.; Staubitz, A.; Manners, I., Chem. Soc. Rev. 2009, 38, 279-293; (c) Staubitz, A.; Robertson, A. P. M.; 

Manners, I., Chem. Rev. 2010, 110, 4079-4124; (d) Smythe, N. C.; Gordon, J. C., Eur. J. Inorg. Chem. 

2010, 509-521; (e) Bhunya, S.; Malakar, T.; Ganguly, G.; Paul, A., ACS Catal. 2016, 6, 7907-7934. 

31. (a) Rassat, S. D.; Aardahl, C. L.; Autrey, T.; Smith, R. S., Energ Fuel 2010, 24, 2596-2606; (b) 

Wang, P., Dalton Trans. 2012, 41, 4296-4302. 

32. Rossin, A.; Peruzzini, M., Chem. Rev. 2016, 116, 8848-8872. 



Chapter 1 

42 

 

33. (a) Hausdorf, S.; Baitalow, F.; Wolf, G.; Mertens, F. O. R. L., Int. J. Hydrogen Energy 2008, 

33, 608-614; (b) Davis, B. L.; Dixon, D. A.; Garner, E. B.; Gordon, J. C.; Matus, M. H.; Scott, B.; 

Stephens, F. H., Angew. Chem. Int. Ed. 2009, 48, 6812-6816; (c) Sutton, A. D.; Burrell, A. K.; Dixon, 

D. A.; Garner, E. B.; Gordon, J. C.; Nakagawa, T.; Ott, K. C.; Robinson, P.; Vasiliu, M., Science 2011, 

331, 1426-1429. 

34. Bernard, S.; Salameh, C.; Miele, P., Dalton Trans. 2016, 45, 861-873. 

35. Pan, Z. C.; Sun, H.; Zhang, Y.; Chen, C. F., Phys. Rev. Lett. 2009, 102. 

36. Whittell, G. R.; Manners, I., Angew. Chem. Int. Ed. 2011, 50, 10288-10289. 

37. (a) Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y., Acs 

Nano 2010, 4, 2979-2993; (b) Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T., Science 2007, 317, 

932-934. 

38. (a) Kim, D. P.; Moon, K. T.; Kho, J. G.; Economy, J.; Gervais, C.; Babonneau, F., Polym. Adv. 

Technol. 1999, 10, 702-712; (b) Wang, X. C.; Hooper, T. N.; Kumar, A.; Priest, I. K.; Sheng, Y. W.; 

Samuels, T. O. M.; Wang, S. S.; Robertson, A. W.; Pacios, M.; Bhaskaran, H.; Weller, A. S.; Warner, 

J. H., CrystEngComm. 2017, 19, 285-294. 

39. Du, V. A.; Jurca, T.; Whittell, G. R.; Manners, I., Dalton Trans. 2016, 45, 1055-1062. 

40. Nakhmanson, S. M.; Nardelli, M. B.; Bernholc, J., Phys. Rev. Lett. 2004, 92. 

41. (a) Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E., Clin Cancer Res 2005, 11, 3987-

4002; (b) Colebatch, A. L.; Gilder, B. W. H.; Whittell, G. R.; Oldroyd, N. L.; Manners, I.; Weller, A. 

S., Chem. Eur. J. 2018, 24, 5450-5455. 

42. (a) Burg, A. B.; Randolph, C. L., J. Am. Chem. Soc. 1949, 71, 3451-3455; (b) Chopard, P. A.; 

Hudson, R. F., J. Inorg. Nucl. Chem. 1963, 25, 801-805; (c) Beachley, O. T., Inorg. Chem. 1967, 6, 870-

874; (d) Ryschkew.Ge; Wiggins, J. W., Inorg. Chem. 1970, 9, 314-&; (e) Carpenter, J. D.; Ault, B. S., 

Chem. Phys. Lett. 1992, 197, 171-174. 

43. Metters, O. J.; Chapman, A. M.; Robertson, A. P. M.; Woodall, C. H.; Gates, P. J.; Wass, D. F.; 

Manners, I., Chem. Commun. 2014, 50, 12146-12149. 

44. Pons, V.; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.; Linehan, J. C.; Matus, M. H.; Grant, 

D. J.; Dixon, D. A., Chem. Commun. 2008, 6597-6599. 

45. Staubitz, A.; Sloan, M. E.; Robertson, A. P. M.; Friedrich, A.; Schneider, S.; Gates, P. J.; Günne, 

J. S. A. D.; Manners, I., J. Am. Chem. Soc. 2010, 132, 13332-13345. 

46. (a) Alcaraz, G.; Vendier, L.; Clot, E.; Sabo-Etienne, S., Angew. Chem. Int. Ed. 2010, 49, 918-

920; (b) Johnson, H. C.; Weller, A. S., J. Organomet. Chem. 2012, 721, 17-22. 

47. (a) Clark, T. J.; Russell, C. A.; Manners, I., J. Am. Chem. Soc. 2006, 128, 9582-9583; (b) Sloan, 

M. E.; Staubitz, A.; Clark, T. J.; Russell, C. A.; Lloyd-Jones, G. C.; Manners, I., J. Am. Chem. Soc. 

2010, 132, 3831-3841; (c) Beweries, T.; Thomas, J.; Klahn, M.; Schulz, A.; Heller, D.; Rosenthal, U., 

ChemCatChem 2011, 3, 1865-1868; (d) Beweries, T.; Hansen, S.; Kessler, M.; Klahn, M.; Rosenthal, 

U., Dalton Trans. 2011, 40, 7689-7692; (e) Trose, M.; Reiß, M.; Reiß, F.; Anke, F.; Spannenberg, A.; 

Boye, S.; Lederer, A.; Arndt, P.; Beweries, T., Dalton Trans. 2018; (f) Pun, D.; Lobkovsky, E.; Chirik, 

P. J., Chem. Commun. 2007, 3297-3299; (g) Erickson, K. A.; Stelmach, J. P. W.; Mucha, N. T.; 

Waterman, R., Organometallics 2015, 34, 4693-4699; (h) Lummis, P. A.; McDonald, R.; Ferguson, M. 

J.; Rivard, E., Dalton Trans. 2015, 44, 7009-7020; (i) Miyazaki, T.; Tanabe, Y.; Yuki, M.; Miyake, Y.; 

Nishibayashi, Y., Organometallics 2011, 30, 2394-2404; (j) Kakizawa, T.; Kawano, Y.; Naganeyama, 

K.; Shimoi, M., Chem. Lett. 2011, 40, 171-173. 



Chapter 1 

43 

 

48. (a) Garcia-Vivo, D.; Huergo, E.; Ruiz, M. A.; Travieso-Puente, R., Eur. J. Inorg. Chem. 2013, 

2013, 4998-5008; (b) Kawano, Y.; Uruichi, M.; Shimoi, M.; Taki, S.; Kawaguchi, T.; Kakizawa, T.; 

Ogino, H., J. Am. Chem. Soc. 2009, 131, 14946-14957; (c) Buss, J. A.; Edouard, G. A.; Cheng, C.; Shi, 

J. D.; Agapie, T., J. Am. Chem. Soc. 2014, 136, 11272-11275; (d) Jiang, Y.; Berke, H., Chem. Commun. 

2007, 3571-3573. 

49. Erickson, K. A.; Kiplinger, J. L., ACS Catal. 2017, 7, 4276-4280. 

50. (a) Bellham, P.; Hill, M. S.; Kociok-Kohn, G.; Liptrot, D. J., Chem. Commun. 2013, 49, 1960-

1962; (b) Liptrot, D. J.; Hill, M. S.; Mahon, M. F.; MacDougall, D. J., Chem. Eur. J. 2010, 16, 8508-

8515; (c) Spielmann, J.; Bolte, M.; Harder, S., Chem. Commun. 2009, 6934-6936; (d) Nolla-Saltiel, R.; 

Geer, A. M.; Lewis, W.; Blake, A. J.; Kays, D. L., Chem. Commun. 2018, 54, 1825-1828; (e) Sharpe, 

H. R.; Geer, A. M.; Blundell, T. J.; Hastings, F. R.; Fay, M. W.; Rance, G. A.; Lewis, W.; Blake, A. J.; 

Kays, D. L., Catal. Sci. Technol. 2018, 8, 229-235. 

51. (a) Cowley, H. J.; Holt, M. S.; Melen, R. L.; Rawson, J. M.; Wright, D. S., Chem. Commun. 

2011, 47, 2682-2684; (b) Erickson, K. A.; Wright, D. S.; Waterman, R., J. Organomet. Chem. 2014, 

751, 541-545; (c) Hansmann, M. M.; Melen, R. L.; Wright, D. S., Chem. Sci. 2011, 2, 1554-1559; (d) 

Less, R. J.; Simmonds, H. R.; Wright, D. S., Dalton Trans. 2014, 43, 5785-5792. 

52. (a) Appelt, C.; Slootweg, J. C.; Lammertsma, K.; Uhl, W., Angew. Chem. Int. Ed. 2013, 52, 

4256-4259; (b) Miller, A. J. M.; Bercaw, J. E., Chem. Commun. 2010, 46, 1709-1711; (c) Mo, Z. B.; 

Pit, A.; Campos, J.; Kolychev, E. L.; Aldridge, S., J. Am. Chem. Soc. 2016, 138, 3306-3309; (d) Metters, 

O. J.; Flynn, S. R.; Dowds, C. K.; Sparkes, H. A.; Manners, I.; Wass, D. F., ACS Catal. 2016, 6, 6601-

6611. 

53. (a) Jaska, C. A.; Manners, I., J. Am. Chem. Soc. 2004, 126, 9776-85; (b) Jaska, C. A.; Manners, 

I., J. Am. Chem. Soc. 2004, 126, 1334-5. 

54. Robertson, A. P. M.; Suter, R.; Chabanne, L.; Whittell, G. R.; Manners, I., Inorg. Chem. 2011, 

50, 12680-12691. 

55. Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I., J. Am. Chem. Soc. 

2006, 128, 12048-9. 

56. Dietrich, B. L.; Goldberg, K. I.; Heinekey, D. M.; Autrey, T.; Linehan, J. C., Inorg. Chem. 2008, 

47, 8583-5. 

57. Staubitz, A.; Soto, A. P.; Manners, I., Angew. Chem. Int. Ed. 2008, 47, 6212-6215. 

58. (a) Fazen, P. J.; Beck, J. S.; Lynch, A. T.; Remsen, E. E.; Sneddon, L. G., Chem. Mater. 1990, 

2, 96-97; (b) Fazen, P. J.; Remsen, E. E.; Beck, J. S.; Carroll, P. J.; Mcghie, A. R.; Sneddon, L. G., 

Chem. Mater. 1995, 7, 1942-1956; (c) Li, J.; Bernard, S.; Salles, V.; Gervais, C.; Miele, P., Chem. Mater. 

2010, 22, 2010-2019; (d) Yuan, S.; Toury, B.; Benayoun, S., Surf. Coat. Tech. 2015, 272, 366-372. 

59. (a) Keaton, R. J.; Blacquiere, J. M.; Baker, R. T., J. Am. Chem. Soc. 2007, 129, 1844-1845; (b) 

Bhattacharya, P.; Krause, J. A.; Guan, H. R., J. Am. Chem. Soc. 2014, 136, 11153-11161; (c) Conley, 

B. L.; Guess, D.; Williams, T. J., J. Am. Chem. Soc. 2011, 133, 14212-14215; (d) Davis, B. L.; Rekken, 

B. D.; Michalczyk, R.; Garner, E. B.; Dixon, D. A.; Kalviri, H.; Baker, R. T.; Thorn, D. L., Chem. 

Commun. 2013, 49, 9095-9097. 

60. (a) Fontani, M.; Peters, F.; Scherer, W.; Wachter, W.; Wagner, M.; Zanello, P., Eur. J. Inorg. 

Chem. 1998, 2087-2087; (b) Fontani, M.; Peters, F.; Scherer, W.; Wachter, W.; Wagner, M.; Zanello, 

P., Eur. J. Inorg. Chem. 1998, 1453-1465; (c) Grosche, M.; Herdtweck, E.; Peters, F.; Wagner, M., 

Organometallics 1999, 18, 4669-4672. 

61. Chujo, Y.; Tomita, I.; Saegusa, T., Macromolecules 1992, 25, 3005-3006. 



Chapter 1 

44 

 

62. Chujo, Y.; Tomita, I.; Murata, N.; Mauermann, H.; Saegusa, T., Macromolecules 1992, 25, 27-

32. 

63. (a) Matsumi, N.; Kotera, K.; Naka, K.; Chujo, Y., Macromolecules 1998, 31, 3155-3157; (b) 

Matsumi, N.; Kotera, K.; Chujo, Y., Macromolecules 2000, 33, 2801-2806. 

64. Morgan, M. M.; Piers, W. E., Dalton Trans. 2016, 45, 5920-5924. 

65. Helten, H., Chem. Eur. J. 2016, 22, 12972-12982. 

66. Jackson, L. A.; Allen, C. W., J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 577-581. 

67. Su, K.; Remsen, E. E.; Thompson, H. M.; Sneddon, L. G., Macromolecules 1991, 24, 3760-

3766. 

68. Wan, W. M.; Baggett, A. W.; Cheng, F.; Lin, H.; Liu, S. Y.; Jäkle, F., Chem. Commun. 2016, 

52, 13616-13619. 

69. Thiedemann, B.; Gliese, P. J.; Hoffmann, J.; Lawrence, P. G.; Sönnichsen, F. D.; Staubitz, A., 

Chem. Commun. 2017, 53, 7258-7261. 

70. (a) van de Wouw, H. L.; Lee, J. Y.; Klausen, R. S., Chem. Commun. 2017, 53, 7262-7265; (b) 

van de Wouw, H. L.; Lee, J. Y.; Awuyah, E. C.; Klausen, R. S., Angew. Chem. Int. Ed. 2018, 57, 1673-

1677; (c) Mendis, S. N.; Zhou, T.; Klausen, R. S., Macromolecules 2018; (d) van de Wouw, H. L.; 

Awuyah, E. C.; Baris, J. I.; Klausen, R. S., Macromolecules 2018, 51, 6359-6368. 

71. Lorenz, T.; Lik, A.; Plamper, F. A.; Helten, H., Angew. Chem. Int. Ed. 2016, 55, 7236-7241. 

72. Lorenz, T.; Crumbach, M.; Eckert, T.; Lik, A.; Helten, H., Angew. Chem. Int. Ed. 2017, 56, 

2780-2784. 

73. Ledoux, A.; Larini, P.; Boisson, C.; Monteil, V.; Raynaud, J.; Lacote, E., Angew. Chem. Int. Ed. 

2015, 54, 15744-15749. 

74. (a) Meier, H. U.; Paetzold, P.; Schroder, E., Chem. Ber. 1984, 117, 1954-1964; (b) Paetzold, P., 

Adv. Inorg. Chem. 1987, 31, 123-170. 

75. Ayhan, O.; Eckert, T.; Plamper, F. A.; Helten, H., Angew. Chem. Int. Ed. 2016, 55, 13321-

13325. 

76. (a) Komm, R.; Geanangel, R. A.; Liepins, R., Inorg. Chem. 1983, 22, 1684-1686; (b) Geanangel, 

R. A.; Rabalais, J. W., Inorg. Chim. Acta 1985, 97, 59-64. 

77. Baumann, J.; Baitalow, E.; Wolf, G., Thermochim. Acta 2005, 430, 9-14. 

78. Kwon, C. T.; Mcgee, H. A., Inorg. Chem. 1970, 9, 2458-&. 

79. (a) Vance, J. R.; Robertson, A. P. M.; Lee, K.; Manners, I., Chem. Eur. J. 2011, 17, 4099-4103; 

(b) Johnson, H. C.; Leitao, E. M.; Whitten, G. R.; Manners, I.; Lloyd-Jones, G. C.; Weller, A. S., J. Am. 

Chem. Soc. 2014, 136, 9078-9093; (c) Dallanegra, R.; Robertson, A. P. M.; Chaplin, A. B.; Manners, I.; 

Weller, A. S., Chem. Commun. 2011, 47, 3763-3765; (d) Johnson, H. C.; Weller, A. S., Angew. Chem. 

Int. Ed. 2015, 54, 10173-10177; (e) Anke, F.; Han, D.; Klahn, M.; Spannenberg, A.; Beweries, T., 

Dalton Trans. 2017, 46, 6843-6847; (f) Jurca, T.; Dellermann, T.; Stubbs, N. E.; Resendiz-Lara, D. A.; 

Whittell, G. R.; Manners, I., Chem. Sci. 2018, 9, 3360-3366; (g) Adams, G. M.; Colebatch, A. L.; 

Skornia, J. T.; McKay, A. I.; Johnson, H. C.; Lloyd-Jones, G. C.; Macgregor, S. A.; Beattie, N. A.; 

Weller, A. S., J. Am. Chem. Soc. 2018, 140, 1481-1495. 



Chapter 1 

45 

 

80. Staubitz, A.; Besora, M.; Harvey, J. N.; Manners, I., Inorg. Chem. 2008, 47, 5910-5918. 

81. Bhunya, S.; Malakar, T.; Paul, A., Chem. Commun. 2014, 50, 5919-5922. 

82. Robertson, A. P. M.; Leitao, E. M.; Jurca, T.; Haddow, M. F.; Helten, H.; Lloyd-Jones, G. C.; 

Manners, I., J. Am. Chem. Soc. 2013, 135, 12670-12683. 

83. Johnson, H. C.; Robertson, A. P. M.; Chaplin, A. B.; Sewell, L. J.; Thompson, A. L.; Haddow, 

M. F.; Manners, I.; Weller, A. S., J. Am. Chem. Soc. 2012, 134, 3932-3932. 

84. Kumar, A.; Johnson, H. C.; Hooper, T. N.; Weller, A. S.; Algarra, A. G.; Macgregor, S. A., 

Chem. Sci. 2014, 5, 2546-2553. 

85. (a) Singaram, B.; Cole, T. E.; Brown, H. C., Organometallics 1984, 3, 774-777; (b) Pinheiro, 

C. A. D.; Roiland, C.; Jehan, P.; Alcaraz, G., Angew. Chem. Int. Ed. 2018, 57, 1519-1522. 

86. Besson, A., Comptes Rendus 1890, 110, 516. 

87. (a) Hurtado, M.; Yanez, M.; Herrero, R.; Guerrero, A.; Davalos, J. Z.; Abboud, J. L. M.; Khater, 

B.; Guillemin, J. C., Chem. Eur. J. 2009, 15, 4622-4629; (b) Chan, V. S.; Chiu, M.; Bergman, R. G.; 

Toste, F. D., J. Am. Chem. Soc. 2009, 131, 6021-6032; (c) Carreira, M.; Charernsuk, M.; Eberhard, M.; 

Fey, N.; van Ginkel, R.; Hamilton, A.; Mul, W. P.; Orpen, A. G.; Phetmung, H.; Pringle, P. G., J. Am. 

Chem. Soc. 2009, 131, 3078-3092; (d) Seitz, T.; Muth, A.; Huttner, G., Chem. Ber. 1994, 127, 1837-

1842. 

88. McNulty, J.; Zhou, Y. H., Tetrahedron Lett. 2004, 45, 407-409. 

89. (a) Power, P. P., Angew Chem Int Edit 1990, 29, 449-460; (b) Allen, T. L.; Fink, W. H., Inorg. 

Chem. 1992, 31, 1703-1705. 

90. Gropen, O., J. Mol. Struct. 1977, 36, 111-120. 

91. Montgomery, C. D., J. Chem. Educ. 2013, 90, 661-664. 

92. (a) Rauk, A.; Allen, L. C.; Mislow, K., Angew. Chem. Int. Ed. 1970, 9, 400-414; (b) Kolmel, 

C.; Ochsenfeld, C.; Ahlrichs, R., Theor. Chim. Acta 1992, 82, 271-284; (c) Lehn, J. M.; Munsch, B., J. 

Chem. Soc. D. 1969, 1327-1329; (d) Fryzuk, M. D.; Giesbrecht, G. R.; Rettig, S. J., Inorg. Chem. 1998, 

37, 6928-6934; (e) Baechler, R. D.; Farnham, W. B.; Mislow, K., J. Am. Chem. Soc. 1969, 91, 5686-

5686; (f) Baechler, R. D.; Mislow, K., J. Am. Chem. Soc. 1970, 92, 3090-3093; (g) Lambert, J. B.; 

Jackson, G. F.; Mueller, D. C., J. Am. Chem. Soc. 1970, 92, 3093-3097. 

93. (a) Lambert, J. B.; Oliver, W. L., J. Am. Chem. Soc. 1969, 91, 7774-7775; (b) Anet, F. A. L.; 

Trepka, R. D.; Cram, D. J., J. Am. Chem. Soc. 1967, 89, 357-362; (c) Swalen, J. D.; Ibers, J. A., J. Chem. 

Phys. 1962, 36, 1914. 

94. (a) Bourumeau, K.; Gaumont, A. C.; Denis, J. M., J. Organomet. Chem. 1997, 529, 205-213; 

(b) Busacca, C. A.; Farber, E.; DeYoung, J.; Campbell, S.; Gonnella, N. C.; Grinberg, N.; Haddad, N.; 

Lee, H.; Ma, S. L.; Reeves, D.; Shen, S.; Senanayake, C. H., Org. Lett. 2009, 11, 5594-5597. 

95. (a) Dorn, H.; Singh, R. A.; Massey, J. A.; Nelson, J. M.; Jaska, C. A.; Lough, A. J.; Manners, 

I., J. Am. Chem. Soc. 2000, 122, 6669-6678; (b) Grant, D. J.; Dixon, D. A., J. Phys. Chem. A 2005, 109, 

10138-10147. 

96. (a) Schlieve, C. R.; Tam, A.; Nilsson, B. L.; Lieven, C. J.; Raines, R. T.; Levin, L. A., Exp. Eye 

Res. 2006, 83, 1252-1259; (b) Seidler, E. A.; Lieven, C. J.; Thompson, A. F.; Levin, L. A., ACS Chem. 

Neurosci. 2010, 1, 95-103; (c) Almasieh, M.; Lieven, C. J.; Levin, L. A.; Di Polo, A., J. Neurochem. 

2011, 118, 1075-1086. 



Chapter 1 

46 

 

97. Carboni, B.; Monnier, L., Tetrahedron 1999, 55, 1197-1248. 

98. (a) Paine, R. T.; Noth, H., Chem. Rev. 1995, 95, 343-379; (b) Fischer, R. C.; Power, P. P., Chem. 

Rev. 2010, 110, 3877-3923; (c) Bailey, J. A.; Pringle, P. G., Coord. Chem. Rev. 2015, 297, 77-90. 

99. Burg, A. B.; Wagner, R. I., J. Am. Chem. Soc. 1953, 75, 3872-3877. 

100. Noonan, K. J. T.; Feldscher, B.; Bates, J. I.; Kingsley, J. J.; Yam, M.; Gates, D. P., Dalton Trans. 

2008, 4451-4457. 

101. Evans, C. E. B.; Lough, A. J.; Grondey, H.; Manners, I., New J. Chem. 2000, 24, 447-453. 

102. (a) Morisaki, Y.; Ouchi, Y.; Fukui, T.; Naka, K.; Chujo, Y., Tetrahedron Lett. 2005, 46, 7011-

7014; (b) Morisaki, Y.; Ouchi, Y.; Naka, K.; Chujo, Y., Tetrahedron Lett. 2007, 48, 1451-1455. 

103. (a) Ouchi, Y.; Morisaki, Y.; Chujo, Y., Polym. Bull. 2007, 59, 339-349; (b) Ouchi, Y.; Morisaki, 

Y.; Ogoshi, T.; Chujo, Y., Chem. Asian J. 2007, 2, 397-402; (c) Morisaki, Y.; Imoto, H.; Tsurui, K.; 

Chujo, Y., Org. Lett. 2009, 11, 2241-2244; (d) Morisaki, Y.; Suzuki, K.; Imoto, H.; Chujo, Y., 

Macromol. Rapid Commun. 2010, 31, 1719-1724; (e) Imoto, H.; Morisaki, Y.; Chujo, Y., Chem. 

Commun. 2010, 46, 7542-7544. 

104. Burg, A. B. W., R. I., U.S. Patent 1963, 3, 071, 553. 

105. Burg, A. B., J. Inorg. Nucl. Chem. 1959, 11, 258-258. 

106. Wagner, R. I.; Caserio, F. F., J. Inorg. Nucl. Chem. 1959, 11, 259-259. 

107. Muetterties, L., The chemistry of boron and its compounds. Wiley: 1967. 

108. Korshak, V. V. Z., V. A.; Solomatina, A. I, IzV. Akad. Nauk SSSR, Ser. Khim. 1964, 8, 1541. 

109. Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I., Angew. Chem. Int. Ed. 1999, 

38, 3321-3323. 

110. Dorn, H.; Rodezno, J. M.; Brunnhöfer, B.; Rivard, E.; Massey, J. A.; Manners, I., 

Macromolecules 2003, 36, 291-297. 

111. Pandey, S.; Lonnecke, P.; Hey-Hawkins, E., Eur. J. Inorg. Chem. 2014, 2014, 2456-2465. 

112. Clark, T. L.; Rodezno, J. M.; Clendenning, S. B.; Aouba, S.; Brodersen, P. M.; Lough, A. J.; 

Ruda, H. E.; Manners, I., Chem. Eur. J. 2005, 11, 4526-4534. 

113. Cayaye, H.; Clegg, F.; Gould, P. J.; Ladyman, M. K.; Temple, T.; Dossi, E., Macromolecules 

2017, 50, 9239-9248. 

114. Schäfer, A.; Jurca, T.; Turner, J.; Vance, J. R.; Lee, K.; Du, V. A.; Haddow, M. F.; Whittell, G. 

R.; Manners, I., Angew. Chem. Int. Ed. 2015, 54, 4836-4841. 

115. Coles, N. T.; Mahon, M. F.; Webster, R. L., Organometallics 2017, 36, 2262-2268. 

116. Hooper, T. N.; Weller, A. S.; Beattie, N. A.; Macgregor, S. A., Chem. Sci. 2016, 7, 2414-2426. 

117. Paul, U. S. D.; Braunschweig, H.; Radius, U., Chem. Commun. 2016, 52, 8573-8576. 

118. Huertos, M. A.; Weller, A. S., Chem. Commun. 2012, 48, 7185-7187. 

119. Huertos, M. A.; Weller, A. S., Chem. Sci. 2013, 4, 1881-1888. 



Chapter 1 

47 

 

120. Hooper, T. N.; Huertos, M. A.; Jurca, T.; Pike, S. D.; Weller, A. S.; Manners, I., Inorg. Chem. 

2014, 53, 3716-3729. 

121. Denis, J. M.; Forintos, H.; Szelke, H.; Toupet, L.; Pham, T. N.; Madec, P. J.; Gaumont, A. C., 

Chem. Commun. 2003, 54-55. 

122. (a) Marquardt, C.; Jurca, T.; Schwan, K. C.; Stauber, A.; Virovets, A. V.; Whittell, G. R.; 

Manners, I.; Scheer, M., Angew. Chem. Int. Ed. 2015, 54, 13782-13786; (b) Stauber, A.; Jurca, T.; 

Marquardt, C.; Fleischmann, M.; Seidl, M.; Whittell, G. R.; Manners, I.; Scheer, M., Eur. J. Inorg. 

Chem. 2016, 2684-2687. 

123. Pomogaeva, A. V.; Scheer, M.; Timoshkin, A. Y., 2018, 24, 17046-17054. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 

48 

 

 



Chapter 2 

49 

 

Chapter 2  

Synthesis, characterisation and properties 

of poly(aryl)phosphinoboranes formed via 

iron-catalysed dehydropolymerisation. 

Reproduced from: 

J. R. Turner, D. A. Resendiz-Lara, T. Jurca, A. Schäfer, J. R. Vance, L. Beckett, G. R. 
Whittell, R. A. Musgrave, H. A. Sparkes, I. Manners. Macromol. Chem. Phys. 2017, 218, 
1700120. 

 

2.1 Abstract 

The dehydropolymerisation of the primary phosphine-boranes, RPH2·BH3 (2.1a-f) (R = 3,4-

(OCH2O)C6H3 (a), Ph (b), p-(OCF3)C6H4 (c), 3,5-(CF3)2C6H3 (d), 2,4,6-(CH3)3C6H2 (e), 2,4,6-

(tBu)3C6H2 (f)) is explored using the precatalyst [CpFe(CO)2OTf] (I) (OTf = OS(O)2CF3), 

based on the earth abundant element Fe. Formation of polyphosphinoboranes [RPH–BH2]n 

(2.2a-e) was confirmed by multinuclear nuclear magnetic resonance (NMR) spectroscopy, 

but no conversion of 2.1f to 2.2f was detected. Analysis by electrospray ionisation mass 

spectrometry (ESI-MS) confirmes the presence of the anticipated polymer repeat units for 

2.2a-e. Gel permeation chromatography (GPC) confirmed the polymeric nature of 2.2a-e 

and indicated number-average molecular weights (Mn) of 12,000 – 209,000 Da and 

polydispersity indices (PDI) between 1.14 – 2.17. By contrast, thermal 

dehydropolymerisation of 2.1a-e in the absence of added precatalyst led to formation of 

oligomeric material. Interestingly, polyphosphinoboranes 2.2c and 2.2d displayed gel 

permeation chromatography (GPC) behaviour typical of polyelectrolytes, with a 

hydrodynamic radius dependant on concentration. The thermal transition behaviour, 

thermal stability, and surface properties of thin films were also studied.    
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2.2 Introduction 

Macromolecules based on main group elements other than carbon, have been the subject 

of growing interest over the past two decades.1,2,3 Current routes to such species are 

typically based on polycondensation, ring-opening polymerisation and metal-catalysed 

pathways,4 which have been successfully exploited to access a broad range of main group 

polymers; selected examples include polyphosphazenes [R2PN]n and related materials,5 

polysiloxanes [R2SiO]n,,6 polysilanes [SiR2]n,7 polystannanes [SnR2]n (R = alkyl),8 boron-

nitrogen polymers such as polyaminoboranes [RNH–BH2]n (R = alkyl, or H),9 and their 

congeneric polyphosphinoboranes [RPH–BH2]n (R = aryl).10 The desirable properties of 

these materials has facilitated a broad range of applications such as elastomers, 

biomaterials, polyelectrolytes, ceramic precursors, lithographic resists and in 

optoelectronics.1–11 Through the use of metal-catalysed dehydrocoupling routes, an 

increasing number of main group polymers have been synthesised.2, 4b   

As polyphosphinoboranes and polyaminoboranes possess main-chains formed of 

alternating group 13 and 15 elements, they are formally isoelectronic to those based on C–

C main chains. This facet has historically aroused fundamental curiosity in such 

materials.12 Moreover, polyphosphinoboranes attracted initial interest in the 1950s, when 

it was postulated that these materials would have high thermal stability and potential 

flame retardant properties.13,14 Primary and secondary phosphine-borane adducts 

(Me2PH·BH3, MePH2·BH3) were thermally dehydrocoupled at ≈200 °C and above. Despite 

several instances of reports alluding to formation of polymeric materials in low yield, these 

products were not convincingly structurally characterised by present day standards, and 

their macromolecular nature was not established.14,15,16  

Over a decade ago, our group reported the first example of metal-catalysed 

dehydropolymerisation of primary phosphine–boranes.10a This process was promoted by 

an apparently homogenous mechanism, using Rh-based precatalysts, [Rh(1,5-COD)Cl]2 
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(COD = cyclooctadiene) and [Rh(1,5-COD)2][OTf] (OTf = OS(O)2CF3), operating under melt 

conditions at temperatures of ≈130 °C (Scheme 2.1A).10a, 10b, 10d, 10g Soluble polymeric 

material of high molecular weight (Mn > 10,000 Da) was synthesised, but this method also 

produced crosslinked, swellable, and insoluble material.10a Similar catalyst systems have 

been used to synthesise other polyphosphinoboranes, and demonstrate selective cross-

dehydrocoupling with no evidence for P–P or B–B homocoupling.10h,17 Furthermore, work 

has been performed to elucidate a mechanism through experimental work with Rh 

catalysts.18,19 Recently, the precatalyst [IrH2(POCOP)] (POCOP = κ3-1,3-(OPtBu2)2C6H3) 

has also been shown to dehydropolymerise primary phosphine-boranes (RPH2·BH3) (R = 

Ph, pTol, Mes) in solution at 100 °C.10k Furthermore, a metal-free thermolysis based route 

has been developed for the polymerisation of Lewis based-stabilised phosphinoboranes 

leading to poly(alkylphosphinoboranes) with appreciable molecular weight (28,000 – 

35,000 Da, PDI < 2) (Scheme 2.1B).10j, 20 This metal-free thermolysis route represents an 

advancement in the field, as the synthesis of high molecular weight 

poly(alkylphosphinoboranes) by metal catalysed routes has not been reported.10d 

 

Scheme 2.1. Typical methods of synthesising primary polyphosphinoboranes by A) transition metal 

catalysed dehydrocoupling or B) via transient formation of phosphinoboranes. 

 

In 2015, our group reported the use of the iron precatalyst [CpFe(CO)2OTf] (I) as a 

dehydropolymerisation precatalyst to synthesise polyphosphinoboranes with high molar 

mass, thereby circumventing the use of rare/expensive transition metals.10i Unlike 

previous systems, the homogenous Fe-based catalytic process yielded high molecular 
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weight poly(phenylphosphinoborane), with polydispersities that were lower than previous 

reports in the field. This was also achieved with the added advantage of operating under 

relatively mild conditions (100 °C), and in solution rather than a solvent-free melt. Some 

degree of control over the molecular weight of the polymer was enabled by changing 

catalyst loading, such that a lower catalyst loading resulted in higher molecular weights. 

Furthermore, at low conversion high molecular weight polymer was detected which was 

indicative of a chain growth polymerisation process. In this chapter we describe an 

extension of our initial work on the dehydropolymerisation of a range of primary 

phosphine–borane substrates, catalysed by precatalyst [CpFe(CO)2OTf] (I) (OTf = 

OS(O)2CF3). The goal was to expand the potential scope of this Fe catalyst to demonstrate 

its utility in preparing high molecular weight polyphosphinoborane polymers with 

different properties resulting from the variation of pendant organic groups at phosphorus.  

 

2. 3 Results and Discussion 

2.3.1 Synthesis and characterisation of primary phosphine–borane adducts  

We targeted the synthesis of a range of sterically and electronically varied phosphine–

borane monomers, RPH2·BH3 (2.1a-f) (Figure 2.1), of which 2.1a and 2.1c and 2.1d are 

reported for the first time herein.10i  

Monomers 2.1a-f were isolated in good yield 60–70 % by two established literature 

methods. Adducts, 2.1a, 2.1c, 2.1d and 2.1f  were synthesised by a procedure previously 

reported by our group,10g involving three steps starting from the reaction between a 

protected phospine PCl(NEt2)2 and an in situ generated organo-lithium reagent LiR (R = 

a, c, d, f) to form RP(NEt2)2. 
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Figure 2.1. Phosphine–borane monomers 2.1a-f. 

  

The product was subsequently deprotected and reacted with Li[BH4] to give phosphine–

borane adducts 2.1a, 2.1c, 2.1d and 2.1f.  The remaining adducts 2.1b and 2.1e were 

isolated from the reaction between commercially available primary phosphines RPH2 and 

BH3·THF (THF = tetrahydrofuran) (Scheme 2.2). The resulting monomers were 

characterised by NMR spectroscopy, which afforded spectra consistent with the assigned 

structures (Table S2.1). For example, the 31P NMR spectrum of 2.1a consists of a broad 

triplet at −46.3 ppm, and a doublet of quartets at −43.5 ppm was observed by 11B NMR 

spectroscopy. In the case of 2.1e and 2.1f, where substitution on the aromatic ring was 

present in the ortho-position, the 31P and 11B NMR signals were shifted to higher and lower 

fields, respectively. By 1H NMR spectroscopy, the chemical shifts for the P–H protons for 

2.1a-d revealed a trend whereby the more electron-withdrawing the aromatic ring, 

according to its corresponding Hammett parameter, the lower the field of the P–H 

resonance (Table S2.1).21  

Single, colourless crystals suitable for X-ray analysis were obtained for 2.1a and 2.1c-e by 

layering a THF solution with either hexanes or pentane at −40 °C. As expected, the 

structures of 2.1a, and 2.1c-e contained tetrahedral phosphorus and boron centres, with 
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similar P–B bond lengths (2.1a 1.922(4) Å, 2.1c 1.914(8) Å, 2.1d 1.920(5) Å and 2.1e 

1.925(3) Å) within the range typical for P–B single bonds (1.90 – 2.00 Å) (Figure 2.2).22   

 

Scheme 2.2. Synthesis of phosphine–borane monomers 2.1a-f. Method 1 was used to synthesise 2.1a, 

2.1c, 2.1d and 2.1f. Method 2 was used to synthesise 2.1b and 2.1e. 

 

Interestingly, close intermolecular contacts were found in the structures of 2.1a, 2.1c and 

2.1d. The structure of 2.1a contained ̟-̟ interactions between pairs of molecules, and in 

addition a short contact (P(1)–H(1B)···O(1) 2.82(3) Å) was identified (Figure S2.1).  

The monomer, 2.1c crystallised with two molecules in the asymmetric unit (z' = 2) and ̟-

̟ stacking interactions were identified between the aryl rings creating staggered stacks 

approximately along the a-axis direction (Table S2.4). Short intermolecular P–H···H–B 

contacts were found in 2.1c, with distances less than the sum of van der Waals radii of 

two hydrogen atoms (2.4 Å) (Figure 2.3). 
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Figure 2.2. Molecular structures for 2.1a, 2.1c, 2.1d and 2.1e (thermal ellipsoids set at the 50% 

probability level). Selected bond distances (Å): 2.1a: B(1)–P(1) 1.922(4); 2.1c: B(1)–P(1) 1.914(8); 2.1d: 

B(1)–P(1) 1.920(5); 2.1e: B(1)–P(1) 1.925(3).    

 

Furthermore, one P–H bond was found to be in short contact with an oxygen atom (P(2)–

H(2B)···O(2), H(2B)···O(2) 2.58(6) Å), which is within the range of a weak electrostatic 

hydrogen bond interaction (2.2 – 3.2 Å) (Figure S2.2).23 These close O···H contacts found 

in 2.1a and 2.1c reflect the protic nature of P–H hydrogen. The solid state structure of 

2.1d was also found to contain intermolecular P–H···H–B contacts of 2.42(6) and 2.52(8) 

Å, close to the sum of the Van der Waals radii of two H atoms (Figure S2.3). In all the 

instances of short P–H···H–B intermolecular contacts in 2.1c and 2.1d, the B–H···H angle 

(100 – 148°, average: 117°) is smaller relative to the P–H···H angle (118 – 167°, average: 

139°), which is consistent to previous reports involving phosphine–boranes and the more 

thoroughly studied amine–boranes.24 In the related NH3·BH3, the non-linear N–H···H–B 

interaction was attributed to charge distribution, such that unfavourable dipole 

interactions are minimised.25   

2.1a 

2.1d 

2.1c 

2.1e 
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Figure 2.3. Intermolecular P–H···H–B solid state contacts between units of 2.1c. H atoms on Ph rings 

have been omitted for clarity and thermal ellipsoids set at the 50% probability level. Selected 

intermolecular interaction bond lengths (Å) and angles (°): H(1E)···H(1A) 2.22(9), H(1B)···H(2D) 2.27(7), 

H(2C)···H(2A) 2.46(7), H(2E)···H(2B) 2.3(1), P(1)–H(1B)···H(2D) 167(4), P(1)–H(1A)···H(1E) 144(4), 

P(2)–H(2B)···H(2E) 118(4), P(2)–H(2A)···H(2C) 129(3), B(2)–H(2E)···H2B 126(5), B(2)–H(2C)···H(2A) 

112(3), B(2)–H(2D)···H(1B) 148(5), B(1)–H(1E)···H(1A) 109(4).  

 

In contrast to 2.1a, 2.1c and 2.1d, no analogous intermolecular contacts could be found in 

the structure of 2.1e, which we attribute to the increased steric congestion imposed by the 

mesityl group. This is supported by the report that the primary alkyl phosphine–borane 

menthylPH2·BH3,  does contain short P–B contacts, with the corresponding H···H distances 

between two monomer units between 2.6 and 2.7 Å.26 This suggests that intermolecular 

interactions are still present even for phosphine–boranes with a P–H bond of lower acidity. 

No intermolecular B–H···H–P contacts could be found for crystallographically 

characterised secondary phosphine–boranes, such as Mes2PH·BH3 and p-

CF3(C6H4)2PH·BH3.10g,27 These examples suggest that the steric demands of the R group 

induces the molecules to adopt a solid state structure such that no P–H···H–B contacts can 

form. This would explain that whilst 2.1e contains a P–H bond of higher polarity than 

menthylPH2·BH3, the steric demands of the mesityl groups dictate the conformation and 

packing.     
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2.3.2  Iron-catalysed dehydrocoupling of the primary phosphine–borane 

adducts, RPH2·BH3: Polymer synthesis and characterisation  

The newly prepared polymers, 2.2a and 2.2c-e were synthesised under identical 

conditions to the previously reported Fe-catalysed formation of 2.2b.10i This involved 

heating toluene solutions of RPH2·BH3 (R = 2.1a-f), and 5 mol% I at 100 °C for 24 h under 

N2 (Scheme 2.3). Consistent with previous work, a colour change from red to yellow was 

observed within 5 min of heating, consistent with the formation of the intermediate 

[CpFe(CO)2(RPH·BH3)] (R = a-f).10i After 24 h, complete consumption of monomer and 

subsequent formation of polyphosphinoborane, [RPH–BH2]n (2.2a-e) was confirmed by in 

situ 11B and 31P NMR spectroscopy. Furthermore, in the reaction mixtures small amounts 

of the free phosphine RPH2 were detected by 31P NMR spectroscopy. Monomer 2.1f did not 

undergo dehydrocoupling to form 2.2f.  

 

Scheme 2.3. Typical dehydrocoupling reaction for the dehydropolymerisation of monomers 2.1a-f to 

form the polyphosphinoboranes 2.2a-e (2.2d was formed using 2 mol% I).  

 

Polymers 2.2c and 22.d, featuring fluorinated substituents, were purified by precipitation 

from Et2O into cold (−78 °C) pentane, whilst 2.2a and 2.2e were purified by dissolution in 

minimal THF and precipitation into pentane at −78 °C.10i The polymers obtained were 

pale yellow/off white solids, where the pale yellow colour likely originates from residual 

Fe species (Figure S2.8, S2.16, S2.24, S2.29). The presence of catalyst-derived Fe following 

polymer workup was confirmed by atomic absorption spectroscopy (AAS). A sample of 2.2b 
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was added to a solution of nitric acid before being analysed after 24 h. The results revealed 

an average of 4.5 atoms of Fe per polymeric chain (0.4 wt%). Samples of 2.2a, 2.2b and 

2.2e (2 mg mL−1) were also drop cast onto carbon coated Cu grids and analysed by EDX 

(EDX = energy dispersive X-ray spectroscopy). Areas of sample also contained detectable 

trace Fe (Figure S2.50-S2.53). Polymers 2.2a-e, could be handled in air, consistent with 

previous reports on 2.2b and 2.2e prepared using precious metal precatalysts.10i, 10k 

Further precipitation steps led to a decrease in the intensity of the yellow colour, however 

these extra steps reduced the isolated yield of the polymer. Complete removal of 

encapsulated solvent from the polymers was found to be a challenge, typically requiring 

heating of the sample (40 °C) in vacuo for several days. To aid in the removal of residual 

solvent, which was typically THF or toluene, the polymers could be dissolved in a minimal 

amount of dichloromethane, and reprecipitated into cold pentane (−78 °C). In the case of 

2.2d, heating the sample to 60 °C in vacuo for several days was required to completely 

remove encapsulated solvent, otherwise ≈10 wt% toluene remained, as detected by 

thermogravimetric analysis (TGA). Upon drying, the polymers displayed a slower 

dissolution rate, typically requiring vigorous stirring for redissolution in either 

dichloromethane or THF.   

At a catalyst loading of 5 mol% of I, the dehydropolymerisation of 2.1d after 24 h of heating 

at 100 °C in toluene led to formation of a precipitate. This gummy insoluble solid swelled 

upon solvent addition, consistent with a non-negligible degree of crosslinking (Scheme 

2.4). The supernatant was separated from the gel, concentrated and added to cold pentane 

(−78 °C) which caused a yellow solid to precipitate in 10% yield. A sample of the solid was 

analysed by GPC and was found contain polymeric material (Mn = 77,000 g mol−1, PDI = 

1.35) (Figure S2.35). By reducing the catalyst loading to 2 mol%, isolation of a yellow solid, 

which did not give a gel in chloroform, was possible and in higher yield (31%). The higher 

yielding material synthesised at 2 mol% catalyst loading was used for all subsequent 

analysis. The formation of gels was also found for polymers synthesised by Rh methods at 
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high degrees of conversion, where a significant degree of cross-linking was suggested to 

have taken place.10b Polymer 2.2d contains the most electron withdrawing substituent at 

phosphorus and therefore the most activated P–H bond, which increases the likelihood of 

cross-linking via further H2 loss leading to formation of gels. By contrast, polymers 2.2a-

c and 2.2e synthesised through the use of precatalyst I did not form solvent swellable 

cross-linked gels in solvents such as chloroform, THF and dichloromethane. These 

observations suggest an increased linearity for the polymers synthesised using the Fe-

precatalyst I, compared to those prepared with Rh catalysts under melt conditions, which 

is consistent with their lower PDI values.10d  

P BH2

R

n
H

2

H2

P

B
H

BH2
R

P

R H  

Scheme 2.4. Possible route to crosslinking polyphosphinoborane chains between B and P, enabled by 

interchain loss of H2.  

