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Abstract 

Biodiversity is associated with important ecosystem processes and functions. However, many 

species are currently threatened by human activities, making ecological restoration a major tool 

in conservation biology. An important component of biodiversity are the interactions between 

species as these provide ecological functions and services. In terrestrial systems restoration 

usually starts with the restoration of plant communities, as plants serve directly or indirectly as 

a resource for upper trophic levels. Ecological networks provide a powerful tool for describing, 

analysing and understanding whole communities in a restoration context, for example they can 

be used to identify structurally important species and to measure community robustness. In this 

thesis, I use plant-insect networks from natural and agricultural systems, to investigate how 

plant communities support biodiversity at higher trophic levels. I do this by identifying 

keystone resources for insect herbivores and parasitoids, and by showing that keystone roles 

are performed by few plant species and that these roles are context dependent. Using a field 

experiment, I then evaluate whether plant species network roles, i.e. central vs. peripheral, can 

be used to restore pollinator communities, and found that central plant species attracted a higher 

richness and abundance of pollinators than peripheral species. Finally, I test the robustness of 

pollination and herbivory networks to the loss of plant species, accounting for differences in 

network structure and natural history between both systems. I found that herbivory networks 

tend to be more robust than pollination networks to plant extinctions, but that the inverse is 

true when interaction rewiring is considered. Together, these three approaches extend both our 

current understanding of bottom-up effects in plant-insect networks and the potential to 

undertake restoration that targets more than one trophic level. 

  



 

iii 

 

Dedication 

 

 

 

 

 

 

 

 

 

 

 

 

“Mas sei, que uma dor assim pungente 

Não há de ser inutilmente  

A esperança 

Dança na corda bamba de sombrinha 

E em cada passo dessa linha pode se machucar 

Azar, a esperança equilibrista 

Sabe que o show de todo artista tem que continuar” 

 

- Aldir Blanc 

 

 

 

Ao povo brasileiro 

  



 

iv 

 

Acknowledgements 

I would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) 

for having financed this project. 

I would also like to thank Prof. Jane Memmott for the support during the development of this 

thesis and for sharing her enthusiasm for the natural world with me. Additionally, I am grateful 

to Dr. Rafael Raimundo and to Dr. Ian Vaughan for the many interesting and helpful 

discussions and for their technical support.  

I am grateful to the fellow scientists from the Community Ecology Group for their 

companionship throughout this journey, specially to Alix Sauve, Helen Morse, Samantha 

Ardin, Talya Hackett and Thomas Timberlake, who are dear friends. 

I would like to thank the field assistants who made the field work of Chapter 3 possible and 

much more fun, Dunia González, Rowan Hookham and Sarah Munro. 

Thanks to the University of Bristol and to the School of Biological Sciences for the 

infrastructure provided and to all staff who allowed me to produce this thesis.  

Thanks to my fellow PhD student friends for all the Ale. I will never forget the many great 

pubs, weekends and trips we shared. It was truly a great pleasure. 

I am extremely fortunate for having the company of friends who made life in Bristol and Europe 

more than I could wish for, my sisters Angela, Juliana and Marina. 

I would like to thank those with whom I do not work with anymore, but that will always be my 

favourite ecologists. Thanks to everyone from my cohort on Love Nest, especially to M. 

I am also very grateful for having Jacopo to share with me so many of the good things life has 

to offer. Beyond those, for also sharing some bad things such as assemblying this long 

document in Word. I promise to use LaTeX next time. 

Finally and most important, I would like to thank my family for their unconditional support 

and for helping me to get here, specially to my parents.   



 

v 

 

Author’s Declaration 

 

I declare that the work in this dissertation was carried out in accordance with the requirements 

of the University's Regulations and Code of Practice for Research Degree Programmes and that 

it has not been submitted for any other academic award. Except where indicated by specific 

reference in the text, the work is the candidate's own work. Work done in collaboration with, 

or with the assistance of, others, is indicated as such. Any views expressed in the dissertation 

are those of the author.  

 

Kate Pereira Maia 

Bristol, November 2018 

  



 

vi 

 

Table of Contents 

Abstract   ……………………………………………………………………………….. ii 

Dedication   …………………………………………………………………………….. iii 

Acknowledgements   …………………………………………………………………… iv 

Author’s Declaration   …………………………………………………………………. v 

Table of Contents   …………………………………………………………………….. vi 

List of Figures   ………………………………………………………………………… ix 

List of Tables   ………………………………………………………………………….. x 

Chapter 1. Introduction   ……………………………………………………………… 1 

1.1 The era of ecological restoration: challenges and changes   ……………………..  3 

1.2 Bottom-up effects and its importance of plant-insect systems   …………………. 5 

1.3 Ecological networks: a measure of ecological function and a tool for restoration    8 

1.4 Thesis structure   …………………………………………………………………. 11 

Chapter 2. The identification of keystone resource plant species in plant-insect 

food webs   ……………………………………………………………………………… 15 

2.1 Introduction   …………………………………………………………………….. 15 

2.2 Material and Methods   …………………………………………………………... 18 

 2.2.1 The focal habitat   ………………………………………………………. 18 

 2.2.2 The network dataset   …………………………………………………… 18 

 2.2.3 How common are keystone resource species in the 20 networks, and are 

species with keystone roles consistent across networks?   ……………... 19 

 2.2.4 Are plant species roles conserved across trophic levels, i.e. important 

plants for herbivores also support parasitoids?   ………………………... 21 

 2.2.5 What is the role of phylogenetic context in explaining plant species roles?    22 

2.3 Results   ………………………………………………………………………...... 24 

 2.3.1 How common are keystone resource species in the 20 networks, and are 

species with keystone roles consistent across networks?   ……………... 25 

 2.3.2 Are plant species roles conserved across trophic levels, i.e. important 

plants for herbivores also support parasitoids?   ………………………... 27 

 2.3.3 What is the role of phylogenetic context in explaining plant species roles?    28 

2.4 Discussion   ……………………………………………………………………… 30 

 2.4.1 Limitations   …………………………………………………………….. 31 

 2.4.2 Keystone species in farmland systems   ………………………………… 32 

 2.4.3 Conclusions   ……………………………………………………………. 34 

2.5 Supplementary Material   ………………………………………………………... 36 

Chapter 3. Plant species roles in pollination networks: an experimental approach.    61 

 Glossary…………………………………………………………………………... 61 

3.1 Introduction   …………………………………………………………………….. 63 

3.2 Material and Methods   …………………………………………………………... 65 

 3.2.1 Identifying central and peripheral plant species in plant-pollinator 

networks   ………………………………………………………………..   66 

 3.2.2 Experimental design and sampling procedure   ………………………… 68 



 

vii 

 

 3.2.3 Calculating network metrics   …………………………………………... 71 

 3.2.4 Do central plant species attract a higher diversity of pollinators than 

peripheral species?   …………………………………………………….. 74 

 3.2.5 After introduction, which network roles are occupied by the introduced 

species, and how does species introduction affect resident plant species’ 

network roles?   …………………………………………………………. 74 

 3.2.6 Does the introduction of peripheral and central species promote a 

different network structure?   …………………………………………… 75 

3.3 Results   ………………………………………………………………………….. 76 

 3.3.1 Do central plant species attract a higher diversity of pollinators than 

peripheral species?   …………………………………………………….. 76 

 3.3.2 After introduction, which network roles are occupied by the introduced 

species, and how does species introduction affect resident plant species’ 

network roles?   …………………………………………………………. 77 

 3.3.3 Does the introduction of peripheral and central species promote a 

different network structure?   …………………………………………… 80 

3.4 Discussion   ……………………………………………………………………… 80 

 3.4.1 Limitations   …………………………………………………………….. 81 

 3.4.2 Plant species roles in ecological networks   .……………………………. 81 

 3.4.3 Conclusion   …………………………………………………………….. 84 

3.5 Supplementary Material   ………………………………………………………... 86 

Chapter 4. The effect of generalisation and population feedbacks on the robustness 

of plant-insect assemblages: a comparison of pollination and herbivory networks    103 

4.1 Introduction   …………………………………………………………………….. 103 

4.2 Material and Methods   …………………………………………………………... 109 

 4.2.1 Dataset   ………………………………………………………………….    109 

 4.2.2 Simulation overview   …………………………………………………... 109 

 4.2.3 Model – Local dynamics   ………………………………………………. 110 

 4.2.4 Rewiring algorithm – Topological dynamics   …………………………. 112 

 4.2.5 Simulation scenarios   …………………………………………………... 113 

 4.2.6 Statistical analysis   ……………………………………………………... 116 

4.3 Results   ………………………………………………………………………….. 118 

4.4 Discussion   ……………………………………………………………………… 123 

 4.4.1 Limitations   …………………………………………………………….. 123 

 4.4.2 Robustness of pollination and herbivory networks   …………………….. 124 

 4.4.3 Conclusion   …………………………………………………………….. 126 

4.5 Supplementary Material   ………………………………………………………... 128 

Chapter 5. Discussion   ………………………………………………………………… 155 

5.1 What has been learnt?   ………………………………………………………….. 155 

5.2 Future directions   ……………………………………………………………….. 160 

 5.2.1 The identification of keystone resource plant species in plant-insect food 

webs   ……………………………………………………………… 

 

161 

 5.2.2 Plant species roles in pollination networks: an experimental approach. 162 



 

viii 

 

 5.2.3 The effect of generalisation and population feedbacks on the robustness 

of plant-insect assemblages: a comparison of pollination and herbivory 

networks   ……………………………………………………………….. 

 

 

163 

5.3 Final considerations   ……………………………………………………………. 164 

5.4 Concluding remarks   ……………………………………………………………. 167 

References   …………………………………………………………………………….. 169 

 

  



 

ix 

 

List of Figures 

2-1 Distribution of plant species with different statuses across farms 26 

2-2 Relationship of plant species network roles across trophic levels 28 

2-3 Relationship between plant species strength and phylogenetic context in 

plant-herbivore networks   

30 

S 2-1 Phylogenetic tree of Angiosperm orders 41 

S 2-2 Plant phylogenetic context in plant-herbivore networks 43 

S 2-3 Plant phylogenetic context in plant-parasitoid networks 44 

S 2-4 Distribution of plant species with different statuses across abundance classes 57 

S 2-5 Relationship between plant species strength and abundance in plant-herbivore 

networks 

58 

S 2-6 Relationship between plant species strength and abundance in plant-

parasitoid networks 

59 

S 2-7 Relationship between plant ordinal abundance and estimated plant cover 60 

3-1 Trios of central and peripheral plant species and experimental design 70 

3-2 Control, peripheral and central experimental networks in plot A 72 

3-3 Pollinator richness and abundance in experimental plots 77 

3-4 Plant species roles in experimental networks 79 

3-5 Structure of experimental networks 80 

S 3-1 Control, peripheral and central experimental networks in plot B 90 

S 3-2 Flowering success of introduced species in the experimental plots 92 

S 3-3 Relationship between networks structure and size 96 

4-1 Conceptual figure of study background, simulation overview, community 

matrix and rewiring opportunities 

108 

4-2 Robustness of pollination and herbivory networks in simulation scenarios 1-8 120 

4-3 Relationship between network structure and robustness  121 

4-4 Robustness ratio of networks with and without interaction rewiring 122 

S 4-1 Species richness, connectance, nestedness and modularity of pollination and 

herbivory networks 

131 

S 4-2 Effect of network structure and population feedbacks on coextinction 

cascades 

133 



 

x 

 

List of Tables 

2-1 Model results: effect of abundance and phylogenetic context on plant 

species strength 

29 

S 2-1 Dataset of networks in agricultural systems from Macfadyen et al. 2009a 36 

S 2-2 Plant species with low identification resolution in the network dataset 37 

S 2-3 Results of concordance analysis between phylogenetic distance matrices 40 

S 2-4 Plant species removed from analysis due to phylogenetic isolation 42 

S 2-5 Occurrence and status of plant species across plant-herbivore networks 45 

S 2-6 Occurrence and status of plant species across plant-parasitoid networks 52 

S 3-1 Dataset of pollination networks in British grasslands 86 

S 3-2 Rank of plant species based on their levels of centrality 87 

S 3-3 Flowering success of central and peripheral plant species 93 

S 3-4 List of resident plant species in the experimental plots 94 

S 3-5 Number of plant and insect species of experimental networks 95 

S 3-6 List of insect species collected in the field experiment 97 

4-1 Description of simulation scenarios 115 

S 4-1 Dataset of empirical pollination and herbivory networks 128 

S 4-2 Model results: effect of network structure and population feedbacks on 

coextinction cascades 

132 

 



 

1 

 

Chapter 1 Introduction 

 

Besides its intrinsic value, biodiversity positively affects ecological communities in many 

ways. For example, increasing biodiversity leads to more efficient use of ecosystem resources, 

is associated with higher ecosystem persistence and stability, and prevents ecological invasion 

at local scales (McCann, 2000; Kennedy et al., 2002; Cardinale et al., 2006; Gravel et al., 2011). 

Increasing biodiversity seems also to be positively associated with the provision of ecosystem 

services (Balvanera et al., 2006; Harrison et al., 2014; Winfree et al., 2015). Despite its 

importance, biodiversity and, consequently, the persistence of ecological communities, is being 

threatened by human activities, which include intensification of agriculture, climate change, 

deforestation, and habitat fragmentation (Sala et al., 2000; Tilman, 2001; Hanski, 2005; Bellard 

et al., 2012; Ledger et al., 2012; Laurance et al., 2014). Such activities result not only in the 

loss of species, but also in the loss of another crucial component of ecological communities, 

the interactions that connect species in nature (Aizen et al., 2008a; Tylianakis et al., 2008; 

Laliberté and Tylianakis, 2010). Ecological interactions appear to be an extremely fragile 

component of biodiversity since interactions can be lost before species are lost (Tylianakis et 

al., 2008; Valiente-Banuet et al., 2015). Studies suggest that interactions are lost at a faster pace 

than species (Albrecht et al., 2007; Valiente-Banuet et al., 2015) and that habitat modification 

might alter species interactions even when it does not affect species themselves (Tylianakis et 

al., 2007). Therefore, it is essential to consider ecological interactions as a component of 

biodiversity when both evaluating the impact of human activities and developing methods to 

mitigate the impacts of biodiversity loss. 

 The main tools which are capable of mitigating the negative impacts of human activity 

on biodiversity are conservation and ecological restoration (Mace, 2014; Possingham et al., 

2015; Brudvig, 2017). Often seen as ostensibly similar, since both are challenged by the 



Chapter 1 

2 

 

unprecedented rate and magnitude of environmental change (Steffen et al., 2007; Hooke and 

Martín-Duque, 2012), conservation and restoration have different aims and practices (Young, 

2000; Wiens and Hobbs, 2015). While conservation is concerned with preserving the least 

degraded areas in order to maintain their current status, restoration is focused on heavily 

degraded areas with the aim of recovering some of its value to biodiversity (Mace, 2014; Wiens 

and Hobbs, 2015). In order to meet our goals on biodiversity conservation, both methods need 

to be combined (Possingham et al., 2015). With 80% of the world’s surface showing evidence 

of human activity (Ellis and Ramankutty, 2008), and one third of ecosystems heavily degraded 

(Millennium Ecosystem Assessment, 2005), passive protection of ecosystems is not enough as 

protected areas do not adequately cover all biomes or taxa (Rodrigues et al., 2004; Venter et 

al., 2014; Watson et al., 2014). In this sense, ecological restoration should become a primary 

focus of biodiversity management.  

 A large part of ecological restoration research and practice in terrestrial systems has 

focused on the plant community to achieve restoration goals (Young, 2000; Young et al., 2005). 

In natural systems, even when natural regeneration methods are selected, some assistance to 

re-stablish the plant community may be required (Chazdon and Guariguata, 2016). Similarly, 

in agricultural systems, successful biodiversity stewardship schemes have focused on 

increasing the provision of limited resources for targeted taxa (Winspear et al., 2010; Dicks et 

al., 2015). For several taxa, at least some of these resources are provided either directly or 

indirectly by the plant community (Walker et al., 2008; Vaudo et al., 2015). The focus on the 

plant community relies on the assumption that after its establishment, the arthropod community 

will naturally regenerate (Forup et al., 2008; Woodcock et al., 2010; Jellinek et al., 2013), but 

it is also supported by a large amount of evidence suggesting strong bottom-up effect in 

terrestrial systems (Scherber et al., 2010). As a result, ecological restoration which started as a 

botanical discipline, has now expanded to target multiple trophic levels (Henson et al., 2009), 
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the interactions between species across different levels (Forup et al., 2008; Memmott, 2009) 

and ecosystem services (Rey Benayas et al., 2009; Rey Benayas and Bullock, 2012), which 

often result from these interactions (Tylianakis et al., 2010).  

In this thesis, I explore the role of plant communities in supporting upper trophic levels, 

specifically pollinators, insect herbivores and parasitoids, in natural and agricultural systems. 

For that, I use ecological networks in three complementary approaches – the analysis of a large 

dataset from the literature, a manipulative field experiment and simulation modelling. From 

the network data, I sought to extract information from extant plant-insect communities which 

could inform the creation of new plant communities with the focus of reaching positive effects 

for the biodiversity of insects and their interactions with plants. In what follows I introduce the 

main concepts which underpin the three studies in this thesis: ecological restoration, bottom-

up effects and ecological networks. I finish the Introduction by outlining what has been 

investigated in each chapter. 

 

1.1 The era of ecological restoration: challenges and changes 

“In art, restoration involves recapturing an objects aesthetic value. 

In ecology, the stakes are arguably much higher (…)” 

Roberts, Stone and Sugden (2009) 

 

Ecological restoration is the intentional activity that initiates or accelerates the recovery of an 

ecosystem with respect to its health, integrity and sustainability (SER 2004). Its goals are to re-

establish a range of desirable attributes of natural systems (Brudvig, 2011), mainly native 

species composition, ecosystem functions and stability (SER, 2004; Shackelford et al., 2013). 

Ecological restoration is currently considered humankind’s primary option for increasing 

biodiversity (Brudvig, 2011). Additionally, the United Nations Environmental Programme 
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argues that restoration should be considered as a method to address environmental issues such 

as carbon sequestration and mitigation of climate change, and social issues like poverty 

(Nellemann and Concoran, 2010).  

Ecological restoration experienced four main paradigms: restoration to guide the 

recovery of degraded systems, restoration as a compensation for habitat loss (frequently 

performed by industries to offset the destruction of natural ecosystems), restoration to provide 

ecosystem services and restoration to promote community resilience (Suding, 2011). These 

paradigms reflect the ongoing change of a field, which originally focused on the recovery of 

pristine habitats (Hobbs et al., 2009), using historical systems as reference (Swetnam et al., 

1999; Balaguer et al., 2014) and by mainly focusing on species composition (Brudvig, 2011; 

Perring et al., 2015). However, the recognition that humans have been interacting and 

modifying ecosystems for thousands of years (Ellis et al., 2013), makes the concept of pristine 

environments hard to grasp. Additionally, historical targets have proven hard to achieve, since 

factors such as climate, available species pools - due to extinctions and invasions - and human 

activities have changed. An additional challenge is that humans are expected to continue 

modifying their surroundings at increasing rates (Tilman et al., 2011). These future 

environmental changes will possibly make targets focused on species composition harder to 

achieve and more transient. 

Due to the challenges posed to previous ecological restoration paradigms, and the 

developments of ecological theory, the practice of ecological restoration has evolved and 

adapted in several ways (Shackelford et al., 2013). Such transformations include: (i) broader 

definitions of endpoints which have moved solely from species composition to incorporate 

other aspects such as ecosystem function and desired dynamics (Suding, 2011; Zirbel et al., 

2017), (ii) the adoption of new measures of biodiversity which now encapsulate more than 

taxonomy and species richness to include, for example, phylogenetic composition (Barak et 
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al., 2017), and (iii) the search for mechanisms affecting outcomes (Zirbel et al., 2017). For 

instance, current restoration models incorporate site-level factors, landscape-level factors and 

historical contingencies (Brudvig, 2011), which are expected to move the field towards a 

predictive science. In terrestrial systems, ecological restoration has also moved from a strictly 

botanical science, to the development of management which focuses on additional trophic 

levels. One example, is the creation on flower patches specifically designed to target pollinators 

(Hopwood, 2008; Morandin and Kremen, 2013; Harmon-Threatt and Hendrix, 2015). 

Concomitantly, ecological restoration has incorporated in its practice knowledge and tools 

from other fields of ecology (Palmer et al., 1997; Young et al., 2005; Montoya et al., 2012). 

One such field is the study of ecological networks, which captures the multitrophic and 

functional purpose of current restoration schemes. 

 

1.2 Bottom-up effects and its importance on plant-insect systems 

"... the removal of higher trophic levels leaves lower levels intact (if perhaps greatly modified), 

whereas the removal of primary producers leaves no system at all." 

Hunter and Price (1992) 

 

One question that has arisen in the 60’s, with the publication of “the world is green” proposition 

(Hairston et al., 1960), is whether ecological communities are structured by bottom-up forces, 

meaning that populations are limited by their resources, or by top-down forces, if populations 

are controlled by their predators (Hunter and Price, 1992; Chase et al., 2000; Koricheva et al., 

2000; Walker and Jones, 2001). For decades, much empirical work has provided evidence 

pointing in one direction or the other (Price et al., 1980; Walker and Jones, 2001), or even 

showing that both mechanisms act together (Huryn, 1998; Chase et al., 2000; Aquilino et al., 

2005). For instance, in the same community each mechanism can occur at different scales, e.g. 
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within and between-habitats (Wulff, 2017) or in different trophic levels (Hoekman, 2011). 

Currently, ecologists agree that bottom-up and top-down forces interact in complicated ways 

when structuring ecological communities (Chase et al. 2000), and that the relative importance 

of one mechanism or another is frequently context and system dependent (Hunter and Price 

1992), and therefore varying across space and time.  

Despite being harder to detect than top-down forces, due to a time lag in its effects 

(Smith et al., 2010; Wulff, 2017), there is extensive evidence of bottom-up forces particularly 

in terrestrial systems where they are believed to be more important (Hunter and Price, 1992; 

Schmitz et al., 2000; Halaj et al., 2001; Walker et al., 2008). In terrestrial systems, the effects 

of the plant assemblage were found to reach not only herbivores (Siemann, 1998; Koricheva et 

al., 2000; Schaffers et al., 2008; Welti et al., 2017) but higher trophic levels (Bukovinszky et 

al., 2008; Scherber et al., 2010; Kos et al., 2011; Schuldt and Scherer-Lorenzen, 2014). 

Specifically, researchers sought to understand if increasing plant diversity is associated with 

increases in insect diversity and abundance. The effect of different measures of plant diversity 

on upper trophic levels have been investigated, such as the effects of plant richness (Koricheva 

et al., 2000; Scherber et al., 2010; Dinnage et al., 2012; Welti et al., 2017), functional diversity 

(Koricheva et al. 2000, Scherber et al. 2010), phylogenetic diversity (Dinnage et al. 2012, 

Pellissier et al. 2013), structural diversity (Lawton 1983, Holmquist et al. 2014) or diversity of 

plant traits (Pywell et al., 2003; Pellissier et al., 2013; Fornoff et al., 2017). Most of these 

empirical studies suggest that insect abundance and diversity respond to some aspects of plant 

diversity.  

Insect herbivores are an extremely diverse group, representing a large proportion of 

terrestrial species (Price, 2002; Novotny et al., 2004). Herbivores are an important link in 

terrestrial ecosystems serving as resource for several groups, for example to parasitoid species 

which provide the service of pest control – but also affecting plant populations (Carson and 
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Root, 1999). In fact, the richness of plant species can indirectly, through herbivores, affect the 

richness and phylogenetic composition of the parasitoid community (Nascimento et al., 2015). 

Insect herbivores have adapted to interact with virtually every single plant part (Memmott et 

al., 2000; Almeida-Neto et al., 2011; Schallhart et al., 2012; Volf et al., 2015). To avoid such 

high predation pressure, plants have evolved a multitude of counter defences which have 

pushed herbivores into specialisation (Forister et al., 2015). Such coevolutionary arms races 

between plants and herbivores might explain the reason that oligotrophic herbivores - species 

which feed on more than one host plant - usually feed on closely related species (Novotny and 

Basset, 2005; Fontaine and Thébault, 2015). In that sense, an important feature of plant 

communities affecting plant-herbivore interactions, is their phylogenetic composition 

(Weiblen et al., 2006; Whitfeld et al., 2012; Pellissier et al., 2013; Forister et al., 2015). 

Moreover, the effect of plant community phylogenetic composition can cascade up, also 

affecting predators and parasitoids (Dinnage et al., 2012).  

Pollination is an important ecosystem service provided mainly by insect species. It is 

estimated that 75% of crops species (Klein et al., 2003) and 87.5% of flowering plant species 

(Ollerton et al., 2011) depend on animal pollination, making their current decline extremely 

concerning (Potts et al., 2010; Carvalheiro et al., 2013; Dicks et al., 2013). There is extensive 

evidence suggesting that pollinators can be resource limited, and that the lack of diverse and 

sufficient resource habitats is an important cause of current pollinator declines (Carvell et al., 

2006; Roulston and Goodell, 2011; Vanbergen and The Insect Pollinators Initiative, 2013; 

Ollerton et al., 2014). Specifically, the observed declines of flower resources could make 

insects more prone to the lethal effect of diseases and pesticides (Goulson et al., 2015), 

potentially due to reduced immunocompetence (Alaux et al., 2010). Pollinator diversity – both 

richness and abundance - are known to respond to the number of flowering species and 

individuals (Potts et al., 2010; Hudewenz et al., 2012; Orford et al., 2016). Additionally, in a 
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biodiversity experiment, not only pollinator richness, but also flower visitation, increased with 

richness and abundance of flowers (Hudewenz et al., 2012). In another experiment, pollinator 

functional diversity increased with plant richness positively affecting the stability of pollination 

services (Orford et al., 2016). Therefore, the creation of appropriate flower habitats will likely 

support diverse pollinator communities, securing an important aspect of ecosystem function 

and an important service. 

 

1.3 Ecological networks: a measure of ecological function and a tool for 

restoration  

“It is interesting to contemplate an entangled bank, (…), and to reflect that these elaborately 

constructed forms, so different from each other, and dependent on each other in so complex a 

manner, have all been produced by laws acting around us.” 

Darwin (1859) 

 

Ecological networks have been intensively studied for the past 20 years, greatly advancing our 

understanding on the structure and functioning of ecological communities (Poisot et al., 2016). 

By using tools from other fields such as social and computer sciences (Newman, 2003), 

ecologists are able to study interactions at the community level in a single framework, making 

them systematic and comparable (Delmas et al., 2018). In an ecological network, nodes – 

usually species – are connected by links whenever species interact. More recently, these links 

became weighted by including information on the frequency or strength of interactions between 

species (Vázquez et al., 2005, 2015). By looking at ecological communities as networks, 

ecologists were able to describe and better understand the emerging and often repeated 

structural properties of ecological communities (Bascompte et al., 2006; Fortuna et al., 2010; 

Dáttilo et al., 2016) and to identify key species for community structure (Mello et al., 2015). 
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Additionally, the study of species interactions, through the use of network tools, has shed light 

on the importance of network structure for the stability (Bastolla et al., 2009; Thébault and 

Fontaine, 2010), sensitivity to invasion (Valdovinos et al., 2018) and extinction (Burgos et al., 

2007; Stouffer and Bascompte, 2011) in ecological communities. This knowledge is very 

relevant for applied fields such as conservation and ecological restoration (Harvey et al., 2017).  

Plant-pollinator and plant-herbivore-parasitoid systems were some of the first types of 

ecological networks to be studied (Jordano, 1987; Memmott et al., 1994; Memmott, 1999). As 

both interaction types also support important ecosystem services – pollination and pest control 

(Crowder et al., 2010; Campbell et al., 2012) - understanding their structure and dynamics is 

of applied interest as well. In terms of network structure, we know that pollination networks 

are nested (Bascompte et al., 2003), i.e. formed by a core of generalist species with which 

specialist species interact. Herbivory networks instead, are frequently modular (Thébault and 

Fontaine, 2010; Cagnolo et al., 2011), a pattern in which sets of species interact more frequently 

among each other than with other species in the network (Olesen et al., 2007). These structural 

patterns can affect species coexistence (Bastolla et al., 2009), network persistence (Burgos et 

al., 2007; Stouffer and Bascompte, 2011) and even evolutionary dynamics (Guimarães et al., 

2011).  

