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Abstract

Gravitational Stability in Complex Colloidal Systems

Weak colloidal gels formed by a depletion attraction are metastable for a finite
time before undergoing a catastrophic collapse. This delayed-collapse phenomenon
has been previously linked to ageing and the lifetime of a gel explained by the way
of single particle-particle bond kinetics. Here we present the dependence of the delay
time before collapse (τd) on temperature, with a striking two-regime dependence
becoming clear, one at low and one at high temperatures. We compare τd to the
calculated Kramer’s escape time (τesc) and find that the single-bond model is not
sufficient to explain the decrease in τd observed.

To bridge the microscopic and macroscopic length-scales, we use the technique
Particle Tracking Velocimetry (PTV) to probe the mesoscopic length-scale in col-
loidal gels. This allows us to probe changes in the gel structure using 25 micron
fluorescent tracer beads. As well as gaining much more detailed information about
the dynamics that occur within colloid-polymer gels, we can track this tracer move-
ment before macroscopic collapse is observed. We find that in the low-temperature
regime, tracers are quiescent for a period of time before heterogeneous tracer move-
ment begins in localised regions, which eventually propagates throughout the sample
to cause macroscopic collapse. At higher temperatures however, tracer movement is
homogeneous and no tracer quiescence is observed.
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Chapter 1

Introduction

1.1 Motivation

In this chapter we will explore the current body of scientific understanding concerning

colloidal suspensions and their behaviours when a polymer is added, mostly the for-

mation of colloid-polymer gels. We will then discuss the various methods of collapse

of colloid-polymer gels, as well as the possible effects changing temperature will have

on both the components of the system and the system as a whole.

With many industrial products using gelation as a method of formulation sta-

bilisation, such as agrochemical products, personal care products, and even foods,

there is a great deal of interest in improving the fundamental understanding of key

parameters to consider when formulating a product. As well as looking for meth-

ods to reliably accelerate the collapse of samples, and to find early indicators of a

product’s long-term stability. However, a product does not just sit on a shelf until

it is purchased, it must be shipped to many destinations in many different ways, so

understanding the conditions a product is exposed to during transit is of paramount

importance. For example, temperatures in a shipping container can vary between 10

and 50 °C [1], a significant variation that may lead to a product being unstable when

shipped to one region but not another. Other factors to be considered in the lifetime

of a product include humidity, oxygen content and also packaging [2].

Temperature specifically is of great interest, as it has been long used as a method

for accelerating the collapse of a formulation, this can be done either by cycling the

temperature up and down [3] to stress the sample, or by storing the sample at a

constant but higher temperature [4].
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(a)

(b)

Figure 1.1: Two images showing various simplified model formula-
tions at different stages of collapse. Provided by John Hone (Syngenta

UK).

Figure 1.1a shows various simplified model formulations during collapse, the colours

are determined by the active ingredient used in the formulation. Most of these sam-

ples begin to collapse as soon as they are made. The suspended particles (milled

active ingredient crystals) are denser than the solvent so sediment down, leaving a

denser colloid phase below a predominantly solvent serum above. With the brown

samples, most form a visible interface during collapse, but the clarity of the serum

above the dense phase varies between samples, with some giving a clear interface

(left-hand side of second row down) and others giving a hard to identify interface

(middle top row). This brings about complications when trying to quantify the sta-

bility of these formulations, as detecting an interface can be challenging. The yellow
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samples in the bottom half of the image have a much clearer serum than the brown

samples in most cases, however on the left-hand side many of the samples have no

clear interface, but a gradual change in colloid density from high to low. This makes

tracking the collapse of the samples over time very difficult as it is almost impossible

to quantify the location of the interface.

When combining these complications with the long time-scales associated with

industrial formulation collapse (often months to years) it is clear to see how challeng-

ing it is to accurately measure the lifetime of a formulation by observation. Firstly,

you must wait a long time to observe the collapse, and secondly, even after such a

wait, you may gain limited or flawed data.

Figure 1.1b shows close ups of a simplified model formulation that does not col-

lapse in an easily observable manner. The left-hand sample appears to have a clear

interface between the bright white top of the sample and cream coloured phase, which

could be easily tracked. The middle two samples show a splitting of the cream phase,

which is very pronounced in the third sample. Now whilst at first you may think the

third sample provides the greater challenge, it is in fact the second sample. It is clear

to the eye that the third sample has collapsed, whilst it is much more ambiguous in

the second (it is in fact collapsed but very difficult to see).

1.2 Colloidal Suspensions

Colloids are by no means a recent discovery, having been used throughout history.

An excellent example of this is the use of colloidal gold in staining glass, with some

examples, such as the Lycurgus Cup, dating back to Roman times [5]. However,

thankfully, our understanding of colloids and their applications has significantly in-

creased since ancient times, with even colloidal gold finding new, novel applications

in various fields such as cancer pro-drug therapies [6].

Colloids come in many forms, such as solid dispersed in a liquid (sol), liquid

dispersed in a gas (aerosol), a gas dispersed in a liquid (foam), or as emulsions of oil

and water.
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1.2.1 Stabilisation Methods

Van der Waals attractions arising from permanent dipoles, induced dipoles and tem-

porary dipoles, caused by variation in the electron cloud of atoms drive aggregation in

colloidal suspensions. Whilst these attractions are from the atomic level, the work of

Hamaker [7] allows for the attraction between particles to be calculated. Equation 1.1

shows this for short particle-particle separations (h � 2a), where A is the Hamaker

constant, a is the particle radius, and h is particle separation [8]. The Hamaker

constant is a material property and is determined by the density and electrical po-

larisability of the material.

VA = − Aa
12h

(1.1)

Overcoming these Van der Waals attractions is required for the stabilisation of

colloidal suspensions to be achieved.

The first method we will discuss is steric stabilisation [9], in which a colloidal

particle has polymers adsorbed to its surface in sufficiently high amounts to introduce

a repulsion between colloidal particles. This can be achieved by having a steric layer

which is greater in size than the range of attraction between the particles, thus giving a

repulsion at long ranges and preventing the particles from entering the range at which

they are strongly attracted [10]. A common sterically stabilised colloidal system

is poly(methyl)methacrylate (PMMA) particles with a stabilising layer of poly-12-

hydroxystearic acid (PHSA). These particles act like almost hard spheres [11], can be

dyed with a variety of fluorescent dyes [12], and can be synthesised at a wide range

of sizes [13]. This makes them an excellent system to use in exploring the phase

behaviour of colloidal suspensions [14], as well as probing the forces that bring about

the electrostatic stabilisation of colloids discussed below [15].

As alluded to above, the second form of colloidal stability is achieved through

electrostatic stabilisation, in which, rather than a physical layer preventing the par-

ticles from attracting, the charged surface of the colloid provides a repulsion against

aggregation. This electrostatic stabilisation comes about due to a double layer of

counter-ions surrounding the charged surface of the colloid, with co-ions depleted

from it. This Stern layer of counter-ions is an immobile monolayer, after which there
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Figure 1.2: Diagram showing two colloidal particles with a steric
stabilising layer preventing them from aggregating.

is a diffuse (Gouy-Chapman) layer of predominantly counter-ions, before which the

distribution of ions evens out in the bulk solution. It is the Stern and diffuse layers

that are referred to as the double layer and are what account for the electrostatic

repulsion between colloidal particles. The decay length of the double layer can be

described by the Debye screening length κ−1, which is shown below in equat8ion 1.2.

Where λB is Bjerrum length, and ρion is the number density of ions (assuming the

ions are univalent). The Bjerrum length is defined as the separation at which an

electrostatic attraction between two elementary charges becomes comparable to the

thermal energy kBT [16]. From this equation it becomes clear that increasing the salt

concentration (ρion) in a colloidal suspension reduces the range of the electrostatic

repulsions in a system which can lead to aggregation or phase separation [8]. The

Bjerrum length is shown in Equation 1.3, where e is the elementary charge, ε0 is the

permittivity of free space, and εr is the dielectric constant.

κ−1 = (4πλBρion)−1/2 (1.2)

λB =
e2

4πε0εrkBT
(1.3)

The DLVO theory (named after its four developers Derjaguin and Landau [17],

Verwey and Overbeek [18]) combines both the attractive Van der Waals interactions,

as well as electrostatic repulsions to give an energy curve similar to the one shown in

Figure 1.4. From Figure 1.4 it is clear that increasing either the range or magnitude

of electrostatic repulsions will increase the energy barrier that must be crossed by the

system for it to irreparably aggregate, and that stronger Van der Waals attractions
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Figure 1.3: Diagram showing the double layer of counter-ions next
to a charged particle surface

will increase the likelihood of flocculation (differentiated from aggregation by the fact

that it may be re-suspended). Conversely if the electrostatic repulsions are weaker,

then the energy barrier for the system to aggregate is lowered, therefore it is normally

through the control of electrostatic repulsions that colloidal stability can be achieved.

Figure 1.4: Energy potential for a colloidal suspension, combining
both the electrostatic repulsion between colloidal particles and the Van

der Waals attraction.

1.2.2 Colloid-Polymer Mixtures

When a polymer is added to a colloidal suspension, phase separation tends to occur,

with a broad range of phase behaviour dependent on polymer size and concentration,

as well as the surface chemistry of both colloid and polymer[10]. Phase separation
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can be caused by bridging flocculation [19], in which the polymer molecule adsorbs

to the surface of multiple particles, thus bridging them. This method of inducing

flocculation is used widely in various industries, such as the oil industry [20], to

remove suspended particles from a solution, and are referred to as either clarifying

agents or de-emulsifiers.

(a) Bridging (b) Depletion

Figure 1.5: Diagram showing the two mechanisms through which
phase separation can occur when a polymer is added to a colloidal

suspension.

If the polymer added to the suspension is non-adsorbing, then phase separation

will still occur, but through a dramatically different mechanism, called depletion [21],

an entirely physical effect. As the polymer is non-adsorbing, there is a layer around

each particle which the polymer’s centre of mass cannot occupy, called the depletion

zone and is equal to the radius of gyration of the polymer, overlap of this depletion

zone leads to an excluded volume between the particles that the polymer cannot

occupy. A diagram of this is shown in Figure 1.6.

A simple way to rationalise the depletion attraction is by considering both the

entropy available to the particles and by the polymer solution. In the dilute colloid

limit, where there is no overlap of depletion volumes, the polymer is free to move

within free volume of the system (Vf ), which is the overall volume (V ), minus the

volume occupied by the colloids (Vc) and their depletion zone (Vdep).

Vf (dil) = V − (Vc + Vdep) (1.4)
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Figure 1.6: Diagram showing the depletion (dashed) and overlap
(hatched) volumes around two colloidal particles.

Therefore, increasing the free volume will lead to increased entropy for the polymer

as it has more space to occupy. Many methods can be used to change this, such as

lowering the colloid volume fraction (φ), changing the polymer to lower Vdep, or

diluting the entire sample to increase V . Changing these variables are what lead to

the wide and varied phase behaviours found in colloid-polymer mixtures and will be

further discussed below.

However, whilst the depletion zone is governed by polymer size, there is also the

consideration that depletion zones can overlap, giving an excluded or overlap volume

(Vov) between colloidal particles. By increasing this overlap volume, you reduce the

Vdep in the system, increase the free volume available to the polymer and thus the

entropy of the polymer solution.

Vf (conc) = (V − (Vc + Vdep)) + Vov (1.5)

It is this entropic driving force from depletion zones overlapping that causes the

colloidal particles to come together and aggregate. Whilst the colloidal particles lose

entropy by coming closer together, this is outweighed by the entropy gain for the

polymer.

1.3 The Depletion Interaction

Another way to model the depletion interaction is as an imbalance of osmotic pressure

exerted on the particles by the polymer solution, originally proposed by Asakura and

Oosawa [21, 22]. In the Asakura Oosawa (AO) theory, the colloidal particles are

considered as purely repulsive hard spheres and the polymer chains considered as
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penetrable hard spheres that do not interact with one another. As they are ideal

polymers, the osmotic pressure (Πp) can be calculated from Van’t Hoff’s law shown

in Equation 1.6, where nb is the number density of the polymer.

Πp = nbkBT (1.6)

When two particles’ depletion zones overlap this causes an excluded volume be-

tween the two particles to form, in which no polymer can occupy that space. In turn

this causes a decrease in the osmotic pressure exerted on the particles.

Uov =


+∞ h ≤ d

−ΠpVov d < h ≤ d+ 2Rg

0 h > d+ 2Rg


(1.7)

The attraction caused by depletion can be modelled as an attractive pair potential

Uov where Πp is the osmotic pressure of the polymer, d is the particle diameter, Rg

is the polymer radius of gyration, and h is the centre to centre particle separation

[23]. The top line is the assumed hard sphere potential between the particles. The

volume of the overlapping depletion zones between two particles at a separation h is

calculated from Equation 1.8 where ξ is the ratio of the polymer radius of gyration

(Rg) to the particle radius (a), Rg/a. This is commonly referred to as the colloid

polymer ratio.

Vov =

(
1− 3h

2d(1 + ξ)
+

1

2

[
h

d(1 + ξ)

]3) π

6
d3 (1 + ξ)3 (1.8)

The depletion potential is entirely governed by the osmotic pressure of the polymer

solution Πp and the volume of overlap between the two depletion zones around the

particles. A larger Vov will require a larger depletion thickness around the particles,

which is determined by the ratio of the polymer radius of gyration and the particle

radius Rg/a.
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1.3.1 In the Semi-dilute Regime

Whilst at low polymer concentrations the range of the depletion interaction is the

same as the size of the polymer Rg, above the concentration at which individual

polymer chains begin to overlap this is no longer the case. The concentration at

which the polymer chains begin to overlap is dubbed the overlap concentration C∗p

and is shown in Equation 1.9.

C∗p =
3Mw

4πR3
gNA

(1.9)

Where Mw is the molecular weight of the polymer, Rg the polymer radius of

gyration, and NA is Avogadro’s constant.

The strength of the depletion potential is quoted as its strength at contact (U0

or sometimes Uc) in units of kBT , shown in Equation 1.10. This captures the depen-

dence on not only the range of the attraction, but also the polymer concentration,

in determining the strength of a pair potential between two colloid particles due to

depletion [24]. Where qs is the relative range calculated from Equation 1.11, where y

is the reduced polymer concentration y = Cp/C
∗
p , and the de Gennes exponent γ is

0.77 for excluded volume chains in a good solvent [25], and qR is the size ratio of the

polymer and particle radius Rg/a.

−U0

kBT
= q2s

(
qs +

3

2

)
q−3R y(1 + 3.77y1.31) (1.10)

qs = 0.865q0.88R (1 + 3.95y2γ)−0.44 (1.11)

The depletion thickness around sphere of radius a can also be approximated, using

the following power laws for a Θ solvent and good solvent respectively [10, 24]. Where

φp is the relative polymer concentration.

δs
a

= 0.938
(
q−2R + 6.02q−2R φ2p

)−0.45
(1.12)

δs
a

= 0.865
(
q−2R + 3.95q−2R φ1.54p

)−0.44
(1.13)
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With many models and estimations for calculating the strength and range of the

depletion potential, and in some cases whether a depletion attraction is even present,

available in the literature, there are still limitations to directly measure the depletion

attraction in colloidal systems, which we will discuss below.

1.3.2 Measuring the Depletion Potential

The presence and magnitude of a depletion potential has been measured by Tuinier

et al. [26] using a combination of Small Angle Neutron Scattering (SANS), light

transmission measurements and Dynamic Light Scattering (DLS). Further to this,

Milling et al. [27] use Atomic Force Microscopy (AFM) to measure the depletion

potential between 3.8 µm silica particles with a short ranged depletion attraction of

around 20 nm. Total Internal Reflection Microscopy (TIRM) can also be used to

measure the depletion attraction between a wall and a colloidal particle, with either

a polymer depletant to give an attraction [28], or where the particle is depleted from

the surface giving a repulsion [29]. Optical tweezers can also be used to measure

the depletion potential between colloidal particles [30], however due to constraints

of tracking the colloidal particles this has only been performed using large molecules

such as DNA as a depletant [31].

The main challenges faced when measuring the depletion potential directly appear

to be predominantly technique resolution, with AFM only able to measure extremely

short-range depletion attractions, and optical tweezers only having sufficient resolu-

tion to measure extremely long range depletion potentials. However due to recent

techniques allowing the particles to be resolved at very close separations, optical

tweezers could be a powerful method in measuring the depletion potential of indus-

trially relevant polymers such as xanthan or Hydroxyethylcellulose (HEC) derivatives.

Furthermore, AFM and TIRM measure depletion against a wall, which does not allow

the measurement in situ of a system. So, results would need to be converted from

the particle-wall attraction measured, to a particle-particle attraction.
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1.4 Phase Behaviour

The phase behaviour of colloid-polymer mixtures is rich and varied with many equi-

librium and non-equilibrium states having been observed [23, 32, 33]. At low polymer

concentrations a single phase colloidal fluid is formed. Above a critical concentration

of polymer, the depletion interaction is sufficient to drive phase separation, and a

colloid-rich (liquid) phase and colloid-poor (gas) phase is formed, this critical con-

centration is lowered as colloid volume fraction (φ) is increased. At higher polymer

concentrations and colloid volume fractions a crystalline phase is formed along with

a gas phase, with triple points and co-existence areas being predicted and observed

[32, 34]. In each of these phase transitions the two phases are in thermodynamic

equilibrium with one another, and at the triple point, three phases.

An example of non-equilibrium phase behaviour is gelation, where phase separa-

tion becomes arrested, in this case, the phase separation dynamics are either halted

or slow significantly. This leaves the sample thermodynamically unstable, whilst

appearing metastable when viewed by eye. Gelation is usually observed when a

system is quenched deep into the gas and crystal phase, as the crystal phase has suffi-

cient volume fraction and depletion attraction that it forms a space-spanning network

throughout the system, allowing it to support its own weight.

As it is the favourable overlap of depletion zones that drives this phase separa-

tion, the polymer size (Rg) relative to the colloid size (a) is an important factor in

predicting the phase behaviour of a colloid-polymer mixture.

The Free Volume Theory (FVT) developed by Lekkerkerker et al. [32] accurately

predicts the phase behaviour of colloid-polymer mixtures at different colloid volume

fractions and polymer concentrations. The free volume (α) available to the polymer

solution is shown in Equation 1.14, allowing the polymer concentration to be stated

as ctotp = αcp.

α = (1− φ)exp(−Af −Bf2 − Cf3) (1.14)

Where φ is volume fraction and:

f = φ/(1− φ) (1.15)
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With the coefficients:

A = (1 + qs)
3 − 1 (1.16)

B = 3q3s(qs + 3/2) (1.17)

C = 3q3s (1.18)

Where qs is δs/a, the relative depletion range.

Figure 1.7: Phase Diagrams of colloid-polymer mixtures of colloid
volume fraction (φ) and dimensionless polymer concentration, for size

ratios 0.1 (left) and 0.4 (right). Reproduced from [32].

Figure 1.7 shows phase diagrams generated by Lekkerkerker et al. [32] using FVT

for colloid-polymer ratios of 0.1 and 0.4. Increasing the colloid-polymer ratio gives

rise to more complex phase behaviour, with the emergence of gas + liquid, liquid +

crystal, and gas + crystal phases.

Fleer and Tuinier [24] build upon Free Volume Theory by incorporating the shrink-

ing of the depletion zone in the semi-dilute polymer regime. The depletion range

crosses over from being of order Rg in the dilute regime to of order the blob size ξ.

The depletion range in this crossover between the dilute and semi-dilute regimes is

shown in Equation 1.11.
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1.4.1 The Effect of Temperature on Phase Behaviour

The effect of temperature on colloid-polymer mixtures has only been sparsely studied,

presumably due to the fact that increasing polymer concentration in a phase diagram

has been made analogous to reducing temperature [25, 35, 36], as well as used as a

parameter in the simulation of gelation in colloidal suspensions.

Taylor et al. [37] explore the effect of temperature on a system of PMMA particles

(a = 540 nm) and polystyrene (Mw = 8.5 x 106) in cis-decalin. Giving a θ temperature

of 10 °C and a Rθ
g of 95 nm, and a colloid-polymer ratio equalling 0.176.

For the effect of temperature on the radius of gyration of polystyrene, Taylor et

al. [37] proposed Equation 1.19 which was fitted to experimental data obtained by

Berry [38].

Rg(T ) = Rθg

[√
2

(
1− exp

(
Tθ − T
τ

))
+ 1

]
(1.19)

Where τ is 20°C, Tθ is the temperature at which the solvent becomes a θ - solvent,

and Rgθ being the unperturbed radius of gyration. The expansion of the radius of

gyration is due to the crossover from a poor solvent to a good solvent, causing the

polymer to swell.

(a) (b)

Figure 1.8: Phase diagrams for a mixture of PMMA and polystyrene,
(A) showing the effect of temperature on phase boundaries, and (B)
comparing experimental observations and AO theory. Both repro-

duced from [37].

Poon et al. [39] explore the effect of temperature on a colloid-polymer mixture at

14



φ = 0.2 using a system consisting of PMMA particles (a = 217 nm) and polystyrene

(Rg = 12.8 nm) in cis-decalin, giving a colloid-polymer ratio of 0.06. They study

between 8 °C and 28 °C with the θ temperature of polystyrene in decalin being 12.5

°C. Figure 1.9 shows the phase diagram of this system at room temperature observed

visually.

Figure 1.9: Phase Diagram comparing experimental observations
(solid lines) and free volume theory of Lekkerkerker (dashed lines)

[32]. Reproduced from [39].

Figure 1.10 shows the effect of temperature on the phase boundaries in the system,

with the main effect being that increasing temperature reduces the amount of polymer

required to observe fluid-crystal coexistence. This decrease is attributed to firstly, the

polymer coils expanding and thus increasing the range of the depletion interaction

(δ) and secondly, that osmotic pressure (Πp) exerted by the polymer increases with

temperature.

Whilst the work on the effect of temperature is indeed limited, the studies of

Taylor and Poon find that any change in the phase behaviour of colloid polymer

mixtures due to temperature is caused by the expansion or contraction of the polymer

used. It would appear that the effect of temperature on the phase boundaries lessens

as temperature is further increased (shown in Figure 1.10). Therefore, if a system

can be accurately characterised at different temperatures, any change in the phase

diagram can be mapped.
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Figure 1.10: The effect of temperature on the fluid (circles), fluid and
crystal (squares), and gel (triangles) phase boundaries. Reproduced

from [39].

1.5 Dynamics in a Depletion System

Understanding the diffusion of colloidal particles through a polymer solution is an

area of great interest, especially when concerned with non-adsorbing polymers and

depletion based systems. The Brownian motion of a free particle can be calculated

from when the Mean Squared Displacement (MSD) 〈r2〉 grows linearly with time. It

is dependent on the time (t) and the diffusion coefficient D0. Equation 1.20 shows

the relationship between the MSD and D0 in three dimensions. The Stokes-Einstein

equation (Equation 1.21) relates the diffusion constant D0 to the radius of a particle

a, and the viscosity of the medium it moves through η. The Brownian relaxation

time (τB), is the time taken for the particle to diffuse its own radius, and is shown in

Equation 1.22, where η0 is the solvent viscosity, and a the particle radius.

〈r2〉 = 6D0t (1.20)

D0 =
kBT

6πηa
(1.21)

τB =
6πη0a

3

kBT
(1.22)
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However, when a particle moves through a polymer solution it ‘senses’ the non-

uniform viscosity of the fluid, which results in the particle not being affected by

the solvent viscosity or the polymer viscosity entirely, but an effective viscosity, the

value of which lies between the two [40]. Figure 1.11 compares experimental data

and two-layer model results for various depletion ranges and polymer concentrations,

with the two-layer model (discussed below) appearing to breakdown at high polymer

concentrations and for longer range depletion attractions.

Figure 1.11: Correction function to the translational friction coef-
ficient as a function of relative depletion thickness for three polymer
concentrations. Data points from [41] and solid lines follow the ana-

lytical two-layer results from [42]. Reproduced from [40].

Fan et al. [42] have modelled the motion of a particle through a polymer solution

and find that a two-layer approach is appropriate when considering particle dynam-

ics. The first layer is the depletion zone around the particle, in which the particle

experiences solvent viscosity (as the polymer is depleted from the particle surface).

After this layer, the particle experiences the bulk polymer viscosity. However, as the

range of the depletion zone increases (δ/a) the two layer approximation does begin

to deviate from analytical results.

Figure 1.12 shows the reciprocal of the translational correction factor (gt) plotted

against dimensionless depletion thickness d (d = δ/a). The correction factor gt is

shown in Equation 1.23 and related to the solvent viscosity η0 and the effective vis-

cosity experienced by the particle ηeff , with ηeff being between the solvent η0 and
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Figure 1.12: Comparison of the two-layer approximation to asymp-
totic first and second order solutions for the correction function gt.