 

Tolerance of catalyst I to sterically demanding substituents on the phosphine–borane 

monomers was explored by comparing the dehydrocoupling reactions of 2.1b, 2.1e and 

2.1f, where increasing steric pressure was introduced at the positions ortho- and para- to 

the phosphorus on the aromatic ring. While monomers 2.1b and 2.1e were successfully 

converted to polymers 2.2b and 2.2e, respectively, no dehydrocoupling was observed for 

1f. Addition of 2.1f to 5 mol% of I in toluene and heating to 100 °C led to a colour change 

from red to yellow after 1 h. Over the course of 22 h, monitoring the reaction by 31P NMR 

spectroscopy, only an increase in the amount of free phosphine 2,4,6-(tBu)3C6H2PH2 was 

detected (Figure S2.32). The 11B and 31P NMR chemical shifts for the isolated samples of 

polymers 2.2a-e are summarised in Table 2.1. Consistent with previous reports on 

polymers 2.2b and 2.2e, the 11B NMR chemical shift, found at −35 ppm, was broad mainly 
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due to the quadrupolar nature of the 11B nucleus 2.2a-e.10i, 10k The 31P NMR chemical shift 

was found between −46 and −49 ppm for 2.2a-d, and at −74 ppm for 2e. The different 

aromatic groups in 2.2a-d did not have an obvious impact on the 11B and 31P NMR chemical 

shifts, except when the polymer contained a substituent in the ortho- position (2.2e). The 

expected P–H coupling by 31P NMR spectroscopy could only be resolved for 2.2b (1JPH = 

349 Hz) and 2.2e (1JPH = 350 Hz).  

Furthermore, the 31P NMR spectra of 2.2c and 2.2d contained a peak that resembled a 

virtual 1:2:1 triplet at 46–49 ppm (Figure S2.13 and S2.21). This pattern is consistent with 

the formation of an atactic polymer, with resolution of the triad structure, which was also 

reported for primary polyphosphinoboranes, [p-(CF3)C6H4PH–BH2]n and [tBuPH–

BH2]n.10g,10j The triad configurations involves four distinct environments composed of two 

successive dyads, mm, mr, rm and rr, where m are the meso (adjacent units of the same 

configuration) and r the racemic (adjacent units of opposite configuration) forms. Since mr 

and rm configurations are mirror images, they are indistinguishable by NMR and this 

leads to the expected distribution 1:2:1 in the 31P NMR spectrum.28 This fine structure 

could not be resolved spectroscopically for 2.2a, 2.2b or 2.2e. Compared with the NMR 

spectra of the monomers 2.1a-e, the 11B NMR spectra of 2.2a-e revealed downfield shifted 

resonances. The P–H chemical shift in the 1H NMR spectrum provided further contrast, 

where a doublet was found at a higher field than in the monomer. For example, the 

chemical shift for the PH2 protons of 2.1a was found at 5.47 ppm, whilst a value of 4.39 

ppm was found for 2.2a.   

 

2.3.3 Molar mass characterisation  

Electrospray ionisation mass spectrometry (ESI-MS) was performed on solutions of 2.2a, 

2.2c, 2.2d and 2.2e in CH2Cl2. A repeating pattern corresponding with successive loss of 

[RPH–BH2] units, however was only detected up to 2,500–4,000 g mol−1 (Figure S2.41-
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S2.44). The molecular weight of these polymers was also investigated by GPC, which 

indicated that the materials were of high molecular weight polymers (Table 2.1). Previous 

work involving polyphosphinoboranes, analysed by GPC in THF, revealed problems 

concerning molecular weight characterisation due to facile aggregation and/or adsorption 

of the polymer chains onto the GPC column solid-phase material.10d The problems were 

resolved through increasing the ionic strength of the eluent through use of [Bu4N]Br, 

which we have previously found effective in reducing column adsorption effects. By 

studying variations in the concentration of samples it was evident that 

poly(phenylphosphinoborane) showed no column adsorption.10d Thus, for 2.2a and 2.2e the 

concentration of the GPC sample also had no effect on the elution volume, and therefore 

the calculated PDI or molecular weight (Figure S2.9 and S2.31). However, for the polymers 

containing fluorinated groups, 2.2c and 2.2d, a reversible, inverse dependency of elution 

volume on concentration was observed (Figure S2.17 and S2.25).   

This GPC behaviour is reminiscent to that of polyelectrolytes, where the lower 

concentration causes larger intrachain repulsion, thereby increasing the observed 

hydrodynamic radius.29,30 Although, there is no clear explanation at this time, we postulate 

that the presence of electron-withdrawing substituent on phosphorus enhances the 

existing polarisation of the P–B backbone and results in a partial negative charge at the 

polymer periphery (Scheme 2.5).31 

 

Scheme 2.5. Schematic representation of electron density for polymers 2c and 2d. 
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Formation of polymer 2.2e has been previously been catalysed by [IrH2(POCOP)].10k 

Under the optimally reported conditions, which involved a 2.5 mol% catalyst loading and 

heating of the reaction mixture to 100 °C in toluene for 24 h, polymeric material (Mn = 

33,000 g mol−1) with a PDI of 1.8 was isolated. In the case of I, a slightly higher molecular 

weight (Mn = 95,000 g mol−1) polymer with a PDI of 1.14 was formed.  

 

Table 2.1. Summary of 11B NMR and 31P NMR spectroscopy and GPC results for 

polyphosphinoboranes 2.2a-e. 

Polymer 11B shifta 

(ppm) 

31P shifta (ppm) 

(1JPH (Hz)) 

Mw                    

(g mol−1)b 
Mn            

(g mol−1)b 
PDI DPn 

2.2a −35 −47 (350) 26,000 12,000 2.17 72 

2.2bc −35 −49 (349) 72,000 45,000 1.60 369 

2.2cd −35 −49 (350) 107,000 79,000 1.35 383 

2.2dd −35 −46 (360) 262,000 209,000 1.25 810 

2.2e −35 −74 (335) 108,000 95,000 1.14 579 

a)NMR spectroscopy was carried out in CDCl3. 1JPH values were calculated by 1H NMR spectroscopy; 
b)2 mg mL−1; c)Ref. 10i; d)A concentration based-effect was observed for GPC results, see main text.  

 

Catalyst free, thermal dehydropolymerisation occurred for 2.1a-e in solution. Thus, 

heating samples of 2.1a-e in toluene to 100 °C for 24 h under N2 resulted in incomplete 

conversion (70 – 90%) and formation of only low molecular weight (Mn = < 2,300 – 4,500 g 

mol−1) (Figure S2.36-S2.40) and polydisperse (PDI = 2.0–8.0) material. The metal-

catalysed route led to complete consumption of monomer after 24 h leading to formation 

of a polyphosphinoborane product that had a higher molecular weight and a lower 

polydispersity. These results suggest that non-metal catalysed reactions can also occur 

under the conditions used for the metal-catalysed dehydropolymerisation and these may 

explain the detection of the detected low-molecular weight material for 2.2a-e.9b   
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2.3.4 Thermal Transitional Behaviour and Stability of Polymers 2.2a-e  

The thermal transition behaviour of the polyphosphinoboranes 2.1a, 2.1c, 2.1d and 2.1e 

was investigated by differential scanning calorimetry (DSC) and thermogravimetric 

analysis (TGA) (Table 2.2). Glass transitions temperatures for 2.2a, 2.2c and 2.2d could 

be determined by DSC, at a scan rate of 10 °C min−1 (Figure S2.45-S2.47). The observed 

glass transition temperature of 82 °C for 2.2a, is higher than that previously reported for 

2.2b (38 °C). This could be due to increased rigidity of the polymer chain, which is induced 

by the presence of the –OCH2O– substituent. Polymer 2.2c was found to have a lower glass 

transition temperature of 29 °C relative to that of 2.2b. The lower glass transition 

temperature for the former material might be explained by the smaller barrier of rotation 

for the protruding (trifluoromethoxy)ether group which has the effect of introducing chain 

flexibility and additional free volume.32 The Tg of 2.2d (52 °C), higher than 2.2b (38 °C), is 

consistent with the trend detected when comparing the organic polymers polystyrene (105 

°C) and poly(2,5-bis(trifluoromethyl)styrene) (116 °C).33,34 For 2.2e, no glass transition was 

observed below ≈135 °C, above which decomposition of the polymer occurred. Compared 

with polystyrene, the glass transition temperature of 2b is considerably lower. This 

difference has previously been attributed to the higher degree of torsional flexibility in the 

polymer main chain as a result of the longer main chain P–B bonds.10d 

 

Table 2.2. Summary of the thermal properties, Tg, T5%, and ceramic yield of 2.2a-e. 

Polymer R Substituent Tg (°C) T5%
a (°C) Ceramic Yieldb (%) 

2.2a 3,4-(OCH2O)C6H3 82 210 46 

2.2bc Ph 38 180 (200d) 55 (76d) 

2.2c p-(CF3O)C6H4 29 170 24 

2.2de 3,5-(CF3)2C6H3 52 150 (200d) 20 (47d) 

2.2e 2,4,6-(CH3)3C6H2 >133 160 21 

a)Temperature at 5% weight loss; b)Ceramic yields were measured at 700 °C; c)Ref. 10i; d)Recorded 
under a blended air mix (N2/O2, 79:21%); e)Samples contained toluene (<10 wt%).   
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The thermal stability of 2.2a-e was further investigated by TGA under an N2 atmosphere, 

at a heating rate of 10 °C min−1 (Figure 2.4). 

 

Figure 2.4. TGA thermograms of 2.2a (■), 2.2b (■), 2.2c (■), 2.2d (■) and 2.2e (■) (heating rate: 10 °C 

min−1). 

 

The onset of weight loss for 2.2a occurred at around 160 °C, and material showed a T5% 

(temperature at which the polymer has lost 5% of its original weight) at 210 °C. Minimal 

weight loss occurred between 230 and 320 °C (< 2 wt%) for 2.2a, after which a further 30% 

of mass was lost until 500 °C. For polymers 2.2b, 2.2c and 2.2e the onset of weight loss 

occurred around 130 °C, after which the majority of mass was lost up until 500 °C. It has 

previously been suggested that the low thermal stability of these polymers can be 

explained by the release of a second equivalent of H2 leading to further decomposition 

pathways.10d Initial weight loss for 2d was found to occur ca.140 °C, with the majority of 

loss occurring up to 500 °C. Samples of polymer 2b prepared with the Fe precatalyst 

showed a lower temperature for weight loss (T5% = 180 °C) compared to those synthesised 

with Rh(I) mediation (T5% = 240 °C).10d This is a likely consequence of a more branched 

structure in the latter case which would hinder loss of volatile material.  
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The ceramic yields after heating to 700 °C were also found to be lower than for previous 

Rh-based dehydropolymerisation products. Ceramic yields for polymers prepared using a 

Rh precatalyst were typically in the range of 75 – 80% for aryl polymers and 35 – 45% for 

polymers containing alkyl substituents at phosphorus.10d These are noticeably higher 

ceramic yields than those found for polymers prepared using Fe-precatalyst I (Table 2.2). 

This is especially noticeable when comparing the ceramic yield of 2.2b between the Rh (75 

– 80%) and Fe (55%) catalytic methods.10d The lower ceramic yields in this report are 

consistent with the presence of mainly linear polymeric material since, as noted above, 

branched polymeric chains hinder the loss of volatile products. In addition to thermal 

analysis under N2, polymers 2.2b, 2.2d and 2.2e were analysed under a blended air mix 

(O2/N2, 79:21%) (Figure S2.48-S2.49). This had the effect of increasing the ceramic yields 

of the polymeric materials, but also slightly increasing the T5% temperature at which 

weight loss was observed (Table 2.2).  

 

2.3.5 Soft lithography of polyphosphinoboranes and contact angle 

measurements 

The ability to fabricate polymers into patterns is of key importance for many potential 

applications.35 Soft lithography is an attractive approach to achieve this objective and has 

received widespread attention as a result of the relative simplicity of the method. To 

further elaborate on our earlier findings that poly(phenylphosphinoborane) could be 

patterned on silicon wafers using soft lithography techniques, a similar procedure was 

used for 2.2e; chosen for the large difference in Tg (> 135 °C) compared to 2.2b (38 °C).10i  

The procedure involved drop casting a 2 mg mL−1 THF solution of 2.2e on a clean Si wafer, 

before patterning using a polydimethylsiloxane stamp at 150 °C for 5 min. Imaging by 

scanning electron microscopy revealed excellent retention of shape and crisp detail along 

edges (Figure 2.5). However, as anticipated for 2.2e on the basis of the higher Tg compared 
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to 2.2b, the resulting material contained noticeably more crack features which are present 

throughout the sample. Since 2.2c and 2.2d contain fluorinated groups, we anticipated 

that thin films of these polymers would display hydrophobic behaviour. Thin films of 2.2a-

e were formed by spin coating a 5 mg mL−1 THF solution onto a glass slide, and the 

advancing water droplet contact angles were subsequently obtained (Figure 2.6). 

     

Figure 2.5. Scanning electron microscopy of patterned polymer 2.2e, scanning electron micrograms 
obtained with 2 µm (A) and 10 µm (B) scale bars shown.   

 

As expected, the contact angles of 101° and 97° (±2°) obtained for 2.2c and 2.2d suggested 

a hydrophobic surface. These advancing angles are similar to those found for 

poly(chlorotrifluoroethylene) (99°), but smaller than for the widely used fluorinated 

polymer, poly(tetrafluoroethylene) (109°).36 Thin films of 2.2a, 2.2b and 2.2e were found 

to contain hydrophilic surfaces as supported by their advancing contact angles of 64°, 70° 

and 78° (±2°), respectively.  

The surfaces of polyphosphinoboranes in general, appear to be more hydrophilic in nature 

than their organic counterparts, highlighted by comparison between 2.2b (70°) and the 

organic analogue polystyrene (87°).37 This is likely to be due to the difference in polarity 

of the P–H and B–H bonds in the polymer backbone compared with C–H bonds. 

 

 

A B 
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Figure 2.6. Still frames of 2 µL droplets of deionised water deposited on thin films of 2.2a-e. 
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2.4 Conclusions 

The scope of the Fe complex I as a precatalyst for the dehydropolymerisation of phosphine–

boranes 2.1a-e has been explored. Formation of polymers 2.2a-e, was achieved in solution 

at 100 °C in under 24 h in the presence of 5 mol% I, however, the bulky monomer 2.1f was 

resistant to polymerisation under these conditions. GPC analysis of polymers 2.2a-e 

revealed the formation of high molecular weight polymeric material, and the presence of 

the expected repeat unit was confirmed by ESI-MS. A concentration dependence in the 

cases of polymers 2.2c and 2.2d was detected by GPC analysis. This behaviour is 

reminiscent of polyelectrolytes and was tentatively attributed to the build up of residual 

charge on the protruding electronegative organic substituent at phosphorus. Analysis of 

the thermal properties of polymers 2.2a-e revealed glass transition temperatures that 

were lower than their organic analogues. Furthermore, these materials possessed lower 

thermal stability compared with polyphosphinoboranes synthesised by previous Rh based 

methods. Thin film patterning and contact angle measurements indicate that polymer 

properties are tuneable by altering the substituents at phosphorus. Addition of fluorine 

containing functional groups, as with the case of organic polymers, had the expected effect 

of increasing the hydrophobicity of the surface. Ongoing work involves a mechanistic 

investigation of the dehydropolymerisation process, optimisation of the reaction with a 

view to scale up, and further characterisation of the properties of these polymers. We are 

also exploring routes to polyphosphinoboranes with non-hydrogen substituents at 

phosphorus, which should show enhanced thermal stability, and potential behaviour as 

flame retardant materials will be investigated. 
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2.5 Supporting Information 

 

2.5.1 General procedures, reagents, and equipment. 

All manipulations were carried out under an atmosphere of nitrogen gas using standard 

vacuum line and Schlenk techniques, or under an atmosphere of argon within an M. Braun 

glovebox. [CpFe(CO)2OTf]38 (I), and MesPH2·BH3
10k (2.1e) were synthesised by literature 

procedures. The following reagents, LiBH4, RPCl2 (R = a, c, d), RPH2 (R = b, e, f), and 

BH3·THF were purchased from Sigma Aldrich. Where stated, anhydrous solvents were 

dried via a Grubbs design solvent purification system.39 Anhydrous CDCl3 was purchased 

from Sigma Aldrich and stored over activated molecular sieves (4 Å). NMR spectra were 

recorded using Oxford Jeol Eclipse 300, 400, Bruker cryo 500 MHz spectrometers. 1H NMR 

spectra were calibrated using residual protio signals of the solvent: (δ 1H(CHCl3) = 7.24). 

13C NMR spectra were calibrated using the solvent signals (δ 13C(CDCl3) = 77.0; δ 13C(C6D6) 

= 128.0). 11B and 31P NMR spectra were calibrated against external standards (31P: 85% 

H3PO4 (aq) (δ 31P = 0.0); 11B: BF3·OEt2 (δ 11B = 0.0)). GPC was performed on a Malvern RI 

max Gel Permeation Chromatograph, equipped with an automatic sampler, a pump, an 

injector, and inline degasser. The columns (T5000) were contained within an oven (35 °C) 

and consisted of styrene/divinyl benzene gels. Sample elution was detected by means of a 

differential refractometer. THF (Fisher), containing 0.1 wt% [nBu4N][Br], was used as the 

eluent at a flow rate of 1 mL min−1. Samples were dissolved in the eluent (2 mg mL−1) and 

filtered with a Ministart SRP15 filter [poly(tetrafluoroethylene) membrane of 0.45 µm 

pore size] before analysis. The calibration was conducted using monodisperse polystyrene 

standards obtained from Aldrich. The lowest (highest) molecular weight standard used 

was 2,300 (994,000) g mol−1. Single crystal X-ray diffraction experiments on were carried 

out at 100(2) K, except 2.1a which was collected at 200(2) K, structures 2.1a and 2.1c were 

collected on a Bruker Apex II diffractometer using Mo Kα radiation (λ = 0.71073 Å) while 

2.1d and 2.1e were collected on a Bruker Microstar diffractometer using Cu Kα radiation 
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(λ = 1.54178 Å). Data collection was performed using a CCD area detector. Structures 2.1a 

and 2.1d were solved using SHELXS,40 2.1c was solved using Superflip,41 and 2.1e was 

solved using olex2.solve.42 All of the structures were refined against F2 in ShelXL in 

Olex2.43 Structures 2.1c and 2.1e were refined at two component twins. Crystallographic 

data collection and refinement details are listed in Table S2.3. All cif-files are available 

online from the Cambridge Crystallographic Data Centre (see CCDC numbers 1500875–

1500878). Contact angles were measured on a Krüss drop shape analyser (DSA100) at 25 

°C. DSC was measured on a Thermal Advantage DSCQ100 at 10 °C min−1 and TGA was 

measured on a Thermal Advantage TGAQ500 at 10 °C min−1 under N2, and where stated 

under a blended air mix (N2/O2, 79:21%). DSC and TGA results were analysed using 

WinUA V4.5A by Thermal Advantage. Powder diffraction experiments were performed on 

a Bruker D8 Advance diffractometer with Cu-Kα radiation (λ = 1.5406 Å) and 

measurements were taken at room temperature. The material was placed on a low 

background silica holder and measurements were run between 5 and 50° 2θ with a step 

size of 0.01° and 10 seconds per step, with the sample spinning at a rate of 15 rpm. The 

ESI-MS spectra were obtained using a Waters Synapt G2S instrument equipped with a 

nanospray ionisation module (Advion TriVersa Nanomate). Solutions (40 µL) of 

approximately 1 mg mL−1 were loaded under ambient conditions into the sample tray, and 

aliquots of 5 µL were introduced into the spectrometer using a spray voltage of 1.5 kV. 

Positive (+70 V) and negative (−125 V) ion spectra were recorded at a rate of 1 scan 

second−1 and summed to obtain the final spectra.  

 

 

 

 



Chapter 2 

71 

 

2.5.2 Synthesis of phosphine–boranes (2.1a-f) 

2.5.2.1 Synthesis of 3,4-(H2CO2)C6H3PH2·BH3 (2.1a) 

To a suspension of LiBH4 (0.234 g, 10.7 mmol) in diethyl ether (100 mL) a solution of 3,4-

(H2CO2)C6H3PCl2 (1.200 g, 5.38 mmol) in diethyl ether (20 mL) was added dropwise at 5 

°C. The reaction mixture was stirred for 3 h at 5 °C, and the volatiles were subsequently 

removed under reduced pressure. Hexanes (150 mL) was added, the white suspension was 

filtered through celite, and then taken to dryness, yielding 2.1a as a colorless solid. 

Colourless crystals of 2.1a were obtained by dissolving in minimal hexanes and cooling to 

−40 °C.  

Yield = 0.620 g (69%).  

1H NMR (400 MHz, CDCl3): δ (ppm) 0.83 (m, 3H, 1JBH = 100 Hz, BH), 5.47 (dq, 2H, 1JPH = 

372 Hz, 3JHH = 8 Hz, PH), 6.02 (s, 2H, OCH2O), 6.8 – 7.2 (m, 3H, ArH). 

11B NMR (128 MHz, CDCl3): δ (ppm) −43.5 (dq, 1JBH = 100 Hz, 1JBP = 38 Hz). 

31P NMR (161 MHz, CDCl3): δ (ppm) −46.3 (br. t, 1JPH =  372 Hz). 

13C NMR (101 MHz, CDCl3): δ (ppm) 101.9 (s, OCH2O), 109.5(d, JPC = 14 Hz, Ar), 111.6 (d, 
1JPC = 61 Hz, CP), 113.0 (d, JPC = 12 Hz, Ar), 129.0 (d, JPC = 11 Hz, Ar), 148.6 (d, JPC = 16 
Hz, Ar), 151.2 (d, JPC = 2 Hz, Ar).  

ESI-MS (m/z): Calc. 191.0405 [M + Na], found 191.0407 [M + Na]. 

 

2.5.2.2 Synthesis of PhPH2·BH3 (2.1b) 

PhPH2·BH3 (2.1b) was synthesised according to a modified literature procedure.44 To a 

round bottom Schlenk flask containing PhPH2 (8.500 g, 77 mmol) and THF (50 mL), cooled 

to 0 °C, was added BH3·THF (77 mL, 77 mmol) dropwise. After 15 min the reaction mixture 

was allowed to warm to room temperature and was stirred for a further 6 h. The product 

was obtained by drying the evaporation of the solvent and volatiles in vacuo to yield the 

colourless liquid 2.1b. Yield = 5.481 g (57%). Spectroscopic data were consistent with 

reported literature values.43  
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2.5.2.3 Synthesis of p-(CF3O)C6H4PH2·BH3 (2.1c) 

A solution of p-(CF3O)C6H3PCl2 (1.500 g, 5.70 mmol) in Et2O (20 mL) was added to a 

suspension of LiBH4 (0.248 g, 11.4 mmol) in diethyl ether (100 mL) at 5 °C. The reaction 

mixture was then stirred for 3 h at 5 °C, and the volatiles were subsequently removed 

under reduced pressure. To dissolve the product, hexanes (150 mL) was added, and 

insoluble salt was removed by filtration. Evaporation of the volatiles in vacuo yielded 2.1c 

as a colorless solid. Colourless crystals of 2.1c were obtained by dissolving in minimal 

hexanes and cooling to −40 °C.  

Yield = 0.800 g (67%).  

1H NMR (400 MHz, CDCl3): δ (ppm) 0.84 (m, 3H, 1JBH = 102 Hz, BH), 5.67 (dq, 2H, 1JPH = 

371 Hz, 3JHH = 8 Hz, PH), 6.8 – 7.3 (m, 4H, ArH).  

11B NMR (128 MHz, CDCl3): δ (ppm) −43.3 (qd, 1JBH = 102 Hz, 31.4 Hz).  

31P NMR (161 MHz, CDCl3): δ (ppm) −51.7 (m).  

19F NMR (376 MHz, CDCl3): δ (ppm) −58.5.  

13C NMR (CDCl3): 118.7 (d, 1JCP = 58 Hz, CP), 121.6 (d, JCP = 10 Hz, Ar), 121.8 (s, Ar), 

135.9 (d, JCP = 10 Hz, Ar), 152.3 (br, CF3). 

 

2.5.2.4 Synthesis of (m-CF3)2C6H3PH2·BH3 (2.1d) 

To a round bottom Schlenk flask containing LiBH4 (0.204 g, 9.37 mmol) in Et2O (100 mL) 

was added  (m-CF3)2C6H3PCl2 (1.500 g, 4.76 mmol) dissolved in Et2O (10 mL) dropwise at 

5 °C, and stirred for 90 mins. The reaction mixture was dried in vacuo, and the product 

was extracted into hexanes and insoluble salts were removed by filtration through celite. 

The colourless product 2.1d was obtained by recrystallisation from hexanes.  

Yield = 0.815 g (66%).  

1H NMR (400 MHz, CDCl3): δ (ppm) 0.94 (m, 3H, 1JBH = 100 Hz, BH), 5.67 (dq, 2H, 1JPH = 

377 Hz, 3JHH = 8 Hz, PH), 8.05 (s, 1H, p-ArH), 8.15 – 8.18 (m, 2H, o-ArH).  



Chapter 2 

73 

 

11B NMR (128 MHz, CDCl3): δ (ppm) −43.4 (dq, 1JBH = 100 Hz, 1JBP = 28 Hz).  

31P NMR (161 MHz, CDCl3): δ (ppm) −45.5 (br. t, 1JPH =  377 Hz). 

19F NMR (376 MHz, CDCl3): δ (ppm) −63.0.  

13C NMR (101 MHz, CDCl3): δ (ppm) 121.7 (s, Ar), 123.9 (s, Ar), 126.2 (br, Ar), 133.0 (d qt, 

1JCF = 34 Hz, 5JCF = 10 Hz, CF3) 134.0 (br, Ar).  

 

2.5.2.5 Synthesis of (tBu3)C6H2PH2·BH3 (2.1f)  

To a solution of (tBu3C6H2)PH2 (0.500 g, 3.28 mmol) in 20 mL of THF at −78 °C was slowly 

added 3.3 mL of 1.0 M BH3·THF solution (3.3 mmol). The solution was allowed to stir at 

−78 °C for 1 h, then warmed to room temperature. The solvent was removed in vacuo, and 

the solid washed with cold hexanes (3 x 2 mL), then dried in vacuo to afford 2.1f as a fine 

white powder.  

Yield = 0.417 g (76%).  

1H NMR (400 MHz, CDCl3): δ (ppm) 1.0 – 2.1 (br m, BH), 1.17 (s, tBuH), 1.42 (s, tBuH), 

5.44 (br doublet of quartets, PH, 1JPH = 390 Hz), 7.44 (br d, ArH).  

11B{1H} NMR (128 MHz, CDCl3): δ (ppm) −24 (br s).  

31P{1H} NMR (161 MHz, CDCl3): δ (ppm) −61.2 (br s). 

 

Table S2.1. 11B, 31P and 1H NMR chemical shifts for 2.1a-f, recorded in CDCl3. 

Monomer 11B NMR (ppm) 31P NMR (ppm) 1H NMRc (ppm) 

2.1a −43.5 −46.3 5.47 

2.1ba −42.2 −47.0 5.51 

2.1c −43.3 −51.7 5.67 

2.1d −43.4 −45.5 5.67 

2.1eb −39.7 −69.5 4.74 

2.1f −24.0 −61.2 5.44 

a)Ref. 43. b)Spectra recorded in C6D6. Ref 2. c)Peak corresponding to PH2.  
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Table S2.2. Hammett parameters for the aryl substituent in monomers 2.1a-d.21 

Aryl Substituent Hammett Parameter 

a −0.16 

b 0 

c 0.35 

d 0.43 

 

 

2.5.3 Crystallography data 

Table S2.3. Crystal data and structure refinement for 2.1a, 2.1c, 2.1d and 2.1e.  

Identification code 2.1a 2.1c 2.1d 2.1e 

Empirical formula C7H10BO2P C7H9BF3OP C8H8BF6P C9H16BP 

Formula weight 167.93 207.92 259.92 166.00 

Temperature/K 200(2) 100(2) 100(2) 100(2) 

Crystal system triclinic orthorhombic monoclinic orthorhombic 

Space group P-1 Pca21 P21/c P212121 

a/Å 6.6392(9) 7.8523(3) 14.2593(16) 4.6117(8) 

b/Å 7.7244(11) 8.7790(4) 8.2563(9) 14.566(3) 

c/Å 8.8398(11) 27.7720(12) 9.4680(11) 15.010(3) 

α/° 89.111(10) 90 90 90 

β/° 89.167(10) 90 108.105(5) 90 

γ/° 69.077(9) 90 90 90 

Volume/Å3 423.38(10) 1914.47(14) 1059.5(2) 1008.3(3) 

Z 2 8 4 4 

ρcalcg/cm3 1.317 1.443 1.630 1.094 

µ/mm-1 0.268 0.288 2.882 1.881 

F(000) 176.0 848.0 520.0 360.0 

Crystal size/mm3 0.561 × 0.25 × 0.13 0.4 × 0.23 × 0.11 0.6 × 0.3 × 0.2 0.6 × 0.25 × 0.2 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) CuKα (λ = 1.54178) CuKα (λ = 1.54178) 

2θ range for data collection/° 4.608 to 55.782 2.932 to 54.198 6.522 to 127.372 8.458 to 134.156 

Index ranges 
−8 ≤ h ≤ 7, 
−10 ≤ k ≤ 10, 
−11 ≤ l ≤ 11 

−9 ≤ h ≤ 10, 
−11 ≤ k ≤ 11, 
−35 ≤ l ≤ 35 

−10 ≤ h ≤ 16, 
−9 ≤ k ≤ 9, 
−10 ≤ l ≤ 11 

−5 ≤ h ≤ 4, 
−16 ≤ k ≤ 17, 
−17 ≤ l ≤ 17 

Reflections collected 7339 14558 13483 9714 

Rint 0.0685 0.0667 0.0687 0.0515 

Data/restraints/parameters 2023/0/120 4167/256/336 1725/0/165 1771/0/124 

Goodness-of-fit on F2 1.041 1.030 1.139 1.090 

Final R indexes [I>=2σ (I)] 
R1 = 0.0471, 
wR2 = 0.1155 

R1 = 0.0548, 
wR2 = 0.1257 

R1 = 0.0597, 
wR2 = 0.1595 

R1 = 0.0360, 
wR2 = 0.0926 

Final R indexes [all data] 
R1 = 0.0704, 
wR2 = 0.1273 

R1 = 0.0896, 
wR2 = 0.1425 

R1 = 0.0654, 
wR2 = 0.1632 

R1 = 0.0360, 
wR2 = 0.0926 

Largest diff. peak/hole / e Å-3 0.27/−0.31 0.55/−0.42 0.61/−0.31 0.36/−0.36 
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Table S2.4. π-π stacking interactions. 

Structure Ring Ring Centroid-centroid 

distance (Å) 

Shift Distance 

(Å) 

2.1a C1−C6 C1−C6a 3.706  

     

2.1c C1−C6 C1−C6b 3.939 1.793 

 C1−C6 C1−C6c 3.939 1.757 

 C8−C13 C8−C13d 3.943 1.768 

 C8−C13 C8−C13e 3.943 1.774 

a)2-x, -y, -z; b)-½+x, 1-y, +z; c)½+x, 1-y, +z; d)–½+x, 2-y, +z, e)½+x, 2-y, +z 

 

 

 

Figure S2.1. Intermolecular solid state contacts between units of 2.1a including O···H and π-stacking. 

H atoms on Ph ring have been omitted for clarity and thermal ellipsoids set at the 50% probability level. 

Selected intermolecular interaction bond lengths (Å): H(1B)–O(1) 2.83(3).  
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Figure S2.2. Intermolecular solid state contacts between symmetry related monomers of 2.1c. H atoms 

on phenyl ring have been omitted for clarity and thermal ellipsoids set at the 50% probability level. 

Selected intermolecular interaction bond lengths (Å): H(2B)–O(2) 2.58(6). 

 

 

 

Figure S2.3. Intermolecular solid state contacts between symmetry related monomers of 2.1d. H atoms 

on Ph ring have been omitted for clarity and thermal ellipsoids set at the 50% probability level. Selected 

intermolecular interaction bond lengths (Å) and angles (°): P(1)–H(1B)–H(1D) 136(3), P(1)–H(1B)–

H(1C) 137(3), H(1D)–H(1B) 2.52(8), H(1C)–H(1B) 2.42(6), B(1)–H(1D)–H(1B) 100(4), B(1)–H(1C)–

H(1B) 105(3). 
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2.5.4 Polymer Synthesis, NMR and GPC data 

2.5.4.1 Catalytic dehydrocoupling of 3,4-(H2CO2)C6H3PH2·BH3 (2.1a) by 

precatalyst I (5 mol %) 

To a solution of substrate 2.1a (0.100 g, 0.595 mmol), in 10 mL of anhydrous toluene was 

added 5 mol% of I (0.010 g, 0.031 mmol). The solution was then charged into a J. Young's 

Schlenk tube, and allowed to react at 100 °C for 24 h, open under N2, after which time the 

solvent was evaporated in vacuo. The resulting gummy yellow solid was dissolved in 

minimal Et2O and transferred into a beaker of cold pentane (−78 °C), which resulted in 

the precipitation of 2.2a. The supernatant was then removed, and 2.2a was dried in vacuo, 

in a vacuum oven at 40 °C for 7 days, yielding an off-white solid.  

Yield = 0.045 g (46%). 

1H NMR (400 MHz, CDCl3): δ (ppm) 1.0 – 2.0 (br m, 2H, BH), 4.39 (d, 2H, 1JPH = 350 Hz, 

PH), 5.88 (br, 2H, CH2), 6.60 (br, 3H, ArH) (Figure S2.4). 

11B NMR (128 MHz, CDCl3): δ (ppm) −35.1 (Figure S2.5). 

31P NMR (161 MHz, CDCl3): δ (ppm) −47.3 (Figure S2.6-S2.7). 

GPC (2 mg mL−1): Mn = 12,000 g mol−1; PDI = 2.17 (Figure S2.10). 

 

 

Figure S2.4. 1H NMR spectrum of isolated [3,4-(H2CO2)C6H3PH–BH2]n (2.2a) in CDCl3 at 20 °C. 
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Figure S2.5. 11B{1H} NMR spectrum of isolated [3,4-(H2CO2)C6H3PH–BH2]n (2.2a) in CDCl3 at 20 °C. 

 

    

Figure S2.6. 31P{1H} NMR spectrum of isolated [3,4-(H2CO2)C6H3PH–BH2]n (2.2a) in CDCl3 at 20 °C. 

 

  

Figure S2.7. 31P NMR spectrum of isolated [3,4-(H2CO2)C6H3PH–BH2]n (2.2a) in CDCl3 at 20 °C. 
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Figure S2.8. Photograph of isolated 2.2a. 

 

 

 

Figure S2.9. Number average molecular weight (Mn) and PDI of 2.2a as recorded by GPC as a function 

of concentration of the GPC sample.  
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Figure S2.10. GPC chromatogram of polymer 2.2a at 2 mg mL−1 in THF. 

 

2.5.4.2 Catalytic dehydrocoupling of p-(OCF3)C6H4PH2·BH3 (2.1c) by precatalyst I 

(5 mol %) 

To a solution of substrate 2.1c (0.500 g, 2.40 mmol), in 10 mL of anhydrous toluene was 

added 5 mol % of precatalyst I (0.039 g, 0.12 mmol). The solution was then charged into a 

J. Young's Schlenk tube and allowed to react at 100 °C for 24 h, open under N2, after which 

time the solvent was evaporated in vacuo. The resulting gummy yellow solid was dissolved 

in minimal Et2O and transferred into a beaker of cold pentane (−78 °C), which resulted in 

the precipitation of 2.2c. The solution was then removed, and 2.2c was dried in vacuo, in 

a vacuum oven at 40 °C for 7 days, yielding a pale yellow solid. 

Yield = 0.152 g (31%).  

1H NMR (400 MHz, CDCl3): δ (ppm) 1.37 (v. br., BH), 4.66 (br. d, 1JPH = 360 Hz, PH), 6.50 

– 8.00 (v. br. m, ArH) (Figure S2.11). 

11B NMR (128 MHz, CDCl3): δ (ppm) −34.7 (Figure S2.12). 

31P NMR (161 MHz, CDCl3): δ (ppm) −49.1 (Figure S2.13-S2.14). 

19F NMR (CDCl3): δ (376 MHz, ppm) −64.5 (br s, CF3), −78.5 (s) (Figure S2.15). 

GPC (2 mg mL−1): Mn = 79,000 g mol−1; PDI = 1.35 (Figure S2.18). 
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Figure S2.11. 1H NMR spectrum of isolated [p-(OCF3)C6H4PH–BH2]n (2.2c) in CDCl3 at 20 °C. 

 

 

Figure S2.12. 11B{1H} NMR spectrum of isolated [p-(OCF3)C6H4PH–BH2]n (2.2c) in CDCl3 at 20 °C. 

 

 

Figure S2.13. 31P{1H} NMR spectrum of isolated [p-(OCF3)C6H4PH–BH2]n (2.2c) in CDCl3 at 20 °C. 
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Figure S2.14 31P NMR spectrum of isolated [p-(OCF3)C6H4PH–BH2]n (2.2c) in CDCl3 at 20 °C. 
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Chemical Shift (ppm)  

Figure S2.15. 19F NMR spectrum of isolated [p-(OCF3)C6H4PH–BH2]n (2.2c) in CDCl3 at 20 °C. 

 

 

Figure S2.16. Photograph of isolated 2.2c. 
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Figure S2.17. Number average molecular weight (Mn) and weight average molecular weight (Mw) of 

2.2c as recorded by GPC as a function of concentration of the GPC sample.  

 

Figure S2.18. GPC chromatogram of 2.2c at a concentration of 2 mg mL−1 in THF. 
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the precipitation of 2.2d. The solution was then removed, and 2.2a was dried in vacuo, in 

a vacuum oven at 40 °C for 7 days, yielding a pale yellow solid.  

Yield = 0.123 g (31%).   

1H NMR (400 MHz, CDCl3): δ (ppm) 0.80 – 2.20 (v br, BH2), 4.62 (br d, 1JHP = 364 Hz, PH), 

7.32 – 7.88 (br m, ArH); (Figure S2.19). 

11B NMR (128 MHz, CDCl3): δ (ppm) −35.2 (Figure S2.20). 

31P NMR (161 MHz, CDCl3): δ (ppm) −46.3 (d, 1JPH = 335 Hz) (Figure S2.21-S2.22).  

19F NMR (376 MHz, CDCl3): δ (ppm) −64.5 (br s, CF3), −78.5 (s) (Figure S2.23).  

GPC (2 mg mL−1): Mn = 209,000 g mol−1; PDI = 1.25. (Figure S2.26). 

 

 

Figure S2.19. 1H NMR spectrum of isolated [(m-CF3)2C6H3PH–BH2]n (2.2d) in CDCl3 at 20 °C. * 

CDCl3. 

 

Figure S2.20. 11B{1H} NMR spectrum of isolated [(m-CF3)2C6H3PH–BH2]n (2.2d) in CDCl3 at 20 °C. 
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Figure S2.21. 31P{1H} NMR spectrum of isolated [(m-CF3)2C6H3PH–BH2]n (2.2d) in CDCl3 at 20 °C. 

 

 

Figure S2.22. 31P NMR spectrum of isolated [(m-CF3)2C6H3PH–BH2]n (2.2d) in CDCl3 at 20 °C. 

 

 

Figure S2.23. 19F NMR spectrum of isolated [(m-CF3)2C6H3PH–BH2]n (2.2d) in CDCl3 at 20 °C. 
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Figure S2.24. Photograph of isolated 2.2d. 

 

 

Figure S2.25. Number average molecular weight (Mn) and weight average molecular weight (Mw) of 

2.2d as recorded by GPC as a function of concentration of the GPC sample.  

 

 

Figure S2.26. GPC chromatogram of 2.2d at a concentration of 2 mg mL−1 in THF. 
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2.5.4.4 Catalytic dehydrocoupling of MesPH2·BH3 (2.1e) by precatalyst I (5 mol%)  

To a solution of substrate 2.1e (0.664 g, 4.00 mmol), in 10 mL of anhydrous toluene was 

added 5 mol% of I (0.065 g, 0.199 mmol). The solution was then charged into a J. Young's 

Schlenk flask and allowed to react at 100 °C, open under N2. The solution turned from 

dark red to bright yellow within the first hour and remained so throughout the reaction. 

After 24 h the reaction solution was transferred into a beaker of cold pentane (−78 °C), 

which resulted in the precipitation of 2.2e. The product was isolated by filtration and 

washed several times (3 x 2 mL) with cold pentane and dried in vacuo to afford 2.2e as a 

pale yellow powder.  

Yield = 0.317 g (48%).  

1H NMR (400 MHz, CDCl3): δ (ppm) 0.7 – 2.7 (v br., BH2 and CH3), 4.36 (br. d, 1JPH = 350 

Hz, PH), 6.25 – 8.0 (br m. ArH) (Figure S2.27). 

11B NMR (128 MHz, CDCl3): δ (ppm) −35.3 (br) (Figure S2.28 left). 

31P NMR (161 MHz, CDCl3): δ (ppm) −73.2 (d, 1JPH = 335 Hz) (Figure S2.28 middle/right). 

GPC (2 mg mL−1): Mn = 79,000 g mol−1; PDI = 1.35. (Figure S2.30).  

 

 

Figure S2.27. 1H NMR spectrum of isolated [MesPH–BH2]n (2.2e) in CDCl3 at 20 °C. * CDCl3. 
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Figure S2.28. NMR spectra of polymer [MesPH–BH2]n (2.2e) in CDCl3: (left) 11B{1H} NMR, (middle) 

31P{1H} NMR and (right) 31P NMR spectra.  

 

Figure S2.29. Photograph of isolated 2.2e. 

 

 

Figure S2.30. GPC chromatogram of 2.2e at 2 mg mL−1 in THF. 
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Figure S2.31. Number average molecular weight (Mn) and PDI of 2.2e as recorded by GPC as a function 

of concentration of the GPC sample.  
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S2.32-S2.34).  
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Figure S2.32. 31P NMR spectra of 2.1f and 5 mol% I in toluene-d8 at 100 °C after 0 h (top) and 22 h 

(bottom). R= tBu3C6H2 

 

 

Figure S2.33. 1H NMR specrtra of 2.1f and 5 mol% I in toluene-d8 at 100 °C after 0 h (top) and 22 h 

(bottom). 
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Figure S2.34. 11B NMR spectra of 2.1f and 5 mol% I in toluene-d8 at 100 °C after 0 h (top) and 22 h 
(bottom). 

 

2.5.4.6 Catalytic dehydrocoupling of (m-CF3)2C6H3PH2·BH3 (2.1d) using 

precatalyst I (5 mol%) 

To a solution of substrate 2.1d (0.100 g, 0.385 mmol), in 10 mL of anhydrous toluene was 

added 5 mol% of precatalyst I (0.006 g, 0.018 mmol). The solution was then charged into 

a J. Young's Schlenk tube and allowed to react at 100 °C for 24 h under N2, after which 

time the solvent was removed in vacuo. Minimal Et2O was added to the yellow gummy 

solid, causing some of the solid to swell. The supernatant was transferred into round 

bottom, concentrated and placed into a beaker of cold pentane (−78 °C), which resulted in 

the precipitation of 2.2d. The solution was then removed, and 2.2d was dried in vacuo, 

yielding a pale yellow solid.  

Yield = 0.010 g (10%).  

GPC (2 mg mL−1): Mn = 77,000 g mol−1; PDI = 1.35 (Figure S2.35). 
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Figure S2.35. GPC chromatogram of 2.2d at 2mg mL-1 in THF. 

 

2.5.5 Thermal dehydropolymerisation of 2.1a-e  

A solution of substrate 2.1a-e (2.3 mmol), in 0.7 mL of toluene was charged into a J. 

Young's Schlenk tube and allowed to react at 100 °C for 24 h. The resulting reaction 

mixture after 24 h was analysed by GPC.  

 

 

Figure S2.36. GPC chromatogram of the reaction mixture from the thermal dehydrocoupling reaction 

involving 2.1a. 
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Figure S2.37. GPC chromatogram of the reaction mixture from the thermal dehydrocoupling reaction 

involving 2.1b. 

 

Figure S2.38. GPC chromatogram of the reaction mixture from the thermal dehydrocoupling reaction 

involving 2.1c. 

 

Figure S2.39. GPC chromatogram of the reaction mixture from the thermal dehydrocoupling reaction 

involving 2.1d.  
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Figure 2.40. GPC chromatogram of the reaction mixture from the thermal dehydrocoupling 

reaction involving 2.1e. 

 

2.5.6 Electrospray ionisation mass spectrometry (ESI-MS) 

 

 

Figure S2.41. ESI-MS (2mg mL−1 in CH2Cl2) of isolated [3,4-(H2CO2)C6H3PH–BH2]n (2.2a).  
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Figure S2.42. ESI-MS (2mg mL−1 in CH2Cl2) of isolated [p-(OCF3)C6H4PH–BH2]n (2.2c). 

 

 

 

Figure S2.43. ESI-MS (2mg mL−1 in CH2Cl2) of isolated [(m-CF3)2C6H3PH–BH2]n (2.2d). 
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Figure S2.44. ESI-MS (2mg mL−1 in CH2Cl2) of isolated [MesPH–BH2]n (2.2e). 

 

2.5.7 DSC Thermograms 

 

Figure S2.45. DSC thermogram of 2.2a, first cycle excluded. 
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Figure S2.46. DSC thermogram of 2.2c, first cycle excluded. 

 

 

Figure S2.47. DSC thermogram of 2.2d, first cycle excluded.   
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Figure S2.48. TGA thermograms of polymer 2.2b heated under N2 (■) and an air blend (O2/N2) (■) 

(heating rate: 10 °C min−1). 

 

 

Figure S2.49. TGA thermograms of polymer 2.2e heated under N2 (■) and an air blend (O2/N2) (■) 

(heating rate: 10 °C min−1). 
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2.5.8 Atomic Adsorption Spectroscopy 

Sample preparation was carried out by weighing two samples of 2.2b on a Micro Balance 

which were subsequently transferred to a 10 mL volumetric flask. 2M nitric acid (trace 

quality) was added and the samples were agitated over a 24 h period to maximise Fe 

extraction. Standards of 0.5,1.2, 4.6, 8.0 and 10 ppm were then made up from a 1000 ppm 

certified Fe standard. 

The samples were then run on a GBC sigma Graphite furnace AAS calibrated using the 

reference standards and the acid as a blank. The conditions used were: DRY 100 °C, ASH 

800 °C and Atomize 2300 °C. The experiments were measured at a wavelength of 248.3 

nm, a slit of 0.2 nm and lamp current of 7 mA with background correction. Average 

measured Fe content: 0.40 wt% (0.88 mol%). 