Pollination and herbivory networks have been studied in terms of their stability and 

robustness (Memmott et al., 2004; Thébault and Fontaine, 2010; Allesina and Tang, 2012; 

Sauve et al., 2014; Welti et al., 2017). Robustness measures how resistant a network is to the 

loss of species (Dunne et al., 2002; Memmott et al., 2004). In this approach, species in one 

trophic level are sequentially removed and coextinctions in another trophic level are quantified 

(Dunne et al., 2002). The original method, which was static and based strictly on network 

topology, has evolved to incorporate stochasticity (Vieira and Almeida-Neto, 2015; Traveset 

et al., 2017), dynamics at the species and network levels (Ramos-Jiliberto et al., 2012; Pearse 
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and Altermatt, 2013; Valdovinos et al., 2013), and information on the natural history of the 

system to inform realistic extinction sequences (Pearse and Altermatt, 2013; Astegiano et al., 

2015; Berg et al., 2015).  

 Network tools have been used to address ecological questions with practical 

applications. For instance, some studies looked at how network structure responds to invasive 

species (Lopezaraiza–Mikel et al., 2007; Bartomeus et al., 2008; Traveset et al., 2013) and to 

habitat fragmentation (Hagen et al., 2012; Emer et al., 2013, 2018). The effect of different 

management practices in agricultural systems has also been explored with the use of ecological 

networks (Macfadyen et al., 2009a; Orford et al., 2016). Finally, ecological networks have been 

used to evaluate the effects of ecological restoration (Cusser and Goodell, 2013). For instance, 

several studies have compared the structure of restored communities with the one of target or 

reference sites (Forup and Memmott, 2005; Forup et al., 2008; Williams, 2011; Ribeiro da 

Silva et al., 2015; Rodewald et al., 2015; Kaiser-Bunbury et al., 2017), or between different 

restoration treatments (Atkinson et al., 2015). As some ecosystems services are the result of 

species interactions rather than of species composition (Harvey et al., 2017), the study of how 

agricultural management practices and restoration strategies affect network structure, can also 

inform us about the recovery of services provided by these species.  

By explicitly exploring alternative restoration strategies and comparing the resulting 

outcomes, recent studies have gone a step further providing us with mechanistic information 

that can move restoration from a site-specific enterprise into a predictive practice (Brudvig, 

2017). Devoto et al. (2012) investigated how order of plant species introduction – either 

maximising convergence or complementarity - affects conservation outcomes. Using a 

theoretical framework, LaBar et al. (2014) have investigated the effect of several species 

introduction scenarios following species extinctions in pollination networks. For instance, they 

show that the number of species introduced is more important, for resulting species richness, 
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than the strategy used for species selection and that the introduction of generalist species will 

result in stable communities (LaBar et al., 2014). Finally, since restoration is considered the 

acid test for ecological theory (Bradshaw, 1987), i.e. “if we do not understand the processes at 

work in an ecosystem we are unlikely to be able to reconstruct it” (Bradshaw, 1996), combining 

ecological networks with restoration data can teach us how communities are assembled. For 

instance, Ponisio et al. (2017), using an 8-year restoration dataset, found that pollination 

networks were assembled thorough a different process than previously thought. According to 

their study, in pollination networks the most persistent species are not generalists, as predicted 

by the preferential attachment hypothesis, but are species with highly dynamic network roles 

(Ponisio et al., 2017).  

 

1.4 Thesis structure 

The overarching aim of work described in this thesis was to ask how ecological networks can 

usefully inform the creation or restoration of plant communities when the intention is to 

positively affect additional trophic levels such as pollinators, insect herbivores and parasitoids. 

For that, I developed three studies which are complementary in topic and method. The first 

data chapter focuses on plant-herbivore-parasitoid interactions, while the second data chapter 

focuses on interactions between plants and pollinators; and in the third and final data chapter, 

I compare both types of networks. In terms of approach I combine data analysis of a large 

empirical dataset from the literature (Chapter 2), a field experiment (Chapter 3) and a 

simulation model (Chapter 4). Below, I briefly describe each chapter and outline how each data 

chapter connects with the three underpinning topics:  

 

Chapter 1: In the Introduction, I provide an overview of the literature about the three guiding 

and unifying topics of the work presented in this thesis: ecological restoration, bottom-up 
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effects in community ecology and ecological networks. The chapter ends with an overview of 

the thesis structure.  

 

Chapter 2: In the first data chapter I used a combination of null models and species-level 

network metrics to identify keystone plant resources for herbivores and parasitoids in 

agricultural systems. The term keystone species, originally referred to top predator species 

(Paine, 1969), is today applied more generally to species that disproportionally affect the rest 

of the community relative to their abundances (Watson and Herring, 2012). I used a dataset 

from the literature comprising 20 replicate plant-herbivore-parasitoid networks, which allowed 

the exploration of context dependency on plant species keystone roles. Additionally, I 

investigated the consistency of plants roles across trophic levels and the effect of plant 

phylogenetic relatedness on plant’s network roles. Keystone plant species are a restoration 

target, as these plants have a high potential of reaching positive results for biodiversity and 

ecosystem services (Pocock et al., 2012). 

 

Chapter 3: In this chapter, I tested whether plant species centrality roles in plant-pollinator 

networks are good indicators of their ability to restore interactions between plants and 

pollinators. To do this, I calculated the centrality role of plant species in 17 published 

pollination networks and selected five central and five peripheral species. Then, I 

experimentally introduced the selected species into replicate plots and recorded their 

interactions with pollinators. I then tested the effect of central and peripheral plant species 

introduction on the pollinator and resident plant community and on network structure. Central 

plant species could be the focus of restoration programmes when focusing on pollinators 

(Martín González et al., 2010) as these could increase the richness and abundance of pollinators 

available for resident plant species.  
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Chapter 4: In the last data chapter, I brought together herbivory and pollination networks to 

investigate how differences in network structure and on the natural history between both 

interaction types affects the dynamics and robustness of these systems to the loss of plant 

species. For this, I used a large empirical dataset comprising 17 herbivory and 26 pollination 

networks and an adaptive network model. I explicitly investigate how the different population 

feedbacks – the reciprocal demographic effects between plants and insects – and level of 

generalisation – higher in pollination than in herbivory networks – between the two interaction 

types affect network collapse. I suggest that improving our understanding of how communities 

collapse might help explain how plant communities can be better engineered to support 

biodiversity.  

 

Chapter 5: In the discussion I summarise the main findings of the work presented in this thesis 

and I discuss the implications of the main results of my studies. I also suggest future directions 

for research. 
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Chapter 2  

 

The identification of keystone resource 

plant species in plant-insect food webs 

 

 

2.1 Introduction 

Ecological networks have been used to understand both the structure and the function of natural 

and managed communities (Laliberté and Tylianakis, 2010; Peralta et al., 2014; Rodewald et 

al., 2015; Ruggera et al., 2016). For example, they have been used to test the efficacy of pest 

control on farms under different management regimes (Macfadyen et al., 2009a), assess the 

impact of alien species (Bartomeus et al., 2008) and test the success of restoration (Kaiser-

Bunbury et al., 2017). Networks provide a powerful tool for identifying species of structural 

importance in ecological communities (Mello et al., 2015; Dehling et al., 2016) and can be 

used to identify plants species that act as keystone species (Pocock et al., 2012); keystone 

species being those which have a disproportionately large effect on network structure and 

function relative to their abundance (Paine, 1969; Watson and Herring, 2012). In pristine 

communities, identifying keystone species can help to focus conservation programs on specific 

taxa with large impacts on the overall community (Diaz-Martin et al., 2014; Mello et al., 2015; 

Traveset et al., 2017). Similarly, detecting and fostering keystones in degraded habitats could 

provide a real impetus at the start of a restoration programme, as degraded habitats make up 
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one third of the world’s ecosystems (Millennium Ecosystem Assessment, 2005) and their 

restoring is a priority in many countries (Suding, 2011). 

In terrestrial systems, restoration usually starts with the creation of a plant community 

or with the addition of plant species to existing communities. However, only a few restoration 

studies investigate the effects of individual plant species on the next trophic level (Moir et al., 

2010; Barton et al., 2013; Schuldt and Scherer-Lorenzen, 2014). Highlighting potential 

keystone species that have a large effect over higher trophic levels could help to focus 

restoration, as these plants may have a high potential to augment biodiversity and improve 

ecosystem services (Pocock et al., 2012). Furthermore, understanding when and why plant 

species act as keystones would provide us with invaluable knowledge on the mechanisms 

structuring communities and on the functioning of ecosystems (Simberloff, 1998). Since the 

context in which species are found varies from site to site, the roles species play might also 

vary. Ecological restoration would therefore benefit, not only from the identification of 

keystone resources, but also from insights on which traits and ecological contexts are 

associated with being a keystone species, as this information could greatly increase the 

predictive power of restoration schemes (Brudvig, 2017).  

Species’ roles in ecological networks are frequently a result of how attributes of a focal 

species relate to attributes of other species in the community, the most obvious being species 

relative abundance (Cagnolo et al., 2011; Fort et al., 2016). Similarly, pollinator species with 

similar traits to the community trait average interact with more plant species than pollinators 

with unique traits (Coux et al., 2016). Likewise, the composition of the plant community could 

affect the importance of each plant species for herbivores and, consequently, plant species’ 

roles in herbivory networks. For instance, co-occurring host species could result in mutual 

increased herbivory by attracting and supporting large populations of herbivores and, in turn, 

could end up sharing important roles as keystone resources in herbivory networks. Moreover, 
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the impact of plants can reach more than one trophic level (Bukovinszky et al., 2008) and, by 

sustaining large populations of herbivores, plant species could indirectly support parasitoid 

species and the service of pest control. 

Plant-herbivore interactions are known to be phylogenetically conserved, that is, insect 

herbivores tend to feed on closely related host species (Novotny and Basset, 2005; Elias et al., 

2013; Fontaine and Thébault, 2015; Bergamini et al., 2017). Castagneyrol et al. (2014) showed 

that plant phylogenetic proximity drives herbivore response to plant diversity, so that 

herbivores respond not only to the abundance of their focal hosts, but also to the abundance of 

related host species (Castagneyrol et al., 2014). Therefore, the phylogenetic context in which 

plant species are found could be an important determinant of plant species roles in herbivory 

networks, and it could also explain how these roles vary across networks. Understanding how 

the phylogenetic context of the plant community affects plant species roles could be a powerful 

tool when designing plant communities with the purpose of restoring consumer insect 

communities. 

Here, I use 20 plant-herbivore-parasitoid networks collected in the West of England 

(Macfadyen et al., 2009a) to identify keystone plant resources for herbivores and parasitoids. 

Specifically, I ask the following questions: 1) How common are keystone resource species in 

the 20 networks, and are species with keystone roles consistent across networks?; 2) Are plant 

species roles conserved across trophic levels, i.e. do important plants for herbivores also 

support parasitoids?; 3) What is the role of phylogenetic context in explaining plant species 

roles?  
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2.2 Material and Methods 

2.2.1 The focal habitat  

Farmland is an important habitat for biodiversity given the large area it occupies (Aizen 

et al., 2008b) and its potential to support high levels of ecosystem services (Billeter et al., 2008; 

Schneiders et al., 2012). However, most farmland does not live up to its biodiversity potential 

(Benton et al., 2003) and understanding how to improve farmland habitats for biodiversity is 

an important aim for restoration ecology in many parts of the world both for conservation and 

for the provision of ecosystem services (Kleijn et al., 2006; Jellinek et al., 2013; Morandin and 

Kremen, 2013; Banks-Leite et al., 2014). Moreover, farms could be straightforward systems to 

manage given that a large part of their plant community is already under human control. Thus, 

ecological restoration is both pertinent and pragmatic in these habitats. 

 

2.2.2 The network dataset 

The network data was originally collected to study differences in biodiversity and pest 

control between conventional and organic farms (Macfadyen et al., 2009a). The dataset consists 

of 10 pairs of plant-herbivore-parasitoid interaction networks (Table S 2-1), each 

corresponding to a pair of neighbouring organic and conventional farms, all located in the 

South West of England (Gibson et al., 2007). Insect herbivores, external (Lepidoptera larvae) 

and internal feeders (Diptera and Lepidoptera larvae), were collected on plants in all farm 

habitats using transects with size proportional to habitat area. Herbivores were reared and their 

parasitoids were added to the networks. Each plant species was assigned an abundance category 

in each sampling event ranging from 1 to 4 based on its transect cover. Plants in category 1 

were present once to a few times in the whole transect, plants in category 2 could be easily 

spotted but still occupied less than 10% of the transect area, plants in category 3 occupied 

between 11 and 50% of transect area, and plants in category 4 occupied more than 50% of 
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transect area. At the end of 11 sampling events over the course of two years, categories were 

summed, and each plant species received one relative abundance value. For purposes of 

analysis, I divided the 20 tri-trophic plant-herbivore-parasitoid networks into plant-herbivore 

and plant-parasitoid networks (Pocock et al., 2012). While the former depicts direct 

interactions, the latter describes indirect interactions between plants and pest enemies as, 

ultimately, plants influence higher trophic levels (Bukovinszky et al., 2008) and have the 

potential of interacting indirectly with parasitoids in a mutually beneficial way (Kaplan et al., 

2016).  

 

2.2.3 How common are keystone resource species in the 20 networks, and are species with 

keystone roles consistent across networks? 

I identify keystone species within plant communities as those species which have the 

strongest influence on upper trophic levels compared to null expectations. To do that, I first 

describe plant species’ network roles with the quantitative species-level metric strength. 

Strength is based on the dependences of consumers on a resource species, therefore describing 

how important a resource is to its consumers (Bascompte et al., 2006):  

 

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖
𝑃 = ∑𝑑𝑖𝑗

𝐴

𝑁𝐴

𝑗=1

 (1) 

where NA is the number of insect species in the network, 𝑑𝑖𝑗
𝐴  is the dependence of insect species 

j on plant i. Strength increases both with the number of insect species that feed on a focal plant, 

and with how dependent on that plant species insect species are. The dependence of insect 

species j on plant species i is a measure of the proportion the insect’s diet on i: 

 
𝑑𝑖𝑗

𝐴 =
𝐼𝑖𝑗

∑ 𝐼𝑖𝑗
𝑁𝑃
𝑖=1

 
(2) 
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where 𝐼𝑖𝑗 is the frequency of interactions between j and i and NP is the number of plant species 

in the network. 

Not all plant species with high strength, however, can be considered keystones since 

high strength is expected for highly abundant species (Vázquez et al., 2009a). Indeed, high 

abundance is a good indicator of a species’ ecological success and abundant species are likely 

to have large effects over the community. However, from a restoration perspective, it is useful 

to identify plant species with a disproportionately high strength (i.e. support more species and 

individuals than expected based on its abundance), as these do not necessarily need to be highly 

abundant to attract consumers. Therefore, I also calculated the keystone role of each plant 

species in each network by comparing its observed strength with a null expectation based on 

its relative abundance. I generated the null expectation for each plant species using the 

econullnetr R package (R Core Team, 2017; Vaughan et al., 2017), which is designed to 

identify resource preferences by consumers (here plants and insects). The null model operates 

at the level of individual consumers: each insect individual selects a plant species based on the 

plant’s relative abundance. Interactions distributed at the individual level are then summarised 

at the species level. I ran the null model 1000 times for each network, and defined the keystone 

role of plant i in farm k as the standardised effect size of its strength:  

 
𝑘𝑒𝑦𝑠𝑡𝑜𝑛𝑒 𝑟𝑜𝑙𝑒𝑖𝑘 =

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖𝑘 − 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑠𝑑(𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑘)
 (3) 

where 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖𝑘 is the strength of species i in farm k, and 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑠𝑑(𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖𝑛) 

are the average and standard deviation of the strength of plant species i in the null networks 

generated for farm k, respectively. Finally, as a categorical measure of species’ keystone role, 

each plant species was assigned one of three statuses: (i) keystone species: whose observed 

strength was above the upper confidence interval of its null expectation, (ii) average species: 

whose observed strength was between the confidence intervals of its null expectation, and (iii) 
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underused species: whose observed strength was below the lower confidence interval of its null 

expectation.  

Plant species with high values of strength, even if with a low value for keystone role, 

are expected to be important for network structure since they are strongly connected to a variety 

of insect species. Therefore, to investigate whether keystone species have high strength I tested 

the association between species status (keystone, average or underused, as explanatory 

variable) and species strength (the response variable) using linear mixed models (LMM). 

Random effect structure was selected with Akaike Information Criteria (Zuur et al., 2009) 

among: (i) no random effect, (ii) species identity, (iii) farm, and (iv) both species identity and 

farm. The relationship between strength and species status was tested using likelihood ratio 

tests that compared the selected model with an equivalent model omitting species status. 

 

2.2.4 Are plant species roles conserved across trophic levels, i.e. important plants for 

herbivores also support parasitoids? 

To test whether plant species’ role is conserved across trophic levels (whether 

keystones resources are the same for herbivores and parasitoids), I did two analyses. First, I 

tested whether plant species’ strength and keystone role in plant-herbivore networks 

(explanatory variable) are associated with their strengths and keystone roles in plant-parasitoid 

networks, at a local scale (in each farm) with LMMs. Random effect structure was selected 

among: (i) no random effect, (ii) species identity, (iii) farm and (iv) species identity and farm 

as random intercept. I estimate the variance explained by the model (R2LMM(fix+rand)), and the 

proportion attributed to fixed (R2LMM(fix)) and random effects (R2LMM(rand)) following 

(Nakagawa and Schielzeth, 2013), using the MuMIm R package (Barton, 2013). Second, I 

tested whether plant species’ roles in plant-parasitoid networks can be predicted by their roles 

in plant-herbivore networks at a regional scale, following the jack-knifing method used by 
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Emer et al. (2016). I started by averaging the role (strengths and keystone role) of each species 

in plant-herbivore and plant-parasitoid networks across all farms. I then fitted two linear 

regressions relating species mean strength and keystone role between plant-herbivore and 

plant-parasitoid networks and tested the fit of the linear regressions (Zuur et al., 2009). Then, 

to validate the linear regressions, I refitted the linear regression after systematically removing 

each species and used the coefficients of the new regression to predict the role of the removed 

species in plant-parasitoid networks from its mean role in plant-herbivore networks. I compared 

the observed mean values in plant-parasitoid networks with the predicted values using 

Pearson’s correlations tests.  

 

2.2.5 What is the role of phylogenetic context in explaining plant species roles? 

To test whether plant species with high strength values are phylogenetically proximate 

to other plant species present in the plant community, I modelled plant species strength as a 

function of phylogenetic relatedness and relative abundance as a covariate. To obtain a 

phylogenetic tree for the plant assemblage of each farm I pruned a dated European phylogeny 

that includes 4685 plant species and was constructed to serve as a reference phylogeny for 

ecological and evolutionary studies (Durka and Michalski, 2012). Since the network dataset 

included some plant species that were not identified to species level (29 out of 137), I followed 

a simple set of rules that allowed me to include most of these species in the analysis (Table S 

2-2). Species were included in the analysis only if identification was at least at the genus level 

and I dealt with species identified to genus in the network data set in two ways: (i) species that 

were the only representatives of that genus in the data (e.g. Trifolium sp.) were represented by 

their genus in the resulting phylogenetic tree; (ii) species that co-occurred with congeneric 

species, also identified only to genus (e.g. Trifolium sp. 1, Trifolium sp. 2) were replaced by 

one species in that genus drawn from the pool of species in the phylogenetic tree that were 
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likely to occur in the study area according to Botanical Society of Britain and Ireland (bsbi.org), 

this resulting in multiple phylogenetic trees. To decide between the multiple trees, I tested their 

coefficient of concordance with the ape R package (Paradis et al., 2004). As concordance levels 

were high (Table S 2-3), I randomly selected one of the possible trees for these networks.  

To characterise the phylogenetic context of each plant species in each network, I 

adapted two commonly used indices that describe phylogenetic relatedness of each plant 

species to the other species in the plant community (Li et al., 2015a, 2015b). Mean phylogenetic 

distance (MPDab) is the average of how distant each plant species is to all other plant species 

in the network, weighted by species abundances: 

 

𝑀𝑃𝐷𝑎𝑏𝑖
= ∑𝑑𝑖𝑗 ∗

𝑆𝑃

𝑗=1

 𝑎𝑗 

(4) 

where 𝑆𝑃 is the number of plant species in the community, 𝑑𝑖𝑗 is the distance between species 

i and j, and 𝑎𝑗 is the relative abundance of species j. Low MPDab values indicate that the focal 

plant co-occurs with closely related species and/or that distantly related species are rare. 

Nearest phylogenetic distance (NPDab) measures how distant each plant species is to its closest 

relative in the community, weighted by its closest relative abundance: 

 𝑁𝑃𝐷𝑎𝑏𝑖
= 𝑑𝑖𝑘 ∗ 𝑎𝑘 (5) 

where 𝑑𝑖𝑘 is the distance between i and its closest relative k, and 𝑎𝑘 is the relative abundance 

of species k. Low NPDab values indicate that the focal species co-occurs with a very close 

relative. These metrics are complementary in revealing the ways in which a species is related 

to the rest of the community: a species can co-occur with a close relative but still be far from 

most other species, or the inverse. 

Insect herbivores feed on related plant species (Cagnolo et al., 2011; Elias et al., 2013; 

Bergamini et al., 2017). To my knowledge, the phylogenetic signal of plant-parasitoid 
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interactions has never been tested, but parasitoid species often feed on closely related 

herbivores, even if the phylogenetic signal is weaker than in plant-herbivore networks (Cagnolo 

et al., 2011; Elias et al., 2013). Therefore, to understand if and how phylogenetic context affect 

plant species role in plant-herbivore and plant-parasitoid networks, I used four LMMs, two for 

each network type. These models had species strength as response variable, phylogenetic 

context (NPDab and MPDab in separate models) as explanatory variables and relative abundance 

as a covariate, since species abundance is known to affect species roles in ecological networks 

(Cagnolo et al., 2011; Fort et al., 2016). Random structures were selected among: (i) no random 

effect, (ii) species identity, (iii) farm and (iv) species identity with farm. Species strength was 

boxcox transformed, while NPDab and relative abundance were log transformed. I then used 

hierarchical partitioning to calculate the relative importance of phylogenetic context and 

relative abundance in explaining plant species roles with the hier.part R package (Chevan and 

Sutherland, 1991; Walsh and MacNally, 2013). Each observation corresponds to the 

occurrence of a species in a farm. However, four observations from plant-herbivore networks 

(out of 580) and two from the plant-parasitoid networks (out of 320) were of phylogenetically 

isolated species (Figure S 2-1). These are the two fern species Phyllitis scolopendrium 

(renamed as Asplenium scolopendrium) and Pteridium aquilinum, and the conifer Taxus 

baccata: the only non-Angiosperm species in the data set (Table S 2-4). A careful inspection 

of their phylogenetic context shows that they can be considered outliers for those metrics 

(Figure S 2-2 and Figure S 2-3) and were therefore excluded from this analysis.  

 

2.3 Results 

The plant-herbivore networks had on average 30 plant species (range = 21 to 41), 63 insect 

species (range = 44 to 83) and were very sparse, with an average connectance of 0.042 (± 0.007 

SD). Plant-parasitoid networks were smaller with 17 plant species (range = 11 to 23) and 37 
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insect species (range = 26 to 58) on average, and less sparse with an average connectance of 

0.092 (± 0.018 SD).  

 

2.3.1 How common are keystone resource species in the 20 networks, and are species with 

keystone roles consistent across networks? 

I found keystone plant resources in all plant-herbivore and plant-parasitoid networks 

(Figure 2-1). Plant-herbivore networks had relatively fewer keystone species on average (Mean 

± SD: 4.05 ± 1.57, range = 1 to 8; 13.3% ± 4.3, range = 4.2% to 20%) than plant-parasitoid 

networks (Mean ± SD: 2.6 ± 0.88, range = 1 to 4; 15.6% ± 5.5, range = 5.9% to 25%). 

Underused species were also common (Figure 2-1), being present in all plant-herbivore 

networks (Mean ± SD: 4.7 ± 2.43, range = 1 to 11; 15.2% ± 6.8, range = 4.8% to 31%) and in 

19 out of 20 plant-parasitoid networks (Mean ± SD: 2.9 ± 1.45, range = 0 to 5; 16.7% ± 7.1, 

range = 0% to 27%). In both network types, there was no difference in the proportion of 

keystone (plant-herbivore: t = 1.96, df = 9, p = 0.08; plant-parasitoid: t = 1.02, df = 9, p = 0.34) 

or underused species (plant-herbivore: t = 2.01, df = 9, p = 0.07; plant-parasitoid: t = 1.43, df 

= 9, p = 0.19) between organic and conventional farms.  
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Figure 2-1 Distribution of plant species in: a) plant-herbivore and b) plant-parasitoid networks 

(networks correspond to farms labelled A1 to A10 and B1 to B10). Overperforming species (Keystone: 

above null model confidence intervals) are in dark grey, average species (Average: between null model 

confidence intervals) are in light grey and underused species (Under: below null model confidence 

intervals) are in medium grey.  

 

Of the 137 plant species present in the 20 plant-herbivore networks, only 18 (13%) 

acted as a keystone resources in at least one plant-herbivore network. While 27 out of the 89 

(30%) plant species present in the plant-parasitoid networks acted as keystone resources in at 

least one plant-parasitoid network. These plant species were not consistently keystones: on 

average, they are keystones in 62% of the plant-herbivore networks (± 33, range = 1% to 100%) 



Keystone resources in plant-insect food webs 

27 

 

and in 42% (± 33, range = 5% to 100%) of the plant-parasitoid networks in which they are 

present. Keystone species are listed in Table S 2-5 and Table S 2-6. The observed strength of 

keystone species was higher than of non-keystone species (plant-herbivore networks: χ2(2) = 

209.84, p < 0.001; plant-parasitoid networks: χ2(2) = 168.52, p < 0.001), and keystones occur 

in most classes of relative abundance for both network types (Figure S 2-4).  

 

2.3.2 Are plant species roles conserved across trophic levels, i.e. important plants for 

herbivores also support parasitoids?  

I found that both plants’ strength and keystone roles are conserved across trophic levels 

at the farm scale (χ2(1) = 106.87, p < 0.001 and χ2(1) = 55.56, p < 0.001, respectively; Figure 

2-2a-b). In both models, the fixed effect (plant’s roles in plant-herbivore networks) was 

responsible for more than half of the variance of the full model (strength: R2LMM(fix+rand) = 

0.55, R2LMM(fix) = 0.35, R2LMM(rand) = 0.2; keystone roles: R2LMM(fix+rand) = 0.48, R2LMM(fix) 

= 0.25, R2LMM(rand) = 0.23). Thus, on average, plant species that were important resources for 

herbivores were also important resources for parasitoids in each farm. Species identity was 

selected as random effect in both models. I also found that, regionally (i.e. using the jack-

knifing method), both species’ strength (F1,87 = 38.14, R2 = 0.3, p < 0.001) and keystone role 

(F1,87 = 42.48, R2 = 0.33, p < 0.001) in plant-parasitoid networks could be predicted from its 

average role in plant-herbivore networks (Figure 2-2c-d). The model validation shows that 

predicted values of strength (t = 5.7, p < 0.001, r = 0.52) and keystone role (t = 5.97, p < 0.001, 

r = 0.54) for plant-parasitoid networks are highly correlated to the observed mean values of 

these metrics. 
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Figure 2-2 Relationship between plant species roles in plant-herbivore (PH) and plant-parasitoid (PP) 

networks: a) strength and b) keystone role. Each dot represents a species on a farm. Unfilled dots are 

species that are not keystones in either the PH or PP networks of a given farm (Never), in black are 

species that are keystones in both the PH and PP networks of a given farm (Both), in light grey are 

species that are only keystones in the PH network of a given farm (PH) and in dark grey are species that 

are only keystones in the PP network of a given farm (PP). Linear regression between c) mean species 

strength and d) mean species keystone role in PH and PP networks; each dot represents the average role 

of a species across all farms in which that species occurs. 

 

2.3.3 What is the role of phylogenetic context in explaining plant species roles? 

Species strength was a function of its phylogenetic context in plant-herbivore networks 

(Table 2-1). Specifically, the average phylogenetic distance to all other plant species in the 
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community (MPDab), but not the distance to its closest neighbour (NPDab), negatively affects 

plant strength (Figure 2-3; Table 2-1) and explains 17% of the variance in the model. 