Two layer results from [42]. Reproduced from [41].

polymer ηL viscosities.

Comparing a first order approximation and second order approximation, shows

that the first order over-estimates slightly at large depletion thicknesses and diverges

as depletion range decreases. The second order approximation fits across all depletion

ranges shown. The two-layer approximation from [42] is also compared, and fits well

at low depletion thicknesses and begins to diverge at d ≈ 0.8.

ηeff = η0g
t (1.23)

η0 < ηeff < ηL (1.24)

Figure 1.13 shows the depletion zones around two particles (with a range of d = 1)

with viscosity gradients around each particle that then merge as the depletion zone

around each particle overlap. The bulk viscosity outside of these depletion zones is

given as ≈ 100 times the solvent viscosity. The first contour around each particle

is two times the solvent viscosity, a dramatic decrease from the bulk viscosity. This

shows how the two-layer model differs at high depletion ranges, as there appears to be
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Figure 1.13: Flow patterns with the depletion effect present (d =
1), at two separation distances. Viscosity contours are 2, 10, 50, and
80 times the solvent viscosity, with the bulk viscosity value being 100

times the solvent viscosity. Reproduced from [43].

a gradual transition from η0 to ηL in Figure 1.13 not the jump from η0 to ηL assumed

in the two-layer model.

Even from this brief overview, it is clear to see that understanding the dynamics

in a depletion system has significant complications. Whilst assumptions and simpli-

fications for certain parameters are available, accurate models require a significant

degree of complexity and effort to implement.

1.6 Colloid-Polymer Gels

Under the correct conditions, gels will form when a space-spanning network of col-

loidal particles is created, either due to chemical bonding or physical bonding [44]. An

example of the formation of a chemical gel is the curing of resins, such as epoxy [45].

Gels are often defined as having solid-like behaviour and properties, such as a yield

stress. Rheologically, a gel is defined as having a larger elastic modulus (G′) than

viscous modulus (G′′), signifying that the sample primarily has solid-like behaviour.

Common colloid systems used include: an emulsion of PDMS drops in 1,2-ethanediol

(ED) and water [46], PMMA particles suspended in decalin [47], silica spheres dis-

persed in hexadecane [48, 49] or water [50].
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1.6.1 Position on Phase Diagram

Figures 1.14 and 1.15 show state diagrams for colloid-polymer mixtures for short and

long colloid-polymer ratios, defined as < 0.3 and > 0.3 respectively. These state

diagrams include both the equilibrium phases (such as stable fluids or gas + liquid

phases), and non-equilibrium states such as gels and glasses.

Figure 1.14: State diagram for colloid-polymer mixtures with a short
colloid-polymer ratio (< 0.3). Reproduced from [10].

In both cases gels appear at low to moderate colloid volume fractions, and at

moderate to high polymer concentrations. As colloid volume fraction is lowered, the

amount of polymer required for a gel to form is increased, and as colloid volume

fraction is increased, a gel will form at lower polymer concentrations. In the case of

a short-range depletion attraction, more states are observed at high colloid volume

fraction. With very little polymer, a repulsive glass is formed, where little to no

attraction is present but a particle cannot escape the cage of particles surrounding

it due to the high volume fraction. With the addition of more polymer, attractions

begin to form between particles causing them to cluster and holes to form within the

gel network, giving a metastable fluid. With further addition of polymer an attractive

glass is formed where the attraction is strong enough that particles are tightly bound

in cages of surrounding particles with no possible escape.

For q < 0.3, at lower volume fractions the addition of polymer causes aggregation

20



Figure 1.15: State diagram for colloid-polymer mixtures with a large
colloid-polymer ratio (> 0.3). Reproduced from [10].

as there is sufficient attraction for particles to come together but there are not suf-

ficient particles to form a space-spanning network. When there is sufficient volume

fraction for a network to arrest phase separation, a gel is formed.

1.6.2 Weak and Strong Gels

Colloidal gels can be broken down into two main categories, the first being weak

gels with interactions U0/kBT < 10 meaning that bonds formed within the gel struc-

ture are relatively weak and short lived. The second category of gel is a strong gel

(U0/kBT � 10) in which the bonds formed in the particle network are strong and

long lived and hence considered permanent.

Strong gels tend to exhibit creeping sedimentation, in which fractures begin to

form in the gel, allowing the fluid trapped within it to flow [52]. Early fluid flow (be-

fore fractures form) associated with strong gel collapse can be related to the pressure

gradient along the gel by using Darcy’s Law [53], where the κ(φ) is the permeability

of the network, v is the velocity of the interface, and p the fluid pressure.

υ = −κ(φ)

η

∂p

∂z
(1.25)
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Figure 1.16: Two sedimentation profiles obtained through dark-field
imaging showing creeping sedimentation (Top) and delayed collapse

(Bottom). Reproduced from [51].

κ(φ) = κ0

[
φ0

φ(z, t)

] 2

3− df (1.26)

Where υ is the velocity of the interface, p is the fluid pressure, k0 is the initial

permeability of the network, φ0 is the initial volume fraction, and df is the fractal

dimension.

One of the main driving forces behind gel collapse is that colloidal particles are

prone to sedimentation/creaming due to Stokes law where a particle settles under

gravity with a Stokes velocity υ0, where a is the particle radius, ρp the particle

density, ρs the density of the solvent, g the acceleration due to gravity and η0 the

viscosity of the solvent [54].

υ0 =
2

9

(ρp − ρs)ga2

η0
(1.27)
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Weak gels tend to be metastable for a finite time, defined as the delay time τd,

before the gel undergoes a rapid collapse [51] and either sediments, or phase separates

into a colloid rich and a colloid poor region [32].

Figure 1.16 shows two height profiles in which creeping sedimentation (top) is

observed at a higher polymer concentration and delayed collapse (bottom) is observed

at a slightly lower concentration. Creeping collapse manifests in a drastically different

way and if an industrial formulation was to collapse in this way, then determining a

shelf-life may be difficult. Whereas with delayed collapse there is the delay time that

can be determined as the shelf-life. Starrs et al. [51] determine that the crossover

from delayed to creeping collapse is caused by the increase in depletion potential

arising from the higher polymer concentration and can also be induced by drastically

changing the dimensions of the sample container.

The delay time before collapse (τd) has been found to depend on a wide variety of

parameters, Gopalakrishnan et al. [55] find that increasing the colloid volume fraction

(θ) increases the delay time, whilst also decreasing the initial settling velocity of the

gels. This change in initial settling velocity is attributed to the permeability of the

network through which solvent up-flow can occur, with τd being the change in settling

velocity observed similar to that in Figure 1.16, this is thus due to a change in network

permeability.

1.6.3 Gel Structure

For a gel to form, a space-spanning network must be formed that has sufficient

strength to resist the gravitational stress applied to the system. However, the par-

ticles making up the network are not stationary. Previous work has shown that the

network of weak colloidal gels is continuously rearranging and coarsens with time

[56–58] leading to thicker strands of particles forming the space-spanning network.

Figure 1.17 shows how strand thickness and pore size increase with time as the net-

work coarsens. This coarsening is driven by thermal fluctuations within the gel and

because the attractions within the gel are of order kBT . As the gel structure coarsens

and the strands thicken, the pores between the strands of particles within the gel

increase. This increase in pore size allows for larger amounts of the continuous phase
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to move if there is a failure of one of the strands, eventually this leads to the macro-

scopic collapse of the gel. This coarsening is driven by gradual rearrangement of the

particles within the gel network, quantified by the Kramer’s escape time shown in

Equation 1.29, therefore any change in the Kramer’s escape time would affect the

rate of coarsening within a gel.

Figure 1.17: Time evolution of pore size ξ and strand thickness ls
at different polymer concentrations. Reproduced from [56].

1.6.4 Structural Evolution

Zia et al. [59] have proposed a differing mechanism of gel coarsening, in which particles

on the outside of a strand that have a lower contact number, migrate through diffusive

steps (caused by thermal fluctuations within the sample) to form thicker strands, thus

causing the particles to have a higher contact number and become caged. Coarsening

was seen as the probability of a particle contact number gradually increased as the

gel aged, snapshots of two gels with differing attraction strengths can be see in Figure

1.18, here it can be easily seen that the gels coarsened at differing rates, due to the

difference in the depth of attractive well for each gel. Zia et al. comment that whilst

bond kinetics play a clear role in the rate of gel coarsening, they are not the only

factor controlling the rate of coarsening within a colloidal gel, this suggested that a

simple single-bond model may not be enough to fully capture the process in which

gels age and eventually fail.
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Figure 1.18: Evolution of particle strands for two gels with different
depletion potentials. Reproduced from [59].

1.6.5 Accelerated Strand Ageing

Sprakel et al. [60] have explored the stress dependence of delayed collapse in a wide

variety of gel systems, including strong gels of 8 wt% carbon black, thermoreversible

gels of stearylated silica, pNIPAm-grafted colloids (θ = 0.075) and depletion gels of

polystyrene colloids and dextran (θ = 0.3, cp = 50 mg/ml). They found two distinct

collapse regimes which are fitted by Equation 1.28, with the two regimes described

as when the rate of strand disassociation k′D is significantly lower than the rate of

strand association kA, and when the rate of strand association kA is much lower than

the rate of strand disassociation k′D, with the first regime found at high applied stress

and the second found at low applied stress, this is seen in Figure 1.19b. Figure 1.19a

shows thermoreversible gels of stearylated silica with a differing amount of pre-shear

applied. As the amount of pre-shear applied was increased the delay time for the

gel decreased at a faster rate and the transition from one regime to another became

more distinct. Also shown in Figure 1.19a is a normal distribution of delay times for

the same pre-shear and volume fraction, indicating that macroscopic gel collapse is a

stochastic event due to the rupture of multiple particle strands at once.

Td ≈


1

n2σCkA

(
kA
kD

)n
e−nσC , k′D � kA

Sn
σCkD

e−σC , k′D � kA

 (1.28)

Where C = δ/nρ0kBT in units of compliance, σC is the elastic energy per bond at

yield, n is the number of bonds in the strand, and Sn is the strand survival probability.
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(a) Thermoreversible
stearylated silica gels,
with inset showing the
distribution of delay
times at θ = 0.25 and σ

= 8 Pa.

(b) Delay times for the
3 gel systems described

above.

Figure 1.19: Delay times of various colloidal gels at a range of shear
rates. Both graphs reproduced from [60].

1.6.6 Microscopic Dynamics

Linking long time-scales to short time-scales has clear merit in understanding the long-

term stability of formulations. The ability to measure or calculate a short time-scale

which can then be scaled up to give an indication of stability, allows for formulations

to be more intelligently designed.

Previous work [33, 46, 54, 55, 61] linking the microscopic dynamics of a gel and

its delayed collapse has used the Kramer’s escape time (τesc) which is described as

the average lifetime of an individual particle bond before it breaks due to thermal

fluctuations within a gel, and is shown below in Equation 1.29 [61].

τesc =
δ2

Dt

exp(−U0/kBT )− (1− U0/kBT )

(U0/kBT )2
(1.29)

Where δ2 is the range of the depletion potential calculated from the linear equation

of Fleer et al. [24] shown in Equation 1.34. U0/kBT is the depletion potential

at contact in units of kBT , calculated from Equation 1.10. Dt is the translational

diffusion constant, which is estimated from the short-time self-diffusion constant (D0)

of a hard sphere suspension of the same volume fraction. The limiting low shear

viscosity (ηL) can be determined by extrapolating the steady-shear rheology of a

polymer solution to a vanishing shear rate which is then fitted to the Martin equation

shown below in Equation 1.31 [46].
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D0 =
kBT

6πηLα
(1.30)

ηL
η0

= 1 + [η] cpexp (κH [η] cp) (1.31)

Where η0 is the solvent viscosity, [η] is the intrinsic viscosity, cp is the polymer

mass concentration and where kH is a constant that is equivalent to the Huggins

constant at low polymer concentrations.

Figure 1.20: Graph showing the relation between Kramer’s escape
time and delay time. Reproduced from [46].

Figure 1.20 shows τd and τesc for a xanthan-PDMS gel with a size ratio Rg/a

of 0.62, as a function of the reduced polymer concentration Cp/C
∗
p . Here it is clear

that there is a strong correlation between the lifetime of a single particle-particle

bond and the lifetime of a gel on the macroscopic scale. It is also interesting that

over almost two orders of magnitude, the correlation remains roughly consistent, with

τd ∼ 240τesc.

Buscall et al. [33] review a wide range of gels in which the delayed collapse

phenomenon is observed, including gels of long-ranged weak attractions (Rg/a = 0.62,

U0 ∼ 5kBT ) and stronger, short-ranged attractions (Rg/a = 0.076, U0 ∼ 10kBT ), as

well as aqueous and non-aqueous solvents. They find that the correlation between
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delay time and escape time remains consistent across all the gels studied, with the

delay times normalised by the diffusion time τ0 = 5πRµ/kBT a master curve is

produced against mean binding energy θ (θ =< z > Um/kBT ) showing that even in

drastically different systems, a similar shift factor is observed to link escape time and

gel lifetime, furthermore, the shift factor scales with relative polymer size Rg/a.

The Kramer’s escape time is determined by the well depth of the depletion attrac-

tion, the range of the depletion attraction and the diffusion of the particles within

the gel. Of all the factors contributing to the diffusion of a particle, the viscosity, is

the most sensitive to any change in temperature, as the size of the particles and thus

the depletion potential will change minimally if at all. Therefore, to fully understand

how the Kramer’s escape time and thus the rate of coarsening inside a gel is affected

by temperature, the temperature dependence of viscosity must be accounted for.

1.6.7 A System of Jammed Particles

One way of rationalising the dynamics of a gel is that of a “jammed” phase transition,

in which the strands of the gel network are of sufficient volume fraction with sufficient

attraction for their dynamics to become arrested [62]. This high volume fraction in

the gel network has been observed previously using confocal microscopy [56], and even

low volume fraction gels of θ = 0.2 can have strands of θ ∼ 0.6. In many colloidal

systems, this out of equilibrium gel comes about through spinodal decomposition [25,

62–64].

Colloidal glasses form at higher volume fraction than gels, with the volume fraction

at which a colloidal suspension becomes a glass being called the glass transition.

This glass transition is accompanied by a change in the rheological properties of the

suspension, usually a change from a viscous fluid to a viscoelastic solid [65]. The

relaxation dynamics of a colloidal glass are also significantly slower for a glass than a

gel, as diffusive motion is limited by particles forming cages that require cooperative

movement to break and allow the structure to relax [66].

As previously stated, whether a system is jammed or not is dependent on the

volume fraction and attraction between the colloid particles, however these are not

exclusively the factors that control jamming, another important parameter to be

considered is applied stress (or strain). As you would expect, applying a stress to
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a system suppresses jamming (much akin to how if something is a bit stuck you

give it a good shove), this can be seen in the phase diagram made by Trappe et al.

[67] in which the jammed regime (yellow) is heavily suppressed by increased stress

(σ/σ0) unless there is a very high volume fraction of colloids for the system to be able

to transmit this stress throughout the system without the particles relaxing from a

glassy state to a crystalline state.

Figure 1.21: Composite phase diagram of attractive colloidal par-
ticles, showing the jammed phase in yellow, the axes are interaction
strength (kBT/U), applied stress (σ/σ0) and reciprocal colloid volume
fraction (1/φ). Constructed using data from three different colloid
systems, carbon black, PMMA, and polystyrene. Reproduced from

[67].

Liu and Nagel [68] propose a phase diagram similar to that of Trappe et al.

[67] with the major difference being the change of the z axis label to temperature,

and the shape of the jammed region being convex rather than concave. From this

phase diagram, the effect of increasing temperature is to reduce the level of jamming

within the system, eventually completely unjamming the system and a colloidal liquid

forming. The temperature vs load axes raise the interesting question of whether an

increase in temperature will lower the yield stress of a material, which may cause

the acceleration of delayed collapse, or if the reduction is significant enough that

the yield stress is below the gravitational stress, a change to creeping sedimentation.

With increasing attraction strength in colloidal systems being considered as lowering
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the temperature, it remains to be seen whether the potential axis on Figure 1.21 is

interchangeable with the temperature axis of Figure 1.22.

Figure 1.22: Suggested phase diagram for jamming as a function of
temperature, density and load. Reproduced from [68].

1.7 Polymer Solutions

In this section we will discuss the fundamental behaviours of polymer solutions, such

as concentration regimes, and the effects of solvency. We will then summarise the

wide range of literature on the specific behaviours of the polysaccharide xanthan,

including its interesting conformation behaviour.

1.7.1 General Polymer Solutions

When the polymer concentration is low enough that the polymer coils do not interact

with each other, it is defined as a dilute solution, when the polymer coils touch the

solution is defined as semi-dilute and when the coils interpenetrate the solution is

defined as concentrated. The concentration at which a polymer polymer solution is

defined as semi-dilute is the polymer overlap concentration, C∗p .

As the radius of gyration is defined by both the thermodynamic properties and

the conformation of a polymer, any change in temperature is likely to affect the radius

of gyration, especially if the polymer temperature is taken above the characteristic

melting point tm for that polymer.
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(a) (b) (c)

Figure 1.23: Diagrams showing the three regimes of polymer concen-
tration, dilute (A) where polymer chains do not overlap, semi-dilute
(B) where polymer chains begin to overlap, and concentrated (C)

where polymer chains interpenetrate.

It is possible to calculate the osmotic pressure of a dilute polymer solution using

Van’t Hoff’s Law, where Np is the total number of depletion polymer coils and V* is

the free volume available for the polymer coils to move freely.

Πp =
NpkBT

V ∗
(1.32)

Fleer et al. [69] propose accurate approximations for both the osmotic pressure as

a function of polymer concentration as well as the depletion thickness as a function

of polymer concentration.

Π

Π0
= 1 +

(
ϕ

ϕex

)3α−1
(1.33)

(
δ0
δ

)2

= 1 +

(
ϕ

ϕex

)2α

(1.34)

Where Π0 is the dilute limit, ϕ is the polymer concentration, ϕex is an extrap-

olation concentration which is obtained by extrapolating the overlap concentration

ϕov towards Π = Π0. α is the De Gennes exponent, that describes the concentration

dependence of correlation length in the semi dilute regime.

1.7.2 Effects of Solvency

Calculating the radius of gyration is important for determining the colloid-polymer

ratio as well as the polymer overlap concentration, however it can be affected by the
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solvent used in a colloid-polymer mixture. There are three main categories that sol-

vents are placed into. First is a good solvent, in which the interactions between the

polymer segments and the solvent are preferable to the segment-segment interactions

of the polymer. Therefore the polymer expands to maximise the segment-solvent

interactions, in a good solvent the polymer is deemed swollen. The second solvent

type is a poor solvent, in which the segment-segment interactions are preferable to

the segment-solvent interactions which leads to the polymer shrinking to minimise

the solvent-segment interactions. If the segment-segment and segment-solvent inter-

actions are balanced then the solvent is defined as a θ solvent, so the polymer appears

in its unperturbed state. Furthermore due to the enthalpy of the interactions being

equal, any change to the radius of gyration of a polymer in a θ solvent is purely

entropically driven.

Figure 1.24: Three schematics showing the effect of solvency on a
polymer solution, with the central picture being the polymer in a θ

solvent, the left in a poor solvent, and the right in a good solvent.

1.7.3 Xanthan Conformation Behaviour

Xanthan in solution undergoes a conformational change from a double-helix to an

α coil when heated, and then when cooled again it reforms into a hairpin structure

(shown in Figure 1.25). This change in ordered structure from double helix “native”

to hairpin “denatured”, also corresponds to a change in viscosity, as shown by Milas

et al. [70], therefore it is important to ensure only either the native form or denatured

form of xanthan are used throughout a series of experiments.

The temperature at which xanthan undergoes this conformation change has been

reported at wide variety of temperatures, some as high as 100 °C [70], and others as

low as 45 °C [72]. Milas and Rinaudo explored the dependence of this transition on the
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Figure 1.25: Schematic of denaturing and renaturing of xanthan
molecule. Reproduced from [71].

ionic strength in the xanthan solution [73] and found that as ionic strength increases

so does the melting temperature (Tm) of xanthan, this melting point was defined

as the mid-point in the transition between the two conformations of xanthan. This

relationship is plotted in Figure 1.26a with melting temperatures obtained using both

optical rotation, polarising microscopy and circular dichroism. They also found that

melting point of xanthan is independent of concentration (once its own contribution

towards the ionic strength of the solution is accounted for). This dependence on ionic

strength is also shown by Pelletier et al. [72] reporting a transition temperature of

45 °C in a 0.008 M (8 mM) NaCl solution, and Liu et al. [74] reporting a transition

to a disordered state at 80 °C in a 0.01 M NaCl solution.

Figure 1.26b shows the intrinsic viscosity of xanthan in 10 mM NaCl as a function

of temperature, as well as molecular weight and radius of gyration measurements at

the peak (40 °C) and trough (50 °C). The increase in intrinsic viscosity seen was at

Tm value already determined, this response appeared independent of xanthan concen-

tration. Interestingly, they state that “the molecular weight and radius of gyration

obtained by light scattering, the sedimentation constant, and the potentiometric be-

haviour are independent of temperature.” suggesting that the size of the xanthan

does not change with respect to temperature. However in Figure 1.26b the peak and

trough have the same molecular weight but a different radius of gyration, the change

is only 10 nm, but as previously shown in Section 1.5 a small change in polymer size

can drastically affect the dynamics of a colloid-polymer system. It should also be
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(a) Melting
temperature
of xanthan
plotted against
log of total
ionic strength.

(b) Intrinsic viscosity as
a function of temperature
for xanthan in 10 mM

NaCl.

Figure 1.26: Graphs showing the temperature responses of xanthan.
Reproduced from [73].

noted no errors are given with these sizes.

Liu et al. [74] investigate the conformation change of xanthan in 0.01 M NaCl for a

range of sonicated samples, giving molecular weights between 10.4 x 104 and 2.5 x 106.

They performed polarimetry on samples across a range of temperatures also and found

that for [α]300 there was one slope at low temperatures corresponding to an ordered

structure (double-helix) and a different one at high temperatures corresponding to a

disordered structure (coil), this can be seen in Figure 1.27. The straight line labelled

[α]helix corresponds to previous measurements of xanthan in 0.1 M NaCl, at this salt

concentration no conformational change was observed.

Whilst the behaviour of xanthan has been much studied, often characterisation

data such as size and melting temperature cannot be easily used in lieu of our own

experimental characterisation, due to the wide variety of preparation techniques,

molecular weights of xanthan, as well as the sensitivity of xanthan’s size to ionic

strength. Therefore we will characterise the size of xanthan at each temperature

studied in this thesis, which is presented in Section 3.5.
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Figure 1.27: Curves of [α]300 as a function of temperature for various
xanthan molecular weights. Reproduced from [74].

1.8 Conclusions and Thesis Questions

In this chapter we have discussed the challenges facing industrial formulation devel-

opment. Currently it is difficult to predict the stability of a new formulation, and

methods to measure stability are laborious and slow, taking months or even years.

Temperature is often used to accelerate the collapse of formulations, but the effect

temperature has upon the formulation is poorly understood.

Depletion gels arise in colloid-polymer mixtures due to the formation of a space-

spanning network of particles, because of the depletion of a polymer from the surface

of the colloids, giving an imbalanced osmotic pressure that causes the attraction.

The phase behaviour of colloid-polymer systems can be accurately predicted using

the Free Volume Theory of Lekkerkerker [32] and the semi-dilute behaviour of colloid-

polymer mixtures by the Generalised Free Volume Theory of Fleer and Tuinier [24].

Colloidal gels appear deep into the phase diagram, at high polymer concentrations,

where the depletion potential is sufficient to arrest phase separation. The effect

of temperature on colloid-polymer systems has been little studied, with the phase

diagram only changing with temperature when the size of the depletant and thus the

range and strength of the depletion potential is changed.

There are two main mechanisms of gel collapse observed, creeping sedimentation
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and delayed collapse. In systems that exhibit delayed collapse, a link between the

microscopic dynamics occurring within the gel and the delay time before collapse τd

has been found. An example of this relationship is the average lifetime of a particle-

particle bond τesc being a similar multiple of τd for a system across multiple orders of

magnitude. The difference between particle movement time-scale and the macroscopic

collapse time-scale is attributed to the evolution of the space-spanning network within

the gel gradually coarsening. Strain has been used to accelerate the ageing of colloidal

gels, but no systematic work on the effect of temperature has been done, so the effect

of temperature on the stability and structural evolution of gels remains to be seen.

The main motivation of this work being the understanding the factors affecting the

lifetime of colloid-polymer gels, and how their collapse can be reliably accelerated, as

well as identifying any early warnings of impending gel collapse. Therefore in Chapter

4 we will begin by studying the stability of a model colloid-polymer gel at ambient

conditions, whilst controlling the temperature to a higher degree than previously used

for the system.