 

2.5.9 Energy Dispersive X-Ray Spectroscopy (EDX) 

Samples of 2.2a, 2.2b and 2.2e were dissolved in CH2Cl2 (2 mg mL−1) and drop cast onto 

carbon coated Cu grids, suitable for analysis by EDX.  

 

 

Figure S2.50. TEM Image of 2.2a (Top) highlighting area analysed by EDX (Spectrum 18, bottom). 
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Figure S2.51. TEM Image of 2.2b (Top) highlighting area analysed by EDX (Spectrum 28, bottom). 

 

 

Figure S2.52. TEM Image of 2.2e (Top) highlighting area analysed by EDX (Spectrum 34, bottom). 

 

 

Figure S2.53. TEM Image of a blank Cu grid (Top) highlighting area analysed by EDX (Spectrum 49, 

bottom). 
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2.5.10 Thermal analysis of 2.2.b 

A sample of 2.2b was heated to 900 °C at 10 °C min−1 (250 mL min−1 N2) in a tube furnace 

before being held at that temperature for 1h. The sample was allowed to cool and was 

subsequently analysed by powder XRD.    

 

Figure S2.54. Powder X-ray diffraction data at 298 K. 

 

2.5.11 Soft lithography  

Samples were prepared by dissolving 2 mg of polymer 2.2e in 1 mL of THF and drop-

casting on a clean silicon wafer (slowly until the entire sample was loaded onto the wafer). 

A pre-prepared patterned polydimethylsiloxane (PDMS) stamp was then placed on top of 

the wafer and the sample was heated to the appropriate temperature for 5 min (150 °C) 

while maintaining pressure on the stamp with a small weight. While still hot, the PDMS 

stamp was carefully removed to reveal the silicon wafer patterned with 

polyphosphinoborane 2.2c. Patterned samples were then imaged by Scanning Electron 

Microscopy. 
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2.5.12 Contact angle measurements 

Measurements were performed by a Kruss Drop Shape Analyzer - DSA100. Thin films of 

2.2a-e were formed by spin coating, at 3000 rpm, a 5 mg mL−1 THF solution of 2.2a-e. 24 

h was allowed to pass to allow for the films to dry, after which time a 2 µL drop was 

deposited on the surface. The advancing contact angle was recorded immediately and 

multiple drops were averaged. The error was estimated to be ±2°.  

 

Table S2.5. Measured contact angles of thin films of 2.2a-e with 2 µL deionised water droplets. 

Polymer Advancing Contact Angle (°) 

2.2a 64 

2.2b 70 

2.2c 101 

2.2d 97 

2.2e 78 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

103 

 

2.6 References 

1. Manners, I., Angew. Chem. Int. Ed. 1996, 35, 1602-1621. 

2. Priegert, A. M.; Rawe, B. W.; Serin, S. C.; Gates, D. P., Chem. Soc. Rev. 2016, 45, 922-953. 

3. Jäkle, F., Chem. Rev. 2010, 110, 3985-4022. 

4. (a) Heeney, M.; Zhang, W.; Crouch, D. J.; Chabinyc, M. L.; Gordeyev, S.; Hamilton, R.; 

Higgins, S. J.; McCulloch, I.; Skabara, P. J.; Sparrowe, D.; Tierney, S., Chem. Commun. 2007, 5061-

5063; (b) Leitao, E. M.; Jurca, T.; Manners, I., Nature Chemistry 2013, 5, 817-829; (c) He, G.; Kang, 

L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson, M. J.; McDonald, R.; Rivard, E., J. Am. Chem. Soc. 

2013, 135, 5360-5363; (d) Rawe, B. W.; Gates, D. P., Angew. Chem. Int. Ed. 2015, 54, 11438-11442. 

5. (a) Allcock, H. R.; Kugel, R. L., Inorg. Chem. 1966, 5, 1716-1718; (b) Neilson, R. H.; Wisian-

Neilson, P., Chem. Rev. 1988, 88, 541-562; (c) Liang, M.; Manners, I., J. Am. Chem. Soc. 1991, 113, 

4044-4045; (d) Allcock, H. R., Chem. Mater. 1994, 6, 1476-1491; (e) Honeyman, C. H.; Manners, I.; 

Morrissey, C. T.; Allcock, H. R., J. Am. Chem. Soc. 1995, 117, 7035-7036; (f) Allcock, H. R.; Nelson, 

J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I., Macromolecules 1997, 30, 50-56; (g) De Jaeger, 

R.; Gleria, M., Prog. Polym. Sci. 1998, 23, 179-276; (h) Allcock, H. R., Soft Matter 2012, 8, 7521-

7532; (i) Wilfert, S.; Henke, H.; Schoefberger, W.; Brüggemann, O.; Teasdale, I., Macromol. Rapid 

Commun. 2014, 35, 1135-1141; (j) Allcock, H. R., Dalton Trans. 2016, 45, 1856-1862; (k) 

Rothemund, S.; Teasdale, I., Chem. Soc. Rev. 2016, 45, 5200-5215; (l) Presa-Soto, D.; Carriedo, G. 

A.; de la Campa, R.; Presa Soto, A., Angew. Chem. Int. Ed. 2016, 55, 10102-10107. 

6. (a) Li, Y.; Kawakami, Y., Macromolecules 1998, 31, 5592-5597; (b) Mark, J. E., Acc. Chem. 

Res. 2004, 37, 946-953. 

7. (a) West, R., J. Organomet. Chem. 1986, 300, 327-346; (b) Miller, R. D.; Michl, J., Chem. 

Rev. 1989, 89, 1359-1410. 

8. (a) Imori, T.; Lu, V.; Cai, H.; Tilley, T. D., J. Am. Chem. Soc. 1995, 117, 9931-9940; (b) 

Trummer, M.; Choffat, F.; Smith, P.; Caseri, W., Macromol. Rapid Commun. 2012, 33, 448-460; (c) 

Harrypersad, S.; Foucher, D., Chem. Commun. 2015, 51, 7120-7123; (d) Caseri, W., Chem. Soc. Rev. 

2016, 45, 5187-5199. 

9. (a) Staubitz, A.; Presa Soto, A.; Manners, I., Angew. Chem. Int. Ed. 2008, 47, 6212-6215; (b) 

Staubitz, A.; Sloan, M. E.; Robertson, A. P. M.; Friedrich, A.; Schneider, S.; Gates, P. J.; Günne, J. S. 

a. d.; Manners, I., J. Am. Chem. Soc. 2010, 132, 13332-13345; (c) Vance, J. R.; Robertson, A. P. M.; 

Lee, K.; Manners, I., Chem. Eur. J. 2011, 17, 4099-4103; (d) Dallanegra, R.; Robertson, A. P. M.; 

Chaplin, A. B.; Manners, I.; Weller, A. S., Chem. Commun. 2011, 47, 3763-3765; (e) Marziale, A. N.; 

Friedrich, A.; Klopsch, I.; Drees, M.; Celinski, V. R.; Schmedt auf der Günne, J.; Schneider, S., J. Am. 

Chem. Soc. 2013, 135, 13342-13355; (f) Thiedemann, B.; Gliese, P. J.; Hoffmann, J.; Lawrence, P. G.; 

Sönnichsen, F. D.; Staubitz, A., Chem. Commun. 2017, 53, 7258-7261; (g) Wan, W.-M.; Baggett, A. 

W.; Cheng, F.; Lin, H.; Liu, S.-Y.; Jäkle, F., Chem. Commun. 2016, 52, 13616-13619; (h) Lorenz, T.; 

Lik, A.; Plamper, F. A.; Helten, H., Angew. Chem. Int. Ed. 2016, 55, 7236-7241. 

10. (a) Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I., Angew. Chem. Int. Ed. 

1999, 38, 3321-3323; (b) Dorn, H.; Singh, R. A.; Massey, J. A.; Nelson, J. M.; Jaska, C. A.; Lough, A. 

J.; Manners, I., J. Am. Chem. Soc. 2000, 122, 6669-6678; (c) Dorn, H.; Vejzovic, E.; Lough, A. J.; 

Manners, I., Inorg. Chem. 2001, 40, 4327-4331; (d) Dorn, H.; Rodezno, J. M.; Brunnhöfer, B.; Rivard, 

E.; Massey, J. A.; Manners, I., Macromolecules 2003, 36, 291-297; (e) Denis, J.-M.; Forintos, H.; 

Szelke, H.; Toupet, L.; Pham, T.-N.; Madec, P.-J.; Gaumont, A.-C., Chem. Commun. 2003, 54-55; (f) 

Jacquemin, D.; Lambert, C.; Perpète, E. A., Macromolecules 2004, 37, 1009-1015; (g) Clark, T. J.; 

Rodezno, J. M.; Clendenning, S. B.; Aouba, S.; Brodersen, P. M.; Lough, A. J.; Ruda, H. E.; Manners, 

I., Chem. Eur. J. 2005, 11, 4526-4534; (h) Pandey, S.; Lönnecke, P.; Hey-Hawkins, E., Eur. J. Inorg. 



Chapter 2 

104 

 

Chem. 2014, 2014, 2456-2465; (i) Schäfer, A.; Jurca, T.; Turner, J.; Vance, J. R.; Lee, K.; Du, V. A.; 

Haddow, M. F.; Whittell, G. R.; Manners, I., Angew. Chem. Int. Ed. 2015, 54, 4836-4841; (j) 

Marquardt, C.; Jurca, T.; Schwan, K.-C.; Stauber, A.; Virovets, A. V.; Whittell, G. R.; Manners, I.; 

Scheer, M., Angew. Chem. Int. Ed. 2015, 54, 13782-13786; (k) Paul, U. S. D.; Braunschweig, H.; 

Radius, U., Chem. Commun. 2016, 52, 8573-8576. 

11. (a) Clarson, S. J.; Semlyen, J. A., Siloxane Polymers. Prentice Hall: Englewood Cliffs: 1993; 

(b) Archer, R. D., Inorganic and Organometallic Polymers. Wiley-VCH: New York: 2004; (c) 

Choffat, F.; Kaeser, S.; Wolfer, P.; Schmid, D.; Mezzenga, R.; Smith, P.; Caseri, W., Macromolecules 

2007, 40, 7878-7889; (d) Rawe, B. W.; Chun, C. P.; Gates, D. P., Chem. Sci. 2014, 5, 4928-4938; (e) 

Linshoeft, J.; Baum, E. J.; Hussain, A.; Gates, P. J.; Nather, C.; Staubitz, A., Angew. Chem. Int. Ed. 

2014, 53, 12916-12920; (f) Cao, W.; Gu, Y. W.; Meineck, M.; Li, T. Y.; Xu, H. P., J. Am. Chem. Soc. 

2014, 136, 5132-5137. 

12. Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I., Chem. Rev. 2010, 110, 4023-

4078. 

13. Parshall, G. W., In The Chemistry of Boron and its Compounds. Wiley: New York, 1967. 

14. Burg, A. B.; Wagner, R. I., J. Am. Chem. Soc. 1953, 75, 3872-3877. 

15. Burg, A. B., J. Inorg. Nucl. Chem. 1959, 11, 258. 

16. Burg, A. B., J. Inorg. Nucl. Chem. 1959, 11, 258-258. 

17. Pandey, S.; Lönnecke, P.; Hey-Hawkins, E., Inorg. Chem. 2014, 53, 8242-8249. 

18. Grant, D. J.; Dixon, D. A., The Journal of Physical Chemistry A 2006, 110, 12955-12962. 

19. (a) Hooper, T. N.; Weller, A. S.; Beattie, N. A.; Macgregor, S. A., Chem. Sci. 2016, 7, 2414-

2426; (b) Johnson, H. C.; Hooper, T. N.; Weller, A. S., Top. Organometal. Chem. 2015, 49, 153-220; 

(c) Huertos, M. A.; Weller, A. S., Chem. Sci. 2013, 4, 1881-1888. 

20. Stauber, A.; Jurca, T.; Marquardt, C.; Fleischmann, M.; Seidl, M.; Whittell, G. R.; Manners, 

I.; Scheer, M., Eur. J. Inorg. Chem. 2016, 2684-2687. 

21. Hansch, C.; Leo, A.; Taft, R. W., Chem. Rev. 1991, 91, 165-195. 

22. Fox, A.; Hartman, J. S.; Humphries, R. E., J. Chem. Soc., Dalton Trans. 1982, 1275-1283. 

23. Jeffrey, G. A., An Introduction to Hydrogen Bonding. Oxford University Press: 1997. 

24. Klooster, W. T.; Koetzle, T. F.; Siegbahn, P. E. M.; Richardson, T. B.; Crabtree, R. H., J. Am. 

Chem. Soc. 1999, 121, 6337-6343. 

25. Richardson, T.; de Gala, S.; Crabtree, R. H.; Siegbahn, P. E. M., J. Am. Chem. Soc. 1995, 117, 

12875-12876. 

26. Blank, N. F.; McBroom, K. C.; Glueck, D. S.; Kassel, W. S.; Rheingold, A. L., 

Organometallics 2006, 25, 1742-1748. 

27. Pelczar, E. M.; Nytko, E. A.; Zhuravel, M. A.; Smith, J. M.; Glueck, D. S.; Sommer, R.; 

Incarvito, C. D.; Rheingold, A. L., Polyhedron 2002, 21, 2409-2419. 

28. Heatley, F., Introduction to NMR and its use in the study of polymer stereochemistry. In NMR 

Spectroscopy of Polymers, Ibbett, R. N., Ed. Springer Netherlands: Dordrecht, 1993; pp 1-49. 



Chapter 2 

105 

 

29. Böhme, U.; Scheler, U., Macromol. Symp. 2002, 184, 349-356. 

30. Aldebert, P.; Gebel, G.; Loppinet, B.; Nakamura, N., Polymer 1995, 36, 431-434. 

31. Jacquemin, D.; Perpète, E. A., J. Phys. Chem . A 2005, 109, 6380-6386. 

32. Shishkov, I. F.; Geise, H. J.; Van Alsenoy, C.; Khristenko, L. V.; Vilkov, L. V.; Senyavian, V. 

M.; Van der Veken, B.; Herrebout, W.; Lokshin, B. V.; Garkusha, O. G., J. Mol. Struct. 2001, 567–

568, 339-360. 

33. Rieger, J., J. Therm. Anal. Calorim. 1996, 46, 965-972. 

34. Teng, H.; Lou, L.; Koike, K.; Koike, Y.; Okamoto, Y., Polymer 2011, 52, 949-953. 

35. Lipomi, D. J.; Martinez, R. V.; Cademartiri, L.; Whitesides, G. M., 7.11 - Soft Lithographic 

Approaches to Nanofabrication. In Polymer Science: A Comprehensive Reference, Matyjaszewski, K.; 

Möller, M., Eds. Elsevier: Amsterdam, 2012; pp 211-231. 

36. S. Wu, Polymer Interface and Adhesion, Marcel Dekker, New York, NY, 1982, p. 142-146. 

37. Strobel, M.; Thomas, P. A.; Lyons, C. S., J. Polym. Sci., Part A: Polym. Chem. 1987, 25, 

3343-3348. 

38. Liston, D. J.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A., J. Am. Chem. Soc. 1989, 111, 6643-

6648. 

39. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J., 

Organometallics 1996, 15, 1518-1520. 

40. Sheldrick, G. M., Acta Crystallogr A 2008, 64, 112-122. 

41. (a) Palatinus, L.; Chapuis, G., J. Appl. Crystallogr. 2007, 40, 786-790; (b) Palatinus, L.; 

Prathapa, S. J.; van Smaalen, S., J. Appl. Crystallogr. 2012, 45, 575-580. 

42. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., Acta 

Crystallogr. A 2015, 71, 59-75. 

43. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., J. Appl. 

Crystallogr. 2009, 42, 339-341. 

44. Bourumeau, K.; Gaumont, A.-C.; Denis, J.-M., J. Organomet. Chem. 1997, 529, 205-213. 

 

 

 

 

 

 



Chapter 2 

106 

 

 

 

 



Chapter 3 

107 

 

Chapter 3 

Poly(alkylphosphinoboranes) via Iron-

Catalysed Dehydropolymerisation  

 

3.1 Abstract 

High molar mass polyphosphinoboranes substituted with an alkyl group at phosphorus 

[RPH–BH2]n (R = tBu, 1-Ad, iPr, Cy, nHex, Me) have been successfully prepared via the 

dehydropolymerisation of the phosphine–boranes  RPH2–BH3 using an iron precatalyst, 

[CpFe(CO)2OTf]  (100 °C, toluene, 2 M, 10–100 h). Substrate purity and the reaction 

conditions were found to be crucial to obtaining high molar mass (Mn = 14,000 – 57,000 g 

mol−1) material. For example, the addition of primary phosphines, a potential monomer 

contaminant, was found to lead to lower molar mass oligomeric material [RPH–BH2]x. The 

polymers were characterised through multinuclear NMR spectroscopy, gel permeation 

chromatography (GPC), and electrospray ionisation mass spectroscopy (ESI-MS). The 

thermal properties were also investigated by thermogravimetric analysis (TGA), which 

showed the materials to be stable to weight loss up to 100 – 120 °C and differential 

scanning calorimetry (DSC), which revealed strongly side-group dependent Tg values that 

ranged from −76 to 87 °C.      
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3.2 Introduction  

Inorganic macromolecules containing  p-block elements are of interest as functional 

materials with properties that differ from those of hydrocarbon-based polymers.1 For 

example, boron-containing polymers have attracted attention as  precursors to high-

performance ceramic materials and as optoelectronic and sensory materials.2,3 Catalytic 

dehydrocoupling of primary amine–borane adducts RNH2·BH3 has been developed as a 

route to high molar mass polyaminoboranes [RNH–BH2]n,4 which are isoelectronic, 

inorganic analogues of polyolefins. These materials possess interesting potential 

applications as piezoelectrics5 and as precursors to BN ceramics.6 Analogous high molar 

mass aryl P-substituted polyphosphinoboranes [RPH–BH2]n (R = Ph or para-substituted 

aryl) were initially prepared through catalytic P–B bond formation via a 

dehydropolymerisation reaction involving primary phosphine–boranes RPH2·BH3 assisted 

by Rh-based precatalysts, at 90–130 °C under melt conditions.7 The temperature of 

dehydropolymerisation can be lowered to 60 °C when activated adducts substituted with 

electron-withdrawing perfluorinated aryl groups are used.8 Poly(arylphosphinoboranes) 

are air and moisture stable, with prospective applications as ceramic precursors of boron 

phosphide7c, 9 and as electron beam resists in lithography.8, 10  However, the need for melt 

conditions to obtain high molar mass polymers has hindered the development of new PB 

materials.  

The recent discovery of [CpFe(CO)2OTf] as an alternative dehydropolymerisation 

precatalyst led to access to high molar mass poly(arylphosphinoboranes) [RC6H5PH–BH2]n 

(R = electron-withdrawing or -donating groups on aryl) in solution at 100 °C over 24 h. 

Furthermore, control over the molar mass of the polymer was achieved by varying the 

catalyst loading, and a coordination chain growth mechanism was proposed.10 Other metal 

catalysts based on Ir, Rh, and Fe have also been successfully applied to the production of 

aryl P-substituted polyphosphinoboranes.4j, 11 Previously, it has been demonstrated that 
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sterically encumbered phosphine–boranes tBuPH2·BH3 and tBu2HP·BH3 could be 

dehydrocoupled in the presence of catalytic amounts of Ni or Rh complexes respectively, 

to form linear dimeric species with no indication of higher mass oligomeric or polymeric 

material.12   

 

Scheme 3.1. Synthetic routes to poly(alkyl)phosphinoboranes  

 

As a consequence of the development of improved catalytic procedures high molar mass 

poly(arylphosphinoboranes) are being increasingly studied. In contrast, much less is 

known about poly(alkylphosphinoboranes). The synthesis of alkyl P-substituted polymers 

would be expected to be significantly more challenging through catalytic dehydrocoupling 

routes because of the lower acidity of the P–H group in the precursor due to the inductive 

effect of the alkyl group attached to phosphorus.7c, 13 Consistent with this, the 

dehydropolymerisation of iBuPH2·BH3 gave moderate molar mass polymer (Mw = 10,000 

– 20,000 g mol−1)  [iBuPH-BH2]n under forcing conditions (melt, 120°C, 13 h) using [Rh(µ-

Cl)(1,5-COD)]2 (COD = cyclooctadiene) as a precatalyst (Scheme 3.1A).7c  More recent 

studies of the dehydropolymerisation of alkyl phosphine–boranes using the same 

precatalyst demonstrated that the dehydrocoupling of RPH2·BH3 (R = FcCH2, nBu, nHex, 

(2-Et)Hex), in general, has given lower molar mass (Mn < 10,000 g mol−1),9, 13 and relatively 

branched materials with varied polydispersity index values (PDI = 1.2–5.0) under forcing 
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thermal conditions (90–130 °C) and in the melt. In collaboration with the Scheer group we 

have demonstrated the viability of an alternative, addition polymerization route to 

poly(alkylphosphinoboranes) involving metal-free head-to-tail polymerization of transient 

monomeric phosphinoboranes thermally generated from Lewis base-stabilized precursors. 

This allowed the isolation of polymeric [tBuPH–BH2]n (Mn = 27,800 – 35,000 g mol−1, PDI 

= 1.6–1.9) and oligomeric material ([MePH–BH2]x and [Ph2P–BH2]x; Mn < 2,400 g mol–1) 

(Scheme 3.1B).14 Although this method represents an interesting breakthrough the 

precursors can only be accessed in several synthetic steps. 

We have therefore attempted to develop the use of catalysts based on Earth-abundant 

transition metals that function under more solution and milder conditions in order to 

promote the exploration of high molar mass poly(alkylphosphinoboranes). In a promising 

recent report, Webster and coworkers studied a low-coordinate Fe(II) β-diketiminate 

precatalyst [LFe(CH2SiMe3)], (L– = [(DippNC(Me))2CH]– , Dipp = 2,6-diisopropylphenyl) 

for the dehydrocoupling of CyPH2·BH3 and showed that in solution (110°C, 72 h) formation 

of low but significant quantities (<10%) of high molar mass [CyPH–BH2]n (Mn = 54,600 g 

mol−1, PDI = 1.3) was observed, although the main fraction was oligomeric (Mn < 2,000 g 

mol−1) (Scheme 3.1A).4j   In a preliminary study, our group attempted the dehydrocoupling 

of tBuPH2·BH3 with the [CpFe(CO)2OTf] precatalyst and found that at 5 mol% precatalyst 

loading using 1.0 M concentration of substrate in toluene, and after heating at 100 °C for 

176 h only low molecular mass oligomers of [tBuPH–BH2]x (where x ≤ 10) could be 

isolated.14a Herein, we have reinvestigated the dehydropolymerisation of alkyl substituted 

phosphine–borane substrates using [CpFe(CO)2OTf] as a precatalyst in detail and found 

that, under the correct conditions, the process does indeed result in the formation of high 

molar mass materials. We have used this route to prepare a family of alkyl P-

monosubstituted polyphosphinoboranes, [RPH–BH2]n.        
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3.3 Results and Discussion 

3.3.1 Catalytic Dehydrocoupling of tBuPH2·BH3 with the Precatalyst 

[CpFe(CO)2OTf]. 

We began our reinvestigation of the Fe-catalysed dehydrocoupling reaction of tBuPH2·BH3 

(δ = −44.5 ppm and δ = −11.9 ppm) mediated by the precatalyst [CpFe(CO)2OTf] (1.0 mol%) 

in toluene (2.0 M) with experiments performed on a 1 mmol scale at 100 °C (see Scheme 

3.2).  

 

Scheme 3.2. Catalytic dehydropolymerisation of phosphine–boranes RPH2·BH3 with precatalyst 

[FeCp(CO)2(OTf)] (1 mol%, toluene, 2.0 M, 100 °C) to give polyphosphinoboranes [RPH–BH2]n. 

 

After 48 h, full conversion to [tBuPH–BH2]n was detected by 11B NMR (δ = −38.6 ppm) and 

31P NMR (δ = −19.7 ppm) spectroscopy and the broad signals detected were in accordance 

to the material prepared previously via the thermal-induced polymerisation of 

tBuPHBH2·NMe3.14a Surprisingly based on our brief previous study, we found that the 

majority of the [tBuPH–BH2]n polymer isolated was of high molecular weight (Mn = 31,600 

g mol−1, PDI = 1.48) based on gel permeation chromatography (GPC) analysis with THF 

(0.1 w/w % nBu4NBr) as an elution solvent (see SI, Fig. S3.10). However, the formation of 

a much lower mass oligomeric component was also detected. Electrospray ionisation mass 

spectroscopy (ESI-MS) of the material revealed the expected repeat unit of ∆(m/z) = 102 

Da within the oligomeric fraction with a DPn of 25, and with a residual mass corresponding 

to a phosphine end group, H–[tBuPH–BH2]x–PH2tBu. 
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In a control experiment a 2.0 M toluene solution of tBuPH2·BH3 was heated to 100 °C in a 

sealed J. Young NMR tube in the absence of catalyst. In contrast to the Fe-catalyzed 

reaction, after 48 h less than 5% monomer conversion was observed by 31P{1H} and 11B{1H} 

NMR spectroscopy. After 30 days, >90% conversion was observed by NMR spectroscopy 

and the resulting material was isolated. By 1H NMR spectroscopy, this material showed 

more sharp signals at δ = 1.4 to 1.1 ppm, corresponding to the CH3 groups, probably arising 

from mixture of small molecules and oligomeric material which could not be separated (see 

SI, Fig. S3.7). In addition, the 31P{1H} NMR spectrum displayed a set of ill-defined signals 

at δ = −11, −13, −15, −18, −21, and −23 ppm, which are further broadened in the 1H-coupled 

31P NMR spectrum (see SI, Fig. S3.9). Some of these signals have a similar chemical shift 

to those reported for the dimer tBuPH2BH2PtBuHBH3  (δ = −24.5 to −20.0 (m), −14 to −11 

(m) ppm) prepared via catalytic dehydrocoupling of tBuPH2·BH3 with [NiCl2] (10 mol %, 

100 °C, 1 h).12b In addition, the signals at δ = −18 and −21 ppm, are in a similar chemical 

shift range as those observed for the oligomeric material [tBuPH–BH2]x prepared via 

dehydrocoupling of tBuPH2·BH3 with the [CpFe(CO)2OTf] precatalyst in our previous 

report (5 mol %, 100 °C, 176 h).14a In contrast, the polymer [tBuPH–BH2]n prepared here 

by the [CpFe(CO)2OTf] catalysed polymerisation of tBuPH2·BH3 presented broad signals 

in both the 1H NMR and 31P{1H} spectra (see Fig. 3.1).  

a) b)  

Figure 3.1. a) 1H and b) 31P{1H} NMR spectra for [RPH–BH2]x prepared in thermal conditions (toluene, 

2.0 M, 100 °C, 30 days) (purple) and [RPH–BH2]n prepared in catalytic conditions with precatalyst 

[CpFe(CO)2(OTf)] (1 mol%, toluene, 2.0 M, 100 °C, 48 h) (green). 
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By GPC, the material prepared by the non-catalysed reaction after 30 days at 100 °C in 

toluene contained a small fraction corresponding to high molar mass [tBuPH–BH2]n (Mn = 

63,400 g mol−1, PDI = 1.50), however, short oligomers (Mn ca. 2,000 g mol-1) and other small 

molecules which elute with the solvent peak were the main products (see SI, Fig. S3.10). 

Meanwhile the majority of the material obtained in the dehydropolymerisation reaction 

using the [CpFe(CO)2OTf] catalyst prepared at 100 °C over 48 h  was high molar mass 

[tBuPH–BH2]n polymer. Previously, it was shown that the thermal dehydrocoupling of 

aryl-substituted phosphine–boranes at 100 °C in the absence of catalyst resulted in 

incomplete conversion of the monomer to produce short chain oligomers (Mn < 4,500 Da) 

after 24 h.10b When the dehydrocoupling of aryl-substituted phosphine–boranes was 

performed under the same reaction conditions but in the presence of catalytic 

[CpFe(CO)2OTf] (5 mol%), higher molar mass polymer was observed (Mn = 12,000 – 

209,000 g mol−1).10b For both aryl and alkyl P-substituted phosphine–boranes it appears 

that under the reaction conditions in toluene at 100 °C both thermally promoted (non-

catalysed) and metal-catalysed dehydropolymerisation are likely occurring, but there is a 

very large (15 fold) rate enhancement and an increase in the high molar mass fraction 

with added catalyst.  

The formation of high molar mass poly(t-butylphosphinoborane) under similar conditions 

of Fe-catalysis to our earlier brief report that yielded oligomers inspired further 

investigation. In order to obtain further insight into the factors which could have led to 

oligomeric material in our earlier report,14a we performed a series of additional 

experiments. When the dehydropolymerisation reaction of tBuPH2·BH3 (using 5 mol% of 

[CpFe(CO)2OTf]) at 100 °C  was performed with either ACS lab grade toluene which had 

not been dried or degassed, or under an atmosphere of air in a sealed J. Young NMR tube, 

we observed that the dehydrocoupling reaction was complete after 41 h (Mn = 13,800 g 

mol−1, PDI = 1.86). Although the product was of lower molar mass, the fact that this 

reaction could be performed using lab grade solvent under air further lends itself to the 
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user-friendliness of this synthetic methodology given that the reaction is not very sensitive 

to air or moisture, and rigorous exclusion thereof is not required.   

 

Figure 3.2. Overlay of GPC chromatograms (2 mg mL−1) in THF (0.1 wt% [nBu4N]Br) of [tBuPH–BH2]n 

synthesized from the dehydropolymerisation of the phosphine–borane, tBuPH2·BH3, with different 

amounts of the primary phosphine tBuPH2 added to the initial monomer feed. Reactions were performed 

with 2.0 M initial concentration of tBuPH2·BH3 in toluene with x mol% tBuPH2 added where x is 0 (red 

trace), 1.5 (orange trace), 3 (green trace), 6 (blue trace), 12 (purple trace), 24 (black trace), and 1.0 

mol% [CpFe(CO)2OTf] catalyst in a sealed J. Young NMR tube at 100 °C for 48 h. Refractive indices 

were normalized versus the solvent/lower oligomers peak at ~20.7 mL retention volume. Polystyrene-

based calibration curve given by dotted dark red trace.  

 

In a series of polymerisation reactions with 1 mol% [CpFe(CO)2OTf] at 100 °C where the 

amount of the primary phosphine tBuPH2 added into the tBuH2P·BH3 monomer feed was 

varied in increasing amounts from 0 mol% to 24 mol% relative to the monomer, there was 

a significant decrease in the molar mass of polymer or oligomers obtained (Figure 3.2). 

With increasing amounts of added tBuPH2 the majority of the material became 

increasingly oligomeric (Mn ca. 2,000 g mol-1). Even with 1.5 mol% added tBuPH2 a 

significant decrease in the fraction of higher weight polymer was detected. This highlights 
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the potential impact that trace phosphine impurities could have on the 

dehydropolymerisation process.  

The primary phosphine tBuPH2 possesses a sharp 31P{1H} NMR signal at 79.7 ppm in 

toluene but when tBuPH2 is added in small amounts to solutions containing tBuPH2·BH3 

the signal was significantly broadened and, in some cases was invisible in NMR spectra 

measured at 25 °C. The peak broadening is likely due to dynamic exchange processes 

occurring due to equilibria associated with dissociation of the P–B coordination bond of 

the Lewis acid-base adduct. Therefore, it is possible that free tBuPH2 could be present in 

samples of the phosphine–borane adduct but not detected readily by NMR spectroscopy.  

It has been shown that the addition of Lewis bases (LB) to polyphosphinoborane or 

polyaminoborane polymers under certain conditions can lead to depolymerisation through 

main-chain scission to afford donor-stabilized LB–BH2–ERH (E = N, P) adducts.15  

Previously we found that [PhPH–BH2]n was stable towards depolymerisation with 

diethylamine and tributylphosphine donors in THF solvent at room temperature.16 When 

isolated [tBuPH–BH2]n (sample with Mn = 28,600 g mol-1, and PDI = 1.6) was treated with 

1 eq. of tBuPH2 per formula unit of the polymer in C6D6 at 22 °C for 22 h there was no 

change in the 31P{1H} or 11B{1H} NMR spectra, and upon heating at 100 °C for 48 h, 

reminiscent of the catalytic reaction conditions, there was also no change. Analysis of the 

phosphine treated sample by ESI-MS revealed no change in the distribution of peaks, and 

GPC chromatograms before and after phosphine treatment also revealed no change (see 

SI, Fig. 3.11). Therefore, it appears likely that additional primary phosphine, or phosphine 

generated in situ from dissociation of the phosphine–borane adduct, plays an intimate role 

in termination events during the dehydropolymerisation process. Phosphine-based 

termination processes are further supported by the fact that ESI-MS spectra of isolated 

materials reveal that the polymer is capped with phosphine end groups. Additional 

phosphine in the monomer feed led to a shift in [tBuPH–BH2]n molecular mass distribution 
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towards low molar mass oligomers, and it appears that the added Lewis basic primary 

phosphine is not likely to be involved in main-chain scission post-polymerisation.         

Previously, it was noted in the synthesis of [PhPH–BH2]n with the [FeCp(CO)2OTf] 

precatalyst that there was an inverse dependence of the polymer molecular weight vs. 

catalyst loading where decreasing the precatalyst loading led to higher molecular weight 

polymer.17 In contrast, in the synthesis of [tBuPH–BH2]n with the [FeCp(CO)2OTf] 

precatalyst, there was no significant dependence on polymer molecular weight when the 

precatalyst loading was varied from 10 mol % (Mn = 23,500 g mol−1, PDI = 1.62), to 0.1 mol 

% (Mn = 18,400 g mol−1, PDI = 2.16). The initial tBuPH2·BH3 concentration in toluene also 

had a relatively small effect on the molecular mass of the [tBuPH–BH2]n polymer isolated 

after reaction at 100 °C with 1.0 mol% [CpFe(CO)2OTf] catalyst (see SI, Fig. 3.12). The 

molar mass of the polymer obtained at 10.0 M initial substrate concentration was Mn = 

34,800 g mol-1, PDI = 1.53, and at 1.0 M initial substrate concentration the molecular mass 

was Mn = 29,700 g mol-1, PDI = 1.55. However, the reaction time required to reach over 

95% percent conversion did vary drastically from 24 h for the reaction performed at 10.0 

M initial substrate concentration, to 13 days for the significantly more dilute reaction at 

1.0 M initial concentration (see Figure S3.13). 

 

3.3.2 Synthesis and Characterisation of Other Alkyl Phosphine–Boranes. 

Given the successful synthesis of [tBuPH–BH2]n via iron-catalysed dehydropolymerisation 

the previously assumed limitation concerning the efficiency of the catalytic 

dehydropolymerisation of alkyl substituted phosphine–borane substrates has been 

tackled.14a Since the synthetic methodologies described so far via either the metal-

catalysed7c, 13 and metal-free routes14a, 18 have not been optimised in solution, we attempted 

the dehydropolymerisation of a range of different phosphine–boranes RPH2·BH3 that 
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contain linear, branched or bulky alkyl groups in order to prepare high molecular weight 

poly(alkylphosphinoboranes).    

The RPH2·BH3 monomers (R = 1-Ad, iPr, Cy, nHex, Me) were prepared through either the 

direct reaction of the primary phosphine with commercially available BH3·THF adduct 

analogous to Schmidbaur and Müller,19 or reduction of the phosphine dichloride with 

LiBH4.   The phosphine−boranes iPrPH2·BH3 and 1-AdPH2·BH3 have not been previously 

reported and were synthesised via reduction of the corresponding RPCl2 precursor with 

2.2 equivalents of LiBH4 in Et2O (see Scheme 3.3). 

 

 

Scheme 3.3. Synthesis of new phosphine–boranes RPH2·BH3 (R = iPr, 1-Ad). 

 

This protocol afforded the phosphine–borane iPrPH2·BH3 in 26% yield as a colourless 

liquid at 20 °C, and the adduct 1-AdPH2·BH3 in 62% as a colourless solid at room 

temperature. The NMR data collected for iPrPH2·BH3 and 1-AdPH2·BH3 corroborated the 

structures, and are comparable to other phosphine–borane adducts that have been 

previously described.8, 20 For example, the 11B NMR spectra each displayed a doublet of 

quartets at −44.6 ppm for iPrPH2·BH3, and −45.0 ppm for 1-AdPH2·BH3, and the 31P NMR 

spectra each displayed a broad triplet at −26.5 ppm for iPrPH2·BH3, and −14.2 ppm for 1-

AdPH2·BH3. The molecular structure of 1-AdPH2·BH3 was determined by single-crystal X-

ray diffraction where crystals were obtained from an n-pentane solution at −40 °C (Figure 

3.3). All of the other primary alkyl phosphine–borane monomers used in this study 

RPH2·BH3 (R = tBu, Cy, iPr, nHex, Me) are liquids at standard temperature and pressure.   
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Figure 3.3. X-ray crystal structure of 1-AdPH2·BH3 with non-hydrogen atoms shown as 30% probability 

ellipsoids, and select H-atoms bound to B1 and P1 are shown as spheres of arbitrary radius.   

 

 
3.3.3 Catalytic Dehydropolymerisation Studies of Other Alkyl Phosphine–

Boranes via the Precatalyst [CpFe(CO)2OTf]. 

The synthesis of oligomeric [MePH–BH2]x where x is at least 40 repeat units was 

previously reported in collaboration with the Scheer group through the thermally-induced 

head-to-tail polymerisation reaction starting from Lewis base stabilized 

methylphosphinoborane.14b   

In an initial evaluation of the dehydropolymerisation of adduct MePH2·BH3 via the 

[FeCp(CO)2(OTf)] precatalyst (1 mol% precatalyst, toluene, 2.0 M initial MePH2·BH3 

concentration), different temperatures were screened and the reaction progress was 

monitored by in situ 11B NMR and 31P NMR spectroscopy in a J. Young NMR tube. The 

reaction was initially heated at 50 °C and we observed a change of colour from red to yellow 

within 1 h, however, no dehydrocoupling products were observed after 21 h. Subsequently, 

the reaction temperature was increased to 70 °C in the same system, and moderate 

conversion (ca. 20%) of MePH2·BH3 to form polymer (ca. 17%) [MePH–BH2]n was observed 

after 23 h. Finally, the temperature was further increased to 100 °C, where complete 

conversion to the polymer was achieved after 13 h (see Table 3.1). It has been mentioned 
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that the inductive effect of alkyl substituent attached to phosphorus impacts the activation 

of the P–H bond negatively.8, 14a 

Based on these results, we continued our dehydropolymerisation studies (1 mol% 

[FeCp(CO)2(OTf)], toluene, 2.5 M) at 100 °C with the rest of the adducts RPH2·BH3 (R = 1-

Ad, iPr, Cy, nHex) on a 1 mmol scale (see Table 3.1). The consumption of monomer was 

determined by multinuclear NMR spectroscopy and it was observed that extended periods 

of time (24–100 h) were needed for complete conversion of the monomers to produce 

polymeric material.  

Recently, the synthesis of soluble polymers [RPH–BH2]n (R = nBu, nHex, 2-Et-Hex), was 

achieved by precatalyst [Rh(µ-Cl)(1,5-COD)]2 (melt, 120 °C), however, the conversion time 

depended on the precatalyst loading. For example, the synthesis of [nHexPH–BH2]n 

required 22 h when 0.5 mol% of precatalyst was used; and 4 h when 2.0 mol% of Rh catalyst 

was added. Additionally, the reaction was monitored visually, and only stopped when the 

increase in viscosity in the reaction prevented effective mixing.13  Although the 

dehydropolymerisation reaction of nHexPH2·BH3 took extended periods of time (100 h) to 

fully convert to [nHexPH–BH2]n using [FeCp(CO)2(OTf)], it has the advantage that the 

reaction proceeds in solution and could be tracked by NMR spectroscopy. On the other 

hand, the synthesis of [MePH–BH2]n by thermally-induced (22 °C or 40 °C) reaction of 

phosphanylboranes RPHBH2·NMe3 was formed in 20 h.14a, 18 In our case, the formation of 

the identical polymer was achieved in shorter periods in 13 h, though forcing conditions 

are required (100 °C).  

A trend for a series of aryl phosphine–boranes in which the chemical shift of P–H protons 

in the 1H NMR spectrum is related to the electronic effect caused by the para substituent 

group in the phenyl ring was proposed.10b In this case, we could not find a specific trend 

on the chemical shift in the 1H or 31P NMR spectrum of phosphine–boranes that could be 

correlated with an electronic effect related to the dehydropolymerisation reaction. 
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Nevertheless, the alkyl-substituted polymers were obtained after purification either as 

pale yellow/off white solids or viscous gums in moderate to good yields (50–85%). The pale-

yellow colour in some of the polymers presumably arose from trace residual iron-

containing species.10b  

Polyphosphinoboranes [RPH–BH2]n (R = 1-Ad, iPr, Cy, nHex, Me) were structurally 

characterised by multinuclear NMR spectroscopy and molecular weight determinations 

were achieved by GPC and ESI-MS (see Table 3.1).; the thermal stability and thermal 

transition behaviour was investigated by thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC), respectively (see Tables 3.2). 

 

Table 3.1. Summary of 11B NMR, 31P NMR, and GPC results for polyalkylphosphinoboranes. 

Polymer Time 

(h)a 

11B shift 

(ppm)b 

31P shift 

(ppm)b 

Mn (g mol−1)c Mw (g mol−1)c PDI DPn
d
 

[tBuPH–BH2]n 48 −38.8 −24.5 31,600 47,000 1.5 34 

[1-AdPH–BH2]n 61 −43.1 −26.1 23,400 35,900 1.5 15 

[iPrPH–BH2]n 36 −39.9 −39.1 18,200 36,200 1.9 36 

[CyPH–BH2]n 76 −40.1 −44.0 31,800 49,100 1.5 27 

[nHexPH–BH2]n 100 −36.6 −61.8 57,200 86,800 1.5 25 

[MePH–BH2]n 13 −34.9 −76.7 14,000e 48,100e 3.4e 24 

a) Polymerisation reaction duration (1 mol% [FeCp(CO)2(OTf)], 100 °C, toluene, 2.0 M) b) NMR 

spectroscopy was measured in CDCl3. c) GPC in THF (0.1 w/w % nBu4NBr) (2 mg mL−1) of isolated 

polymers. d) DPn (degree of polymerisation) obtained by ESI-MS in CH2Cl2 (2 mg mL−1). e) Broad, 

multimodal mass distribution with ca. Mn = 2,000–300,000 g mol−1. 

 

3.3.4 Characterisation by Multinuclear NMR Spectroscopy of 

Poly(alkylphosphinoboranes) 

The 11B and 31P NMR chemical shifts for poly(alkylphosphinoboranes) are summarised in 

Table 3.1. In the case of the new polyphosphinoboranes synthesised, the 1H NMR spectra 

showed a doublet at δ = 3.87 ppm for [iPrPH–BH2]n and at δ = 3.59 ppm for [1-AdPH–

BH2]n which corresponds to the resonance of the P–H proton. The 11B NMR spectra for 

[iPrPH–BH2]n and [1-AdPH–BH2]n  showed a single broad resonance at δ = −39.9 ppm and 
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δ = −43.1 ppm, respectively. The 31P NMR spectra showed a broad main resonance at δ = 

−39.1 ppm for polyphosphinoborane [iPrPH–BH2]n, and at  δ = −26.1 for [1-AdPH–BH2]n. 

For the polymer [MePH–BH2]n, the 31P{1H} NMR spectrum showed a main resonance at 

δ = −76.7 ppm that splits into a doublet in the coupled 31P NMR spectrum (JPH ≈ 350 MHz). 

An additional signal at δ = −68.6 ppm displayed a pseudo-triplet in the coupled 31P NMR 

spectrum which might correspond to a phosphine end group (JPH ≈ 380 MHz) (see SI, Fig. 

S3.50) as has been suggested for similar signals reported previously.13  
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Figure 3.4. a) 31P NMR (bottom) and 31P{1H} NMR (top) spectra for polymer [1-AdPH–BH2]n. b) 

Schematic diagram of hypothetical triad sequences for [1-AdPH–BH2]n. 

 

Moreover, the 31P NMR spectrum of [1-AdPH–BH2]n showed overlapped resonances 

(Figure 3.4), which are not attributed to end groups due to the high molar mass of the 

polymer. These signals might be related to tactic environments in the polymer, probably 

imposed by the disposition of the highly bulky adamantyl group. Tacticity in 

polyphosphinoboranes and poly(methylenephosphine) has been proposed in former 

reports.10a, 14a, 21 The 31P{1H} NMR showed an array of  resonances, at δP = ca. −17, −19, and 

−26 ppm which are assigned to triads. Some of these signals subsequently split into 
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doublets (JPH ≈ 330 MHz) in the coupled 31P NMR spectrum. However, we are reluctant to 

assign a specific configuration in the 31P NMR spectrum, nevertheless, we suggest that 

the isotactic triad mm has the lowest probability to be formed, attributable to potential 

steric repulsion of adjacent adamantyl groups.  

 

3.3.5 Molar Mass Characterisation of Poly(alkylphosphinoboranes) 

The molar mass characterisation of the polymers was achieved by GPC in THF (0.1 w/w 

% nBu4NBr), relative to polystyrene standards, and the analysis showed that polymers 

are high molar mass in nature (Mn = 36,000–48,000 g mol−1) with polydispersity indices of 

1.5–3.4. The polyphosphinoboranes [RPH–BH2]n where R = 1-Ad, Cy, nHex displayed a 

bimodal distribution by GPC with a high molecular mass region (see Table 1 for Mn and 

PDI), and a second overlapped peak assigned to lower molecular weight oligomers below 

the resolvable exclusion limit area of the GPC, while polymers with R = Me, iPr, tBu 

displayed a single distribution. The GPC trace for [MePH–BH2]n possesses the distribution 

with the highest PDI (3.4), which might suggest some degree of branching arising probably 

under the dehydropolymerisation reaction conditions.  