Additionally, relative abundance is positively associated with the strength of plant species in 

plant-herbivore and plant-parasitoid networks (Table 2-1). Even if MPDab, in plant-herbivore 

networks, and abundance in both network types, affect plant species strength, keystone plant 

species were distributed across a large range of relative abundances and phylogenetic isolation 

on each farm (Figure 2-3, Figure S 2-5 and Figure S 2-6). 

 

Table 2-1 Results of the linear mixed-effects models (LMM) testing whether plant species relative 

abundance and phylogenetic context (nearest phylogenetic distance, NPDab, and mean phylogenetic 

distance, MPDab) are associated to plant species strength in plant-herbivore and plant-parasitoid 

networks. For both metrics, the random structure selected with Akaike Information Criteria (AIC) 

included only species identity. Estimates, t and p values and the percentage of explained variance 

attributed to each fixed effect (% R2) composing the final model. 

 Fixed-effect Estimate t p % R2 

Plant-Herbivore Abundance +0.37 7.48 <0.001 83% 

 MPDab -0.007 -2.33 0.02 17% 

Plant-Parasitoid Abundance +0.42 5.46 <0.001 - 
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Figure 2-3 Results of linear mixed models (LMM) between plant species strength and weighted mean 

phylogenetic distance to other plant species (MPDab) performed individually for each plant-herbivore 

network (network codes - A1 to A10 and B1 to B10 – in the top left corner of each plot). Each dot 

represents a species in a farm, in dark grey are overperforming species (keystone species: above null 

model confidence intervals) and in lighter grey are underused species (below null model confidence 

intervals). Strength values were boxcox transformed. Lines of best fit are drawn for statistically 

significant models. 

 

2.4 Discussion 

The results show that keystone plant resources for insects are widespread in farms, but that 

relatively few plant species play keystone roles and that being a keystone plant is context 
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dependent rather than an absolute species attribute. I also found that plant species with 

important roles in plant-herbivore networks also had important roles in plant-parasitoid 

networks. Finally, I found that the most important plant species for network structure are not 

only abundant but are also closely related to other plant species in plant-herbivore networks. 

In what follows I first address the limitations of this study, and then consider the original 

questions, putting the results in the context of previous findings. 

 

2.4.1 Limitations 

There are two main limitations in this study. First, better quality abundance data for 

plant species would have been desirable. While an ordinal scale was used, there are a number 

of advantages in the plant data: they were collected at the same time, using the same methods 

and with the same sampling effort (all factors which vary in many studies involving multiple 

networks). The networks are also from a relatively small area making both, plant and insect 

communities, comparable and the study of variation on species roles possible. In mitigation for 

this possible limitation I show that the ordinal abundance measure used correlates highly with 

estimated percentage plant cover (Figure S 2-7). Second, with truly independent abundance 

data for herbivores, I would have a more precise estimate of plant species roles in plant-

parasitoid networks, and on how those roles are mediated by herbivore diversity. However, 

collecting insect abundance data independently from interaction data remains challenging 

(Maldonado et al., 2013). Therefore, I dealt with this problem by connecting parasitoids 

directly to plants, an approach used by Pocock et al. (2012) and that can highlight how plant 

species could potentially support pest control.  
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2.4.2 Keystone species in farmland systems 

The high potential of the keystone species concept for conservation (Simberloff, 1998) 

led to the use of ecological networks as a tool for identifying keystone species (Mello et al., 

2015; Zhao et al., 2016; Traveset et al., 2017). Even if the concept was originally created for 

top predators (Paine, 1995), the importance of bottom-up effects on the structure of plant insect 

communities (Dinnage et al., 2012; Pellissier et al., 2013; Holmquist et al., 2014) suggests that 

keystones also exist among plants. I found that keystone resource species are pervasive in 

agricultural systems, but so are underused species, and that keystone species are not simply 

rare species with moderate values of strength but include important species for network 

structure serving as a frequent food source for several insect species. Two of the results suggest 

that plant species identity matters for the roles plant species play in plant-herbivore and plant-

parasitoid networks. First, for both plant-herbivore and plant-parasitoid networks, the pool of 

keystone species (and of underused species) was small including less than a third of plant 

species in the regional pool. Second, in several analyses, species identity was selected as a 

random effect while farm was not, suggesting that species roles varied more between species 

than within species between farms. 

Plant species identity, however, did not fully explain the role played by plant species in 

plant-herbivore and plant-parasitoid networks, since species roles varied across networks. The 

challenge faced by community ecologists is understanding when and why species play 

important ecological roles. Community composition has the potential of affecting interaction 

occurrence (Lázaro et al., 2009; Yguel et al., 2011; Donoso et al., 2017) and consequently 

species roles in ecological communities. Since context dependency of species performance has 

tremendous implications for ecological restoration (Perring et al., 2015), understanding which 

compositional features of ecological communities are important for different interaction types 

would be an important step towards increasing the predictive power of restoration ecology. For 
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instance, phenotypic disparity and phylogenetic relatedness interact to affect the success of 

nurse-based restoration, based on facilitative interaction between plants (Verdú et al., 2011), 

while diverse communities of predators with complementary feeding niches increase attack 

rates and control of aphid pests (Northfield et al., 2010). Here, I show that plant relatedness - 

how close a species is, on average, to all other plant species in the community (MPDab), but 

not the distance to its closest neighbour (NPDab) - affects plant-herbivore interactions so that 

the most important plant species for herbivores are closely related to other species in the plant 

community. Possibly, plant species co-occurred with small sets of related co-hosts in farms, so 

that MPDab better described herbivore host choices than NPDab. Conversely, plant relatedness 

did not affect plant-parasitoid interactions. Even if parasitoids tend to feed on related 

herbivores and herbivores on related plants (Cagnolo et al., 2011; Elias et al., 2013), 

phylogenetic signal is not necessarily symmetrical, and related herbivores do not feed on 

related plants (Elias et al., 2013; Fontaine and Thébault, 2015), explaining the lack of effect of 

plant relatedness on plant-parasitoid interactions. As parasitoid diversity reduces temporal 

variation in pest control (Macfadyen et al., 2011a), focusing on keystone plant species for 

parasitoids might facilitate the restoration of pest control.  

Despite the observed importance of plant abundance and phylogenetic relatedness (only 

in plant-herbivore networks) in explaining plant species strength, it is important to note that 

keystone plant species were distributed across a large range of relative abundances and 

phylogenetic isolation on each farm (Figure 2-3, Figure S 2-5 and Figure S 2-6), suggesting 

that phylogenetic context and species abundance are not enough to predict which plant species 

will have the status of keystones in farms. 

This study highlights the benefit of studying multiple interaction types in combination 

(Fontaine et al., 2011; Pocock et al., 2012; Dáttilo et al., 2016). Plant species roles were 

conserved across trophic levels – correlated in plant-herbivore and plant-parasitoid networks - 
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across two different scales: locally since important plant species for herbivores in a farm were 

also important for parasitoids in that farm, and regionally since I was able to predict average 

plant species importance for parasitoids based on their average importance for herbivores 

across farms. These are promising results as they suggest that two additional trophic levels 

could benefit from management of one single level (Scherber et al., 2010; Hudewenz et al., 

2012). If plant species roles are conserved across different types of interaction networks, the 

loss of few plant species could jeopardize multiple ecosystem services (Albrecht et al., 2014). 

On the other hand, the high correlation of plants’ degrees – their number of interaction partners 

and another way of describing species network roles - in a pollination and herbivory network 

had a stabilising effect on the system (Sauve et al. 2016), suggesting that multiple interaction 

systems could benefit from sharing keystone species.  

 

2.4.3 Conclusions 

The intensification of agriculture is a key driver of the current biodiversity crisis we 

face (Foley et al., 2005). In many countries, agricultural systems occupy a very large proportion 

of the land area (50% in France, Spain and the Netherlands and 70% in the UK and South 

Africa; World Bank, 2015), the best approaches to promote biodiversity at a large scale (Phalan 

et al., 2011a; Tscharntke et al., 2012) and at a small scale (e.g. within farms) need to be 

identified. Since habitat creation is a large part of management at a small scale in agricultural 

systems (Rey Benayas and Bullock, 2012; Morandin et al., 2016), the results suggest that 

practitioners should take heed of the interplay between species abundance and network roles. 

The results are also interesting from a theoretical perspective, as the identification of keystones 

can help to elucidate how species traits and ecological contexts interact to allow the emergence 

of key ecological roles. The keystone concept was created in 1960’s but the quest for keystones 

remains important nearly 60 years later, as the identification of these species represent a win-
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win situation: it improves our understanding of community structure and functioning and can 

potentially reverse biodiversity declines which are highest in agro-ecosystems.  
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2.5 Supplementary Material 

Table S 2-1 The dataset used for analysis, consisting of pairs of plant-herbivore (PH) and plant-

parasitoid (PP) networks collected in 20 farms in the southwest of England (Macfadyen et al. 2009a). 

Each row corresponds to a farm and includes information about the two networks (one of each 

interaction type: PH and PP) collected in that farm. The codes are as follows: Farm = code name of 

each farm; Treat = farm management (C=conventional and O=organic); Type = type of network (PH or 

PP); Insect = number of herbivore species in the PH networks and of parasitoid species in the PP 

networks; Plant = number of plant species in the PH and PP networks, C = connectance of the PH and 

PP networks. 

Farm Treat. Type Insect Plant C Type Insect Plant C 

A1 O PH 78 25 0.05 PP 45 18 0.09 

A2 O PH 61 31 0.05 PP 43 21 0.08 

A3 O PH 83 33 0.04 PP 39 19 0.07 

A4 O PH 66 38 0.03 PP 46 23 0.07 

A5 O PH 80 41 0.03 PP 44 19 0.09 

A6 O PH 62 31 0.04 PP 33 18 0.09 

A7 O PH 70 35 0.04 PP 33 15 0.10 

A8 O PH 73 35 0.04 PP 58 23 0.08 

A9 O PH 56 23 0.05 PP 28 12 0.10 

A10 O PH 81 30 0.04 PP 43 15 0.10 

B1 C PH 83 32 0.04 PP 45 20 0.08 

B2 C PH 45 31 0.04 PP 30 17 0.10 

B3 C PH 68 35 0.04 PP 37 17 0.10 

B4 C PH 55 27 0.05 PP 27 12 0.14 

B5 C PH 44 24 0.05 PP 29 14 0.12 

B6 C PH 54 29 0.04 PP 34 19 0.07 

B7 C PH 52 30 0.04 PP 39 19 0.07 

B8 C PH 54 26 0.05 PP 36 16 0.10 

B9 C PH 46 21 0.06 PP 26 11 0.11 

B10 C PH 58 25 0.05 PP 29 12 0.10 

  



Keystone resources in plant-insect food webs 

37 

 

Table S 2-2 Plant species with low resolution identification (i.e. not to species level) in the network 

dataset or absent in the phylogenetic dataset. Plant species names, number of networks (PH for plant-

herbivore and PP for plant-parasitoid) in which they are present, identification issue 

(Unknown=unknown species, Family=only identified to family, Aggregated=muliple species of the 

same genus, Genus=only identified to genus, Variety=crop variety, Unavailable=species not present in 

the phylogeny dataset and Hybrid=hybrid of two species) and solution used (either Removed or the 

name of the phylogeny branch used). 

Species Name (network data) PH PP Problem Solution 

UKP391 1 - Unknown Removed 

Asteraceae1 1 - Family Removed 

Grass1 20 20 Family Removed 

Avena spp.2 9 7 Aggregated Avena 

Rumex spp.3 19 4 Aggregated R. acetosella 

R. conglomeratus 

R. crispus 

R. obtusifolius 

R. sanguineus 

Taraxacum spp.2 6 3 Aggregated Taraxacum 

Trifolium spp.3 19 13 Aggregated T. campestre 

T. dubium 

T. fragiferum  

T. hybridum 

T. medium 

T. micranthum 

T. striatum  

T. aestivum 

Arctium sp.2 5 3 Genus Arctium 

Brassica sp.4 1 1 Genus Brassica elongata 

Brassica unknown4 1 1 Genus Brassica elongata 

Carduus sp.2 1 - Genus Carduus 

Cerastium sp.3 1 1 Genus C. diffusum 

C. pumilum 

C. semidecandrum 

C. tomentosum 

Cirsium sp.3 0 - Genus C. acaule 
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C. eriophorum 

C. palustre 

Lamium sp.3 2 - Genus L. amplexicaule 

L. hybridum 

L. maculatum 

Lathyrus sp.2 1 1 Genus Lathyrus 

Lupinus sp.2 3 1 Genus Lupinus 

Malus sp.5 2 - Genus Malus domestica 

Prunus sp.3 2 - Genus P. domestica 

P. laurocerasus 

P. lusitânica 

Ranunculus sp.3 2 2 Genus R. auricomus 

R. bulbosus 

R. flammula 

R. lingua 

R. sceleratus 

Rosa sp.2 3 1 Genus Rosa 

Salix sp.2 2 - Genus Salix 

Silene sp.3 3 - Genus S. flos-cuculi 

S. latifolia 

S. vulgaris 

Triticum sp.2 18 17 Genus Triticum 

Viola sp.2 2 1 Genus Viola 

Brassica oleracea (Acephala Group)6 2 2 Variety Brassica oleracea 

Brassica oleracea (Italica Group)6 1 1 Variety Brassica oleracea 

Cynara scolymus7 1 1 Unavailable Cynara cardunculus 

Tilia vulgaris/europaea8 2 - Unavailable Tilia x vulgaris 

X Triticosecale9 4 5 Hybrid Triticum aestivum 

Secale cereale 

1 Species with identification up to family level were removed 

2 Species with identification at the genus level and that are the only occurrences of that genus 

in the network dataset were replaced by their genus branch 

3 Species with identification at the genus level but that are not the only occurrences of that 

genus in the network dataset were replaced by a set of possible species that were both: (i) 
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present in the phylogenetic tree and (ii) known to occur in the study area (Botanical Society of 

Britain and Ireland, bsbi.org) 

4 Do not co-occur in any network, replaced Brassica elongata  

5 Replaced by Malus domestica (Botanical Society of Britain and Ireland, bsbi.org) 

6 Do not co-occur in any network, replaced by Brassica oleracea 

7 Replaced by Cynara cardunculus  

8 Replaced by Tilia x vulgaris 

9X Triticosecale is a hybrid of species from a Triticum and a Secale species, and only one 

species from each genus (Triticum aestivum and Secale cereale) were available in the 

phylogenetic dataset. Since Triticum aestivum and Secale cereale never co-occur in the 

network dataset, each replaced X Triticosecale in networks where the other species was present 
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Table S 2-3 Results of the concordance analysis between distance matrices (N=number of distance 

matrices, each corresponding to a phylogenetic tree) for 10 plant-herbivore and 4 plant-parasitoid 

networks. Networks were collected in farms identified by a code (Farm). Concordance analysis: values 

for Kendall’s coefficient of concordance (W) between matrices, and tests of concordance values using 

permutations (p-value). A posteriori analysis for the contributions of individual matrices to overall 

concordance: mean mantel (Mantel), mean p-value and mean corrected p-value (Cor. P-value, Holm 

method) across alternative matrices for each network. *Cases of non-significance after Holm correction: 

since W values are as high as for other matrices, non-significance was assumed to be due to the large 

number of alternative matrices (N). 

Plant-herbivore 

  Concordance Contribution of indiv. matrices 

Farm N W p-value Mantel p-value Cor. p-value 

A1 175 0.9997 <0.001 0.9997 <0.001 0.17* 

A2 140 0.9987 <0.001 0.9987 <0.001 0.14* 

A4 7 0.9995 <0.001 0.9994 <0.001 0.007 

A5 21 0.9995 <0.001 0.9994 <0.001 0.02 

A6 7 0.9995 <0.001 0.9994 <0.001 0.007 

B1 5 0.9997 <0.001 0.9996 <0.001 0.005 

B2 3 1 <0.001 1 <0.001 0.003 

B3 3 0.9998 <0.001 0.9998 <0.001 0.003 

B8 5 0.9989 <0.001 0.9986 <0.001 0.005 

B9 3 0.9998 <0.001 0.9997 <0.001 0.003 

Plant-parasitoid 

A1 35 0.9994 <0.001 0.9994 <0.001 0.03 

A2 35 0.9995 <0.001 0.9995 <0.001 0.03 

A4 7 0.9994 <0.001 0.9992 <0.001 0.007 

A10 2 0.9975 <0.001 0.9950 <0.001 0.002 
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Figure S 2-1 Phylogenetic tree extracted from the Angiosperm Phylogeny Website 

(www.mobot.org/MOBOT/research/APweb/) including angiosperm plant orders and non-angiosperm 

groups: Ferns, Cycadales, Gynkgoales, Pinales and Gnetales. With blue arrows are highlighted the 

orders that include most plant species in the dataset. In orange are highlighted the groups including 

phylogenetically isolated species in the dataset: the two species of fern Phyllitis scolopendrium (current 

Asplenium scolopendrium) and Pteridium aquilinum, and the conifer species Taxus baccata in Pinales. 

  



Chapter 2 

42 

 

Table S 2-4 List of occurrences (combination of plant species per farm) excluded from the phylogenetic 

context analysis (question 3) due to extreme phylogenetic isolation. Species names, corresponding farm 

names of the plant-herbivore and plant-parasitoid networks in from which plant species were removed 

and, in parenthesis, the metrics of phylogenetic relatedness for which plant species are outliers 

(NPDab=nearest phylogenetic distance; MPDab=mean phylogenetic distance). * Formerly known as 

Asplenium scolopendrium. 

Species Plant-Herbivore Plant-Parasitoid 

Phyllitis scolopendrium* B1 (NPDab/MPDab) B1 (MPDab) 

Pteridium aquilinum A1 (MPDab) - 

Pteridium aquilinum B9 (NPDab/MPDab) - 

Taxus baccata A4 (NPDab/MPDab) A4 (MPDab) 
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Figure S 2-2 Cleveland dotplots of the phylogenetic context metrics NPDab (nearest phylogenetic 

distance; a and c) and MPDab (mean phylogenetic distance; b and d) from plant-herbivore networks. 

Each dot represents a species in a farm (y axis) with their corresponding metric values (x axis). In red 

are occurrences (species per farm) considered outliers for that metric and, therefore, that were removed 

from the analysis. a) and b) Cleveland plots before the removal of outliers; c) and d) Cleveland plots 

after the removal of outliers. 
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Figure S 2-3 Cleveland dotplots of the phylogenetic context metrics NPDab (nearest phylogenetic 

distance; a) and MPDab (mean phylogenetic distance; b and d) from plant-parasitoid networks. Each 

dot represents a species in a farm (y axis) with their corresponding metric values (x axis). In red are 

occurrences (species per farm) considered outliers for that metric and, therefore, that were removed 

from the analysis. a) and b) Cleveland plots before the removal of outliers; d) Cleveland plot after the 

removal of outliers. Plot c) not included since no species had an extreme value of NPDab nor was 

removed from the analysis. 
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Table S 2-5 List of the 137 plant species present in the 20 plant-herbivore networks. Networks are named after their corresponding farms (A1-A10 and B1-

B10). When species are present in a network, cells correspond to species status: K are keystone species, A are average species and U are underused species. 

When absent from a network, cells are filled with (-). Species that play a keystone role in at least one farm are marked in bold. 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Acer campestre - K A A A A A A K K A - A A - - A - - - 

Acer platanoides - - - A - - - - - - - - - - - - - - - - 

Acer pseudoplatanus - - - A - - - - A - - - - A - - - - A - 

Achillea millefolium - - - - - - A - - - - - - - - - - - - - 

Alopecurus myosuroides - - A - - - - - - - - - - - - - - - - - 

Angelica sylvestris - - - - - - - - - - - A - - - - - - - - 

Anthriscus sylvestris - - A A A - A A - A A - A A U A A A A U 

Apium nodiflorum - - - - - - A - - - - - - - - - - - - - 

Arctium sp. - - A A - - - - - - A A A - - - - - - - 

Arrhenatherum elatius - - - - - - - - A - - A - - - - - - - - 

Asteracae unknown - - - - - - - - - - A - - - - - - - - - 

Atriplex patula - - - A - A - - - - - - - - A - - - - - 

Avena spp. U - - A U A A - A - - A A - A - - - - - 

Brachypodium sylvaticum - - - - - - A - - - - - - - - - - - - - 

Brassica juncea - - - - A - - - - - - - - - - - - - - - 

Brassica napus sp. - - - - - - - - - - - - - - A A - - - - 

Brassica nigra - - - - - - A - - - - - - - A - - - - - 

Brassica oleracea (Acephala) - - - - - - - A - - - - - - - - A - - - 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Brassica oleracea (Italica) - - - - - - - - - - A - - - - - - - - - 

Brassica rapa sp. - - - - - - - - - - - K K - - - K - - - 

Brassica sp. - - - - K - - - - - - - - - - - - - - - 

Brassica unknown - - - - - - - - - - A - - - - - - - - - 

Bryonia dioica - - - - - - - - - - - - A - - - - - - - 

Calystegia sepium - A - - - - - - - - - - - - - - - - - - 

Cannabis sativa - - - - - - - - - - - A - - - - - - - - 

Capsella bursa-pastoris - - - - - - - - - - - - - - - - A - - - 

Carduus sp. - - A - - - - - - - - - - - - - - - - - 

Carpinus betulus - - - - - - - - - A - - - - - - - - - - 

Cerastium fontanum - A - - - A - A A - - - - - - - - - - - 

Cerastium glomeratum - A - - - - - - - - - - A - - - - - - - 

Cerastium sp. - A - - - - - - - - - - - - - - - - - - 

Chenopodium album - A - - - - - - - - - - A - A A A - - K 

Chenopodium polyspermum - - - - - - - K - - - - K - - - - - - - 

Cirsium arvense - - A U A A A U - A A - A A - A A A - - 

Cirsium vulgare - A - A A A A - - A - - - - - A - - - - 

Clematis vitalba - - - - - - - - - - - - - - A A - - - - 

Convolvulus arvensis - A A - - - - - - - - - - A - - - - - - 

Cornus sanguinea - - A - - - - - - - A - - - - - - A - A 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Coronopus squamatus - - - - - - - - - A - - - - - - - - - - 

Corylus avellana K K K K K - K K - K K K - A A - K K K K 

Crataegus monogyna K K K K K K K K K K K K K K K A A K K K 

Cynara scolymus - - - - - - - - - - A - - - - - - - - - 

Dactylis glomerata - - - A - - - A - - - - - - - - - - - - 

Euonymus europaeus - - A - K - - - - - - - K - - - - - - - 

Fagus sylvatica - - - K A K A - - - - - - - - K - - - - 

Fraxinus excelsior A - - A - A A - - - - - - A A A A - - - 

Galeopsis tetrahit - - - - A A - - - - - - - - - - - - - - 

Galium aparine - - - - - - A U - - - - - - - - - - - - 

Geranium dissectum - - - - A - - - - - - - - - - A - - - - 

Geranium robertianum - - - - - A - - - A - - - - A - - A - - 

Geum rivale - - - - - - - - - - - - - - A - - - - - 

Geum urbanum - - - - - - - - A A - A - - - A - - - - 

Glechoma hederacea A - A U U A - A - A A - U A - U U U A - 

Grass unknown U U U U U U U U U U U U U U U U U U U U 

Heracleum sphondylium A A A A A - A - A - A A U A A - A - A A 

Holcus lanatus A U - - - - U A - A - A A A - - U U - - 

Hordeum vulgare - - U U A - A A - - U U A U A A A U - - 

Hypericum perforatum - - - - - - - - - A - - - - - - - - - - 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Ilex aquifolium A A - - A - - A - - - A - - - - - - - - 

Juglans regia - - - - - - - - - - - - - - - - - - - A 

Kickxia spuria - - - A - A - - - - - - - - - - - - - - 

Lamiastrum galeobdolon - - - - - - A - - - - - - - - - - - - - 

Lamium álbum - - - - A - - - - - - - - A - - - - - - 

Lamium purpureum - - - A - - - - - - - - - - - - - - - - 

Lamium sp. - - - - A - A - - - - - - - - - - - - - 

Lapsana communis - - - - - - - - - - A - - - - - - - - - 

Lathyrus sp. - - - A - - - - - - - - - - - - - - - - 

Leucanthemum vulgare - - A - - - - - - - - - - - - - - - - - 

Ligustrum vulgare - - - - - - - - - - - - A - - - - - - - 

Lolium multiflorum - - - - - - - A - - - - - - - - - - - - 

Lolium perene - - - - - - - A - - - - - - - - - - - U 

Lonicera periclymenum A - - - - - - - - - - - - - - - - - - - 

Lupinus sp. - - A - A - - - - - - A - - - - - - - - 

Malus sp. A - - - - - - - A - - - - - - - - - - - 

Malus sylvestris - - - A - - - - - - - - - - - - - - - - 

Medicago sativa - - K - - - - - - - - - - - - - - - A - 

Mercurialis perennis - - - A - A - - - U - A - - - - - - - A 

Myosotis arvensis - - - - U - - - - - - - - - - - - - - - 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Papaver rhoeas - - - A - A A - - - - - - - - - - - - - 

Phyllitis scolopendrium - - - - - - - - - - A - - - - - - - - - 

Plantago major - - A - - - - - A A A - - - - - - - - - 

Poa annua - - - - - - - U - - - - - - - - - - - - 

Poa trivialis - - - - - - - U - - - - - - - - - A - - 

Polygonum aviculare - - - - - - - K - - - - - - - - - - - - 

Primula vulgaris - - - - - - - - - - - - - - - - - - - A 

Prunus avium - - - - - - - - - A - - - - - - - - - - 

Prunus cerasifera - - - - - - - - - A - - - - - - - - - - 

Prunus sp. - - - - - - - - - - - - A - - - - - A - 

Prunus spinosa K K K A K K K K K K K A K K A A K K K K 

Pteridium aquilinum A - - - - - - - - - - - - - - - - - A - 

Quercus robur A A K - K - A - - K U K - A - - - - - - 

Ranunculus acris U A - A - A A U - - - - A A - - - A - - 

Ranunculus ficaria - U A - A - - U A - A A - U - - A U - A 

Ranunculus repens A U A A A A A A A U U U A A - A A A A A 

Ranunculus sp. A A - - - - - - - - - - - - - - - - - - 

Raphanus raphanistrum - - - A - - - - - - - - - - - - - - - - 

Rhamnus cathartica - - - - - - - - - - - - - A - - - - - - 

Rosa sp. - A - - K - - A - - - - - - - - - - - - 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Rubus fruticosus A A A A - A A U A U A A A U A - A A A A 

Rumex acetosa A - - - - - - - - - A - - - - - - A - - 

Rumex spp. A U U U U A A A U U U A U A A - A A A A 

Salix sp. - - - - - - - A - - A - - - - - - - - - 

Sambucus nigra - A - - - - - - - - - - - - - U - - A - 

Secale cereale - - - - A - - - - - - - - - - - - - - - 

Senecio jacobaea - - - - - - - - A - - A - - - A - - - A 

Senecio vulgaris - - - - - - - - - - - - A - - - A - - - 

Silene dioica A - A - - - - - - - - A A - - - - - A - 

Silene sp. - - - - - - - - A - - A - - - - A - - - 

Sinapis arvensis - - - - - - - - A A - - - - A - - - - - 

Solanum dulcamara - - - - - - - A - - - - - - - - - - - - 

Sonchus arvensis - - - - - - - - - - - - - - - A - - - - 

Sonchus asper - - A A A A A - - - - A A - A - A K - - 

Sonchus oleraceus - - - A - - A - - A A - - - - - - - - A 

Stachys sylvatica A - A - A A - - - A - A - A A A - - - - 

Stellaria graminea - - - - - - - A - - - - - - - - - - - - 

Stellaria media - U A - U - - - - - - - A - - A - - A A 

Taraxacum spp. - - - - - A A - - - A - - A - A - A - - 

Taxus baccata - - - A - - - - - - - - - - - - - - - - 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Tilia vulgaris/europaea - - - A A - - - - - - - - - - - - - - - 

Trifolium pratense A - - A A - - - - - - - - - - - - - - - 

Trifolium repens - A - - - A - - - - - - - - - - - - - - 

Trifolium spp. U U A A A U U U U A A A U A - A A A A A 

Triticum sp. - U U U U A U U - U A A U A A A A U A U 

ukP39 - - - - - - - - - - - - - - - - A - - - 

Ulmus procera - - A - - - K A - - - A A - - K A A - - 

Urtica dioica A A A K K K A K K K A A A A A A A K A A 

Valeriana officinalis - - - - A - - - - - - - - - - - - - - - 

Veronica montana - - - - - - - - - - - - - - - - - - - A 

Veronica persica - A - - - - U - - - - - A - - - - - - - 

Veronica serpyllifolia - - - - A A - - - - - - - - - - - - - - 

Viburnum lantana - - - - A - - - - - - - - - - - - A - - 

Vicia faba - - - - A A - - A - A - - - A A - - - - 

Vicia sativa - - - - - - - - A - - - A - - - - - - - 

Vicia sepium - - - - - - - - - - - - - - - - K - - - 

Viola sp. - - - - - - - - - - - - - - - A - - - A 

X Triticosecale - U - - - A - U - A - - - - - - - - - - 

Zea mays - - - - - - - - - - - - A - - A A A A A 
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Table S 2-6 List of the 89 plant species present in the 20 plant-parasitoid networks. Networks are named after their corresponding farms (A1-A10 and B1-B10). 