In Chapter 5 we will explore the effect of temperature on the delay time τd on

colloid-polymer gels, to find if and how reliably delayed collapse can be accelerated

through elevating the temperature, much in the way industrial formulations are stored

at higher temperature to accelerate collapse. This will allow us the opportunity

to find if the acceleration of collapse seen in complex industrial formulations is a

fundamental behaviour of colloid-polymer gels or only a behaviour exhibited by more

complex systems.

Rheology is often used in industry to assess the robustness and stability of a new

formulation, as measurements can be made very early in a gel’s lifetime. Chapter 6

will focus on the effect of temperature on the rheological properties of freshly made

gels, allowing us to probe both the structure formed at each temperature as well as

the attractions present within a gel.

In Chapter 7 we shall use the technique Particle Tracking Velocimetry to probe

mesoscopic changes in a gel before and during collapse, with an aim to explore how

temperature changes the way the structure of a gel evolves over time, as well as

allowing us to look for early warnings of gel collapse.
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Chapter 2

Methods

In this chapter, we summarise the experimental methods used throughout this thesis.

This includes the methods of controlling the temperature during the collapse experi-

ments, as well as the image analysis performed to accurately determine τd. We also

briefly discuss the rheology methods used to explore the rheological properties of both

xanthan solutions and the PDMS-xanthan gel system. Finally, we describe how Par-

ticle Tracking Velocimetry (PTV) is performed, including the choice of tracer bead,

how image tracking is performed, and how data is processed and analysed.

2.1 Introduction

In this chapter we discuss the practical considerations and methods used to collect

the data presented later in this thesis. Firstly, we will summarise the development

of a method to precisely control the temperature of gel collapse experiments for an

extended period of time, as well as the techniques used to design and build the

appropriate apparatus to achieve this. After this, we will discuss the image analysis

performed to consistently and accurately determine the delay time before collapse

τd of colloid-polymer gels. Whilst this is a key time-scale and gives insight into the

effect of both polymer concentration and the temperature on the life-time of colloid-

polymer gels, it does not give yield information on the underlying processes occurring

within a gel. With this in mind, we expand the scope of methods used to include

rheological measurements of both components within the gel and the gel as a whole.

Finally, we will discuss the development of the method Particle Tracking Velocimetry

(PTV), including imaging, the effect of the tracer beads on the gel, as well as image

analysis and processing.
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2.2 Design of Temperature Controlled Cell-Holder

In order to study the effect of temperature on a colloidal gel, a method of maintaining

a stable and controllable temperature, which did not obstruct or interfere with any

imaging techniques needed to be developed. Therefore, it was decided to use a recir-

culating water bath (Haake DC3) as it would provide excellent temperature control

(± 0.1 °C) and would allow a wide range of temperatures to be studied.

The key objectives of the cell-holder were to allow multiple samples to be imaged

at once whilst retaining a high degree of temperature control. Therefore, the holder

was initially designed to hold four samples at once, giving high throughput but still

retaining sufficient resolution of each sample. The samples had to be illuminated

from the rear to allow an interface to be reliably detected and tracked, so the rear

of the cell-holder was made from clear perspex to allow the addition of a back light

or laser. To minimise distortion of the images, there could be no obstruction in

front of the samples. This meant the water jacket used to control the temperature

was restricted so as not to go in front of the samples. However, this brought about

another consideration. As the vials were sealed into the wall of the holder, finding the

balance between a good seal without restricting the viewable portion of the sample

(especially at the bottom of the vial where the interface appears at τd) was also very

important.

An initial design based on a cell-holder design by Dixon [75] was made using

perspex, rubber sealed windows and an aluminium lid. This design meant that no

water passed in front or behind the cell, meaning imaging would not be obstructed,

and also that the cells could easily be replaced and cleaned. Unfortunately, the rubber

seals were very difficult to cut accurately and the window frames leaked. Also, the

aluminium gasket lid, chosen to keep as much of the cell viewable, proved too flexible

to seal fully. Due to the limitations of machined parts, and the relatively slow turn

around, it was decided 3D printed parts would be advantageous, as they could be

more rapidly made and improved. How these parts were designed and the software

used is explain in Subsection 2.2.1.

The first change to be made was to print a lid and base, in which the cells would

be held, to ensure proper sealing at the top of the cell-holder, whilst still maintaining

38



5
5

6
5

13

4
4

4
4

13

3
8

7

3

4
0

2

4
4

9

7

13

3

2

5

4
4

13

4
4

4
0

9

4
4

4
2

9

13

25

13

141

5
0

2
0

141

2
0

141

25

2
,
5

4
,
5

13

1
3

13

1
,
5

3
,
5

24
11

15

1
5

15

13

1
3

2
0

141

25

2
,
5

4
,
5

13

13

1
5

1
3

Ø8

Ø8

1
0

15

15

1
0

20

4
1

Front plate - Perspex, 6mm. x2

Base plate - Perspex, 6mm. With 1mm depth squares milled out. x2

Back plate - Perspex, 6mm. x2

Window frame - Perspex, 8mm. With 2mm milled from back edge.

x8

Window Seal -

Rubber, 1mm.

x10

Window Seal -

Rubber, 3mm.

x10

Cell Seal - Rubber,

1mm. x10

Side plate -

Perspex, 6mm. x4

Top plate - Aluminium, 1mm. x4

Gasket plate - Aluminium, 1mm. x2

Figure 2.1: CAD file for components of initial temperature cell-
holder design.

the ability to remove cells for cleaning. This can be seen in Figure 2.2b. Whilst this

design improved sealing, the windows surrounding the cells could not contain water

under pressure as it was pumped through the cell.

2.2.1 3D Printing

After success with 3D printed parts it was decided that the entire cell-holder would

be 3D printed. 3D designs were generated using AutoCAD. The main holder was

simplified to a single piece, which is shown in figure 2.1, with the cells now being

permanently sealed in place to prevent leaking through the front. This was deemed

necessary as any water leakage would obscure the bottom of the cell, preventing

detection of the interface formed during gel collapse. Further to this, removal of the

windows allowed for a smaller edge around the cell, maximising the area viewable

through the holder.

The 3D printer chosen was a RepRapPro Ormerod 2 [76], which is shown in Figure

2.2a, and allowed designs to be produced to an accuracy of 0.1 mm. The Ormerod
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(a) Ormerod 2 3D
printer reproduced

from [76].

(b) First 3D printed cell-
holder design assembled.

Figure 2.2: Overview of first 3D printed cell-holder design. Cell
dimensions are 141 x 55 x 32 mm.

2 is a hot end extruder 3D printer, which uses polylactic acid (PLA) as a print

material. With a melting point of around 160 °C, it would be more than resistant to

temperature to use as a material for the cell-holder.

The high level of precision using AutoCAD and a 3D printer allowed the cells

to fit snugly, and the bottom lip to be made the same thickness as the glass cell’s

base. The lid design became larger and more robust to minimise the effect of warping

due to temperature as well as to prevent any leakage of water into the cells, as this

would undoubtedly ruin any experiment. The water level would rise up to the lid as

the pump was turned on due to the high throughput of the water bath, so foam was

added to the lid, and the lid clamped down, to give a tight seal around the glass. In

testing, it was obvious if water leaked into the cells as they would fill completely with

water. The high pressure of the water pump was initially a hindrance in getting a

sufficiently sealed system but once this problem was overcome, it afforded excellent

temperature stability during the experiments.

To convert a CAD drawing to a printable design, it was first exported as a stere-

olithography (STL) file format and loaded into a g-code generator called Slic3r. G-

code determines the position and speed of the print head, allowing for the solid

thickness and infill of the 3D printed part to be adjusted, to balance print speed and

final part quality.
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Figure 2.3: AutoCAD screenshot showing the evolution of the lid
design (right to left) and the final cell-holder design.

2.3 Fluorescence Time-Lapse Microscopy

To study the evolution of colloid-polymer gels as they aged, a time-lapse camera was

used to image the gels before, during, and after collapse. The camera used was an

AVT Guppy F080B (Allied Vision) charge coupled device (CCD) camera, which had

an image size of 1032 x 778 pixels. To improve contrast between the two phases

formed as the gel collapse, an LED back light was also used. The rhodamine B dye in

the aqueous phase was excited using a 532 nm beam-expanded laser (Laser Genetics

ND3 x50), so that only fluorescent light is captured by the camera, a 550 nm long-pass

filter (Thorlabs) was used.

The camera was mounted securely and could be adjusted up and down, as well as

moved closer or further away from the samples. This ensured it was perpendicular

to the cells and was adjustable up and down to ensure the samples were near the

centre of the image to minimise any parallax errors. The cell-holder was clamped in

place and pushed back against two supporting bars, firstly to allow the lid to be held

tightly, and secondly to ensure the cell-holder was at 90 degrees to the camera, with

all cells being the same distance away from the camera.
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Figure 2.4: The set-up used to collect images during the gel collapse
process.

2.3.1 Temperature Control

The temperature inside the cell holder was monitored using a platinum resistance

data logger (PT-104, Pico Technology) and a 1/10 DIN accuracy platinum probe

(PT100, SE012, Pico Technology). The data logger accuracy was 0.015°C and the

probe accuracy ranged from 0.045 °C to 0.08 °C dependent on the temperature mea-

sured. Figure 2.5 shows just how stable the temperature of this set up was, with

the temperature in the water bath being barely higher than that in the cell-holder,

which is as to be expected, due to heat loss through the tubing to the cell-holder.

The temperature is slightly higher (∼ 0.2 °C) than the set temperature due to the

desired temperature being close to the temperature of the lab, and both the heating

element and refrigeration unit being used to achieve a stable temperature. Without

the refrigeration the temperature would creep upwards as the experiment progressed.

Variation during an experiment after the water bath reaches temperature was less

than 0.1 °C. The standard deviation of the temperature was calculated to be 0.075

°C, with with a variation of less than 0.01 °C per minute. The desired temperature is

reached in only a matter of minutes, with higher temperatures also being very quick

to stabilise.
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Figure 2.5: Graph showing the temperature measured when set to
25 °C.

2.3.2 Image Processing

Once time lapse videos had been captured, a reliable and consistent method to deter-

mine the delay time (τd) was required. Therefore, a LabVIEW image analysis code

previously used by Teece et al. was used [25]. This allowed the interface to be de-

tected (the time of detection thus determined as τd) and then tracked as the sample

phase separated.

Image analysis was performed in three main steps, calibration, interface detection,

and interface tracking. Calibration, is performed before data collection, where the

region of interest is established and thresholded, alignment of the x and y axes is

done, and pixel size is calculated. Calibration is carried out before an experiment

is performed, and only needs to be redone if there is a change to the experimental

set up. Interface detection, is where the interface between the two phases of a gel

is determined, when a sufficient light-intensity gradient is detected between the flu-

orescent dyed phase and the non-fluorescent dyed phase. Interface tracking detects

an interface in each image and calculates the height of the interface for each image

of the time-lapse taken.

The main aim of the calibration is to convert the pixel size into millimetres, as
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well as minimise the chance of any small distortions within the image affecting the

results collected. Figure 2.6 shows the LabVIEW VI (Visual Interface) with which

the calibration was carried out. A clear acetate, with a grid of dots 10 mm apart, was

placed in front of the camera at the same distance as the samples, and an image taken.

Then selecting “Align Co-ordinate Axis”, a horizontal row of dots were selected, and

then “Fix Co-ordinate Axis” was selected to calculate any slight tilt in the image.

The image was then thresholded, yielding the red and black image on the right of the

VI. The thresholding level could be adjusted to ensure only the dots on the acetate

were red (the surrounding bench top could be ignored). Finally, “Calibrate Grid”

was selected and an area with at least four dots were highlighted to calculated the

pixel size in millimetres. Due to the design of the cell-holder and how it was held in

place, the samples were always at a fixed distance so a calibration did not need to be

carried out for each experiment.

Figure 2.6: Screenshot of the calibration VI used to calibrate the
camera used in the time-lapse video experiments.

Figure 2.7 shows the VI used to identify and track the interface in a gel sample.

The width of the interface and light-intensity gradient could be adjusted to improve

identification or to remove erroneous interfaces. A region of interest (ROI) was se-

lected which covered as much of the viewable sample as possible, ensuring the bottom

of the cell was included. A second ROI was also selected to measure the height of the

meniscus, this also allowed us to look for any sample evaporation during a high tem-

perature experiment as the height of the meniscus would move if any of the sample
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was evaporating. There was a clear interface of dark to light which can be seen in

the sharp peak in the intensity gradient generated. Figure 2.8 shows the sample at

a later point, with the interface between the two phases significantly higher, clearly

observed by the intensity gradient. There is also an example on an erroneous interface

detected due to slight variations seen in the graph at the bottom right.

Figure 2.7: Screenshot of the VI used to process an image, with the
interface and meniscus highlighted, shortly after τd.

Figure 2.8: Screenshot of the VI used to process an image, with the
interface and meniscus highlighted, significantly after τd.

Once the image analysis had been performed, a graph similar to that shown in

Figure 2.9 was generated. This shows the initial delay time in which no interface was

seen, the emergence of an interface at τd, which then moved rapidly up the sample,

and then a slower pace as the sample compacts. To ensure the interface was being

45



detected at formation, image stacks were also compared by eye, due to the cell-holder

being dark the interface was clear by eye as well as the code being easily able to

identify it. So only minimal discrepancy was occasionally found, and was at most in

the hundreds of seconds for the largest measured delay times, which were at least an

order of magnitude greater. This slight uncertainty was also significantly smaller than

the variation between samples of the same xanthan concentration so was statistically

insignificant when analysing the data collected.

2.3.3 Generated Interface Height Profile

Highlighting the three main phases of delayed collapse, (delay, rapid-collapse, and

compaction) was possible even without extra manipulation of the data. Previous

work by Bartlett [46] plotted the interface height above the bottom of the cell (h/h0)

but due to the nature of the cell holder being dark is was not possible to reliably

and accurately select this for image analysis. Despite this short coming, the key

time-scales during delayed collapse were consistently observable.

Figure 2.9: Height profile during the lifetime of a gel, with an inter-
face appearing at around 150000 seconds, determined as τd. Letters A

to D relate to the structure diagrams shown in Figure 2.10.

Figure 2.10 shows schematics of the gel structure at the snapshots labelled in

Figure 2.9. A shows the structure when the sample is stable and phase separation

has not begun, B shows the emergence of an interface also defined as τd, C shows
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how the the interface moves up rapidly through the sample as the gel continues to

phase separate, and finally, D shows how the interface moves at a slow rate during

the compaction stage as the particles are already at a high volume fraction in the

colloid-rich phase.

Figure 2.10: Four schematics showing the structure of a gel at dif-
ferent stages of its lifetime.

2.4 Rheology

A material falls into one of three broad rheological categories. It is either a solid

(elastic), liquid (viscous), or is a mixture of the two, viscoelastic. When stress is

applied to a solid, the deformation (strain) on the material is instantaneous and

reversible, so when the stress is removed the material returns to its original shape.

With a liquid, the strain increases gradually with time but is not reversible, so after

the removal of the stress the material remains deformed. With a viscoelastic material

the strain is not instantaneous and once the stress is removed some of the deformation

is recovered, but not entirely. To determine whether a material is elastic, viscous, or

viscoelastic, the common method used is a creep experiment, in which a step stress is

applied to a sample and the strain measured during the application of stress, and then

also after the stress is removed. This allows the strain response of the material to be

observed, allowing the determination of whether it is elastic, viscous or viscoelastic.

Stress (σ) is defined in Equation 2.1, where F is the force applied and x and y

are the dimensions over which this force is applied. Strain is defined in Equation 2.2,

where ∆x is change in x dimension, and z is the height. Here, we see that stress

is a definite value (with units of Pa) and strain is a relative value, the amount of

deformation (usually with units of %).
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σ =
F

xy
(2.1)

γ =
∆x

z
(2.2)

Rheology measurements were carried out using an Anton Paar MCR 501 rheome-

ter with a double gap geometry, and a Malvern Kinexus Pro rheometer with a cone

and plate geometry (CP4/40). Each sample was sheared at 100 s−1 for 5 minutes and

then allowed to recover for 15 minutes before each amplitude sweep was performed,

to minimise load effects. Samples were refreshed by shearing at 100 s−1 for 5 minutes,

and then allowed to resettle, comparison of data from fresh and refreshed gels showed

this did not impact the data collected.

(a) (b)

Figure 2.11: Cross sections of the two geometries used, a cone and
plate geometry (A) and a double gap geometry (B).

Figure 2.11 shows cross sections of the two different geometries used for rheology

measurements. The advantage of using a double gap geometry, whilst more laborious

to clean and load the sample precisely, is that due to the significantly greater surface

area of the geometry in contact with the sample, it is much more sensitive, detecting

both smaller changes in materials as well as allowing much weaker materials to be

studied.
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2.4.1 Steady Shear Viscometry

The first type of rheology experiment performed was a shear rate sweep, in which the

viscosity of the sample is probed at different shear rates. For a Hookean solid, the

relation between stress and strain is σ = Gγ, and for a Newtonian liquid it is σ = ηγ̇

[77]. Therefore, by rearranging this to Equation 2.3, it can be seen that applying a

known shear stress at a known shear rate allows the calculation of the viscosity of a

liquid.

η =
σ

γ̇
(2.3)

This method was used to determine the low shear viscosity of xanthan solutions

by performing a table of shear rates on a xanthan solution and extrapolating the

plateau seen at low shear rates (where η is independent of shear rate) back to zero.

2.4.2 Oscillatory Rheology

Oscillatory rheology is used to measure a material’s resistance to deformation, either

by applying a stress or strain, measuring a complex modulus (G∗), which is the

overall resistance to deformation of a material, and comprises of an elastic (or storage)

modulus G′ which represents a solid-like response and a viscous modulus G′′ which

represents a fluid-like response. Equations for how these are calculated as shown

below[77].

G∗ = G′ω + iG′′(ω) (2.4)

G′(ω) =
σ

γ
cos(δ) = G∗(ω)cos(δ) (2.5)

G′′(ω) =
σ

γ
sin(δ) = G∗(ω)sin(δ) (2.6)

This method is used to identify the Linear Viscoelastic Regime of a complex

material, the LVER is determined as the regime in which the properties of a material

are unchanged by the applied strain. In Figure 2.12, the magnitude of G′ and G′′
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remain unchanged up to 1 % strain, before G′ begins to decrease, therefore for this

sample, the LVER would be determined as up to 1 % strain.

Figure 2.12 shows a strain sweep at 25 °C, with the elastic (G′) and viscous (G′′)

moduli on the left hand axis and the phase angle on the right. Initially the sample

is weakly gelled with G′ being greater then G′′ but with a phase angle of around 40°.

However, as the strain is increased, the elastic modulus eventually begins to drop, at

1 % strain, which signals the breakdown of the internal structure of the gel. Then

at 14 % strain, the elastic modulus becomes lower than the viscous modulus, at this

point the sample begins to behave as a visco-elastic fluid rather than a solid.
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Figure 2.12: Strain sweep of a 1.0 g L−1 Xanthan and PDMS gel.

The critical strain (or stress if measuring as a function of stress) is determined as

the strain at which the elastic modulus begins to decline, below which the structure

of a sample is intact [78]. So in Figure 2.12 this would be at 1 % strain as shown. It

can also be defined as the strain at which G′ becomes lower than G′′, indicating the

change from solid-like behaviour to fluid-like behaviour. Again, for Figure 2.12 this

would be determined as 14 % strain.

Figure 2.13 shows how G′ and G′′ evolve after the sample is loaded into the

rheometer, with the sample being given no recovery time. The magnitude of G′
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increases from 1.0 Pa to 1.1 Pa and then levels off at around 1200 seconds, and G′′

does not change after the sample is loaded, therefore as previously stated the samples

were left for 15 minutes before performing rheology measurements to minimise any

variation in the measured value of G′.
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Figure 2.13: Oscillatory Rheology with fixed 0.2 % strain for a 1.0
g L−1 gel at 25 °C.

2.5 Particle Tracking Velocimetry

To study the dynamics of a gel before collapse, Particle Tracking Velocimetry (PTV)

was used, which has been extensively used for tracking fluid flows [79–81]. This

involves seeding fluorescent tracer beads within the gel and then tracking the position

of these beads as the gel ages. This allows the velocity and displacement of the beads

to be calculated from their positions, hopefully giving insight into the dynamics of a

gel before macroscopic collapse is seen.

2.5.1 Tracer Size

In PTV, each particle is individually tracked, frame by frame, therefore the number

of particles used in the technique is relatively low, minimising any disruption to the
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gel network. The selection of a suitable tracer particle to use is key, as the stress it

exerts on the sample, the level of fluorescence, and the ability to image the particle

must all be considered.

(a) (b) (c)

Figure 2.14: Schematics showing three different tracer particle sizes
and how they might be incorporated into the gel structure.

Figure 2.14 shows schematics of three different tracer particles and how they might

be incorporated into a gel. 2.14a shows beads that are of order the size of the network

particles, and are incorporated into the structure of the gel. If the particles were this

size, you would expect to be able to observe individual particle movement within the

strands, so would see significant movement at even initial time-scales. 2.14b shows

where the particles are significantly larger than the particles making up the network

of the gel, and are thus not part of the network, but are smaller than the pores within

the gel. Therefore, you may expect initial movement as some particles may be able

to move freely within pores before becoming trapped either at strand junctions or in

smaller pores. 2.14c shows a schematic of tracer particles similar in size to the pores

in the gel network. In this case you would expect very little movement as the particles

are embedded in the network and will only be free to move once the structure of the

network around the particles has changed as the samples ages.

Whilst 2.14a would be advantageous as it would allow direct measurement of

single particle dynamics, the practicality of this in our experimental system would

be effectively impossible, as the PDMS droplets forming the space-spanning network

are around half a micron and are too small to image with a confocal microscope,

so similarly sized tracer particles would not be visible using a conventional CCD
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camera. Plus at this size, it would be difficult to accurately track particles due to

the significant movement, even when the sample as a whole is stable. 2.14b and

2.14c, however, would work well as they would be of sufficient size to image and track

successfully, and give an indication of local strand dynamics of the gel, due to them

being partially or initially trapped in the pores of the gel (previously measured as up

to 45 µm [56]), which could be reasonably imaged and tracked.

With these considerations in mind, the particles selected were FluoroMax (Thermo

Scientific) 36-11 fluorescent polystyrene divinylbenzene particles, of two sizes, 100 ±

7 µm and 26 ± 7 µm, both with a density of 1.05 g cm−3.

(a) Confocal microscope
image with no tracer

beads in sample.

(b) Confocal microscope
image with tracer beads

in sample.

Figure 2.15: Confocal images of 0.8 g L−1 xanthan-PDMS gels, with
the black portions being the strands of the gel network, the red being
the continuous phase, and the large red circle in B being a tracer bead.

2.5.2 Stress Exerted on the Gel Network

Another important consideration with the selection of particles, is whether they are

of sufficient size and density to damage the network around it. This would leave to

the particle’s movement not being dictated by the dynamics of the gel network but

merely it smashing its way through the gel. Previously, the yield stress of the gel has

been estimated to be ∼ 0.1 Pa [46].
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To estimate the stress exerted on the gel by a tracer particle, the buoyant force

was calculated using Equation 2.7, where r is the particle radius, ρtracer is the particle

density, and ρfluid is the density of the fluid phase. Then using Equation 2.8, the

surface area over which this force is applied is calculated, with Equation 2.9 giving

the pressure/stress exerted on the gel by the particle.

Fbuoy =
4

3
πr3(ρtracer − ρfluid).g (2.7)

Atracer = 2πr2 (2.8)

P =
Fbuoy
Atracer

(2.9)

Table 2.1 summarises the values calculated for both the 100 µm and 26 µm par-

ticles, with the stress for the 100 µm being lower than the yield stress of the gel,

therefore, the possibility of the particles stripping through the gel is quite low. More-

over, the 26 µm particles have an even lower stress, an order of magnitude lower than

the nominal yield stress of the gel. However the smaller the size of the tracer reduces

the chances of particles disrupting the gel. The less the particles disrupt the gel, the

more likely they are to be a true “tracer” particle.

Particle Size 100 µm 26 µm

Fbuoy 6.07 x 10−10 N 9.49 x 10−12 N

Atracer 1.57 x 10−8 m2 9.82 x 10−10 m2

P 0.04 Pa 0.01 Pa

Table 2.1: Calculated stress exerted on the gel network by the tracer
particles.