In several cases, the polymers obtained by Fe-catalysed dehydropolymerisation displayed 

higher molar mass than analogous poly(alkylphosphinoborane) polymers prepared 

previously by other means. For example, no evidence of high molar mass was presented 

for [MePH–BH2]n prepared by metal-free polymerisation and it was described as an 

oligomeric material on the basis of ESI-MS and DLS analysis, in which evidence for the 

formation of aggregates (RH = 1 nm–5 µm) was reported.18 Moreover, the molar mass for 

[nHexPH–BH2]n (Mn = 3,800–8,800 g mol−1) prepared with [Rh(µ-Cl)(1,5-COD)]2 

precatalyst possessed a lower value when compared to the identical polymer prepared here 

with [FeCp(CO)2(OTf)] precatalyst (Mn = 86,800 g mol−1). Also, the polymer [CyPH–BH2]n 

prepared here presents high molar mass (Mn = 31,800 g mol−1, PDI = 1.5), contrary to the 
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identical material previously reported using Fe(II) β-diketiminate based precatalyst which 

produce mainly oligophosphinoborane (Mn < 2,000 g mol−1).4j    

ESI-MS spectral analysis of all polyphosphinoboranes synthesised allowed us to confirm 

the molecular repeat units [RPH–BH2] of each polymer and the formation of linear 

oligomeric chains with a phosphine end-group H–[RPH–BH2]x–PH2R for each polymer, 

except for [MePH–BH2]n which also gave peaks assigned to linear polymer with H as an 

end-group H–[RPH–BH2]x–H. Since only the low molar mass fraction of oligomeric 

material ([RPH–BH2]x, where x ≤ 34) could be detected by ESI-MS, the degree of 

polymerisation (DPn) obtained using this method is significantly lower than that obtained 

by GPC which reveals the entire molar mass distribution. ESI-MS is known to 

underestimate the molecular weight of polyphosphinoboranes, as well as 

polyaminoboranes when compared to GPC measurements.4b, 10b It is worth noting that 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) was unsuccessful for the analysis of polyphosphinoborane samples even after 

attempts with a range of different matrices.    

 

3.3.6 Thermal Studies of Poly(alkylphosphinoboranes) 

The thermal behaviour of polyphosphinoboranes was investigated by DSC and TGA under 

nitrogen atmosphere (heating rate 10 °C min−1) and the results are shown in Table 3.2. 

The analysis by DSC showed that the glass transition temperatures (Tg) were below 0 °C 

temperature for polyphosphinoboranes [RPH–BH2]n (R = iPr, Cy, nHex, Me) and above 

room temperature for [RPH–BH2]n (R = tBu, 1-Ad) (see SI, Fig. S3.54–S3.59). As expected, 

the lowest Tg material in this series corresponded to [nHexPH–BH2]n which has the most 

flexible alkyl chain. [nHexPH–BH2]n (Tg = −76 °C) prepared through the Fe-catalysed 

reaction presented herein showed a lower glass transition temperature than the identical 

material prepared via Rh-based precatalyst (Tg = −68 °C).13 This might be related to the 



Chapter 3 

124 

 

effect of the degree of branching of polymers on the glass transition temperature.22 The 

polymer prepared here has a predominately linear structure (PDI = 1.5)10 whereas the 

polymeric materials previously reported with the Rh-based catalyst have been proposed 

have a branched structure.7c It has been suggested that when the degree of branching is 

low, the influence of molecular rigidity is more pronounced than the contribution of the 

free volume of chain ends,23 thus the branching hinders rotation of the polymer which 

increases the Tg as a consequence. A similar branching effect might be affecting the glass 

transition of the branched poly(n-hexylphosphinoborane) prepared by the Rh-catalyzed 

route. 

 

Table 3.2. Thermal properties, T5% and ceramic yield of poly(alkylphosphinoboranes). 

   Polyalkylphosphinoboranes T5%
a
 

 (°C) 

Tg 

(°C) 

Ceramic 

Yieldb 

(%) 

[tBuPH–BH2]n 129 36 25 

[1-AdPH–BH2]n 115 87 21 

[iPrPH–BH2]n 135 −22 24 

[CyPH–BH2]n 130 −2 25 

[nHexPH–BH2]n 140 −76 29 

[MePH–BH2]n 165 −24 75 

a) Temperature at 5% weight loss (heating rate 10 °C min−1). b) Ceramic yields were measured at 

700 °C, heating rate 10 °C min−1 (under a flow N2). 

 

The highest glass transition temperature was found for [1-AdPH–BH2]n (Tg = 87 °C) in this 

polymer series. The adamantyl group has been found to generally impart an incremental 

increase in the glass transition of polymers when it is part of the side chain as a result of 

impeded chain mobility because of steric factors.24 For example, for the classic family of 

inorganic polymers, polyphosphazenes, typical glass transition temperatures are 

generally around −100 °C when the side groups are small and flexible. However, 

polyphosphazenes functionalised with adamantyl groups can possess Tg values around 
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~180 °C.25 For all poly(alkylphosphinoboranes), the glass transition temperatures are 

lower when compared to their organic counterparts. For example, polyphosphinoboranes 

Tg values are: [MePH–BH2]n  (Tg = −24 °C), [iPrPH–BH2]n  (Tg = −22 °C), [tBuPH–BH2]n  (Tg 

= 36 °C) and [CyPH–BH2]n  (Tg = −2 °C). Whereas atactic polypropylene (Tg = −6 °C),26 

atactic poly(iso-propylethylene) (Tg = 50 °C), poly(tert-butylethylene) (Tg = 64 °C) and 

atactic poly(cyclohexylethylene) (Tg = 120 °C) present higher transition temperatures.27 

The nature of the P–B bonds in the backbone in polyphosphinoboranes confer a high 

degree of torsional flexibility.7c 

The analysis of the TGA thermograms (at 700 °C, heating rate: 10 ˚C min−1) of the 

polymers showed that the decomposition temperature T5% (temperature at which each 

polymer exhibited a 5% loss of mass) ranged from 115 – 165 °C (Figure 3.5). Although a 

second dehydrogenation process is likely to occur at high temperatures,10b it has been 

suggested that prolonged heating (100 °C) of polyphosphinoboranes produces the scission 

of the P–B bond on the chain end,13 which could induce to an “unzipping” process 

promoting depolymerisation events from the chain ends. Above this temperature (T5%), the 

polymers [RPH–BH2]n (R = 1-Ad, Cy, nHex) decomposed in a single-step process, where 

degradation was complete at around 400 °C with mass reduction of ca. 60%. On the other 

hand, polymers [RPH–BH2]n  (R = Me, iPr, tBu) degraded in a two-step process, and the 

complete degradation for [iPrPH–BH2]n and [tBuPH–BH2]n took place at 350 °C (mass 

reduction of ca. 50% and 80%, respectively) and for [MePH–BH2]n at 500 °C (mass 

reduction of ca. 15%).   

The ceramic yield of some poly(alkylphosphinoboranes) have been previously reported.7c, 

13, 28 It would be anticipated that polymers with greater hydrocarbon content from the side 

groups lead to lower yields.13 This is obvious for polymers [RPH–BH2]n  (R = 1-Ad, iPr, Cy, 

nHex, tBu) that presented lower ceramic yields (25–47 %) than [MePH–BH2]n (75 %). 

[MePH–BH2]n is likely to produce highly volatile products and to produce higher degree of 
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cross-linking that leads to the highest ceramic yield which makes it a strong candidate as 

a precursor to boron phosphide. 

 

Figure 3.5. TGA thermograms of polyphosphinoboranes at 700 °C (heating rate: 10 ˚C min −1). 

 

We found notable differences in the thermal stability of the polymer [nHexPH–BH2]n 

prepared by different catalytic systems, for example, the polymer prepared using the [Rh] 

system has a higher thermal stability (T5% = 245 °C) than the polymer prepared by the 

[Fe] system (T5% = 140 °C). It has been formerly proposed that dehydropolymerisation by 

Rh catalysis imparts a certain degree of branching7c in the material. On the contrary, 

polymers synthesised by Fe catalysis are likely to be more structurally linear.10b It has 

been reported that branched polysiloxanes possess higher thermal stability than their 

linear analogue, as the branched structure promotes cross-linking of the material.29 We 

suggest that a similar effect might occur in the case for branched polyphosphinoboranes.  

In general, poly(alkylphosphinoboranes) have lower thermal stability temperature (T5% = 

115 – 165 °C) when compared to poly(arylphosphinoboranes) (T5% = 150–210 °C) prepared 

by using the same catalytic conditions.10b In our previous report, the 
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dehydropolymerisation of an aryl phosphine–borane via the [FeCp(CO)2(OTf)] precatalyst 

(5 mol%, 100 °C) produced a cross-linked gel. Poly(arylphosphinoboranes) posses P–H 

bonds which are more susceptible to undergoing cross-linking reaction due to the electron-

withdrawing nature of the aryl substituents compared with poly(alkyl)phosphinoboranes. 

The higher degree of crosslinking in aryl substituted polymers may be one of the factors 

leading to the increased thermal stability of these materials.  

Large substituents that contribute to an increase in steric interactions between side 

groups, lower overall stability of the polymers.13 We observed the expected trend for 

polymers [RPH–BH2]n;  for example, [tBuPH–BH2]n and [1-AdPH–BH2]n possess the 

lowest T5% as the bulky side groups destabilize the polymer relative to molecular 

fragments. In the case for [nHexPH–BH2]n,, the increase on thermal stability compared to 

[1-AdPH–BH2]n, can be explained as the n-hexyl side chain possessing a smaller steric 

profile. The low thermal stability and ceramic yields of polymers containing substituents 

larger than methyl groups suggest that depolymerisation processes are preferred over 

cross-linking.  
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3.4 Conclusions 

The metal-catalysed dehydropolymerisation of alkyl phosphine–boranes RPH2·BH3 has 

been achieved using [CpFe(CO)2OTf] as a precatalyst to produce high molar mass 

polyphosphinoboranes [RPH–BH2]n. The thermal non-catalysed dehydropolymerisation is 

feasible to produce mainly oligomeric material with a small component of high molar mass, 

whereas the use of the iron-based precatalyst not only favours the formation of high molar 

mass polymer but also increases the reaction rate dramatically. The purity of the starting 

materials is fundamental to produce high molar mass polyphosphinoboranes, and it was 

observed that the iron precatalyst is robust in the absence of anhydrous conditions. 

Moreover, we have shown that polyphosphinoboranes are stable under high temperatures 

in solution and no backbone scission from the attack of primary phosphine was observed.  

Control experiments have unveiled that changing the catalyst loading has no significant. 

In addition, the rate of the dehydropolymerisation reaction increases with concentration. 

From the range of polyphosphinoboranes materials synthesised, the analysis of the glass 

transition temperatures showed a variation from −76 to 87 °C, depending on the side chain 

group where the P–B backbone of these polymers offers torsional flexibility. On the other 

hand, it was observed that these polymers possessed low thermal stability and ceramic 

yield values, except for [MePH–BH2]n, which has the highest ceramic yield (75%) and 

makes it a prospective precursor for the formation of boron- based ceramics such as boron 

phosphide. Further characterisation of the latter ceramic obtained by pyrolysis is under 

investigation. In addition, detailed mechanistic studies, formation of model compounds 

and polymer post-functionalisation are in progress in order to obtain a better insight in 

the polymerisation reaction as well to obtain tailor-made polymers. We have shown that 

[CpFe(CO)2OTf] is an excellent precatalyst capable of mediating the 

dehydropolymerisation of a range of alkyl and aryl substituents to produce a catalogue of 

polymers with different properties, however, future work entails the synthesis of chiral 
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catalysts in order to obtain control over the polymer tacticity and the exploration of novel 

metal-free polymerisation synthetic routes.  
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3.5 Supporting Information 

3.5.1 General Procedures, Equipment and Reagents.  

All manipulations were carried out either under an atmosphere of nitrogen gas using 

standard vacuum line and Schlenk techniques, or under an atmosphere of argon within 

an M. Braun glovebox MB150G-B maintained at <0.1 ppm of H2O and <0.1 ppm of O2. 

Where stated, anhydrous solvents were dried via a Grubbs design solvent purification 

system.30 Anhydrous deuterated chloroform or tetrahydrofuran was purchased from 

Sigma Aldrich and stored over activated molecular sieves (4 Å).  

NMR spectra were recorded using Oxford Jeol Eclipse 300, 400, Bruker cryo 500 MHz 

spectrometers. 1H NMR spectra were calibrated using residual protio signals of the 

solvent: (δ 1H(CHCl3) = 7.24). 13C NMR spectra were calibrated using the solvent signals 

(δ 13C(CDCl3) = 77.0; δ 13C(C6D6) = 128.0). 11B NMR spectra were calibrated against 

external standards (11B: BF3•OEt2 (δ 11B = 0.0)). IR spectra were measured using an 

Agilent Cary FT-IR with ATR sampling module.  

Workup of polymeric materials and their characterisation was performed in air using lab 

grade solvents.  The following compounds were synthesized according to literature 

procedures: [CpFe(CO)2(OTf)],31  CyPH2·BH3,32 MePH2·BH3,33 nHexPH2·BH3,13 1-AdPCl2.34 

The substrate tBuPH2·BH3 was synthesized according to a literature procedure but with 

the following modifications,14a the reaction solvent used was Et2O instead of nBu2O and 

solvent removal was performed under vacuum while chilling the sample in an ice/water 

bath, the crude product was trap-to-trap distilled while heating reaction flask at 40 °C and 

chilling the receiving flask in liquid nitrogen (10−3 mbar pressure). The compound tBuPH2 

was synthesized according to a literature procedure with the following modification,35 the 

reaction solvent used was tetraethylene glycol dimethyl ether instead of butyl diglyme, 

and the product was purified by trap-to-trap distillation at room temperature while 

chilling the receiving flask in liquid nitrogen (10−3 mbar pressure). The compound 
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iPrPH2·BH3 was previously reported as a byproduct from a reaction,36 here its intentional 

synthesis and isolation are reported.     

Elemental analyses (C, H, N) were performed externally by Elemental Microanalysis Ltd. 

in Devon, UK. 

GPC was performed on a Malvern RI max Gel Permeation Chromatograph, equipped with 

an automatic sampler, a pump, an injector, and inline degasser. The columns (T5000) were 

contained within an oven (35 °C) and consisted of styrene/divinyl benzene gels. Sample 

elution was detected by means of a differential refractometer. THF (Fisher), containing 

0.1 wt% nBu4NBr, was used as the eluent at a flow rate of 1 mL/min. Samples were 

dissolved in the eluent (2 mg/mL) and filtered with a Ministart SRP15 filter 

poly(tetrafluoroethylene) membrane of 0.45 µm pore size) before analysis. The calibration 

was conducted using monodisperse polystyrene standards obtained from Aldrich. The 

lowest (highest) molecular weight standard used was 2,300 (994,000) g mol−1. 

The ESI-MS spectra were obtained using a Waters Synapt G2S instrument equipped with 

a nanospray ionisation module (Advion TriVersa Nanomate). Solutions (40 µL) of 

approximately 1 mg/mL were loaded under ambient conditions in air into the sample tray, 

and aliquots of 3 µL were introduced into the spectrometer using a spray voltage of 1.5 

kV. Positive ion spectra were recorded at a rate of 1 scan/second and summed to obtain 

the final spectra. 

DSC was measured on a Thermal Advantage DSCQ100 at 10 °C/min and TGA was 

measured on a Thermal Advantage TGAQ500 at 10 °C/min under N2. DSC and TGA 

results were analysed using WinUA V4.5A by Thermal Advantage. 

The single crystal X-ray diffraction experiment for 1-AdPH2·BH3 was carried out on a 

Bruker APEX II diffractometer using Mo Kα radiation (λ = 0.71073 A) and collected at 100 

K. The data collection was performed using a CCD area detector from a single crystal 
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mounted on a glass fibre. Intensities were integrated in SAINT37 and absorption 

corrections based on equivalent reflections using SADABS38 were applied. The structures 

were solved by the dual-space algorithm SHELXT39 and refined against all F2 in ShelXL40 

using Olex241. All the non-hydrogen atoms were refined anisotropically. H atoms bound to 

P1 and B1 were located directly from the electron density map, while all other hydrogen 

atoms were calculated geometrically and refined using a riding model.  

 

3.5.2 Catalytic Dehydrocoupling of tBuPH2·BH3 with the Precatalyst 

[CpFe(CO)2OTf]. 

3.5.2.1 Synthesis and Characterisation of [tBuPH–BH2]n 

Under dinitrogen atmosphere 1 mmol of tBuPH2·BH3 was dissolved in 0.4 mL of toluene, 

to this solution 0.1 mL of a toluene stock solution of FeCp(CO)2(OTf) (0.1 M) was added. 

The initially red-orange reaction mixture was transferred to a J. Young NMR tube, sealed, 

and heated at 100 °C in an oil bath, within the first 5 min a colour change from orange to 

yellow was observed. The conversion was monitored by 31P{1H} and 11B{1H} NMR 

spectroscopy. Upon complete consumption of monomer (48 h), the J. Young tube was 

opened in air carefully to vent H2 generated in the dehydropolymerization reaction, and 

the solvent was removed by rotary evaporation. The crude yellow-brown residue was 

dissolved in CH2Cl2 (0.5 mL) and passed through a ~3 cm plug of Florisil® (100-200 mesh) 

adsorbent, and a short pad of Celite® filtration aid within a glass microfiber plugged 

pipette, and was eluted with CH2Cl2 (5 mL) afterward the solvent was removed by rotary 

evaporation and the pale yellow to colorless polymeric product was dried under vacuum 

overnight followed by in 40 °C vacuum oven for a minimum of 2 days (87 mg, 85 % yield). 

1H NMR (CDCl3): δ (ppm) 3.74 (br d, 1H, PH); 1.35-1.20 (br s, 11H, BH, CH3) (Figure S3.1). 

11B{1H} NMR (CDCl3): δ (ppm) −38.8 (br) (Figure S3.2). 

31P NMR δ (ppm) –24.5 (br) (Figure S3.3). 
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13C NMR (CDCl3): δ (ppm) 28.8 – 28.0 (br m) (Figure S3.4). 

GPC: Mn = 31,600 g mol−1, Mw = 47,000 g mol−1, PDI = 1.5 (Figure S3.5). 

ESI-MS: Difference of 102 m/z ([tBuHPBH2] subunit) confirms presence of linear oligo(tert-

butylphosphinoborane) with a phosphine end group H–[tBuPH–BH2]x–PH2tBu up to 34 

repeat units (Figure S3.6).   

 

Figure S3.1. 1H NMR spectrum of isolated [tBuPH–BH2]n in CDCl3 at 20 °C. * CDCl3. 

 

Figure S3.2. 11B{1H} NMR spectrum of isolated [tBuPH–BH2]n in CDCl3 at 20 °C. 

 

 

Figure S3.3. 31P{1H} NMR spectrum of isolated [tBuPH–BH2]n in CDCl3 at 20 °C. 
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Figure S3.4. 13C NMR spectrum of isolated [tBuPH–BH2]n in CDCl3 at 20 °C. * CDCl3. 

 

 

Figure S3.5. GPC chromatogram (2 mg mL−1) of isolated [tBuPH–BH2]n in THF (0.1 wt% [nBu4N]Br). 

 

Figure S3.6. ESI-MS (2mg mL−1 in CH2Cl2) spectrum in positive mode of isolated [tBuPH–BH2]x. 
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3.5.2.2 Thermal Dehydrocoupling of tBuPH2·BH3  

tBuPH2·BH3 (1.0 mmol) was dissolved in toluene (0.5 mL) at 20 °C. The reaction mixture 

was transferred to a J. Young NMR tube, sealed, and heated at 100 °C. The conversion 

was monitored by 31P{1H} and 11B{1H} NMR spectroscopy for 30 days. The solvent was 

removed and dried under vacuum.   

Analysis of the Reaction of tBuPH2·BH3 after 30 days at 100 °C:  

1H NMR {CDCl3}: 3.51 (br d, PH); 1.17-0.98 (m, BH, CH3) (Figure S3.7).  

11B{1H} NMR (toluene): [tBuPH–BH2]n [δ −36.4 and −39.5 (br)], tBuPH2·BH3 [δ −40.9 and 

−41.5 (br)] (Figure S3.8).  

31P{1H} NMR (toluene): [tBuHPBH2]n [δ −17.8 and −22.4 (br)],  tBuPH2·BH2–PtBuH·BH3  

[δ −12.7 and −14.4 (br)] (Figure S3.9).  

GPC: Retention time 17.5 mL (Mn = 63,400 g mol−1, PDI = 1.5) and 20.5 mL (Mn ca. 2,000 

g mol-1) (Figure S3.10).  

 

Figure S3.7. 1H NMR spectrum of isolated [tBuHP–BH2]n in CDCl3 at 20 °C. * CDCl3. 
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Figure S3.8. 11B{1H} NMR spectrum of [tBuPH–BH2]n synthesized thermally at 100 °C for 30 days in 

toluene at 20 °C. R = tBu 

 

 

Figure S3.9. 31P{1H} NMR spectrum of [tBuPH–BH2]n synthesized thermally at 100 °C for 30 days in 

toluene at 20 °C. 

 

  

Figure S3.10. GPC chromatogram of isolated [tBuPH–BH2]n (2 mg mL−1)  in THF (0.1 wt% [nBu4N]Br) 

synthesized thermally in toluene at 100 °C for 30 days. 
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3.5.2.3 Dehydropolymerisation of tBuPH2·BH3  and Stability Studies of [tBuPH–

BH2]n 

 

 

Figure S3.11. Overlay of GPC chromatograms (2 mg mL−1) in THF (0.1 wt% [nBu4N]Br) both before 

(blue trace) and after (green trace) treatment of [tBuPH–BH2]n (sample with Mn = 28,600 g mol-1, and 

PDI = 1.6) with 1 eq. of tBuPH2 per formula unit of the polymer in C6D6 at 100 °C for 48 h. 

 

 

 

Figure S3.12. Overlay of GPC chromatograms (2 mg mL−1) in THF (0.1 wt% [nBu4N]Br) of [tBuPH–

BH2]n synthesized from the dehydropolymerisation of the phosphine borane with different 

[CpFe(CO)2OTf] catalyst loadings; 10 mol% [Fe] catalyst (blue trace), 1 mol% [Fe] catalyst (green trace), 

and 0.1 mol% [Fe] catalyst (pink trace). Reactions were performed on 1 mmol scales in terms of 

tBuPH2·BH3 2.0 M in toluene, in sealed J. Young NMR tubes at 100 °C for 72 h Refractive indices are 

normalized versus peak maxima.   
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Figure S3.13. Overlay of GPC chromatograms (2 mg mL−1) in THF (0.1 wt% [nBu4N]Br) of [tBuPH–

BH2]n synthesized from the dehydropolymerisation of the phosphine borane, tBuPH2·BH3, at different 

initial concentrations in toluene; 10.0 M with 24 h reaction time (blue trace), and 1.0 M with 13 day 

reaction time (green trace). In both reactions 1.0 mmol of the phosphine-borane and 1.0 mol% 

[CpFe(CO)2OTf] catalyst loading was used, and reactions were performed in sealed J. Young NMR 

tubes at 100 °C.   

 

3.5.3 Synthesis and Characterisation of Alkyl Phosphine–Boranes RPH2·BH3 

(R = iPr, 1-Ad). 

3.5.3.1 Synthesis and Characterisation of iPrPH2·BH3: 

Under dinitrogen atmosphere 1.65 g (75.9 mmol) of LiBH4 was partially dissolved and 

suspended in 30 mL of Et2O and chilled in an ice-water bath. Via syringe 5 g (34.5 mmol) 

of iPrPCl2 dissolved in 10 mL of Et2O and added to the cold Et2O slurry of LiBH4. The 

reaction mixture was stirred at 0 °C for 10 min, afterwards the white suspension was 

stirred at 25 °C for 1.5 h. The white suspension was filtered through Celite, and the solvent 

was evaporated from the filtrate under vacuum to give a white cloudy oil. The crude 

material was purified by short-path vacuum distillation where the heating block was 

heated at 220 °C, the receiving flask was chilled at -196 °C in a liquid nitrogen bath to 

yield iPrPH2·BH3 as a colorless liquid (0.86 g, 28% yield).  
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1H NMR (400 MHz, 25 °C, CDCl3) δ 4.85 (m, 1H, iPrPH2·BH3), 3.96 (m, 1H, iPrPH2·BH3), 

2.22 - 2.04 (m, 2H, (CH3)2CHPH2·BH3), 1.26 (dd, 6H, J = 17.2 Hz, 7.1 Hz, 

(CH3)2CHPH2·BH3), 0.90 – 0.16 (m, 3H, iPrPH2·BH3). (Figure S3.14) 

11B{1H} NMR (128 MHz, CDCl3) δ (ppm) −44.6 (d, J = 39.2 Hz). (Figure S3.15A) 

11B NMR (128 MHz, CDCl3) δ −42.6 (ppm) (qd, J = 99.8, 39.2 Hz). (Figure S3.15B) 

31P{1H} NMR (162 MHz, CDCl3) δ (ppm) –26.6 (dd, J = 77.8, 37.4 Hz). (Figure S3.16A) 

31P NMR (162 MHz, CDCl3) δ (ppm) –26.6 ( br t, J = 367 Hz). (Figure S3.16B) 

13C{1H} NMR (101 MHz, CDCl3) δ (ppm) 20.1, 20.1 (s, (CH3)2CHPH2·BH3); 18.9 (d, J = 36.9 

Hz, (CH3)2CHPH2·BH3) (Figure S3.17 and S3.18)   

 

 

Figure S3.14. 1H NMR spectrum (400 MHz, 25 °C) of iPrPH2·BH3 in CDCl3. * CDCl3. 

 

A)  B)  

Figure S3.15. a) 11B{1H} NMR spectrum (128 MHz, 25 °C) of iPrPH2·BH3 in CDCl3. b) 11B NMR spectrum 

(128 MHz, 25 °C) of iPrPH2·BH3 in CDCl3.  
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A)  B)  

Figure S3.16. a) 31P{1H} NMR spectrum (162 MHz, 25 °C) of iPrPH2·BH3 in CDCl3. b) 31P NMR spectrum 

(162 MHz, 25 °C) of iPrPH2·BH3 in CDCl3.  

 

Figures S3.17. 13C{1H} NMR spectrum (101 MHz, 25 °C) of iPrPH2·BH3 in CDCl3. * CDCl3. 

 

3.5.3.2 Synthesis and Characterisation of 1-AdPH2·BH3: 

Under dinitrogen atmosphere 202 mg (9.27 mmol) of LiBH4 was partially dissolved and 

suspended in 30 mL of Et2O and chilled in an ice-water bath. In a separate flask 1.054 g 

(4.44 mmol) of 1-AdPCl2 was dissolved in 15 mL of Et2O and added via cannula to the cold 

Et2O slurry of LiBH4. The reaction mixture was stirred at 0 °C for 10 min, afterwards the 

white suspension was stirred at 25 °C for 2h. The white suspension was filtered through 

Celite, and the solvent was evaporated from the filtrate under vacuum. The white oily 

residue was extracted into n-pentane, filtered through a glass microfiber filter pad and 

the filtrate was stored at -40 °C. After 2 days the supernatant was decanted off of colorless 

X-ray diffraction quality crystals of 1-AdPH2·BH3, the crystals were washed with minimal 

cold n-pentane and dried under vacuum (496 mg, 62% yield).  
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1H NMR (400 MHz, CDCl3) δ 4.66 (q, J = 7.6 Hz, 1H, 1-AdPH2·BH3), 3.78 (q, J = 7.6 Hz, 

1H, AdPH2·BH3), 2.03 (m, 3H, CH), 1.86 (dd, J = 5.9, 2.8 Hz, 6H, PC(CH2)3), 1.79 – 1.70 

(m, 6H, CH2), 0.86 – 0.14 (m, 3H, AdPH2·BH3). (Figure S3.18) 

 11B{1H} NMR (128 MHz, CDCl3) δ −45.0 (d, J = 38.7 Hz). (Figure S3.19A) 

11B NMR (128 MHz, CDCl3) δ −45.0 (qd, J = 100.0, 38.8 Hz). (Figure S3.19A) 

31P{1H} NMR (162 MHz, CDCl3) δ −14.2 (dd, J = 75.0, 32.6 Hz). (Figure S3.20A) 

31P NMR (162 MHz, CDCl3) δ −14.2 (t, J = 369.3 Hz). (Figure S3.20B) 

13C{1H} NMR (101 MHz, CDCl3) δ 40.0 (d, J = 1.2 Hz, PC(CH2)3), 36.1 (d, J = 1.7 Hz, 

CH2), 28.7 (d, J = 36.2 Hz, H3BPC(CH2)3), 27.9 (d, J = 9.3 Hz, CH). (Figure S3.21) 

Anal. Calc’d. for C10H20BP: C, 65.97; H, 11.07; N, 0.00. Found: C, 65.65; H, 10.63; N, 0.10.  

 

Figure S3.18. 1H NMR spectrum (400 MHz, 25 °C) of 1-AdPH2·BH3 in CDCl3. * CDCl3. 

 

A)    B)  

Figure S3.19. a) 11B{1H} NMR spectrum (128 MHz, 25 °C) of 1-AdPH2·BH3 in CDCl3. b) 11B NMR 

spectrum (128 MHz, 25 °C) of 1-AdPH2·BH3 in CDCl3. 
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A)   B)  

Figure S3.20. a) 31P{1H} NMR spectrum (162 MHz, 25 °C) of 1-AdPH2·BH3 in CDCl3. b) 31P NMR 

spectrum (162 MHz, 25 °C) of 1-AdPH2·BH3 in CDCl3. 

 

 

Figures S3.21. 13C{1H} NMR spectrum (101 MHz, 25 °C) of 1-AdPH2·BH3 in CDCl3. * CDCl3. 

 

Table S3.1. 11B, 31P and 1H NMR chemical shifts for RPH2·BH3 (R = iPr, 1-Ad), recorded in CDCl3. 

Monomer 11B NMR (ppm) 31P NMR (ppm) 1H NMR (ppm) 

iPrPH2·BH3 −44.6 −26.5 4.41 

1-AdPH2·BH3 −45.0 −14.2 4.21 
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Table S3.2. Crystallographic information for 1-AdPH2·BH3. 

Identification code 1-AdPH2·BH3 

Empirical formula C10H20BP 

Formula weight 182.04 

Temperature/K 100(2) 

Crystal system orthorhombic 

Space group Pbca 

a/Å 9.2496(4) 

b/Å 10.5381(4) 

c/Å 21.9181(8) 

α/° 90 

β/° 90 

γ/° 90 

Volume/Å3 2136.43(15) 

Z 8 

ρcalcg/cm3 1.132 

µ/mm−1 0.204 

F(000) 800.0 

Crystal size/mm3 0.55 × 0.35 × 0.15 

Radiation MoKα (λ = 0.71073) 

2θ range for data collection/° 3.716 to 55.066 

Index ranges 
-11 ≤ h ≤ 12, -13 ≤ k ≤ 13, -28 ≤ l ≤ 

28 

Reflections collected 18468 

Independent reflections 2457 [Rint = 0.0439, Rσ = 0.0259] 

Data/restraints/parameters 2457/0/129 

Goodness-of-fit on F2 1.043 

Final R indexes [I>=2σ (I)] R1 = 0.0387, wR2 = 0.0990 

Final R indexes [all data] R1 = 0.0520, wR2 = 0.1063 

Largest diff. peak/hole / e Å−3 0.44/-0.29 
 

 

3.5.4 General Synthesis of Poly(alkylphosphinoboranes) 

Under dinitrogen atmosphere 1 mmol of the corresponding phosphine–borane monomer 

was dissolved in 400 µL of toluene, to this solution 100 µL of a toluene stock solution of 

FeCp(CO)2(OTf) (0.1 M) was added. The initially red-orange reaction mixture was 

transferred to a J. Young NMR tube, sealed, and heated at 100 °C, within the first 5 min 

a colour change from orange to yellow was observed. The J. Young tube was heated at 100 

°C for the time specified in Table 1 and the conversion was monitored by 31P{1H} and 

11B{1H} NMR spectroscopy. Upon complete consumption of monomer the J. Young tube 

was opened in air carefully to vent H2 generated in the dehydropolymerisation reaction, 
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and the solvent was removed by rotary evaporation. The crude yellow-brown residue was 

dissolved in CH2Cl2 (0.5 mL) and passed through a ~3 cm plug of Florisil® (100-200 mesh) 

adsorbent, and a short pad of Celite® filtration aid within a glass microfiber plugged 

pipette, and was eluted with CH2Cl2 (5 mL). Afterwards the solvent was removed by rotary 

evaporation and the pale yellow to colorless polymeric product was dried under vacuum 

overnight followed by in a 40 °C vacuum oven for a minimum of 2 days.  

 

3.5.4.1 Characterisation of [1-AdPH–BH2]n Polymer: 

Polymer is an off white powder. Yield: 57 %   

1H NMR (CDCl3): δ (ppm) 3.59 (br d, 1H, PH); 1.99-1.74 (br m, 17H, BH, CH, CH2) (Figure 

S3.22). 

11B{1H} NMR (CDCl3): δ (ppm) −40.5 to −43.1 (br s) (Figure S3.23). 

31P{1H} NMR(CDCl3): δ (ppm) −19.50 (br); −26.09 (br) (Figure S3.24). 

31P NMR(CDCl3): δ (ppm) −18.34 to −27.03 (br m) (Figure S3.25). 

13C NMR (CDCl3): δ (ppm) (Figure S3.26). 

GPC: Mn = 23,400 g mol−1, Mw = 35, 900 g mol−1, PDI = 1.5 (Figure S3.27). 

ESI-MS: Difference of 180 m/z ([1-AdPH–BH2] subunit) confirms presence of linear 

oligo(adamantylphosphinoborane) with a phosphine end group H–[1-AdPH–BH2]x–PH2(1-

Ad) up to 15 repeat units (Figure S3.28). 

 

Figure S3.22. 1H NMR spectrum of isolated [1-AdPH–BH2]n in CDCl3 at 20 °C. * CDCl3, # THF. 
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Figure S3.23. 11B{1H} NMR spectrum of isolated [1-AdPH–BH2]n in CDCl3 at 20 °C. 

 

 

Figure S3.24. 31P{1H} NMR spectrum of isolated [1-AdPH–BH2]n in CDCl3 at 20 °C. 

 

 

Figure S3.25. 31P NMR spectrum of isolated [1-AdPH–BH2]n in CDCl3 at 20 °C. 
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Figure S3.26. 13C NMR spectrum of isolated [1-AdPH–BH2]n in CDCl3 at 20 °C. * CDCl3. 

 

 

Figure S3.27. GPC chromatogram (2 mg mL−1) of isolated [1-AdPH–BH2]n in THF (0.1 wt% [nBu4N]Br). 

 

 

Figure S3.28. ESI-MS (2mg mL−1 in CH2Cl2) spectrum in positive mode of isolated [1-AdPH–BH2]x 
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3.5.4.2 Characterisation of [iPrPH–BH2]n Polymer: 

Polymer is a pale yellow gum. Yield: 86 %  

1H NMR (CDCl3): δ (ppm) 3.87 (br d, 1H, PH); 2.20 (br s, CH); 1.51-1.34 (br m, BH, CH3) 

(Figure S3.29). 

11B{1H} NMR (CDCl3): δ (ppm) −39.9 (br) (Figure S3.30). 

31P{1H} NMR{1H} NMR (CDCl3): δ (ppm) −30.7 (br); −39.1 (br) (Figure S3.31). 

13C NMR (CDCl3): δ (ppm) 20.6–18.7 (br m) (Figure S3.32). 

GPC: Mn = 18,200 g mol−1, Mw = 36,200 g mol−1, PDI = 1.99 (Figure S3.33). 

ESI-MS: Difference of 88 m/z ([iPrPH–BH2] subunit) confirms presence of linear 

oligo(isopropylphosphinoborane) with a phosphine end group H–[iPrPH–BH2]x–PH2iPr up 

to 36 repeat units (Figure S3.34). 

 

Figure S3.29. 1H NMR spectrum of isolated [iPrPH–BH2]n in CDCl3 at 20 °C. * CDCl3. 

 

 

Figure S3.30. 11B{1H} NMR spectrum of isolated [iPrPH–BH2]n in CDCl3 at 20 °C. 

 

P–H 

B–H 
CH 

* 

CH3 

[iPrPH–BH2]n 



Chapter 3 

148 

 

 

Figure S3.31. 31P{1H} NMR spectrum of isolated [iPrPH–BH2]n in CDCl3 at 20 °C. 

 

 

Figure S3.32. 31P{1H} NMR spectrum of isolated [iPrPH–BH2]n in CDCl3 at 20 °C. * CDCl3. 

 

 

Figure S3.33. GPC chromatogram (2 mg mL−1) of isolated [iPrPH–BH2]n in THF (0.1 wt% [nBu4N]Br). 
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Figure S3.34. ESI-MS (2mg mL−1 in CH2Cl2) spectrum in positive mode of isolated [iPrPH–BH2]x 

 

3.5.4.3 Characterisation of [CyPH–BH2]n Polymer:   

Polymer is an off white sticky solid. Yield: 64 % 

1H NMR (CDCl3): δ (ppm) 3.65 (br d, PH); 1.93-1.65 (br m, CH); 1.24 (br s, CH, BH) (Figure 

S3.35). 

11B{1H} NMR (CDCl3): δ (ppm) −40.1 (br) (Figure S3.36). 

31P{1H} NMR (CDCl3): δ (ppm) −34.5 to −48.7 (br m) (Figure S3.37). 

13C NMR (CDCl3): δ (ppm) 32.1 (br s); 30.1-29.7 (br m); 26.9 (br s); 25.8 (br s) (Figure S3.38). 

GPC: Mn =  31,800 g mol−1, Mw = 49,100 g mol−1, PDI = 1.5 (Figure S3.39). 

ESI-MS: ESI-MS: Difference of 128 m/z ([CyHPBH2] subunit) confirms presence of linear 

oligo(cyclohexylphosphinoborane) with a phosphine end group H–[CyPH–BH2]x–PH2Cy up 

to 27 repeat units (Figure S3.40). 

 

 

Figure S3.35. 1H NMR spectrum of isolated [CyPH–BH2]n in CDCl3 at 20 °C. * CDCl3, # Toluene. 
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Figure S3.36. 11B{1H} NMR spectrum of isolated [CyPH–BH2]n  in CDCl3 at 20 °C. 

 

 

Figure S3.37. 31P{1H} NMR spectrum of isolated [CyPH–BH2]n  in CDCl3 at 20 °C. 

 

 

Figure S3.38. 13C NMR spectrum of isolated [CyPH–BH2]n  in CDCl3 at 20 °C. * CDCl3. 
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Figure S3.39. GPC chromatogram (2 mg mL−1) of isolated [CyPH–BH2]n in THF (0.1 wt% [nBu4N]Br). 

 

 

Figure S3.40. ESI-MS (2mg mL−1 in CH2Cl2) spectrum in positive mode of isolated [CyPH–BH2]x 

 

3.5.4.4 Characterisation of [nHexPH–BH2]n Polymer 

Polymer is a pale yellow gum. Yield: 61 % 

1H NMR (CDCl3): δ (ppm) 3.8 (br d, 1H, PH); 1.54- 0.87 (br m, 15H, BH2, CH3, CH2) (Figure 

S3.41). 

11B{1H} NMR (CDCl3): δ (ppm) −36.6 (br) (Figure S3.42).  

31P{1H} NMR (CDCl3): δ (ppm) −53.26 (br); −61.81 (br) (Figure S3.43). 

13C NMR (CDCl3): δ (ppm) 31.5 (s, CH3(CH2)4CH2HPBH2); 30.7 (s, CH3(CH2)4CH2HPBH2); 
26.2 (s, CH3(CH2)4CH2HPBH2); 22.6 (s, CH3(CH2)4CH2HPBH2); 20.6 (br, 
CH3(CH2)4CH2HPBH2); 14.1 (s, CH3(CH2)4CH2HPBH2) (Figure S3.44). 
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GPC: Mn = 57,200 g mol−1, Mw = 86,800 g mol−1, PDI = 1.5 (Figure S3.45). 

ESI-MS: Difference of 130 m/z ([nHexPH–BH2] subunit) confirms presence of linear 

oligo(nHexylphosphinoborane) with a phosphine end group H–[nHexPH–BH2]x–PH2nHex 

up to 25 repeat units (Figure S3.46).  

 

Figure S3.41. 1H NMR spectrum of isolated [nHexPH–BH2]n in CDCl3 at 20 °C. * CDCl3. 

 

 

Figure S3.42. 11B{1H} NMR spectrum of isolated [nHexPH–BH2]n  in CDCl3 at 20 °C. 

 

 

Figure S3.43. 31P{1H} NMR spectrum of isolated [nHexPH–BH2]n  in CDCl3 at 20 °C. 
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Figure S3.44. 13C NMR spectrum of isolated [nHexPH–BH2]n  in CDCl3 at 20 °C. * CDCl3. 

 

 

Figure S3.45. GPC chromatogram (2 mg mL−1) of isolated [nHexPH–BH2]n in THF (0.1 wt% [nBu4N]Br). 

 

Figure S3.46. ESI-MS (2 mg mL−1 in CH2Cl2) in positive mode of isolated [nHexPH–BH2]x. 
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3.5.4.5 Characterisation of [MePH–BH2]n Polymer:  

Polymer is a pale yellow gum. Yield: 80 %  

1H NMR (CDCl3): δ (ppm) 3.93 (br d, PH); 1.65-0.88 (br m, BH2, CH3) (Figure S3.47). 

11B{1H} NMR (CDCl3): δ (ppm) 4.2 (br); −15.3 (br); −34.9 (br) (Figure S3.48). 

31P{1H} NMR (CDCl3): δ (ppm) −68.72 (br); −76.70 (br) (Figure S3.49). 

31P NMR (CDCl3): δ (ppm) −68.72 (t br) (JPH ≈ 380 MHz); −76.70 (d br) (JPH ≈ 350 MHz) 

(Figure S3.50). 

13C NMR (CDCl3): δ (ppm) 5.92–4.91 (br s) (Figure S3.51). 

GPC: Mn = 14,000, Mw = 48,000, PDI = 3.4. A broad, multimodal mass distribution with 

ca. Mn = 2,000–300,000 g mol−1 was observed. (Figure S3.52). 

ESI-MS: Difference of 60 m/z ([MePH–BH2] subunit) confirms presence of linear 
oligo(methylphosphinoborane) H–[MePH–BH2]x–H up to 9 repeat units and a second 
distribution with a phosphine end group H–[MePH–BH2]x–PH2Me up to 24 repeat units 
(Figure S3.53). 

 

Figure S3.47. 1H NMR spectrum of isolated [MePH–BH2]n in CDCl3 at 20 °C. * CDCl3. 

 

 

Figure S3.48. 11B{1H} NMR spectrum of isolated [MePH–BH2]n  in CDCl3 at 20 °C. 
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Figure S3.49. 31P{1H} NMR spectrum of isolated [MePH–BH2]n  in CDCl3 at 20 °C. 

 

 

Figure S3.50. 31P{1H} NMR spectrum of isolated [MePH–BH2]n  in CDCl3 at 20 °C. 

 

 

 

Figure S3.51. 13C NMR spectrum of isolated [MePH–BH2]n in CDCl3 at 20 °C. * CDCl3. 
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Figure S3.52. GPC chromatogram (2 mg mL−1) of isolated [MePH–BH2]n in THF (0.1 wt% [nBu4N]Br). 

 

 

Figure S3.53. ESI-MS (2mg mL−1 in CH2Cl2) spectrum in positive mode of isolated [MePH–BH2]x. 
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3.5.5 DSC Thermograms of Poly(alkylphosphinoboranes) 

 

Figure S3.54. DSC thermogram of [1-AdPH–BH2]n, 1st cycle excluded. 

 

Figure S3.55. DSC thermogram of [CyPH–BH2]n, 1st cycle excluded. 
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Figure S3.56. DSC thermogram of [MePH–BH2]n, 1st cycle excluded. 

 

Figure S3.57. DSC thermogram of [iPrPH–BH2]n, 1st cycle excluded. 
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Figure S3.58. DSC thermogram of [nHexPH–BH2]n, 1st cycle excluded. 

 

 

Figure S3.59. DSC thermogram of [tBuPH–BH2]n, 1st cycle excluded. 
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Chapter 4 

Synthesis and Characterisation of 

Polyaminoboranes with Aryl-Substituted 

Alkyl Groups at Nitrogen.  

 

4.1 Abstract 

Polyaminoboranes are boron–nitrogen analogues of polyolefins, however, to date, few 

soluble, well-characterised examples have been described. Herein, we show that metal-

catalysed dehydrogenation/dehydrocoupling of amine–boranes Ph(CH2)xNH2·BH3 (x = 2–

4) yields soluble polyaminoboranes [Ph(CH2)xNH–BH2]n  together with bis(amino)borane 

[Ph(CH2)4NH]2BH and borazines [Ph(CH2)xN–BH]3 as byproducts, using skeletal nickel, 

[Rh(µ-Cl)(1,5-COD)]2 (COD = cyclooctadiene) and [IrH2(POCOP)] (POCOP = κ3-1,3-

(OPtBu2)2C6H3) as precatalyst systems at room temperature (20 °C). Application of the 

most efficient precatalyst system (1 mol %, [IrH2(POCOP)]) at low temperature (−40 °C), 

enabled the isolation of high molar mass polyaminoborane [Ph(CH2)4NH–BH2]n  in 

moderate (ca. 40 %) yield after precipitation. Structural characterisation was achieved by 

multinuclear NMR, IR, and EA; and the molar mass was determined to be high (Mn > 

10,000 g mol−1) by GPC, DLS, and 1H DOSY methods. The optimised 

dehydropolymerisation conditions (1 mol %, [IrH2(POCOP)] at −40 °C) were also used to 

prepare copolymers from mixtures of Ph(CH2)4NH2·BH3 with MeNH2·BH3, 

Ph(CH2)2NH2·BH3, or NH3·BH3. Significantly, in contrast to previous copolymers 

incorporating the [NH2–BH2] moiety, the formation of [Ph(CH2)4NH–BH]n–r–[NH2–BH2]m 

[n: 1, m: 2] is a soluble processable polyaminoborane containing up to 67 % [NH2–BH2] 

repeat units. The thermal stability of the polyaminoborane homopolymers and copolymers 

was studied by TGA. The use of a cross-linker (BH3·NH2(CH2)8NH2·BH3) in the 
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dehydropolymerisation reaction led to an improvement in the resulting ceramic yield after 

pyrolysis suggesting that these materials are of potential future interest as precursors of 

ceramic boron nitride.   