When species are present in a network, cells correspond to species status: K are keystone species, A are average species and U are underused species. When 

absent from a network, cells are filled with (-). Species that play a keystone role in at least one farm are marked in bold. 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Acer campestre - A - A - - - - K A A - - - - - - - - - 

Alopecurus myosuroides - - A - - - - - - - - - - - - - - - - - 

Angelica sylvestris - - - - - - - - - - - A - - - - - - - - 

Anthriscus sylvestris - - - A A - - A - - - - A A A A A A - - 

Arctium sp. - - A A - - - - - - - A - - - - - - - - 

Arrhenatherum elatius - - - - - - - - A - - A - - - - - - - - 

Atriplex patula - - - A - - - - - - - - - - - - - - - - 

Avena spp. A - - A U - A - - - - A U - K - - - - - 

Brassica juncea - - - - K - - - - - - - - - - - - - - - 

Brassica napus sp. - - - - - - - - - - - - - - A A - - - - 

Brassica nigra - - - - - - - - - - - - - - A - - - - - 

Brassica oleracea(Acephala) - - - - - - - K - - - - - - - - A - - - 

Brassica oleracea (Italica) - - - - - - - - - - A - - - - - - - - - 

Brassica rapa sp. - - - - - - - - - - - K K - - - K - - - 

Brassica sp. - - - - K - - - - - - - - - - - - - - - 

Brassica unknown - - - - - - - - - - A - - - - - - - - - 

Calystegia sepium - A - - - - - - - - - - - - - - - - - - 

Capsella bursa-pastoris - - - - - - - - - - - - - - - - A - - - 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Cerastium glomeratum - - - - - - - - - - - - A - - - - - - - 

Cerastium sp. - A - - - - - - - - - - - - - - - - - - 

Chenopodium album - - - - - - - - - - - - - - - A A - - - 

Chenopodium polyspermum - - - - - - - A - - - - - - - - - - - - 

Cirsium arvense - - - A - - A A - U A - - - - A - A - - 

Cirsium vulgare - - - - - A - - - - - - - - - A - - - - 

Clematis vitalba - - - - - - - - - - - - - - - A - - - - 

Convolvulus arvensis - - A - - - - - - - - - - - - - - - - - 

Cornus sanguinea - - - - - - - - - - A - - - - - - - - - 

Coronopus squamatus - - - - - - - - - A - - - - - - - - - - 

Corylus avellane K A K A K - A A - - - - - - - - K A A A 

Crataegus monogyna A K A U A A A A A K K - A A A U A A K A 

Cynara scolymus - - - - - - - - - - A - - - - - - - - - 

Dactylis glomerata - - - - - - - U - - - - - - - - - - - - 

Euonymus europaeus - - A - - - - - - - - - - - - - - - - - 

Fagus sylvatica - - - K - A - - - - - - - - - A - - - - 

Fraxinus excelsior - - - A - A - - - - - - - - K - - - - - 

Galeopsis tetrahit - - - - A A - - - - - - - - - - - - - - 

Geum rivale - - - - - - - - - - - - - - A - - - - - 

Glechoma hederacea - - A - - - - - - - U - - - - - - A - - 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Grass unknown U U U U U U A U U U U U U U U A A A U U 

Heracleum sphondylium A A - - A - A - - - A K - - A - A - - A 

Holcus lanatus A A - - - - - A - A - U A - - - A U - - 

Hordeum vulgare - - U A A - - A - - K A - U K - A U - - 

Ilex aquifolium A K - - - - - - - - - - - - - - - - - - 

Kickxia spuria - - - K - K - - - - - - - - - - - - - - 

Lathyrus sp. - - - A - - - - - - - - - - - - - - - - 

Lolium multiflorum - - - - - - - A - - - - - - - - - - - - 

Lolium perenne - - - - - - - U - - - - - - - - - - - - 

Lonicera periclymenum A - - - - - - - - - - - - - - - - - - - 

Lupinus sp. - - - - - - - - - - - A - - - - - - - - 

Medicago sativa - - K - - - - - - - - - - - - - - - A - 

Papaver rhoeas - - - - - A A - - - - - - - - - - - - - 

Phyllitis scolopendrium - - - - - - - - - - A - - - - - - - - - 

Plantago major - - - - - - - - - - A - - - - - - - - - 

Poa annua - - - - - - - U - - - - - - - - - - - - 

Poa trivialis - - - - - - - U - - - - - - - - - - - - 

Prunus spinosa A A - - - - - A A A A - A A A - A A A A 

Quercus robur A A A - - - - - - K - A - A - - - - - - 

Ranunculus acris A K - - - A K A - - - - A K - - - A - - 



 

 

 

5
5

 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Ranunculus ficaria - - A - A - - A A - A K - - - - - A - A 

Ranunculus repens K K K K A K K K K K A A A K - K U K K K 

Ranunculus sp. A A - - - - - - - - - - - - - - - - - - 

Rosa sp. - - - - A - - - - - - - - - - - - - - - 

Rubus fruticosus U U - A - A A - - A A A - - - - - - - - 

Rumex acetosa U - - - - - - - - - - - - - - - - - - - 

Rumex spp. - - - - - - - A - U - - - - - - A - A - 

Secale cereale - - - - A - - - - - - - - - - - - - - - 

Senecio vulgaris - - - - - - - - - - - - U - - - A - - - 

Silene dioica - - A - - - - - - - - A - - - - - - - - 

Sinapis arvensis - - - - - - - - K A - - - - - - - - - - 

Sonchus arvensis - - - - - - - - - - - - - - - K - - - - 

Sonchus asper - - A A - A A - - - - - A - A - A K - - 

Sonchus oleraceus - - - A - - - - - - - - - - - - - - - A 

Stachys sylvatica - - A - A - - - - - - - - - - A - - - - 

Stellaria media - - - - - - - - - - - - - - - U - - - - 

Taraxacum spp. - - - - - U - - - - - - - U - A - - - - 

Taxus baccata - - - A - - - - - - - - - - - - - - - - 

Trifolium pratense A - - K - - - - - - - - - - - - - - - - 

Trifolium repens - U - - - - - - - - - - - - - - - - - - 
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 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

Trifolium spp. U U U U U - A A U U U - - K - - - - A A 

Triticum sp. - A U U U A A A - - A K A A A A A A A A 

Ulmus procera - - - - - - A A - - - - - - - A - - - - 

Urtica dioica A A A A U A A K A A A U A A - A U A A A 

Veronica persica - A - - - - - - - - - - U - - - - - - - 

Veronica serpyllifolia - - - - A A - - - - - - - - - - - - - - 

Vicia faba - - - - - K - - A - - - - - U A - - - - 

Vicia sativa - - - - - - - - A - - - A - - - - - - - 

Viola sp. - - - - - - - - - - - - - - - A - - - - 

X Triticosecale - U - - - A - - - A - - - - - - - - - - 

Zea mays - - - - - - - - - - - - A - - - A A A A 
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Figure S 2-4 Distribution of plant species across different classes of relative abundance in a) plant-

herbivore and b) plant-parasitoid networks. Overperforming species (Keystone: above null model 

confidence intervals) are in dark grey, average species (Average: between null model confidence 

intervals) are in light grey and underused species (Under: below null model confidence intervals) are in 

medium grey. 
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Figure S 2-5 Results of linear models (LMs) between plant species strength and relative abundance 

performed individually for each plant-herbivore network (network codes - A1 to A10 and B1 to B10 – 

in the top left corner of each plot). Each dot represents a species in a farm, in dark grey are 

overperforming species (keystone species: above null model confidence intervals) and in lighter grey 

are underused species (below null model confidence intervals). Strength values were boxcox 

transformed. Lines of best fit are drawn for statistically significant models. 

  



Keystone resources in plant-insect food webs 

59 

 

 

Figure S 2-6 Results of linear models (LMs) between plant species strength and relative abundance 

performed individually for each plant-parasitoid network (network codes - A1 to A10 and B1 to B10 – 

in the top left corner of each plot). Each dot represents a species in a farm, in dark grey are 

overperforming species (keystone species: above null model confidence intervals) and in lighter grey 

are underused species (below null model confidence intervals). Strength values were boxcox 

transformed. Lines of best fit are only drawn for statistically significant models. 
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Figure S 2-7 Relationship between the measure of ordinal plant abundance used and estimated mean 

percentage plant cover, which was calculated by assuming that each species was at the mean of its 

category of percentage cover. 
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Chapter 3  

 

Plant species roles in pollination networks: 

an experimental approach. 

 

 

Glossary 

Network core: Region of a network where species are densely connected. 

Core species: Species that belong to the network core, i.e. species that interact with several 

species inside and potentially outside the network core. 

Generalist species: Species which interact with a large set of mutualist species when compared 

to other species in the community.  

Specialist species: Species which interact with a small set of mutualist species when compared 

to other species in the community.  

Centrality: Group of species-level metrics which identify the most important species for 

information flow (i.e. disturbance, selective pressures, population changes) due to their position 

in the network.  

Central species: The five plant species with high levels of centrality which were selected to be 

introduced in the experimental plots. 

Peripheral species: The five plant species with low levels of centrality which were selected to 

be introduced in the experimental plots. 

Introduced species: Central and Peripheral plant species selected to be planted in the 

experimental plots. 



Chapter 3 

 

62 

 

Resident species: Plant species naturally occurring in the experimental plots. 

Normalised degree (ND): Species-level metric which describes the level of 

generalisation/specialisation of a species, i.e. the proportion of pollinator species a plant species 

interacts with. 

Closeness centrality (CC): Species-level metric which describes whether species are on 

average close, in number of links, to other species in the network. 

Betweenness centrality (BC): Species-level metric which describes whether species are 

frequently in between the shortest distances, in number of links, connecting species pairs in the 

network. 

Partner diversity: Species-level metric which describes whether the interactions of a species 

are evenly distributed across interaction partners. 

Closeness centralisation: Network-level metric which describes whether information flow in 

a network is controlled by one or few species, i.e. there are few central and several peripheral 

species. 

Nestedness: Network-level metric which describes whether interactions of specialist species 

are a subset of interactions of generalist species. 

Interaction evenness: Network-level metric which describes whether interaction strength (in 

terms of interaction frequency) is evenly distributed between species pairs in the network. 
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3.1 Introduction 

Pollination is an important ecosystem service, provided mainly by insect pollinators. It is 

estimated that 75% of crops species (Klein et al., 2003) and 87.5% of flowering plant species 

in general (Ollerton et al., 2011) depend on animal pollination, and in recent years the demand 

for crop pollination by insects has tripled (Aizen and Harder, 2009). However, current 

pollinator declines caused mainly by habitat loss (Potts et al., 2010), farming intensification 

(Sanchez-Bayo and Goka, 2014) and insect diseases (Goulson et al., 2015) could disrupt 

pollination services. To ensure the integrity of natural ecosystems (Ashman et al., 2004; 

Aguilar et al., 2006) and the productivity of insect-dependent crops (Klein et al., 2007), healthy 

pollinator populations need to be supported.  

Decreasing floral resources due to habitat loss and degradation are a key contributor to 

current pollinator declines (Carvell et al., 2006; Kleijn and Raemakers, 2008; Roulston and 

Goodell, 2011). Even when non-lethal, the lack of good feeding habitat can make insects more 

prone to more harmful stressors such as diseases and pesticides (Alaux et al., 2010; Goulson et 

al., 2015). Therefore, flower planting schemes are an important strategy to recover pollination 

function in both agricultural (Pywell et al., 2005) and urban areas (Blackmore and Goulson, 

2014). Since diverse pollinator communities increase the quality and stability of pollination 

services (Hoehn et al., 2008; Winfree and Kremen, 2009; Albrecht et al., 2012; Orford et al., 

2016), plant species which are able to attract and support a high diversity and abundance of 

pollinators need to be identified (Dixon, 2009). 

Currently, species lists for seed mixes and planting plans are put together using expert 

knowledge rather than rigorous field trials on how a community of plants interacts with a 

community of pollinators. Ecological networks can be used to identify species with structural 

and functional importance in pollination systems (Martín González et al., 2010; Coux et al., 

2016). Pollination systems are formed by a core of well-connected generalist plant and insect 
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species with which many specialist species interact (Bascompte et al., 2003). This structure is 

thought to promote network robustness and to increase the resilience of pollination networks 

due to high levels of redundancy (Memmott et al., 2004; Burgos et al., 2007; Bastolla et al., 

2009; Song et al., 2017). Since species forming the network core are structurally and 

functionally important in pollination systems (Vázquez and Aizen, 2004; Coux et al., 2016), 

ecological restoration could focus on core plant species. My aim in this study is to explore how 

the plant species with differing network roles in natural plant-pollinator communities perform 

in replicate experimental conditions. 

Core plant species usually have high levels of centrality, i.e. they interact with a high 

proportion of pollinator species, having a high chance of being at short distances to most 

species in the network and between other species shortest distances (Martín González et al., 

2010). Central plant species in pollination networks might, therefore, provide a shortcut when 

the ultimate aim of restoring plant communities is to restore pollinator communities. Given that 

plant species share and compete for pollinators, the effect of introducing new plants to recover 

pollination function could also affect the resident plant species. Introducing plant species with 

high centrality (potentially species presenting attractive traits), for instance, might benefit 

resident plant species due to pollinator spill-over (Morandin and Kremen, 2013; Blaauw et al., 

2014). Individuals from a non-rewarding orchid species, for instance, had higher pollination 

success when in proximity to highly rewarding species (Johnson et al., 2003). Alternatively, 

the attractiveness of central plants species to pollinators could result in lower visitation to 

resident plant species. For instance, visitation to resident plant species might be positively 

affected by higher richness and diversity of neighbouring flowers, but negatively affected by 

the generalisation level of neighbouring plants (Lázaro et al., 2009). If we are to fully 

understand the impact of using central plant species to recover pollination function, in addition 

to studying their impact on pollinators, we also need to assess their effect on resident plant 
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species and on emerging network structure, as this affects community function and persistence 

(Tylianakis et al., 2010). 

In my study I use a field experiment to test whether species roles in pollination networks 

can be used to identify plant species with the most potential to recover plant-pollinator 

communities. Specifically, I ask three questions: 1) Do central plant species attract a higher 

diversity of pollinators than peripheral species? Since high centrality is a measure of structural 

importance, I expect central plant species to attract higher pollinator diversity than peripheral 

species; 2) After introduction, which network roles are occupied by the introduced species, and 

how does species introduction affect the resident plant species’ network roles? I expect central 

species, but not peripheral species, to occupy the most important network roles by 

monopolising interactions with pollinators; consequently, I also expect resident plant species 

to have lower structural importance in networks with introduced central species when 

compared to networks with introduced peripheral species; 3) Does the introduction of 

peripheral and central species promote a different network structure? I expect interactions to 

be concentrated by few species in networks with introduced central species, making these 

networks more centralised, more nested - i.e. with a stronger core of generalists with which 

specialist species interact - and with lower levels of interaction evenness than networks with 

introduced peripheral species.  

 

3.2 Material and Methods 

My study has three components. Focusing on published pollination networks collected in 

English meadows, I first quantified the centrality of each plant species and selected five central 

and five peripheral plant species. I then introduced the selected species into experimental plots 

where I collected visitation data for both introduced and resident plant species. Finally, I 



Chapter 3 

 

66 

 

constructed pollination networks for the experimental plots with the visitation data, to test the 

impact of the introduced plants on pollinators, resident plants and on network structure. 

  

3.2.1 Identifying central and peripheral plant species in plant-pollinator networks 

To identify central and peripheral plant species in natural plant-pollinator communities, 

I investigated the roles of plant species in 17 published plant-pollinator networks (Table S 3-1). 

All these networks were collected in English meadows, most of them (15 out of 17) in 

southwest England, these being networks from similar systems to my intended experimental 

plots. I removed grass species from the analysis since they are wind pollinated, even if 

pollinators do feed on their pollen (Orford et al., 2016).  

I used three centrality metrics which are commonly studied in combination given their 

complementary properties (Martín González et al., 2010; Emer et al., 2016). The three metrics 

are binary, i.e. not accounting for the frequency of interaction between species. Normalized 

degree is the number of species each species interacts with, divided by the number of possible 

interacting partners (here, the number of pollinator species in the network), this describing the 

level of species generalisation. The two other centrality measures are calculated based on the 

unipartite projection (plant-plant) of bipartite (plant-pollinator) networks, in which plant 

species are connected if they share pollinators. Closeness centrality is the mean shortest 

distance (measured in number of interactions) between a focal plant species and all other plant 

species in the network. Plant species with high closeness centrality share pollinators with other 

plants (Freeman, 1979; Martín González et al., 2010) having a high niche overlap with other 

plant species (Carvalheiro et al., 2014). Betweenness centrality is the proportion of the shortest 

paths (in number of interactions) connecting all plant species pairs in the network crossing a 

focal species. Species with high betweenness centrality increase network cohesiveness by 

connecting parts of the network that would be isolated (Freeman, 1979; Martín González et al., 
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2010). All centrality metrics were calculated using bipartite R package (Dormann et al., 2008; 

Dormann, 2011; R Core Team, 2017). 

Central species may present attractive traits for pollinators, for instance by providing 

high nectar content (Cusser and Goodell, 2014). Alternatively, high centrality may be due to 

sampling bias, that is when abundant species are sampled more than rarer species (Vázquez et 

al., 2009b; Gibson et al., 2011). To control for the latter scenario and to focus on species whose 

centrality measures truly reflect attractiveness to pollinators, I compared the observed 

centrality of each plant species in each network with a null expectation. I generated 1000 null 

network counterparts for each empirical network using a null model in which plants and 

pollinators were assigned interactions in proportion to their relative abundances but keeping 

connectance constant (Vázquez et al., 2007). The probability of an interaction between plant i 

and pollinator j is: 

 𝑝𝑖𝑗 = 𝑝𝑖 ∗ 𝑝𝑗, (1) 

where 𝑝𝑖 is the abundance of plant species i relative to all other plant species in the network, 

and 𝑝𝑗 is the abundance of pollinator species j relative to all other pollinator species in the 

network. Plant species abundances were measured as floral abundance in the original datasets. 

As plant relative abundance information was not directly available for three datasets (DS, DH 

and M, Table S 3-1), I extracted this information from the network plots available in the original 

publications. As I did not have independent abundance measures for pollinator species, I used 

interaction frequency as a proxy. Then, I compared the three observed centrality metrics of 

species i in empirical network k to the centrality of species i in all null counterparts of k using 

standardised effect sizes (SES): 

 
𝑆𝐸𝑆𝑖𝑘 =

𝑐𝑖𝑘 − 𝑐𝑖𝑛̅̅ ̅̅

sd(𝑐𝑖𝑛)
, 

(2) 
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where 𝑆𝐸𝑆𝑖𝑘 is the standardised effect size of species i in network k, 𝑐𝑖𝑘 is the centrality metric 

of species i in empirical network k, and 𝑐𝑖𝑛̅̅ ̅̅  and 𝑠𝑑(𝑐𝑖𝑛) are the average and standard deviation 

of plant species’ i centralities in the null counterparts of k, respectively. I averaged the three 

SES (one for each centrality metric) of each species in each network, and then averaged the 

SES of each species across networks, so that each plant species was assigned one SES value. 

This approach provided each plant species with a single value which was straightforward to 

compare across networks and species, and easily interpretable since positive SES values 

represent species whose observed centrality is above null model expectation and vice versa. I 

ranked the 60 plant species present in the 17 networks by their SES values (Table S 3-2). 

Finally, I selected five plant species from the top 20 ranked species (central species) and five 

from the bottom 20 (peripheral species) as focal species whose community role would be tested 

in a field experiment (Table S 3-2; Figure 3-1). Their flowering time and availability from 

wildflower suppliers were the main criteria used for selection, with species flowering in July 

and August being preferred; co-flowering being essential for the experiment. These criteria 

resulted in my central species being Achillea millefolium, Centaurea nigra, Eupatorium 

cannabinum, Knautia arvensis and Leontodon hispidus and peripheral species being Agrimonia 

eupatoria, Centaurium erythraea, Lotus corniculatus, Lychnis flos-cuculi and Prunella 

vulgaris.  

3.2.2 Experimental design and sampling procedure 

My experimental plots were in two adjacent areas of grassland in Bristol, UK (51°48’N, 

2°62’W) separated by large buildings, and the two plots (Plot A and Plot B) were c. 370 m 

apart. Resident plant species were uniformly distributed in both plots (see Table S 3-4 for a list 

of species found in each plot and their centrality rank positions). Each of the two plots had 30 

subplots, 2m x 2m in size, these providing the experimental replicates: 10 of these were planted 

with central species, 10 with peripheral species and 10 were left as controls (Figure 3-1). To 
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avoid the effect of particularly attractive or unattractive species confounding my results (as I 

would not be able to separate a treatment effect from a species effect) I introduced three central 

or peripheral species in each subplot, this providing 10 unique trios per treatment in both plots 

(Figure 3-1a). In October 2016, I planted the 10 trios of both treatments (Figure 3-1b), reducing 

the immediate competition from the resident plants by using weed mats (40 cm x 40 cm) around 

each experimental plant to allow them to establish. Weed mats were also placed in control 

subplots. From June to September 2017 I sampled and collected the pollinators in Plot A 22 

times and in Plot B 20 times using timed observations, such that each subplot was observed for 

15 minutes per sampling occasion. Weekly, I counted flower units of all flowering species 

(resident and introduced) in control, peripheral and central subplots. A flower unit was defined 

as one or more flowers that insects could access without flying (Carvalheiro et al., 2008; Baude 

et al., 2016), e.g. for Asteraceae a flower unit is a whole inflorescence while in Fabaceae it is 

one flower. Therefore, even if a floral unit represents a different number of flowers for different 

plant species, it is defined from the insect’s perspective what, in the context of this study, is a 

more accurate measure of floral abundance (Carvalheiro et al., 2008). At the end of the season, 

all insects were identified by taxonomists.  
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Figure 3-1 a) Ten trios of central (C1 to C10) and peripheral (P1 to P10) plant species; central species: Knautia arvensis, Achillea millefolium, Centauria nigra, 

Leontodon hispidus, and Eupatorium cannabinum; peripheral species: Lychnis flos-cuculi, Prunella vulgaris, Lotus corniculatus, Centaurium erythraea and 

Agrimonia eupatoria. Species belonging to each trio are marked with an X. b) Experimental plot: white squares represent control subplots, light grey squares 

represent peripheral subplots (P1 to P10) and darker grey squares represent central subplots (C1 to C10). Plant trios from P1 to P10 and C1 to C10 were planted 

in the corresponding peripheral and central subplots.
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3.2.3 Calculating network metrics 

I constructed one quantitative pollination network per subplot, so that the interactions 

sampled in control, peripheral and central subplots resulted in 20 control, 20 peripheral and 20 

central networks, respectively, 10 of each treatment from each experimental plot (Figure 3-2 

and Figure S 3-1). All species-level and network-level metrics described below were calculated 

with bipartite and sna R packages (Dormann et al., 2009; Dormann, 2011; Butts, 2016). 

To test whether the species network roles measured from the published networks hold 

under experimental conditions, and to investigate how central and peripheral plant species 

affect resident species I used three species-level metrics: two centrality measures used earlier 

– normalised degree and closeness centrality - along with partner diversity, a quantitative 

metric that accounts for the frequency of interactions between species. I chose these three 

metrics as they have a clear meaning even in small networks. Additionally, in this analysis I 

calculated closeness centrality straight from the bipartite network (instead of using the 

unipartite projection as above), in order to get meaningful distances in these smaller networks. 

Partner diversity is the Shannon diversity index calculated for the interactions of each species, 

high values indicating even spread of interactions across partners and low values indicating 

interactions being dominated by few partner species. Since I expect central species, but not 

peripheral species, to monopolise pollinators, I expect central species to have higher 

normalised degree, closeness centrality and partner diversity than resident plant species in 

central networks, while peripheral species will have similar network roles to resident species 

in peripheral networks. Additionally, I expect resident species to have decreasing values of 

normalised degree, closeness centrality and partner diversity from control, to peripheral to 

central networks. 



Chapter 3 

 

72 

 

 



Plant species roles in pollination networks 

 

73 

 

Figure 3-2 Quantitative pollination networks of a) control, b) peripheral and c) central treatments of 

Plot A (see Figure S 3-1 for Plot B). The networks depicted show interaction data pooled across all 

subplots for each treatment in this plot, although analyses were conducted on a per-subplot-per-plot 

basis. For each network, the lower rectangles represent plant species abundance, the upper rectangles 

represent insect species abundance and link widths represent interaction frequency between species 

pairs. In purple are the introduced plant species along with the insect species which only appear in 

peripheral and/or central subplots. In light grey (control network) are insect species only observed in 

control subplots. Codes for introduced plant species: KA=Knautia arvensis, AM=Achillea millefolium, 

CN=Centauria nigra, LH=Leontodon hispidus, EC=Eupatorium cannabinum, LF=Lychnis flos-cuculi, 

PV=Prunella vulgaris, LC=Lotus corniculatus, CE=Centaurium erythraea, AE=Agrimonia eupatoria. 

Resident species were numbered from R1 to R5 and names are given in Table S 3-4. 

 

To investigate how peripheral and central plant species affect the network structure of 

my experimental networks I used three network-level metrics: closeness centralisation, 

nestedness and interaction evenness. The first two metrics are binary, while the third is 

quantitative. Closeness centralisation, is a network-level metric based on the species-level 

metric closeness centrality, and it measures the difference between the centrality of each 

species to the maximum centrality value of the network (Freeman, 1979; Butts, 2016). I 

calculate nestedness, which measures the extent to which the interactions of specialist species 

are a subset of interactions of generalist species, with the metric NODF (Almeida-Neto et al., 

2008). Interaction evenness is similar to partner diversity but calculated at the network-level, 

measuring the equitability of network interactions and describing whether the frequency of 

interactions are evenly distributed or if a handful of interactions dominate the network 

(Tylianakis et al., 2007). Since I expect central species to occupy the most important network 

roles when introduced by monopolising interactions with pollinators, I expect the central 

networks to have a higher centralisation and nestedness, but lower interaction evenness than 

peripheral networks. 
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3.2.4 Do central plant species attract a higher diversity of pollinators than peripheral 

species?  

To test whether subplots with introduced central plant species attract a higher 

abundance and richness of pollinators than subplots with introduced peripheral species, I used 

general linear mixed models (GLMM) with a Poisson distribution. To account for the variation 

in flowers abundance present in each subplot (Figure S 3-2, Table S 3-3), I included floral 

abundance as an offset variable (Reitan and Nielsen, 2016). Fixed effects were both treatment 

and plant richness in the subplot since plant richness, in addition to abundance, could affect 

pollinator richness and abundance (Potts et al., 2003; Orford et al., 2016). Each observation 

corresponded to data collected from each subplot during each sampling event. To account for 

the repeated measures of each subplot and for the multiple subplots from each plot, I included 

subplot nested in experimental plot as a random effect. The significance of fixed effects was 

assessed with likelihood ratio tests as these represent a good trade-off between reliability and 

simplicity. The effect of treatment was further investigated with Tukey tests using the emmeans 

R package (Lenth, 2018).  

 

3.2.5 After introduction, which network roles are occupied by the introduced species, and 

how does species introduction affect resident plant species’ network roles?  

To investigate the network roles played by introduced species in my experimental 

networks, I compared the network roles (normalised degree, closeness centrality and partner 

diversity) of introduced species versus resident in peripheral and central networks. I expect 

central, but not peripheral species, to occupy the most important roles in their networks when 

compared to resident species in those networks. For this analysis, species-level metrics were 

used in three separate models linear mixed models (LMM) as response variables. The 

interaction between species status (resident versus introduced) and treatment, plus species 
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abundance were included as fixed effects. Random effect structure was selected with Akaike 

Information Criteria (AIC, Zuur et al., 2009), and potential structures were: no random effect, 

species identity and network identity nested in experimental plot.  