The ensure the tracer particles did not affect the gel in a significant way, strain

sweeps were performed on gel with and without tracer beads, and can be seen in

Figure 2.16. The addition of the beads does not change either the elastic or viscous

modulus of the gel (the slight variation between the two is expected and a similar

degree of variation can be seen in Chapter 6), as well as the response of the gels to

strain. If the particles were having a significant impact on the structure of the gel,
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we might expect the elastic modulus to be lowered or the response to strain to be

shifted, due to the particles adding an internal stress to the gel.
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Figure 2.16: Strain Sweeps of two 0.8 g L−1 xanthan-PDMS gels
with and without tracer beads added.

2.5.3 Imaging and Tracking

The gel samples were prepared in the same way as described in Chapter 4, only with

tracer beads added to the PDMS stock emulsion before mixing. The sample was then

loaded into the cell-holder and the sample illuminated from behind with a 532 nm

beam expanded laser (Laser Genetics ND3 x50). The camera used was a Guppy Pro

F-503 (Allied Vision) CCD with an image size of 2588 x 1940 pixels. Once set up

and focused, the pixel size was determined to be 15 x 15 µm. This would mean that,

a tracer bead would occupy multiple pixels at once, minimising the error in both

identify and tracking particles.

To track the particles, a Python package called Trackpy was used [82], which

uses the Crocker-Grier tracking algorithms to locate features and track them within

an image stack [83]. The previously written code consisted of two parts, the first

to identify and track the tracer beads, and the second to calculate and plot various

outputs, such as: speed, x and y velocities, displacement, and features present [84].

55



Tracking and identifying features are obviously key in gaining useful data, as if

features are not reliably tracked throughout the experiment, then either movement

that is present will not be identified or anomalous features that are not tracer beads

will be identified. The parameters used in determining the features to track are:

feature size, feature minmass (minimum integrated brightness), feature maxsize, and

feature separation (allows very close features to be differentiated.)

Figure 2.17 shows the same sample but with different identification parameters

used, mainly the minimum brightness parameter. In A, only the very brightest beads

are identified as features, with this few tracer beads, any movement identified may

not be representative of the sample as a whole.

(a) (b) (c)

Figure 2.17: Three PTV images where the minimum brightness pa-
rameter has been decreased from left to right, meaning more particles

are detected as features by the tracking code.

Figure 2.18 shows the particle trajectories for three different time frames early

in a gel’s lifetime, here we see the ability to track multiple complex trajectories over

time, giving an element of spacial resolution, as we can see a failure in the top-left of

the sample gradually propagate throughout the sample.
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(a) (b) (c)

Figure 2.18: Particle trajectories tracked for three different times
before collapse,(A) 0-500, (B) 501-1000, (C) 1001-1500 frames, for a

0.7 g L−1 at 25 °C.

2.5.4 Velocity Calculations and Errors

Once features have been successfully identified, they can be tracked throughout the

sample as it ages, which then allows x and y velocities as well as displacement to be

calculated. The x and y velocities are then combined to give a dimensionless speed

using the equation below.

v(f) =
√
vx(f)2 + vy(f)2 (2.10)

These individual velocities are calculated using Equation 2.11. Where vx(fn) is

the particle’s x component velocity of frame n. x(fn) is the particle’s x position in

frame n, and x(fn−l) is the x position in the (n − l)th frame. l is the frame look-

back value, and ti is time (s) between frames. To convert from pixels to metres, the

conversion factor MPP (Metres Per Pixel) is used.
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vx(fn) =
x(fn)− x(fn−l)×MPP

l × ti
(2.11)
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Figure 2.19: Mean speed of tracer particles for a 0.8 g L−1 gel at 25
°C calculated using different values of l. (A) 1 frame, (B) 10 frames,

(C) 25 frames, and (D) 30 frames.

Figure 2.19 shows the mean speed for a sample calculated using Equation 2.10.

However, each graph uses a different value for l when calculating the velocities using

Equation 2.11. With only a 1 frame look-back (A) to calculate velocity, there is a

large amount of noise in the mean speed, making it very difficult to ascertain when key

features occur during the experiment, for example, the time at which the peak speed

occurs (τmax), also errors in either the particle tracking or a change in illumination

of the sample yield significant fluctuations (∼ 90000 s). When the frame look-back is

increased to 10 frames (B), the noise is reduced significantly, and single image errors

are no longer seen, however the velocities (and thus speed) calculated are reduced

due to this increased look-back time. This is also observed when the look-back is

increased further to 25 and 30 frames. This decrease in magnitude of both velocity
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and speed is expected as the velocity calculation does not take into account every

frame of the look-back window, but at two frames separated by l number of frames.

Therefore, as the movement of tracer particles within the sample have a Brownian

component and do not move in a perfectly straight line, larger look-back windows

effectively smear out some particle movement. Therefore, a balance between time

resolution and data noise must be struck.
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Figure 2.20: Mean speed of tracer particles for a 0.8 g L−1 gel at
25 °C calculated using different values of l (1, 10, 25, and 30 frames).
Then all were smoothed as described in Section 2.5.5, using a 250

POW.

Another consideration when looking at the optimum look-back window is the error

associated with the calculated velocity. The maximum error with this has previously

been calculated in Equation 2.12. Where, ∆t is the time across which the velocity is

calculated, and ε is the error associated with the particle position [84].

δv =
4
√

2ε

∆t
(2.12)
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2.5.5 Data Processing and Smoothing

Despite the velocity calculations and errors being optimised, some of the data plots

showed significant noise, which made comparing the shapes of curves as well as deter-

mining key time-scales, such as the time of peak velocity τmax, difficult. An example

of this is shown below in Figure 2.21a, where multiple peaks appear to have a simi-

lar velocity, so τmax could only be reasonably estimated between 140000 and 160000

seconds. Therefore, the decision was made to smooth the data to remove this noise

in a consistent and statistical manner.
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Figure 2.21: Mean speed of tracer particles for a 0.8 g L−1 gel at 30
°C, (A) being the raw data, and (B) being the data smoothed using a

Savitzky-Golay filter with a 250 POW.

Multiple techniques to smooth the data were considered, including a simple to

apply percentile filter, to a more complex and involved method of performing a Fourier

transform to remove high frequency values. However, the method of smoothing used

was the Savitzky-Golay filter [85, 86], as it could be easily adapted to the data

sets and was simple to perform using Origin. A Points of Window (POW) value is

selected, over which a least-squares polynomial fit is performed, therefore selecting

an appropriate POW to minimise noise but still preserve the underlying data is key.

Figure 2.22 shows smoothed data using four different POWs, 100, 250, 500, and

750 data points, the raw data used for this is shown in Figure 2.19c. Using 100

POW retains most of the jaggedness of the raw data whilst removing significant

amounts of noise, but despite this still leaves three peaks around τmax, furthermore,

the slope to τmax is difficult to quantify due to the jaggedness being retained. 250

POW combines these three peaks into one with only slight bumps, and maintains an
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Figure 2.22: Four different smoothing POW values used for a 0.8 g
L−1 gel at 25 °C.

element of sharpness to the point of τmax, the slope to τmax is significantly smoother

also. POWs of both 500 and 750 make the peak almost completely smooth with only

a single peak, which is rounder than both 100 and 250.

Another consideration with data smoothing is how the magnitude of the data is

affected. To better understand this, in Figure 2.23 the four different POWs used are

overlaid and the maximum speed vmax is compared. Here, it is clear to see that as

the POW is increased, vmax decreases, with the biggest jump being from 100 to 250

points, with 500 and 750 only decreasing slightly.

After consideration, 250 points was decided to be the best balance between re-

moving noise, but still retaining some resolution of the jaggedness and variability of

the particle speeds, as overly smoothing the data may lead to homogenising all the

results. However, in some cases the POW is adjusted to smaller values for high tem-

perature experiments performed over a short time or when comparing more localised

timeframes within an experiment.
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Figure 2.23: Four different smoothing POW values used for a 0.8 g
L−1 gel at 25 °C.
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Chapter 3

Materials

In this chapter, we summarise the experimental materials used to form the colloid-

polymer gels studied, including the PDMS droplets, the two polymer depletants xan-

than and HEC. We also characterise the ethylene glycol/water solvent and how both

the density and viscosity of it change with temperature. We then summarise the

gel composition and preparation methods used for the data presented throughout this

thesis.

3.1 Summary of Gel Composition and Preparation

The gel studied is an emulsion formed of PDMS (polydimethylsiloxane) droplets

(a = 316 ± 11 nm and a polydispersity index of 0.18) dispersed in a mixture of

ethylene glycol (1,2-ethanediol) and water. The PDMS droplets were stabilised us-

ing a combination of surfactants: synperonic PE/P103, tristyrylphenol ethoxylate

(TSPE) and Na-AOT. The mass fraction of ethylene glycol was 0.61 to achieve re-

fractive index matching with the PDMS droplets to allow vision into the sample for

imaging.

A small amount of potassium chloride (3 mM) was added to the samples to screen

any long-range electrostatic repulsions, Sudan black dye was added to the oil-phase

and rhodamine B dye added to the aqueous phase to improve contrast when imaging.

A depletion interaction was induced between the PDMS droplets through the addition

of xanthan gum (Mw = 4.66 x 106 g mol−1, Rg = 194 nm), giving a colloid-polymer

ratio of 0.62 ± 0.04, a long-range but weak attraction between the droplets [25].

A second gel was studied using hydroxyethylcellulose (Natrosol 250 HHX) as the

depletant, keeping all other components the same as the xanthan gel shown in Table
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3.1. The molecular weight of the HEC was measured as 1.3 x 106 with a radius of

gyration of 126 nm, giving a colloid-polymer ratio of 0.40, a strong but intermediate-

range attraction.

Figure 3.1: A diagram summarising the composition of a gel with
labels showing the dyed components, the two phases present within the
gel, and the space-spanning network formed by the PDMS droplets.

The samples were gently mixed in a 16 mm diameter cylindrical glass vial using

a magnetic stirrer for 5 minutes, this was to ensure all samples were thoroughly

mixed. Once a gel was mixed, it was transferred to a 10 x 10 mm square glass cell

using a needle and syringe to minimise variation in gel heights, each gel height was

approximately 20 mm.

Component Concentration Role

PDMS (polydimethylsiloxane) 0.2 Volume fraction Oil Phase

EG/H2O (61:39) 0.8 Volume fraction Aqueous phase

Xanthan gum 0.4 - 1.0 g L−1 Non-adsorbing polymer/depletant

HEC HHX 2.0 g L−1 Non-adsorbing polymer/depletant

Potassium chloride 3 mM electrostatic screening

Table 3.1: Gel components summary.
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The phase behaviour of the xanthan-PDMS system has been previously studied

by Teece et al. [25], and it was found that experimentally observed phase bound-

aries agreed well with the generalised free volume theory (GFVT) for colloid-polymer

mixtures in the semi-dilute regime, the value for qR used in these calculations was

0.62. The gas-crystal and gas-liquid-crystal phases were not observed experimentally,

this was attributed to the polydispersity of the particles suppressing crystallisation.

It was determined that with a sufficient quench into the two-phase region, gelation

occurred with all samples.

Figure 3.2: Phase diagram comparing experimental phase bound-
aries at for the xanthan-PDMS system at 20 °C, to those calculated
from GFVT for qR = 0.62, reproduced from [25]. With gelation oc-

curring in samples deep within the GC region.

3.2 PDMS Droplets

The colloid chosen to form colloid-polymer gels was PDMS (polydimethylsiloxane)

emulsion droplets, in an ethylene glycol and water solvent. The ethylene glycol was

chosen to refractive index match to the PDMS droplets, which allowed imaging deep

into the sample, the ratio of ethylene glycol to water used is 61:39 % w/w. This

system was chosen as it is a well understood and simple system to model the effects

of temperature on colloid-polymer gels [25, 46, 56, 87].
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The PDMS used to form the droplets is silicone oil (DC200, Dow Corning) with

the droplets stabilised using a combination of surfactants: PEO-PPO-PEO, Mw 4950

30 % PEO (Synperonic/Pluronic PE/P103), tristyrylphenol ethoxylate (TSPE, Tana-

tex) and sodium bis(2-ethyl, 1-hexyl) sulfosuccinate (Fluka, Na-AOT). The method

of preparation for these PDMS droplets is detailed by Teece [25]. This mixture of

surfactants is used to stabilise droplets both sterically with Synperonic, and elec-

trostatically with Na-AOT. This high level of stabilisation gives a shelf-life of years,

meaning that multiple syntheses and re-characterisation is not required. It is also pre-

vents the xanthan polymer used from adsorbing to the droplet surface and causing a

bridging interaction rather than a depletion interaction.

The droplets are prepared in a φ = 0.6 stock with 10 mM of potassium chloride

added to screen any electrostatic interactions between the droplets, due to the Na-

AOT giving each droplet a slight negative charge. In this form, the stock solution is

stable for many years. The droplets have been previously sized using Dynamic Light

Scattering (DLS) and the hydrodynamic radius was found to be a = 316 ± 11 nm

with a polydispersity index of 0.18 [25].

3.3 Ethylene Glycol/Water Solvent

The viscosity of the ethylene glycol/water solvent was measured using capillary vis-

cometry (as described in Section 3.5). Three measurements were made every 5 °C

from 25 °C to 60 °C. This method proved extremely consistent and even at high tem-

peratures the long elution times resulted in a small variation in the measured times,

also minimising any experimental error.

To convert the measured kinematic viscosity (v) to the dynamic viscosity (η), the

density of the material must be known, so the density of the EG/H2O mix must be

known to accurately calculate the viscosity at each temperature. Due to experimental

limitations, there was no way to measure the density as a function of temperature,

so the density was measured at approximately 23 °C using a pycnometer, giving a

value of 1.0761 g cm−3. In Figure 3.3a this value is compared to an interpolation of

literature data [88] for 25 mol % (55 % w/w) and 50 mol % (78 % w/w) ethylene

glycol and water, and is shown to be in excellent agreement.
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Therefore to calculate the temperature dependence of the 61 % w/w EG/H2O

solvent, the literature data for 40 and 60 °C was interpolated to give a value for 61

% w/w. These interpolated values are fitted with a polynomial fit in Figure 3.3b

to allow for a density to calculated for each temperature studied, these densities are

summarised in Table 3.2. The viscosities measured for the EG/H2O solvent are shown

in Figure 3.4 and summarised in Table 3.3.
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Figure 3.3: Comparison between experimental and literature data.
Literature data from [88].

Temperature (°C) 25 30 35 40 45 50 55 60

Density (g cm−3) 1.0749 1.0720 1.0689 1.0658 1.0626 1.0593 1.0559 1.0524

Table 3.2: Calculated densities from fitting in Figure 3.3.

Temperature (°C) 25 30 35 40 45 50 55 60

Viscosity (mPa.s) 4.322 3.666 3.165 2.750 2.415 2.127 1.898 1.693

Table 3.3: Calculated viscosities shown in Figure 3.4.

3.4 Xanthan

Xanthan gum is a large polysaccharide biopolymer named after the bacterial strain

that produces it, Xanthomonas campestris [89]. It has a wide variety of uses in many

commercial products, including a thickener/stabiliser for food stuffs (such as low fat

mayonnaise), in toothpaste as a rheology modifier [90], and as a binder in glass 3D

printing [91].
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Figure 3.4: Calculated dynamic viscosities for a 61:39 EG/H2O sol-
vent mixture.

Figure 3.5: Chemical structure for the repeating unit of xanthan
gum. Reproduced from [92].

The reason for xanthan’s widespread industrial use is that only a very small

amount is required to drastically change the rheological properties of a material, with

many products using between 0.05 and 1 % w/w [89]. The viscosity of xanthan

solutions also decrease with increasing shear-rates [93], making it well suited for

stabilising gel-like products than need to retain the ability to be poured. These

interesting rheological properties come about due to xanthan significant size (for a

polymer), with it forming a double-helical structure similar to that of DNA [71].

This structure gives each molecule a high degree of stiffness and xanthan tends to be

modelled as a worm-like chain.
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Xanthan comes in a wide range of purities, molecular weights and compositions,

with them varying between supplier and batch. Therefore to remove any variation

between samples, one brand and batch of xanthan powder is used, namely Kelzan.

This has been previously characterised by Teece et al. [25], with a molecular weight

Mw of 4.66 x 106 g mol−1 and a radius of gyration Rg = 194 nm.

3.5 Xanthan Size at Different Temperatures

As previously discussed in Chapter 1, xanthan behaves in a peculiar way when

heated, in that it does not gradually expand or contract like other polymers such

as polystyrene [37, 94]. But it undergoes a conformation change from an ordered

state to a disordered state [71], with the temperature at which this occurs depending

on a wide number of factors such as salt concentration [73], molecular weight[74], and

solvent.

3.5.1 Viscometry of Xanthan Solutions

With the radius of gyration of xanthan being a key factor in determining the strength

of the depletion potential in our system, investigation if and how it changed with

temperature was important in understanding the underlying attractions with the gel.

The capillary viscometer used (Ubbelohde, size 0B Sigma Aldrich) was calibrated

using literature data on water at all temperatures studied [95]. This allowed a con-

stant of 0.0051 mm2 s−1 to convert elution time to kinematic viscosity (v) to be

calculated.

The flow time of the pure solvent (t0) was measured and then the flow time of the

polymer solution (t) was measured. From this it is possible to calculate the relative

viscosity ηr and the specific viscosity ηsp.

ηr =
t

t0
(3.1)

ηsp =
t− t0
t0

(3.2)
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The viscosity of xanthan polymer solutions at 20, 30, 40, 50, 60 and 80 mg L−1

to create a graph showing ηsp with respect to concentration. Using this data it is

possible to estimate the intrinsic viscosity of xanthan by extrapolating the gradient

of the graph back to zero.
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Figure 3.6: Plot of ηsp for xanthan solutions at 25 °C, with a linear
fit giving the intrinsic viscosity [η] as the gradient of the fit.

Temperature (°C) Intrinsic Viscosity (cm3 g−1)

25 2010 ± 66

30 2170 ± 75

35 2050 ± 46

40 2150 ± 139

45 2130 ± 120

50 2170 ± 63

55 2650 ± 32

60 2850 ± 41

Table 3.4: Measured intrinsic viscosity [η] using capillary viscometry
for each temperature studied.

Table 3.4 summarises the measured intrinsic viscosity of xanthan in EG/H2O for

each temperature studied, calculated from a plot of ηsp against xanthan concentration

(Figure 3.6 shows this at 25 °C, other temperatures can be found in Section 3.7).

Comparing just the intrinsic viscosities, there is a slight fluctuation with temperature,

70



up to 50 °C, once the error in the value of [η] is accounted for, there little to no change.

However at 55 and 60 °C there is a significant increase in [η].

3.5.2 Theory for Rg Calculations

In this section we summarise the calculations performed to convert the measured

intrinsic viscosity [η] of xanthan to a radius of gyration Rg between 25 and 60 °C.

We will use the intrinsic viscosity measured to calculate a Kuhn length (λ−1), which

then will be used to calculate a persistence length and a radius of gyration Rg for

xanthan at that temperature. The assumptions in these calculations are that the

mass per unit contour length ML is unchanged with solvent and temperature due

to it depending on the chemical structure of the xanthan backbone. Also, that the

changing temperature will not affect the interactions between xanthan chains due to

[η]0 being in the infinitely dilute regime.

[η] = lim
c→0

ηsp
c

(3.3)

The unreduced intrinsic viscosity of a worm-like chain in a Θ solvent (so that the

polymer conformation is unperturbed) is given below in Equation 3.4 [96].

[η]0 =
Φ0L

3
2
r (λ−1)3

M
(3.4)

Where [η]0 (in cm3 g−1) is the intrinsic viscosity of a configuration unperturbed by

excluded volume effects. Φ0 is the viscosity function, which is dependent on Lr, the

reduced contour length, and dr, the reduced diameter. When Lr = ∞, [η]0 becomes

[η]∞ and is independent of dr and equal to 2.87 x 1023. Which can be rearranged into

the form shown below, where F1 = Φ0/Φ∞.

[η]0 =

[
Φ∞M

1
2

1

(λML)
3
2

]
F1 (Lr, dr) (3.5)

The radius of gyration for a monodisperse polymer of molecular mass M modelled

as a wormlike chain can be calculated using Equation ?? [97]. Where x = L/q and q
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is the persistence length calculated from q = λ/2.

R2
g = q2

[
x

3
− 1 +

2

x
− 2

x2
(1− exp(−x))

]
(3.6)

However many polymers are not monodisperse, so the polydispersity of a polymer

must be taken into account when calculating the radius of gyration, as neglecting the

polydispersity of the polymers tends to lead to an overestimation of chain stiffness.

The polydisperse radius of gyration is given below in equation 3.6 [98].

〈R2
g〉 =

m+ 2

6yλ
− 1

4λ2
+

y

4(m+ 1)λ4
− 1

8m(m+ 1)λ4

(
y2 − ym+2

(y + 2λ)m

)
(3.7)

Here y = (m + 1)/L, with L being the contour length of the chain and using

L = M/ML m can be equated to m = 1/(Mw/Mn − 1).

By using Equation 3.5 and a measured intrinsic viscosity it will be possible to cal-

culate the Kuhn length λ−1 which can then be inserted into Equation 3.6 to calculate

the radius of gyration. By performing the measurements of the intrinsic viscosity at

different temperatures and then calculating the radius of gyration from these intrin-

sic viscosities we are able to gain insight into how the radius of gyration of xanthan

changes with respect to temperature.

Temperature (°C) Intrinsic Viscosity (cm3g−1) Radius of Gyration (nm)

25 2010 ± 66 182 ± 3

30 2170 ± 75 189 ± 3

35 2050 ± 46 184 ± 2

40 2150 ± 139 188 ± 5

45 2130 ± 120 187 ± 4

50 2170 ± 63 189 ± 2

55 2650 ± 32 206 ± 1

60 2850 ± 41 213 ± 1

Table 3.5: Measured intrinsic viscosity [η] using capillary viscom-
etry for each temperature studied, with the Rg calculated from the

corresponding intrinsic viscosity.

When the values for [η] are used to calculate a value for Rg at that temperature, it
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is clear that firstly, the errors in the measurement are very good, as they only equate

to a few nm, and also that the fluctuations below 55 °C again are only of order a few

nm, which due to the nature of xanthan, and the time taken to collect all the elution

times, indicate no expansion or contraction caused by changing temperature. Whilst

it appears that at 55 °C xanthan begins to expand, this may not necessarily be the

case. As Milas et al. [73] show that when the conformation of xanthan changes there

is an increase in intrinsic viscosity but the radius of gyration decreases despite this

(shown in Figure 1.26). This suggests that at 55 °C the conformation of xanthan

begins to change, but further characterisation is required to ascertain the size of

xanthan at 55 and 60 °C, as the current model assumes that xanthan is a wormlike

chain.
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Figure 3.7: Plot calculated xanthan Rg for each temperature from
the capillary viscometry data shown in Section 3.7.

When the average of all sizes from 25 - 50 °C is calculated a final number of 186

± 8 nm is found (shown in Figure 3.7). Which is within the error for the value 194

± 10 previously calculated by Teece et al. [25]. As the value given by Teece takes

into account both viscometry and light scattering, that value was used for calculating

both the depletion potential and Kramer’s escape time.
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3.6 Hydroxyethylcellulose (HEC)

The second polymer depletant used is Hydroxyethylcellulose (HEC), specifically Na-

trosol 250 HHX, so will be referred to as HEC HHX. The molecular weight of HEC

HHX has been previously measured by Zhang, and determined to be 1.3 x 106 [87],

as well as the radius of gyration, with Rg = 126 nm. When paired with the PDMS

droplets described above this gives a colloid-polymer ratio of 0.40, a shorter but

stronger depletion attraction when compared to using xanthan.

3.7 Capillary Viscometry Graphs and Fits

In this section the capillary viscometry data used to calculate Rg for xanthan at each

temperature is summarised.
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Figure 3.8: Capillary viscometry data of xanthan solutions in
EG/H2O between 25 and 40 °C.
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Figure 3.9: Capillary viscometry data of xanthan solutions in
EG/H2O between 45 and 60 °C.
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Chapter 4

Delayed Collapse at Ambient

Temperature

In this chapter, we discuss literature on studying colloid-polymer gels at room tempera-

ture, such as various methods used, different collapse mechanisms as well as industrial

challenges faced with the stability of formulations. We then present delay time data

on a model colloid-polymer gel, studied at a single temperature, and explore the effect

of increasing polymer concentration on the gel lifetime. We compare the macroscopic

behaviours of a gel to the bond lifetime τesc, in an attempt to bridge both long and

short time-scales present in colloid-polymer gels.

4.1 Introduction

When studying a formulation’s shelf life, there are many things to consider when

answering the question of “is this product stable enough?” with the enough definitely

being a key caveat of that question. As why over-engineer a product to be stable for

years when it is used a week after production? Some key things to consider are:

• How long a formulation is stable for?

• How consistent is the formulation stability?

• How robust is the formulation with respect to environmental conditions? Such

as temperature or vibration/movement.