 

4.2 Introduction  

Macromolecules that incorporate main-group elements in their repeat units are of interest 

as a result of their interesting properties.1 Boron-containing polymers have attracted 

particular attention in a diversity of areas, including their utilisation as precursors of 

high-performance ceramics, flame retardants, and sensory materials.1c, 2 Polymers 

comprising B–P bonds in the backbone have been prepared by the catalytic 

dehydrocoupling of primary phosphine–boranes RPH2·BH3 to form high molar mass 

polyphosphinoboranes [RPH–BH2]n, which are isoelectronic analogues to industrially 

ubiquitous polyolefins.3 Polyphosphinoboranes have potential applications as ceramic 

precursors3b, 4 and as lithographic resists for patterning due to their electro-beam 

sensitivity.3c, 5 On the other hand, recent research has targeted the synthesis of molecules6 

and polymers7 with boron–nitrogen motifs and has led to the synthesis of BN-based π-

conjugated materials.8 Inorganic polymers whose backbone contains exclusively 

alternating B–N units are known as polyaminoboranes [RNH–BHR’]n (when R’ = H, R = 

alkyl; when R = H, R’ = aryl). These polymers are of potential interest as they are 

precursors of preceramic and piezoelectric materials.9,10  

The state-of-the-art in the synthesis of polyaminoboranes involves either metal-

catalysed3g, 11 or metal-free routes.12 The metal-catalysed dehydropolymerisation routes 

have produced solution processable polymeric materials with high molecular weight 

(Scheme 4.1A). The first examples of a homogeneous catalytic dehydropolymerisation of 

primary amine–boranes RNH2·BH3 (R = H, Me, nBu) was achieved by [IrH2(POCOP)] to 

form [RNH–BH2]n homopolymers and random copolymers.11b  
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Scheme 4.1. The metal-catalysed and metal-free state-of-the-art routes to form polyaminoboranes. 

 

Thereafter, different catalytic systems have been found to be active in the 

dehydropolymerisation reaction including [CpRTiCl2] / 2 equiv. nBuLi (CpR = η5-C5Me5),13  

[CpFe(CO)2]2,11c [(PNHP)Fe(H)(CO)(HBH3)] (PNHP = HN-(CH2CH2PiPr2)2),11f 

[Rh(Ph2P(CH2)4PPh2)]14 and [Rh(κ2-P,P-xantphos){η2-H2B(CH2CH2tBu)·NMe3}]+.11d, 11g, 15 

In some cases the mechanistic aspects of the polymerisation have been systematically 

studied and been found to be metal-dependent. For example, the Ti-catalysed system 

proceeds via a step-growth mechanism,13 whereas the Rh(κ2-P,P-xantphos)  system 

involves a chain-growth process.11g  

Furthermore, the synthesis of polyaminoboranes by metal-free routes has resulted in the 

formation of low molecular weight [MeNH–BH2]n via generation of  a transient monomeric 

aminoborane intermediate generated in a stoichiometric reaction involving amine–

boronium cations under dilute conditions (Scheme 4.1B).12a Recently, the synthesis of new 

polyaminoboranes [RNH–BH2]n (R = H, Me, Et, nPr, nBu, allyl) by primary-

amines/aminoborane exchange in the absence of solvent (Scheme 4.1C) was achieved.12b, 

12c Although the latter is a fascinating new route that allows the formation of very high 

molecular weight polymers, these are mainly insoluble and the mechanism by which the 

polymerisation proceeds is currently unclear.  
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To date, the polyaminoboranes that have been reported possess sterically unencumbered 

alkyl substituents at nitrogen. Recently, the synthesis of deuterated polyaminoboranes 

[MeNR–BR2]n (R = H, D) was described.11h  Despite all these efforts, polyaminoboranes 

containing aryl substituents are still scarce. For example, the dehydrocoupling of N-aryl 

amine–boranes (p-RC6H4NH2·BH3, R = H, OMe, CF3) by [IrH2(POCOP)] led to formation 

of an array of dehydrogenation products other than the polymer.16 In contrast, B-aryl 

amine–boranes can be dehydropolymerised using the same Ir-based precatalyst, allowing 

the first synthesis of B–N main chain analogues of polystyrene which will be discussed in 

Chapter 5.17   

To date, metal-catalysed routes have been focused on a restricted range of amine–borane 

substrates with an N-alkyl group at nitrogen. We have therefore attempted to extend the 

scope of the catalytic dehydrocoupling route to prepare aryl-substituted N-alkyl 

polyaminoboranes. The use of aryl-substituted alkyl groups in organic polyolefins has 

provided interesting properties to the materials. For example, the use of α-olefins such as 

Ph(CH2)xCH=CH2 (x = 1, 2, 4) in olefin copolymerisation has resulted in the change of 

either the physical properties of polynorbonene18 (e.g. solubility and glass transition 

temperature), or in an improvement of the radiation resistance of polypropylene against 

high-energy radiation exposure19 as a consequence of the incorporation of the alkylbenzene 

moieties.  

In this chapter, we report the metal-catalysed dehydrogenation reaction for 

Ph(CH2)xNH2·BH3 (x = 1–4) substrates to produce well-defined, high molecular weight 

polymers and copolymers. The introduction of the alkyl spacer in the present work was 

intended to increase the solubility of copolymers and the incorporation of the phenyl group 

into the polymers to improve molar mass characterisation using solution-based methods 

by increasing the refractive index and light scattering. 
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4.3 Results and Discussion 

4.3.1 Dehydrocoupling Reactions of Aryl-Containing N-Alkyl Amine–Boranes 

Using Different Catalytic Systems 

With the aim of evaluating the metal-catalysed dehydrogenation reaction of aryl-

containing alkyl amine–boranes, different transition metal catalysts were explored. 

Specifically, we investigated the dehydrocoupling reaction using skeletal nickel, [Rh(µ-

Cl)(1,5-COD)]2 and [IrH2(POCOP)], which have previously been established as active 

precatalysts for the dehydropolymerisation of other amine–boranes.11a, 20 As mentioned 

previously, the catalytic dehydrocoupling of PhNH2·BH3 does not yield the polymer 

[PhNH-BH2]n.16 In order to exclude any negative steric effect that the phenyl group might 

contribute in the dehydrogenation reaction, we envisage that the incorporation of longer 

–(CH2)x– linkers that increase the distance of the aryl group from the amine–borane 

reaction centre could lead to monomers which would undergo the dehydrocoupling 

reaction.  

We initiated our investigation using the amine–borane Ph(CH2)4NH2·BH3 (δΒ = −19.7 ppm) 

with a catalytic amount of skeletal nickel (5.0 mol %) in THF at 20 °C (Table 4.1, Entry 1-

2).21 After 9 h, the 11B{1H} NMR spectrum showed modest conversion (ca. 6 %) to a product 

with a signal around δΒ = 27.4 ppm, which did not split into a doublet in the 1H-coupled 

experiment, and was assigned to [Ph(CH2)4NH]2BH based on the similarity in chemical 

shift compared with similar bis(amino)boranes reported by others.12b, 22 For example, the 

11B NMR spectrum of the related bis(amino)borane, [BuNH]2BH, displays a signal at δΒ = 

27.6 ppm (d, JB–H ~ 127 Hz).12b Under stoichiometric conditions (Table 4.1, Entry 3-4), it 

was observed that after 6 h over 70 % conversion was achieved. The 11B{1H} NMR spectrum 

showed two main signals. The first corresponded to a broad symmetrical signal around 

(δΒ = −7.1 ppm) (ca. 13 %) and was assigned to the polymer [Ph(CH2)4NH–BH2]n. This 

signal appears in a similar region (δΒ = −6 to −7 ppm) to that of [MeNH–BH2]n from former 
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reports.11b, 11f The second signal was observed around (δΒ = 27.2 ppm) and assigned to 

[Ph(CH2)4NH]2BH (ca. 60 %).     

  

Scheme 4.2. Metal-catalysed dehydrocoupling of Ph(CH2)4NH2·BH3 in THF at 20 °C ([M] = 2.5 mol % 

[Rh(µ-Cl)(1,5-COD)]2, 1.0 mol % [IrH2(POCOP)], 5.0 mol % or equimolar amount of skeletal nickel). 

Borazine [Ph(CH2)4N–BH]3 appears only with precatalysts [Rh(µ-Cl)(1,5-COD)]2 and [IrH2(POCOP)]. 

 

Performing the reaction using [Rh(µ-Cl)(1,5-COD)]2  (2.5 mol %) as a precatalyst at 20 °C 

in THF (Table 4.1, Entry 5-7) with Ph(CH2)4NH2·BH3, ca. 75 % of Ph(CH2)4NH2·BH3 

conversion was achieved after only 15 min to yield [Ph(CH2)4NH–BH2]n (ca. 30%) and 

[Ph(CH2)4NH]2BH (ca. 45 %) as observed by 11B{1H} NMR spectroscopy.23 Changing the 

solvent to toluene (using 2.5 mol % of [Rh(µ-Cl)(1,5-COD)]2) resulted in a significantly 

faster reaction (Table 4.1, Entry 8-11). After 15 min, the conversion (ca. 85%) of 

Ph(CH2)4NH2·BH3 to form polymer [Ph(CH2)4NH]2BH (ca. 55%) and [Ph(CH2)4NH]2BH 

(ca. 30%) was detected by 11B{1H} NMR spectroscopy. After 1.5 h, almost complete 

consumption of Ph(CH2)4NH2·BH3 (ca. 96 %) was achieved,24 to produce [Ph(CH2)4NH]2BH 

(ca. 30%) along with the formation of borazine [Ph(CH2)4N–BH]3 (See SI, Fig. S4.4).25  
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Table 4.1. Product distribution of the catalytic dehydrocoupling of Ph(CH2)4NH2·BH3 in solution at 20 

°C ([Rh] = [Rh(µ-Cl)(1,5-COD)]2, [Ir] = [IrH2(POCOP)], [Ni] = skeletal nickel). 

  

Conditionsa 

Time 

(Min) 

Conversion [%]b Yield [%]c 

Ph(CH2)4NH2·BH3 [Ph(CH2)4NH–BH2]n [Ph(CH2)4NH]2BH 

1 5 mol% [Ni] 60 3 0 3 

2 5 mol% [Ni] 540 6 0 6 

3 100 mol% [Ni] 60 46 3 42 

4 100 mol% [Ni] 360 74 13 60 

5 2.5 mol% [Rh] 15 76 31 45 

6 2.5 mol% [Rh] 45 68 34 35 

7 2.5 mol% [Rh] 90 62 34 28 

8 2.5 mol% [Rh]d 15 85 55 30 

 9 2.5 mol% [Rh]d 45 88 53 35 

10 2.5 mol% [Rh]d 90 97 52 45f 

11 2.5 mol% [Rh]d  180 96 52 44f 

12 5 mol% Rh/Al2O3 60 1 0 1 

13 5 mol%, Rh/Al2O3 540 9 1 8 

14 1 mol% [Ir] 15 63 36 38 

15 1 mol% [Ir] 30 92 31 61f 

16 1 mol% [Ir] 45 90 28 62f 

17 1 mol% [Ir]e 30 92 45 42f 

18 1 mol% [Ir]e 60 91 43 44f 

a) Reaction conditions: THF solution, room temperature (20 °C), 2.0 M substrate concentration for [Ni] 

and [Rh] and 2.5 M for [Ir] reactions. b) Conversion determined by 11B{1H} NMR spectroscopy. c) 

Approximate values determined by integration of the broad signals in the 11B{1H} NMR of the reaction 

mixtures. d) Reaction was performed in toluene. e) Reaction was performed at low temperature (−40 

°C). f) Mixture of [Ph(CH2)4NH]2BH/[Ph(CH2)4N–BH]3.  The signals observed by 11B{1H} NMR 

spectroscopy are overlapping for these products.   

 

Polymeric material was isolated at different reaction times through precipitation and high 

molecular weight polymer was observed in all cases (e.g. 15 min: (Mn = 111,500 g mol−1, 

PDI = 1.18, PDI = polydispersity index); after 3h: (Mn = 188,000 g mol−1, PDI = 1.04) as 

detected by GPC (See SI, Section 4.2.3).  These polymers were isolated as dark-grey solids 

after precipitation in hexanes, presumably the grey colour is due to the presence of Rh 

metal. Attempts to remove the catalyst trapped in the polymeric structure via filtration of 

the reaction mixture through celite, alumina, or activated carbon, were all unsuccessful. 
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These resulted in most of the product being retained in the solid phase and the final solid 

post solvent removal was still dark grey and likely still contaminated with residual metal. 

Heterogeneous Rh/Al2O3 has previously been reported to produce [MeNH–BH2]n with 

moderate molecular weight (Mn = 26 000 g mol-1, PDI = 8.5) from MeNH2·BH3.11b 

Therefore, we investigated the reaction of Ph(CH2)4NH2·BH3 with Rh/Al2O3 (5 mol % Rh) 

in THF at 20 °C. After 1 h no significant dehydrocoupling reaction was observed and only 

after 4 h minor amounts of [Ph(CH2)4NH–BH2]n (ca. 1 %) and [Ph(CH2)4NH]2BH (ca. 8 %) 

were detected by 11B{1H} NMR spectroscopy. (Table 4.1, Entry 12-13).    

We finally investigated the dehydropolymerisation of Ph(CH2)4NH2·BH3 using 

[IrH2(POCOP)] (1.0 mol %) as a catalyst in THF at 20 °C. The reaction was monitored at 

different time points by 11B{1H} NMR spectroscopy and after 30 min maximum conversion 

of monomer Ph(CH2)4NH2·BH3 (ca.  92%) along with the concomitant formation of 

polymeric material [Ph(CH2)4NH–BH2]n (ca. 31%) and the mixture of [Ph(CH2)4NH]2BH 

and [Ph(CH2)4N–BH]3 (ca. 61 %) was observed (Table 4.1, Entry 15).  

It has been previously suggested that dehydropolymerisation of MeNH2·BH3 using 

[IrH2(POCOP)] as a precatalyst affords [MeNH–BH2]n as the kinetic product which will 

subsequently form borazine [MeN–BH]3 as the thermodynamic product as a consequence 

of the entropic gain due to the second dehydrogenation event after extended periods of 

reactivity.11b In the case of Ph(CH2)4NH2·BH3 as the substrate, small molecules 

[Ph(CH2)4NH]2BH and [Ph(CH2)4N–BH]3 form preferentially instead of [Ph(CH2)4NH–

BH2]n.  

With this in mind, and in order to provide kinetic control, we performed the 

dehydrogenation reaction of Ph(CH2)4NH2·BH3 (using 1.0 mol % of [IrH2(POCOP)]) in THF 

at low temperature (−40 °C) and allowed the reaction mixture to reach room temperature 

(20 °C) over a period of 30 min. Under these conditions, almost quantitative conversion of 

Ph(CH2)4NH2·BH3 (ca. 93%) was observed by 11B{1H} NMR spectroscopy, where the 
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formation of [Ph(CH2)4NH–BH2]n (ca. 45 %) is preferred over [Ph(CH2)4NH]2BH and 

[Ph(CH2)4N–BH]3 (ca. 42 %) (See SI, Fig. S4.11). An unidentified boron-containing species 

was also detected [δΒ = −24.2 ppm] (ca. 4 %). The latter is not observed when the reaction 

is performed at room temperature. The reaction mixture was precipitated into hexanes at 

20 °C to give [Ph(CH2)4NH–BH2]n as a white solid in 42% yield. 

Although the best conversion of Ph(CH2)4NH2·BH3 to polymer was achieved by the Rh-

based catalyst, the materials obtained were difficult to purify. In contrast, using 

IrH2(POCOP) as a catalyst enable the facile isolation of polymeric material only by 

precipitation. Based on these results, we focused the rest of our dehydropolymerisation 

study on precatalyst IrH2(POCOP).  

 

4.3.2 Characterisation of Polyaminoborane [Ph(CH2)4NH–BH2]n  

Polymer characterisation was performed by multinuclear NMR spectroscopy, including 2D 

techniques, infrared spectroscopy (IR) and elemental analysis (EA). The molar mass was 

determined by gel permeation chromatography (GPC), dynamic light scattering (DLS) and 

1H DOSY; and thermal stability was investigated by thermogravimetric analysis (TGA) 

(See SI, Section 4.4). 

Structural characterisation via NMR spectroscopy of polymer [Ph(CH2)4NH–BH2]n was 

consistent with previous reports for the formation of polyaminoboranes. The 11B{1H} NMR 

spectrum in CDCl3 showed a broad symmetrical peak at (δΒ = −8.6 ppm) which did not 

show splitting in the proton coupled 11B NMR  experiment and the signal is found in a 

similar region to other polyaminoboranes that have been described as essentially linear 

polymers.11a, 11b, 12b [Fig. 4.1 (b)]. The 1H NMR spectrum (in CDCl3) showed broad signals 

in the aliphatic and aromatic region and the integration was consistent for the proposed 

repeat units [Fig. 4.1 (a)]. The signal at δΗ = 2.76 ppm was assigned to the protic N–H 

hydrogen, which is at a lower frequency compared to the equivalent signal in the monomer 
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Ph(CH2)4NH2·BH3 (δΗ = 3.73 ppm). The hydridic hydrogens on boron B–H are in the region 

(δΗ = 1.62-1.86 ppm). In the 13C NMR spectrum, all the signals for the phenyl ring and 

methylene groups could be resolved for [Ph(CH2)4NH–BH2]n. It has previously been 

reported that [MeNH–BH2]n was obtained as an atactic material, in which the methyl 

resonances for the different diads were distinguishable in the 13C NMR.11b   

 

0.51.01.52.02.53.03.56.57.07.58.0

Chemical Shift

5.73.91.05.0

 

          
-40-20020

Chemical Shift      

Figure 4.1. (a) 1H NMR spectrum of [Ph(CH2)4NH–BH2]n in CDCl3. (b) 11B{1H} NMR spectrum of 

[Ph(CH2)4NH–BH2]n in CDCl3. (c) GPC chromatogram of [Ph(CH2)4NH–BH2]n in THF (0.1 w/w % 

nBu4NBr). 

 

For [Ph(CH2)4NH–BH2]n, we performed 13C NMR experiments with extended data 

collection times in an attempt to detect any tactic environment, however, only one 

resonance for the carbon at the α position of the amine–borane moiety was observed (See 

SI, Fig. S4.14). Further characterisation was accomplished by ATR-IR spectroscopy, which 

showed a high frequency band at ν = 3252 cm−1, characteristic of N–H stretching 

 

  
  

 

 
 

 
 

 

 

 

a) 

b) c) 



Chapter 4 

173 
 

vibrations, and two bands at ν = 2384 cm−1 and ν = 2295 cm−1 for the B–H stretches, which 

are in accordance with the vibrational spectra of other reported polyaminoboranes which 

are claimed to possess a linear structure rather than branched or cyclic.11a, 11b  The C–H 

stretching vibrations were assigned on the basis of the vibration spectroscopic study for 4-

phenylbutylamine.26 In this manner, the aromatic C–H vibration was assigned at ν = 3025 

cm−1 and the C–H asymmetric and symmetric stretching vibrations of the methylene 

groups, were designated at ν = 2928 cm−1 and ν = 2857 cm−1, respectively.   

In order to determine the molecular weight of the material, a sample was analysed by GPC 

in THF (containing 0.1 w/w % nBu4NBr).27 The observed chromatogram exhibited a 

bimodal molecular weight distribution, in which the two components overlapped 

significantly. When analysed together, this afforded a number-average molecular weight 

(Mn = 168,300 g mol−1) with a polydispersity index (PDI = 1.16) [Fig. 1 (c)]. Thus, 

demonstrating the formation of a high molecular weight polymer with a relatively narrow 

molecular weight distribution. By varying the concentration of [Ph(CH2)4NH–BH2]n (from 

0.5 to 2.0 mg mL−1) we explored the possible variation of the molecular weight by GPC 

(See SI, Fig. S4.18 and S4.19, Table S4.8). We found that retention times are the same 

regardless of the concentration which is consistent for macromolecules in solution. In 

contrast, if aggregates were in solution, shorter retention times by GPC would be expected 

when the concentration increases.28   The comparison of the GPC trace of [Ph(CH2)4NH–

BH2]n and  [MeNH–BH2]n was performed at the same concentration (2 mg mL−1) (See SI, 

Fig. S4.17) and showed a higher refractive index response (RI area [Ph(CH2)4NH–BH2]n / 

RI area [MeNH–BH2]n = 1.32). This can be explained as aromatic rings possess higher 

refractive indices than methyl groups.29   

In order to exclude the influence of column interactions during GPC analysis on the molar 

mass determination the same sample was also characterized by DLS. In THF solution (2 

mg mL−1), the size distribution weighted by scattering volume exhibited a single 
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population at RH = 4.3 nm. This would correspond to a polystyrene sample of Mn = 25,600 

g mol−1 in THF.30 It should be noted, however, that the size distribution weighted by 

scattered intensity also contained a second population at Rh = ca. 83 nm, which suggests 

the presence of aggregates, albeit in small quantities. In order to emulate GPC conditions 

in the DLS experiment, samples of [Ph(CH2)4NH–BH2]n were prepared with THF 

containing 0.1 w/w % nBu4NBr in the same concentration (2 mg mL−1). A similar RH value 

(4.2 nm) was obtained by DLS at ambient temperature (20 °C). However, when the DLS 

experiment was performed at 35 °C, which is the working temperature of the columns in 

the GPC, it was observed a decrease of the RH value (3.3 nm). The DLS experiments 

suggests that the ionic strength at that concentration (0.1 w/w % nBu4NBr in THF) does 

not significantly affect the hydrodynamic volume of polyaminoboranes,31 but that there is 

a significant effect from temperature. 

 

Figure 4.2. 1H DOSY spectrum of isolated [Ph(CH2)4NH–BH2]n in C6D6 at 20 °C. 

 

We also performed diffusion order NMR spectroscopy (DOSY) as a complementary 

technique to estimate the molecular weight in the same sample of [Ph(CH2)4NH–BH2]n. 

Applying a method described previously,32 the diffusion coefficient (D) and the molecular 

weight of polymers (Mn) can be correlated (See SI, Fig. S4.23). 1H DOSY analysis of a 
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sample of [Ph(CH2)4NH–BH2]n (2 mg mL−1, C6D6) resulted in a diffusion coefficient of 1.68 

x 10−10 m2 s−1 (Fig. 4.2) which would correspond to an estimated Mn of ~14,900 g mol−1 

relative to polystyrene standards. DLS analysis of [Ph(CH2)4NH–BH2]n  in C6D6 showed a 

single population at RH = 2.9 nm (size distribution by volume) which would correspond to 

a molecular weight of only ~7,000 g mol−1,30 and indicates that the polymer is found in a 

significantly more contracted state in benzene than in THF solution due to poorer solvent-

segment interactions.   

When the molar mass obtained by different analytical techniques of [Ph(CH2)4NH–BH2]n 

is compared, we can conclude that the molar mass determination by GPC is overestimated, 

as it has been previously suggested for polyaminoboranes.11b Overestimation of the 

molecular weight by GPC has been observed for polar polymers such as poly(2-

vinylpyridine)33 due to the poor interactions between the polymer chains and the non-polar 

styragel columns which leads to faster elution than anticipated.34 Similar observations 

have been made for the typical polyelectrolyte sodium poly(styrenesulfonate) in aqueous 

media.35 A similar exclusion effect may therefore operate in the GPC analysis of 

polyaminoboranes, but is weaker due to the polar, rather than ionic, nature of the chain 

for polyaminoboranes. This might be related to the large dipole moment36 and/or 

spontaneous polarisation37 associated to the B–N backbone which has been suggested by 

computational studies for polyaminoboranes. For highly polar polyaminoboranes and 

polyphosphinoboranes, comparable behaviour to polyelectrolytes has been tentatively 

proposed.17, 38   

 

4.3.3 Investigation of the Influence of the Linker Length on Ph(CH2)xNH2·BH3 (x 

= 2–3) in the Dehydropolymerisation Reaction. 

We have demonstrated that using Ph(CH2)4NH2·BH3 as a substrate in the catalytic 

dehydropolymerisation reaction is successful. The linkage of a phenyl group to the amine–
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borane moiety through methylene chains has not been explored in detail.39 In order to 

provide an insight into the catalytic dehydrocoupling reaction, we investigated the use of 

amine–boranes Ph(CH2)xNH2·BH3 (x = 1–3), with the intent of assessing the role of the 

flexible –(CH2)x– linker on the dehydrogenation reaction (Scheme 4.3).  

An initial evaluation of the dehydrogenation reaction of PhCH2NH2·BH3 (δΒ = −19.6 ppm) 

via the catalytic activity of [IrH2(POCOP)] (1 mol %) in THF at low temperature (−40 °C) 

was tested and no conversion was observed after extended periods of time by 11B{1H} NMR 

spectroscopy. Since no dehydrocoupling products were formed, we investigated the 

dehydrocoupling reaction using the other precatalyst systems (5 mol % skeletal nickel and 

2.5 mol % [Rh(µ-Cl)(1,5-COD)]2) in THF at 20 °C, again no reaction was observed by 

11B{1H} NMR spectroscopy. Moreover, no reaction was observed under stoichiometric 

conditions of skeletal nickel and the amine–borane. It is proposed that PhCH2NH2·BH3 is 

behaving similar to other β-branched substrates.40 In this particular case, the steric bulk 

created by the phenyl ring and the bulkiness of the ligands in the periphery of the catalyst 

might be impeding either N–H or B–H activation and the subsequent dehydrogenation 

reaction.    

 

Scheme 4.3. Dehydrocoupling of Ph(CH2)xNH2·BH3 (x = 2, 3) at low temperature (−40°C)  and allowed 

to reach room temperature (20°C) in THF using 1.0 mol % [IrH2(POCOP)]. Borazine [Ph(CH2)4N–BH]3 

appears only with substrate Ph(CH2)2NH2·BH3. 

 

Through performing the catalytic dehydrogenation reaction (1.0 mol % IrH2(POCOP) in 

THF) of amine–boranes Ph(CH2)xNH2·BH3 (x = 2−3) at low temperature (−40°C), 

formation of the corresponding polymers [Ph(CH2)2NH–BH2]n (δΒ = −8.6 ppm)  and 
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[Ph(CH2)3NH–BH2]n (δΒ = −8.9 ppm),  and bis(amino)boranes [Ph(CH2)xNH]2BH (δΒ = 27.1 

ppm) and [Ph(CH2)xNH]2BH (δΒ = 26.8 ppm) were achieved after 30 min as detected by 

11B{1H} NMR spectroscopy (Table 4.2); similar to what was observed in the 

dehydropolymerisation of Ph(CH2)4NH2·BH3. However, the highest conversion from 

monomer to polymer for [Ph(CH2)2NH–BH2]n (ca. 57%) was found after 30 min and the 

formation of [Ph(CH2)3NH–BH2]n was slower over the same period of time (ca. 32%), under 

the same reaction conditions.      

 

Table 4.2. Catalytic dehydrocoupling of different amine–boranes Ph(CH2)xNH2·BH3 (x = 1–3) in THF at 

low temperature (−40°C→20°C) using 1.0 mol % [IrH2POCOP]. Data reported after 30 min.  

 Conversion [%]a Yield [%]b 

Ph(CH2)xNH2·BH3 [Ph(CH2)xNH–BH2]n [Ph(CH2)xNH]2BH 

x = 1 0 0 0 

x = 2 16 57 27c 

x = 3 59 32 10 

a) Conversion determined by 11B{1H} NMR spectroscopy.  b) Yields determined by integration of the 

signals in the 11B{1H} NMR spectra of the reaction mixtures. c) Mixture of 

[Ph(CH2)2NH]2BH/[Ph(CH2)2N–BH]3.  The signals observed by 11B NMR{1H} spectroscopy are 

overlapped for these products.  

 
 

As Ph(CH2)2NH2·BH3 showed the best conversion to polymer, we decided to test the 

catalytic reaction (1.0 mol % [IrH2(POCOP)] in THF) on a preparative scale (3.1 mmol) at 

low temperature (−40°C) which, after 30 min resulted in the isolation of [Ph(CH2)2NH–

BH2]n as a white solid with 56% yield after precipitation (See SI, Section 4.5.1). The 11B{1H} 

NMR spectrum of the polymer [Ph(CH2)2NH–BH2]n presented a broad peak at (δΒ = −8.7 

ppm) in CDCl3. An additional peak was observed at (δΒ = −20.2 ppm) (even after three 

consecutive precipitations) which could be assigned as an end group (–BH3) of the polymer. 

The 1H NMR spectrum showed broad signals in the aliphatic and aromatic region and the 

integration matched the monomer unit.  GPC analysis in THF showed high molecular 

weight material (Mn =150,100 g mol−1, PDI = 1.21). By changing the concentration of 

[Ph(CH2)2NH–BH2]n in the GPC experiments, it was also determined that discrete 
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macromolecules are in solution as no influence of concentration on Mn was detected (See 

SI, Fig. S4.34-S4.35, Table S4.9).  

 

4.3.4 Formation of random copolymers of Ph(CH2)4NH2·BH3 using NH3·BH3, 

MeNH2·BH3 and Ph(CH2)2NH2·BH3 

As copolymerisation can be used as a tool to change material properties, we also attempted 

the copolymerisation of Ph(CH2)4NH2·BH3 with NH3·BH3, MeNH2·BH3 or with 

Ph(CH2)2NH2·BH3 (Scheme 4.4). 

 

Scheme 4.4. Synthesis of random copolymers of Ph(CH2)4NH2·BH3 with different amine–boranes in 

THF at low temperature (−40°C) and allowed to reach room temperature (20°C) using 1.0 mol % of 

[IrH2(POCOP)]. 

 

4.3.4.1 Formation of random copolymers with NH3·BH3  

Dehydropolymerisation of NH3·BH3 in THF to form [NH2–BH2]n with [IrH2(POCOP)] (0.3 

mol %) yielded material insoluble in common solvents and further characterisation was 

only possible with solid state Magic Angle Spinning 11B NMR, IR, and EA techniques.11b 

As polymeric [NH2–BH2]n has been proposed as a viable precursor to boron nitride (BN) or 

as a hydrogen storage material, previous attempts have been made to prepare soluble 

polymers by copolymerisation of NH3·BH3 with MeNH2·BH3 or nBuNH2·BH3.11a, 11b It has 

been described that the N-alkyl substituted polyaminoborane [nBuNH–BH2]n 

homopolymer is very soluble in most solvents.11b This observation, in conjunction with our 

results, suggests that the introduction of the alkyl chain imparts high solubility to these 
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polymers and encouraged us to investigate the content limit of [NH2–BH2] units that can 

be introduced to afford soluble copolymers.   

We initiated our copolymerisation studies using Ph(CH2)4NH2·BH3 and NH3·BH3 in 

equimolar quantities.  First, Ph(CH2)4NH2·BH3 and [IrH2(POCOP)] (1.0 mol %) were 

mixed at low temperature (−40°C) in THF. Simultaneously, a solution of NH3·BH3 in THF 

was added dropwise to the reaction mixture over a period of 30 min to assure complete 

monomer consumption. Whenever NH3·BH3 was added to the solution vigorous bubbling 

attributed to H2 release was observed and the clear yellow reaction mixture increased its 

viscosity as the reaction was progressing. The polymer could be purified via precipitation 

into hexanes at 20 °C with 80% yield for [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m [n:1, m:1]. 

GPC analysis of the product in THF indicated that this material is a high molecular weight 

polymer ([Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m [n: 1, m: 1]: Mn =159,700, PDI = 1.33). The 

11B{1H} NMR spectrum displayed a broad signal at [δ = −9.2 ppm] ([Ph(CH2)4NH–BH2]n–

r–[NH2–BH2]m [n:1, m:1], in CDCl3).41  

Next, we attempted to increase the amount of [NH2–BH2] units in order to obtain solution-

processable copolymers in the dehydropolymerisation reaction. We continued our studies 

using Ph(CH2)4NH2·BH3 and NH3·BH3 in a molar ratio 1:2, respectively. In this case, the 

previous reaction conditions were followed, except that the solution of NH3·BH3 in THF 

was added dropwise over a period of 1 h to guarantee the total consumption of NH3·BH3. 

As before, vigorous hydrogen gas evolution was observed, however the solution was 

opaque. In this case, the polymer yield by precipitation into hexanes at 20 °C was 87 % for 

[Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m [n: 1, m: 2]. The increase in the yield is related to the 

decreased solubility of the copolymer. GPC analysis of the polymer [Ph(CH2)4NH–BH2]n –

r–[NH2–BH2]m [n: 1, m: 2] in solution of THF indicated that it is high molecular weight 

(Mn =162,100 g mol−1, PDI = 1.28). The 11B{1H} NMR spectrum displayed a broad signal at 

[δ = −12.5 ppm] [Ph(CH2)4NH–BH2]n–r–[NH2–BH2] m [n: 1, m: 2] in THF-d8.42  
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Evidence of the incorporation of the [NH2–BH2] units into the copolymers was provided by 

11B and 1H NMR spectroscopy. The 11B NMR spectra for [Ph(CH2)4NH–BH2]n–r–[NH2–

BH2]m [n:1, m:1] and [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m [n:1, m:2] presented broad 

resonances for both polymers. When these signals are compared to the homopolymer 

[Ph(CH2)4NH–BH2]n, some subtle differences are observed. The homopolymer 

[Ph(CH2)4NH–BH2]n presents a very symmetrical broad signal centred at [δ = −8.6 ppm], 

whereas the copolymer [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m [n:1, m:1], presents a broad 

signal centred at [δ = −9.2 ppm] with a shoulder around [ca. δ = −13 ppm], both in CDCl3. 

This shoulder is tentatively assigned to the boron environments of [NH2–BH2] units in the 

copolymer. It was reported that polyaminoborane [NH2–BH2]n prepared with 

[IrH2(POCOP)] precatalyst, presented an intense signal at [δ = −10.7 ppm] assigned for 

the –BH2– groups in the backbone, whereas the signal for [MeNH–BH2]n, was found in a 

lower frequency at [δ = −5.8 ppm], as observed by 11B MQMAS NMR spectroscopy.11b The 

11B NMR spectrum for [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m [n:1, m:2] was recorded in 

THF-d8, although no direct comparison can be made, it is suggested that the broadness of 

the signal could represent both boron environments for [Ph(CH2)4NH–BH2] and [NH2–

BH2] units (Figure 4.3). 

 

Figure 4.3. (a) Overlapped 11B NMR spectra of [Ph(CH2)4NH–BH2]n (pink, CDCl3), [Ph(CH2)4NH–BH2]n–

r–[NH2–BH2]m (n: 1, m: 1) (blue, CDCl3) and [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m (n: 1, m: 2) (green, THF-

d8). 
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By 1H NMR spectroscopy, both spectra for [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m and 

[Ph(CH2)4NH–BH2]n–r–[NH2–BH2]2m where performed in THF-d8 for direct comparison. 

The integration of the assigned region for the phenyl substituent [δ = 6.98 to 7.32 ppm] 

and the region containing the methylene groups, and both N–H and B–H groups [δ = 0.75 

to 3.28 ppm] was performed, and it was observed that the integrations approximately 

matched the expected monomer feed ratio of the copolymers (Fig. 4.4).  

Previous attempts only afforded soluble copolymers containing up to 50% NH2–BH2 repeat 

units. In this work, we synthesised a copolymer containing up to 67% of NH2–BH2 repeat 

units which still could be processed in solution. 

  

0.51.01.52.02.53.03.57.07.58.0
Chemical Shift (ppm)

14.535.00

 
1.01.52.02.53.03.54.07.07.58.0

Chemical Shift (ppm)

18.005.00

 

Figure 4.4. (a) 1H NMR spectrum of [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m (n: 1, m: 1) in THF-d8. (b) 1H 

NMR spectrum of [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m (n: 1, m: 2) in THF-d8  

 

4.3.4.2 Formation of random copolymer using Ph(CH2)4NH2·BH3 with MeNH2·BH3 

and Ph(CH2)2NH2·BH3. 

To obtain further insight into the ability of Ph(CH2)4NH2·BH3 to form copolymers, we 

investigated the random dehydropolymerisation of Ph(CH2)4NH2·BH3 with other amine–

boranes. These copolymers were prepared by dehydropolymerisation (1.0 mol % of 

IrH2(POCOP) in THF at −40°C) of Ph(CH2)4NH2·BH3 and either MeNH2·BH3 or 

[Ph(CH2)2NH–BH2]n in a 1:1 mol ratio. The copolymers [Ph(CH2)4NH–BH2]n–r–[MeNH–

BH2]m and [Ph(CH2)2NH–BH2]n–r–[Ph(CH2)4NH–BH2]m were isolated as white solids in 

a) b) 
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45% and 55%  yield, respectively. The GPC chromatograms for both [Ph(CH2)4NH–BH2]n–

r–[MeNH–BH2]m and [Ph(CH2)2NH–BH2]n–r–[Ph(CH2)4NH–BH2]m  revealed monomodal 

molecular weight distributions in the high molecular weight region (Mn =170,100 g mol-1, 

PDI = 1.18) and (Mn =188,400 g mol−1, PDI = 1.38), respectively. In the 11B{1H} NMR 

spectrum (in CDCl3), the copolymers [Ph(CH2)4NH–BH2]n–r–[MeNH–BH2]m and 

[Ph(CH2)2NH–BH2]n–r–[Ph(CH2)4NH–BH2]m, showed the characteristic broad peak at 

(δΒ = −7.7 ppm) and (δΒ = −8.8 ppm), respectively. Nevertheless, the 1H NMR spectrum for 

both copolymers showed broad signals in the aromatic and aliphatic regions. Specifically, 

the signal corresponding to the methyl group can be identified at (δΗ = 2.26 ppm) for the 

copolymer [Ph(CH2)4NH–BH2]n–r–[MeNH–BH2]m (Fig. 4.5) and the integration for this 

polymer matched for a monomer ratio [n: 1, m: 1.56] which is similar to the ratio 

determined by EA. For copolymer [Ph(CH2)2NH–BH2]n–r–[Ph(CH2)4NH–BH2]m, the 

integration matched the expected ratio [n: 1, m: 1]. In the 13C NMR spectrum, for 

copolymer [Ph(CH2)4NH–BH2]n–r–[MeNH–BH2]m, the methyl group can be observed at 

(δΧ = 36.0 ppm). Noteworthy, in the copolymer [Ph(CH2)2NH–BH2]n–r–[Ph(CH2)4NH–

BH2]m all signals for both repeat unit components can be assigned. 

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0

Chemical Shift

20.45.0

 

Figure 4.5. 1H NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [MeNH–BH2]m (n: 1, m: 2) in CDCl3 at 

20 °C.  
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Table 4.3. Synthesis and characterisation data for polyaminoboranes and copolymers. 

Polyaminoborane 

(Monomer Precursor Ratio) a 

Isolated 

Yield 

(%) 

11B{1H} 

NMR 

(ppm)b 

Mn 

(GPC) 

PDI 

(GPC) 

[Ph(CH2)2NH–BH2]n 56 −8.7 158,800 1.25 

[Ph(CH2)4NH–BH2]n 42 −8.6 168,300 1.16 

[Ph(CH2)2NH–BH2]n–r–[NH2–BH2]m (n: 1, m: 1)c 80 −9.2 159,700 1.33 

[Ph(CH2)2NH–BH2]n–r–[NH2–BH2]2m (n: 1, m: 2) c 87 −12.5b 162,100 1.28 

[Ph(CH2)2NH–BH2]n–r–[MeNH–BH2]m (n: 1, m: 1.56) c 45 −7.7 170,100 1.18 

[Ph(CH2)2NH–BH2]n–r–[Ph(CH2)4NH–BH2]m (n:1, m:1) c 55 −8.8  188,400 1.38 

a) 11B{1H} NMR spectroscopy was measured in CDCl3. b) 11B{1H} NMR spectroscopy measured in 

THF-d8. c) Monomer ratios obtained by 1H NMR. 

    

4.3.5 Thermal Decomposition Behaviour and Stability of Polymers 

As polyaminoboranes are of potential interest as precursors to BN-based ceramic 

materials, we investigated the thermal decomposition of the polyaminoboranes 

synthesised in this study by TGA under N2 atmosphere (heating rate 10 °C min−1 gradient 

to 900 °C) (Table 4.4). The polymers [Ph(CH2)2NH–BH2]n and [Ph(CH2)4NH–BH2]n showed 

similar T5% (temperature that represents 5% loss of the original mass of the polymer) at 

205 and 210 °C, respectively. Past this temperature, the polymers degraded in a two-step 

process, where decomposition was complete at around 500 °C. The predicted ceramic yields 

from boron nitride from [Ph(CH2)2NH–BH2]n is 18 % and for [Ph(CH2)4NH–BH2]n is 15 %. 

We observed a ceramic yield of 32% for [Ph(CH2)2NH–BH2]n and 19 % for [Ph(CH2)4NH–

BH2]n after heating to 900 °C, which indicates that carbon content in the ceramic product 

might have been incorporated from the hydrocarbon group. 

In the case of copolymers containing [NH2–BH2] or [MeNH–BH2] repeat units, T5% 

exhibited values around 145-155 °C, which is lower than the corresponding homopolymers 

[Ph(CH2)2NH–BH2]n and [Ph(CH2)4NH–BH2]n. It has been determined that complete 

decomposition of [NH2–BH2]n and [MeNH–BH2]n occurred by 210 °C and 150 °C, 

respectively,10b therefore copolymers containing these repeat units might have similar 
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decomposition pathways which diminish their overall thermal stability. For 

[Ph(CH2)2NH–BH2]n–r–[Ph(CH2)4NH–BH2]m (n: 1, m: 1), T5% was slightly higher (160 °C) 

than the other copolymers.  

 

Table 4.4. Thermal properties, T5% and ceramic yield of polyaminoboranes. 

   Polyaminoboranes 

(Monomer Precursor Ratio)c 

T5%
a
 

 (°C) 

Ceramic 

Yieldb 

(%) 

[Ph(CH2)2NH–BH2]n 205 32 

[Ph(CH2)4NH–BH2]n 210 19 

[Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m (1:1) c 155 16 

[Ph(CH2)4NH–BH2]n–r–[NH2–BH2]2m (1:2) c 145 24 

[Ph(CH2)4NH–BH2]n–r–[MeNH–BH2]m (1:1.56) c 145 16 

[Ph(CH2)4NH–BH2]n–r–[Ph(CH2)2NH–BH2]m (1:1) c 160 25 

a) Temperature at 5% weight loss (heating rate 10 °C min−1). b)  Ceramic yields were measured at 900 

°C, heating rate 10 °C min−1 (under a flow N2). c) Monomer ratios obtained by 1H NMR.   

 

The ceramic yield previously reported for [NH2–BH2]n was 34 % and for [MeNH–BH2]n was 

16 % (1000 °C under flow of N2).10b For copolymers [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m (n: 

1, m: 1) and [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m (n: 1, m: 2), the TGA experiment showed 

that the polymer containing more [NH2–BH2] repeat units possessed higher ceramic yield 

(16% vs 24%). The ceramic yield of [Ph(CH2)4NH–BH2]n–r–[MeNH–BH2]m was 16 %, which 

is similar to the one reported for the homopolymer [MeNH–BH2]n.  

The ceramic yield can be increased when the pyrolysis of polyaminoboranes is performed 

as compressed pellet. For example, the ceramic yield improved from 36  % to  52 % (at  900 

°C), when pyrolysis of [NH2–BH2]n was achieved as a powder and as a pellet, 

respectively.11a We attempted the same experiment with the copolymer [Ph(CH2)4NH–

BH2]n–r–[NH2–BH2]m (n: 1, m: 1), and resulted in the slight improvement on the ceramic 
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yield (from 16% to 21%) when the pyrolysis  at  900 °C was performed with the material 

as a pellet rather than a powder (See SI, Fig. S4.55).  

It has been previously shown that crosslinked polyaminoboranes gave ceramic yields 

around 75-80% (700 to 1000 °C),10a, 43 which usually came from insoluble, highly cross-

linked precursors. In general, the low thermal stability and ceramic yields of our polymers 

suggests that further dehydrogenation and depolymerisation processes are favoured over 

cross-linking.  

 

4.3.6 Synthesis of crosslinked polyaminoboranes 

In previous studies, copolymerisation of NH3·BH3 with the cross-linker hydrazine-borane 

BH3·NH2–NH2·BH3 (ratio 9:1) afforded a insoluble copolymer with a ceramic yield of 52% 

at 900 °C (10 °C min−1 gradient).11a In order to determine the effect on the possible increase 

of the ceramic yield in our materials, we attempted the copolymerization reaction of 

Ph(CH2)2NH2·BH3 (precursor which homopolymer presented the highest ceramic yield by 

TGA) with the cross-linker octyldiamine–diborane BH3·NH2(CH2)8NH2·BH3 in a ratio 95:5 

with [IrH2(POCOP)] (1.0 mol %) at low temperature (−40 °C) (See SI, Section 4.8). This 

reaction afforded a white solid soluble in THF with 29% yield, after precipitation in 

hexanes. The GPC chromatogram of this material showed an asymmetric trace with 

tailing towards high molecular weight region (Mn = 225,400 g mol−1, Mw = 666,300 g mol−1, 

PDI = 2.94). The 11B NMR (THF-d8) spectrum of this material showed a broad signal 

centred at δΒ = −9.0 ppm. An additional signal around δΒ = −1.6 ppm can be suggestive of 

the presence of ‘BN3’ or ‘BN4’ environments,12a, 44 indicating some crosslinking of the 

polymer chains in this system.  Moreover, the signal around δΒ = −22.0 ppm may 

correspond to an end group.13 The 1H NMR spectrum possessed the same pattern as the 

homopolymer [Ph(CH2)2NH–BH2]n (broad signals in the aliphatic and aromatic region). 

The thermal stability (T5% = 210 °C) and the ceramic yield (33 %) are similar when 
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compared to the corresponding homopolymer. When the copolymerisation reaction was 

repeated varying the monomer and cross-linker ratio to 90:10, this resulted in an insoluble 

material where the thermal stability and ceramic yield increased (T5% = 247 °C; 40%). The 

copolymerisation of NH3·BH3 with BH3·NH2(CH2)8NH2·BH3 (ratio 90:10) was attempted 

and the material isolated gave a ceramic yield of 40% at 900 °C (Fig. 4.6). 