To test the effect of species introduction on resident species roles, I compared the 

network roles of resident species among control, peripheral and central networks. I expect 

decreasing metric values for resident species from control to peripheral to central networks. 

Species-level metrics were used in three separate linear mixed models as response variables. I 

included treatment and species abundance as fixed effects. Random effect structure was 

selected with AIC, and potential structures were: no random effect, species identity and 

network identity nested in experimental plot. In both analyses, the significance of fixed effects 

was assessed with likelihood ratio tests and the effect of treatment was further investigated 

with Tukey tests using emmeans R package (Lenth, 2018). 

 

3.2.6 Does the introduction of peripheral and central species promote a different network 

structure? 

To investigate the effect of species introduction on network structure I performed 

separate linear mixed models (LMM) for each network-level metric (closeness centralisation, 

nestedness and interaction evenness). Four control networks were excluded from all analysis 

due their small size (Table S 3-5). Since network metrics are dependent on number of species 

in the network (Song et al., 2017), and number of species was likely to vary across treatments, 

the metric values were normalized. Interaction evenness is normalised when calculated in 

bipartite R package (Dormann et al., 2009). Closeness centralisation was normalised by 

comparing the observed value of each network with the theoretical maximum centralisation for 

that network (Butts, 2016). Observed nestedness values were normalised following (Song et 

al., 2017). For 32 networks, maximum nestedness values were assessed by iterative search. For 
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those networks, interactions were initially randomised 1000 times and maximum nestedness 

values kept. Maximum nestedness values were then searched in up to one million randomised 

networks, in steps of ten-fold increase in number of randomisations, whenever a 5% or higher 

increase in maximum nestedness was observed. Ten (of the fifty-six) networks were excluded 

from the nestedness analysis (Table S 3-5) as both their observed and maximum nestedness 

values were zero and could not be normalised. After normalisation, none of the network-level 

metrics correlated with network size (Figure S 3-3). Models for each network-level metric had 

treatment as fixed effect and random effect structure was selected with AIC from the alternative 

structures: no random effect and experimental plot. 

 

3.3 Results 

In total 1876 insects and 171 insect species were collected from the two plots: 910 insects and 

129 species in Plot A, and 966 insects and 108 species in Plot B (Table S 3-6). In addition to 

the 10 species of plant which were added to the plots, a further 17 plant species were found 

growing naturally in the plots, 8 in Plot A and 14 in Plot B (Table S 3-4). 

 

3.3.1 Do central plant species attract a higher diversity of pollinators than peripheral 

species?  

In both plots, the observed abundance and richness of pollinators increased from control 

to peripheral to central subplots (Figure 3-3a-b). The models show that treatment had a 

significant effect on both pollinator abundance (χ2(2) = 50.77, p < 0.001) and richness (χ2(2) = 

48.12, p < 0.001). As the offset variable included in the models accounts for differences in 

subplot floral abundance between treatments, the models show that peripheral subplots 

attracted significantly fewer insect individuals and species than control subplots, while central 

subplots attracted significantly more insect individuals and species than both peripheral and 
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control subplots (Figure 3-3c-d). Plant richness had a negative effect on insect abundance and 

richness (abundance: χ2(1) = 25.1, p < 0.001; richness: χ2(1) = 23.21, p < 0.001). 

 

Figure 3-3 a) Pollinator abundance – raw data; b) Pollinator species richness – raw data; c) Pollinator 

abundance – model estimates; d) Pollinator species richness – model estimates per treatment in each 

subplot. Treatments are coded as follows: Control - Co, Peripheral - P, Central - C. Different letters 

indicate statistically different treatments. 

 

3.3.2 After introduction, which network roles are occupied by the introduced species, and 

how does species introduction affect resident plant species’ network roles?  

Experimental networks had on average 4.12 flowering plant species (min = 1, max = 9; 

mean plant species in control = 2.6, peripheral = 5.1 and central = 4.65 networks) and 16.8 
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insect species (min = 2, max = 37; mean insect species in control = 9.45, peripheral = 16.35 

and central = 24.65 networks; Table S 3-5). As expected, introduced central species had 

significantly higher values of normalised degree (p < 0.01), closeness centrality (p = 0.03) and 

partner diversity (p < 0.01) than resident species in central networks, while introduced 

peripheral species had similar values for all metrics to resident species in peripheral networks 

(normalised degree: p = 0.97; closeness centrality: p = 0.99; partner diversity: p = 0.98; Figure 

3-4a-c). Floral abundance had a positive effect on all species-level metrics (normalised degree: 

χ2(1) = 16.86, p < 0.001; partner diversity: χ2(1) = 30.88, p < 0.001; closeness centrality: χ2(1) 

= 21.59, p < 0.001). For normalised degree, only species identity was included in the selected 

random structure, while for partner diversity and closeness centrality both species identity and 

network identity nested in experimental plot were included.  

Treatment had a significant effect on resident species normalised degree (χ2(2) = 47.14, 

p < 0.001). Resident plant species in central networks were visited by significantly fewer insect 

species than those in control networks (p < 0.01), but the difference between resident species 

in central and peripheral networks was only marginal and not significant (p = 0.054; Figure 

3-4d). Resident plant species had similar values of closeness centrality and partner diversity in 

networks of all treatments (Figure 3-4e-f). Floral abundance had a positive effect on all species 

level metrics (normalised degree: χ2(1) = 18.63, p < 0.001; partner diversity: χ2(1) = 25.16, p < 

0.001; closeness centrality: F(1) = 12.65, p < 0.001). For normalised degree and partner 

diversity, only species identity was included in the selected random structure, while for 

closeness centrality no random structure was selected. 
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Figure 3-4 Network roles (model estimates) of resident and introduced species in peripheral and central networks: a) normalized degree, b) partner diversity 

and c) closeness centrality. PR and PI are resident and introduced species in peripheral networks, and CR and CI are resident and introduced species in central 

networks. Network roles (model estimates) of resident species in control (Co), peripheral (P) and central (C) networks: d) normalized degree, e) partner diversity 

and f) closeness centrality. Different letters represent statistically different treatments.
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3.3.3 Does the introduction of peripheral and central species promote a different network 

structure? 

At the network level, I expected the introduction of central species to increase network 

centralisation and nestedness, but to decrease interaction evenness. Centralisation was lower in 

peripheral than in central networks, but central networks were not more centralised than control 

networks (F(2) = 7.85, p = 0.001; Figure 3-5a). But contrary to my expectation, interaction 

evenness was higher in central than in peripheral networks but no different to control networks 

(F(2) = 3.86, p = 0.03; Figure 3-5c). Finally, the introduction of neither peripheral nor central 

species affected nestedness (F(2) = 0.41, p = 0.66; Figure 3-5b). 

 

 

Figure 3-5 Network-level structure of plant-pollinator interactions across treatments. a) closeness 

centralisation, b) nestedness (measured with NODFc) and c) interaction evenness. Different letters 

represent statistically different treatments. Code for treatment: Co=control, P=peripheral, C=central. 

 

3.4 Discussion 

To my knowledge, this is the first field test of species network roles. As predicted, I found that 

central plant species attracted a higher richness and abundance of pollinators than peripheral 

species, and that central plant species occupy the most important network roles after 

introduction, while peripheral species do not. The high attractiveness of central species to 

pollinators, however, does not seem to negatively affect resident plant species network roles. 
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Finally, I found that the introduction of central species did not affect network structure, while 

the introduction of peripheral species decreased network centralisation, and peripheral 

networks had lower interaction evenness than central networks. In what follows I first address 

the limitations of my study, and then consider my results in the context of previous findings. 

 

3.4.1 Limitations 

There are two main limitations in my study. First, as the spatial scale of the study is 

small, I observed behavioural rather than populational responses, and spill-over of pollinators 

between subplots of different treatments might have occurred. If spill-over did occur from 

central to peripheral and control subplots, then the higher pollinator diversity found in central 

subplots is a conservative result; but the small difference in results regarding species roles and 

network structure between treatments should be interpreted with caution. Second, my 

experiment is a short term one, run for one field season only. While there is no obvious reason 

why running the experiment in spring or in the autumn would affect the results, it would be 

good to have a greater degree of spatial and temporal variation, the former perhaps using plant 

communities from very different systems and the latter including data from different years. 

 

3.4.2 Plant species roles in ecological networks. 

I found that central plant species attracted a significantly higher abundance and richness 

of pollinators than peripheral species. Therefore, for this system, plant species network roles 

in natural communities accurately predicted their importance for pollinators in the experimental 

arrays, and likely in other plantings. I did not control for variation in species morphology or 

nectar content between treatments, even if these attributes are known to mediate plant-

pollinator interactions (Stang et al., 2006; Santamaría and Rodríguez-Gironés, 2007; Junker et 

al., 2013; Lihoreau et al., 2016). Flowers with more accessible nectar tubes could be visited by 
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a wider range of insect species than flowers with less accessible tubes (Stang et al., 2006; 

Campbell et al., 2012), and plants with higher nectar content potentially receive more visits 

than species with lower network content (Lihoreau et al., 2016). Together with high abundance 

(Fort et al., 2016), attractive traits such generalist flower morphologies and higher nectar 

concentration are likely associated to central roles of plant species in pollination networks. 

Evaluating which morphological traits is associated with plant species centrality, while not the 

focus of this study, would be an interesting future study and an important contribution to flower 

planting schemes. 

 I expected central, but not peripheral, species to occupy the most important roles in 

their networks, by outcompeting resident species and concentrating most interactions for 

themselves (Bjerknes et al., 2007; Morales and Traveset, 2009). Indeed, I found that plant 

species’ original roles did hold under experimental conditions: the central species I added 

became the species with the most important network roles in experimental conditions whereas 

peripheral species continued to act as peripheral in the experiment. However, the introduction 

of central and peripheral species affected resident species similarly: resident species interacted 

with fewer pollinator species in both central and peripheral networks than in control networks. 

Therefore, the increase in plant neighbourhood richness but not the level of generalisation of 

neighbouring species, negatively affected the generalisation of resident plant species, the 

opposite pattern found for two plant species by Lázaro et al. (2009). Resident species’ closeness 

centrality and partner diversity remained unaffected by the introduction of either central or 

peripheral species. Therefore, despite negatively affecting the richness of pollinators visiting 

resident species (normalised degree), introduced central species did not appear to monopolise 

interactions at the expense of resident plant species since resident species presented similar 

network roles in peripheral and central networks. This suggests that it was the increase in 

species richness (from control to peripheral and central) that affected the normalised degree of 
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the resident plants, rather than the centrality of the introduced species. The potential for a 

flowering species to influence its neighbours depends on its reward availability and 

accessibility (Carvalheiro et al., 2014) but measuring at the community scale whether this 

influence is positive or negative is challenging. Increased visitation due to an attractive 

neighbour will likely benefit pollen limited species (Laverty, 1992; Johnson et al., 2003) but, 

if stigmas get clogged by hetero-specific pollen, the net effect of co-occurring with attractive 

neighbours might be detrimental to the focal plant (Fang and Huang, 2013). That said, stigma 

clogging by attractive neighbours is not inevitable (e.g. Emer et al., 2015) and the overall 

impact of adding plants to communities will be only truly understood when seed-set and 

recruitment are measured.  

Central species were attractive to pollinators and caused a decrease in the number of 

interaction partners of resident species, however their introduction did not increase network 

centralisation or nestedness, as expected (Aizen et al., 2008a; Bartomeus et al., 2008). On the 

other hand, the introduction of peripheral species decreased network centralisation (compared 

to control and central networks) and interaction evenness (compared to central networks). 

Introduced central species may have simply replaced the previous central species present in the 

subplots maintaining network centralisation, while peripheral species by occupying similar 

network roles of resident species (Figure 3-4c) promoted networks with a more evenly 

distributed number of interaction partners among species (lower centralisation). Even if 

unexpected, the lower interaction evenness results for peripheral than for central networks also 

agree with results found at the species level: central species presented high levels of partner 

diversity (Figure 3-4b) without affecting the partner diversity of resident species (Figure 3-4e), 

suggesting that the high and even number of visitation received by central species was not 

obtained at the expense of resident species. In antagonistic networks, perturbations such as 

habitat modification and species invasions have been associated with both decreased 
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(Tylianakis et al., 2007) and increased (Lopez-Nunez et al., 2017) interaction evenness. In 

contrast interaction evenness was unaffected by an invasive plant species in pollination 

networks (Tiedeken and Stout, 2015). The role of interaction evenness on community 

functioning and stability is not fully understood: while evenness of species abundance is often 

associated with enhanced community functioning and resilience (Hillebrand et al., 2008; 

Crowder et al., 2010), theoretical work suggests that the presence of weak interactions in the 

network has a stabilizing effect (McCann et al., 1998; Berlow, 1999). Looking forward, further 

work is needed to elucidate how levels of interaction evenness are associated with community 

functioning and persistence over time. 

 

3.4.3 Conclusion 

To be able to predict community structure shows that we truly understand the rules by 

which communities are assembled. Here, plant species network roles were accurately predicted 

using their roles in published empirical networks: the introduction of central species attracted 

a higher richness and abundance of pollinators and central species occupied the most important 

network roles. That said, my expectations for their effect on resident plant species and network 

structures, however, were not met. Given that most restoration projects start at the plant 

community (Montoya et al., 2012), being able to select the plants with the highest potential to 

promote community level properties would be very useful. If network roles could be used to 

predict the most important plants in promoting network properties such as robustness and 

resilience this would be very useful indeed as these are key network statistics in successful 

conservation (Mace, 2014). As our knowledge on the structure and dynamics of ecological 

networks increases, more field experiments are needed to test our understanding of the 

parameters we identify and measure. Pollination networks are a good system for this approach, 

since they have been thoroughly studied (Bascompte and Jordano, 2007; Burkle and Alarcón, 
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2011), they are straightforward to manipulate (e.g. Brosi and Briggs, 2013) and are under 

severe threat (Santamaría et al., 2016). 
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3.5 Supplementary Material 

Table S 3-1 Networks used to select central and peripheral plant species to be introduced in the field 

experiment. Code representing each network, “Network”; source of the network, “Reference”; location 

and date of data collection, “Area” and “Year”; number of plant and pollinator species in the network, 

“Plants” and “Poll.” respectively. In parenthesis is the original number of species, and outside the 

parenthesis the final number of species after grass removal. 

Network  Reference Area Year Plants Poll. 

DH Dicks et al. 2002 Norfolk 1999 16 (17) 60 (61) 

DS Dicks et al. 2002 Norfolk 1999 16 36 

M Memmott 1999 Bristol 1997 15 37 

FM1 Forup & Memmott 2005 Bristol 2000 6 24 

FM2 Forup & Memmott 2005 Bristol 2000 12 28 

FM3 Forup & Memmott 2005 Bristol 2000 11 53 

FM4 Forup & Memmott 2005 Bristol 2000 24 (25) 79 

OAC Orford unpublished Bristol 2012 13 (24) 44 (57)  

OB1 Orford et al. 2016 Bristol 2012/13 8 (13) 32 (39) 

OB2 Orford et al. 2016 Gloucestershire 2012/13 10 (17) 40 (49) 

OB4 Orford et al. 2016 Gloucestershire 2012/13 12 (20) 56 (66) 

OB5 Orford et al. 2016 Gloucestershire 2012/13 8 (11) 13 (21) 

OB6 Orford et al. 2016 Gloucestershire 2012/13 7 (16) 37 (53) 

OB7 Orford et al. 2016 Somerset 2012/13 13 (15) 37 (38) 

OB8 Orford et al. 2016 Somerset 2012/13 10 (15) 56 (59) 

OB9 Orford et al. 2016 Somerset 2012/13 5 (8) 24 (30) 

OB10 Orford et al. 2016 Somerset 2012/13 6 (9) 12 (17) 
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Table S 3-2 Combined list of plant species from the 17 networks used to select central and peripheral 

species. Species are ranked from the highest to the lowest mean centrality (Mean), the average of their 

normalised degree (ND), closeness (CC) and betweenness centrality (BC) values. Central species are 

among the top 20 ranked species (rank 1 to 20), and peripheral species are among the bottom 20 ranked 

species (rank 41 to 60). Selected central and peripheral species are marked with an asterisc. 

Rank Plant species ND CC BC Mean 

1 Ranunculus bulbosus 16.8282 0.9889 3.3298 7.0489 

2* Knautia arvensis 8.9253 2.2419 3.2802 4.8158 

3 Cirsium palustre 3.2416 1.2234 9.7428 4.7359 

4 Heracleum sphondylium 8.7714 0.4521 4.8000 4.6745 

5* Achillea millefolium 8.0222 0.5761 3.5378 4.0453 

6 Torilis japonica 8.1474 2.0562 1.0941 3.7659 

7 Cirsium sp. 10.3732 0.7704 -0.1012 3.6808 

8 Cirsium vulgare 9.8341 0.4960 0.0000 3.4434 

9 Filipendula ulmaria 5.5974 1.3268 2.5850 3.1697 

10 Taraxacum officinale agg. 5.9127 0.8356 2.5850 3.1111 

11 Angelica sylvestris 5.7228 0.8348 1.5754 2.7110 

12 Orchis morio 2.4086 1.1170 4.3661 2.6306 

13* Eupatorium cannabinum 5.7167 1.2646 -0.0674 2.3046 

14* Leontodon hispidus 4.4813 1.6445 0.0204 2.0487 

15 Senecio squalidus 2.8558 1.3146 1.5615 1.9106 

16 Vicia cracca 1.8867 1.4821 2.0015 1.7901 

17 Leontodon autumnalis 3.5156 1.3590 0.4338 1.7695 

18* Centaurea nigra 3.3655 0.9336 0.7611 1.6867 

19 Hypochaeris radicata 2.5932 0.7540 1.0529 1.4667 

20 Cirsium arvense 3.4912 0.0706 0.6391 1.4003 
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21 Crepis paludosa 1.6948 0.5267 1.6716 1.2977 

22 Crepis capillaris 2.7602 0.8413 0.2389 1.2801 

23 Geranium pratense 3.1227 0.1692 -0.1021 1.0633 

24 Clematis vitalba 1.8436 0.9923 0.0578 0.9646 

25 Daucus carota 3.8048 -0.7814 -0.1313 0.9640 

26 Matricaria discoidea 1.9119 1.1068 -0.1269 0.9639 

27 Cardamine pratensis 3.6084 -1.0848 -0.1392 0.7948 

28 Stellaria media 0.3827 -0.4707 2.0029 0.6383 

29 Aethusa cynapium 2.2629 0.0690 -0.6484 0.5612 

30 Senecio jacobaea 0.9885 -0.0548 0.3834 0.4390 

31 Crepis vesicaria -0.1147 0.8942 -0.0562 0.2411 

32 Leontodon saxatilis 0.0646 0.7084 -0.3035 0.1565 

33 Trifolium pratense 0.0203 0.2775 0.1622 0.1533 

34 Leucanthemum vulgare 0.4406 0.1965 -0.2150 0.1407 

35 Conopodium majus -0.3937 0.8408 -0.1561 0.0970 

36 Vicia sativa 0.7273 -0.5399 0.0155 0.0676 

37 Galium verum 0.4313 -0.4818 0.0221 -0.0095 

38 Crepis biennis -1.4728 0.7655 0.4898 -0.0725 

39 Lathyrus pratensis -0.5821 -0.5440 0.8770 -0.0830 

40 Ranunculus acris -0.4876 0.6001 -0.4617 -0.1164 

41 Ranunculus repens -0.3811 -0.0703 -0.5137 -0.3217 

42 Bellis perennis -0.7265 0.0053 -0.5654 -0.4289 

43* Lychnis flos-cuculi -0.9421 -0.1462 -0.3888 -0.4924 

44 Rubus fruticosus -0.7774 -0.5462 -0.2893 -0.5376 
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45 Capsella bursa-pastoris -0.3015 -0.7844 -0.7466 -0.6109 

46 Linum catharticum -3.0493 0.6906 -0.4979 -0.9522 

47 Chamerion angustifolium -1.7357 -0.3496 -1.0237 -1.0363 

48* Prunella vulgaris -0.5681 -4.5321 1.2126 -1.2958 

49 Anthriscus sylvestris -1.1473 -2.4819 -0.2985 -1.3092 

50 Trifolium repens -1.9882 -1.4629 -0.8758 -1.4423 

51* Centaurium erythraea -1.1010 -2.9669 -0.3925 -1.4868 

52* Lotus corniculatus -1.7755 -2.3617 -0.4386 -1.5252 

53 Cerastium fontanum -1.4057 -3.9529 -0.3235 -1.8941 

54 Convolvulus arvensis -3.1206 -1.6361 -0.9614 -1.9061 

55 Primula veris -3.7091 -1.3857 -1.5606 -2.2184 

56* Agrimonia eupatoria -5.4423 -0.9766 -0.9990 -2.4726 

57 Trifolium dubium -5.7070 -1.3290 -1.4040 -2.8133 

58 Rhinanthus minor -3.9828 -3.4876 -1.5085 -2.9930 

59 Euphrasia officinalis -4.3050 -4.9308 -1.2691 -3.5016 

60 Medicago lupulina -4.8170 -5.0114 -1.2181 -3.6822 
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Figure S 3-1 Quantitative pollination networks of a) control, b) peripheral and c) central treatments of 

Plot B. The networks depicted show interaction data pooled across all subplots for each treatment in 

this plot, although analyses were conducted on a per-subplot-per-plot basis. For each network, lower 

bars represent plant species abundance, top bars represent insect species abundance and link widths 

represent interaction frequency between species pairs. In purple are introduced plant species and insect 

species that only appear in peripheral and central subplots. In light grey (control network) are insect 

species only observed in control subplots. Codes for introduced plant species: KA=Knautia arvensis, 

AM=Achillea millefolium, CN=Centauria nigra, LH=Leontodon hispidus, EC=Eupatorium 

cannabinum, LF=Lychnis flos-cuculi, PV=Prunella vulgaris, LC=Lotus corniculatus, CE=Centaurium 

erythraea, AE=Agrimonia eupatoria. Resident species were numbered from R1 to R13 and names are 

given in Table S 3-4. 
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Figure S 3-2 Flowers abundance per introduced species across subplots (Quadrat) in Plot A and Plot B. 

Species codes: AE=Agrimonia eupatoria, AM=Achillea millefolium, CE=Centaurium erythraea, 

CN=Centauria nigra, EC=Eupatorium cannabinum, KA=Knautia arvensis, LC=Lotus corniculatus, 

LF=Lychnis flos-cuculi, LH=Leontodon hispidus, PV=Prunella vulgaris. Peripheral subplots are 

marked as P1 to P10 and central subplots as C1 to C10. Squares are white when that species was not 

assigned to that subplot, light green when the species assigned to that subplot did not flower, and ranging 

from light yellow to dark red in proportion to the number of flowers of that species in that subplot.  
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Table S 3-3 Flowering success of central and peripheral species: species name and number of individual 

plants of each species (out of the total 18 individuals of each species) that successfully flowered in Plots 

A and B. 

Central species Plot A Plot B Peripheral species Plot A Plot B 

Achillea millefolium  3 0 Agrimonia eupatoria 9 8 

Centaurea nigra 10 6 Centaurium erythraea  17 16 

Eupatorium cannabinum  17 11 Lotus corniculatus 18 18 

Knautia arvensis 11 4 Lychnis flos-cuculi  7 1 

Leontodon hispidus 18 17 Prunella vulgaris 18 17 
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Table S 3-4 List of resident plant species in the experimental plots. Codes R1 to R13 are assigned to 

species which were observed receiving insect visits and correspond to codes used in Figures 3-2 and S 

3-1. Species family, name, their occurrence in experimental plots A and/or B (marked with an X) and 

centrality rank (see Table S 3-2). 

Code Family Species Plot A Plot B Rank 

R1 Asteraceae Bellis perennis X  42 

- Convolvulaceae Calystegia silvatica  X  

R2 Caryophyllaceae Cerastium fontanum  X X 53 

R6 Convolvulaceae Convolvulus arvensis  X 54 

R7 Asteraceae Crepis capillaris  X 22 

R8 Geraniaceae Geranium dissectum  X  

- Geraniaceae Geranium molle X   

R9 Apiaceae Heracleum sphondylium  X 4 

R10 Fabaceae Lathyrus pratensis  X 39 

- Plantaginaceae Plantago lanceolata X X  

R11 Ranunculaceae Ranunculus acris  X 40 

R3 Ranunculaceae Ranunculus repens X  41 

R4 Asteraceae Taraxacum officinale agg. X X 10 

R12 Asteraceae Tragopogon pratensis  X  

R13 Fabaceae Trifolium pratense  X 33 

R5 Fabaceae Trifolium repens X X 50 

- Plantaginaceae Veronica persica X X  
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Table S 3-5 Number of plant and insect species per network. Each network corresponds to one subplot: 

10 (subplots 1 to 10) per treatment (control, peripheral, central) per plot (Plot A, Plot B) resulting in 60 

pollination networks. Four control networks were excluded from all network-level analysis (question 

3) due to their small size (marked in light grey). Ten additional networks were excluded from nestedness 

analysis since their nestedness values could not be normalised (marked in dark grey). 

  Control Peripheral Central 

Plot Subplot Insects Plants Insects Plants Insects Plants 

Plot A 1 4 3 7 4 29 5 

Plot A 2 2 1 10 5 21 4 

Plot A 3 2 2 11 4 14 4 

Plot A 4 6 2 16 3 27 3 

Plot A 5 5 2 20 5 24 5 

Plot A 6 13 3 17 5 37 5 

Plot A 7 8 3 17 5 27 4 

Plot A 8 8 3 20 6 30 6 

Plot A 9 10 3 14 6 29 5 

Plot A 10 5 1 21 6 36 4 

Plot B 1 12 4 5 3 14 5 

Plot B 2 19 3 20 5 26 3 

Plot B 3 14 1 20 5 36 5 

Plot B 4 12 2 26 6 22 5 

Plot B 5 14 4 21 6 21 4 

Plot B 6 14 3 22 9 20 7 

Plot B 7 9 3 12 4 27 6 

Plot B 8 16 4 14 6 12 4 

Plot B 9 3 2 21 5 26 6 

Plot B 10 13 3 13 4 15 3 
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Figure S 3-3 Relationship between network-level metrics and network size (S) after metrics were 

normalized. a) Closeness centralisation, b) Nestedness and c) Interaction Evenness. Network size is the 

sum of plant and insect species. Ten out of 56 networks were removed from nestedness analysis due to 

non-meaningful NODF (nestedness metric) values. 
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Table S 3-6 List of insect species collected in the field experiment. Order, species name and number of 

individuals collected in plots A and B.  