• What is the mechanism of collapse?

• How slowly does the formulation sediment?
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• Can a formulation be re-suspended after collapse?

A way of measuring the stability of a formulation is to measure the time taken

for it to macroscopically change, for example in the system used for this work, for

the gel to phase separate, but in other systems both academic and industrial other

forms of collapse have been observed. Such as Ostwald ripening of emulsion droplets,

sedimentation of a suspended medium or the significant thickening of a liquid based

product. Understanding the mechanism of collapse is also of great importance, with

the main two mechanisms seen in colloidal gels being delayed collapse, in which no

macroscopic movement is observed before catastrophic collapse occurs, and Buscall-

White sedimentation [99], in which there is no delay period, but a gradual (or less

so) consolidation of particles in a suspension or gel.

Once the mechanism of collapse is understood then the question of how long the

sample takes to collapse can be answered, as if it slowly sediments akin to that seen

by Buscall and White, this may be in fact a more useful time-scale to determine

a shelf-life of a product, where as with delayed collapse, it is less important as the

formulation has already failed.

Finally, if a formulation can be re-suspended easily and to a good level of dis-

persion, then perhaps the drive for a longer shelf-life may not be as critical as first

thought. However this is not often the case, as some formulations can form a dense

sludge at the bottom of the container than no matter how hard you shake, either can-

not be dislodged, or the material cannot be equally dispersed, which is somewhat less

than ideal if your active ingredient is the dispersed medium. Nobody wants to wants

to kill one field of crops with pesticide, only to lose the other field of crops because

you sprayed it and there was little to no active ingredient in the second half of your

pack. Therefore in this chapter we endeavour to discuss some of the methods used

to answer some of these questions surrounding formulation stability, before exploring

how changing temperature can affect one of more of these factors in determining a

formulations lifespan.
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4.2 Review

4.2.1 Studying Delayed Collapse

The most common method used to study the lifetime of a colloid-polymer gel involves

observing for any macroscopic change using a digital camera [25, 55, 62] with a vari-

ety of methods used to determine interface height, including a vernier scale, or image

thresholding to determine an interface. This technique is valuable in determining

two of the questions above, when and how does a sample collapse, as distinct pro-

files are generated with delayed collapse and so called creeping collapse. How long a

sample takes to collapse can also be observed by measuring the interface height after

delayed collapse is observed. This would be a viable method for measurements in

industry, were it not for the significantly longer time-scales present in industrial for-

mulations, with many products needing to be stable for months not years. Whereas

most academically studied systems have a significantly shorter delay time. With some

examples being: 2 - 8 hours [55], 6 hours [54], 10 hours [62], 4 - 80 hours [46], and

20 - 100 hours [100]. However with τd being only the first major time relevant to the

lifetime of a formulation, it is easy to see how full capturing the lifespan of a system

could take three or even four times as much time. Which with industrial systems

rapidly becomes infeasible. Hence the great interest in accelerating the ageing of for-

mulations as well as looking for early indicators of a gels lifetime before macroscopic

collapse is observed.

A method used by Poon et al. [54] is dark field microscopy with a refractive index

matched sample, where only weakly scattered light is detected, and unscattered light

is filtered out. Examples of which can be seen in Figure 4.1. In Figure 4.1 the images

that are taken around τd are g and h, with all images before being taken before an

interface forms and sedimentation begins. It is here that the advantage dark field

imaging has over digital microscopy is see, with the wealth of information collected

prior to collapse. In images c, d, and e, it is possible to see the formation and growth

of a light line on the left-hand side of the sample, which Poon describes as a channel

forming within the gel which allows solvent to travel. Looking further at later images

(g, h, and i) it is possible to see how this channel formed at early times in the gels

life (approx. 0.3 - 0.5 τd) can lead to the total failure of a sample, with significant
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channel formation both sufficiently disrupting the space-spanning network of the gel

as well as giving sufficient space for solvent to move as the sample collapses.

Figure 4.1: Dark field images of a colloid-polymer gel (R = 186 nm,
φ = 0.2, and ξ ∼ 0.08). Reproduced from [54].

4.2.2 Studies on Creeping Collapse

Starrs et al. [51] explore gels that undergo creeping collapse, again using dark field

microscopy. Figure 4.2 shows dark field images of a sample as it undergoes creeping

collapse, so there is delay period before rapid collapse. It is clear to see that when

compared to Figure 4.1 there is a dramatic change in mesoscopic features present

within the sample (the light areas of the images). There does not appear to be the

same channel formation as seen in delayed collapse at early times, however once the

gel has begun to sediment (image c) these channels or cracks within the gel appear

(images e and f) towards the bottom of the sample, and appear to propagate from

the walls of the sample. There is a symmetrical nature to the cracks that form for the

creeping collapse sample whereas in the delayed-collapse sample, the main channel

appears down the left-hand side.

However, most industrial products are not refractive index matched as shown

by the simplified model formulations in Figure 1.1. So dark field microscopy can

not be easily applied to explore pre-collapse behaviours of many systems, however
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Figure 4.2: Dark field images of a colloid-polymer gel (R = 186 nm,
φ = 0.2, and ξ ∼ 0.1). Reproduced from [51].

similar delayed collapse behaviour is found in drastically different systems [101], so

one would expect similar pre-collapse features to be present. Despite this limitation,

the features seen at early times in a formulations lifetime can be probed using other

methods that work in opaque systems such as using x-rays to probe for movement of

colloidal particles, or through the use of fluorescent tracer beads.

4.2.3 Settling Dynamics

Returning to the data collectable through digital imaging, a great deal of information

has been collated on how quickly a sample collapses after τd for delayed collapse, or

how quickly a suspension sediments for creeping collapse. Studying height profiles

for sedimenting materials is not just relevant to formulation stability but also to

a great variety of real world applications such as waste water treatment [102] and

separation of nuclear waste sludge [103]. Bartlett et al.[46] find that the settling rate

∆h (∆ = h0 − h) scales well with the fit of ∆h ∼ τ3/2 for both a wide range of gel

concentrations as well as different sample heights (h0). However studying a single

concentration at varying sample heights, Bartlett et al. finds that whilst τd remains
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the same, the rapid collapse portion becomes extended from 3x τd at low heights (20

mm) to 5x τd at high heights (60 mm), presumably due to the increased amount of

solvent and colloids that must move as the gel phase separates.

Kilfoil et al. [100] study the delayed sedimentation of 0.5 µm silica and car-

boxymethylcellulose (CMC) between Cp = 0.087 wt% and 1.5 wt%, and find a dif-

ferent scaling value to that of Bartlett et al. for the interface height during rapid

collapse. They find a similar scaling with polymer concentration to that of Bartlett

et al. τ ∼ τ0exp(βCp), but the rapid collapse portion of collapse varies between 1

and 3 τ . It should also be noted that similar to Starrs et al. [51] there appears to be

a crossover to creeping sedimentation, but when all the data present is scaled onto a

master curve, there is good overlap of all height profiles, so in fact is it just incredibly

slow “rapid” collapse.

4.2.4 Height and Shape Effects

A complex picture arises when assessing the height and width dependence of a gels

lifetime, with Starrs et al. [51] finding both width and height dependent regimes,

as well as height independent regimes for the same gel system. They attribute this

behaviour to when the width and height are above a characteristic length-scale of

the network that τd becomes height independent. Kim et al. [104] show how con-

trolling the height of a sample can also determine if a delay period before collapse is

observed, with tall samples exhibiting delayed-collapse and shorter samples collaps-

ing via creeping sedimentation. Bartlett et al. [46] find no height dependence in τd

and also find that at all heights studied there is no crossover to creeping collapse

as seen elsewhere. This complex and at times contradictory behaviour of different

height samples has been attributed to a change in the gravitational stress put onto

the network as well as the shape of the meniscus having a large impact upon the

sedimentation behaviour of a gel. This dependence on the meniscus may well explain

the height independent behaviour found by Bartlett et al. as the gel system studied

creams rather than sediments, therefore the “top” of the gel network is actually at

the bottom of the sample vial.

With regards to an industrial formulation, the challenges faced due to this height,

width and shape behaviour in gel lifetimes can become extraordinary, especially when
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you consider the multitude of different ways a product can be delivered. Even with

something relatively mundane as hair products, pack size can vary, from larger tubs

for greater value to small one-use sachets for samples (arguably the worst situation

to have stability problems in). Moving to larger scale products such as pesticides,

again pack size can vary to an even greater degree, with some only requiring a small

sachet, to 20 L concentrates for spraying, to even tanker loads of product, which

touches again on another issue faced by industry, a product must remain stable at

every point during production, on top of when it has to sit on a shelf somewhere.

With this in mind, the next sections will focus on understanding the macroscopic

characteristics of a model colloid-polymer gel, predominantly the delay time before

collapse (τd).

4.3 Results - Delay Time Before Collapse

Using the model gel system described in Chapter 3, consisting of PDMS droplets( a =

316 nm) suspended in an EG/H2O solvent, with the polymer xanthan (Rg = 194 nm)

added to induce a depletion attraction between the PDMS droplets, the macroscopic

collapse of gels is measured. Four samples are individually prepared by mixing the

PDMS emulsion with a xanthan in EG/H2O solution to give a final colloid volume

fraction of φ = 0.2. Each sample is then loaded into a cell in the cell-holder using a

needle and syringe to ensure a consistent height of ∼ 20 mm and to minimise bubbles

in the samples and at the meniscus.

The image stacks generated were analysed as described in Section 2.3.2 and the

delay time identified for each gel at 25 °C, the average of the delay times, and the

standard deviation calculated to show the variation in τd. An example of the raw data

from which this was calculated can be found in Figure 2.9. The standard deviation

varied between 5 and 20 % of the average, with most errors being around 10 %, this

is similar to the 14 % seen previously in this system [56] as well as other colloidal gels

[60].

Figure 4.3 shows the delay times measured for xanthan-PDMS gels at 25 °C. With

concentrations between 0.4 and 1.0 g L−1, which gives a range of 1.6 to 4.0 Cp/C
∗
p .

τd varies between ∼ 20000 s (5.5 hours) to ∼ 70000 s (8 days) showing that a linear
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Figure 4.3: Delay times of gels with a range of xanthan concentra-

tions, measured at 25 °C.

increase in xanthan concentration gives a substantial increase in gel stability. Each

xanthan concentration gives a discrete cluster of τd values with only a slight overlap

occurring between 0.8 and 0.9 g L−1.

Comparing these delay times to room temperature measurements made previously

using the same system, Teece [105] measures lower values, approximately 1/3rd of

the values measured here, this significant difference in τd is attributed to the different

shape of the cell used, with Teece using a cylindrical cell. Despite this difference in

τd, the same exponential dependence on xanthan concentration Cp is still observed.

More recently, Gilligan [106] used the same rectangular cells as used in this work and

found delay times again lower than those presented here, despite a similar preparation

method. Therefore when considering the reasonable variance previously displayed

in the lifetime of colloid-polymer gels, the main difference between the results of

Gilligan and those presented here are the level of control of temperature. With the

temperature control (air conditioning) used, only giving a temperature stability of 20

± 2 °C. Using a similar system of HEC HHX and PDMS (a = 272 nm) gels, with Rg/a

= 0.45, a temperature variation of 0.4 °C [107] gives rise to a log normal distribution

with an average of 33000 s and a range of 20000 to 40000 s. This effect from only a 0.4

°C temperature difference gives insight into the drastic effect of temperature observed

later in this work. This increase in τd coming about due to the decrease variation
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in temperature (less than 0.1 °C, as shown in Chapter 3) is due to reduced internal

temperature variation within the sample. A higher level of temperature variation

within a sample will lead to a greater degree of internal stress, caused by differing

levels of coarsening and particle motion.

4.4 Discussion - Particle Dynamics

Previous work has been done exploring the link between the Kramer’s escape time

(τesc) and the delay time before gel collapse (τd), Bartlett et al. [46] estimated τesc

using the limiting low shear viscosity ηL, and found that τd correlated strongly with

240 x τesc (shown in Figure 1.20). Therefore we will calculate τesc at 25 °C using the

EG/H2O viscosity and compare these escape times to the delay times shown above.

4.4.1 Calculating Particle Escape

−U0

kBT
= q2s

(
qs +

3

2

)
q−3R y(1 + 3.77y1.31) (4.1)

Using Equation 4.1 (previously shown in Chapter 1), the strength of the depletion

potential at a range of xanthan concentrations is calculated and is plotted in Figure

4.4. There is a clear linear trend between depletion potential strength and xanthan

concentration. These depletion potentials are also summarised in Table 4.1. Using

the viscosities of the EG/H2O solvent shown in Table 3.3, the xanthan size measure

by Bartlett et al. [46] and the calculated depletion potentials, the Kramer’s escape

time for a range of xanthan concentrations is calculated and shown in Figure 4.5.

Xanthan Conc. 0.4 g L−1 0.45 g L−1 0.7 g L−1 0.8 g L−1 0.9 g L−1 1.0 g L−1

−U0/kBT 4.23 4.68 6.88 7.74 8.59 9.43

Table 4.1: Calculated depletion potentials for a range of xanthan
concentration.

τesc =
δ2

Dt

exp(−U0/kBT )− (1− U0/kBT )

(U0/kBT )2
(4.2)

D0 =
kBT

6πηLα
(4.3)
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Figure 4.4: Calculated depletion potential for a range of xanthan
concentrations.
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Figure 4.5: Calculated τesc from Equation 4.2, using η0 in Equation
4.3 (both previously shown in Chapter 1). At 25 °C for Cp 0.4 - 1.0 g

L−1.

4.4.2 Comparing Long and Short Time-scales

Figure 4.6 compares τd and τesc for all the xanthan concentrations studied at 25 °C.

The strong correlation between τd and τesc previously seen by Bartlett et al. [46]

is observed, however there is around three orders of magnitude between τd and τesc

compared to τd ∼ 240 x τesc. This significant difference in values comes about due

to two reasons, with the first being that the τesc calculated by Bartlett et al. use the

polymer viscosity ηL where as the τesc values calculated in Figure 5.9 use the solvent

viscosity η0, an example of how drastic a difference this choice of viscosity is, for a

1.0 g L−1 (4.0 Cp/C
∗
p) using ηL gives an escape time of 1000 s whereas using η0 gives

86



an escape time of ∼ 10 s. The second reason for this is the measurements of τd were

previously measured in cylindrical vials not rectangular vials, previously the shape of

a vial has been found to affect delay time, with a cylindrical vial giving a lower delay

time than a rectangular vial [105].
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Figure 4.6: τd and τesc plotted for gels at various concentrations of
Cp at 25 °C.

Table 4.2 and Figure 4.7 summarise the ratio of τd/τesc for each xanthan concen-

tration studied at 25 °C. With the error arising from the standard deviation in the

measurements of τd due to the stochastic nature of gel collapse, rather than variabil-

ity in sample preparation. It appears that at low xanthan concentrations, the ratio

seems to increase in a linear fashion, seen between 0.4 and 0.7 g L−1, however the

ratio of τd/τesc seems to be similar for gels between 0.7 and 1.0 g L−1 as it plateaus,

suggesting that at a single temperature, (25 °C in this case) delay time does scale

strongly with the Kramer’s escape time.

Gel Conc. g L−1 0.4 0.45 0.7 0.8 0.9 1.0

τd/τesc 37794 56020 106565 119980 107629 101103

St.Dev (±) 3996 2653 11545 29817 19640 21413

Table 4.2: The ratio between τd and τesc at 25 °C.
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Figure 4.7: Ratio between τd and τesc at 25 °C for gels between Cp

0.4 - 1.0 g L−1.

4.5 Summary

In this chapter we have explored the methods of measuring the delayed collapse phe-

nomenon seen in colloid-polymer systems, as well their relevance to studying the

stability of industrial formulations. We have also discussed the second type of gel col-

lapse seen, creeping collapse/sedimentation, and some of the parameters that appear

to control whether a system exhibits creeping or delayed collapse.

We have then shown data on a model colloid-polymer system, using the polymer

xanthan to form a depletion interaction between the PDMS drops. We have compared

measurements of the delay time τd to others made using this system, and find that

the τd measurements made in this thesis are consistently higher than those previously

made due to a slightly different preparation method and a different shaped vial used

to hold the samples when comparing to the work of Teece. When comparing the

values of τd to those of Gilligan, we find that the higher level of temperature control

used with our measurements increases the value of τd measured for the same system

and vial shape.

By considering previous work linking single bond rearrangements to the lifetime

of a gel, we calculate τesc using the solvent viscosity η0. We find that τesc and τd

scale well, even at very low polymer concentrations, with the ratio τd/τesc being

mostly concentration independent. The ratio calculated is significantly larger than

that of Teece, due to the lower τesc value calculated from solvent rather than polymer

viscosity, and the larger τd we measure.
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Chapter 5

The Effect of Temperature on

Gel Collapse

In this chapter, we explore the effect of temperature on the delay time τd, finding

that up to 45 °C, increasing temperature drastically reduces the time before collapse,

whilst above 45 °C the effect of temperature is lessened. We compare this change in

τd to the change in τesc,which arises predominantly due to the effect of temperature

on the solvent viscosity, but find that an increased rate of particle-particle bond break-

age is not sufficient to explain the trend in τd observed. We then explore whether

temperature affects the settling dynamic of the gel after collapse, finding little change

with temperature. Finally we present preliminary data using a shorter range depletion

interaction, finding that despite a drastically different depletion range and strength,

increasing temperature still yields a significant reduction in τd.

5.1 Introduction

As discussed in Chapter 1, changing the temperature of a formulation is a common

method in industry to test the stability of a product. This is often done either

through storing the product at a higher temperature, or by cycling the temperature

between hot and cold. However, despite this common use in industry, there has been

little study of the effect of temperature on colloid-polymer gels in academic research.

Most previous research has focused on how changing temperature can affect the phase

behaviour of a colloid-polymer system, due to the changing size of the polymer [37,

39].
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The phase behaviour change due to changing polymer size can be mitigated by

using the polymer xanthan. Xanthan does not gradually expand or contract as tem-

perature is increased (as shown in Chapter 3), so is an excellent polymer to use whilst

avoiding the changing phase diagram found with polymers such as polystyrene. Fur-

thermore, as xanthan remains the same size, the depletion attraction generated due

to it remains linear in temperature, as the depth and range of the potential remain

the same. As the depletion potential is often described in units of kBT , the linear de-

pendence with temperature is scaled out, meaning that the scaled depletion potential

becomes temperature independent.

In this chapter we will present collapse data between 25 and 60 °C, analogous to

the way that industrial formulations are stored at higher temperatures to test stabil-

ity, with an aim to see if the accelerated collapse seen in complex systems is observed

in our relatively simple model colloid-polymer gel. We then discuss the response to

temperature of the delay time τd and interpret the raw data as an Arrhenius like

activated process. Following this we begin to add layers of complexity to a model

to explain the collapse behaviour observed. We scale τd with the two extremes of

viscosity that a single particle is exposed to during gel ageing, the solvent viscosity

η0 and the polymer viscosity ηL. Once the appropriate scaling has been found, the

relevant viscosity is used to calculate the rate of particle-particle bond breakage at

each temperature and gel concentration, allowing the particle dynamics of the system

to be scaled out. This gives an insight into whether the previous assertions at am-

bient temperature, that gel collapse is governed by the rate of particle-particle bond

breakage [33, 46, 54, 55, 61] still holds true over a wide range of temperatures.

5.2 Results - The Effect of Temperature on Delay Time

Using the same method as Chapter 4, the samples were prepared by mixing the

PDMS emulsion (a = 316 nm) with a xanthan (Rg = 194 nm) in EG/H2O (61 %

w/w) solution to give a final colloid volume fraction of φ = 0.2. Each sample is then

loaded into a cell in the cell-holder using a needle and syringe to ensure a consistent

height of ∼ 20 mm and to minimise bubbles in the samples and at the meniscus. After
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the samples are loaded into the cell-holder, the temperature of the circulating water-

bath is set to the desired temperature as quickly as possible to ensure consistency

throughout all the experiments performed.

The image stacks generated were analysed as described in Section 2.3.2. With

the delay time identified for each gel at different temperatures, the average of the

delay times at each temperature was taken, and the standard deviation calculated to

show the variation in delay times at each temperature. The standard deviation varied

between 5 and 20 % of the average, with temperature having no significant effect on

the magnitude of the errors observed.
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Figure 5.1: Delay times of gels with a range of xanthan concentra-

tions, measured at different temperatures.

Figure 5.1 shows the delay times measured for xanthan-PDMS gels between 0.4

and 1.0 g L−1, which gives a concentration range of 1.6 to 4.0 Cp/C
∗
p . Each gel

concentration gives a discrete cluster of τd values with only a slight overlap occurring

between 0.8 and 0.9 g L−1. As temperature is increased, there is also minimal overlap

between gel concentrations, with 30 °C seeing the greatest amount of overlap, however

this appears due to the larger error in the 0.9 g L−1 value.

As temperature is further increased, an exponential decrease in τd is observed for

all gels, appearing to be a similar rate despite the two orders of magnitude difference

in τd values. With each 5 °C increase decreasing τd a similar amount as reducing the

xanthan concentration (but keeping the temperature the same).
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5.2.1 Discussion - Two Regimes Arising

Above 45 °C, the measured delay time in samples with xanthan concentrations 0.4

- 0.8 g L−1 appear to flatten off, with each 5 °C increase in temperature having a

reduced effect on τd, but nevertheless still ever decreasing the gel lifetime. This less-

ened response to temperature observed above 45 °C is dubbed the high-temperature

regime, and the greater response at lower temperatures the low-temperature regime.

Interestingly, the crossover temperature appears the shift, for 0.9 and 1.0 g L−1, to

50 and 55 °C respectively. This is shown in Figure 5.2 where these crossover temper-

atures are highlighted in red. As seen with the low-temperature regime, the response

to temperature in the high-temperature regime appears similar for all gels, with only

1.0 g L−1 appearing to have a slight difference, however due to the material used to

produce the cell-holder, temperatures above 60 °C were not possible to measure, so

only two points of the high-temperature regime could be measured for 1.0 g L−1. If

higher temperature measurements were possible, we would expect 1.0 g L−1 to follow

the same trend as the other five concentrations studied.
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Figure 5.2: Delay times of gels with a range of xanthan concentra-
tions, measured at different temperatures. Solid lines are linear fits to
the data, showing the two regimes of temperature response, with the

temperature at which the crossover occurs highlighted in red.

92



5.2.2 Regime Crossover Temperature Change

The crossover temperature at which a gel goes from the low to high temperature

regime does not equate with the temperature at which the depletant xanthan appears

to change its conformation/size, as shown earlier in Chapter 3, with the intrinsic

viscosity of xanthan increasing at 55 °C. If these two temperatures were to match up

this may give an indication of what is causing the lessened response to temperature,

as if xanthan was to expand at 45 °C it would increase the depletion potential and

thus τd. However the two temperatures do not match up, and even at 55 °C the

change in xanthan does not impact the delay times of any gels studied.

For all temperatures delayed collapse is observed and there was no transition into

creeping collapse.

5.3 Simple Interpretation - Activation Energy

γ = exp(−∆U/kBT ) (5.1)

To explore in greater detail the relationship between delay time and temperature

the data was modelled as an Arrhenius dependent rate, using the Arrhenius equation

shown in Equation 5.1, where ∆U is the activation energy. Thus by taking the natural

logarithm of the delay time and plotting it against the reciprocal temperature (1/T)

in Kelvin, the resulting gradient is equal to -∆U/kBT , the well depth in kBT .

ln (τd) =
∆U

kBT
(5.2)

Figure 5.3 shows very clearly the two-regime response to temperature, especially

for 0.7 - 0.9 g L−1 where the change in gradient is most pronounced. Fits are made

for each individual gel concentration. Table 5.1 summarises the slopes of each con-

centration and shows that, in the low-temperature regime, that the activation energy

is between four and seven times the depletion potential for these xanthan gels. How-

ever, in the high-temperature regime, the activation energy is of order the depletion

potential (∼ 5-10 kBT shown in Table 4.1).
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Figure 5.3: The natural logarithm of delay time (τd) plotted against
1/T. Solid lines are linear fits to the data.

Linear fit 0.4 g L−1 0.45 g L−1 0.7 g L−1 0.8 g L−1 0.9 g L−1 1.0 g L−1

Low T 30± 3 kT 38± 1 kT 47± 2 kT 47± 1 kT 41± 2 kT 40± 2 kT

High T 9± 1 kT 12± 1 kT 12± 2 kT 9± 3 kT 7± 2 kT ...

Table 5.1: Estimated activation energies for fits to the data shown
in Figure 5.3.