These results suggest that the effect of controlled crosslinking of the polymer 

[Ph(CH2)2NH–BH2]n improved the thermal stability of the material, however, loss of 

tractability is manifested as insoluble materials are obtained, and only small increases in 

the ceramic yield are observed.  

 

 

Figure 4.6. TGA thermograms of [Ph(CH2)2NH–BH2]n crosslinked with BH3·NH2(CH2)8NH2·BH3 in 

different ratios at 900 °C(heating rate 10 °C min−1). 
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4.4 Conclusions  

In summary, we present here the metal-catalysed dehydropolymerisation of aryl-containing 

N-alkyl amine-boranes. We found that the N-alkyl chain influences the dehydrogenation 

reaction. By variation of the chain length, we discovered that the N-benzyl substrate could 

not be dehydrogenated whereas substrates with longer methylene chains as spacers between 

nitrogen of the substrate and the aryl substituent were active in the dehydrocoupling reaction. 

Based on these results, we synthesised and characterised high molecular weight 

polyaminoboranes and copolymers using the precatalyst system [IrH2(POCOP)] that has 

enabled an expansion of the substrate scope. Formation of random copolymers was possible 

by mixtures of Ph(CH2)2NH2·BH3 and different amine-boranes. In particular, the 

copolymerisation with NH3·BH3 produced copolymers containing up to 67 % [NH–BH2] units 

to produce soluble materials which has not been previously achieved. The structural analysis 

of [Ph(CH2)2NH–BH2]n using solution NMR spectroscopy and IR spectroscopy, which is 

consistent with previous studies, showed that these materials are essentially linear. Also, 

evidence of the polymeric nature (Mn > 10,000 g mol−1) of [Ph(CH2)2NH–BH2]n was achieved 

by GPC, DLS and 1H DOSY, however, overestimation of the molar mass by GPC is found for 

these polar polyaminoboranes. Overall, the analysis of the thermal properties of 

polyaminoboranes and copolymers revealed that these materials possessed low thermal 

stability and ceramic yield values, which implies that at high temperatures 

dehydrogenation/dehydropolymerisation events are occurring. We explored the use of a cross-

linking agent for the dehydropolymerisation of Ph(CH2)2NH2·BH3 and found that the resulting 

copolymeric material improved its thermal stability and ceramic yield, however, low solubility 

is observed. Detailed systematic studies on the cross-linking of polyaminoboranes and 

compression of the materials as pellets are in progress as tools to obtain higher ceramic yields 

for the development of tangible applications. Future work needs to be carried out in order to 

explore the control on the stereochemistry of the dehydropolymerisation via the catalyst 
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systems (e.g. development of new catalysts or chiral ligands) or the use of chiral substrates in 

order to control the tacticity of these inorganic polymers.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

189 
 

4.5 Supporting Information 

4.5.1 General procedures, equipment and reagents.  

All manipulations were carried out under an atmosphere of nitrogen gas using standard 

vacuum line and Schlenk techniques; except for the use of argon atmosphere within an M. 

Braun glovebox MB150G-B maintained at <0.1 ppm of H2O and <0.1 ppm of O2 where all 

manipulations with [IrH2(POCOP)] (POCOP = [κ3 - 1,3-(tBu2PO)2C6H3] were carried out. 

Where stated, anhydrous solvents were dried via a Grubbs design solvent purification 

system.45 Anhydrous deuterated chloroform or tetrahydrofuran was purchased from 

Sigma Aldrich and stored over activated molecular sieves (4 Å). Primary amines 

Ph(CH2)xNH2 (x = 1–3), ammonia-borane, Celite® and chloro(1,5-

cyclooctadiene)rhodium(I) dimer [Rh(µ-Cl)(1,5-COD)]2 and Rh/Al2O3 (5 wt. % Rh) were 

purchased from Sigma Aldrich Ltd and used as acquired. BH3·THF was purchased from 

Acros Organics and distilled prior use. Ammonia-borane was purified by sublimation (T = 

40 °C, p = 10-3 bar). [IrH2(POCOP)]46 and skeletal nickel20a were synthesised via literature 

methods and purified by reprecipitation ([IrH2(POCOP)]) and washing with n-hexane 

(skeletal nickel). NMR spectra were recorded using Oxford Jeol Eclipse 300, 400 or Bruker 

500 MHz cryoprobe spectrometers. 1H NMR spectra were calibrated using residual protio 

signals of the solvent: (δ 1H (CHCl3) = 7.24). 13C NMR spectra were calibrated using the 

solvent signals (δ 13C (CDCl3) = 77.0; δ 13C (C6D6) = 128.0). 11B NMR spectra were 

calibrated against external standards (11B: BF3·OEt2 (δ 11B = 0.0)). IR spectra were 

measured using an Agilent Cary FT-IR with ATR sampling module.  

Diffusion Ordered Spectroscopy (DOSY) experiments were carried out on a Varian 500 

instrument. Samples were analysed at 2 mg/ml concentrations in C6D6. To avoid distorted 

diffusion coefficients, the spectra were collected without sample spinning. Spectra were 

processed using the MestReNova Bayesian DOSY transform function at a resolution factor 

of 0.1, 5 repetitions, and 512 points in the diffusion dimension over a range of (1x10−7 – 
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1x10−4) cm2s-1. The estimation of the molecular weight of the polyaminoborane sample was 

performed using the method described previously by Grubbs et. al32. using five polystyrene 

standards of know molecular weight from 820 to 44,000 Da, purchased from Sigma-

Aldrich. Plotting log D against log Mn produced a linear calibration curve, to which the 

polyaminoborane was compared.   

GPC was performed on a Malvern RI max Gel Permeation Chromatograph, equipped with 

an automatic sampler, a pump, an injector, and inline degasser. The columns (T5000) were 

contained within an oven (35 °C) and consisted of styrene/divinyl benzene gels. Sample 

elution was detected by means of a differential refractometer. THF (Fisher), containing 

0.1 w/w % nBu4NBr, was used as the eluent at a flow rate of 1 mL min−1. Samples were 

dissolved in the eluent (2 mg mL−1) and filtered with a Ministart SRP15 filter 

poly(tetrafluoroethylene) membrane of 0.45 µm pore size before analysis. The calibration 

was conducted using monodisperse polystyrene standards obtained from Aldrich. The 

lowest and highest molecular weight standard used were 2,300 and 994,000 g mol−1, 

respectively.  

Dynamic light scattering experiments were performed using a Malvern Zetasizer Nano S 

spectrometer at λ = 632 nm in a glass cuvette using dry THF at 20°C, citing the average 

values for volume and intensity.  

TGA was measured on a Thermal Advantage TGAQ500 at 10 °C min−1 under N2. TGA 

results were analysed using WinUA V4.5A by Thermal Advantage.  

Elemental analysis was performed with a Eurovector EA 3000 Elemental Analyzer at the 

University of Bristol Microanalysis Laboratory.  
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4.5.2 Synthesis and characterisation of new amine–boranes Ph(CH2)xNH2·BH3 

(x = 1−4)  

General procedure for the formation of Ph(CH2)xNH2·BH3 (x = 1−4). 

A solution of BH3·THF (20 mL, 20 mmol) at –78 °C was reacted with the corresponding 

amines Ph(CH2)xNH2 (x = 1−4) (20 mmol). The reaction mixture was warmed to 25 °C and 

stirred for 1 h. Removal of the solvent from the clear, colourless reaction mixture yielded 

the compound PhCH2NH2·BH3 as a solid and Ph(CH2)xNH2·BH3 (x = 2−4) as colourless oils.  

Purification process for PhCH2NH2·BH3: Recrystallisation from hexanes/DCM at –60 °C, 

yields the product as a white solid. This amine-borane has been reported in prior 

literature.47 

Purification process for Ph(CH2)xNH2·BH3 (x = 2−4): These amine–boranes are liquids at 

room temperature. As a purification step, the amines-boranes were frozen at –78 °C and 

the resultant solids were washed with hexanes (3 x 10 mL) in order to remove any 

remaining amine. Then, they were dried under vacuum (10-2 mmHg) for 1 h. 

Ph(CH2)2NH2·BH3 has been reported in prior literature.48 

 

Ph(CH2)3NH2·BH3. Colourless liquid. 82% yield. 

 11B NMR (CDCl3): δ (ppm) −20.4.  

1H NMR (CDCl3): δ (ppm) 1.49 (br s, BH3); 1.92 (m, 2H, Hb); 2.63 (m, 2H, Hc); 2.78 (m, 2H, 

Ha); 3,81 ppm (br s, NH2); 7.17-7.25 (3H, m, Hg-Hf); 7.28-7,32 (2H, m He). 

13C NMR (CDCl3): δ (ppm) 30.53 (Cc); 33.04 (Cb); 48.39 (Ca); 126.43 (Cg); 128.44 (Ce); 

128.75 (Cf); 140.69 (Cd). 

Elemental analysis calculated for C9H16BN: C, 72.5; H, 10.8; N, 9.4. Found: C, 73.2; H, 

10.7; N, 10.2.  
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Ph(CH2)4NH2·BH3. Colourless liquid. 98% yield.  

11B NMR (CDCl3): δ (ppm) −20.3. 

1H NMR (CDCl3): δ (ppm) 1.48 (br s, BH3); 1.61-1.69 (m, 4H, Hb-Hc); 2.63 (t, J=7.0 Hz, 2H, 

Hd); 2.73-2.83 (m, 2H, Ha); 3.73 (br s, NH2); 7.15-7.22 (m, 3H, Hg-Hh); 7.26-7.32 (m, 2H, 

Hf). 

13C NMR (CDCl3): δ (ppm) 28.40 (Cc); 28.71 (Cb); 35.38 (Cd); 48.75 (Ca); 126.12 (Ch); 

128.49 (Cf); 128.56 (Cg); 141.66 (Ce). 

Elemental analysis calculated for C10H18BN: C, 73.7; H, 11.1; N, 8.6. Found: C, 72.6; H, 

11.4; N, 9.2.  

 

4.5.3 Dehydropolymerisation Studies of Ph(CH2)xNH2·BH3 Using Different 

Catalysts (Skeletal Nickel, [Rh(µ-Cl)(1,5-COD)]2 and [IrH2(POCOP)]) 

4.5.3.1  Dehydropolymerisation of Ph(CH2)4NH2·BH3 with Skeletal Nickel 

4.5.3.1.1 Dehydropolymerisation Using 5 mol % Skeletal Nickel After Various 

Reaction Times 

To a solution of Ph(CH2)4NH2·BH3 (163 mg, 1.0 mmol) in THF (0.5 mL) in a vial was added 

skeletal nickel (5 mol %, 3 mg) at 20 °. At different reactions times at room temperature, 

the solution was transferred to a Teflon-tapped J. Young quartz NMR tube and monitored 

by 11B NMR.  

Analysis of the reaction of Ph(CH2)4NH2·BH3 with 5 mol % skeletal nickel at 60 

min and 540 min: 11B NMR (THF): [Ph(CH2)4NH]2BH [δB 27.4 (br)] and 

Ph(CH2)4NH2·BH3 [δB −19.8] (Figure S4.1 and Table S4.1). 
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Table S4.1: Influence of reaction time on the dehydropolymerisation of Ph(CH2)4NH2·BH3 in THF at 

20 °C with 5 mol % skeletal nickel. 

 

Time 

Conversion [%]a Yield [%]b 

Ph(CH2)4NH2·BH3 [Ph(CH2)4NH]2BH 

60 min 3 3 

 540 min 6 6 

a) Conversion determined by 11B NMR spectroscopy.  b) Yields determined by integration of the signals 

in the 11B NMR spectra of the reaction mixtures. 

 

 

Figure S4.1. 11B{1H} NMR spectra of the reaction of Ph(CH2)4NH2·BH3 and 5 mol % of skeletal nickel 

in THF at 20 °C at 1h and 6h. R = Ph(CH2)4. 

 

4.5.3.1.2  Dehydropolymerisation Using 100 mol % Skeletal Nickel After Various 

Reaction Times 

To a solution of Ph(CH2)4NH2·BH3 (163 mg, 1.0 mmol) in THF (0.5 mL) in a vial was added 

skeletal nickel (100 mol %, 59 mg) at 20 °C. At different reaction times at room 

temperature (20 °C), the solution was transferred to a Teflon-tapped J. Young quartz NMR 

tube and monitored by 11B NMR.  

Analysis of the reaction of Ph(CH2)4NH2·BH3 with 100 mol % skeletal nickel after 

60 min and 240 min: 11B NMR (THF): [Ph(CH2)4NH]2BH [δB 27.2 (br)], [Ph(CH2)4NH–

BH2]n [δB −7.1 (br)] and Ph(CH2)4NH2·BH3 [δB −19.7] (Figure S4.2 and Table 4.2).  
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Table S4.2: Influence of reaction time on the dehydropolymerisation of Ph(CH2)4NH2·BH3 in THF at 

20 °C with 100 mol % skeletal nickel. 

 

Time 

Conversion [%]a Yield [%]b 

Ph(CH2)4NH2·BH3 [Ph(CH2)4NH–BH2]n [Ph(CH2)4NH]2BH 

60 min 46 3 42 

 240 min 74 13 60 

a) Conversion determined by 11B NMR spectroscopy.  b) Yields determined by integration of the signals 

in the 11B NMR spectra of the reaction mixtures. 

 

 

Figure S4.2. 11B{1H} NMR spectra of the reaction of Ph(CH2)4NH2·BH3 and 100 mol % of skeletal nickel 

in THF at 20 °C at 60 min and 240 min. R = Ph(CH2)4.  

 

4.5.3.2 Dehydropolymerisation of Ph(CH2)4NH2·BH3 with [Rh(µ-Cl)(1,5-COD)]2. 

4.5.3.2.1 Dehydropolymerisation of Ph(CH2)4NH2·BH3 with 2.5 mol % [Rh(µ-

Cl)(1,5-COD)]2 After Various Reaction Times at Room Temperature in THF. 

To a solution of Ph(CH2)4NH2·BH3 (163 mg, 1.0 mmol) in THF (0.3 mL) in a vial was added 

a solution of [Rh(µ-Cl)(1,5-COD)]2 (2.5 mol %, 12 mg) in toluene (0.2 mL) at 20 °C. The 

solution was transferred to a Teflon-tapped J. Young quartz NMR tube and monitored by 

11B NMR at different reaction times at 20 °C.  

Analysis of the reaction of Ph(CH2)4NH2·BH3  with 2.5 mol % [Rh(µ-Cl)(1,5-COD)]2 

at 15 min, 30 min and 90 min: 11B NMR (THF): [Ph(CH2)4NH]2BH [δB 27.1 (br)], 

[Ph(CH2)4NH–BH2]n [δB −8.2 (br)] (ca. 20%) and Ph(CH2)4NH2·BH3 [δB −19.8] (Figure S4.3 

and Table S4.3). 
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Table S4.3: Influence of reaction time on the dehydropolymerisation of Ph(CH2)4NH2·BH3 in THF at 

20 °C with 2.5 mol % [Rh(µ-Cl)(1,5-COD)]2. 

 

Time 

Conversion [%]a Yield [%]b 

Ph(CH2)4NH2·BH3 [Ph(CH2)4NH–BH2]n [Ph(CH2)4NH]2BH 

15 min 76 31 45 

45 min 68 34 35 

90 min 62 34 28 

a) Conversion determined by 11B NMR spectroscopy.  b) Yields determined by integration of the signals 

in the 11B NMR spectra of the reaction mixtures. 

 

 

Figure S4.3. 11B{1H} NMR spectra of the reaction of Ph(CH2)4NH2·BH3 and 2.5 mol % of [Rh(µ-Cl)(1,5-

COD)]2 in THF at 20 °C at 15 min, 45 min and 90 min. R = Ph(CH2)4. 

 

4.5.3.2.2 Dehydropolymerisation of Ph(CH2)4NH2·BH3 with 2.5 mol % [Rh(µ-

Cl)(1,5-COD)]2 After Various Reaction Times at Room Temperature in Toluene. 

To a solution of Ph(CH2)4NH2·BH3 (163 mg, 1.0 mmol) in toluene (0.3 mL) in a vial was 

added a solution of [Rh(µ-Cl)(1,5-COD)]2 (2.5 mol %, 12 mg) in toluene (0.2 mL) at 20 °C. 

The solution was transferred to a Teflon-tapped J. Young quartz NMR tube and monitored 

by 11B NMR at different reaction times at 20 °C.  

Analysis of the reaction of Ph(CH2)4NH2·BH3  with 2.5 mol % [Rh(µ-Cl)(1,5-COD)]2 

at 15 min, 45 min, 90 min and 225 min: 11B NMR (THF): [Ph(CH2)4NH]2BH [δB 27.2 

(br)] and [Ph(CH2)4N–BH]3 [δB ca. 32 (br)], [Ph(CH2)4NH–BH2]n [δB −6.9 (br)] (ca. 20%) and 

Ph(CH2)4NH2·BH3 [δB −19.0] (Figure S4.4 and Table S4.4).  
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Table S4.4: Influence of reaction time on the dehydropolymerisation of Ph(CH2)4NH2·BH3 in toluene at 

20 °C with 2.5 mol % [Rh(µ-Cl)(1,5-COD)]2. 

 

Time 

Conversion [%]a Yield [%]b 

Ph(CH2)4NH2·BH3 [Ph(CH2)4NH–BH2]n [Ph(CH2)4NH]2BH 

15min 85 55 30 

45 min 88 53 35 

90 min 97 52 45c 

180 min 96 52 44c 

a) Conversion determined by 11B NMR spectroscopy.  b) Yields determined by integration of the signals 

in the 11B NMR spectra of the reaction mixtures. c) Mixture of [Ph(CH2)4NH]2BH/[Ph(CH2)4N–BH]3.  

The signals observed by 11B{1H} NMR spectroscopy are overlapping for these products.  

 

 

 

Figure S4.4. 11B{1H} NMR spectra of the reaction of Ph(CH2)4NH2·BH3 and 2.5 mol % of [Rh(µ-Cl)(1,5-

COD)]2 in toluene at 20 °C at 15 min, 45 min, 90 min and 225 min. R = Ph(CH2)4. 

 

4.5.3.2.3 NMR and GPC Analysis of Ph(CH2)4NH2·BH3 with 2.5 mol % [Rh(µ-Cl)(1,5-

COD)]2 After 15 min and 180 min of Reaction. 

To Ph(CH2)4NH2·BH3 (163 mg, 1.0 mmol) was added a solution [Rh(µ-Cl)(1,5-COD)]2 (2.5 

mol %, 12 mg) in toluene (0.5 mL) in a vial at 20 °C. After 15 min or 180 min, the solution 

was transferred into cold (−40 °C) stirred hexanes (20 mL), whereupon a precipitate was 

observed. Excess solvent was removed via decantation and volatile byproducts were 

removed in vacuo. 
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Analysis of the reaction of Ph(CH2)4NH2·BH3 with 2.5 mol % Rh(µ-Cl)(1,5-COD)]2  

after 15 min: 11B NMR (THF): [Ph(CH2)4NH]2BH [δB 27.2 (br)] (ca. 19%), unassigned 

product [δB 0.8 (s)] (ca. 16%), [Ph(CH2)2NH–BH2]n [δB −7.4 (br)] (ca. 60%) and 

Ph(CH2)4NH2·BH3 [δB −19.0] (ca. 5%)  (Figure S4.5). GPC (Mn = 111,500 g mol−1, Mw = 

131,000 g mol−1, PDI = 1.18) (Figure S4.6). 

 

Figure S4.5. 11B{1H} NMR spectrum of the product of the reaction of Ph(CH2)4NH2·BH3 and 2.5 mol % 

[Rh(µ-Cl)(1,5-COD)]2 in THF at 20 °C after 15min. * Unassigned product. R = Ph(CH2)4 

 

Figure S4.6. GPC chromatogram (2mg mL-1) of the product of the reaction of Ph(CH2)4NH2·BH3 and 2.5 

mol % [Rh(µ-Cl)(1,5-COD)]2 after precipitation in THF (0.1 w/w % nBu4NBr) at 20 °C after 15 min. 

 

Analysis of the reaction of Ph(CH2)4NH·BH3 with 2.5 mol % Rh(µ-Cl)(1,5-COD)]2  

after 180 min: 11B NMR (THF): [Ph(CH2)4NH–BH2]n [δB −7.5 (br)] (Figure S4.7). GPC (Mn 

= 188,000 g mol−1, Mw = 196,300 g mol−1, PDI = 1.04) (Figure S4.8). 

* 
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Figure S4.7. 11B{1H} NMR spectrum of the product of the reaction of Ph(CH2)4NH2·BH3 and 2.5 mol % 

[Rh(µ-Cl)(1,5-COD)]2 in THF at 20 °C after 180 min. R = Ph(CH2)4 

 

Figure S4.8. GPC chromatogram (2mg mL-1) [Ph(CH2)4NH–BH2]n in THF (0.1 w/w % nBu4NBr) of the 

product of the reaction of Ph(CH2)4NH2·BH3 and 2.5 mol % [Rh(µ-Cl)(1,5-COD)]2 after precipitation in 

THF (0.1 w/w % nBu4NBr) at 20 °C after 180 min. 

 

4.5.3.2.4  Dehydropolymerisation of Ph(CH2)4NH2·BH3 with Rh/Al2O3 at Various 

Reaction Times. 

To a solution of Ph(CH2)4NH2·BH3 (163 mg, 1 mmol) in toluene (0.5 mL) in a vial was 

added Rh/Al2O3 (103 mg, ca. 5 w % Rh) at 20 °C. The solution was transferred to a Teflon-

tapped J. Young quartz NMR tube and monitored by 11B NMR at different reactions times 

at room temperature.  
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Analysis of the reaction of Ph(CH2)4NH·BH3 with 5 w % [Rh/Al2O3] at 60 min and 

240 min: 11B NMR (THF): [Ph(CH2)4NH]2BH [δB 27.2 (br)], [Ph(CH2)2NH–BH2]n [δB −6.9 

(br)] and Ph(CH2)4NH2·BH3 [δB −19.0 (br)] (Figure S4.9 and Table S4.5). 

 

Table S4.5: Influence of reaction time on the dehydropolymerisation of Ph(CH2)4NH2·BH3 in THF at 

20 °C with 2.5 mol % [Rh/Al2O3]. 

 

Time 

Conversion [%]a Yield [%]b 

Ph(CH2)4NH2·BH3 [Ph(CH2)2NH–BH2]n [Ph(CH2)4NH]2BH 

60 min 1 0 1 

 240 min 9 1 8 

a) Conversion determined by 11B NMR spectroscopy.  b) Yields determined by integration of the signals 

in the 11B NMR spectra of the reaction mixtures. 

 

 

Figure S4.9. 11B{1H} NMR spectra of the reaction of Ph(CH2)4NH2·BH3 and 2.5 mol % of [Rh/Al2O3] in 

THF at 20 °C at 60 min and 240 min. R = Ph(CH2)4. 

 

4.5.3.3 Dehydropolymerisation of Ph(CH2)4NH2·BH3 with 1.0 mol % 

[IrH2(POCOP)] at Various Reaction Times. 

 

4.5.3.3.1  Dehydropolymerisation at Room Temperature. 

To a solution of Ph(CH2)4NH2·BH3 (82 mg, 0.5 mmol) in THF (0.1 mL) was added a solution 

of [IrH2(POCOP)] (1.0 mol %, 3 mg) in THF (0.1 mL) at 20 °C. The solution was transferred 

to a Teflon-tapped J. Young quartz NMR tube and monitored by 11B NMR at different 

reactions times at 20 °C. 
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Analysis of the reaction of Ph(CH2)4NH2·BH3 (1a) with 1.0 mol % [IrH2(POCOP)] 

at 15 min, 30 min and 45min: 11B NMR (THF): [Ph(CH2)4NH]2BH [δB 26.9 (br)] and 

[Ph(CH2)4N–BH]3 [δB ca. 32 (br)], [Ph(CH2)4NH–BH2]n [δB −7.5 (br)] (ca. 20 %) and 

Ph(CH2)4NH2·BH3 [δB −19.8] (Figure S4.10 and Table S4.6). 

 

Table S4.6: Influence of different reaction times on the dehydropolymerisation of Ph(CH2)4NH2·BH3 in 

THF at 20 °C with 1.0 mol % [IrH2(POCOP)]. 

 

Time 

Conversion [%]a Yield [%]b 

Ph(CH2)4NH2·BH3 [Ph(CH2)2NH–BH2]n [Ph(CH2)4NH]2BH 

15 min 63 25 38 

30 min 92 31 61c 

45 min 90 28 62c 

a) Conversion determined by 11B NMR spectroscopy.  b) Yields determined by integration of the signals 

in the 11B NMR spectra of the reaction mixtures. c) Mixture of [Ph(CH2)4NH]2BH/[Ph(CH2)4N–BH]3.  

The signals observed by 11B{1H} NMR spectroscopy are overlapping for these products. 

 

 

  

Figure S4.10. 11B{1H} NMR spectra of the reaction of Ph(CH2)4NH2·BH3 and 1.0 mol % of [IrH2(POCOP)] 

in THF at 20 °C at 15 min, 30 min and 45min. R = Ph(CH2)4. 
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4.5.3.3.2  Dehydropolymerisation at low temperature. 

To a solution of Ph(CH2)4NH2·BH3 (82 mg, 0.5 mmol) in THF (0.1 mL) at −40 °C, was added 

a solution of [IrH2(POCOP)] (1.0 mol %, 3 mg) in THF (0.1 mL) at −40 °C and it was stirred 

until reaction mixture reached room temperature (20 °C). The solution was transferred to 

a Teflon-tapped J. Young quartz NMR tube and monitored by 11B NMR at different 

reaction times at 20 °C. 

Analysis of the reaction of Ph(CH2)4NH2·BH3 (1a) with 1.0 mol % [IrH2(POCOP)] 

at 30 min and 60 min: 11B NMR (THF): [Ph(CH2)4NH]2BH [δB 26.6 (br)] and [Ph(CH2)4N–

BH]3 [δB ca. 32 (br)], [Ph(CH2)4NH–BH2]n [δB −8.7 (br)] and Ph(CH2)4NH2·BH3 [δB −20.0] 

and an unassigned product [δB −24.2] (Figure S4.11 and Table S4.7). 

 

Table S4.7: Influence of reaction time on the dehydropolymerisation of Ph(CH2)4NH2·BH3 in THF at 

−40 °C with 1.0 mol % [IrH2(POCOP)]. 

 

Time 

Conversion [%]a Yield [%]b 

Ph(CH2)4NH2·BH3 [Ph(CH2)2NH–BH2]n [Ph(CH2)4NH]2BH 

30min 92 45 42c 

60 min 91 43 44c 

a) Conversion determined by 11B NMR spectroscopy.  b) Yields determined by integration of the signals 

in the 11B NMR spectra of the reaction mixtures. c) Mixture of [Ph(CH2)4NH]2BH/[Ph(CH2)4N–BH]3.  

The signals observed by 11B{1H} NMR spectroscopy are overlapping for these products. 

 

 

Figure S4.11. 11B{1H} NMR spectra from the reaction at low temperature (−40 °C) of Ph(CH2)4NH2·BH3 

and 1.0 mol % of [IrH2(POCOP)] in THF at 20 °C at 30 min and 60 min. * Unassigned product. R = 

Ph(CH2)4. 
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4.5.3.4  Synthesis and characterisation of [Ph(CH2)4NH–BH2]n. 

Ph(CH2)4NH2•BH3 (500 mg, 3.07 mmol) was dissolved in THF (0.6 mL) in a vial. In a 

separate vial, the catalyst [IrH2(POCOP)] (18 mg, 30 µmol, 1 mol %) was dissolved in THF 

(0.6 mL). Both solutions were cooled to −40 °C. The solution with the catalyst was added 

slowly at low temperature to the amine-borane solution and immediate bubbling was 

observed. Then, the solution was allowed to warm up and stirred for 30 min. Then the 

reaction mixture was precipitated into hexanes (~20 mL) at room temperature and 

formation of a white solid was observed. The reaction mixture was decanted to remove the 

solvents and then dried under vaccum for ten minutes giving the polymer as a white 

powder. The polymer was redissolved in DCM (~1 mL) and the polymer was reprecipitated 

into hexanes for a second time to produce the polymer as a white solid. To remove any 

residual solvent that could be retained in the polymeric structure, the polymer was 

redissolved in DCM and reprecipitated into hexanes (~20 mL). After drying the polymer 

under vacuum (ca. 10-2 mmHg) for 18 h, no residual solvent was detected. (42% yield, 210 

mg)  

11B NMR (CDCl3): δ (ppm) −8.60 (Figure S4.12). 

1H NMR (CDCl3): δ (ppm) 1.62-1.86 (m, 6H, Hc-Hb-BH2); 2.45-2.76 (m, 5H, Ha-Hd, NH2); 

7.13-7.15 (m, 3H, Hg-Hh); 7.23-7.25 (m, 2H, Hf) (Figure S4.13). 

 13C NMR (CDCl3): δ (ppm) 27.8 (Cc); 29.3 (Cb); 35.7 (Cd); 50.7 (Ca); 125.7 (Ch); 128.3 (Cf-

Cg); 142.3 (Ce) (Figure S4.14). 

GPC: Mn = 168,300 g mol−1, Mw = 195,200 g mol−1, PDI = 1.16 (Figure S4.16). 

FT-IR: (   = cm-1) 3252 (N–H); 3025 (C–H); 2928, 2857 (C–H2); 2384,2295 (B–H) (Figure 

S4.53). 

Elemental analysis calculated for C10H16BN: C, 74.6; H, 10.0; N, 8.7. Found: C, 74.5; H, 

9.6; N, 8.7.  
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Figure S4.12. 11B{1H} NMR spectrum of isolated [Ph(CH2)4NH–BH2]n in CDCl3 at 20 °C. 
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Figure S4.13. 1H NMR spectrum of isolated [Ph(CH2)4NH–BH2]n in CDCl3 at 20 °C.  
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Figure S4.14. 13C NMR spectrum of isolated [Ph(CH2)4NH–BH2]n in CDCl3 at 20 °C. * CDCl3. 
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Figure S4.15. HSQC NMR spectrum of isolated [Ph(CH2)4NH–BH2]n in CDCl3 at 20 °C.  
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Figure S4.16. GPC chromatogram (2mg mL-1) of isolated [Ph(CH2)4NH–BH2]n in THF (0.1 w/w % 

nBu4NBr). 

 

 

 

Figure S4.17. GPC chromatogram (2 mg mL−1) of isolated [Ph(CH2)2NH–BH2]n (Blue trace) [GPC (Mn 

= 150,000 g mol−1, Mw = 181,600 g mol−1, PDI = 1.21)] and isolated [MeNH–BH2]n (Red trace) [GPC (Mn 

= 82,300 g mol−1, Mw = 151,500 g mol−1, PDI = 1.81)] produced from MeNH2·BH3 and 3 mol % 

IrH2POCOP in THF at 20˚C in THF (0.1 w/w % nBu4NBr).  
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Figure S4.18. GPC chromatograms of [Ph(CH2)4NH–BH2]n in THF (0.1 w/w % nBu4NBr) at different 
concentrations.  

 

Table S4.8: Number average molecular weight (Mn), mass average molecular weight (Mw) and 

polydispersity index (PDI) for [Ph(CH2)4NH–BH2]n at different concentrations  

c (mg mL-1) Mn (g mol-1) Mw (g mol-1) PDI 

0.5 186,600 206,500 1.11 

1.0 188,300 213,800 1.14 

2.0 168,300 195,200 1.16 

 

 

Figure S4.19. Plot of the molecular weight of [Ph(CH2)4NH–BH2]n versus the concentration in THF. 
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Figure S4.20. DLS (size distribution by volume, repeat scans) of [Ph(CH2)4NH–BH2]n (2 mg mL−1) in 

THF [RH = 4.3 nm (average value)] at 20 °C. 

 

Figure S4.21. DLS (size distribution by volume, repeat scans) of [Ph(CH2)4NH–BH2]n (2 mg mL−1) in 

THF (0.1 w/w % nBu4NBr). [RH = 4.1 nm (average value)] at 20 °C. 

 

Figure S4.22 DLS (size distribution by volume, repeat scans) of [Ph(CH2)4NH–BH2]n (2 mg mL−1) in THF 

(0.1 w/w % nBu4NBr). [RH = 3.3 nm (average value)] at 35 °C. 
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Figure S4.23. Polystyrene standard calibration curve in C6D6 for molecular weight prediction. Equation 

of the polystyrene standard calibration curve is log D = -0.5372 log Mn – 7.5335. 

 

 

Figure S4.24. 1H DOSY spectrum of isolated [Ph(CH2)4NH–BH2]n (2b) in C6D6 at 20 °C.  

 

 



Chapter 4 

209 

 

 

Figure S4.25. DLS (size distribution by volume, repeat scans) of [Ph(CH2)4NH–BH2]n (2 mg mL−1) in 

C6H6 [RH = 2.9 nm (average value)] at 20 °C. 

 

4.5.4 Dehydropolymerisation Studies of PhCH2NH2·BH3 Using Different 

Catalysts (Skeletal Nickel, [Rh(µ-Cl)(1,5-COD)]2 and [IrH2(POCOP)]).  

To a solution of PhCH2NH2·BH3 (121 mg, 1.0 mmol) in THF (0.5 mL) was added skeletal 

nickel (5 mol %, 3 mg) at 20 °C. The solution was transferred to a Teflon-tapped J. Young 

quartz NMR tube and monitored by 11B NMR, no reaction was observed after 24 h. 

To a solution of PhCH2NH2·BH3 BH3 (121 mg, 1.0 mmol) in THF (0.5 mL) was added 

skeletal nickel (100 mol %, 59 mg) at 20 °C. The solution was transferred to a Teflon-

tapped J. Young quartz NMR tube and monitored by 11B NMR, no reaction was observed 

after 24 h. 

To a solution of PhCH2NH2·BH3 (121 mg, 1.0 mmol) in THF (0.3 mL) was added a solution 

of [IrH2(POCOP)] (1.0 mol %, 6 mg) in THF (0.2 mL) at 20 °C. The solution was transferred 

to a Teflon-tapped J. Young quartz NMR tube and monitored by 11B NMR, no reaction was 

observed after 24 h. 

To a solution of PhCH2NH2·BH3 (121 mg, 1.0 mmol) in THF (0.3 mL) was added a solution 

of [Rh(µ-Cl)(1,5-COD)]2 (2.5 mol %, 12 mg) in toluene (0.2 mL) at 20 °C. The solution was 
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transferred to a Teflon-tapped J. Young quartz NMR tube and monitored by 11B NMR, no 

reaction was observed after 24 h. 

As an example, here is shown the analysis of the reaction of PhCH2NH2·BH3 with 

1.0 mol % [IrH2(POCOP)]: 11B NMR (THF): PhCH2NH2·BH3 [δB −19.6] (ca. 100%) (Figure 

S4.26). 

 

Figure S4.26. 11B{1H} NMR spectrum of the reaction of PhCH2NH2·BH3 and 1.0 mol % of [IrH2(POCOP)] 

in THF at 20 °C at 30 min. R = PhCH2 

 

4.5.5 Dehydropolymerisation Studies of Ph(CH2)xNH2·BH3 (x = 2−3) Using 

[IrH2(POCOP)].  

To a solution of Ph(CH2)2NH2·BH3 (68 mg, 0.5 mmol) in THF (0.1 mL) was added a solution 

of [IrH2(POCOP)] (3 mg, 1.0 mol %) in THF (0.1 mL) at −40  °C. Then, the solution was 

allowed to warm up and stirred. The solution was diluted with 0.3 mL of THF and was 

transferred to a Teflon-tapped J. Young quartz NMR tube and monitored by 11B NMR at 

room temperature (20 °C). 

Analysis of the reaction of Ph(CH2)2NH·BH3 (1a) with 1.0 mol % [IrH2(POCOP)] 

at 30 min: 11B NMR (THF): [Ph(CH2)2NH]2BH [δB 27.1 (br)] and [Ph(CH2)2N–BH]3 [δB ca. 

32 (br)] (ca. 27%), [Ph(CH2)2NH–BH2]n [δB −8.6 (br)] (ca. 57%) and Ph(CH2)2NH2·BH3 [δB 

−20.3] (ca. 16%) (Figure S4.27). 

 

RNH2·BH3 
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Figure S4.27. 11B{1H} NMR spectrum of the reaction of Ph(CH2)2NH2·BH3 and 1.0 mol % of 

[IrH2(POCOP)] in THF at 20 °C at 30 min. R = Ph(CH2)2. 

 

To a solution of Ph(CH2)3NH2·BH3 (74 mg, 0.5 mmol) in THF (0.1 mL) was added a solution 

of [IrH2(POCOP)] (3 mg, 1.0 mol%) in THF (0.1 mL) −40 °C. Then, the solution was allowed 

to warm up and stirred for 30 min. The solution was diluted with 0.3 mL of THF and was 

transferred to a Teflon-tapped J. Young quartz NMR tube and monitored by 11B NMR at 

room temperature (20 °C). 

Analysis of the reaction of Ph(CH2)3NH2·BH3 (1a) with 1.0 mol % [IrH2(POCOP)] 

at 30 min: 11B NMR (THF): [[Ph(CH2)3NH]2BH [δB 26.8 (br)] (ca. 10%), [Ph(CH2)3NH–

BH2]n [δB −8.9 (br)] (ca. 32%) and Ph(CH2)3NH2·BH3 [δB −20.3] (ca. 59%) (Figure S4.28). 

 

Figure S4.28. 11B{1H} NMR spectrum of the reaction of Ph(CH2)3NH2·BH3 and 1 mol % of [IrH2(POCOP)] 

in THF at 20 °C after 30 min. R = Ph(CH2)3. 

 

 

RNH2·BH3 

[RNH–BH2]n 

[RNH]2BH 

RNH2·BH3 

[RNH–BH2]n 

[RN–BH]3 

[RNH]2BH 
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4.5.5.1 Synthesis and Characterisation of [Ph(CH2)2NH–BH2]n. 

Ph(CH2)2NH2·BH3 (405 mg, 3.00 mmol) was dissolved in THF (0.6 mL) in a vial. In a 

separate vial, the catalyst IrH2(POCOP) (18 mg, 30 µmol, 1 mol %) was dissolved in THF 

(0.6 mL). Both solutions were cooled to −40 °C. The solution with the catalyst was added 

slowly at low temperature (−40 °C) to the amine-borane solution and immediate bubbling 

was observed. Then, the solution was allowed to warm up to 20 °C and stir for 30 min. 

Then the reaction mixture was precipitated into hexanes (~20 mL) at room temperature 

and formation of a white solid was observed. The reaction mixture was decanted to remove 

the solvents and then dried under vaccum for ten minutes giving the polymer as a white 

powder. The polymer was redissolved in DCM (~1 mL) and the polymer was reprecipitated 

into hexanes for a second time to produce the polymer as a white solid, which was dried 

overnight under vacuum. (42% yield, 210 mg) 

11B NMR (CDCl3): δ (ppm) −8.7 (Figure S4.29). 

1H NMR (CDCl3): δ (ppm) 1.88-2.19 (m, 2H, BH2); 2.71-3.24 (m, 5H, Ha-Hb-NH); 7.25 (br s; 5H, 

Hd-He-Hf) (Figure S4.30). 

 13C NMR (CDCl3): δ  (ppm) 34.6 (Cb); 52.2 (Ca); 126.5 (Cf); 128.7 (Cd); 129.1 (Ce); 139.0 (Cc) 

(Figure S4.31). 

GPC: Mn = 158,800 g mol−1, Mw = 199,000 g mol−1, PDI = 1.25 (Figure S4.33). 

FT-IR: (   = cm-1) 3247 (N–H); 3026 (C–H); 2950 (C–H2); 2388,2303 (B–H) (Figure S4.52). 

Elemental analysis calculated for C8H12BN: C, 72.3; H, 9.1; N, 10.5. Found: C, 72.1; H, 

9.1; N, 10.6.  
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Figure S4.29. 11B{1H} NMR spectrum of isolated [Ph(CH2)2NH–BH2]n in CDCl3 at 20 °C. 
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Figure S4.30. 1H NMR spectrum of isolated [Ph(CH2)2NH–BH2]n in CDCl3 at 20 °C.  
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Figure S4.31. 13C NMR spectrum of isolated [Ph(CH2)2NH–BH2]n in CDCl3 at 20 °C. * CDCl3. 
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Figure S4.32. HSQC NMR spectrum of isolated [Ph(CH2)2NH–BH2]n  in CDCl3 at 20 °C.  
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Figure S4.33. GPC chromatogram (2mg mL-1) of isolated [Ph(CH2)2NH–BH2]n in THF (0.1 w/w % 

nBu4NBr). 

 

Figure S4.34 GPC chromatograms of [Ph(CH2)2NH–BH2]n in THF (0.1 w/w % nBu4NBr) at different 

concentrations.  

 

Table S4.9: Number average molecular weight (Mn), mass average molecular weight (Mw) and 

polydispersity index (PDI) for [Ph(CH2)2NH–BH2]n at different concentrations  

c (mg mL-1) Mn (g mol-1) Mw (g mol-1) PDI 

0.5 181,500 209,900 1.16 

1.0 172,200 203,300 1.18 

2.0 158,800 199,000 1.25 
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Figure S4.35. Plot of the molecular weight of [Ph(CH2)2NH–BH2]n versus the concentration in THF. 

 
 
 
 

4.5.6 Synthesis and Characterisation of Copolymers  

[Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m and [Ph(CH2)2NH–BH2]n–r– [Ph(CH2)4NH–BH2]m 

were prepared following the procedure described below for [Ph(CH2)4NH–BH2]n–r–

[MeNH–BH2]m 

Ph(CH2)4NH2·BH3 (224 mg, 1.50 mmol) and MeNH2·BH3 (67 mg, 1.50 mmol) were dissolved 

in THF (0.6 mL) in a vial. In a separate vial, the catalyst IrH2(POCOP) (18 mg, 30 µmol, 

1 mol %) was dissolved in THF (0.6 mL). Both solutions were cooled to −40 °C. The solution 

with the catalyst was added to the amine-boranes solution slowly at −40 °C and immediate 

bubbling was observed. Then, the solution was allowed to warm up to 20 °C and stir for 

30 min. Then the reaction mixture was precipitated into hexanes (~20 mL) at 20 °C and 

formation of a white solid was observed. The supernatant was decanted and the precipitate 

dried under vaccum for ten minutes giving the polymer as a white powder. The polymer 

was redissolved in DCM (~1 mL) and the polymer was reprecipitated into hexanes (~20 

mL) for a second time to produce the polymer as a white solid, which was dried overnight 

under vacuum. (45% yield, 150 mg). 
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**Copolymers [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 1) and [Ph(CH2)4NH–BH2]n–

r– [NH2–BH2]m (n: 1, m: 2) were prepared following a slightly modified procedure to above. 

For the ratio 1:1, the NH3·BH3 monomer solution in THF was added dropwise over a period 

of 30 min and  for the ratio 1:2 was added over a period of 60 min in order to assure random 

formation of the copolymer is occurring. 

4.5.6.1 Characterisation of Copolymer [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, 

m: 1). 

11B NMR (CDCl3): δ (ppm) −9.2 (Figure S4.36). 

1H NMR (CDCl3): δ (ppm) 1.57-1.81 (m, 6H, Hc-Hb-BH2); 2.42-2.72 (m, 5H, Ha-Hd-NH); 

7.09-7.12 (m, 3H, Hg-Hh); 7.17-7.20 (m, 2H, Hf) (Figure S4.37).  

 13C NMR (CDCl3): δ (ppm) 27.7 (Cc); 29.3 (Cb); 35.8 (Cd); 50.6 (Ca); 125.8 (Ch); 128.3 (Cf-

Cg); 142.3 (Ce) (Figure S4.38). 

GPC: Mn = 159,700 g mol−1, Mw = 213,100 g mol−1, PDI = 1.33 (Figure S4.39). 

FT-IR: (   = cm-1) 3247 (N–H); 3026 (C–H); 2926, 2859 (C–H2); 2387,2303 (B–H) (Figure 

S4.53). 

Elemental analysis calculated for C10H20B2N2, corrected for a ratio (1:0.875): C, 64.5; H, 

10.5; N, 14.1. Found: C, 64.2; H, 10.1; N, 14.0.  
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Figure S4.36. 11B{1H} NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 1) in 

CDCl3 at 20 °C. 
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Figure S4.37. 1H NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 1) in CDCl3 

at 20 °C.  
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Figure S4.38. 13C NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 1) in CDCl3 

at 20 °C. * CDCl3. 

 

Figure S4.39. GPC chromatogram (2mg mL-1) of isolated [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 

1) in THF (0.1 w/w % nBu4NBr). 
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4.5.6.2 Characterisation of Copolymer [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, 

m: 2). 

11B NMR (THF-d8): δ (ppm) −12.7 (Figure S4.40). 

1H NMR (THF-d8): δ (ppm) 1.59-2.01 (m, H, Hc-Hb-BH2-B’H2); 2.59-2.85 (m, H, Ha-Hd-

NH2); 7.16 (br s, 5H, Hf-Hg-Hh) (Figure S4.41). 

 13C NMR (THF-d8): δ (ppm) 25.8 (Cc); 27.5 (Cb); 33.9 (Cd); 49.0 (Ca); 123.8 (Ch); 126.3 (Cf-

Cg); 140.4 (Ce) (Figure S4.42). 

GPC: Mn = 162,100 g mol−1, Mw = 208,400 g mol−1, PDI = 1.28 (Figure S4.43). 

FT-IR: (   = cm-1) 3297, 3247 (N–H); 2929, 2858 (C–H2); 2373,2302 (B–H) (Figure S4.53). 

Elemental analysis calculated for C10H24B3N3: C, 54.9; H, 11.1; N, 19.2. Found: C, 54.9; H, 

10.9; N, 18.9.   
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Figure S40. 11B{1H} NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 2) in THF-

d8 at 20 °C. 
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Figure S41. 1H NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 2) in THF-d8 at 

20 °C.  
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Figure S4.42. 13C NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 2) in THF-

d8 at 20 °C. * THF-d8. 

 

Figure S4.43. GPC (2mg mL-1) chromatogram of isolated [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 

2) in THF (0.1 w/w % nBu4NBr). 