Order Species Plot A Plot B 

Coleoptera Altica sp. 1 0 

Coleoptera Amara familiaris 1 0 

Coleoptera Coccinella septempunctata 0 2 

Coleoptera Corizus hyoscyami 0 1 

Coleoptera Meligethes sp. 20 7 

Coleoptera Oedemera nobilis 0 3 

Coleoptera Rhagonycha fulva 1 10 

Coleoptera Tachyporus nitidulus 1 0 

Diptera Anthomyia liturata 8 0 

Diptera Botanophila sp. 16 5 

Diptera Botanophila striolata 54 0 

Diptera Brachicoma devia 0 1 

Diptera Cheilosia albitarsis 1 1 

Diptera Cheilosia bergenstammi 1 0 

Diptera Cheilosia impressa 0 1 

Diptera Cheilosia pagana 11 0 

Diptera Chloromyia formosa 2 0 

Diptera Chromatomyia milii 1 0 

Diptera Chrysotoxum bicinctum 0 16 

Diptera Chrysotoxum festivum 1 5 

Diptera Chrysotoxum vernale 1 0 

Diptera Coenosia tigrina 10 0 

Diptera Dasysyrphus albostriatus 1 1 

Diptera Delia platura 2 3 

Diptera Delia sp. 2 3 

Diptera Dicraeus vagans 0 1 

Diptera Dolichopus trivialis 1 0 

Diptera Dolichopus ungulatus 2 0 

Diptera Empis albinervis 0 1 

Diptera Empis femorata 2 0 

Diptera Empis livida 0 6 
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Diptera Empis sp. 1 0 

Diptera Epistrophe grossulariae 1 0 

Diptera Episyrphus balteatus 80 84 

Diptera Eriothrix rufomaculata 5 13 

Diptera Eristalis tenax 9 2 

Diptera Eumerus tuberculatus 6 26 

Diptera Eupeodes corollae 10 26 

Diptera Eupeodes latifasciatus 7 4 

Diptera Eupeodes latilunulatus 1 0 

Diptera Eupeodes luniger 4 27 

Diptera Fannia serena 1 0 

Diptera Fannia sp. 0 1 

Diptera Fernandia cuprea 4 1 

Diptera Helina parcepilosa 0 1 

Diptera Helina reversio 1 0 

Diptera Helina sp. 1 1 

Diptera Helina tetrastigma 0 1 

Diptera Helophilus pendulus 9 4 

Diptera Heringia heringi 1 0 

Diptera Hydrellia maura 17 0 

Diptera Limnia unguicornis 0 1 

Diptera Lonchoptera furcata 1 1 

Diptera Lucilia sericata 16 7 

Diptera Megaselia sp. 0 1 

Diptera Melanomya nana 1 0 

Diptera Melanostoma mellinum 1 6 

Diptera Melanostoma scalare 7 0 

Diptera Melastoma sp. 1 0 

Diptera Meliscaeva cinctella 1 0 

Diptera Merodon equestris 7 5 

Diptera Meromyza sp. 0 2 

Diptera Metopia sp. 1 0 

Diptera Myathropa florea 1 2 
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Diptera Neoascia podagrica 1 0 

Diptera Ocytata pallipes 0 2 

Diptera Opomyza germinationis 1 1 

Diptera Opomyza petrei 1 0 

Diptera Oscinella frit 0 4 

Diptera Oscinella nitidissima 2 0 

Diptera Oscinella sp. 0 1 

Diptera Pachygaster atra 1 0 

Diptera Paragus haemorrhous 0 1 

Diptera Paragus sp. 1 0 

Diptera Paregle audacula 1 0 

Diptera Pegoplata aestiva 33 57 

Diptera Phaonia serva 1 0 

Diptera Phasia obesa 0 1 

Diptera Phasia pusilla 0 2 

Diptera Phora sp. 0 1 

Diptera Pipizella viduata 5 2 

Diptera Pipunculidae sp. 0 1 

Diptera Platycheirus albimanus 46 38 

Diptera Platycheirus scutatus 6 1 

Diptera Platycheirus sp. 0 2 

Diptera Platycheirus sticticus 1 2 

Diptera Pyrophaena rosarum 1 0 

Diptera Rhamphomyia variabilis 7 1 

Diptera Rhingia campestris 1 0 

Diptera Rhingia rostrata 5 0 

Diptera Rhinophora lepida 9 1 

Diptera Sarcophaga haemorrhoa 1 0 

Diptera Sarcophaga nigriventris 3 2 

Diptera Sarcophaga sp. 2 1 

Diptera Sarcophaga subvicina 1 0 

Diptera Sarcophaga variegata 1 0 

Diptera Scaeva pyrastri 2 6 
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Diptera Scathophaga stercoraria 1 5 

Diptera Sciaridae sp. 1 0 

Diptera Sepsis sp. 1 1 

Diptera Sicus ferrugineus 1 0 

Diptera Siphona geniculata 2 1 

Diptera Siphona sp. 0 1 

Diptera Solieria sp. 1 0 

Diptera Sphaerophoria bankowskae 0 2 

Diptera Sphaerophoria menthastri 3 10 

Diptera Sphaerophoria scripta 7 13 

Diptera Sphaerophoria spp. 23 23 

Diptera Sphaerophoria taeniata 0 7 

Diptera Suillia variegata 1 0 

Diptera Syritta pipiens 33 8 

Diptera Syrphus ribesii 31 17 

Diptera Tetanocera elata 1 0 

Diptera Thecophora atra 0 1 

Diptera Volucella inanis 2 0 

Diptera Volucella pellucens 3 0 

Diptera Xanthogramma pedissequum 2 3 

Hymenoptera Ancistrocerus gazella 0 1 

Hymenoptera Andrena bicolor 1 0 

Hymenoptera Andrena dorsata 0 1 

Hymenoptera Andrena fulvago 2 0 

Hymenoptera Andrena minutula 1 0 

Hymenoptera Andrena semilaevis 5 1 

Hymenoptera Andrena sp. 1 0 

Hymenoptera Apis mellifera 51 39 

Hymenoptera Athalia sp. 0 1 

Hymenoptera Aulacidae sp. 0 1 

Hymenoptera Bombus hortorum 1 2 

Hymenoptera Bombus hypnorum 1 0 

Hymenoptera Bombus lapidarius 25 20 
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Hymenoptera Bombus lucorum 4 3 

Hymenoptera Bombus pascuorum 52 81 

Hymenoptera Bombus pratorum 1 0 

Hymenoptera Bombus terrestris 10 6 

Hymenoptera Bombus psithyrus sp. 1 0 

Hymenoptera Braconidae sp. 6 6 

Hymenoptera Chalcidoidea sp. 5 4 

Hymenoptera Gasteruptidae sp. 1 0 

Hymenoptera Halictus rubicundus 4 2 

Hymenoptera Halictus tumulorum 57 44 

Hymenoptera Hylaeus hyalinatus 2 0 

Hymenoptera Ichneumonidae sp. 1 3 

Hymenoptera Lasioglossum albipes 7 5 

Hymenoptera Lasioglossum calceatum 23 41 

Hymenoptera Lasioglossum fulvicorne 0 2 

Hymenoptera Lasioglossum lativentris 0 1 

Hymenoptera Lasioglossum morio 18 3 

Hymenoptera Lasioglossum smaethmanellum 5 126 

Hymenoptera Lasioglossum sp. 0 2 

Hymenoptera Lasioglossum villosulum 4 19 

Hymenoptera Leucozonium leucozonium 0 7 

Hymenoptera Megachile centuncularis 3 0 

Hymenoptera Megachile ligniseca 5 1 

Hymenoptera Megachile willughbiella 8 2 

Hymenoptera Mellita leporina 1 1 

Hymenoptera Nomada fabriciana 2 0 

Hymenoptera Nomada flavoguttata 1 0 

Hymenoptera Osmia bicornis 1 0 

Hymenoptera Osmia caerulescens 4 3 

Hymenoptera Osmia leaiana 8 0 

Hymenoptera Sphecodes monilicornis 2 1 

Hymenoptera Tenthredo sp. 0 5 

Hymenoptera Vespula germanica 1 0 
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Hymenoptera Vespula vulgaris 1 0 

Lepidoptera Maniola jurtina 0 10 

Lepidoptera Pararge aegeria 1 0 

Lepidoptera Pieris napi 2 1 

Lepidoptera Thymelicus lineola 0 14 

Lepidoptera Thymelicus sylvestris 0 3 

Miridae Miridae sp. 0 1 

Thysanoptera Thysanoptera sp. 0 1 
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Chapter 4  

 

The effect of generalisation and population 

feedbacks on the robustness of plant-insect 

assemblages: a comparison of pollination 

and herbivory networks 

 

 

4.1 Introduction 

Plant and insect species interact in many different ways: insects can defend plants from 

predators, disperse seeds or facilitate plant reproduction, whereas plant species often serve as 

food source and nesting substrate for many insect species (Del-Claro et al., 1996; Shepherd 

and Chapman, 1998; Coley et al., 2006; Requier et al., 2015). As both groups are extremely 

species-rich (RBG, 2016; Stork, 2018), plant-insect interactions represent a ubiquitous 

component of biodiversity. It has been estimated that more than 85% of flowering plant species 

depend on animals for pollination (Ollerton et al., 2011), the majority of those pollinators being 

insects. Similarly, plant-herbivore interactions are extremely diverse (Price, 2002), as insect 

herbivores were estimated to comprise to up to 6 million species (Novotny et al., 2002). Given 

their richness and abundance, the effects of insect pollinators and herbivores on plants will 

have widespread demographic and organisational consequences at the community level, 

turning the study of the structure, dynamics and resilience of plant-insect communities into a 
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central aim in Ecology. As the effect of plant community composition and abundance 

distribution can propagate upwards through several trophic levels (Scherber et al., 2010), the 

study of how communities disassemble with the loss of plant species could generate insights 

into the obverse effect - how communities reassemble with plant species introduction 

(Tylianakis et al., 2018). 

Ecological networks depict the interactions among species, visually each species is 

represented by nodes that are linked whenever species interact. Recurrent structural patterns 

have been described for ecological networks of different interaction types (Bascompte et al., 

2003; Guimarães et al., 2007a; Donatti et al., 2011; Pires and Guimarães, 2013). For instance, 

the antagonistic networks formed by insect herbivores and plants often present modular 

structures (Thébault and Fontaine, 2010; Cagnolo et al., 2011), i.e. sets of species interact more 

among themselves than with the rest of species in the network. Networks depicting free-living 

mutualisms, such as those between plants and pollinators, can show both modular and nested 

structures (Bascompte et al., 2003; Olesen et al., 2007; Guimarães et al., 2007b). Nested 

networks comprise a highly connected core of generalist species, which interact with generalist 

and specialist species, whilst specialist species interact mostly with generalists. These types of 

structural patterns affect the dynamics and robustness of ecological networks in different ways 

(Dunne et al., 2002; Burgos et al., 2007; Thébault and Fontaine, 2010; Stouffer and Bascompte, 

2011; Vieira and Almeida-Neto, 2015). For example, in pollination networks, nestedness 

increases the speed of community recovery after perturbations (Thébault and Fontaine, 2010), 

but facilitates network collapse to species loss (Burgos et al., 2007).  

The structure of ecological networks is likely to reflect the natural history of ecological 

interactions (Guimarães et al., 2007b). Generalisation, for instance, could benefit pollinators 

and insect herbivores by increasing resource availability (Waser et al., 1996; Bernays and 

Minkenberg, 1997). However, the selective pressure imposed by plants defences on herbivores 
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can result in an evolutionary arms race between the two groups favouring herbivore 

specialisation (Thompson, 2005). In fact, insect herbivores are often more specialised in 

resource use than pollinators (Fontaine et al., 2009). Pollinators, on the other hand, may 

optimize foraging gains and nutritional intakes by feeding on a wider range of resources (Alaux 

et al., 2010; Pasquale et al., 2013), leading to the high levels of generalisation observed for 

pollinators (Waser et al., 1996; Fontaine et al., 2009). Another key aspect of natural history 

that may explain differences in the structure of pollination and herbivory networks is the type 

of population feedback resulting from the interaction, (Thébault and Fontaine, 2010) i.e. the 

reciprocal demographic consequences of the interaction in terms of its effects on per capita 

growth rates. The reciprocally positive demographic effects of mutualisms could make 

extinction cascades more likely and longer in pollination systems than in herbivory, as plant 

population declines would lead to declines in pollinators, which would lead to further declines 

in plants and so on (Vieira and Almeida-Neto, 2015). In herbivory, however, as only herbivores 

benefit from the interaction, plant declines would lead to herbivore declines, but herbivore 

declines would not lead to plant declines, constraining the frequency and length of extinction 

cascades. Moreover, the population feedbacks and extinction cascades could interact with and 

change network structure to affect the resilience of these systems to perturbation (Thébault and 

Fontaine, 2010).  

Ecological networks are not static, but rather they are dynamical systems in which 

species abundances and network structure reciprocally affect each other and vary over time 

(Poisot et al., 2015). Indeed, interaction rewiring, i.e. the switch of interactions from one 

partner to another, is widespread in free-living mutualisms, such as in pollination (Kaiser-

Bunbury et al., 2010), in which the generalisation of several species leads to flexibility of 

interaction partners (Bascompte and Jordano, 2014). Interaction rewiring between plants and 

pollinators can occur over time (CaraDonna et al., 2017) and space (Carstensen et al., 2014; 
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Trøjelsgaard et al., 2015) as a consequence of and despite changes in species abundances 

(Carstensen et al., 2014; Trøjelsgaard et al., 2015; MacLeod et al., 2016). Interaction rewiring 

can also happen among locally specialist plant and pollinator species (Carstensen et al., 2014), 

and in more specialized interactions such as herbivory (Novotny, 2009). However, while 

interaction rewiring has been observed in insect herbivores (Auerbach and Simberloff, 1988; 

Murphy and Feeny, 2006), these host switches are often phylogenetically constrained and 

involve plant species within the same genus (Novotny and Basset, 2005; but see Agosta, 2006).  

Adaptive network models (ANMs) are a class of dynamic network models which are 

useful for the study of reciprocal effects between population dynamics and interaction 

structure, as ANMs have two in-built sources of dynamics which feedback on each other. The 

local dynamics is the variation in species abundances over time, and the topological dynamics 

is the rewiring of interactions changing network structure (Gross and Blasius, 2008; 

Valdovinos et al., 2010; Ramos-Jiliberto et al., 2012). ANMs can therefore be used to 

investigate the consequences of the differing level of generalisation (as differing rewiring 

opportunities) and population feedbacks (as local dynamics), between pollination and 

herbivory for the robustness of these systems. Network robustness is an easy to interpret and 

broadly used network metric that quantifies how resistant ecological networks are to the loss 

of species (Memmott et al., 2004; Burgos et al., 2007).  

Here I use ANMs to investigate how differences in the network structure, on the 

population feedbacks and on the level of generalisation (through rewiring opportunities), affect 

the dynamics and robustness of pollination and herbivory systems to species loss (Figure 4-1a). 

I do this using data from empirically derived networks. I predict that the positive and reciprocal 

demographic effects between plant and insect populations (population feedbacks) in pollination 

networks will result in more frequent and longer coextinction cascades in than in herbivory 

networks, this negatively affecting the robustness of pollination systems. I also predict a more 
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limited range of rewiring opportunities in herbivory networks, this reducing their robustness. 

Finally, I investigate how the structure of pollination and herbivory networks interact with 

population feedbacks and rewiring opportunities to affect network robustness.  
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Figure 4-1 a) The level of generalisation of pollination and herbivory networks is expected to affect 

rewiring opportunities, while the population feedbacks (mutualism vs antagonism) are expected to 

affect coextinction cascades. Rewiring opportunities and coextinction cascades are expected to affect 

network robustness. b) Scheme of extinction cascades, normal arrows indicate consequences of the loss 

of plant species and dashed arrows indicate consequences of the loss of animal species. Cascades start 

with the primary extinction of a plant (I and II). Animals interacting with that plant have the chance of 

rewiring (III). If rewiring is successful, new abundances are calculated (IV), and if all new abundances 

are positive a new cascade begins (I). Species for which rewiring is unsuccessful or whose abundance 

reach zero suffer secondary extinctions (V). Secondary plant extinctions lead to a similar sequence of 

events than primary extinctions (I and II). Secondary animal extinctions lead directly to the calculation 

of new abundances  (VI and IV). c) Square matrix T (eq. 2) of a network with six animal (A1 to A6) 

and six plant species (P1 to P6). T has information on the per capita effects of each interaction on the 

abundance of every species in the network, cells have the effect of the column species over the 

abundance of the row species. Yellow quadrats carry information of pollination or herbivory (ΓAP and 

ΓPA) and blue quadrants carry information of competition (ΩAA and ΩPP). I only explore the effect 

of intraspecific competition, in elements of the dark blue diagonal. d) Differing levels of generalisation 

can influence rewiring opportunities: both networks have the same number of animal (NA) and plant 

(NP) species, and of interactions (NI), but given the presence of a generalist species in the left network 

(A1 circled in red), the resulting sum of interaction similarities between animal pairs (total similarity) 

is higher in the left network than in the right network.  
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4.2 Material and Methods 

4.2.1 Dataset 

I compiled all the pollination networks found in two online datasets (Interaction Web 

Database and Web of Life), all the herbivory networks compiled by three previous studies 

(Fontaine et al., 2009; Pires and Guimarães, 2013; Fontaine and Thébault, 2015), and networks 

of both interactions types found by an independent search. From these, I selected a subset of 

networks excluding networks (i) in which animal species were not exclusively insects, (ii) that 

were both from the same interaction type and author, and (iii) which were collected over more 

than two years or across large scales (e.g. the whole country). This selection process resulted 

in 26 pollination and 17 herbivory networks from the literature (Table S 4-1). Networks of both 

interaction types are bipartite, depicting interactions between species in two sets, plants and 

insects, but not between species in the same set (e.g. between plants or between insects). Even 

if the frequency of interaction between species was available for some networks, I only used 

binary interaction information from these networks (following Dáttilo et al., 2016), as I am 

comparing different systems which are likely to vary in species abundances, detectability and 

data collection methods, all factors which could add noise to the results making the 

understanding of the mechanisms explicitly investigated harder. Below I first provide a general 

overview of the simulation procedure. Then, in the following sections I detail how the local 

and topological dynamics were incorporated in the simulation. I finish by describing the 

simulation scenarios and statistical analysis.  

 

4.2.2 Simulation overview 

Using the 43 networks, I simulate coextinction cascades following an initial primary 

extinction in which one plant species is randomly selected for removal (Figure 4-1b). One 
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coextinction cascade encompasses all secondary extinctions following a primary extinction, 

including species from both trophic levels. I chose to eliminate plants in primary extinctions as 

insects are the active elements of interaction rewiring, and because the effect of plants on 

insects is positive in both pollination and herbivory systems this making comparison of network 

collapse straightforward. Following the primary extinction (Figure 4-1b; steps I and II), insect 

species previously interacting with the extinct plant have the opportunity to rewire (step III; 

section 4.2.4. Rewiring algorithm – Topological dynamics). After changes on network structure 

due to species loss and rewiring, species abundances are recalculated and coextinctions 

computed (steps IV and V, respectively). Coextinctions can either be abundance-related - when 

abundances approach zero - or interaction-related - when species are disconnected from the 

network, except for plants in herbivory networks which can remain in the system even if 

disconnected. I used simulated abundance data (section 4.2.3. Model – Local dynamics), as the 

interaction frequency recorded in the original dataset is not necessarily a reliable abundance 

measure (e.g. it can depend on the method of collection). Coextinctions are treated similarly to 

primary extinctions: the secondary extinction of a plant (step II), gives the insects feeding on 

that plant the opportunity of rewiring. If insects are lost though (step VI) plants do not rewire, 

as plants do not actively search for pollinators. Species abundances are recalculated after 

changes in network structure and any further coextinctions are computed. Coextinction 

cascades end when coextinctions lead to no further coextinctions, and a new cascade starts with 

the removal of another plant.  

 

4.2.3 Model – Local dynamics 

I use the model developed by Suweis et al. (2013). Interaction networks and interaction 

matrices (M) are interchangeable structures. In M, each animal species, A = {A1, A2, A3... ASn}, 

is a row, each plant species, P = {P1, P2, P3...PSn}, is a column, and 𝑚𝑖𝑗 = 1 when insect i and 
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plant j interact, and 𝑚𝑖𝑗 = 0 otherwise. Species richness in the network is SM = SA + SP. At 

the beginning of the simulation, I randomly sampled species abundances from a lognormal 

distribution with mean μ = 1 and standard deviation σ = 1. As an example, a random sample of 

100.000 values drawn from this distribution has mean = 4.47, sd = 5.81 and ranges from 0.039 

to 173.68, while abundance-related coextinctions happen when abundances reach 0.001. 

During the simulation, species abundances are an outcome of interactions established with 

other species (Eq. 1). In pollination networks, plants and animals are positively affected by 

interactions, while in herbivory networks only animals benefit while plants are negatively 

affected by animals. The population dynamics of species i can be described as a function of the 

per capita effects of ecological interactions on its abundance 𝑥i: 

 
𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑖 (𝑎𝑖 + ∑𝐓𝑖𝑗𝑥𝑗

𝑆𝑀

𝑗

), (1) 

where 𝑎𝑖 describes the intrinsic growth rate of species i in the absence of interactions, 𝐓𝑖𝑗 

represents the effects of species j on species i, and 𝑥𝑗 is the abundance of species j. I assumed 

a type I functional response for both interaction types (Suweis et al., 2013).  

The square matrix T (Figure 4-1c) of dimensions SM × SM includes information on the 

per capita effects of each interaction on the abundance of species i (𝐓𝑖𝑗 in eq. 1): 

𝑇 = [
𝛺𝐴𝐴 𝛤𝐴𝑃

𝛤𝑃𝐴 𝛺𝑃𝑃
] =

[
 
 
 
 
 
 
 
 

𝑑 𝜔1,2 ⋯ 𝜔1,𝑆𝐴
𝛾1,𝑆𝐴+1 ⋯ ⋯ 𝛾1,𝑆𝑀

𝜔2,1 𝑑 ⋯ ⋯ 𝛾2,𝑆𝐴+1 ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜔𝑆𝐴,1 ⋮ ⋯ 𝑑 𝛾𝑆𝐴,𝑆𝐴+1 ⋯ ⋯ 𝛾𝑆𝐴,𝑆𝑀

𝛾𝑆𝐴+1,1 ⋯ ⋯ ⋯ 𝑑 𝜔𝑆𝐴+1,𝑆𝐴+2 ⋯ 𝜔𝑆𝐴+1,𝑆𝑀

𝛾𝑆𝐴+2,1 ⋯ ⋯ ⋯ ⋯ 𝑑 ⋯ 𝜔𝑆𝐴+2,𝑆𝑀

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛾𝑆𝑀,1 ⋯ ⋯ ⋯ 𝜔𝑆𝑀,𝑆𝐴+1 ⋯ ⋯ 𝑑 ]

 
 
 
 
 
 
 
 

 (2) 

Quadrats ΓAP and ΓPA describe the per capita effects of pollination or herbivory on species 

abundances, whereas quadrats ΩAA and ΩPP summarize the per capita effects of competition. 

Diagonal elements represent intraspecific competition, dii = 1. Quadrat ΓAP is built from the 
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interaction matrix M: considering a pair of species i {i∈A} and j {j∈P} that interact (mij = 1), 

if the effect of j on the abundance of i is positive, γij ~ -|𝒩(μ,σΓ)|; if it is negative, γij ~ 

|𝒩(μ,σΓ)|; where 𝒩(μ,σΓ) is a the normal distribution with mean μ = 0 and standard deviation 

σΓ = 0.1. This parameterization ensures that all networks are stable when simulation starts. 

Within ΓPA, the effect of species i on the abundance of its partner j is defined by a different 

number: γji ~ -|(μ,σΓ)| if the effect of the interaction is positive, and γji ~ |𝒩(μ,σΓ)| if it is 

negative. Therefore, pollination is a symmetric interaction in sign but not in value (Bascompte 

and Jordano, 2014), whilst herbivory is asymmetric in sign and value. Quadrats describing the 

effects of interspecific competition (ΩAA and ΩPP) were set to zero, assuming that species do 

not suffer interspecific competition.  

 

4.2.4 Rewiring algorithm – Topological dynamics 

Insect species had a chance to rewire as a response to the extinction of a resource (plant) 

species. Rewiring opportunities for insect species are identified using a matrix of forbidden 

links, R, calculated from M (Figure 4-1d, Code S 4-1). At the beginning of each simulation, I 

calculated the Jaccard similarity index of interactions between all insect pairs in the network. 

As interactions are partly determined by species attributes such as morphology, physiology and 

phenology (Cornell and Hawkins, 2003; Stang et al., 2006; Olesen et al., 2011; Cipollini and 

Peterson, 2018), I assume that species with high interaction similarity are likely to share those 

attributes and, therefore, to establish similar interactions. Thus, I used the interaction similarity 

of insect pairs as the probability each species in the pair had of mimicking the interactions of 

the other species in the pair. With increasing similarity, the probability of mimicking 

interactions increases but the number of available interactions - not shared by both species - 

decreases. Given the higher level of specialisation in herbivory compared to pollination 

networks, I expect a lower interaction overlap in herbivory networks, this reducing the 
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probability of species mimicking interactions (Figure 4-1d). Thus, R incorporates the 

differences in generalisation between pollination and herbivory networks. 

Following Ramos-Jiliberto et al. (2012), rewiring occurs as a two-step process: step 1 

determines which of the insects that lost a resource will rewire and step 2 determines to which 

new plant species the insects rewire. As my goal was not to investigate different rewiring 

scenarios (Ramos-Jiliberto et al., 2012), I chose one scenario for each step. An insect species’ 

probability of rewiring (Step 1) was inversely proportional to its total resource abundance. For 

that, the abundance of all resources (plant species) of each insect species was summed, 

resulting in a total resource abundance per insect species. Then, the total resource abundance 

of each insect was normalised by the highest value of total resource abundance, so that 

normalised resource abundances (n) ranged from 0 to 1. Finally, the rewiring probability of 

insect i was calculated as 𝑝𝑖 = 1 − 𝑛𝑖. Therefore, insects feeding on the maximum abundance 

of resources will not rewire (pi = 1 - 1 = 0), while insects which lost their last resource (pi = 1 

- 0 = 1) will rewire. Insects with intermediate abundance of resources have an intermediate 

probability of rewiring. Insects selected then rewire to a new species (Step 2), both respecting 

R and in proportion to plants’ abundances. 

 

4.2.5 Simulations scenarios  

To unravel how population feedbacks, generalisation (through rewiring opportunities) 

and network structure affect the robustness of pollination and herbivory networks, I ran 12 

simulation scenarios (Table 4-1). To separate the effect of network structure from both 

population feedbacks and generalisation, in half of the scenarios I ran simulations on empirical 

networks. For the remaining scenarios, I generated 100 null networks for each empirical 

network using a null model in which interactions were distributed in proportion to species 

degree, i.e. number of interaction partners (null model 2, Bascompte et al., 2003). Therefore, 
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the resulting null networks had similar degree distribution to empirical networks, but not other 

potential structural properties, e.g. nestedness or modularity.  

To investigate how differences in network structure between pollination and herbivory 

networks affect extinction cascades and network robustness (Objective 1), I initially ran four 

scenarios (Scenarios 1 to 4, Table 4-1). In scenarios 1 and 2 I ran 100 simulations using 

empirical pollination and herbivory networks, respectively, while in scenarios 2 and 4 I ran 

simulation using the null networks. In these four scenarios insects had no opportunity to rewire. 

By comparing scenarios 1 and 2 with 3 and 4 (i.e. empirical vs null network structures) I 

investigated how the empirical structure of pollination and herbivory networks affected the 

robustness of these systems. To investigate the effect of population feedbacks I repeated the 

same procedure, with four additional scenarios, but flipping the population feedbacks (local 

dynamics) between the two network types (Scenarios 5 to 8, Table 4-1) in order to identify the 

separate effects of network structure and of population feedbacks (Objective 2). Thus, in 

scenarios 5 to 8 I treated pollination networks as herbivory networks and herbivory networks 

as pollination networks. Finally, to explore the effect of rewiring opportunities, the four 

remaining scenarios (scenarios 9 to 12, Table 4-1) were similar to scenarios 1 to 4, but the 

insects had the opportunity to rewire (Objective 3). All code used to run simulations can be 

found in the Supplementary Material. 
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Table 4-1 Description of simulation scenarios (S1 to S12): network type (Int. Type: pollination or 

herbivory), structure of the network (Structure: empirical or null), population feedbacks (Feedback: 

original or reversed) and rewiring opportunities (Rewiring: on or off). Objectives for which each 

scenario was used (Obj. 1 to 3), are marked with an X. 

Scenario Int. Type Structure Feedback Rewiring Obj. 1 Obj. 2 Obj. 3 

S1 Pollination Empirical Original Off X X X 

S2 Herbivory Empirical Original Off X X X 

S3 Pollination Null Original Off X X X 

S4 Herbivory Null Original Off X X X 

S5 Pollination Empirical Reversed Off  X  

S6 Herbivory Empirical Reversed Off  X  

S7 Pollination Null Reversed Off  X  

S8 Herbivory Null Reversed Off  X  

S9 Pollination Empirical Original On   X 

S10 Herbivory Empirical Original On   X 

S11 Pollination Null Original On   X 

S12 Herbivory Null Original On   X 

 

I calculated the robustness of networks for all 12 scenarios using the bipartite R 

package (Dormann et al., 2008, 2009; R Core Team, 2017). The robustness metric used is based 

on the attack tolerance curve, which describes the percentage of species in one set (e.g. insects) 

remaining in the network following the sequential removal of species in the other set (e.g. 

plants). The area under this curve results in an intuitive robustness measure (Burgos et al., 

2007), since values approaching 1 indicate high robustness as most species in one set survived, 

even after the removal of a high proportion of species on the other set. Alternatively, values 

approaching 0 indicate low network robustness, since almost no species in one set survived the 

removal of a low proportion of species on other set.  
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For the first eight scenarios, I also calculated: (i) the probability of abundance-related 

secondary extinctions, i.e. the number of abundance-related secondary extinctions as a 

proportion of all secondary extinctions; (ii) the average length of coextinction cascades; (iii) 

the probability of coextinction cascades, i.e. of a primary extinction lead to at least one 

secondary extinction; and (iv) the probability of a long coextinction cascade, i.e. of a primary 

extinction lead to at a cascade of length three or more. The loss of plant species is likely to lead 

to coextinction of insects (cascades of length two) in networks of both interaction types, while 

further coextinctions (cascades of length three or more) show whether cascades continue to 

propagate across both trophic levels. I expect long cascades to be more common in pollination 

than in herbivory networks.  