5.3.1 Strand Thickness

For an area of a gel to rupture, an entire strand must be broken, therefore more than

one particle-particle bond must fail as a strand can redistribute the load across it

if only one particle becomes detached. With the low-temperature activation energy

being multiple times the depletion potential, and the high-temperature regime acti-

vation energy being of order the depletion potential, it raises the question of whether

the activation energy calculated in the two temperature regimes can give an insight

into the gel structure in these regimes.

By considering the activation energies estimated from the fits of Figure 5.3 to be

the energy required to break the strands present within the gel structure, and by using

the calculated depletion potential between each particle, it is possible to estimate the

strand thickness within a gel. Previous work by Bartlett et al. [46] using the same

system found that strand thickness varies between 3 and 8 particles, with the strand
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thickness gradually increasing as the gel ages (shown in Figure 1.17).

Table 5.2 shows the activation energy, calculated depletion potential for the poly-

mer concentration of the gel, and the estimated strand thickness, calculated by divid-

ing the activation energy by the depletion potential. This gives a strand thickness in

the low-temperature regime of between 7 and 4 particles, and that as polymer con-

centration increases, the mean strand thickness decreases. This would seem to agree

with the measurements of Bartlett et al. who find that as polymer concentration

increase strand thickness decreases.

Linear fit 0.7 g L−1 0.8 g L−1 0.9 g L−1 1.0 g L−1

Activation Energy 47± 2 kT 47± 1 kT 41± 2 kT 40± 2 kT

Depletion Potential 6.9 kT 7.7 kT 8.6 kT 9.4 kT

Strand Thickness ∼ 7 ∼ 6 ∼5 ∼ 4

Table 5.2: Estimated activation energies and associated strand thick-
nesses.

5.4 Viscosity Scaled Delay Time - Building a Model

As discussed in Section 1.5, the viscosity experienced by a particle in a depletion

system can be at one extreme, the viscosity of the polymer solution (ηL), at the other

extreme, the viscosity of the solvent (η0), or a value in between. The simplest model

for this possibly complex situation is a two-layer model where no polymer is present

in the depletion zone so within the depletion zone η0 is the value used, and then

outside the depletion zone the bulk polymer solution viscosity ηL is used.

5.4.1 Using Solvent Viscosity

By taking the natural logarithm of the measured delay time (τd), dividing by η0,

and then plotting it against reciprocal temperature, Figure 5.4 is generated. Here

it becomes apparent that once the solvent viscosity has been factored out, the high

temperature fits become effectively horizontal, thus suggesting that in Figure 5.3

the slight gradient of the high temperature regime is the effect of the temperature

dependent solvent viscosity (shown in Figure 5.5). Interestingly, the low temperature

activation energies calculated using η0 (Table 5.3) appear to be very similar to each
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other at each gel concentration. With a gradual steepening of the gradient between 0.4

g L−1 and 0.8 g L−1, and once the crossover temperature shifts to higher temperatures,

the gradient decreases again slightly. It appears that factoring in the temperature

dependence of solvent viscosity is suitable for scaling out the reduced temperature

dependence observed in τd at high temperatures, but is insufficient to scale out the

steep low-temperature dependence observed below 45 °C. Therefore in the next section

we will study the scaling of τd with the polymer viscosity ηL.

ln (τd) = ln (τ0) +
∆U

kBT
(5.3)
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Figure 5.4: Ln(τd/η0) for a range of xanthan concentrations. Solid
lines are linear fits to the data.

Linear fit 0.4 g L−1 0.45 g L−1 0.7 g L−1 0.8 g L−1 0.9 g L−1 1.0 g L−1

Low T 21± 3 kT 29± 1 kT 38± 2 kT 39± 2 kT 33± 2 kT 32± 2 kT

High T 1± 1 kT 4± 1 kT 4± 2 kT 2± 3 kT −1± 2 kT ...

Table 5.3: Estimated activation energies for fits to the data shown
in Figure 5.4.

5.4.2 Using Polymer Viscosity

The viscosity of the polymer solution was measured by performing a table of shear

rates on a xanthan solution in EG/H2O solvent with 3 mM potassium chloride. As
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Figure 5.5: Ln(τd/η0) for a range of xanthan concentrations. Dashed
line is a guide to the eye.

xanthan is shear thinning, at low-shear rates the viscosity plateaus. This can be

extrapolated to zero shear rate to give the viscosity ηL. Figure 5.6 shows the table

of shear rates for a 0.8 g L−1 xanthan solution, where increasing the temperature

reduces the viscosity of the solution, and the change with temperature becoming

more significant at low shear rates. The data is cut off at an earlier point for higher

temperatures, as the rheometer struggled to reach steady state measurements as a

result of the viscosities measured being very low.

In Figure 5.7 the estimated values of ηL are shown for two xanthan concentrations,

with the viscosity of the 0.9 g L−1 solution being higher than that of the 0.8 g

L−1 solution at all temperatures apart from 55 and 60 °C, the viscosities may be

similar at these high temperatures either due to error arising from the difficulty in

making measurements due to the rheometer not being sensitive enough at such low

viscosities, or that the viscosity of xanthan has been so greatly reduced that the 0.1

g L−1 concentration difference is no longer noticeable. Only a single value has been

chosen, without error bars, to aid in simplifying the calculations for Figure 5.8 whilst

including the error in τd. As including an error in ηL would make the errors too great

to gain a reasonable fit. Also for the sake of simplicity, ηL was not calculated using

the Martin equation shown in Equation 1.31.

There appears to be no obvious change in temperature response for the xanthan
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Figure 5.6: The shear rate dependent viscosity for a 0.8 g L−1 xan-
than solution in EG/H2O solvent, between 25 and 60 °C.

solutions that matches the crossover temperature for the delay time data, with no

dramatic change in viscosity at 55 °C, the temperature at which capillary viscometry

has shown the intrinsic viscosity begins to increase. This again lends credence to

the argument that throughout the temperature range studied, the size of xanthan

remains unchanged.

Figure 5.8 shows the natural logarithm of τd, divided by ηL for 0.8 and 0.9 g L−1

xanthan gels, measured between 25 and 60 °C (but plotted against 1/K). In the low

temperature regime there is still a significant slope similar to that seen in Figure 5.3,

and also Figure 5.4. The activation energy calculated and summarised in Table 5.4

is lower than both, as expected and a greater value is seen for ηL than for η0. The

fact there is still a significant downward slope in the value of ln(τd/ηL) shows that

even the greatest extreme of polymer viscosity change is not sufficient to explain the

decrease in τd at temperature increases. One striking difference at low temperatures

is that when ηL is factored out, the 0.8 and 0.9 g L−1 data more or less overlaps,

whereas with η0 (Figure 5.4) none of the data overlaps and each gel concentration

has a discreet trend. This is presumably due to the fact that all of the data at each

temperature has a single solvent viscosity value being factored out, whilst polymer

viscosity scales with polymer concentration.

However, the seemingly good fit of ηL completely breaks down in explaining the
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Figure 5.7: Polymer solution viscosity ηL for 0.8 and 0.9 g L−1

xanthan solutions in EG/H20, between 25 and 60 °C.

high temperature regime above 45 °C, in which a large change in sign of the activation

energy is observed. Whilst the 0.9 g L−1 activation energy is possibly overestimated

due to the rheology data used to estimate ηL, but despite this even the 0.8 g L−1

activation energy is -18 ± 5 kT, which is not a physically realistic value. This coupled

with the radical change in sign shows that scaling τd with ηL at high temperatures

does not work.

Linear fit 0.8 g L−1 0.9 g L−1

Low Temperature 30± 2 kT 27± 2 kT

High Temperature −18± 5 kT −30± 5 kT

Table 5.4: Estimated activation energies for fits to the data shown
in Figure 5.8.

5.4.3 Comparing the Use of Polymer and Solvent Viscosity

Therefore it appears that this extreme of using the polymer viscosity ηL is not suitable

for exploring the temperature response of these gels, and therefore going forward the

solvent viscosity η0 will be deemed the relevant viscosity consider, and will be used

in calculations such as the Kramer’s escape time τesc.
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Figure 5.8: Ln(τd/ηL) for 0.8 and 0.9 g L−1 xanthan-PDMS gels
plotted against the reciprocal temperature 1/K.

5.5 Discussion - Particle Dynamics

Previous work has been done exploring the link between the Kramer’s escape time

(τesc) and the delay time before gel collapse (τd), Bartlett et al. [46] estimated τesc

using the limiting low shear viscosity ηL, and found that τd correlated strongly with

240 x τesc (shown in Figure 1.20). Therefore we decided to compare how the Kramer’s

escape time is affected by temperature, assuming that the range and depth of the de-

pletion remains unchanged across this range of temperatures (due to no structural

rearrangement of the xanthan structure). This means that the only component de-

pendent on temperature in the Kramer’s escape time is the diffusion constant Dt.

5.5.1 Effect of Temperature on Particle Bond Lifetime

Using the viscosities of the EG/H2O solvent shown in Table 3.3, the xanthan size

measure by Bartlett et al.[46] and the calculated depletion potentials, the tempera-

tures for which the Kramer’s escape time is calculated is extended from just 25 °C,

to 60 °C. All of which are shown in Figure 5.9.

It is clear to see in Figure 5.9 that the Kramer’s escape time decreases with

temperature in a smooth manner, due to the decrease in solvent viscosity. It is

interesting to note that an increase of around 15 °C from 25 to 40 °C, to reduce τesc

100



to a similar value for the xanthan concentration below, such as 1.0 to 0.9 g L−1,

however across the temperature range studied, there is not sufficient change in τesc

to cross two gel concentrations, such as 1.0 to 0.8 g L−1.
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T e m p e r a t u r e  ( ° C )

Figure 5.9: Calculated τesc from Equation 5.4, using η0 in Equation
5.5 (both previously shown in Chapter 1). At 25 - 60 °C for Cp 0.7 -

1.0 g L−1.

τesc =
δ2

Dt

exp(−U0/kBT )− (1− U0/kBT )

(U0/kBT )2
(5.4)

D0 =
kBT

6πηLα
(5.5)

5.6 Linking Long and Short Time-scales

Figure 5.10 shows ln(τd/τesc) between 25 and 60 °C, for 0.7 to 1.0 g L−1 gels, with the

ratio between the two being concentration independent apart from very low polymer

concentrations, indicatiing scaling of τd and τesc at a single temperature . Here,

the two-regime dependence becomes even more apparent, in the similar way that

it does when η0 is accounted for in Figure 5.4. However when accounting for τesc

all ratios at a given temperature overlap, with the ratio of τd/τesc decreasing as

temperature increases, before in the high temperature regime, the ratio plateaus for

all concentrations.
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Figure 5.10: Ratio of τd and τesc from 25 to 60 °C, for Cp 0.7 - 0.9
g L−1 and 1.0 g L−1 (inset) xanthan-PDMS gels (φ = 0.2).

This shows that even once the temperature-dependent particle dynamics have

been accounted for, it is still insufficient to explain the observed change in delay

time with temperature. This may come about due to 2 competing processes within

the gel, such as strand breakage and healing, changing with temperature, and the

crossover regime signifying where the rate-determining process switches. Much akin

to the stress response seen by Sprakel et al. [60] where at low stress strand healing

dominates and then at high stress, strand breakage dominates. It could also be

interpreted, similar to the activation energies above, that the gel structure is changing

with temperature, namely the average strand thickness. At lower temperatures, the

strands becoming thinner as temperature increase. The plateau seen in τd/τesc would

then signify a strand thickness of one particle, and the plateau being caused by the

fact you can’t have a strand thinner than one particle and still have a space-spanning

network form (and thus a gel).

Linear fit Low Temperature High Temperature

τd/τesc 38± 2 kT 2± 1 kT

Table 5.5: Estimated activation energies for fits to the data shown
in Figure 5.10.
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5.7 Results - Settling Dynamics

With such a drastic response to temperature observed in the delay time τd, it stands

to reason that perhaps there will also be a change in the way the gel collapses, that

may shed insight into the cause of the temperature behaviour observed.

5.7.1 Height Profiles
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(a) 0.4 g L−1 xanthan-PDMS gel.
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(b) 0.45 g L−1 xanthan-PDMS gel.

Figure 5.11: Height profiles (1/h) plotted against τ/τd from 25 - 60
°C.
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As shown in Figure 5.11 the height profiles all show a period of rapid collapse

before compaction. At all temperatures it appears that the rapid collapse occurs

of a similar multiple of τd, with there appearing to be a slight trend, with higher

temperatures appearing to take slightly longer with respect to τd but not to any

great degree. There appears to be no significant trend above 40 °C, with both gel

concentrations showing similar rates of collapse, not yielding any insight into the

change in τd response to temperature at high temperatures. The 0.45 g L−1 gels

show a larger variation in height than the 0.4 g L−1 gels due to the samples being

added to the cell holder from left to right, but this larger variation does not seem to

affect the gel collapse.

5.7.2 Viscosity Adjusted Height Profiles

To explore how the viscosity of the solvent can affect the height profile of a gel at

different temperatures the time was divided by the solvent viscosity (η0), as the parti-

cles will be moving through sample as they cream to the top, rather than normalising

τ against τd, it is normalised against η0. The interface height of each sample (h) has

been normalised against the height of the interface at collapse (hd), to remove the

variation seen in Figure 5.11.

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

 2 5 ° C
 3 0 ° C
 3 5 ° C
 4 0 ° C
 4 5 ° C
 5 0 ° C
 5 5 ° C
 6 0 ° Ch/h

d

τ/η 0

Figure 5.12: Normalised height plotted against τ/η0 for 0.7 g L−1

Xanthan Gels.
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Figure 5.12 shows the solvent adjusted collapse profiles for a 0.7 g L−1 respectively.

This graph is interesting as it encapsulates the height profile, the solvent accounted

delay time, and how the shape of the height profiles compare. As the temperature

increases, the delay time decreases, so the height curve moves to the left, until at 45

°C they begin to overlap, this corresponds to the regime change seen in Figure 5.4.

After a slight initial curve to the height profile, just after delay time, the majority of

the rapid collapse period becomes more of less linear, presumably as the gel structure

has yielded, and the sample begins to behave as a fluid. At all temperatures the

slope appears to be the same, unlike in Figure 5.11, where the slope decreases as

temperature is increased. This is most likely due to the greater effect temperature

has on the delay time compared to the rapid-collapse portion of a gel’s lifespan.

By plotting the interface height against τ/η0 it shows the strength in comparing

different time-scales and factors can give insight to the broader picture in both the

effect of gel composition and temperature. Another interesting way to plot this data

is shown in Figure 5.13, where both the factors that determine delay time being

plotted on separate axis, breaking down the competition between increasing depletion

potential and increasing temperature.

Figure 5.13: 3D plot of ln(τd/η0) against reciprocal temperature
(1/K) with depletion potential (-U0/kBT ) for 0.7 - 1.0 g L−1 xanthan-

PDMS gels.
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5.8 Results - Changing Depletant

To see if this response to temperature seen in the xanthan-PDMS gels is a more

universal feature of colloid-polymer gels, or perhaps just a quirk of a xanthan based

gel (which even if it was, would still be highly industrially relevant due to xanthan’s

large scale use) the xanthan depletant was exchanged for a cellulose derivative. The

polymer chosen was hydroxyethylcellulose (HEC) Natrosol 250 HHX, with a Mw =

1.3 x 106 and a Rg of 126 nm, and by using the same size PDMS droplets as the

xanthan gels, a size ratio qr of 0.40 is achieved, a system previously used by Zhang

[87]. Despite a similar overlap concentration (0.26 g L−1) to that of xanthan (0.25

g L−1) a significantly larger amount of polymer is required to achieve gelation, with

up to 1.4 g L−1 only showing slow phase separation not gelation. Therefore the

concentration presented is 2.0 g L−1 of HEC HHX, the delay times of which are

shown in Figure 5.14.
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Figure 5.14: τd for 2.0 g L−1 HEC-PDMS Gels, between 25 and 55

°C.

At 25 °C, τd is ∼ 60000 s, approximately double the value measured by Zhang

[108], a similar discrepancy to the delay times previously measured in the xanthan

system due to the changing sample shape (cylindrical vials to rectangular vials). As

temperature increase τd decrease as a exponential rate similar to that seen in the

xanthan-PDMS gels. However over the temperature range covered no obvious change

in temperature response is observed, and already at 55 °C the value for τd (∼ 30
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minutes) is lower than any measured for the xanthan-PDMS system, making higher

temperature measurements unfeasible.

Due to the higher polymer concentration, the depletion potential is much greater

than that of the xanthan-PDMS system, with 1.0 g L−1 of HEC generating an at-

traction of 15 kBT , and 2.0 g L−1 generating an attraction of 30 kBT . Despite this

increase in depletion potential, that would normally be classed as a strong gel and

exhibit creeping collapse, due to the still long range of the potential delayed collapse

is still observed. Whilst a xanthan based gel is stable at 2.0 g L−1 for well over a

month, a 2.0 g L−1 HEC HXX gel is stable for less time than a 0.7 g L−1 xanthan

gel.

This reduced gel lifetime despite a greater depletion potential, causes times that

are highly relevant in the xanthan-PDMS system, such as the Kramer’s escape time

τesc, to have no relevance to τd in this system. With τesc for a 2.0 g L−1 HEC gel being

∼ 500 days (a 2.0 g L−1 xanthan-PDMS gel is ∼ 1 hour). However as shown above,

this response to temperature is not due to merely accelerated particle dynamics, but

due to a change in the space-spanning network of the gel, and as the the volume

fraction of PDMS has been kept the same in both the xanthan and HEC systems,

one might expect a similar bi-continuous structure to form in both systems, but the

rate and mechanism through which they age to be distinctly different.
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Figure 5.15: Ln(τd) for 2.0 g L−1 HEC-PDMS Gels, between 25 and
55 °C.
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Again, as with the xanthan-PDMS system, the natural logarithm of delay time is

plotted against reciprocal temperature (1/K) in Figure 5.15 and then an activation

energy calculated from the gradient, the activation energy for the HEC-PDMS gel

is calculated to be 36 ± 2 kBT . This value sits between the activation energies of

the 0.4 g L−1 xanthan gel, and the 0.7/0.8 g L−1 xanthan gels, and is roughly that

of the 0.45 g L−1 xanthan gel, although for all of these xanthan gels the crossover

temperature to the high-temperature regime occurs at 45 °C, whereas with the HEC

gel there appears to be no crossover up to 55 °C. It is interesting to note that the

activation energy is roughly the same as that of a the 0.45 g L−1 xanthan gel, as seen

in Figure 5.16 that this is also where the delay time τd sits also with respect to the

xanthan system.

This activation energy is of order the depletion potential for the HEC-PDMS

system, which may suggest that there are only single particle strands present within

the gel at all temperatures, however measurement of the structure of HEC-PDMS gels

has been limited, with Gilligan [106] performing confocal microscopy on 0.4 - 0.7 g

L−1 HEC-PDMS gels, he found that over this concentration range, the bi-continuous

structure of the network does indeed become finer as HEC concentration is increased,

but whether at 2.0 g L−1 the strands would only be one particle thick is unclear.
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Figure 5.16: All measured delay times τd for both the xanthan-
PDMS system and the HEC-PDMS system between 25 °C and 60 °C.

Figure 5.17 shows the height profiles of a 2.0 g L−1 HEC-PDMS gel between 25 and

55 °C, with interface height (h) normalised against the collapse interface height (hd),
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and time normalised against delay time τd for each temperature. All gels display the

three main regimes of delayed collapse, even at high temperatures, where the delay

time is less than an hour. There does not appear at first to be the same gradual

stretching of collapse portion as seen in the xanthan gels but when comparing to

the delay time, 35 and 40 °C sit above the general fit (Figure 5.14). Overall the

rapid-collapse portion of the gel’s lifetime (2 - 3 x τd) is similar that observed in the

xanthan system.
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Figure 5.17: Height profiles for 2.0 g L−1 HEC-PDMS Gels.

As the solvent for both the xanthan-PDMS and HEC-PDMS gels are the same,

the height profiles are normalised against the solvent viscosity η0 in Figure 5.18. Here

again we see a similar slope at all temperatures, and a shift to the left as temperature

increases. The initial portion of each height profile (h/hd = 1.0 - 0.95) appears

the get steeper as temperature increases, with the 25 and 35 °C profiles showing a

suppressed interface movement compared to 45 and 55 °C, suggested that even though

an interface has formed, the network of the gel has become to some extent jammed

again as solvent leaves the gel and strands begin to move. This “hanging on”is also

seen in the xanthan-PDMS system (Figure 5.12).
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Figure 5.18: Normalised height plotted against τ/η0 for 2.0 g L−1

HEC HHX Gels.

5.9 Summary

In this chapter we have shown data on a model colloid-polymer gel, using the polymer

xanthan to form a depletion system, and how increasing the temperature of the gel

causes a significant reduction in gel stability, quantified by the delay time before

collapse τd. We see two regimes of temperature response in Figure 5.1, between

25 and 45 °C we see a sharp decrease in τd, the low-temperature regime, and then

above 45 °C a muted decrease in τd as temperature is increased further to 60 °C.

The crossover between these two regimes seems to shift to higher temperatures with

increased polymer concentration, which is shown clearly in Figure 5.2, but further

work is required to ascertain the cause of this shift.

By comparing τd to measured properties of the system known to change with

temperature, such as polymer and solvent viscosity we deduce that firstly solvent

viscosity is a more relevant property when considering the dynamics of a depletion

system, and that this changing viscosity is insufficient to explain the reduction in τd

recorded. Whilst temperature has a large impact on τd it appears to only have a

slight impact on the height profiles after collapse, with all samples showing delayed

collapse.

We present preliminary data in Figure 5.14 on a second system using a smaller

polymer HEC-HHX, and also find a steep decrease in τd but no regime change is

observed before the delay time becomes incredibly short. Due to the nature of this
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system, the Kramer’s escape time seems to not have any correlation with the gel

lifetime, but the height profiles appear similar to those of the xanthan-PDMS system.

At the very least, the data shows that the response to temperature is not just a quirk

of using xanthan as a depletant.

By considering previous work linking single bond rearrangements to the lifetime

of a gel, we calculate the Kramer’s escape time τesc for the xanthan-PDMS system

at all the temperatures studied. We show in Figure 5.10 that the ratio τd/τesc at all

temperatures and for the gel concentrations studied, is independent of the xanthan

concentration, building upon previous work carried out at ambient temperature using

this system. We find that in the low-temperature regime, the ratio τd/τesc decreases as

temperature increases, and then at ∼ 45 °C the ratio remains the same as temperature

is increased further. This changing relationship between single-particle dynamics and

the lifetime of a gel suggest that the previous assertion that a gel’s stability is wholly

determined by its particle-particle dynamics is not sufficient. Whilst single-bond

breakage does indeed play a key factor in determining the lifetime of a gel, there is

another as-of-yet undetermined factor playing a vital role in determining the stability

of a colloid-polymer gel. As such, in the next chapter we will endeavour to uncover

what this may be.
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Chapter 6

The Effect of Temperature on

Network Formation

In this chapter, we characterise the rheological properties of a PDMS-xanthan gel at

25 °C, such as its shear-thinning behaviour, as well as the level of gelation in G′

and G′′. We compare the rheological properties of different strength gels, comparing

both 0.7 and 1.0 g L−1 xanthan gels, finding that increasing polymer concentration

increases the magnitude of G′ and G′′. We explore the effect of temperature on the

level of gelation, as well as the samples’ response to an applied strain, finding that

even up to 70 °C, no change in the rheological properties of freshly prepared gels is

found. However the rheological ageing of the gels studied is significantly affected by

temperature, with G′ increasing dramatically with age at higher temperatures.

6.1 Introduction

Testing the rheological properties of a formulation is a common method used in

industry to give an indication of long-term stability. This is mainly because of the

relative simplicity and speed with which a measurement can be made when compared

to a long-term stability experiment. If key rheological properties can be related to a

more stable formulation, such as the stiffness of a gel or the level of gelation in the

formulation, then this would allow early characterisation of a new formulation to give

an insight into the feasibility of the formulation as a product.
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6.2 Results - Gelation at Ambient Temperature

Using the model gel system described in Chapter 3, and used for the collapse exper-

iments of Chapters 4 and 5, a sample is prepared identically by gently stirring the

PDMS emulsion (a = 316 nm) with a xanthan solution at the appropriate concentra-

tion to give the correct gel concentration and colloid volume fraction. For rheological

experiments no dye is added to either the PDMS or EG/H2O phase. Once a gel is

prepared, it is sheared at 100 s−1 for 5 minutes and then allowed to recover for 15

minutes before the experiment is carried out. Further details on the geometries used

for these rheology experiments can be found in Section 2.4.

0 . 1 1 1 0 1 0 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 S t o r a g e  M o d u l u s
 L o s s  M o d u l u s
 P h a s e  A n g l e

S t r a i n  ( % )

Mo
du

lus
 G

' , G
'' (P

a)

1 1 4

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

Ph
as

e A
ng

le 
(°)

Figure 6.1: Strain sweep of a 1.0 g L−1 xanthan and PDMS gel.