 

4.5.6.3 Characterisation of Copolymer [Ph(CH2)4NH–BH2]n–r–[MeNH–BH2]m (n: 1, 

m: 1.56).  

11B NMR (CDCl3): δ (ppm) −7.7 (Figure S4.44). 

1H NMR (CDCl3): δ (ppm) 1.63-1.75 (m, 8H, Hb-Hc-BH2-B’H2); 2.26 (s, 3H, Hi); 2.53-2.65 

(m, 6H, H6-N’H2); 2.90 (s, 1H, MeNH); 7.09-7.12 (m, 3H, Hg-Hh); 7.17-7.20 (m, 2H, Hf) 

(Figure S4.45). 

13C NMR (CDCl3): δ (ppm) 27.5 (Cc); 29.1 (Cb); 35.6 (Cd); 36.0 (Ci); 50.3 (Ca); 125.7 (Ch); 

128.4 (Cf-Cg); 142.2 (Ce) (Figure S4.46). 

GPC: Mn = 170,100 g mol−1, Mw = 200,700 g mol−1, PDI = 1.18 (Figure S4.47). 
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FT-IR: (   = cm-1) 3260 (N–H); 2928, 2858 (C–H2); 2373, 2294 (B–H) (Figure S4.53). 

Elemental analysis calculated for C11H22B2N2, corrected for a ratio 1:1.45: C, 61.6; H, 

11.1; N, 15.4. Found: C, 61.3; H, 11.2; N, 15.1.   
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Figure S4.44. 11B{1H} NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [MeNH–BH2]m (n: 1, m: 1.56) 

in CDCl3 at 20 °C. 
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Figure S4.45. 1H NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [MeNH–BH2]m (n: 1, m: 1.56) in 

CDCl3 at 20 °C.  
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Figure S4.46. 13C NMR spectrum of isolated [Ph(CH2)4NH–BH2]n–r– [MeNH–BH2]m (n: 1, m: 1.56) in 

CDCl3 at 20 °C. * CDCl3.  
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Figure S4.47. GPC chromatogram (2mg mL-1) of isolated [Ph(CH2)4NH–BH2]n–r– [MeNH–BH2]m (n: 1, 

m: 1.56) in THF (0.1 w/w % [nBu4N]Br). 

 

4.5.6.4 Characterisation of Copolymer [Ph(CH2)2NH–BH2]n–r–[Ph(CH2)4NH–

BH2]m (n: 1, m: 1). 

11B NMR (CDCl3): δ (ppm) −8.8 (Figure S4.48). 

1H NMR (CDCl3): δ (ppm) 1.65-1.89 (m, 8H, Hb-Hc- BH2-B’H2); 2.62-3.14 (m, 10H Ha-Hd-

Hi-Hj- NH2-N’H2); 7.21 (br s, 5H, Hf-Hg-Hh-Hl-Hm-Hn) (Figure S4.49). 

13C NMR (CDCl3): δ (ppm) 27.8 (Cc); 29.3 (Cb); 34.4 (Cj); 35.7 (Cd); 50.8 (Ca); 52.1 (Ci);  

125.8 (Ch); 126.5 (Cn); 128.4 (Cf-Cg); 128.6 (Cl); 129.1 (Cm); 139.1 (Ck); 142.4 (Ce) (Figure 

S4.50). 

GPC: Mn = 188,400 g mol−1, Mw = 260,500 g mol−1, PDI = 1.38 (Figure S4.51). 

FT-IR: (   = cm-1) 3242 (N–H); 2944, 2857 (C–H2); 2386, 2294 (B–H) (Figure S4.53). 

Elemental analysis calculated for C18H28B2N2: C, 73.5; H, 9.6; N, 9.5. Found: C, 73.3; H, 

9.8; N, 9.9. 
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Figure S4.48. 11B{1H} NMR spectrum of isolated [Ph(CH2)2NH–BH2]n–r– [Ph(CH2)4NH–BH2]m (n: 1, m: 

1) in CDCl3 at 20 °C. 
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Figure S4.49. 1H NMR spectrum of isolated [Ph(CH2)2NH–BH2]n–r– [Ph(CH2)4NH–BH2]m (n: 1, m: 1) in 

CDCl3 at 20 °C.  
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Figure S4.50. 13C NMR spectrum of isolated [Ph(CH2)2NH–BH2]n–r– [Ph(CH2)4NH–BH2]m (n: 1, m: 1) 

in CDCl3 at 20 °C.  
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Figure S4.51. GPC chromatogram (2mg mL-1) of isolated [Ph(CH2)2NH–BH2]n–r– [Ph(CH2)4NH–BH2]m 

(n: 1, m: 1) in THF (0.1 w/w % nBu4NBr). 

 

 

 

 

 

 

 

 

 

 

Figure S4.52. Photographs of the physical appearance of polyaminoboranes  a) [Ph(CH2)4NH–BH2]n; 

b) [Ph(CH2)2NH–BH2]n; c) [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 1); d) [Ph(CH2)4NH–BH2]n–r– 

[NH2–BH2]m (n: 1, m: 2); e) [Ph(CH2)4NH–BH2]n–r– [MeNH–BH2]m (n: 1, m: 1.56) and f) [Ph(CH2)2NH–

BH2]n–r– [Ph(CH2)4NH–BH2]m (n: 1, m: 1).  
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4.5.7 Infrared Spectroscopy of Polyaminoboranes 

 

 

 

 

 

 

 

Figure S4.53. FT-IR spectra of  a) [Ph(CH2)4NH–BH2]n; b) [Ph(CH2)2NH–BH2]n; c) [Ph(CH2)4NH–BH2]n–

r– [NH2–BH2]m (n: 1, m: 1); d) [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 2); e) [Ph(CH2)4NH–BH2]n–

r– [MeNH–BH2]m (n: 1, m: 1.56)and f) [Ph(CH2)2NH–BH2]n–r– [Ph(CH2)4NH–BH2]m (n: 1, m: 1).  
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4.5.8 Thermogravimetric Analysis of Polyamonoboranes.   

  

 

Figure S4.54. TGA thermograms of polyaminoboranes at 900 °C (heating rate: 10 ˚C min −1). 

 
 
 

 

Figure S4.55. TGA thermograms of [Ph(CH2)4NH–BH2]n–r– [NH2–BH2]m (n: 1, m: 1) performed as a 

powder and as a pellet at 900 °C (heating rate: 10 ˚C min −1). 
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4.5.9 Crosslinking Studies.     

Ph(CH2)2NH2·BH3 (206 mg, 1.5 mmol) was cross-linked with BH3·NH2(CH2)8NH2·BH3 at 5 

mol % (13 mg, 0.075 mmol) and at 10 mol % (26 mg, 0.15 mmol) and each reaction was 

dissolved in THF (0.3 mL) in a vial. In a separate vial, the catalyst IrH2(POCOP) (1 mol 

%, 9 mg) was dissolved in THF (0.3 mL). Both solutions were cooled to −40°C and then, 

the solution with the catalyst was added slowly at low temperature to the amine-

borane/cross-linker solution and immediate bubbling was observed. After two minutes, the 

solutions became sticky solids as it is shown in Fig. S4.56. The reaction mixtures were 

standing  for 16 h to assure monomer reactivity. After this period, it was observed that the 

reaction mixtures was back into solution. Then they were precipitated into hexanes (~20 

mL) at room temperature (20 °C) and formation of white solids was observed. The excess 

of solvent was decanted and the materials were dried under vaccum overnight. Yield of 

the material containing 5 mol % crosslinker  (29 %, 60 mg). Yield of the material containing 

5 mol % crosslinker (39%, 80 mg).  

 

 

Figure S4.56. Photograph of the reaction mixtures of Ph(CH2)2NH2·BH3 with the crosslinker 

BH3·NH2(CH2)8NH2·BH3 in different ratios (left) 5 mol % cross-linker and (right) 10 mol % crosslinker 

and 1 mol% of IrH2(POCOP) in THF.  
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The resultant material containing 5 mol % crosslinker is soluble in THF. 

11B NMR (THF-d8): δ (ppm) −1.6 (‘BN3’/’BN4’), −9.0 ppm (polyaminoborane), −22.0 

(Ph(CH2)2NH2·BH3 or end group chain –BH3) (Figure S4.57).  

1H NMR (THF-d8): δ (ppm) 1.32 (BH2); 2.61-3.13 (m, CH-NH); 7.25 (CarH) (Figure S4.58). 

GPC: Mn = 225,400 g mol−1, Mw = 666,300 g mol−1, PDI = 2.94 (Figure S4.59). 

  

 

Figure S4.57. 11B{1H} NMR spectrum of isolated material of the reaction of Ph(CH2)2NH2·BH3 

/BH3·NH2(CH2)8NH2·BH3 (Ratio 95:5) and 1 mol% of IrH2(POCOP) in THF-d8 at 20 °C. 

 

Figure S4.58. 1H NMR spectrum of isolated material of the reaction of Ph(CH2)2NH2·BH3 

/BH3·NH2(CH2)8NH2·BH3 (Ratio 95:5) and 1 mol% of IrH2(POCOP) in THF-d8 at 20 °C.  
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Figure S4.59. GPC chromatogram (2mg mL−1) of isolated material of the reaction of 

Ph(CH2)2NH2·BH3 /BH3·NH2(CH2)8NH2·BH3 (Ratio 95:5) and 1 mol% of IrH2(POCOP) in THF 

(0.1 w/w % nBu4NBr).  
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Chapter 5.  

Boron–Nitrogen Main Chain Analogues of 

Polystyrene: Poly(B-aryl)aminoboranes via 

Catalytic Dehydrocoupling. 

Reproduced from: 

D. A. Resendiz-Lara, N. E. Stubbs, M. I. Arz, N. E. Pridmore, H. A. Sparkes, I. Manners, 

Chem. Commun. 2017, 53, 11701-11704. 

 

5.1 Abstract 

The first high molar mass polyaminoboranes with an organic substituent at boron, namely 

the B-arylated polyaminoboranes [NH2–BHPh]n (5.2a) and [NH2–BH(p-CF3C6H4)]n (5.2b), 

have been prepared via catalytic dehydropolymerisation. These materials can be 

considered as inorganic analogues of polystyrene with a B–N main chain. Their synthesis 

was achieved from B-aryl amine–borane precursors in solution using an [IrH2(POCOP)] 

precatalyst.  
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5.2 Introduction 

Recent research at the interface of polymer and inorganic chemistry targets the 

development of hybrid polymers, which combine main group elements with classical 

organic polymer frameworks leading to novel materials with unique combinations of 

properties.1 One well-established strategy to access hybrid polymers involves the formal 

replacement of C–C units by B–N moieties and has been pursued to create main chain 

boron–nitrogen analogues of polyolefins2 and poly(p-phenylenes).3 This approach has very 

recently been extended to poly(phenylene vinylene),4 and a range of other interesting BN-

based materials have also been prepared.5 Recently, side chain B–N analogues of 

polystyrene, namely poly(B-vinyl borazines) and poly(B-vinyl 1,2-azaborinines) were 

obtained via radical polymerization of the corresponding B-substituted monomers.6 

Despite these advances, polystyrene analogues in which the C–C main chain is formally 

replaced with a B–N skeleton have not been reported to date.  

Catalytic dehydrocoupling of amine–boranes, RR’NH·BH3 (R = H, alkyl), has attracted 

considerable attention in recent years due to the potential for applications in hydrogen 

storage and hydrogen transfer chemistry as well as the potential to access new inorganic 

polymeric and BN-containing solid state materials.7,8 However, to date, only a limited 

number of amine–boranes, RNH2·BH3 (R = H, Me, Et, nBu), have been 

dehydropolymerised using transition-metal catalysts to yield soluble polyaminoboranes 

with N-alkyl substituents, [RNH–BH2]n, isolobal congeners of polyolefins, with potential 

applications as piezoelectric or preceramic materials.2,9 The attempted 

dehydropolymerisation of primary N-aryl amine–boranes, RNH2·BH3 (R = Ph, p-

MeOC6H4, p-CF3C6H4), to yield polyaminoborane analogues of polystyrene was prevented 

by their complex dehydrogenation chemistry in the presence or absence of catalysts that 

leads to a myriad of products within which no high molar mass polymer was detected.10 
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In contrast to the case of (N-organo)amine–boranes, the dehydrocoupling behaviour of 

their B-organo analogues is relatively unexplored.11,12 We recently reported studies of the 

catalytic dehydrocoupling of sterically unhindered B-methylated amine–boranes, 

RNH2·BH2Me (R = H, Me), using stoichiometric amounts of skeletal nickel.11b Although 

11B NMR peaks were tentatively assigned to oligomeric or polymeric B-methyl 

aminoboranes, [RNH–BHMe]n (R = H or Me), under the reaction conditions these 

intermediates readily underwent further dehydrogenation to yield mainly the B-

methylated borazines [RN−BMe]3 (R = H, Me). We attributed the lability of the [RNH–

BHMe]n oligomers/polymers to the inclusion of an electron-donating methyl group at 

boron,11b which lowers the dissociation energy of the B–N dative bond and 

thermodynamically facilitates hydrogen elimination, which has been predicted 

theoretically.13 We therefore envisaged that replacement of the methyl groups at boron by 

electron-withdrawing aryl groups should increase the strength of the B–N bonds in the 

main chain and also their overall stability. In this chapter, we present our studies of the 

catalytic dehydropolymerisation of the B-aryl amine–boranes NH3·BH2Ph (5.1a) and 

NH3·BH2(p-CF3C6H4) (5.2b) to give poly(B-aryl)aminoboranes, [NH2–BHR]n (5.2a: R = Ph, 

5.2b: R = p-CF3C6H4), which are the first examples of inorganic analogues of polystyrene 

containing a main-chain of alternating B–N groups. 

 

5.3 Results and Discussion 

The B-aryl amine–boranes 5.2a and 5.2b were synthesised via the dehydrogenative salt 

metathesis of Li[BH3R] and NH4Cl in an Et2O/toluene mixture (Scheme 5.1)11b, 12, 14 The 

lithium trihydridoborate precursor was generated in situ via treatment of commercially 

available RB(OH)2 with 1.5 equivalents of LiAlH4. This protocol afforded amine–

(aryl)borane 5.1a in 39 % yield as a colourless oil at 25°C, which solidifies upon cooling to 

−40 °C, and analogue 5.1b in 69 % yield as a colourless solid at ambient temperature. The 
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NMR data acquired for 5.1a (in CDCl3) and 5.1b (in THF-d8) was consistent with the 

expected data for B-aryl amine–boranes containing four-coordinate boron centres with two 

hydrogen atoms. For example, the 11B NMR spectra each displayed a single peak at −13.9 

(for 5.1a) and −16.8 (for 5.1b) ppm which appeared as triplets in the 1H coupled spectra 

[1JBH = 95 Hz (5.1a), 96 Hz (5.1b)].  

 

Scheme 5.1. Synthesis of B-arylated amine–boranes 5.1a (R = Ph) and 5.1b (R = p-CF3C6H4). 

 

In line with a higher energy required for dissociation of the B–N bond in 5.1b compared 

to 5.1a due to the presence of an electron-withdrawing p-CF3 group, amine–borane 5.1b 

is stable in the solid state at 20 °C for 170 h, whereas 5.1a partially decomposes to give 

oligomeric [NH2–BHPh]n (ca. 20 %) and NH3·BH3 (ca. 5 %) by 11B NMR spectroscopy. 

Interestingly, both 5.1a and 5.1b are stable in THF solution at 20 °C for 170 h, providing 

evidence for the importance of intermolecular reactions in the decomposition pathways of 

5.1a. Heating of solid 5.1a or 5.1b or their solutions in THF to 70 °C for 170 h led to full 

conversion to an array of products consisting mainly of the borazine [HN–BR]3, but also 

small quantities of the aminoborane H2N=BPh2 as well as the amine–boranes NH3·BHPh2 

and NH3·BH3 were detected by 11B NMR spectroscopy in case of 5.1a. These minor 

products arise from an apparent redistribution of hydrogen and aryl substituents at boron, 

as found previously for B-methyl amine–borane, NH3·BH2Me, on thermal treatment.11b 

The molecular structures of the borazines [HN–BR]3 (R = Ph, p-CF3C6H4) were also 

determined by single crystal X-ray diffraction analysis (Figure 5.1).  
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a)  b)  

Figure 5.1. Molecular structures of the borazines [HN–BPh]3 (a) and [HN–B(p-CF3C6H4)]3 in the solid 

state.  

 

With the aim of preparing high molecular weight poly(B-aryl)aminoboranes, we 

investigated the dehydropolymerisation of 5.1a using [{Rh(COD)(µ-Cl)}2] (COD = 1,5-

cyclooctadiene), skeletal nickel and [IrH2(POCOP)] (POCOP = κ3-1,3-(tBu2PO)2C6H3), 

which have previously been reported to be active precatalysts for the dehydrocoupling of 

amine–boranes (Scheme 5.2 and Table 5.1).2,9e,9g,15 Reaction of 5.1a with 2.5 mol % 

[{Rh(COD)(µ-Cl)}2] (5 % Rh) in THF at 20 °C resulted in the formation of ca. 25 % of 

aminoborane, H2N=BPh2, ca. 50 % of borazine, [HN–BPh]3, and ca. 25 % of poly(B-

phenyl)aminoborane, [NH2–BHPh]n (5.2a), as detected by 11B NMR spectroscopy of the 

reaction mixture after 6 h. A significantly slower reaction was observed for the 

dehydrocoupling of 5.1a using 10 mol % skeletal nickel in THF at 20 °C, with only ca. 50 % 

consumption of 5.1a after 70 h to yield 5.2a (ca. 30 %) and [HN–BPh]3 (ca. 20 %). 

Increasing the amount of skeletal nickel to 100 mol % resulted in quantitative conversion 

of 5.1a at 20 °C in THF within 70 h, leading to the formation of mainly borazine [HN–

BPh]3 (ca. 70 %) and smaller amounts of 5.2a (ca. 20 %) and H2N=BPh2 (ca. 10 %). The 

best results were obtained for the dehydrocoupling of 5.1a using 5 mol % [IrH2(POCOP)] 

in THF at 20 °C, which according to 11B NMR spectroscopy resulted in complete 
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consumption of 5.1a to yield the highest proportion of polymer 5.2a (ca. 75 %), alongside 

[HN–BPh]3 (ca. 25 %) within 1 h. 

 

Scheme 5.2. Catalytic dehydrocoupling of 5.1 with different metal catalysts [M]; side products observed 

in the case of 5.1a are depicted in brackets.  

 

Table 5.1: Product distribution from the catalytic dehydrocoupling of 5.1a in THF at 20 °C ([Rh] = 

[{Rh(COD)(µ-Cl)}2], [Ir] = [IrH2(POCOP)], [Ni] = skeletal nickel).a 

Conditions Time [h] Conversion 
of 5.1a [%] 

Yield of 5.2a 
[%] 

[HN-BPh]3 
[%] 

H2N=BPh2 
[%] 

2.5 mol % [Rh] 6 100 25 50 25 

10 mol % [Ni] 70 50 30 20 0 

100 mol % [Ni] 70 100 20 70 10 

5 mol %   [Ir] 1 100 75 25 0 

a Approximate values determined by integration of the broad signals in the 11B NMR spectra of the 

reaction mixtures. 

 

In order to further optimise the dehydropolymerisation of 5.1a and isolate polymer 5.2a, 

the loading of precatalyst [IrH2(POCOP)] and the reaction time were varied from 0.5 – 

5 mol % and 0.5–2 h, respectively (See SI, Section 5.5.2 and 5.5.3). After the specified time, 

the products were precipitated by transferring the THF solution into precooled (−40 °C), 

stirred n-hexane, which resulted in isolation of a colourless solid. The polymer products 

were analysed by 11B NMR spectroscopy and gel permeation chromatography (GPC). Full 
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conversion of 5.1a was only observed in case of employing 5 mol % [IrH2(POCOP)] and 

afforded high molar mass polymer 5.2a (see below).  

Polymer 5.2a of similar molar mass was prepared on a larger scale by 

dehydropolymerisation of 5.1a for 1 h in THF using 5 mol % [IrH2(POCOP)]. This afforded 

5.2a as an off-white solid in 38 % yield. Using the same protocol, polymer 5.2b was isolated 

by dehydropolymerisation of 5.1b as an off-white solid in 40 % yield. GPC analysis of both 

solids as solutions in THF (2 mg mL−1, calibration versus polystyrene standards) revealed 

unimodal molecular weight distributions of relatively low dispersity and indicated the 

presence of high molecular weight polymers in each case (2a: Mn = 81,600 g mol−1, PDI = 

1.33; 2b: Mn = 86,800 g mol−1, PDI = 1.37; PDI = polydispersity index) (Figure 5.2a).  

Interestingly, analysis of the GPC data for 5.2a and 5.2b in the concentration range of 0.5 

– 2 mg mL−1 revealed a significant dependence of the molar mass data on concentration 

indicating that the hydrodynamic radius (RH) of the polymer increased on dilution. This 

was more pronounced for the fluorinated polymer 5.2b than 5.2a (see SI, section 5.5.6.3), 

and also observed for polymer 5.2b in DLS in solution of CH2CL2, where the hydrodynamic 

radius increased on dilution (see SI, Figure S5.53). Although no definitive explanation can 

yet be provided, it is postulated that the presence of electron-withdrawing aryl, and in 

particular, fluoroaryl substituents enhances the polarity of the polymer structure, which 

leads to intrachain repulsion.16 This is suggestive of a non-size-exclusion effects for 

polyelectrolytes,17 such as the polyelectrolyte coil expansion or the polyelectrolyte effect 

which are likely to be involved in this case.18 This effect has also been observed in 

polyphosphinoboranes bearing fluorinated aryl substituents on phosphorus.19 This differs 

from the GPC behaviour observed for poly(N-alkyl)aminoboranes where no dependence on 

the molar mass on concentration was noted9g (mentioned in Chapter 4).   
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Figure 5.2. a) GPC chromatograms of 5.2a (blue line) and 5.2b (red line) in THF (2 mg mL−1) containing 

0.1 wt% [nBu4N]Br; b) images of poly(B-aryl)aminoboranes 5.2a and 5.2b. 

 

The 11B NMR spectra of the polymers displayed broad signals at −7.4 (5.2a, THF) and             

–7.8 ppm (5.2b, CD2Cl2), which appear in a similar region to that for [MeNH–BH2]n (δB = 

−6.7 ppm).2 The 1H NMR spectra of 5.2a and 5.2b both show broad signals, which may 

result from different stereochemical environments due to tacticity of the polymers, 

although further conclusions are hampered by the severe quadrupolar broadening. The 

ESI-MS spectra of 5.2a (5.2b) show multiple peaks with a difference of 105 (173) m/z up 

to 14 (8) repeat units, which correspond to [NH2–BHR] subunits. (see ESI, Figures S5.41 

and S5.47).  

Polyaminoboranes 5.2a and 5.2b are stable to the atmosphere and their thermal 

stabilities were investigated. This revealed higher stability for the latter material, 

presumably due to the presence of electron-withdrawing p-CF3 groups in the side chain. 

5.2a 5.2b 
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For example, polymer 5.2a partly decomposes (ca. 40 % conversion) after 170 h at 20 °C 

in the solid state to give mainly monomeric 5.1a and borazine [HN–BPh]3, whereas 

polymer 5.2b is stable under identical conditions. Thermogravimetric analysis is 

indicative of thermally-induced dehydrogenation and depolymerisation with low ceramic 

yields as is often found to linear polymers (for example, the char yield of 5.2a at 275°C is 

only 5 %). Thermally-induced branching and crosslinking reactions will need to be 

introduced to exploit potential utility of these materials as ceramic precursors.  
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5.4 Conclusions 

In summary, we report the synthesis and characterisation of the first high molar mass 

poly(B-aryl)aminoboranes 5.2a and 5.2b, which can be regarded as B–N analogues of 

polystyrene. Although similar in appearance to the latter, 5.2a was found to be of marginal 

thermal stability. Significant stabilisation was provided by the introduction of an electron 

withdrawing para-CF3 group on the aryl substituents in 5.2b. This offers promise for the 

future formation of thermally stable materials through the introduction of further electron 

withdrawing groups on boron. We will also explore the accompanying introduction of 

electron donating groups on nitrogen which would also be anticipated to lead to materials 

with increased thermodynamic and kinetic stability, therefore laying the foundation for a 

full exploration of their properties. We are also exploring the addition of crosslinking 

additives which should increase ceramic yields and allow an exploration of their utility as 

precursors to BN/graphitic hybrid materials.  
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5.5 Supporting Information 

5.5.1 General procedures and equipment 

 
All manipulations were carried out under an atmosphere of nitrogen using standard 

vacuum line and Schlenk techniques, or under an atmosphere of argon within an MBraun 

glovebox. All solvents were dried via a Grubbs design solvent purification system.20 Phenyl 

boronic acid (PhB(OH)2), p-trifluoromethylphenyl boronic acid [(p-CF3C6H4)B(OH)2], 

lithium aluminium hydride (LiAlH4), ammonium chloride (NH4Cl) and chloro(1,5-

cyclooctadiene)rhodium(I) dimer ([{Rh(COD)(µ-Cl)}2]) were purchased from Sigma Aldrich 

Ltd. and used as acquired. [IrH2(POCOP)] (POCOP = [κ3-1,3-(tBu2PO)2C6H3]21 and skeletal 

nickel9e were synthesised via literature methods and purified by re-precipitation 

([IrH2(POCOP)]) and washing with n-hexane (skeletal nickel). The NMR spectra were 

recorded at 298 K in J. Young quartz-glass NMR on Jeol ECP(Eclipse) 300 or Jeol 

ECP(Eclipse) 400 spectrometers. Anhydrous chloroform-d and THF-d8 were purchased 

from Sigma Aldrich Ltd. and stored over molecular sieves (4 Å) in the glovebox. The 1H 

and 13C NMR spectra were calibrated against the residual 1H and 13C resonances of the 

respective deuterated solvent [chloroform-d: d(1H) = 7.24 ppm, d(13C) = 77.0 ppm; 

dichloromethane-d2: d(1H) = 5.32 ppm, d(13C) = 54.0 ppm; THF-d8: d(1H) = 1.73 ppm, d(13C) 

= 25.4 ppm] relative to tetramethylsilane [d(1H) = 0.00 ppm, d(13C) = 0.0 ppm]. The 11B 

NMR spectra were calibrated against external neat BF3·Et2O [d(11B) = 0.0 ppm]. 

Integration of 11B NMR spectra was performed using MestReNova Version 7.1.1 with an 

estimated accuracy of ± 5%. ESI mass spectra were recorded on a Bruker Daltonics Apex 

IV Fourier transform Ion Cyclotron resonance mass spectrometer with a cone potential of 

+150 V using the negative mode in THF or acetonitrile. Elemental analysis was performed 

with a Eurovector EA 3000 Elemental Analyser at the University of Bristol Microanalysis 

Laboratory. Gel permeation chromatography (GPC) was performed on a Malvern RI max 

Gel Permeation Chromatograph, equipped with an automatic sampler, a pump, an 
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injector, and inline degasser. The columns (T5000) were contained within an oven (35 °C) 

and consisted of styrene/divinyl benzene gels. Sample elution was detected by means of a 

differential refractometer. THF (Fisher), containing 0.1 wt% [nBu4N]Br, was used as the 

eluent at a flow rate of 1 mL min−1. Samples were dissolved in the eluent (2 mg mL−1) and 

filtered with a Ministart SRP15 filter [poly(tetrafluoroethylene) membrane of 0.45 mm 

pore size] before analysis. The calibration was conducted using monodisperse polystyrene 

standards obtained from Sigma Aldrich. The lowest (highest) molecular weight standard 

used was 2,300 (994,000) g mol−1. Dynamic light scattering (DLS) experiments were 

carried out using a Malvern Zetasizer Nano S spectrometer using a He-Ne laser (l = 

632 nm) in a gas-tight glass cuvette in dry CH2Cl2. Thermogravimetric analysis (TGA) was 

performed on a Thermal Advantage TGAQ500 with a heating rate of 10 °C min−1 under 

nitrogen. The TGA results were analysed using WinUA V4.5A by Thermal Advantage. 

 

4.5.2 Synthesis and characterisation of NH3·BH2Ph (5.1a) and NH3·BH2(p-

CF3C6H4) (5.1b) 

Synthesis of NH3·BH2Ph (5.1a): To a suspension of LiAlH4 (2.29 g, 60.3 mmol) in Et2O 

(50 mL) was added a solution of PhB(OH)2 (5 g, 40.2 mmol) in Et2O / toluene (50 mL, 5:2) 

at 20°C and the suspension was stirred at this temperature for 2 h. The mixture was 

filtered via cannula to yield a solution of Li[BH3Ph]. This solution was added to a 

suspension of NH4Cl (3.23 g, 60.3 mmol) in Et2O (50 mL) at −78 °C and the mixture was 

stirred overnight in the cold bath until it reached room temperature. The next day the 

reaction mixture was filtered through celite. Removal of the solvent from the clear 

colourless filtrate and drying of the residue under vacuum at room temperature yielded 

compound 5.1a a colourless oil, which solidifies at low temperature (−40 °C). Yield: 1.6 g 

(15.8 mmol, 39 %).  

11B NMR (128 MHz, CDCl3): δ = −13.9 (t, 1JBH = 95 Hz) (Figure S5.1). 
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1H NMR (400 MHz, CDCl3): δ = 2.36 (2 H, q, br, BH2), 3.12 (3 H, br, NH3), 7.16 (1 H, t, 

3JHH = 4 Hz, para-ArH), 7.25-7.31 (4 H, m, meta-ArH + ortho-ArH) (Figure S5.3). 

13C{1H} NMR (101 MHz, CDCl3): δ = 125.8(ArC), 127.9 (ArC), 131.9 (ArC), 133.7 (ArC) 

(Figure S5.4).  

Elemental analysis calcd (%) for C6H10BN: C 67.37, H 9.42, N 13.10; found: C 67.66, H 

9.67, N 13.13.  

 

Figure S5.1. 11B NMR spectrum of NH3·BH2Ph (5.1a) in CDCl3 

 

 

Figure S5.2. 1H{11B} NMR spectrum of NH3·BH2Ph (5.1a) in CDCl3. 

 

 

Figure S5.3. 1H NMR spectrum of NH3·BH2Ph (5.1a) in CDCl3. 

NH3·BH2Ph 

B–H N–H 

Ar–H 

B–H 
N–H 
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Figure S5.4. 13C{1H} NMR spectrum of NH3·BH2Ph (5.1a) in CDCl3. * CDCl3. 

 

Synthesis of NH3·BH2(p-CF3C6H4) (5.1b): To a suspension of LiAlH4 (1.47 g, 38.7 mmol) 

in Et2O (50 mL) was added a solution of (p-CF3C6H4)B(OH)2 (5 g, 26.3 mmol) in Et2O / 

toluene (50 mL, 5:2) at 20°C and the suspension was stirred at this temperature for 2 h. 

The mixture was filtered via cannula to yield a solution of Li[BH3(p-CF3C6H4)]. This 

solution was added to a suspension of NH4Cl (3.23 g, 60.3 mol) in Et2O (50 mL) at 20 °C 

and the suspension was stirred overnight in the cold bath until it reached room 

temperature. The next day the reaction mixture was filtered through celite. Removal of 

the solvent from the clear, colourless filtrate and drying of the residue under vacuum 

afforded compound 5.1b as a colourless solid. Yield: 3.12 g (17.8 mmol, 69 %). 

11B NMR (128 MHz, THF-d8): δ = −16.8 (t, 1JBH = 96 Hz) (Figure S5.5). 

1H NMR (400 MHz, THF-d8): δ = 2.45 (2 H, q, br, BH2), 4.57 (3 H, br, NH3), 7.34 (4 H, m, 

meta-ArH + ortho-ArH) (Figure S5.6). 

13C{1H} NMR (101 MHz, THF-d8): δ = 120.9 (q, 3JFC = 4 Hz, meta-ArC), 123.3 (q, 1JFC = 270 

Hz, ArCF3), 123.8 (q, 2JFC = 31 Hz, para-ArC), 131.1 (ortho-ArC) (the signal for the B-

bonded ipso-ArC atom was not detected) (Figure S5.7). 

19F{1H} NMR (376 MHz, THF-d8): δ = −64.4 (s) (Figure S5.8). 

Elemental analysis calcd (%) for C7H9BF3N: C 48.05, H 5.19, N 8.01; found: C 48.15, H 

5.17, N 7.49.  

* 

ArC 
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Figure S5.5. 11B NMR spectrum of NH3·BH2(p-CF3C6H4) (5.1b) in THF-d8. R = p-CF3C6H4 
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Figure S5.6. 1H NMR spectrum of NH3·BH2(p-CF3C6H4) (5.1b) in THF-d8. * THF-d8. 
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Figure S5.7. 13C{1H} NMR spectrum of NH3·BH2(p-CF3C6H4) (5.1b) in THF-d8. Red squares: ArCF3. 

Blue squares: p-ArC. * THF-d8. 
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Figure S5.8. 19F{1H} NMR spectrum of NH3·BH2(p-CF3C6H4) (5.1b) in THF-d8. 

  

CF3 
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4.5.3 Thermal studies of NH3·BH2Ph (5.1a) and NH3·BH2(p-CF3C6H4) (5.1b) 

4.5.3.1  Thermal studies in the solid state: 

Thermal stability of solid NH3·BH2Ph (5.1a) at 20 °C: Solid NH3·BH2Ph (53 mg, 0.5 

mmol) was allowed to stand at 20 °C. After 170 h, the solid was dissolved in THF (0.4 mL) 

and analysed by 11B NMR spectroscopy to reveal partial consumption of NH3·BH2Ph [δB 

−14.0 (t, 1JBH = 83 Hz)] (ca. 75 %) to yield [NH2–BHPh]n [δB −7.2 (br)] (ca. 20 %) and 

NH3·BH3 [δB −22.9 (q, 1JBH = 107 Hz)] (ca. 5 %) (Figures S5.9 and S5.10). 

 

Figure S5.9. 11B{1H} NMR spectrum of NH3·BH2Ph (5.1a) in THF after leaving as a solid at 20 °C for 

170 h. 

 

 

Figure S5.10. 11B NMR spectrum of NH3·BH2Ph (5.1a) in THF after leaving as a solid at 20 °C for 170 h. 
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Thermal stability of solid NH3·BH2Ph (5.1a) at 70 °C: Solid NH3·BH2Ph (53 mg, 0.5 

mmol) was transferred to a J. Young quartz-glass NMR tube and heated to 70 °C for 170 

h. After cooling to 20 °C, the solid was dissolved in THF (0.4 mL) and analysed by 11B NMR 

spectroscopy indicating quantitative consumption of NH3·BH2Ph [δB −15.3 (t, 1JBH = 95 

Hz)] (trace amounts) to yield H2N=BPh2 [δB 40.0 (br)] (ca. 10 %), [HN–BPh]3 [δB 31.4 (s)] 

(ca. 85 %), NH3·BHPh2 [δB −9.3 (d, 1JBH = 87 Hz)] (ca. 5 %) and NH3·BH3 [δB −23.9 (m)] 

(trace amounts) (Figures S5.11 and S5.12). 

  

Figure S5.11. 11B{1H} NMR spectrum of NH3·BH2Ph (5.1a) as in THF after heating as a solid at 70 °C 

for 170 h. 

 

 

Figure S5.12. 11B NMR spectrum of NH3·BH2Ph (5.1a) in THF after heating as a solid at 70 °C for 170 h. 
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Thermal stability of solid NH3·BH2(p-CF3C6H4) (5.1b) at 20 °C: Solid NH3·BH2(p-

CF3C6H4) (88 mg, 0.5 mmol) was allowed to stand at 20 °C. After 170 h, the solid was 

dissolved in THF (0.4 mL) and analysed by 11B NMR spectroscopy to reveal no change [δB 

−11.2 (t, 1JBH = 95 Hz)] (Figure S5.13).  

 

Figure S5.13. 11B NMR spectrum of NH3·BH2(p-CF3C6H4) (1a) in THF after leaving as a solid at 20 °C 

for 170 h. 

 

Thermal stability of solid NH3·BH2(p-CF3C6H4) (5.1b) at 70 °C: Solid NH3·BH2(p-

CF3C6H4) (88 mg, 0.5 mmol) was transferred to a J. Young quartz-glass NMR tube and 

heated to 70 °C for 170 h. After cooling to 20 °C, the solid was dissolved in THF (0.4 mL) 

and analysed by 11B NMR spectroscopy indicating quantitative consumption of 

NH3·BH2(p-CF3C6H4) to yield [NH2–BH(p-CF3C6H4)]n [δB −6.0], [HN–B(p-CF3C6H4)]3 [δB 

−32.1] and an array of unknown boron-containing species (Figure S5.14 and S5.15).  

 

Figure S5.14. 11B{1H} NMR spectrum of NH3·BH2(p-CF3C6H4) (1b) in THF after heating as a solid at 70 

°C for 170 h. * Unknown species. R = p-CF3C6H4. 
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Figure S5.15. 11B NMR spectrum of NH3·BH2(p-CF3C6H4) (5.1b) in THF after heating as a solid at 70 °C 

for 170 h. * Unknown species. R = p-CF3C6H4. 

 

4.5.3.2 Thermal studies in solution 

Thermal stability of NH3·BH2Ph (5.1a) in THF at 20 °C: An aliquot (0.7 mL) of a 

solution of NH3·BH2Ph (53 mg, 0.5 mmol) in THF (2 mL) was stirred for 170 h at 20 °C. 

The solution was analysed by 11B NMR spectroscopy to reveal no change [δB −14.2 (t, 1JBH 

= 95 Hz)] (Figure S5.16). 

 

Figure S5.16. 11B NMR spectrum of NH3·BH2Ph (1a) in THF at 20 °C after 170 h. 

 

Thermal stability of NH3·BH2Ph (1a) in THF at 70 °C: An aliquot (0.7 mL) of a 

solution of NH3·BH2Ph (53 mg, 0.5 mmol) in THF (2 mL) was transferred to a J. Young 

quartz-glass NMR tube and heated to 70 °C for 170 h. After cooling to 20 °C, the mixture 

was analysed by 11B NMR spectroscopy indicating quantitative consumption of 

NH3·BH2Ph [δB −14.2 (t, 1JBH = 91 Hz)] (trace amounts) to yield H2N=BPh2 [δB 40.2 (s)] (ca. 
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10 %), [HN–BPh]3 [δB 31.6 (s)] (ca. 70 %), [NH2–BHPh]n [δB −6.2 (br)] (ca. 10 %), 

NH3·BHPh2 [δB −8.4 (d, 1JBH = 97 Hz)] (ca. 10 %) and an unidentified product [δB −11.4 (s)] 

(trace amounts) (Figures S5.17 and S5.18).  

 

Figure S5.17. 11B{1H} NMR spectrum of NH3·BH2Ph (5.1a) in THF after heating to 70 °C for 170 h. 

* Unassigned product. 

 

 

Figure S5.18. 11B NMR spectrum of NH3·BH2Ph (5.1a) in THF after heating to 70 °C for 170 h. * 

Unassigned product. 

 

Thermal stability of NH3·BH2(p-CF3C6H4) (5.1b) in THF at 20 °C: An aliquot (0.7 mL) 

of a solution of NH3·BH2(p-CF3C6H4) (88 mg, 0.5 mmol) in THF (2 mL) was stirred for 170 

h at 20 °C. The solution was analysed by 11B NMR spectroscopy to reveal no change [δB 

−11.2 (t, 1JBH = 95 Hz)] (Figure S5.19). 
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Figure S5.19. 11B NMR spectrum of NH3·BH2(p-CF3C6H4) (5.1b) in THF at 20 °C after 170 h. R = p-

CF3C6H4. 

 

Thermal stability of NH3·BH2(p-CF3C6H4) (5.1b) in THF at 70 °C: An aliquot (0.7 mL) 

of a solution of NH3·BH2(p-CF3C6H4) (88 mg, 0.5 mmol) in THF (2 mL) was transferred to 

a J. Young quartz-glass NMR tube and heated to 70 °C for 170 h. After cooling to 20 °C, 

the mixture was analysed by 11B NMR spectroscopy indicating quantitative consumption 

of NH3·BH2(p-CF3C6H4) to yield [HN–B(p-CF3C6H4)]3 [δB 31.5 (s)] (ca. 80 %), [NH2–BH(p-

CF3C6H4)]n [δB −6.1 (br)] (ca. 15 %) and an unidentified product [δB 9.3 (s, br)] (ca. 5 %) 

(Figures S5.20 and S5.21).   
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Figure S5.20. 11B{1H} NMR spectrum of NH3·BH2(p-CF3C6H4) (5.1b) in THF after heating to 70 °C for 

170 h. * Unassigned product. R = p-CF3C6H4. 

 

 

[NH2–BHR]n 
[NH–BR]3 

* 

NH3·BH2R 



Chapter 5 

255 

 

-70-50-30-1010305070
Chem ical Shift  (ppm )  

Figure S5.21. 11B NMR spectrum of NH3·BH2(p-CF3C6H4) (5.1b) in THF after heating to 70 °C for 170 h. 

* Unassigned product. R = p-CF3C6H4. 
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5.5.4 Single crystal X-ray diffraction analysis of [HN–BPh]3 and [HN–B(p-

CF3C6H4)]3 

Single crystals of [HN–BPh]3 were isolated upon crystallization from a toluene/diethyl ether mixture at 

−40 °C and single crystals of [HN–B(p-CF3C6H4)]3 were obtained from a n-hexane/diethyl ether mixture 

at room temperature. X-ray diffraction experiments on [HN–BPh]3 and [HN–B(p-CF3C6H4)]3 were 

carried out at 100(2) K on a Bruker APEX II CCD diffractometer using Mo-Kα radiation (λ = 0.71073 

Å). Intensities were integrated in SAINT22 and absorption corrections based on equivalent reflections 

using SADABS23 were applied. The structure of [HN-BPh]3 was solved using Superflip24 and the 

structure of [HN-B(p-CF3C6H4)]3 was solved using olex2.solve;25 both structures were refined against 

F2 in SHELXL26 using Olex2.27 All non-hydrogen atoms were refined anisotropically. All hydrogen 

atoms were located geometrically and refined using a riding model, apart from the N–H protons, which 

were located in the difference map and refined freely. Squeeze within Platon28 was used to remove 

disordered solvent from the lattice of [HN–BPh]3 that could not be sensibly modelled. In the case of 

[HN–B(p-CF3C6H4)]3 the structure was refined as a two component twin against an hklf5 file with the 

refined occupancies of the two domains 0.44:0.56. In addition, in [HN–B(p-CF3C6H4)]3, the CF3 groups 

were disordered; the occupancies of the fragments were determined by refining them against a free 

variable with the sum of the two sites set to equal 1, and the occupancies were then fixed at the refined 

values. Restraints were applied to maintain sensible geometries and thermal parameters. Crystal 

structure and refinement data are given in Table 5.1. Crystallographic data for compounds [HN–BPh]3 

and [HN–B(p-CF3C6H4)]3 have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication CCDC 1562257-1562258. Copies of the data can be obtained free of charge 

on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, e-mail: 

deposit@ccdc.cam.ac.uk].    
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Figure S5.22. Structure of [HN–BPh]3 with the atomic numbering scheme depicted. Ellipsoids are set 

at the 50% probability level. Symmetry codes i = 1-y, +x-y, +z, ii = 1+y-x, 1-x, +z. Selected bond lengths 

[Å]: B1–C1 1.573(2), B1–N1 1.424(2), B1–N1i
 1.425(2), N1–B1ii 1.425(2). Selected bond angles [°]: N1i–

B1–C1 120.92 (12), N1–B1–C1 122.36 (12), N1–B1–N1i 116.65 (14), B1–N1–B1ii 123.30 (14).  

 

 

Figure S5.23. Structure of [HN–B(p-CF3C6H4)]3 with the atomic numbering scheme depicted. Ellipsoids 

are set at the 50% probability level. Selected bond lengths [Å]: N1–B1 1.427 (4), N1–B2 1.432 (4), N2–

B2 1.425 (4), N2–B3 1.426 (4), N3–B1 1.425 (4), N3–B3 1. 435 (4), B1–C1 1.576 (4), B3–C15 1. 571 

(4), B2–C8 1.576 (4). Selected bond angles [°]: B1–N1–B2 124.0 (3), B2–N2–B3 124.3 (2), B1–N3–B3 

123.4 (2), N1–B1–C1 121.5 (3), N3–B3–C15 121.6 (2), N2–B2–C8 122.3 (2). 
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Table S5.1. Crystal data and structure refinement for [HN–BPh]3 and [HN–B(p-CF3C6H4)]3. 

Identification code [HN-BPh]3 [HN-B(p-CF3C6H4)]3 

Empirical formula C18H18B3N3 C21H15B3F9N3 
Formula weight 308.81 512.79 
Temperature/K 100(2) 100(2) 
Crystal system hexagonal monoclinic 

Space group P6cc P21/c 
a/Å 17.1231(6) 11.0171(3) 
b/Å 17.1231(6) 23.4105(6) 
c/Å 7.1049(3) 8.7127(2) 
α/° 90 90 
β/° 90 99.1234(15) 
γ/° 120 90 

Volume/Å3 1804.07(15) 2218.71(10) 
Z 3.9996 4 

ρcalcg/cm3 1.137 1.535 
µ/mm−1 0.066 0.143 
F(000) 648.0 1032.0 

Crystal size/mm3 0.637 × 0.243 × 0.204 0.59 × 0.41 × 0.25 
Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) 

2θ range for data 
collection/° 

2.746 to 55.85 3.48 to 55.908 

Index ranges 
−22 ≤ h ≤ 22, 
−22 ≤ k ≤ 22, 

−9 ≤ l ≤ 9 

−14 ≤ h ≤ 14, 
0 ≤ k ≤ 30, 
0 ≤ l ≤ 11 

Reflections collected 38173 5313 
Rint 0.0477 0.0408 

Data/restraints/parameters 1441/1/77 5313/243/413 
Goodness-of-fit on F2 1.073 1.044 

Final R indexes [I>=2σ (I)] 
R1 = 0.0285, 
wR2 = 0.0760 

R1 = 0.0584, 
wR2 = 0.1291 

Final R indexes [all data] 
R1 = 0.0309, 
wR2 = 0.0773 

R1 = 0.0937, 
wR2 = 0.1482 

Largest diff. peak/hole / e 
Å−3 

0.21/−0.13 0.70/−0.39 
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5.5.5 Dehydropolymerisation studies of NH3·BH2Ph (5.1a) 

5.5.5.1 Dehydropolymerisation of 5.1a using different catalysts ([{Rh(COD)(µ-

Cl)}2], [IrH2(POCOP)] and skeletal nickel 

 

Reaction of NH3·BH2Ph (5.1a) with 2.5 mol % [{Rh(COD)(µ-Cl)}2]: To a solution of 

NH3·BH2Ph (53 mg, 0.5 mmol) in THF (1.0 mL) was added a solution of [{Rh(COD)(µ-Cl)}2] 

(6 mg, 0.01 mmol, 2.5 mol %, 5.0 mol % Rh) in THF (1.0 mL) at 20 °C. After 6 h, an aliquot 

(0.4 mL) was transferred into a J. Young quartz-glass NMR tube and analysed by 11B NMR 

spectroscopy revealing quantitative consumption of NH3·BH2Ph to yield H2N=BPh2 [δB 

40.9 (s)] (ca. 25 %), [HN–BPh]3 [δB 30.8 (br)] (ca. 50 %) and [NH2–BHPh]n [δB −6.5 (br)] (ca. 