 

4.2.6 Statistical analysis 

I investigated the effect of network structure on the robustness of pollination and 

herbivory networks using the results of scenarios 1 to 4 (Table 4-1) with a linear mixed model 

(LMM). The model had robustness as the response variable and the interaction between 

structure (empirical vs null) and interaction type (pollination vs herbivory) as fixed effects. I 

used the Akaike Information Criteria (AIC) to select between (i) no random structure and (ii) 

network identity as random effect (Zuur et al., 2009), and the emmeans R package (Lenth, 

2018) to perform a posteriori Tukey tests. I then explored which, if any, of the network 

structural patterns (species richness, connectance, nestedness and modularity) were associated 

with changes (increase or decrease) in network robustness using linear models (LM). The 

models had the ratio between the robustness of empirical and null networks (robustness ratio) 

as response variable and the interaction between metrics values and interaction type as 

explanatory variables. The robustness ratio shows whether network structure is associated with 

increases (ratio > 1) or decreases (ratio < 1) in robustness. 
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Using data from the first eight scenarios (Table 4-1), I investigated the effect of 

population feedbacks, and its interaction with network structure, on the robustness of 

pollination and herbivory networks. With LMMs, I compared the robustness of empirical and 

null networks of both interaction types (scenarios 1 to 4) with their robustness when pollination 

networks were treated as herbivory, and herbivory networks treated as pollination (reversed 

local dynamics, scenarios 5 to 8). Since I expect the positive and reciprocal population 

feedbacks of pollination to cause longer and frequent coextinction cascades, I expect that, with 

reversed feedbacks, the robustness of pollination networks will increase while the robustness 

of herbivory networks will decrease. The two models (one for each network type) had 

robustness as response variable, and the interaction between structure (empirical or null) and 

population feedback (non-reversed or reversed) as fixed effects. I used AIC to select between 

(i) no random structure and (ii) network identity as random effect, and the emmeans R package 

to perform a posteriori Tukey tests. 

To better understand how network structure and population feedbacks affect the 

robustness of pollination and herbivory networks, I further investigated (i) the probability of 

abundance-related secondary extinctions, and the (ii) length and (iii and iv) probability of 

coextinction cascades in the first eight simulation scenarios. The eight models (four response 

variables and two interaction types) had the interaction between structure (empirical or null) 

and population feedbacks (normal or reversed) as fixed effects. I used LMMs for all models 

but for the ones looking at the probability of long extinction cascades (iv), which was 

transformed into a binary variable and analysed with generalised linear mixed models 

(GLMMs) of the binomial family. The (i) probability of abundance-related extinctions and (iii) 

of extinction cascades were logit transformed. I used the AIC to select between (i) no random 

structure and (ii) network identity as random effect, and the emmeans R package to perform a 

posteriori Tukey tests.  
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Finally, I used one LMM to understand how differences in generalisation between 

pollination and herbivory networks (which influences rewiring opportunities) interact with 

network structure to affect network robustness. The model had as response variable the ratio 

between robustness in the last four scenarios (S9 to S12) and in the first four (S1 to S4). 

Scenarios 9 to 12 are equivalent to scenarios 1 to 4, but only in the former insects had the 

opportunity to rewire. The magnitude of the robustness ratio indicates the increase – and, less 

likely, the decrease - in network robustness when insects were allowed to rewire. The 

interaction between structure (empirical or null) and interaction type (pollination or herbivory) 

were the fixed effects. I used the AIC to select between (i) no random structure and (ii) network 

identity as random effect, and the emmeans R package to perform a posteriori Tukey tests.  

 

4.3 Results 

Pollination networks were larger than herbivory networks (Table S 4-1), with 136 ± 127.2 

species on average (mean ± SD, min = 18, max = 451), while herbivory networks had on 

average 98.5 ± 138.4 species (mean ± SD, min = 17, max = 655). Nevertheless, species richness 

(t = 0.93, df = 36.9, p = 0.36) and connectance (proportion of realised interactions; t = 0.37, df 

= 32.4, p = 0.71) were statistically similar in pollination and herbivory networks (Figure S 

4-1a-b). Surprisingly, nestedness was more common than modularity in both network types, as 

21% (4 out of 19) of herbivory networks and 11.5% (3 out of 26) of pollination networks were 

significantly modular, while 68.4% (13 out of 19) of herbivory and all the pollination networks 

were significantly nested. Nevertheless, pollination networks were more nested than herbivory 

networks (t = 2.99, df = 42.8, p < 0.01), but both network types had similar values of modularity 

(t = 1.31, df = 31.1, p = 0.2; Figure S 4-1c-d).  

 Network structure negatively affected the robustness of both pollination and herbivory 

networks (Figure 4-2; t = 4.35, df = 43, p < 0.001) as the robustness of null networks was higher 
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than the robustness of networks with empirical structure. The final model included network 

identity as a random effect. However, the a posteriori analysis revealed that the negative effect 

of structure on network robustness was only significant for pollination networks (Figure 4-2a; 

p < 0.001). The negative effect of network structure on robustness seems to be mainly 

associated with nestedness (Figure 4-3), since, with increasing nestedness (z-scored), the 

negative effect of network structure on the robustness was more pronounced (F(3,41) = 34.63, p 

< 0.001), especially for pollination networks (Figure 4-3c; t = 3.78, p < 0.001).  

Treating pollination as herbivory networks – switching population feedbacks between 

interaction types - significantly increased the robustness of pollination networks (Figure 4-2a; 

t = 3.29, df = 75, p = 0.001), of both empirical (p < 0.001) and null networks (p = 0.03), even 

if the effect was higher in empirical networks. Accordingly, treating herbivory networks as 

pollination had a negative effect on network robustness (Figure 4-2b; t = 4.3, p < 0.001) which 

was similar for empirical and null networks (p < 0.001). Only the pollination model had 

network identity as a random effect, while the herbivory model had no random effect selected. 

When further investigating how network structure and population feedbacks are associated to 

the length and probability of coextinction cascades, I found that cascades were mainly 

associated with population feedbacks (Table S 4-2; Figure S 4-2). There were more abundance-

related extinctions in pollination networks treated as pollination (PP networks) than in 

pollination networks treated as herbivory (PH networks; Figure S 4-2a). Coextinctions 

cascades were longer in PP than in PH (Figure S 4-2c), while long cascades were much more 

likely in PP than PH (Figure S 4-2g). Similarly, for herbivory networks, cascades were longer 

when networks were treated as pollination (HP larger than HH; Figure S 4-2d) and the 

probability of coextinction cascades (of any length) was also higher in HP than HH (Figure S 

4-2f, h). On the other hand, network structure was the main driver of cascade probabilities in 

pollination networks, being much more common in null networks than in empirical networks 
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(Figure S 4-2e). Finally, network structure and population feedbacks were similarly important 

for the occurrence of abundance-related extinctions in herbivory networks (Figure S 4-2b). 

 

Figure 4-2 Robustness for a) pollination and b) herbivory networks in the first eight scenarios (S1 to 

S8). The striped boxes indicate scenarios in which null, instead of empirical, networks were used; blue 

boxes indicate scenarios in which population feedbacks were reversed and red boxes are non-reversed. 

Comparisons between empirical and null networks with non-reversed population feedbacks (S1 vs S3 

and S2 vs S4; objective 1) with statistical significance (p < 0.05) are marked with an asterisk. 

Comparisons between non-reversed and reversed population feedbacks are represented by different 

letters (S1 and S5 vs S3 and S7 for pollination, and S2 and S6 vs S4 and S8 for herbivory; objective 2). 

Statistical significance (p < 0.05) is represented by the differences in letter case (A vs a). Description 

of simulation scenarios can be found in Table 4-1. 
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Figure 4-3 Relationship between the robustness ratio (between scenarios with empirical networks and 

scenarios with null networks; pollination: S1/S3; herbivory: S2/S4) and a) species richness (log), b) 

connectance, c) nestedness (z-scored values of NODF) and modularity (z-scored values of Q). Pink dots 

and lines represent pollination networks and green, herbivory. 

 

 Allowing insects to rewire, increased network robustness, on average, in all scenarios 

including empirical and null networks and networks of both interaction types (pollination and 

herbivory; Figure 4-4; t = 2.95, df = 43, p < 0.01). The largest increase observed was for 

empirical pollination networks, which increased on average 27% ± 20 (mean ± SD, min = 4%, 

max = 74%), followed by null pollination networks (13% ± 5, mean ± SD, min = 7%, max = 
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28%), and herbivory networks (empirical: 4% ± 4, mean ± SD, min = -4%, max = 11%; null: 

2% ± 4, mean ± SD, min = -11%, max = 6%). Network structure had a significant effect in 

pollination networks, since empirical networks benefited more from opportunities of rewiring 

than null networks (p < 0.001), but it had no effect in herbivory networks (p = 0.88). Empirical 

pollination networks benefited more from rewiring opportunities than empirical herbivory 

networks (p < 0.001), but so did null pollination networks that had a higher increase in 

robustness than null herbivory networks (p = 0.02). One empirical and two null herbivory 

networks, had lower robustness when herbivores were allowed to rewire. 

 

Figure 4-4 Ratio of robustness values for pollination and herbivory networks between the last and the 

first four scenarios (S9 to S12 and S1 to S4, respectively). The last scenarios are similar to the first four, 

but insects had the opportunity to rewire. Striped boxes indicate scenarios in which null, instead of 

empirical, networks were used. Comparisons between empirical and null networks of the same 

interaction type (S9/S1 vs S11/S3 and S10/S2 vs S12/S4; objective 1) with statistical significance (p < 

0.05) are marked with an asterisk. Comparisons between networks of different interaction types but 

with similar structure (empirical: S9/S1 vs S10/S2 and null: S11/S3 vs S12/S4) are represented by 

different letters, and statistical significance (p < 0.05) by the difference in letter case (A vs a). Codes 

for simulation scenarios can be found in Table 4-1. 
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4.4 Discussion 

Understanding how the natural history and network structure of different interaction types 

affect the dynamics and robustness of ecological communities to perturbation is very relevant 

to the study and application of conservation and restoration biology (Memmott, 2009; Montoya 

et al., 2012; Harvey et al., 2017). In this study, I found that herbivory networks tend to be more 

robust than pollination networks to plant extinctions due to two main reasons. First, pollination 

networks are more nested than herbivory networks, and nestedness is associated with 

decreasing levels of network robustness. Second, the reciprocal positive demographic effects 

of mutualisms, such as pollination, make coextinction cascades both more likely and longer in 

these systems, causing pollination networks to collapse faster. However, when taking into 

account the fact that network structure is not static, but that interaction rewiring is pervasive in 

real systems, both the higher generalisation level and the more nested structure of pollination 

networks increased the robustness of pollination when compared to herbivory systems. In what 

follows I first address the limitations of my study, and then consider the original objectives, 

putting my results in the context of previous findings. 

 

4.4.1 Limitations 

The population feedback results (Objective 2) were in accordance with my 

expectations. However, in my scenarios, I only included the effect of herbivory and pollination 

on species abundances (local dynamics), and it is likely that species populations will also 

respond to competitive interactions. However, I did not include interspecific competition in 

this version of the model to facilitate the initial interpretation of the effects of network structure, 

population feedbacks and generalisation on the robustness of pollination and herbivory 

networks. The model, however, was designed to also accommodate interspecific competition 

between plants and insects and in the future, competition scenarios such as resource 
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competition for plants, apparent competition between plant species in herbivory networks (van 

Veen et al., 2006), and resource competition between insect species in pollination networks 

(Goulson and Sparrow, 2009) should be incorporated.  

 

4.4.2 Robustness of pollination and herbivory networks 

In the first four scenarios, which had no topological dynamics, i.e. insect species were 

not allowed to rewire, network structure negatively affected the robustness of pollination, but 

not of herbivory, networks. Networks of both interaction types had similar structural patterns 

to what had been found in previous studies: pollination networks were nested, more so than 

herbivory networks (Bascompte et al., 2003; Thébault and Fontaine, 2010), while herbivory 

networks were more modular than pollination networks, even if not significantly modular when 

compared to null networks (Thébault and Fontaine, 2010; Cagnolo et al., 2011). This differing 

structure, initially thought to result from the mutualism-antagonism dichotomy, is related with 

the degree of intimacy of the interaction types studied (Guimarães et al., 2007b; Pires and 

Guimarães, 2013), which is low in pollination systems, but either intermediate or high in most 

of the herbivory networks in this study (Pires and Guimarães, 2013). As the major structural 

difference observed between pollination and herbivory networks was in terms of nestedness, I 

will focus the discussion on this structural pattern.  

Nestedness is thought to positively affect the resilience and stability of mutualistic 

networks (Memmott et al., 2004; Bastolla et al., 2009; Thébault and Fontaine, 2010; Rohr et 

al., 2014; but see Santamaría et al., 2016). Memmott et al. (2004) suggested that nestedness 

increased network robustness due to the asymmetry of interactions - specialists tend to interact 

with generalists – observed in nested networks. Burgos et al. (2007) specifically addressed the 

effect of nestedness on network robustness, having found that nestedness is positive for 

robustness only when primary extinctions happen from the least to the most connected species. 
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My results, therefore, agree with Burgos et al. (2007) since in this study primary extinctions 

followed a random sequence. When I explicitly explored the effect of nestedness on network 

robustness (Figure 4-3), I found that with increasing nestedness networks become less robust, 

specially pollination networks, since these networks reached levels of nestedness values not 

observed in herbivory networks (Figure 4-3, Figure S 4-1). Under a different approach, when 

investigating how network structure affect the stability of pollination and herbivory networks, 

Thébault and Fontaine (2010) found contrasting results for these two systems. Despite 

positively affecting the persistence of pollination systems, nestedness had a strong negative 

effect on the persistence of herbivory networks (Thébault and Fontaine, 2010). Nevertheless, 

it is hard to put my robustness results for herbivory networks into context since this approach 

is not commonly applied to herbivory systems (Pearse and Altermatt, 2013; Welti et al., 2017). 

 When allowing insects to rewire, pollination networks – both empirical and null – had 

larger increases in robustness than herbivory networks, as hypothesised (Figure 4-4). I expected 

that, the high level of generalisation in pollination systems (Waser et al., 1996; Fontaine et al., 

2009), would lead to large topological flexibility resulting in a higher increase in the robustness 

of pollination than in herbivory networks. This hypothesis was corroborated, despite the 

presence of two exceptionally generalised herbivory networks, depicting interactions between 

plants and grasshoppers, which lack the extreme specialists typical of herbivory systems 

(Fontaine et al., 2009). Two obvious advantages associated with generalisation, when 

compared to specialisation, are the higher availability of potential resources (Tremmel and 

Mueller, 2013; Requier et al., 2015; Roger et al., 2017), and the nutritional benefits associated 

with a varied diet (Pasquale et al., 2013; Tremmel and Mueller, 2013; Malinga et al., 2018). 

The second might explain the higher generalisation of grasshoppers, when compared to other 

herbivores, since diet diversity positively affect the performance of grasshoppers (Bernays and 

Bright, 1993; Malinga et al., 2018) but not of other insect herbivores (Bernays and Minkenberg, 
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1997). Diverse diets can also benefit pollinators by facilitating opportunism (Roger et al., 2017) 

and by promoting increased immunity in some species (Alaux et al., 2010), even if 

generalisation might be constrained by morphology (Stang et al., 2006), phenology (Olesen et 

al., 2011) and behaviour (Gegear and Laverty, 2005).  

Despite the larger increases in robustness observed for pollination networks, rewiring 

increased the robustness of networks of both interaction types (Figure 4-4). Despite the higher 

specialisation of herbivory networks, herbivore rewiring has been observed, even at ecological 

time scales due to ecological fitting (Agosta, 2006; Agosta and Klemens, 2008). Despite its 

pervasiveness in herbivory systems, ANMs and the effect of interaction rewiring on the 

dynamics and robustness of networks have mainly been applied to pollination systems (Ramos-

Jiliberto et al., 2012; Valdovinos et al., 2013, 2016; CaraDonna et al., 2017), or in more 

generalised antagonistic systems such as food webs (Valdovinos et al., 2010; Curtsdotter et al., 

2011; Gilljam et al., 2015). In most studies, rewiring increased the persistence of ecological 

communities (but see Gilljam et al., 2015). My results suggest that the higher increase in 

pollination robustness stems not only from its higher level of generalisation, but also from its 

higher nestedness, since the increase in robustness was higher in empirical than in null 

pollination networks (Figure 4-4). Moreover, generalised species can be composed by 

generalist and/or specialist individuals (Bernays and Minkenberg, 1997; Tur et al., 2014), so 

that interaction rewiring has the potential to represent both cases, as an individual behavioural 

change in the former and an evolutionary response in the latter. 

 

4.4.3 Conclusion 

Studying network robustness is crucial if we aim to understand how ecological 

communities respond to extinctions (Solé and Montoya, 2001). Here, I have attempted to 

disentangle how three different attributes, i.e. network structure, population feedbacks and 
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species generalisation, affect the robustness of ecological networks. By investigating each 

attribute separately, and always comparing the same network between different scenarios, I 

was able to avoid confounding effects such as network size and connectance. I found that 

nestedness, a structural pattern common in networks of several interaction types (Bascompte 

et al., 2003; Guimarães et al., 2007a; Dáttilo et al., 2014), affects network robustness both 

negatively and positively when networks are treated as static and dynamical systems, 

respectively. The next steps in the study of network robustness are to investigate differing 

interaction types (Dáttilo et al., 2016), to continue adding realistic information on local and 

topological dynamics (Ramos-Jiliberto et al., 2012), extinction sequences (Astegiano et al., 

2015; Vieira and Almeida-Neto, 2015; Santamaría et al., 2016) and competitive interactions, 

which will lead to indirect effects, and likely, to non trivial results. Combining real information 

about ecological systems with dynamical models will allow us to address applied conservation 

and restoration questions in a predictive way (Raimundo et al., 2018). 
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4.5 Supplementary Material 

Table S 4-1 Dataset of empirical pollination (P1 to P26) and herbivory (H1 to H19) networks. Network code, reference, source (WoL=Web of Life Database; 

IWDB=Interaction Web Database), location, number of insect and plant species, network connetance (C), nestedness (NODF) and modularity (Q). Metric 

significance (p < 0.05) relative to 100 null networks is depicted by an asterisc. 

Code Reference Source Location Insects Plants C NODF Q 

P1 Kakutani et al. 1990 WoL (M_PL_054) Japan 314 113 0.02 8.81* 0.50 

P2 Kato et al. 1993 WoL (M_PL_056) Japan 360 91 0.03 7.24* 0.49* 

P3 Kato & Miura 1996 WoL (M_PL_055) Japan 191 64 0.04 9.54* 0.50 

P4 Forup & Memmott 2005 (M1) Author UK 37 15 0.12 19.26* 0.53 

P5 Orford et al. 2016 (B1) Author UK 39 13 0.13 23.00* 0.51 

P6 Pocock et al. 2012 Author UK 241 47 0.04 17.71* 0.49 

P7 Santos et al. 2010 IWDB Brazil 25 51 0.15 46.36* 0.32 

P8 Dicks et al 2002 WoL (M_PL_006) UK 61 17 0.14 52.27* 0.40 

P9 Elberling & Olesen 1999  WoL (M_PL_009) Sweden 118 24 0.09 15.39* 0.49 

P10 Ollerton et al. 2003 WoL (M_PL_013) South Africa 56 9 0.20 35.49* 0.42 

P11 Herrera 1988 WoL (M_PL_016) Spain 179 26 0.09 21.98* 0.44 

P12 Memmott 1999 WoL (M_PL_017) UK 79 25 0.15 42.84* 0.33 

P13 Inouye & Pyke 1988 WoL (M_PL_019) Australia 85 40 0.08 19.31* 0.40 

P14 Medan et al. 2002 WoL (M_PL_022) Argentina 45 21 0.09 18.02* 0.60 

P15 Mosquin & Martin 1967 WoL (M_PL_024) Canada 18 11 0.19 32.07* 0.46 

P16 Motten 1982 WoL (M_PL_025) USA 44 13 0.25 51.26* 0.31 
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Code Reference Source Location Insects Plants C NODF Q 

P17 Primack 1983  WoL (M_PL_027) New Zealand 60 18 0.11 13.94* 0.54* 

P18 Schemske et al. 1978 WoL (M_PL_032) USA 33 7 0.28 56.66* 0.36 

P19 Small 1976 WoL (M_PL_033) Canada 34 13 0.32 40.96* 0.26 

P20 Olesen Unpublished WoL (M_PL_036) Flores  12 10 0.25 35.96* 0.44 

P21 Philipp et al. 2006  WoL (M_PL_042) Galapagos 6 12 0.35 49.79* 0.35 

P22 Lundgren & Olesen 2005 WoL (M_PL_045) Greenland 26 17 0.14 32.22* 0.46 

P23 Dupont & Olesen 2009 WoL (M_PL_047) Denmark 186 19 0.12 29.96* 0.42 

P24 Vázquez 2002 WoL (M_PL_051) Argentina 90 14 0.13 30.01* 0.49 

P25 Yamazaki & Kato 2003 WoL (M_PL_053) Japan 294 99 0.02 4.71* 0.59* 

P26 Bartomeus & Santamaría 2008 WoL (M_PL_058) Spain 81 32 0.12 28.02* 0.32 

H1 Basset & Samuelson 1996 Paper New Guinea 36 10 0.26 38.23* 0.37 

H2 Bluthgen et al. 2006 Paper Borneo 12 38 0.12 22.12* 0.57 

H3 Bodner et al. 2009  Ecuador 59 45 0.03 1.40 0.88 

H4 Coley et al. 2006 Paper Panama 45 37 0.05 6.47* 0.74 

H5 Futuyma & Gould 1979 Paper USA 57 18 0.43 58.43* 0.18 

H6 Henneman & Memmott 2001 (P100) Paper Hawaii 26 32 0.09 28.50* 0.51 

H7 Macfadyen et al. 2009a (A1) Author UK 78 25 0.05 10.24* 0.70 

H8 Memmott et al. 1994 Paper Costa Rica 92 54 0.02 0.68* 0.91 

H9 Muller et al. 1999 Paper UK 25 26 0.07 2.72 0.80* 

H10 Nakagawa et al. 2003 – 1996 Data Malaysia 29 20 0.19 53.00* 0.33 
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Code Reference Source Location Insects Plants C NODF Q 

H11 Novotny et al. 2005 Paper New Guinea 29 30 0.06 3.72 0.84 

H12 Pocock et al. 2012 (aphid) Author UK 28 30 0.05 1.54 0.90 

H13 Prado & Lewinsohn 2004 Paper Brazil 35 81 0.06 13.24* 0.63* 

H14 Rathcke 1976 – 1970 Paper USA 10 7 0.31 33.28 0.38 

H15 Tavakilian et al. 1997 Paper French Guiana 353 302 0.01 2.11* 0.69* 

H16 Tscharnatke et al. 2001 Paper Germany 16 10 0.12 4.24 0.76 

H17 Villa-Galaviz et al. 2012 (P42007) Author Mexico 27 18 0.07 6.18* 0.78 

H18 Joern 1979 Wol (A_PH_004) USA 22 52 0.16 30.4* 0.41* 

H19 Ueckert & Hansen 1971 Paper USA 14 43 0.3 69.3* 0.28 
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Figure S 4-1 a) Species richness, b) connectance, c) nestedness (z-scored values of NODF) and 

modularity (z-scored values of Q) of herbivory (H) and pollination (P) networks. 
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Table S 4-2 Results of the eight models investigating the effect of network structure and population 

feedbacks on (i) the probability of abundance-related extinctions, (ii) the length of coextinction 

cascades, (iii) the probability of coextinction cascades, and (iv) the probability of long coextinction 

cascades on pollination (P) and herbivory (H) networks. Linear mixed models were used, except for the 

two models on the probability of long cascades which were of the binomial family. Estimate (Est.), t 

and p-values of the effect of network structure, of reversing population feedbacks, and of the interaction 

between the two - only the results of the interaction are reported when the interaction was statistically 

significant (p < 0.05). All models had network identify as selected random effect. 

 Structure Feedback Interaction 

Int. Type Est. t P Est. t p Est. T p 

Abundance-related extinction probability (logit-transformed) 

P 0.06 4.24 <0.001 -0.18 -12.24 <0.001 - - - 

H -0.008 - - 0.007 - - -0.007 -2.22 0.03 

Length of coextinction cascade 

P -0.04 - - -0.05 - - -0.09 -21.6 <0.001 

H -0.02 - - 0.07 - - 0.04 8.3 <0.001 

Coextinction cascade probability (logit-transformed) 

P -0.85 - - -0.07 - - -0.19 -6.43 <0.001 

H -0.01 -0.78 0.43 0.3 18.75 <0.001 - - - 

Long coextinction cascade probability (binomial) 

Int. Type Est. z P Est. z p Est. Z p 

P 0.9 - - -3.43 - - -0.94 -7.67 <0.001 

H 0.44 5.5 <0.001 5.66 31.98 <0.001 - - - 
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Figure S 4-2 Boxplots of the probability of abundance-related extinctions (a, b), the length of 

coextinction cascades (c, d), the probability of coextinction cascades (e, f), and the probability of long 

coextinction cascades (g, h), for pollination and herbivory networks in the eight first simulation 

scenarios (S1 to S8). Statistically different scenarios (p < 0.05) are marked with different letters. Codes 

for simulation scenarios can be found in Table 4-1. 
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Code S4-1. rew.rule is an auxiliary function that generates R, a matrix of forbidden links which describes the rewiring opportunities for insect 

species. Its single argument is M, the interaction matrix and it returns R. Requirements: vegan R package (Oksanen et al., 2017).   

rew.rule <- function(M) 

{ 

  rede <- M 

  rede <- as.matrix(rede) 

   

  PP <- 1-as.matrix(vegdist(rede, method="jaccard", binary=FALSE, diag=FALSE, upper=TRUE, na.rm = FALSE))  

   

  pairs <- expand.grid(rownames(rede),rownames(rede))  

  pairs <- pairs[pairs$Var1!=pairs$Var2,]  

   

  for(j in 1:nrow(pairs))  

  { 

    prob <- PP[rownames(PP)==pairs$Var1[j],colnames(PP)==pairs$Var2[j]]  

    exc.var1 <- which(M[rownames(M)==pairs$Var1[j],]==1&M[rownames(M)==pairs$Var2[j],]==0)  

    exc.var2 <- which(M[rownames(M)==pairs$Var2[j],]==1&M[rownames(M)==pairs$Var1[j],]==0)  

    rede[rownames(rede)==pairs$Var1[j], exc.var2] <- sample(c(1,0), length(exc.var2), prob=c(prob,1-   

prob), replace=TRUE)  

    rede[rownames(rede)==pairs$Var2[j], exc.var1] <- sample(c(1,0), length(exc.var1), prob=c(prob,1-

prob), replace=TRUE)  

  } 

  return(rede) 

}  
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Code S4-2. sample.coin is an auxiliary function that samples which insects will rewire. Its two 

arguments are set, the set of insects that have lost a resource, and prob, a vector containing the 

rewiring probability for each insect in set. The function returns a vector of insect names which 

have been selected to rewire. Requirements: none. 

sample.coin <- function(set, prob) 

{ 

  res <- rep(NA, length(set)) 

  for(i in 1:length(set)) 

  { 

    res[i] <- sample(c(1,0), 1, prob=c(prob[i], 1-prob[i])) 

  } 

  set <- set[res==1] 

  return(set) 

} 
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Code S4-3. AV.dom is an auxiliary function that creates the Jacobian matrix, J, regarding the 

equations describing the population dynamics of all species in the community, and calculates 

its dominant eigenvalue. Its three arguments are S, the number of species (plants and insects) 

in the interaction matrix M, Tab, the data frame in which species abundances are stored, and 

MC, where the information on the per capita effects of each interaction on the abundance of 

every species is stored. Therefore, MC is the equivalent of the square matrix T, but the name 

MC was adopted throughout the code to avoid conflicts with the programming language. The 

function returns the dominant eigenvalue of J. The results presented in this chapter did not 

require the use of this function, but the main function bip_cascade does. Requirements: none. 