Figure 6.1 shows a strain sweep performed on a 1.0 g L−1 xanthan-PDMS gel at

25 °C. At low strain the sample is gelled, as G′ is greater than G′′. The linear regime

for the gel is from 0.1 to 1 % strain, in which the sample properties are independent

of the applied strain. At 1 % strain, the elastic modulus G′ begins to decrease and

at 14 % strain the viscous modulus G′′ becomes greater than G′ signifying a change

from solid to fluid-like behaviour. The modulus G′ has a magnitude of ∼ 1.0 Pa,

whilst G′′ has a magnitude of 0.8 Pa, with the resulting phase angle being 40 °. This

indicates that the gel formed is a very soft gel, as G′ is not much higher than G′′,
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usually a more rigid gel would have a G′ value an order of magnitude greater than

G′′.

Figure 6.2 shows shear stress and shear rate for a 1.0 g L−1 gel at 25 °C. The

measurement is repeated to ensure there was no thixotropy, by performing one sweep

from high to low shear rates, and then a second from low to high shear rates. A

concatenated fit was used to fit to a power law, giving an exponent of 0.566, indicating

that the gel is pseudoplastic in nature (shear-thinning) as expected.
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Figure 6.2: Shear Stress plotted against Shear Rate for a 1.0 g L−1

gel at 25 °C, with a power law fit.

6.2.1 Changing Gel Strength

Here we will compare the response to strain of two different PDMS-xanthan gels, one

with 1.0 g L−1 of xanthan and another with 0.7 g L−1 to see the effect of changing

polymer concentration (and thus the depletion potential).

Figure 6.3 shows strain sweeps for 0.7 and 1.0 g L−1 gels at 25 °C, with the 1.0

g L−1 gel having a G′ value of 1.05 Pa and the 0.7 g L−1 gel a 0.7 Pa value. This

increase is due to the stronger depletion potential between the particles making up

the gel structure, meaning the gel structure as a whole is more rigid. There is also
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an increase in the viscous modulus G′′, from 0.45 Pa to 0.7 Pa, which is attributable

to the increased xanthan concentration of the sample.

Despite a reasonable difference the magnitudes of G′ and G′′, the response to

strain for both gels remains the same, at around 1 % strain G′ begins to decrease

with higher strain and at ∼ 15 % strain G′ and G′′ crossover.
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Figure 6.3: Strain sweeps of a 0.7 and 1.0 g L −1 gel at 25 °C.

6.3 Low-Temperature Regime Gelation

With the baseline properties of xanthan-PDMS gels established above, in this section

we will explore how the rheological properties of the gels change as temperature is

increased, and whether a similar two regime dependence is seen as with τd in Chapter

5.

Figure 6.4 shows amplitude sweeps of freshly prepared 0.7 g L−1 PDMS-xanthan

gels, at 25, 35, and 40 °C. At all temperatures the samples remain gelled, with G′

being greater than G′′. As temperature is increased, the elastic modulus G′ remains

the same at ∼ 0.8 Pa, showing that the level of gelation within the sample remains the

same. As G′ is dependent primarily on the strength of the network and the depletion

potential, this again shows that nothing fundamental in the composition is changing
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as temperature increases. The decrease in G′′ as temperature increases comes about

due to the reduction of both solvent viscosity and polymer viscosity, causing the gels

to be slightly stiffer at higher temperatures.
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Figure 6.4: Amplitude sweeps at 0.5 Hz, of 0.7 g L−1 xanthan-PDMS
gels (φ = 0.2) at 25, 35 and 40 °C.

However, the most striking feature is that a significant increase in temperature

has no effect on the critical strain at which G′ begins to drop, which can be seen as the

point at which the gel structure begins to deform and break up, allowing the sample

to begin to behave as a liquid. The fact that this response to strain is unchanged by

temperature suggests that the initial structure of the gel is temperature independent,

underpinning the previous assertion that the depletion potential in this system is

unchanged by temperature.

Figure 6.5 shows strain sweeps of 1.0 g L−1 PDMS-xanthan gels between 25 and

50 °C. The magnitudes of G′ and G′′ are similar to those shown in both Figures

6.1 and 6.3, showing the high level or reproducibility between both experiments and

different samples. As with the 0.7 g L−1 gels, there is no change in the magnitude of

G′ as temperature is increased and there is only a slight decrease in G′′. The critical

strain is again ∼ 15 % strain at all temperatures.
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Figure 6.5: Amplitude sweeps at 0.5 Hz, of a 1.0 g L−1 xanthan-
PDMS gels (φ = 0.2) at 25, 35, 45 and 50 °C.

6.4 High-Temperature Regime Gelation

With no change in rheological properties observed in the low-temperature regime,

the change to the high-temperature observed in Chapter 5 may be due to a change

in the rheological properties occurring at 45 or 50 °C. To test this, a 1.0 g L−1 is

heated from 40 °C to 70 °C in 5 °C intervals every 10 minutes, this is shown in Figure

6.6. The measurement is made at a fixed strain (0.5 %) within the plateau region of

Figure 6.5 to allow the sample to be probed within the linear response regime, so the

applied strain does not affect the properties of the gel.

As the sample is being heated at intervals, the elastic modulus decreases slightly

during heating, and then recovers once the temperature plateaus, giving the slight

undulation in G′. Because of this, the two dashed lines are added to aid the eye. It

is clear that despite this slight variation in G′, there is no noticeable change in the

rheological properties of the gel as it is taken into the high-temperature regime, even

going 10 °C above the highest temperature studied in Chapter 5, yields no change in

the rheological behaviour. Much like the previous measurements made, the viscous

modulus G′′ decreases with increased temperature.

118



0 6 0 0 1 2 0 0 1 8 0 0 2 4 0 0 3 0 0 0 3 6 0 0
0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

1 . 1

 4 0 ° C  
 4 5 ° C
 5 0 ° C
 5 5 ° C
 6 0 ° C
 6 5 ° C
 7 0 ° CMo

du
lus

 G
' , G

'' (P
a)

T i m e  ( s )

Figure 6.6: Oscillatory Rheology with fixed 0.5 % strain at 0.5 Hz
for a 1.0 g L−1 xanthan-PDMS gel (φ = 0.2) between 40 °C and 70

°C.

Looking in further detail at Figure 6.6, it is clear to see that there is no change

in rheological behaviour that correlates with the change in the intrinsic viscosity of

xanthan shown in Chapter 2, with the change in xanthan size having no apparent

affect on the gel as a whole. Further more, the fact that there is no sudden increase or

decrease in G′ at these high temperatures shows there is no aggregation or rupturing

of the PDMS droplets making up the gel network, and that at all temperatures the

PDMS droplets remain intact. This is presumably due to the combination of both

steric and electrostatic stabilisation methods used to form the droplets.

6.5 Effect of Temperature on Sample Ageing

With rheology of fresh un-aged gels yielding no insight, Figure 6.7 shows how G′ and

G′′ evolve at a fixed 0.2 % strain (within the plateau region of Figure 6.6) so the

strain should not affect the ageing of the gel, but allow us to probe how it stiffens

with age at different temperatures. At very short time scales the gels thicken rapidly

at a similar rate for each temperature as they settle in the geometry of the rheometer.
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At 25 °C the gel stiffens very gradually, in a linear fashion after the initial rapid

settling. The rate of stiffening measured is similar to that previously observed by

Bartlett et al.[46] using a vane rheometer for the same experimental system at 20 °C.

With a gel at 35 °C, the gel initially stiffens at a similar rate to the 25 °C gel before

at around 500 minutes it begins to stiffen at an increased rate. This would indicate

no real change at early times but at later times the gel is ageing at an accelerated

rate.
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Figure 6.7: Evolution of G′ and G′′ at 0.2 % strain for 0.7 g L−1

xanthan-PDMS gels (φ = 0.2) at various temperatures.

Finally at 40 °C the sample thickened at a much accelerated rate for the entire

experiment, with G′ changing over an order of magnitude within 12 hours. Previously

Bartlett [46] found that at τd there was a sharp increase in G′′ followed by a large

fluctuation in G′ before finally a significant increase in G′. However, at the time

corresponding to τd at 40 °C (∼ 300 minutes) there is no change in either G′ or G′′,

indicating that the gel has not collapsed during the rheology experiment. The is most

likely due to the rheometer geometry used to measure the gels, as τd has been shown

to be affected by both the sample size and shape.
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6.6 Summary

In this Chapter we have established the rheological properties of the PDMS-xanthan

gel system at 25 °C, showing that the gels are shear-thinning in nature, as well as

that both the elastic modulus G′ and the viscous modulus G′′ increase with polymer

concentration. By performing strain sweeps on freshly prepared gels we find that

polymer concentration has no impact on the strain response of gels, with both 0.7

and 1.0 g L−1 gels having a linear regime until 1 % strain, and having predominantly

fluid-like behaviour at ∼ 14 % strain.

By increasing the temperature at which strain sweeps are performed, we find that

the samples remain gelled up to 70 °C, G′ being temperature independent, and G′′

decreasing gradually with temperature. We interpret this as the depletion potential

being unchanged, and thus the gel network remaining the same strength at all tem-

peratures, causing G′ to remain the same. The decrease in G′′ is due to the viscosity

of both the EG/H2O solvent and xanthan decreasing with temperature. We find that

the change in intrinsic viscosity of xanthan at 55 °C does not cause any changes in

the rheological properties of the gel as a whole, and that the PDMS droplets within

the gel remain intact at all temperatures.

Finally we present data on the ageing of a 1.0 g L−1 PDMS-xanthan gel, and find

that as temperature increases, the rate at which a sample stiffens increases signifi-

cantly. This, coupled with the lack of change in freshly prepared samples, indicates

that the change in τd seen in Chapter 5 comes about not due to fundamental changes

to the gel composition at its formation, but due to the way temperature affects the

ageing process during the gel’s lifetime. In the next Chapter, we will explore the age-

ing dynamics of PDMS-xanthan gels at different temperatures using the technique

Particle Tracking Velocimetry.
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Chapter 7

Measuring Mesoscopic Changes

During Gel Ageing

In this chapter, we present data collected using a novel technique to explore the meso-

scopic dynamics of colloid-polymer gels, Particle Tracking Velocimetry. We find that

in the low-temperature regime, there is a period of quiescence, with only small re-

gions of localised collapse occurring, these then eventually propagate throughout the

network, causing the entire gel to fail. In the high-temperature regime, we find homo-

geneous tracer movement before collapse, suggesting a dramatically different driving

force behind gel collapse at these high temperatures. We find how changing the de-

pletion potential affects the pre-collapse dynamics of a gel, as well as the crossover

temperature between the two regimes.

7.1 Introduction

With Chapter 4 showing the rich behaviour previously observed in colloid-polymer

gels, with most methods focusing on observation at collapse and after, in this chapter

we will use a particle tracking technique Particle Tracking Velocimetry (PTV) to

probe mesoscopic changes occurring before collapse, with an aim to finding both

early warning of collapse as well as an explanation of the two-regime response to

temperature seen in the delay time data.

Whilst no clear cause of the significant effect of temperature found through prob-

ing the microscopic length-scale, with a seemingly fixed ratio between τd/τesc at each
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temperature. Also, rheological experiments in Chapter 6 show that at all temper-

atures a gel remains intact and has the same response to strain. As temperature

increases, the sample stiffens much more as it ages, shown by a large increase in G′

at high temperatures, but only a slight increase at low temperatures. This shows

that understanding how the gel ages at different temperatures is key to understand-

ing the underlying cause of the response to temperature seen in Chapter 5, such as

thinning particle strands, or a change in the dominant process occurring within the

gel network.

7.2 Results - Low Temperature Regime (25 - 45 °C)

With the drive towards understanding how impending collapse of formulations can

be predicted or detected at earlier times, Particle Tracking Velocimetry is used to

detect localised movement within a gel prior to the observed macroscopic collapse at

τd.

Figure 7.1 shows the mean tracer speed (calculated from Equation 2.11) in µm

s−1 as a function of time for a 0.8 g L−1 gel. At the beginning of the experiment

there is a small amount of tracer movement which is due to the gel forming and

the tracers settling into the network, this movement is vertically down when looking

at the images and minimal to no horizontal movement. Following this brief time of

particle movement, there is an extended quiescent time in which there is no particle

movement (the small undulations are presumably from statistical fluctuations due

to the finite number of tracers), before the mean speed increases sharply to a peak

speed (vmax) after which the mean speed begins to drop again. The time at which

the maximum tracer speed is observed is determined as τmax, which has been shown

to correlate well with a simultaneous measurement of τd [84].

However, due to constraints of tracking an increased number of smaller tracer par-

ticles compared to the work done by Shaw [84], it was not possible to measure a value

for τd during the PTV experiments, therefore the values of τmax will be compared

to the delay times previously measured and discussed in Chapter 4. Interestingly,

as tracer movement begins to increase, it is possible to see the jagged nature of the

curve in Figure 7.1a, especially around 120000 seconds, this jagged nature likely arises
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from the heterogeneous nature of the network fractures. Meaning on a small area will

give way before the rest of the gel network is able to take up the stress, so parti-

cle movement is again arrested for a short period before another part of the network

yields, and so on and so forth, until irreparable damage has been done to the network,

causing the sample to collapse macroscopically.

(a) Raw data. (b) Smoothed data.

Figure 7.1: PTV data for a 0.8 g L−1 xanthan-PDMS gel at 25 °C.

For Figure 7.1 the value for τmax is determined as 168540 s from the raw data

(7.1a) and 167520 s for the smoothed data (7.1b). The discrepancy between the two

values is negligible mainly due to the fact, that in the raw data the peak velocity is

very obvious and well defined. Comparing these values for τmax with the previously

measured τd value of ∼ 270000 ± 70000 s, shows that the value for τmax is slight below

the bottom range of the values of τd but is not dramatically lower. This lower value

of τmax can be attributed to the fact that the τd measurements were made with a

lower resolution camera and at a much greater field of view, so that multiple samples

could be observed at once, compared to the PTV experiments where only a single

sample is measured.

Increasing the temperature to 30 °C still maintains the general shape once the

data has been smoothed (Figure 7.2b), with a quiescent period initially, followed by a

similar peak in tracer speed as seen at 25 °C. Compared to the 25 °C data, there seems

to be a greater degree of tracer settling at the beginning of the experiment as the gel

forms, but this amount of initial tracer settling was seen in room temperature samples

by Shaw [84]. In the quiescent period there are small amounts of tracer movement

(∼ 30000 s) but for large periods of time there is no detectable movement within the
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(a) Raw data. (b) Smoothed data.

Figure 7.2: PTV data for a 0.8 g L−1 xanthan-PDMS gel at 30 °C.

sample. There is still a jagged slope up towards the peak speed (vmax), however there

are less times at which the sample recovers, giving a sharper increase towards vmax.

Determining both τmax and vmax from the raw data in Figure 7.2a is unreliable due

to the many peaks of similar speed between 70000 and 80000 s, once the data has

been smoothed, only a single peak remains allowing τmax to be determined as 150900

s. Comparing this value of τmax to the 145000 ± 30000 s value for τd shows excellent

agreement between the two values.

(a) Raw data. (b) Smoothed data.

Figure 7.3: PTV data for a 0.8 g L−1 xanthan-PDMS gel at 35 °C.

Figure 7.3 shows the raw and smoothed data for a 0.8 g L−1 at 35 °C, with the

sample exhibiting the same behaviour as lower temperatures. Again, similar to Figure

7.2 there is no obvious τmax value in the raw data, but in the smoothed data a value

of 64070 s is apparent. Despite the width of the main peak in Figure 7.3b the value

for τmax agrees well with the previously measured τd value of ∼ 55000 ± 15000 s,
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with an erratic and stochastic nature of the gel collapse observed in the PTV giving

an insight into the range of τd values previously measured. At 35 °C there is still a

quiescent time until ∼ 50000 s, but unlike 25 and 30 °C, there is no point in the gel

lifetime at which there is no tracer movement, with the lowest value of tracer speed

(vmin) being 0.0035 µm s−1. At around 50000 s there is a significant increase in tracer

movement, in an almost vertical manner, drastically different to the behaviour seen at

25 and 30 °C in which the mean tracer speed increases gradually with small decreases

and increases as the gel structure redistributes stress throughout the network after

a localised rupture. The steep gradient of mean speed at 35 °C suggests that the

gel network has a limited ability to heal any damage done to it through localised

ruptures and that also it cannot redistribute the stress applied to the network, again

suggesting a changing structure as temperature is increased.

(a) Raw data. (b) Smoothed data.

Figure 7.4: PTV data for a 0.8 g L−1 xanthan-PDMS gel at 40 °C.

40 °C is the highest temperature within the low-temperature regime and exhibits

similar behaviour to all other low temperature experiments. With a τmax value of

23880 s, which is slightly low compared to the previously measured τd of 32000 ±

7000 s, there is still good agreement between the macroscopic collapse of a sample and

the peak tracer speed in a sample. The initial tracer movement is comparable to the

30 and 35 °C samples, but unlike the lower temperature, the value for vmin does not

reach zero or nearly zero, but a value of ∼ 0.073 µm s−1. This lack of complete tracer

arrest may well be due to the increased movement of the particle network within the

gel, as indicated by the lower Kramer’s escape time at higher temperatures, as well

as Figure 6.7 in Chapter 5 showing a greatly accelerated stiffening (increasing G′).
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However this change in quiescent period seems at odds with the measurements of the

elastic modulus G′ as a function of temperature (Figure 6.5 in Chapter 6), which

show that as temperature increases, G′ remains the same.

This disagreement arises from the significantly different length-scales that PTV

and rheology probe, with PTV probing on the µm length-scale predominantly as each

tracer bead is sensitive to changes in the immediate vicinity of each tracer. By looking

at the ensemble behaviour of all the tracers we build up a picture of the dynamics

within the gel. Whereas rheological measurements look at the entire sample and using

a double gap geometry probes a length-scale of order mm or cm. This difference in

length-scales shows that rheological measurements probe the strength of the entire

gel network, whereas PTV looks at the strength of small portions of the network, and

the apparent disparity between the two techniques suggests that despite the more

dynamic/less static nature of the network at higher temperatures, the overall ability

of the network to resist an applied stress (be it from a rheometer or gravitational

stress) remains unchanged. More over, this opens up the possibility of using tracer

beads within a gel as micro-rheometers to explore how homogenous the rheological

properties of the gel are, or if they exhibit complex localised behaviours such as shear

banding [109].

7.3 High Temperature Regime (50 - 60 °C)

With the high-temperature regime exhibiting a subdued response to temperature (the

ratio τd/τesc remaining constant) it begs the question of if the pre-collapse behaviour

will differ from that seen in the low-temperature regime, will the quiescent period be

present and will τmax continue to correlate with τd?

Figure 7.5 shows the raw and smoothed data for a 0.8 g L−1 at 50 °C, the first

temperature within the high-temperature regime (excluding the crossover tempera-

ture), and shows significant differences when compared to the low temperature mean

speed plots. The most significant difference is that there is no quiescent period at

all, with there always being a significant amount of tracer movement. This may be

explained by the fact that τd at high temperatures is incredibly short compared to

25 °C, however in Figure 7.5 τd and τmax no longer correlate, with τd ∼ 11000 s and
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τmax = 4620 s. As well as this, the vast majority of tracer movement appears to hap-

pen before macroscopic phase separation is observed, suggesting that a significantly

different dynamic process is occurring at high temperatures.

(a) Raw data. (b) Smoothed data.

Figure 7.5: PTV data for a 0.8 g L−1 xanthan-PDMS gel at 50 °C.

With this drastic change in pre-collapse behaviour the value of vmin no longer

occurs before delayed collapse is observed but happens well after, so is of limited

use in the high temperature regime. However vmax seems to be slightly higher than

at lower temperatures but there is no significant difference observed between the

low-temperature and high-temperature experiments. This would suggest that the

particle speeds observed are a factor of both the dynamics of the system, as well as

the viscosity of the gel, perhaps the solvent viscosity, or the bulk polymer viscosity.

However, determining which value would require a significant improvement in spatial

resolution.

(a) Raw data. (b) Smoothed data.

Figure 7.6: PTV data for a 0.8 g L−1 xanthan-PDMS gel at 55 °C.
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Increasing the temperature to 55 °C has little impact upon the mean speed as a

function of time as shown in Figure 7.6, with the majority of tracer movement taking

place early in the gel’s lifetime, before τd. At 55 °C, the mean speed measured is lower

than that of 50 °C, but similar to that of 35 °C, lending credence to the argument

that tracer speed does not increase as temperature does purely due to the viscosity

of the gel decreasing (either as a whole or the individual components).

Whilst at 50 °C there is only a single main peak of tracer movement, at 55 and

60 °C there is an emergence of a second peak at ∼ 20000 s (Figure 7.6) and 18000

s (Figure 7.7). Whilst at first glance this may suggest a return to the shape and

dynamics seen at low temperature, that is not case, as the secondary peak occurs

well after macroscopic collapse at τd, which is ∼ 10000 and 9500 s for 55 and 60

°C respectively. Examining the image stacks generated shows that this slowdown in

tracer speed occurs as the gel phase separates into a colloid-rich and colloid-poor

phase, with the colloid-rich phase effectively increasing in volume fraction as solvent

is expelled into the colloid-poor phase beneath. As this volume fraction increases, the

top phase of the sample becomes jammed before some parts rupture again allowing

the phase separation to continue. It is also of note that in measuring τd, a height

profile was generated which showed a relatively smooth movement of the interface

after collapse (this can be seen in Figures 5.11 and 5.17) so this momentary jamming

during the rapid-collapse phase is not sufficient to arrest a system once collapse has

begun but may become a factor when working at higher xanthan concentration or at

higher colloid volume fractions, and thus being of interest in industrial formulations.

(a) Raw data. (b) Smoothed data.

Figure 7.7: PTV data for a 0.8 g L−1 xanthan-PDMS gel at 60 °C.

130



The biggest change from the low temperatures to high temperatures is the transi-

tion from heterogeneous tracer movement, in which a small number of tracers move in

localised areas before collapse, to homogeneous tracer movement, in which all tracers

move simultaneously before collapse is observed. An example of this can be seen in

Figure 7.8 which shows trajectories before collapse for a 0.7 g L−1 gel at 25 °C and

a 0.8 g L−1 gel at 55 °C. With only a small amount of the tracer beads moving in

a localised region at low temperatures, consistent with the picture that coarsening

of thicker gel strands and their eventual fracture is what leads to the collapse of the

gel. Whereas at high temperature all the tracers move in a convection current type

motion, with particles appearing to move downwards initially and then back up, with

chaotic and straight vertical movement present.

(a) (b)

Figure 7.8: Particle trajectories for two different xanthan-PDMS
gels, one at 25 °C (A) and 50 °C (B). Both show tracer movement

before delayed collapse is observed.

One way of rationalising both the plateau seen in the ratio between τd and τesc

discussed in Chapter 4 and the change from heterogeneous tracer movement before

τd to homogeneous tracer movement, is a change in the gel structure. With thicker

multiple particle strands present at lower temperatures, the tracer beads are sensitive

to the breakage of strands, rather than the breakage of individual bonds, as the

entire strand must break to allow the tracer bead space to move. This co-operative
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breakage that must occur gives rise to the heterogeneous nature of tracer movement, a

schematic of how differing numbers of bonds need to be broken for a strand to rupture

can be seen in Figure 7.9b, with the red lines showing where only a single bond needs

to break to rupture a strand, and black lines showing some examples of where two or

three particle-particle bonds need to be broken for the strand to rupture, and thus

allow a tracer bead to move.

Conversely if the strands of the gel are only single particle strands, the tracer beads

will be sensitive to not only the breakage of the strands but also of individual particle-

particle bonds, as shown in Figure 7.9a only a single bond breakage is required for a

strand to rupture. With the average lifetime of a single particle-particle bond being

described by the Kramer’s escape time, and being of order 10 seconds (as previously

shown in Chapters 4 and 5), you would expect a tracer bead constrained by only

single particle thick strand network would be able to move relatively unimpeded. This

seemingly agrees with constant ratio between τd and τesc seen at high temperatures,

as the time-scale of the structure present within the gel is similar to that of the

individual particle-particle bonds, whereas the changing ratio between τd and τesc

come about due to the changing structure comprised of different multiple particle

strands.