25 %) (Figure S5.24).  

 

Figure S5.24. 11B{1H} NMR spectrum of the reaction of NH3·BH2Ph (5.1a) and 2.5 mol % [{Rh(COD)(µ-

Cl)}2] in THF at 20 °C after 6 h. * Unassigned product.  

 

Reaction of NH3·BH2Ph (5.1a) with 5 mol % [IrH2(POCOP)]: To a solution of 

NH3·BH2Ph (53 mg, 0.5 mmol) in THF (1.0 mL) was added a solution of [IrH2(POCOP)] 

(15 mg, 0.025 mmol, 5 mol %) in THF (1.0 mL) at 20 °C. After 1 h, an aliquot (0.4 mL) was 

transferred into a J. Young quartz-glass NMR tube and analysed by 11B{1H} NMR 

spectroscopy revealing quantitative consumption of NH3·BH2Ph to yield [HN–BPh]3 [δB 

31.6 (br)] (ca. 25 %) and [NH2–BHPh]n [δB −7.2 (br)] (ca. 75 %) (Figure S5.25).   

[HN–BPh]3 H2N=BPh2 

[NH2–BHPh]n 

* 
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Figure S5.25. 11B{1H} NMR spectrum of the reaction of NH3·BH2Ph (5.1a) and 5 mol % [IrH2(POCOP)] 

in THF at 20 °C after 1 h. * Unassigned product. 

 

Reaction of NH3·BH2Ph (5.1a) with 10 mol % skeletal nickel: To a suspension of 

skeletal nickel (3 mg, 0.05 mmol, 10 mol %) in THF (1.0 mL) was added a solution of 

NH3·BH2Ph (53 mg, 0.5 mmol) in THF (1.0 mL) at 20 °C. After 70 h, an aliquot (0.4 mL) 

was transferred to a J. Young quartz-glass NMR tube and analysed by 11B NMR 

spectroscopy revealing partial consumption of NH3·BH2Ph [δB −14.0 (t, 1JBH = 95 Hz)] (ca. 

50 %) to yield [HN–BPh]3 [δB 32.8 (br)] (ca. 20 %), and [NH2–BHPh]n [δB −6.7 (br)] (ca. 30 

%) (Figure S5.26).    

 

Figure S5.26. 11B NMR spectrum of the reaction of NH3·BH2Ph (5.1a) and 10 mol % skeletal nickel in 

THF at 20 °C after 70 h. * Unassigned product. 
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Reaction of NH3·BH2Ph (5.1a) with 100 mol % of skeletal nickel: To a suspension of 

skeletal nickel (30 mg, 0.5 mmol) in THF (1.0 mL) was added a solution of NH3·BH2Ph (53 

mg, 0.5 mmol) in THF (1.0 mL) at 20 °C. After 70 h, an aliquot (0.4 mL) was transferred 

to a J. Young quartz-glass NMR tube and analysed by 11B{1H} NMR spectroscopy revealing 

quantitative consumption of NH3·BH2Ph to yield H2N=BPh2 [δB 41.0 (s)] (ca. 10 %), [HN–

BPh]3 [δB 33.1 (s)] (ca. 70 %) and [NH2–BHPh]n [δB −6.5 (br)] (ca. 20 %) (Figure S5.27).  

 

 

Figure S5.27. 11B{1H} NMR spectrum of the reaction of NH3·BH2Ph (5.1a) and 100 mol % of skeletal 

nickel in THF at 20 °C after 70 h. * Unassigned product. 

 

5.5.5.2 Dehydropolymerisation of NH3·BH2Ph (5.1a) with various catalyst 

loadings of [IrH2(POCOP)] 

To a solution of NH3·BH2Ph (200 mg, 1.9 mmol) in THF (0.5 mL) was added a solution of 

[IrH2(POCOP)] (0.5, 1 or 5 mol %) in THF (0.5 mL) at 20 °C. After 1 h, the solution was 

transferred into cold (−40 °C), stirred n-hexane, whereupon a colourless precipitate was 

observed. Excess solvent was removed via decantation and volatile byproducts removed in 

vacuo to yield an off-white solid.  
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Analysis of the reaction of NH3·BH2Ph (5.1a)  with 0.5 mol % [IrH2(POCOP)] after 

1 h: 11B NMR (THF): H2N=BPh2 [δB 39.2 (br)] (trace amounts), [HN–BPh]3 [δB 30.2 (br)] 

(trace amounts), NH3·BH2Ph [δB −13.8 (t, br)] (ca. 80 %) and [NH2–BHPh]n [δB −6.9 (br)] 

(ca. 20 %) (Figure S5.28); the GPC analysis showed the presence of a trace of high molar 

mass polymer in the range of 17 to 21 mL in the retention volume (Figure S5.29).   

 

Figure S5.28. 11B{1H} NMR spectrum of the product of the reaction of NH3·BH2Ph (2.1a) and 0.5 mol % 

[IrH2(POCOP)] in THF at 20 °C after 1 h. * Unassigned product. 

 

  

Figure S5.29. GPC chromatogram (2 mg mL−1) of the product of the reaction of NH3·BH2Ph (5a) and 

0.5 mol % [IrH2(POCOP)] in THF (0.1 wt% [nBu4N]Br) at 20 °C after 1 h. 
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Analysis of the reaction of NH3·BH2Ph (5.1a) with 1 mol % [IrH2(POCOP)] after 1 

h: 11B NMR (THF): NH3·BH2Ph [δB −12.8 (t, br)] (ca. 20 %) and [NH2–BHPh]n [δB −6.7 (br)] 

(ca. 80 %) (Figure S5.30); GPC (Mn = 96,000 g mol−1, Mw = 121,000 g mol−1, PDI = 1.25) 

(Figure S5.31).  

 

 

Figure S5.30. 11B{1H} NMR spectrum of the product of the reaction of NH3·BH2Ph (5.1a) and 1 mol % 

[IrH2(POCOP)] in THF at 20 °C after 1 h. * Unassigned product. 

 

Figure S5.31. GPC chromatogram (2 mg mL−1) of the product of the reaction of NH3·BH2Ph (5.1a) and 

1 mol % [IrH2(POCOP)] in THF (0.1 wt% [nBu4N]Br) at 20 °C after 1 h.  

 

 

* 

NH3·BH2Ph 

[HN–BPh]3 

[NH2–BHPh]n 



Chapter 5 

264 

 

Analysis of the reaction of NH3·BH2Ph (5.1a) with 5 mol % [IrH2(POCOP)] after 1 

h: 11B{1H} NMR (THF): [HN–BPh]3 [δB 31.4 (br)] (trace amounts), [NH2–BHPh]n [δB −6.0 

(br)] (Figure S4.32); GPC (Mn = 97,000 g mol−1, Mw = 112,000 g mol−1, PDI = 1.16) (Figure 

S4.33).  

 

Figure S5.32. 11B{1H} NMR spectrum of the product of the reaction of NH3·BH2Ph (5.1a) and 5 mol % 

[IrH2(POCOP)] in THF at 20 °C after 1 h. 

 

 

Figure S5.33. GPC chromatogram (2 mg mL−1) of the product of the reaction of NH3·BH2Ph (5.1a) and 

5 mol % [IrH2(POCOP)] in THF (0.1 wt% [nBu4N]Br) at 20 °C after 1 h.  
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5.5.5.3  Dehydropolymerisation of NH3·BH2Ph (5.1a) with 1 mol % [IrH2(POCOP)] 

after various reaction times 

To a solution of NH3·BH2Ph (200 mg, 1.9 mmol) in THF (0.5 mL) was added a solution of 

[IrH2(POCOP)] (1 mol %) in THF (0.5 mL) at 20 °C. After 0.5 or 2 h, the solution was 

transferred into cold (−40 °C), stirred n-hexane, whereupon a colourless precipitate was 

observed. Excess solvent was removed via decantation and volatile byproducts were 

removed in vacuo. 

Analysis of the reaction of NH3·BH2Ph (5.1a) with 1 mol % [IrH2(POCOP)] after 

0.5 h: 11B NMR (THF): H2NH=BPh2 [δB 40.2 (br)] (trace amounts), [HN–BPh]3 [δB 31.8 

(br)] (trace amounts), NH3·BH2Ph [δB −13.4 (t, br)] (ca. 20 %) and [NH2–BHPh]n [δB −6.9 

(br)] (ca. 80 %) (Figure S5.34); GPC (Mn = 30,000 g mol−1, Mw = 63,000 g mol−1, PDI = 2.11) 

(Figure S5.35).   

 

Figure S5.34. 11B{1H} NMR spectrum of the product of the reaction of NH3·BH2Ph (5.1a) and 1 mol % 

[IrH2(POCOP)] in THF at 20 °C after 0.5 h. * Unassigned product. 
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Figure S5.35. GPC chromatogram (2 mg mL−1) of the product of the reaction of NH3·BH2Ph (5.1a) and 

1 mol % [IrH2(POCOP)] in THF (0.1 wt% [nBu4N]Br) at 20 °C after 0.5 h.  

 

Analysis of the reaction of NH3·BH2Ph (5.1a) with 1 mol % [IrH2(POCOP)] after 2 

h: 11B NMR (CDCl3): H2N=BPh2 [δB 41.2 (br)] (trace amounts), [HN–BPh]3 [δB 33.3 (br)], 

NH3·BH2Ph [δB −13.4 (t, br)] (ca. 20 %) and [NH2–BHPh]n [δB −4.0 (br)] (ca. 80 %) (Figure 

S5.36); GPC (Mn = 41,000 g mol−1, Mw = 89,000 g mol−1, PDI = 2.15) (Figure S5.37).    

 

Figure S5.36. 11B{1H} NMR spectrum of the product of the reaction of NH3·BH2Ph (5.1a) and 1 mol % 

[IrH2(POCOP)] in THF at 20 °C after 2 h. * Unassigned product. 
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Figure S5.37. GPC chromatogram (2 mg mL−1) of the product of the reaction of NH3·BH2Ph (5.1a) and 

1 mol % [IrH2(POCOP)] in THF (0.1 wt% [nBu4N]Br) at 20 °C after 2 h.  

 

Table S5.2: Influence of different catalyst loadings of [IrH2(POCOP)] and reaction times on the 

dehydropolymerisation of 5.1a in THF at 20 °C. 

Catalyst loading 

 [mol %] 

Reaction  

time [h] 

Conversion 

 [%]a 

Mn / 

 [g mol−1]b 

PDIb 

0.5 1 30 –c –c 

1 1 80 96,000 1.25 

5 1 100 97,000 1.16 

1 0.5 80 30,000 2.11 

1 2 80 41,000 2.15 

a determined by integration of the signals in the 11B NMR spectra of the reaction mixtures. b determined 

by GPC analysis of the isolated solids in THF containing 0.1 wt% [nBu4N]Br. c the GPC analysis showed 

that only a trace of high molecular weight material was present. 
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5.5.6 Synthesis and Characterisation of poly(B-aryl aminoboranes)  

5.5.6.1 Synthesis and Characterisation of [NH2–BHPh]n (5.2a)  

To a solution of NH3·BH2Ph (300 mg, 2.8 mmol) in THF (0.5 mL) was added a solution of 

[IrH2(POCOP)] (83 mg, 0.14 mmol, 5 mol %) in THF (0.5 mL) at 20 °C. After 1 h, the 

solution was transferred into cold (−40 °C) stirred n-hexane, whereupon formation of a 

colourless precipitate was observed. Excess solvent was removed via decantation and the 

solid was re-precipitated using a minimal amount of CH2Cl2 (ca. 0.5 mL) and excess n-

hexane (ca. 15 mL). Decantation was then repeated. Residual solvent and volatile 

byproducts were removed in vacuo to yield a colourless solid. Yield: 115 mg (1.1 mmol, 

38 %).  

11B{1H} NMR (128 MHz, THF-d8): δB −7.4 (br) (Figure S5.38). Trace amounts of 

unassigned peaks were observed at [δB 39.5 (br)] and [δB 30.4 (br)].   

1H NMR (400MHz, CD2Cl2): δH 7.12 (5 H, m, br, ArH), 2.55 (3 H, s, br, BH, NH) (Figure 

S5.39).  

GPC: Mn = 81,600 g mol−1, Mw = 108,700 g mol−1, PDI = 1.33 (Figure S5.40).  

ESI-MS: Difference of 105 m/z ([NH2–BHPh] subunit) confirms presence of linear 

oligo(B-phenyl aminoborane) 2a up to 14 repeat units (Figure S5.41).   

TGA: A sample of solid [NH2–BHPh]n showed thermal stability up to ca. 60 °C, 

whereupon gradual weight loss occurred until ca. 275 °C and ca. 5 wt. % remained up to 

600 °C (Figure S5.42).   
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Figure S5.38. 11B{1H} NMR spectrum of isolated [NH2–BHPh]n (2a) in THF-d8 at 20 °C. * Unassigned 

product. 

 

Figure S5.39. 1H NMR spectrum of isolated [NH2–BHPh]n (5.2a) in CD2Cl2. *CD2Cl2, # n-hexane. 

 

 

Figure S5.40. GPC chromatogram (2 mg mL−1) of isolated [NH2–BHPh]n (5.2a) in THF (0.1 wt% 

[nBu4N]Br). 
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Figure S5.41. ESI mass spectrum of isolated [NH2–BHPh]n (5.2a) in THF, indicative of oligomeric 

material of at least 14 subunits.  

 

 

Figure S5.42. TGA plot of isolated [NH2–BHPh]n (5.2a) (heating rate:10 °C min−1, N2 gas flow).  
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5.5.6.2  Synthesis and characterisation of [NH2–BH(p-CF3C6H4)]n (5.2b) 

To a solution of NH3·BH2(p-CF3C6H4) (300 mg, 1.71 mmol) in a mixture of THF (0.2 mL) 

and toluene (0.8 mL) was added [IrH2(POCOP)] (51 mg, 0.086 mmol, 5 mol %) at 20 °C. 

After 1 h, the solution was transferred into cold (−40 °C), stirred n-hexane, whereupon 

formation of a colourless precipitate was observed. Excess solvent was removed via 

decantation and the solid was re-precipitated using a minimal amount of CH2Cl2 (ca. 0.5 

mL) and excess n-hexane (ca. 15 mL). Decantation was then repeated. Residual solvent 

and volatile byproducts were removed in vacuo to yield a colourless solid. Yield: 120 mg 

(0.69 mmol, 40 %). 

11B{1H} NMR (128 MHz, CD2Cl2): δB −7.8 (br) (Figure S5.43).  

1H NMR (400 MHz, CD2Cl2): δH 7.25-6.86 (4 H, m, br, ortho-ArH, meta-ArH), 2.16 (3 H, s, 

br, BH) (Figure S5.44). 

19F{1H} NMR (376 MHz, CD2Cl2): δ = −62.9 (s) (Figure S5.45).  

GPC: Mn = 86,800 g mol−1, Mw = 119,400 g mol−1, PDI = 1.37 (Figure S5.46).  

ESI-MS: Difference of 173 m/z ([NH2–BH(p-CF3C6H4)] subunit) confirms presence of 

linear oligo(B-aryl aminoborane) 2b up to 8 repeat units (Figure S5.47).  

 

Figure S5.43. 11B{1H} NMR spectrum of isolated [NH2–BH(p-CF3C6H4)]n (5.2b) in CD2Cl2 at 20 °C. R = 

p-CF3C6H4 

[NH2–BHR]n 
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Figure S5.44. 1H NMR spectrum of isolated [NH2–BH(p-CF3C6H4)]n (5.2b) in CD2Cl2 at 20 °C. * CD2Cl2. 

 

Figure S5.45. 19F{1H} NMR spectrum of isolated [NH2–BH(p-CF3C6H4)]n  (5.2b) in CD2Cl2 at 20 °C. 

 

 

Figure S5.46. GPC chromatogram (2 mg mL−1) of isolated [NH2–BH(p-CF3C6H4)]n (5.2b) in THF 

(0.1 wt% [nBu4N]Br). 
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Figure S5.47. ESI mass spectrum of isolated [NH2–BH(p-CF3C6H4)]n (5.2b) in CH3CN, indicative of 

oligomeric material of at least 8 subunits.  
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5.5.6.3 GPC analysis of 5.2a and 5.2b at different concentrations 

 

Figure S5.48. GPC chromatograms of [NH2–BHPh]n (5.2a) in THF (0.1 wt% [nBu4N]Br) at different 

concentrations. Note: another batch of polymer was used for the measurement, which was synthesised 

following exactly the procedure described in section 6.1. Samples were prepared using pure THF. 

 

 

Figure S5.49. Plot of the molecular weight of [NH2–BHPh]n  (5.2a) versus the concentration in THF. 

 

 

Table S5.3. Number average molecular weight (Mn), mass average molecular weight (Mw) and 

polydispersity index (PDI) for [NH2–BHPh]n  (5.2a) at different concentrations (c). 

c (mg mL−1) Mn (g mol−1) Mw (g mol−1) PDI 

0.5 98,800 120,700 1.22 

1 82,400 102,200 1.24 

2 73,900 91,700 1.24 
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Figure S5.50. GPC chromatograms of [NH2–BH(p-CF3C6H4)]n (5.2b) in THF (0.1 wt% [nBu4N]Br) at 

different concentrations. Note: another batch of polymer was used for the measurement, which was 

synthesised following exactly the procedure described in section 6.2. Samples were prepared using 

pure THF. 

 

 

Figure S5.51. Plot of the molecular weight of [NH2–BH(p-CF3C6H4)]n (5.2b) versus the concentration in THF. 

 

Table S5.4. Number average molecular weight (Mn), mass average molecular weight (Mw) and 

polydispersity index (PDI) for [NH2–BH(p-CF3C6H4)]n (5.2b) at different concentrations (c). 

c (mg mL−1) Mn (g mol−1) Mw (g mol−1) PDI 

0.5 75,900 84,000 1.11 

1 53,300 64,900 1.21 

2 36,900 50,500 1.63 
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5.5.6.4 DLS analysis of 5.2a and 5.2b 

 

Figure S5.52. DLS (size distribution by volume, repeat scans) of (5.2a) in 2 mg mL−1 in DCM 

[RH = 2.5 nm (average value)].  

 

 

 

Figure S5.53. DLS (size distribution by volume, repeat scans) of (5.2b) in a) 2 mg mL−1 in 

DCM [RH = 10.1 nm (average value)] and b) 1 mg mL−1 in DCM [RH = 21.2 nm (average value)]. 

 

 

  

a) 

b) 
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5.5.7 Thermal studies of [NH2–BHPh]n (5.2a) and [NH2CBH(p-CF3C6H4)]n (5.2b) 

5.5.7.1 Thermal studies in the solid State  

Thermal stability of solid [NH2–BHPh]n (5.2a) at 20 °C: Solid [NH2–BHPh]n (26 mg, 

0.25 mmol) was allowed to stand at 20 °C. After 170 h, the solid was dissolved in THF (0.4 

mL) and analysed by 11B{1H} NMR spectroscopy to reveal partial consumption of [NH2–

BHPh]n [δB −6.8 (br)] (ca. 60 %) to yield H2N=BPh2 [δB 41.1 (br)] (ca. 5 %), [HN–BPh]3 [δB 

32.7 (br)] (ca. 10 %) and NH3·BH2Ph [δB −13.5 (br)] (ca. 25 %) (Figure S5.54). Analysis of 

the solution by GPC confirmed the presence of high molecular weight polymer (Mn = 77,000 

g mol−1, Mw = 102,000 g mol−1, PDI = 1.32) (Figure S5.55).     

 

 

Figure S5.54. 11B{1H} NMR spectrum of [NH2-BHPh]n (2a) in THF after leaving as a solid at 20 

°C for 170 h. 
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Figure S5.55. GPC chromatogram (2 mg mL−1) of [NH2–BHPh]n (5.2a) in THF (0.1 wt% 

[nBu4N]Br) after leaving as a solid at 20 °C for 170 h.  

 

Thermal stability of solid [NH2–BHPh]n (5.2a) at 70 °C: Solid [NH2–BHPh]n (26 mg, 

0.25 mmol) was heated to 70 °C for 24 h. After cooling to 20 °C, the solid was dissolved in 

THF (0.4 mL). Analysis by 11B NMR spectroscopy revealed quantitative consumption of 

[NH2–BHPh]n [δB −6.3 (br)] (trace amounts) to yield [HN–BPh]3 [δB 33.5 (br)] as the sole 

product (Figure S5.56).    

 

Figure S5.56. 11B{1H} NMR spectrum of [NH2–BHPh]n (5.2a) in THF after heating as a solid at 

70 °C for 170 h. 
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Thermal stability of solid [NH2–BH(p-CF3C6H4)]n (5.2b): Solid [NH2–BH(p-

CF3C6H4)]n (43 mg, 0.25 mmol) was allowed to stand at 20 °C. After 170 h, the solid was 

dissolved in THF (0.4 mL) and analysed by 11B{1H} NMR spectroscopy to reveal no change 

of [NH2–BHPh]n [δB −6.8 (br)] (Figure S5.57). Analysis of the solution by GPC confirmed 

the presence of high molecular weight polymer (Mn = 123,900 g mol−1, Mw = 157,500 

g mol−1, PDI = 1.27). (Figure S5.58).   

  

Figure S5.57. 11B{1H} NMR spectrum of [NH2−BH(p-CF3C6H4)]n (5.2b) in THF after leaving as 

a solid at 20 °C for 170 h. R = p-CF3C6H4. * Traces of NH3·BH2(p-CF3C6H4). 

 

 

Figure S5.58. GPC chromatogram (2 mg mL−1) of [NH2−BH(p-CF3C6H4)]n (5.2b) in THF 

(0.1 wt% [nBu4N]Br) after leaving as a solid at 20 °C for 170 h. 
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Thermal stability of solid [NH2−BH(p-CF3C6H4)]n (5.2b) at 70 °C: Solid [NH2−BH(p-

CF3C6H4)]n (88 mg, 0.25 mmol) was heated to 70 °C for 170 h. After cooling to 20 °C, the 

residue was dissolved in THF (0.4 mL). Analysis by 11B NMR spectroscopy revealed partial 

consumption of [NH2-BH(p-CF3C6H4)]n [δB –7.4 (br)] (ca. 60%) to yield an unknown product 

at [δB 12.3 (br)] (ca. 40%) and trace amounts of [HN−B(p-CF3C6H4)]3 [δB 29.3 (br)] (Figure 

S5.59). Analysis of the solution by GPC confirmed the presence of high molecular weight 

material (Mn = 77,500 g mol−1, Mw = 81,000 g mol−1, PDI = 1.04) (Figure S5.60). 

 

Figure S5.59. 11B{1H} NMR spectrum of [NH2−BH(p-CF3C6H4)]n (5.2b) in THF after heating as 

a solid at 70 °C for 170 h. * Unknown species. R = p-CF3C6H4. 

 

Figure S5.60. GPC chromatogram (2 mg mL−1) of [NH2−BH(p-CF3C6H4)]n (5.2b) in THF 

(0.1 wt% [nBu4N]Br) after leaving as a solid at 70 °C for 170 h. The asterisk (*) marks an 

additional trace, which was present in the polymer batch used for the thermal studies.  
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5.5.7.2 Thermal Studies in Solution 

Thermal stability [NH2–BHPh]n (5.2a) in THF at 20 °C: A solution of [NH2–BHPh]n 

(26 mg, 0.25 mmol) in THF (0.5 mL) was stirred at 20 °C. After 170 h, the solution was 

analysed by 11B NMR spectroscopy to reveal partial depolymerisation and redistribution 

of [NH2–BHPh]n to yield H2N=BPh2 [δB 40.6 (br)] (trace amounts), [HN–BPh]3 [δB 32.4 (br)] 

(ca. 20 %), [NH2–BHPh]n [δB −6.8 (br)] and [δB −8.0 (br)] (ca. 50 %), NH3·BH2Ph [δB −14.0 

(t, 1JBH = 95 Hz)] (ca. 25 %) and NH3·BH3 [δB −22.8 (q, 1JBH = 96 Hz)] (ca. 5 %) (Figures 

S5.61 and S5.62). Analysis of the solution by GPC confirmed the presence of high 

molecular weight polymer (Mn = 66,000 g mol−1, Mw = 99,000 g mol−1, PDI = 1.49) (Figure 

S5.63).      

  

Figure S5.61. 11B{1H} NMR spectrum of [NH2–BHPh]n (5.2a) in THF at 20 °C after 170 h. 

 

 

Figure S5.62. 11B NMR spectrum of [NH2–BHPh]n (5.2a) in THF at 20 °C after 170 h. 
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Figure S5.63. GPC chromatogram (2 mg mL−1) of [NH2–BHPh]n (5.2a) in THF (0.1 wt% 

[nBu4N]Br) at 20 °C after 170 h.  

 

Thermal stability of [NH2–BHPh]n (5.2a) in THF at 70 °C: An aliquot (0.4 mL) of a 

solution of [NH2-BHPh]n (26 mg, 0.25 mmol) in THF (0.5 mL) was transferred to J. Young 

quartz-glass NMR tube and heated to 70 °C for 170 h. After cooling to 20 °C, the mixture 

was analysed by 11B NMR spectroscopy indicating partial depolymerisation and 

redistribution of [NH2–BHPh]n to yield H2N=BPh2 [δB 40.5 (s)] (ca. 5 %), [HN–BPh]3 [δB 

31.9 (br)] (ca. 70 %), [NH2–BHPh]n [δB −6.2 (br)] (ca. 5 %), NH3·BHPh2 [δB −8.1 (br)] (ca. 

15 %), NH3·BH2Ph [δB −14.1 (t, 1JBH = 97 Hz)] (ca. 5 %), NH3·BH3 [δB −22.8, (m)] (trace 

amounts) and H2B(µ-H)(µ-NH2)BH2 [δB −27.6 (br)] (trace amounts) (Figures S5.64 and 

S5.65). Analysis of the solution by GPC revealed that neither high nor low molecular 

weight species were present.   
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Figure S5.64. 11B{1H} NMR spectrum of [NH2–BHPh]n (5.2a) in THF after heating to 70 °C for 
170 h. * Unassigned product. 

   

Figure S5.65. 11B NMR spectrum of [NH2–BHPh]n (5.2a) in THF after heating to 70 °C for 

170 h. 

 

Thermal stability of [NH2–BH(p-CF3C6H4)]n (5.2b) in THF at 20 °C: A solution of 

[NH2–BH(p-CF3C6H4)]n (88 mg, 0.25 mmol) in THF (0.5 mL) was stirred at 20 °C. After 

170 h, the solution was analysed by 11B NMR spectroscopy to reveal partial 

depolymerisation of [NH2–BH(p-CF3C6H4)]n to yield [HN–B(p-CF3C6H4)]3 [δB 32.1 (br)] (ca. 

35 %), [NH2–BH(p-CF3C6H4)]n [δB −7.9 (br)] (ca. 45 %), and an unknown species [δB 12.1 

(br)] (ca. 20 %) (Figure S5.66). Analysis of the solution by GPC showed a bimodal 

distribution containing a high and a low molecular weight fraction (peak at 17.7 mL: Mn 

= 72,500 g mol−1, Mw = 77,500 g mol−1, PDI = 1.07) (peak 18.5 mL: Mn = 31,500 g mol−1 Mw 

= 33,000 g mol−1, PDI = 1.06) (Figure S5.67).  
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Figure S5.66. 11B{1H} NMR spectrum of [NH2–BH(p-CF3C6H4)]n (5.2b) in THF at 20 °C after 

170 h. * Unknown species. R = p-CF3C6H4.  

 

 

 

Figure S5.67. GPC chromatogram (2 mg mL−1) of [NH2–BH(p-CF3C6H4)]n (5.2b) in THF 

(0.1 wt% [nBu4N]Br) at 20 °C after 170 h. The asterisk (*) marks an additional trace, which was 

present in the polymer batch used for the thermal studies.  
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Thermal stability of [NH2–BH(p-CF3C6H4)]n (5.2b) in THF at 20 °C after three 

consecutive precipitations: A solution of [NH2–BH(p-CF3C6H4)]n (88 mg, 0.25 mmol) in 

THF (0.5 mL) was stirred at 20 °C. After 170 h, the solution was analysed by 11B NMR 

spectroscopy to reveal partial depolymerisation of [NH2–BH(p-CF3C6H4)]n to yield [HN–

B(p-CF3C6H4)]3 [δB 33.1 (br)] (ca. 57 %), [NH2–BH(p-CF3C6H4)]n [δB −7.9 (br)] (ca. 33 %), 

and NH3·BH2(p-CF3C6H4) [δB −14.96 (br) (t, 1JBH = 95 Hz)] (ca. 10 %) (Figures S5.68 and 

S5.69). Analysis of the solution by GPC showed a bimodal distribution containing a high 

and a low molecular weight fraction (peak at 17.3 mL: Mn = 100,000 g mol−1, Mw = 103,800 

g mol−1, PDI = 1.03) (peak 19.7 mL: Mn = 7,700 g mol−1 Mw = 9,200 g mol−1, PDI = 1.18) 

(Figure S5.70).     

 

Figure S5.68. 11B{1H} NMR spectrum of [NH2−BH(p-CF3C6H4)]n (5.2b) in THF at 20 °C after 

170 h.                           

 

Figure S5.69. 11B NMR spectrum of [NH2−BH(p-CF3C6H4)]n (5.2b) in THF at 20 °C after 170 

h. 

[HN–BR]3 

NH3·BH2R 

[NH2–BHR]n 

[HN–BR]3 

NH3·BH2R 

[NH2–BHR]n 



Chapter 5 

286 

 

 

Figure S5.70. GPC chromatogram (2 mg mL−1) of [NH2−BH(p-CF3C6H4)]n (2b) in THF (0.1 wt% 

[nBu4N]Br) at 20 °C after 170 h.  

 

Thermal stability of [NH2–BH(p-CF3C6H4)]n (5.2b) in THF at 70 °C: An aliquot (0.4 

mL) of solution of [NH2–BH(p-CF3C6H4)]n (88 mg, 0.25 mmol) in THF (0.5 mL) was 

transferred to a J. Young quartz-glass NMR tube and heated to 70 °C for 170 h. After 

cooling to 20 °C, the mixture was analysed by 11B NMR spectroscopy indicating 

depolymerisation of [NH2–BH(p-CF3C6H4)]n to yield [HN–B(p-CF3C6H4)]3 [δB 32.7 (br)] (ca. 

75 %), [NH2–BH(p-CF3C6H4)]x [δB −6.2 and −5.21 (br)] (ca. 15 %) and an unidentified 

species [δB 12.3 (br)] (ca. 10 %) (Figure S5.71 and S5.72). Analysis of the solution by GPC 

revealed that neither high nor low molecular weight polymer were present.   
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Figure S5.71. 11B{1H} NMR spectrum of [NH2–BH(p-CF3C6H4)]n (5.2b) in THF after 

heating to 70 °C for170 h. * Unknown species. R = p-CF3C6H4. 

 

 

 Figure S5.72. 11B NMR spectrum of [NH2–BH(p-CF3C6H4)]n (5.2b) in THF after heating 

to 70 °C for 170 h.    * Unknown species. R = p-CF3C6H4.  
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Chapter 6  

Outlook and Future Work 

The body of work presented in this thesis has focused on the synthesis of polyamino– and 

polyphosphinoboranes via metal-catalysed dehydropolymerisation of amine– and 

phosphine–boranes to produce materials with varied structures. This chapter will cover 

some ideas for future investigation, based on results from former chapters. 

 

6.1 Post-functionalisation of Polyphosphinoboranes: Alkene Hydroboration  

Chapter 2 and Chapter 3 focused on the synthesis of high molar mass 

polyphosphinoboranes containing either aryl or alkyl groups with a variety of 

substituents. This emphasised the versatility of the [CpFe(CO)2OTf] to create a catalogue 

of new PB materials with different properties.. 

Post-polymerisation modification has been successfully applied to organic polymers to 

create materials with a broad range of different functional groups.1 This technique has 

also been successfully applied to inorganic polymers, such as polysilanes and 

polysiloxanes, in which well-stablished Si–H activation routes, as hydrosilation and 

dehydrocoupling chemistry have been used.2 In a similar way, the P–H and B–H bonds in 

polyphosphinoboranes could be activated by subsequent reaction steps, for example, using 

hydrophosphination or hydroboration routes, respectively, to access polymers that cannot 

be synthesised by direct polymerisation of the corresponding monomers.  

The post-polymerisation route can be potentially applied to polyphosphinoboranes to 

create tailor-made polymeric materials. For example, B–H activation may be a promising 

avenue based on work by Vedejs and coworkers whom have reported the intramolecular 
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hydroboration of allylic phosphine–boranes by activation with the Lewis acid B(C6F5)3 

under catalytic conditions (Scheme 6.1).3   

 

Scheme 6.1. Intermolecular hydroboration of an allylic phosphine–borane by a Lewis acid. 

 

Preliminary experiments exploring the reactivity of polyphosphinoboranes towards 

hydroboration with alkenes by activation with B(C6F5)3 appear promising (Scheme 6.2). 

These involved the reactivity of [PhPH–BH2]n with 3,3-dimethyl-1-butene in equimolar 

quantities (1,2-C6H4F2, 60 °C) with B(C6F5)3 (10 mol %).  

 

Scheme 6.2. Polyphosphinoborane hydroboration with alkenes assisted by a Lewis acid. 

 

After 46 h, the 11B NMR spectrum showed two signals at (δB = −34.7 ppm) and at (δB = −15 

ppm) which were tentatively assigned to [PhPH–BH2]n and to a B-substituted polymer 

[PhPH–BHR]n respectively. In addition, the signal at (δB = −25.9 ppm, JBH = 94.2 Hz) 

corresponded to [HB(C6F5)3]−, which implied the activation of the B–H bond in the 

polyphosphinoborane by the Lewis acid (Figure 6.1). However, further reactivity was not 

observed, and future experiments will involve the addition of excess olefin. 
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Figure 6.1. 11B NMR spectra of [PhPH–BH2]n and 3,3-dimethyl-1-butene using B(C6F5)3 (10 mol%) in 
1,2-C6H4F2. * B(C6F5)3 # [HB(C6F5)3]− 

 

Similar experiments with the less sterically encumbered olefin 1-octene showed a signal 

at ca. (δB = −15 ppm) which was assigned to the poly(B-octyl)phosphinoborane [PhPH–

BH(CH2)8]n. These results suggest that functionalisation of polyphosphinoboranes via 

hydroboration may be a promising future approach to expanding the range of materials 

available. However, it has to be considered that the increase of the steric repulsion on 

boron and the decrease of the Lewis acidity by introduction of alkyl groups, could lead to 

a reduction of the B–P bond stability, possibly promoting scission of the polymer backbone. 

 

6.2 Synthesis and Reactivity of B-substituted Phosphine–Boranes  

Chapter 5 contained a brief overview of the chemistry of B-substituted amine–boranes, 

NH3·BH2R, and in addition, some examples of these adducts were described which 

represent a significant contribution to this underveloped field. In phosphine–borane 

chemistry, the description of analogous B-substituted phosphine–boranes, RPH2·BH2R, is 

almost non-existent. 

It has been previously reported that unsaturated phosphinoboranes PR2–BR′2 exist in 

their monomeric form when the R groups are sterically demanding substituents. In 

[PhPH–BH2]n 

[PhPH–BHR]x 

* 

# 

46 h, 60 °C 

10 min, 20 °C 
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contrast, in the absence of steric protection, these species tend to form dimeric or trimeric 

cyclic compounds or oligomeric species with both B and P atoms in tetracoordinated 

environments. In the same manner, the elusive RP=BR′ species tend to form four- (RP–

BR′)2 or six-membered (RP–BR′)3 rings with B and P atoms display in a tricoordinated 

geometry.4 For example, Power and coworkers have synthesised examples of four- (PR–

BR’)3 [R,R′ =  1-Ad,Mes and Mes,Thex] and six-membered (PR–BR’)3 [R,R′ = Cy,Mes; 

Ph.Mes;  Mes,Mes; and Mes,Ph] rings from the reaction of the corresponding boranes 

R’BX2 and the lithium salts of different primary phosphines RPHLi (Figure 6.3). However, 

no mechanistic studies for the formation of the compounds were provided.5   

 

Figure 6.3. Four- and six membered boron–phosphorus rings 

 

The use of a similar synthetic route to form four-membered rings involved the reaction of 

PhP(SiMe3)2 and RBX2 (R = 2,2,6,6-tetramethylpiperidinoborane and X = Cl, Br) where 

[PhP=BR] was proposed as an intermediate.6 Based on these results, the reactivity of 

similar substrates bearing R groups with less steric profile (R, R’ = alkyl linear groups) 

will be undertaken. This could lead to the formation of [RP=BR’] monomers. These species 

could polymerise in a head-to-tail fashion to produce unsaturated PB polymers, in a 

similar manner to that previously reported for the thermolysis of Lewis-base stabilised 

phosphinoboranes (Scheme 6.3).7 In the presence of N-heterocyclic carbenes (NHC) or 

Lewis bases (e.g. amines) the isolation of the intermediates [PhP–BR’L] (where L is a 

carbene or an amine) could be possible. 
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Scheme 6.3. Proposed Me3SiCl elimination reaction for the formation of unsaturated polyaminoboranes 

 

 

6.3 Polyamino and Polyphosphinoboranes as Precursors to Polymer-Derived 

Ceramics (PDC) 

The use of the Polymer-Derived Ceramics (PDC) route to obtain non-oxide ceramics from 

polymeric precursors is well-established and has been successfully applied to organosilicon 

and organoboron polymer derivatives.8,9 The PDC route has the advantage of controlling 

the composition and homogeneity at the atomic level. Moreover, the macromolecular 

precursors can be shaped by the different processing techniques developed in polymer 

science at mild temperatures. In this way, PDC circumvents the use of sintering additives 

which are required traditionally in powder technologies. The application of this concept to 

polyamino– and polyphosphinoboranes is necessary in order to maintain active this area 

of research. The ceramics derived from pyrolysis of polyamino– or polyphosphinoboranes 

could have similar inherent properties to boron nitride (BN) including chemical inertness, 

hardness, and high temperature stability. In addition, semiconducting properties have 

been attributed to boron phosphide (BP). This research will require the formation of an 

interdisciplinary group with knowledge in inorganic chemistry, polymer chemistry, and 

engineering.    

In Chapter 4, the synthesis of polyaminoborane homopolymers and copolymers bearing 

aryl-substituted alkyl substituents at nitrogen was described. In particular, the synthesis 

of [Ph(CH2)4NH–BH2]n–r–[NH2–BH2]m [n: 1, m: 2] is interesting, as it is a soluble 

polyaminoborane that features high content of  [NH2–BH2] units. Further pyrolytic  
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studies of this polymer will be investigated. Initial cross-linking studies of 

polyaminoboranes were performed, and a slight improvement on the ceramic yield 

compared to the homopolymers was observed by TGA. Investigation on the formation of 

cross-linked BN polymeric materials using diamine–borane linkers, (BH3·NH2–R–

NH2·BH3), with R groups consisting in long alkyl or ethylene glycol chains, will be 

explored.  

In a similar manner, the pyrolysis of polyphosphinoboranes could be a potential route to 

obtain BP. In a previous report by Manners and coworkers, the synthesis of [PhPH–BH2]n 

was achieved by the use of Rh-based precatalysts and the resulting polymer displayed 

high ceramic yields (75-80%) by TGA (1000 °C, 10 °C min−1). Subsequent pyrolysis of this 

material (1000 °C, 10 °C min−1, 24 h) under nitrogen gave a ceramic that, after analysis 

by powder X-ray diffraction, it was found to contain BP as the main crystalline 

component.10 Detailed characterisation of the ceramic material was unpublished.   

In Chapter 3, the thermal properties of a range of poly(alkylphosphinoboranes) were 

reported. The polymer [MePH–BH2]n displayed the highest ceramic yield (75 %) by TGA 

(700 °C, 10 °C min−1). We proposed that [MePH–BH2]n could be a better precursor to boron 

phosphide (due to its low carbon content (20 % by mass)) than [PhPH–BH2]n (59% by mass) 

as the former can potentially form more volatile carbon products that could lead to purer 

samples of BP.  The synthesis of [MePH–BH2]n on a larger scale and subsequent pyrolytic 

studies are under investigation. Also, detailed characterisation studies of the ceramic 

product will be performed.    
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6.4 Detailed studies of the solution behaviour of highly polar polyamino– and 

polyphosphinoboranes.  

In Chapter 2 and Chapter 5, the formation of polyamino– and polyphosphinoboranes 

[REH–BHR’]n (E= N or P) substituted by fluoro-containing groups (p-CF3C6H4 or 

m,m(CF3)2C6H3) on the phenyl ring was described. In addition, we observed an inverse 

relationship between the polymer concentration and the apparent molar mass of the 

polymers, as observed by GPC. This is reminiscent of the behaviour of polyelectrolytes 

where the hydrodynamic radius (Rh) increases at low concentration due to the effect of 

osmotic pressure (Figure 6.4).11  It is clear that further investigation is needed to uncover 

the nature of this unusual phenomenon in these polar inorganic polymers. These studies 

will include the use of static light scattering (SLS) as complementary technique to DLS. 

These studies will confirm the values given on the hydrodynamic radius obtained by DLS 

or the radius of gyration obtained by SLS, depend on the polymer concentration. If the 

radius of gyration does not depend on polymer concentration, then the phenomenon is 

exclusively related to a non-exclusion effect that occurs when the hydrophobic column in 

the GPC interacts with the polar polymers. In addition, we propose that the use of different 

concentrations of electrolytes in solution might counter the polyelectrolyte effect on 

polyaminoboranes and polyphosphinoboranes. Measurements by SLS, DLS and GPC will 

be performed. We also propose an investigation into non-ionic, polar organic polymers (e.g. 

fluorinated polystyrene [RC5H4CH2–CH2]n (R = CF3), poly(2-vinylpyridine)s or poly(4-

hydroxystyrene)) in polar solvents to confirm if similar polyelectrolyte effects occur. 

Recently, the use of ionic liquids, as the mobile phase in HPLC, have been used in the 

characterisation of polyelectrolytes. Also, the ionic liquid was found to counter the non-

exclusion effects in some polyelectrolytes.12 The use of a similar technique in our polymers 

could be possible to improve characterisation.   
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Figure 6.4. Representation of the polyelectrolyte effect on B-substituted polyaminoboranes. 

 

6.5 Detailed mechanistic studies of the dehydropolymerisation of polyamino– 

and polyphosphinoboranes by [IrH2(POCOP)] and [CpFe(CO)2OTf] precatalysts.  

The first example of well-defined homogeneous catalytic dehydropolymerisation was 

achieved using RNH2·BH3 (R = H, Me, nBu) and an Ir(H)2(POCOP) catalyst to form 

polyaminoboranes [RHNBH2]n.13  In Chapter 4 and in Chapter 5, this 

dehydropolymerisation technique was extended to include other amine–boranes 

substrates. Although the [Ir] catalyst produced polyaminoboranes with high molar mass 

and reasonably low polydispersity, the key steps in the polymerisation are not completely 

understood, though some attempts have been made with other metal-based precatalysts.14 

Understanding the difference in polymer molecular weights obtained via metal catalysed 

or catalyst-free processes will form part of our future work in this area. One of the 

challenges is the elucidation of the initial steps in the proposed chain growth mechanism 
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for the synthesis of polyaminoboranes, in which a slow initial dehydrogenation of 

MeNH2·BH3 is followed by fast insertion of the resulting MeNH=BH2.13b 

It would be of interest to probe the proposed mechanism of dehydropolymerisation by 

experimental studies. To achieve this, we would use lower reaction temperatures and 

higher catalyst loading. The detection of intermediates by ESI-MS at early stages of the 

reaction, and  their characterization by X-ray crystallography are key targets. 

Mechanistic insight into the dehydropolymerisation process is needed to establish whether 

the dehydrogenation and coupling steps proceed via aminoborane or linear diborazane, as 

intermediates.15 To probe this, we propose screening  different primary amine–boranes 

RNH2·BH3 (e. g. R = iPr) in order to find a suitable substrate to slow down the rate of 

catalysis, in order to gain better mechanistic insight. This may also be achieved by 

lowering reaction temperatures and performing the reactions in closed systems. 

Based on previous studies of dehydrocoupling chemistry and model species,16 a chain 

growth coordination-type mechanism was proposed for the dehydropolymerisation of 

primary phosphine–boranes via [CpFe(CO)2OTf].17 In Chapter 2 and in Chapter 3, this 

synthetic methodology was applied to other phosphine–boranes containing either aryl or 

alkyl substituents. However, no mechanistic insight for these reactions was obtained. In 

order to find a general polymerisation mechanism further studies are needed. It has been 

established that the phosphidoborane [CpFe(CO)2(η1-PRH–BH3] complex, a likely 

intermediate, is also active as a catalyst in the dehydropolymerisation process. A study of 

the coordination chemistry of monomeric phosphine– and phosphinoboranes (and 

oligomeric species) with [CpFe(CO)2OTf] to model the different steps of the catalytic cycle 

will also be performed.  
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