7.4 Crossover Temperature Comparison

With two distinct temperature regimes, with an apparent sharp crossover at 45 °C for

most xanthan concentrations studied, it is unclear whether the gels on the crossover

temperature will exhibit the behaviour seen at low temperatures, having an quiescent

period before a peak to vmax, with τmax and τd correlating well, or no quiescence at

high temperatures where τmax no longer correlates with τd. If the crossover between

the two regimes remains sharp this might be indicative of either a fundamental change

in gel composition or a response from a component at 45 °C, however a less well

defined crossover would suggest it is from a competition between two processes (such

as bond/strand breaking and healing) or one process or parameter becoming the rate

limited factor. One example of this is the strand thickness becoming thinner and

thinner until it becomes a single particle strand, and thus can become no thinner.
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(a) (b)

Figure 7.9: Diagrams showing two gel structures of varying strand
thicknesses, with tracer beads. Where (A) has only single particle

strands and (B) multiple particle strands.

Therefore in this section we will study the PTV data for 0.7, 0.8, and 0.9 g L−1

xanthan-PDMS gels at the crossover temperature for each concentration.

(a) Raw data. (b) Smoothed data.

Figure 7.10: PTV data for a 0.7 g L−1 xanthan-PDMS gel at 45 °C.

Figure 7.10 shows the raw and smoothed PTV data for a 0.7 g L−1 gel at 45 °C,

with the gel appearing to exhibit the high temperature regime behaviour. There is

significant tracer movement at early times, with no quiescent period present. τmax

is less than half of τd with the value for τd measured previously as ∼ 8200 s. As

discussed, the drop in tracer speed is seen after τd whilst the gel is in the rapid
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collapse period of its lifespan.

(a) Raw data. (b) Smoothed data.

Figure 7.11: PTV data for a 0.8 g L−1 xanthan-PDMS gel at 45 °C.

Whilst the crossover temperature for 0.7 and 0.8 g L−1 remains at 45 °C in the

collapse data in Chapter 4, Figure 7.11 shows that a 0.8 g L−1 exhibits behaviour seen

at low temperatures at 45 °C, different to that seen with a 0.7 g L−1 gel. τmax (20000

s) correlates well with the previously measured τd of 15000 ± 1000 s, with τmax being

greater whereas most of the lower temperature samples have τmax < τd due to the

increased camera resolution and method sensitivity. Similar to 40 °C there is no total

quiescence of tracer movement prior to τmax, but a significant reduction in mean speed

after the initial settling seen in all samples at all temperatures. The value for vmin

is µm s−1, a significant increase when compared to 40 °C (0.073 µm s−1) suggesting

a definite drive towards the complete lack of arrest seen at higher temperatures, but

at 45 °C the sample can suppress but not arrest internal movement.

7.4.1 0.9 g L−1 - Higher Crossover Temperature

With a 0.9 g L−1 gel, the transition between the 2 regimes of temperature response

appears to occur at 50 °C in the collapse data, 5 °C higher than all gel concentrations

below it. With this in mind it remains to be seen whether this higher transition tem-

perature will behave like the 0.7 g L−1 gel which displays low-temperature behaviour

at the crossover temperature or the 0.8 g L−1 gel, which exhibits high-temperature

behaviour.

Figure 7.12 shows clearly that at 50 °C, a 0.9 g L−1 displays high-temperature

regime behaviour, with high levels of tracer movement at early times, before the gel
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(a) Raw data. (b) Smoothed data.

Figure 7.12: PTV data for a 0.9 g L−1 xanthan-PDMS gel at 50 °C.

collapses. With τmax being ∼ 5000 s and τd previously measured at 17000 s, there

is no correlation between the two, as τd seems be when tracer movement begins to

plateau at its lowest rate. vmax is of order 1.0 µm s−1, the same as that seen for the

0.8 g L−1 gel at 50 °C, suggesting that an increased gel strength does not affect mean

tracer speed, at least at high temperatures.

Gel Concentration 0.7 g L−1 0.8 g L−1 0.9 g L−1

Crossover Temp (°C) Tc < 45 45 < Tc Tc < 50

Table 7.1: Crossover temperatures between the low and high tem-
perature regimes determined from PTV.

7.5 Changing the Depletion Potential

As shown in previous chapters, changing the depletion potential in this gel system

changes many properties of the gel such as τd and the elastic modulus G′. With this

change in delay time, it would be reasonable to expect τmax to continue to correlate

with τd as seen above for the 0.8 g L−1 gel. With the rheological properties of the

gel changing with depletion potential, it remains to be seen whether the tracer beads

will move at a significantly different speed, or how quiescent the tracers will be at

early times. With this in mind, this section will explore PTV data of 0.7 g L−1 gels

between 25 and 55 °C, and compare them with the previously collected data using

0.8 g L−1 gels.
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Figure 7.13: Raw PTV data for a 0.7 g L−1 gel at 25 °C and a 0.8
g L−1 gel at 25 °C.

Figure 7.13 shows raw PTV data for both a 0.7 and 0.8 g L−1 xanthan-PDMS

gel at 25 °C. Both gels have a quiescent period at early times after a similar level of

initial tracer settling, with both concentrations having zero tracer movement during

the quiescent period. The first major difference is that τmax for the 0.7 g L−1 is

approximately half of the value for the 0.8 g L−1 gel. This shows that τmax scales in

a similar way to τd with respect to the depletion potential. Despite this difference in

τmax, the peak mean speed vmax for both gel concentrations is similar, with both being

between 0.2 and 0.25 µm s−1, with the overall shape of both peaks being very similar

also. At first glance, this would appear to suggest that the tracer beads behave in a

similar way for both the 0.7 and 0.8 g L−1 gel concentrations despite some differences

in the rheological and collapse properties due to the differing depletion potential.

Looking in greater detail at a 0.7 g L−1 gel at 25 °C, Figure 7.14 shows both the

raw and smoothed data. Similar to the 0.8 g L−1 gel shown in Figure 7.1 there is still

a jaggedness to the slope suggesting that despite the lower depletion potential due

to the lower xanthan concentration, the gel is still able to repair damage done to it.

From ∼ 40000 s to 60000 s there is a very slow increase in tracer movement before

the main peak to vmax begins. The smoothed data gives a vmax value of ∼ 0.20 µm
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(a) Raw data. (b) Smoothed data.

Figure 7.14: PTV data for a 0.7 g L−1 xanthan-PDMS gel at 25 °C.

s−1, about 0.5 µm s−1 lower than the peak observed in the raw data.

Figure 7.15 shows raw and smoothed PTV data for a 0.7 g L−1 gel at 35 °C,

there is a similar level of initial tracer settling to the 0.8 g L−1 gel shown previously.

However the degree of quiescence at early times is significantly diminished, with a

vmin value of 0.1 µm s−1. This value is significantly larger than the value of 0.0035 µm

s−1 calculated for the 0.8 g L−1 gel, and is more akin to the value for 40 °C (Figure

7.4), which also happens to have a similar value for τmax as well as τd in the collapse

data in Chapter 5. This at first glance would appear to suggest that temperature

and depletion potential are analogous to each other as not only the macroscopic delay

time is the same, but also the mesoscopic dynamics shown by the tracer movement

before collapse are the same.

(a) Raw data. (b) Smoothed data.

Figure 7.15: PTV data for a 0.7 g L−1 xanthan-PDMS gel at 35 °C.

This is at at odds with the microscopic picture described in Chapter 5, where
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τesc does not decrease at the same rate as τd, and as seen in Figure 5.10 the ratio

at each temperature is concentration independent. This suggests that even though

the collapse and PTV data appear to be almost quantitatively the same, there is

still a fundamental difference in the ageing dynamics of the gel, due to the differing

temperature and depletion potential.

The value of vmax at 35 °C is 0.8 µm s−1, a significant increase compared to

the value of 0.25 µm s−1 seen for the 0.8 g L−1 gel at 35 °C, which is interesting

considering that both the 0.7 and 0.8 g L−1 gels have a similar vmax value at 25 °C.

Whether a differing vmax value is indicative of a different property within the gel

remains to be seen, as a thorough study of a single composition and temperature

would be required to establish the inherent variation in measurements of vmax.

(a) Raw data. (b) Smoothed data.

Figure 7.16: PTV data for a 0.7 g L−1 xanthan-PDMS gel at 55 °C.

Much like the 0.8 g L−1 gel, in the high-temperature regime there is no quiescent

period observed at 55 °C in a 0.7 g L−1 gel. The majority of tracer movement also

occurs before τd (∼ 6000 s), again, much the same as seen in both the 0.8 and 0.9 g

L−1. At around 5000 seconds the mean speed decreases to ∼ 0.1 µm s−1 suggesting

that as the gel begins to collapse, the structure becomes slightly jammed as the

interface begins to rise, but not sufficiently to halt the continued collapse of the gel.

It seems that 0.7 g L−1 gels follow the same general pattern as 0.8 g L−1, in

that τmax correlates well with τd, vmin increases with temperature as the level of

quiescence decreases. The low and high temperature regimes exhibit the same change

from heterogeneous to homogeneous tracer movement before collapse.
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7.6 Discussion - Reproducibility of PTV Measurements

Due to the length of time taken to perform one PTV experiment as well as the fact

only one sample is observed at a time, doing a comprehensive data set on repro-

ducibility was infeasible, as it would have severely limited the breadth of data col-

lected. Shaw [84] previously performed PTV experiments at a lesser resolution with

larger tracer beads and found a good degree of reproducibility at room temperature.

Figure 7.17: Smoothed PTV data for 2 different 0.8 g L−1 gels at
25 °C.

A repeat at 25 °C was performed and the mean speed plots are compared in

Figure 7.17. Firstly, the value for τmax for each sample is remarkably close, 167520

s and 164040 s for sample A and sample B respectively. Both samples exhibit the

same behaviour, in that there is an initial amount of tracer settling, followed by an

extended quiescent period, with a final peak in tracer speed to vmax. The values for

vmin are similar with sample A having only minimal tracer movement in the quiescent

period. Despite this marginal amount of tracer movement it does not appear to affect

τmax for sample B. Where the two samples differ dramatically is the value for vmax,

with sample B having a value of 0.358 µm s−1 almost double the value of 0.183 µm

s−1 for Sample A.

Sample τmax vmax vmin

A 164040 0.358 0.001

B 167520 0.183 0

Table 7.2: Summary of key values from two 0.8 g L−1 xanthan-PDMS
gels at 25 °C, shown in Figure 7.17
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This shows that whilst the speeds measured during a PTV experiment such as

vmax and vmin do vary between sample, this doesn’t necessarily impact the overall

lifetime of the sample, with τmax for both samples A and B being very similar. How-

ever this does raise the question of whether the trends observed as temperature is

increased, with vmax seeming to rise with temperature in the low-temperature regime,

and then tracer speed gradually reducing again in the high-temperature regime. How-

ever, this is of a greater magnitude than the difference between the two samples in

Figure 7.17, with the variation between samples A and B being approximately 0.15

µm s−1, and the change from 25 °to 45 °C for a 0.8 g L−1 gel being 0.8 µm s−1.

7.7 Summary

In this chapter we have explored the application of the technique Particle Tracking

Velocimetry to a colloidal gel, with an aim to probe the mesoscopic dynamics of

the gel before macroscopic collapse is observed. We find that the two regimes of

temperature response have fundamentally different dynamics before collapse, with low

temperatures having a period of little to no tracer movement before a peak in tracer

speed (vmax), the time at which this occurs τmax, correlates well with the macroscopic

delay time τd. Conversely, at high temperatures τmax no longer correlates with τd,

and the majority of tracer movement occurs before macroscopic collapse is observed,

meaning that there is no period of quiescence. The extremes of the temperatures

explored using PTV is shown below in Figure 7.18, which encapsulates both the

significant difference in time-scale as well as the differing tracer movement between

the low and high temperature regimes.

Further to this, at low temperatures we are able to observe the localised rupture of

the strand network, with only a limited number of tracer beads moving initially before

the failure eventually propagates throughout the gel sufficiently for it to collapse

completely. Conversely, in the high-temperature regime, the tracer movement before

collapse is homogeneous in nature, with no tracers appearing to be arrested within

the network. This is an interesting observation as macroscopically the sample is still

gelled rheologically as G′ is the same magnitude at all temperatures, with it being
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Figure 7.18: Smoothed PTV data for a 0.8 g L−1 at 25 °and at 60
°C.

greater than G′′, showing that probing different length-scales gives a very different

insight to the properties and dynamics of a gel.

We find that changing the depletion potential does not affect the magnitude of

tracer speed observed before or during collapse, and only decreases τmax in line with

τd as observed in Chapter 5. This, as well as the fact that different samples of the

same gel composition give both similar τmax, vmax, and vmin values show that PTV

is a reliable method to probe the mesoscopic changes within a gel at all points during

it’s lifetime, and has great scope for further refinement in the future.
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Chapter 8

Conclusions

In this chapter we summarise the findings of this work. We begin by revisiting the

main aims of this project, with the context of challenges in predicting and measuring

industrial formulation stability. We then discuss how better control over temperature

can affect a gel’s lifetime, and compare our results to previous work using the same

model colloid-polymer gel. We then summarise our findings when increasing temper-

ature, finding a decrease in τd as temperature increases, we rationalise this response

with an acceleration of the particle dynamics within the gel. We propose that temper-

ature has no effect on the network formed within the gel, but using a combination of

rheology and the method Particle Tracking Velocimetry, show that the structure of a

gel ages in a different way at high and low temperatures. We conclude the chapter by

discussing future work that could be performed, both broadening the body of collapse

data as well as how PTV can be further developed into a strong tool for probing the

mesoscopic length-scale in colloid-polymer gels.

8.1 Introduction

With various challenges facing gel formulation development, in this chapter we aim to

summarise the findings of this work as well as their relevance to industrial challenges.

As previously discussed, one of the main challenges facing industrial formulation de-

velopment is time. With formulations requiring long-term stability and a limited

tool-kit of techniques to determine stability at early times in a formulation’s life,

there is a significant drive towards accelerating the collapse of formulations for test-

ing as well as development of techniques that give more information early in a gel

formulation’s lifetime. A more detailed summary of the challenges and techniques
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used and their limitations can be found in the first section of both Chapter 1 and

Chapter 4.

Some of the main questions of this thesis include:

• Does controlling temperature affect gel stability?

• Can we reliably accelerate gel collapse using temperature?

• Is gel stability wholly controlled by particle dynamics?

• Can we measure changes within a gel at early times?

In the next sections we answer, or at least begin to answer these questions, as well

as propose future works that may yield a greater insight into some of the preliminary

work using PTV.

8.2 Ambient Gel Collapse

Using a model xanthan-PDMS depletion gel, previously used by Teece [25], and Gilli-

gan [106], as well a 3d printed cell-holder we have studied the macroscopic lifetime of

gels whilst controlling the temperature to have less than a 0.1 °C variation throughout

the experiment.

Comparing the delay time measured to previous measurements made by Teece

and Gilligan, we find that by controlling the temperature to a higher degree increases

the lifetime of gels of the same composition. Whilst the increase in τd compared to the

work of Teece can be attributed to the change from cylindrical to rectangular vials,

this is not the case for the work of Gilligan, as that work used the same rectangular

vials as this work. This increase in τd despite the experiments in this work being

carried out at 25 °C compared to 20 °C used previously, is presumably due to the

significant reduction of temperature fluctuation throughout the experiment. This

reduction in temperature variation within the sample reduces the internal stress of the

sample and will narrow the distribution of coarsening events within the gel. Despite

a difference in the value of τd measured, we continue to see the same exponential

dependence of τd on polymer concentration.
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We rationalise τd as a function of the individual bond breaking events occurring

within the gel as it ages. We calculate the average particle-particle bond lifetime τesc,

finding that as bond lifetime increases, so does the gel lifetime. One key difference

between our calculation of τesc and the calculations of Teece et al. [25] is our use of

the solvent viscosity η0 rather than the polymer viscosity ηL. This value was chosen

by considering the literature surrounding dynamics within depletion systems as well

as our experimental data when increasing temperature, with the solvent viscosity

scaled collapse data providing a horizontal region between 45 and 60 °C.

8.3 Temperature Accelerated Gel Collapse

With a common method of accelerating the collapse of formulations being storing

them at higher temperatures, we expand our temperature control work to include

temperatures up to 60 °C in 5 °C increments. Upon increasing temperature, we find

a steep reduction in τd between 25 and 45 °C, above 45 °C there is still a reduction in

τd but to a much lesser degree. Therefore we label these two regimes of temperature

response the low-temperature and high-temperature regimes.

Having previously characterised the size of the depletant xanthan used in these

colloid-polymer gels, we find that the crossover temperature between these two regimes

of temperature response does not correspond to the conformation change of xanthan.

This, as well as the fact that the crossover temperature shifts to higher temperatures

for the highest polymer concentrations studied in this work, shows that this two

regime response to temperature exhibited is not due to the change in conformation

of xanthan.

We present preliminary data on a second system using a smaller polymer HEC-

HHX, and observe a similar response to temperature, but no plateau regime due

to the lower delay times generated using this polymer. However, due to the much

stronger depletion potential generated (∼ 30 kBT ) the Kramer’s escape time has no

correlation to the gel lifetime, however the height profiles appear similar to those of

the xanthan-PDMS system.

Expanding on the relationship between τd and τesc at ambient temperature, we
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calculate the escape time for each temperature studied, using the corresponding sol-

vent viscosity η0 for each temperature. We find that the ratio τd/τesc is independent

of the xanthan concentration. We find that in the low-temperature regime, the ratio

τd/τesc decreases as temperature increases, and then at ∼ 45 °C the ratio remains

unchanged as temperature is increased further. This appears to fit with results of

Sprakel et al. [60] who find that accelerating the rate of strand breakage using ap-

plied stress gives a two regime response to applied stress. With the first regime where

the rate of strand healing is higher than strand breaking, which in our system would

lead to a gradual coarsening of the network. In the high stress regime the rate of

strand breaking is greater so the network never gets a chance to recover any dam-

age and is just torn apart by the applied stress, this may well be the case in our

high-temperature regime, where the gel cannot arrest the internal motion occurring

and this rate of breakage is the determining factor in the gel collapse. Furthermore,

whilst bond breakage does play a significant role in determining the stability of a

formulation (as seen by the relation between τd and τesc at a single temperature)

there is also another factor controlling gel collapse, which is not explained by only

single-bond dynamics. We suggest that this may be the gel structure.

8.4 Gel Network Formation

With the hypothesis that the structure of a colloid-polymer gel also plays an impor-

tant role in determining its stability, we explore the structure formed within freshly

made gels at different temperatures, using oscillatory rheology.

We establish the rheological properties of PDMS-xanthan gels system at ambient

temperature. The elastic G′ and viscous G′′ moduli both increase with polymer

concentration, with G′ being greater than G′′ up to 14 % strain. The magnitude of

G′ increases from ∼ 0.8 to 1.05 Pa over the xanthan concentration range of 0.7 to

1.0 g L−1, showing that the gels formed are very soft, which coupled with a viscous

moduli of 0.4 and 0.8 Pa leads us to determine that these gels are weakly gelled. All

gels studied have a linear regime up to 1 % strain, during which the applied strain

has no effect on both G′ and G′′, this again shows the weak nature of the gel network

initially formed within the gel, agreeing with previous assertions [56] that the gel
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network at early times consists of thinner particle strands, which over time coarsen

into thicker strands.

We compare the gel structure formed at different temperatures within the low-

temperature regime by performing strain sweeps at various temperatures. We find

that increasing temperature has no effect on the magnitudes of both G′ and G′′, as

well as the linear regime and the strain at which G′ becomes lower than G′′. Therefore,

we can state that the response to temperature observed in the collapse data is not

due to a fundamental change in the gel properties or structure at formation. To

assess whether the crossover to the high-temperature regime is due to a change in the

fundamental properties of a gel, a fixed strain is applied to a gel and the temperature

ramped from 40 to 70 °C, to find if the rheological properties change when a gel is in

the high-temperature regime. We find that the elastic modulus G′ remains unchanged

as temperature is increased into the high-temperature regime, showing that the gel

structure remains unchanged, and that the PDMS droplets forming the structure

remain intact and do not rupture.

With the structure of freshly prepared gels unchanged by temperature, we show

preliminary time-resolved rheological data as a 1.0 g L−1 PDMS-xanthan gel ages at

various temperatures. In this we find that the samples stiffen significantly quicker

and to a much greater degree at higher temperatures, suggesting that the structural

evolution is affected by temperature, which when coupled with the accelerated particle

dynamics causes the drastic reduction in delay time observed.

8.5 Mesoscopic Changes Before and During Collapse

With the rheological data suggesting that the effect of temperature comes about

through differing ageing dynamics, we use the method PTV to probe the interme-

diate length-scale between the previous macroscopic data and microscopic particle

dynamics calculations. PTV allows us to observe movement within the gel well be-

fore macroscopic collapse is observed, which makes it a strong technique that can both

collect information on a gel at all points during its lifetime, and be easily applied to

a multitude of different systems.
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We find that in the low-temperature regime there is a period of tracer quiescence

before a gradual increase in tracer movement to a maximum value of tracer speed

vmax. The time of maximum tracer movement τmax correlates well with the delay

time τd, suggesting a link with mesoscopic changes and macroscopic collapse. In the

high-temperature regime there is no period of tracer quiescence and τmax no longer

correlates with τd. This lack of arrest of the gel lends credence to the argument that

in the high-temperature regime strand breaking is the dominant force as the strands

are not intact to hold the tracer beads in place.

However this leads to an apparent contradiction. As the rheological data shows

that even up to 70 °C the sample is still gelled, and in the collapse data the 60

°C measurement for a 1.0 g L−1 xanthan-PDMS gel still has a delay time of ∼ 5

hours. This is where length-scale probed by each method must be considered, PTV

is probing a much smaller length-scale than the macroscopic level that rheology and

time-lapse microscopy observe. Which highlights another strength of PTV, in that

the length-scale probed can be easily changed by adjusting the size of the tracer beads

used.

With the preliminary data from PTV experiments we have limited spatial reso-

lution of the dynamics within the sample. We observe that in the low-temperature

regime tracer movement is heterogeneous in nature, as small localised areas of the

gel rupture and then re-heal. Over time these small ruptures propagate throughout

the gel, and eventually the gel is unable to recover from the failures and collapses

macroscopically. However in the high-temperature regime tracer movement is homo-

geneous in nature, with all tracers moving at all times observed. This again supports

the stranding breaking and healing arguments suggested above.

8.6 Future Work

With PTV showing great promise as a technique due to its ability to provide both time

and spatially resolved data in one measurement the development of this technique

would be an excellent next step in this work. Improving the throughput of the

experimental set up by allowing imagining of multiple samples at once would be

of great use, as currently only one may be observed at a time. However, the high
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resolution of the PTV set up is one of it’s main strengths, so ensuring little to no

resolution is lost would be paramount. A cell-holder specifically designed for PTV

experiments (cells closer together, thinner holder walls) would improve the field of

view available when imagining cells, as well as make full illumination of multiple

samples with a laser simpler.

With the increase in data collection the transfer and processing of data could

also be improved up, as currently each image stack must be individually cropped and

transferred, which coupled with the high resolution of the images collected leads to

image stacks than can be up to twenty gigabytes in size. Whilst this is not a key

change to improve the quality of data collected, it would indeed be a quality of life

improvement when performing PTV experiments.

Further analysis of the current PTV available would also yield more information

on the collapse of colloid-polymer gels, with parameters such as directional tracer

movement, number of tracers, and distributions of tracer speed unanalysed in this

work. However, insights may be limited due to the lack of depth resolution with the

current analysis, as we currently can only asses a tracers x and y position in the

sample, not its z position.

This leads on to the next major improvement to the current PTV set up, better

spacial resolution. By using a different illumination method such as a scanning sheet

of laser light (similar to that using in confocal microscopy) we would be able to

accurately define the x, y, and z positions of each tracer bead and then generate 3D

videos which would highlight areas of low or high movement throughout the sample.

This would allow us to see where in the sample ruptures occur most often, such as

near a wall, or at the top/bottom of the sample.

The other great strength of PTV is its transferability to a wide variety of dynamic

and arrested systems. We believe the current methodology will be usable in an opaque

system, given that sufficient tracer illumination and fluorescence can be achieved.

With an opaque system seeing deep into the sample would be a challenge, a great

deal of data could still be collected from probing near to the walls of a sample. This

could possibly be overcome by the use of a different method of differentiating between

tracer beads and the surrounding media that is not reliant on light. X-rays that can

penetrate deep into an opaque sample and allow the movement of the tracers to be
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tracked could be one such solution. Changing the size and nature of the tracer beads

used would also allow PTV to be performed in a wide variety of different systems.

Further time-lapse experiments would also be a good avenue to broaden the scope

of this work, using the same xanthan-PDMS system but changing the volume fraction

of PDMS would be interesting, as this may change the low-temperature regime slope,

or possibly shift the crossover temperature between the two regimes. Expanding

the work using HEC HHX as a depletant would also be of great interest, however a

significant amount of work would be required to characterise its properties at different

temperatures.

Further work into the rich behaviour observed in this thesis would no doubt be

fruitful and be of great interest both academically and industrially.
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