AV.dom <- function(S, TAb, MC) 

{ 

  matriz.diag <- matrix(0,S,S)  

  diag(matriz.diag) <- -TAb$abundance  

  J <- matriz.diag%*%MC  

  eigen <- eigen(J,only.values=TRUE) 

  autovalores <- as.numeric(eigen$values) 

  autovalores[(which(autovalores<10^-12&autovalores>0))] <- 0 

  AVdom <- max(as.numeric(autovalores)) 

  return(AVdom) 

} 
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Code S4-4. Lapla is an auxiliary function that creates the Laplacian matrix, L, regarding the 

interaction matrix M, which is used to calculate the number of components (NComp), size of 

the largest component (CSize), number of components with the largest component size 

(nLarge), and the algebraic connectivity (CA) of M. Its four arguments are M, the number of 

insect and plant species, nA and nP, and transp which states whether M is transposed or not. 

The function returns NComp, CSize, nLarge and CA. The results presented in this chapter did 

not require the use of this function, but the main function bip_cascade does. Requirements: 

igraph R package (Czárdi and Nepusz, 2006). 

Lapla <- function(M, nA, nP, transp) 

{ 

  if(transp==TRUE){M <- t(M)} 

  q2 <- q4 <- M  

  q1 <- mat.or.vec(nA, nA); q3 <- mat.or.vec(nP, nP) 

  upper <- cbind(q1, q2); lower <- cbind(t(q4), q3) 

  colnames(upper) <- colnames(lower) <- c(rownames(M), colnames(M)) 

  MQ <- as.matrix(rbind(upper, lower)); rownames(MQ) <- 

c(rownames(M), colnames(M)) 

  g <- graph_from_adjacency_matrix(MQ, "undirected") 

  clu <- igraph::components(g)  

  ncomp <- clu$no  

  comp.sp <- groups(clu)  

  c.size <- max(clu$csize) 

  largclu <- which(clu$csize==max(clu$csize))  

  conalg <- rep(NA, length(largclu))  

  for(f in 1:length(largclu)) 

  { 

    lc <- largclu[f]; lcsp <- comp.sp[[lc]] 

    glc <- induced_subgraph(g, lcsp) 

    laplaglc <- graph.laplacian(glc)   

    eigenv <- eigen(laplaglc)$values 

    conalg[f] <- eigenv[order(eigenv)][2]  

  } 

  conalg <- mean(conalg) 

  return(data.frame(NComp=ncomp,CSize=c.size,nLarge=length(largclu), 

CA=conalg)) 

} 
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Code S4-5. holl1 is an auxiliary function that calculates the new abundances of every species 

after changes in networks structure. This function is used inside the ode function from deSolve 

R package. Its three arguments are t, a vector of time steps for which the function holl1 will be 

solved, y which is the vector storing the most recent values of species abundances, and parms, 

a list with the parameters used by holl1. The function returns a list with the newly calculated 

species abundances. Requirements: deSolve R package (Soetaert et al., 2010). 

holl1 <- function(t, y, parms)  

{ 

  with(parms, { 

    dy <- y*(alpha - (MC%*%y)) 

    dy <- t(dy) 

    return(list(dy))}) 

} 
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Code S4-6. bip_cascade is the main function used to simulate coextinction cascades in bipartite pollination and herbivory networks. It has 12 

arguments: dir is the folder where source networks can be found, m.type is the type of matrix being used as source (pollination or herbivory), 

ext.target is the set of species targeted as primary extinctions (plants or insects, in this study all scenarios targeted plants), ext.scen is the scenario 

used to select species which will suffer primary extinctions (random, lowk or highk, in this study all scenarios were random), rew.logic determines 

whether rewiring will occur or not (TRUE or FALSE), rew.choice is the rewiring scenario used (always FALSE if rew.logic is FALSE, or either 

random or proportion if rew.logic is TRUE, in this study all scenarios with rew.logic = TRUE used proportion), comp.type is the competition 

scenario used (NC or CE, in this study all scenarios used NC), lnorm.mean and lnorm.sd  are the mean and standard deviation of the lognormal 

distribution from which species abundances are sampled, strength is the standard deviation of the normal distribution from which the per capita 

effects of each interaction (stored in the square matrix T) on the abundance of every species are sampled, n.run is the number of simulations for 

each empirical network in dir. 

bip_cascade <- function(dir, m.type, ext.target, ext.scen, rew.logic=FALSE, rew.choice=FALSE, comp.type, 

lnorm.mean, lnorm.sd, strength, n.run=100){ 

   

  # Warning messages 

  m.type <- as.character(m.type) 

  if(!m.type %in% c("pol", "her")){return("Error: m.type must be pol or her")} 

  ext.target <- as.character(ext.target) 

  if(!ext.target %in% c("pla", "ins")){return("Error: ext.target must be pla or ins")} 

  ext.scen <- as.character(ext.scen) 

  if(!ext.scen %in% c("random", "lowk", "highk")){return("Error: ext.scen must be random, lowk or 

highk")} 

  rew.logic<-as.logical(rew.logic) 

  if(!is.logical(rew.logic)){return("Error: rew.logic must be logical")} 
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  if(rew.logic==TRUE){rew.choice <- as.character(rew.choice)} 

  if(rew.logic==TRUE){if(!rew.choice %in% c("random", "proportion")){return("Error: rew.choice must be 

random or proportion")}} 

  comp.type <- as.character(comp.type) 

  if(!comp.type %in% c("NC", "CE")){return("Error: comp.type must be NC or CE")} 

  lnorm.mean <- as.numeric(lnorm.mean); lnorm.sd <- as.numeric(lnorm.sd); strength <- 

as.numeric(strength) 

  is.wholenumber <- function(x, tol = .Machine$double.eps^0.5)  abs(x - round(x)) < tol 

   

  # Creates task name 

  if(m.type=="pol"){task <- paste("pol")} else {task <- paste("her")} 

  if(ext.scen=="lowk"){ 

    task <- paste(task, "_lk", sep="") 

  } else if(ext.scen=="highk"){ 

    task <- paste(task, "_hk", sep="") 

  } else {task <- paste(task, "_rd", sep="")} 

  if(rew.logic==FALSE){task <- paste(task, "_Nrew", sep="")} 

  if(rew.logic==TRUE) 

  { 

    task <- paste(task, "_rew", sep="") 

    if(rew.choice=="random"){task <- paste(task, "_rand", sep="")} 

    if(rew.choice=="proportion"){task <- paste(task, "_prop", sep="")} 

  } 

  task <- paste(task, comp.type, sep="_"); task 



 

 

 

1
4
1

 

  # Sets up libraries and data 

  if("vegan" %in% rownames(installed.packages()) == FALSE) {install.packages("vegan")} 

  if("deSolve" %in% rownames(installed.packages()) == FALSE) {install.packages("deSolve")} 

  if("igraph" %in% rownames(installed.packages()) == FALSE) {install.packages("igraph")} 

  require(vegan); require(deSolve); require(igraph) 

  dir<-as.character(dir) 

  setwd(dir); redes <- list.files() 

  if(any(redes=="Results")){redes <- redes[-which(redes=="Results")]} 

   

  # Creates results folder inside network folder 

  mainDir <- paste("/Results") 

  dir.create(file.path(dir, mainDir), showWarnings = TRUE) 

  subDir <- paste(task, sep="") 

  mainDir <- paste(dir, "/Results", sep="") 

  dir.create(file.path(mainDir, subDir), showWarnings = TRUE) 

   

  # For each network in dir 

  for(z in 1:length(redes)) 

  { 

    print(z); setwd(dir) 

    Mat <- as.matrix(read.table(redes[z], sep="\t", header=FALSE)); dim(Mat) 

    rotulo <- strsplit(redes[z], ".txt")[[1]][1]  

    setwd(file.path(mainDir, subDir)) 
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    for(k in 1:n.run) 

    { 

      M <- Mat; M[M>1] <- 1 

      nA=nrow(M); nP=ncol(M); S=nA+nP; C <- sum(M)/(nA*nP) 

      namesA <- c(sprintf("A%d", 1:nA)); rownames(M) <- namesA 

      namesP <- c(sprintf("P%d", 1:nP)); colnames(M) <- namesP 

       

      # Creates abundance table TAb 

      TAb <- data.frame(name=c(namesA, namesP), abundance=rlnorm(S, lnorm.mean, lnorm.sd))  

      TAb_print <- matrix(TAb[,2], ncol=1); rownames(TAb_print) <- TAb[,1]; colnames(TAb_print) <- 

paste("i=0_j=0") 

      write.table(t(TAb_print), file=paste(rotulo, "_TAb_", k, ".txt", sep=""), sep="\t", row.names=TRUE, 

col.names=TRUE) 

       

      # Creates probability matrix P proportional to TAb 

      AP <- matrix(rep(TAb[TAb$name %in% namesA,2], nP), nA, nP, byrow=FALSE)  

      PP <- matrix(rep(TAb[TAb$name %in% namesP,2], nA), nA, nP, byrow=TRUE)  

      P <- (AP*PP)/sum(AP*PP)  

      rownames(P) <- rownames(M); colnames(P) <- colnames(M) 

       

      # Creates rewire rule matrix 

      rewM <- rew.rule(M)  

      if(rew.logic==TRUE) 

      { 
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        write.table(rewM, file=paste(rotulo, "_rewM_", k, ".txt", sep=""), sep="\t", col.names=TRUE, 

row.names=TRUE) 

        TRew_print <- data.frame(i=numeric(0), j=numeric(0), Ins=character(0), From=character(0), 

To=character(0)) 

        write.table(TRew_print, file=paste(rotulo, "_TRew_", k, ".txt", sep=""), sep="\t", 

row.names=TRUE, col.names=TRUE) 

      } 

       

      # Creates square matrix MC (per capita effect of every interaction on abundance of all species) 

      Q2 <- Q4 <- M  

      Q2[which(Q2==1)] <- -abs(rnorm(sum(M), 0, strength))  

      Q4[which(Q4==1)] <- -abs(rnorm(sum(M), 0, strength))  

      if(m.type=="her"){Q4 <- -Q4}  

      Q1 <- mat.or.vec(nA, nA); Q3 <- mat.or.vec(nP, nP)  

      if(comp.type=="CE")  

      { 

        sampled.omegas <- runif(nA*nA) 

        Q1[,] <- realized.interactions <- sampled.omegas < C  

        Q1[Q1==1] <- abs(rnorm(sum(as.numeric(realized.interactions)), 0, strength))  

        sampled.omegas <- runif(nP*nP) 

        Q3[,] <- realized.interactions <- sampled.omegas < C  

        Q3[Q3==1] <- abs(rnorm(sum(as.numeric(realized.interactions)), 0, strength))  

      }  
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      upper <- cbind(Q1, Q2); lower <- cbind(t(Q4), Q3) 

      MC <- rbind(upper, lower); rownames(MC) <- colnames(MC) <- c(namesA, namesP) 

      diag(MC) <- 1  

      write.table(MC, file=paste(rotulo, "_MC_", k, ".txt", sep=""), sep="\t", col.names=TRUE, 

row.names=TRUE) 

       

      # Calculates alpha (intrinsec growth rate) 

      alpha <- MC%*%TAb$abundance; colnames(alpha) <- "alpha" 

       

      # Creates network info table TNet 

      AVdom <- AV.dom(S, TAb, MC)  

      N <- M; N[N!=0] <- 1  

      NODF <- as.numeric(nestednodf(N, order = TRUE)[[3]][3]) 

      Lap <- Lapla(M, nA, nP, transp=FALSE) 

      TNet <- data.frame(i=0,j=0, AVdom=AVdom, NODF=NODF, C=C, NComp=Lap[1], CSize=Lap[2], nLarge=Lap[3], 

CA=Lap[4], nA=nA, nP=nP) 

      write.table(TNet, file=paste(rotulo, "_TNet_", k, ".txt", sep=""), sep="\t", col.names=TRUE, 

row.names=FALSE) 

       

      # Begining of simulation 

AllSpp <- TAb[,1] 

       

      # Creates species extinction table TEx 

      TEx <- data.frame(i=numeric(0), j=numeric(0), name=character(0), ext_type=character(0))  
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      write.table(TEx, file=paste(rotulo, "_TEx_", k, ".txt", sep=""), sep="\t") 

      bs <- seq(1, S, 1) 

       

      ##### BIG FOR - Primary Extinction ##### 

      i <- 1   

      while(i %in% 1:length(bs)) 

      {   

        if(ext.target=="pla"){target <- colSums(M)}else{target <- rowSums(M)} 

        if(ext.scen=="lowk")  

        { 

          spp.min.degree <- which(target==min(target)) 

          if(length(spp.min.degree)>1){min.degree <- sample(spp.min.degree,1)} else { 

            min.degree <- spp.min.degree}  

          ext <- TAb[TAb$name==names(min.degree),] 

        } else if(ext.scen=="highk") { 

          spp.max.degree <- which(target==max(target)) 

          if(length(spp.max.degree)>1){max.degree <- sample(spp.max.degree,1)} else { 

            max.degree <- spp.max.degree}  

          ext <- TAb[TAb$name==names(max.degree),] 

        } else {ext <- TAb[TAb$name==sample(names(target), 1),]}  

        TEx <- rbind(TEx, data.frame(i=i, j=999, name=ext[1], ext_type="primaria")) 

         

        ##### SMALL FOR - Executes extinctions (Prim or Sec) ##### 

        j <- 1; cascade=TRUE; break.cascade=FALSE 
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        while(cascade==TRUE)   

        { 

          ext.df <- TEx 

          write.table(ext.df, file=paste(rotulo, "_TEx_", k, ".txt", sep=""), sep="\t", append=TRUE, 

col.names=FALSE, row.names=FALSE) 

           

          for(n in 1:nrow(ext.df)) 

          { 

            if(dim(M)[1]==1 && rownames(M)==ext.df[n,3] | dim(M)[2]==1 && colnames(M)==ext.df[n,3]) 

            { 

              times <- seq(0, 10, by = 1) 

              y <- TAb$abundance  

              parms <- list(alpha=alpha, MC=MC) 

              equilibrium <- FALSE 

               

              while(equilibrium==FALSE) 

              { 

                res <- ode(y, times, holl1, parms) 

                equi_test <- apply(rbind(res[,-1]),2,diff)<0.001 

                if(all(equi_test))  

                { 

                  y[y<=0.001] <- 0 

                  final_times <- seq(0, 100, by = 1) 

                  final_res <- ode(y, final_times, holl1, parms) 
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                  final_equi_test <- apply(rbind(res[,-1],final_res[41:50,-1]),2,diff)<0.001 

                  if(all(final_equi_test)){TAb$abundance <- final_res[nrow(final_res),-1]; equilibrium <- 

TRUE} else { 

                    y <- final_res[nrow(final_res),-1] 

                  } 

                } else {y <- res[nrow(res),-1]}  

              }  

               

              if(any(TAb$abundance<=0.001)) 

              { 

                TAb[TAb$abundance<=0.001,2] <- 0; ZERO <- TRUE 

              } else {ZERO <- FALSE} 

               

              ExtSpp <- AllSpp[!(AllSpp %in% TAb[,1])]  

              ExtSpp <- data.frame(name=ExtSpp, abundance=rep(0, length(ExtSpp))) 

              TAb_print <- rbind(do.call(data.frame, TAb), ExtSpp) 

              TAb_print <- TAb_print[match(AllSpp, TAb_print[,1]),] 

              TAb_print <- t(TAb_print[,2]); rownames(TAb_print) <- paste("i=",i,"_j=",j,sep="") 

              write.table(TAb_print, file=paste(rotulo, "_TAb_", k, ".txt", sep=""), append=TRUE, 

sep="\t", row.names = TRUE, col.names=FALSE) 

               

              print("Fim da simulacao") 

              i <- length(bs)  

              break.cascade=TRUE  
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              break  

            } 

             

            if(ext.df[n,3] %in% namesP) 

            { 

              transp <- TRUE; M <- t(M); P <- t(P); rewM <- t(rewM) 

               

              if(rew.logic==TRUE) 

              { 

                pol_set <- names(which(M[rownames(M)==ext.df[n,3],]!=0))  

                 

                # Step1: Selects which insects will rewire 

                if(length(pol_set)!=0) 

                { 

                  step1 <- which(M!=0,arr.ind=TRUE); rownames(step1) <- NULL; step1 <- data.frame(step1)  

                  step1$pl.name <- rownames(M)[step1$row]  

                  step1$an.name <- colnames(M)[step1$col]  

                  step1$Ab <- TAb$abundance[match(step1$pl.name, TAb$name)]  

                  step1[step1$pl.name==ext.df[n,3],5] <- 0  

                   

                  # rewire probability 

                  rew_prob <- tapply(step1$Ab, step1$an.name, sum)/max(tapply(step1$Ab, step1$an.name, 

sum)) 
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                  if(any(rew_prob=="NaN")){name <- names(rew_prob); rew_prob[rew_prob=="NaN"] <- 0; 

names(rew_prob) <- name} 

                  rew_prob <- 1-rew_prob; rew_prob <- rew_prob[match(pol_set,names(rew_prob))] 

                  pol_set <- sample.coin(pol_set, rew_prob) 

                } 

                 

                if(rew.choice=="random") 

                { 

                  rewire <- M; rewire[] <- 1; rewire <- rewire/sum(rewire)  

                  rewire <- rewire*rewM  

                } else {rewire <- P*rewM}  

                 

                rewire[which(M==1)] <- 0  

                rewire <- matrix(rewire[,which(colnames(rewire) %in% pol_set)], nrow=nrow(rewire), 

dimnames=list(rownames(rewire), colnames(rewire)[which(colnames(rewire) %in% pol_set)])) 

                rewire <- t(rewire) 

                rewire <- matrix(rewire[which(rowSums(rewire)!=0),], ncol=ncol(rewire), 

dimnames=list(rownames(rewire)[which(rowSums(rewire)!=0)], colnames(rewire))) 

                 

                # Step 2: Selects to which plant will insects rewire  

                if(nrow(rewire)!=0) 

                { 

                  for(m in 1:nrow(rewire))  

                  { 
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                    rewire_m <- rewire[m,] 

                    pol <- rownames(rewire)[m]  

                    new_int <- sample(colnames(rewire), 1, prob = rewire_m/sum(rewire_m)) 

                    M[new_int, pol] <- 1  

                    MC[pol, new_int] <- -abs(rnorm(length(new_int), 0, strength))  

                    MC[new_int, pol] <- -abs(rnorm(length(new_int), 0, strength)); 

if(m.type=="her"){MC[new_int, pol] <- -MC[new_int, pol]}  

                    TRew_print <- data.frame(i=i, j=j, Ins=pol, From=ext.df[n,3], To=new_int) 

                    write.table(TRew_print, file=paste(rotulo, "_TRew_", k, ".txt", sep=""), sep="\t", 

append=TRUE, col.names=FALSE, row.names=FALSE) 

                  } 

                } 

              } 

            } else {transp <- "oklahoma"} 

             

            M <- matrix(M[-which(rownames(M)==ext.df[n,3]),], ncol=ncol(M), dimnames=list(rownames(M)[-

which(rownames(M)==ext.df[n,3])], colnames(M)))  

            P <- matrix(P[-which(rownames(P)==ext.df[n,3]),], ncol=ncol(P), dimnames=list(rownames(P)[-

which(rownames(P)==ext.df[n,3])], colnames(P)))  

            MC <- MC[-which(rownames(MC)==ext.df[n,3]), -which(colnames(MC)==ext.df[n,3])]  

            rewM <- matrix(rewM[-which(rownames(rewM)==ext.df[n,3]),], ncol=ncol(rewM), 

dimnames=list(rownames(rewM)[-which(rownames(rewM)==ext.df[n,3])], colnames(rewM)))  

            TAb <- TAb[-which(TAb$name==factor(ext.df[n,3], levels=levels(TAb$name))),]  
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            alpha <- matrix(alpha[-which(rownames(alpha)==ext.df[n,3]),], ncol=1, 

dimnames=list(rownames(alpha)[-which(rownames(alpha)==ext.df[n,3])]))  

             

            if(transp==TRUE && n!=nrow(ext.df)){M <- t(M); P <- t(P); rewM <- t(rewM)} 

          } 

          if(break.cascade==TRUE){break.cascade==FALSE; break}  

           

          # New abundances 

          times <- seq(0, 10, by = 1) 

          y <- TAb$abundance  

          parms <- list(alpha=alpha, MC=MC) 

          equilibrium <- FALSE 

           

          while(equilibrium==FALSE) 

          { 

            res <- ode(y, times, holl1, parms) 

            equi_test <- apply(rbind(res[,-1]),2,diff)<0.001 

            if(all(equi_test))  

            { 

              y[y<=0.001] <- 0 

              final_times <- seq(0, 100, by = 1) 

              final_res <- ode(y, final_times, holl1, parms) 

              final_equi_test <- apply(rbind(res[,-1],final_res[41:50,-1]),2,diff)<0.001 
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              if(all(final_equi_test)){TAb$abundance <- final_res[nrow(final_res),-1]; equilibrium <- 

TRUE} else { 

                y <- final_res[nrow(final_res),-1] 

              } 

            } else {y <- res[nrow(res),-1]}  

          }  

           

          if(any(TAb$abundance<=0.001)) 

          { 

            TAb[TAb$abundance<=0.001,2] <- 0; ZERO <- TRUE 

          } else {ZERO <- FALSE} 

           

          ExtSpp <- AllSpp[!(AllSpp %in% TAb[,1])]  

          ExtSpp <- data.frame(name=ExtSpp, abundance=rep(0, length(ExtSpp))) 

          TAb_print <- rbind(do.call(data.frame, TAb), ExtSpp) 

          TAb_print <- TAb_print[match(AllSpp, TAb_print[,1]),] 

          TAb_print <- t(TAb_print[,2]); rownames(TAb_print) <- paste("i=",i,"_j=",j,sep="") 

          write.table(TAb_print, file=paste(rotulo, "_TAb_", k, ".txt", sep=""), append=TRUE, sep="\t", 

row.names = TRUE, col.names=FALSE) 

           

          nA <- nrow(TAb[TAb$name %in% namesA,]); nP <- nrow(TAb[TAb$name %in% namesP,]) 

          AP <- matrix(rep(TAb[TAb$name %in% namesA,2], nP), nA, nP, byrow=FALSE) 

          PP <- matrix(rep(TAb[TAb$name %in% namesP,2], nA), nA, nP, byrow=TRUE) 

          P <- (AP*PP)/sum(AP*PP); if(any(is.nan(P))){P[is.nan(P)] <- 0}  
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          rownames(P) <- TAb[TAb$name %in% namesA,1]; colnames(P) <- TAb[TAb$name %in% namesP,1] 

          if(transp==TRUE) {P <- t(P)} 

           

          S=(dim(M)[1]+dim(M)[2]); AVdom <- AV.dom(S, TAb, MC) 

          Lap <- Lapla(M, nA, nP, transp) 

          if(dim(M)[1]>1 & dim(M)[2]>1) 

          { 

            N <- M; N[N!=0] <- 1 

            NODF <- as.numeric(nestednodf(N, order = TRUE)[[3]][3]) 

            C <- sum(M)/(dim(M)[1]*dim(M)[2]) 

          } else {NODF <- 999; C <- 999} 

           

          if(transp==TRUE){num_pla <- dim(M)[1]; num_pol <- dim(M)[2]} else {num_pla <- dim(M)[2]; 

num_pol <- dim(M)[1]} 

          TNet <- data.frame(i=i, j=j, AVdom=AVdom, NODF=NODF, C=C, NComp=Lap[1], CSize=Lap[2],  

nLarge=Lap[3], CA=Lap[4], nA=num_pol, nP=num_pla) 

          write.table(TNet, file=paste(rotulo, "_TNet_", k, ".txt", sep=""), sep="\t", append=TRUE,  

col.names=FALSE, row.names=FALSE) 

           

          # Secondary extinctions (next round) 

          if(any(rowSums(M)==0) | any(colSums(M)==0) | ZERO==TRUE) 

          { 

            ext_int <- c(names(c(which(rowSums(M)==0), which(colSums(M)==0)))) 
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            TEx_int <- data.frame(i=rep(i, length(ext_int)), j=rep(j, length(ext_int)), name=ext_int, 

ext_type=rep("sec_int", length(ext_int))) 

            if(m.type=="her"){if(length(grep("P", TEx_int$name))!=0){TEx_int <- TEx_int[-grep("P", 

TEx_int$name),]}} 

            ext_ab <- TAb$name[TAb$abundance==0] 

            TEx_ab <- data.frame(i=rep(i, length(ext_ab)), j=rep(j, length(ext_ab)), name=ext_ab, 

ext_type=rep("sec_ab", length(ext_ab))) 

            TEx <- rbind(TEx_int, TEx_ab) 

            if(any(duplicated(TEx$name))){TEx <- TEx[-which(duplicated(TEx$name)),]}  

            if(nrow(TEx)==0){cascade=FALSE}else{cascade=TRUE} 

          } else {TEx <- data.frame(); cascade=FALSE} 

           

          # End of small for 

          if(transp==TRUE) {M <- t(M); P <- t(P); rewM <- t(rewM); transp <- "oklahoma"} 

          if(dim(M)[1]==1 && dim(M)[2]==1)  

          { 

            print("Fim da simulacao") 

            i <- length(bs); break  

          } j <- j+1 

        } i <- i+1 

      } 

    } 

  } 

}
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Chapter 5 Discussion 

 

Understanding how the interactions between plants and insects can inform the recovery of 

natural systems is a considerable challenge, especially when aiming at the restoration of 

multiple trophic levels and of ecosystem services (Memmott, 2009; Harvey et al., 2017). This 

thesis assessed the role of plant communities in structuring insect communities, specifically 

pollinators, herbivores and parasitoids. In this final Discussion chapter, I will summarise the 

main findings from the three studies presented, explaining their relevance and highlighting 

their limitations along with questions to be addressed by future studies. 

  

5.1 What has been learnt?  

The pressure on agricultural systems to feed a large population (Godfray et al., 2010) together 

with the increasing awareness about the negative impacts of agricultural intensification on 

biodiversity (Allan et al., 2015), have generated an extensive debate on how farms should be 

managed (Green et al., 2005; Fischer et al., 2008; Hodgson et al., 2010; Phalan et al., 2011a). 

Some suggest that, with intensive management, agricultural systems could occupy a smaller 

area, increasing the amount of land that can be spared for the conservation of natural 

environments (Phalan et al., 2011b). Alternatively, others propose that land for food production 

and biodiversity conservation should be shared, stating that biodiversity friendly management 

benefits not only the conservation of species but should also increase productivity, as crops 

depend on ecosystem services (Carvalheiro et al., 2011; Tscharntke et al., 2012).  

The dataset used in Chapter 2 on plant-herbivore-parasitoid networks from 10 pairs of 

organic and conventionally managed farms has contributed to this debate. The data were 

originally collected to investigate how different management regimes affect plant and insect 
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diversity and the service of pest control (Gibson et al., 2007; Macfadyen et al., 2009a, 2009b, 

2011a, 2011b). For instance, these studies showed that, despite the higher richness of 

parasitoids in organic farms, the percentage of parasitism (suggesting pest control) was similar 

between management regimes (Macfadyen et al., 2009a), while the temporal stability of pest 

control was in fact higher within organic farms (Macfadyen et al., 2009a, 2011a).  

In Chapter 2, I looked at this dataset from a new perspective. Instead of comparing 

management regimes or looking at the community-level network structure of the farms, I 

focused on the role of individual plant species. Specifically, I searched for keystone plant 

resources for insects in two trophic levels, using a traditional method in network studies, 

network metrics combined with null models (Dalsgaard et al., 2013; Trøjelsgaard and Olesen, 

2013; Gilarranz et al., 2015; Sebastián‐González et al., 2015), but this time applied to the 

structure of species-level interactions. This allowed me to separate which plant species were 

“preferred” (eaten more than expected), “avoided” (eaten less than expected) or eaten in 

proportion to their abundance. Since identifying food preferences can be difficult (King et al., 

2010; Ibanez et al., 2013), this method will facilitate the study of neutral versus niche processes 

on species interactions at the level of whole-communities. I was also able to describe how 

species roles varied across communities, to show that plant species had conserved network 

roles across trophic levels and that the phylogenetic context of the plant community has a non-

negligible effect on the interactions between plant and herbivores.  

Researchers have acknowledged the disproportional importance of particular plant 

species for insects and other animals that depend on them, calling these species “keystone 

resources” (Peres, 2000; Watson, 2001; Watson and Herring, 2012; Anthelme et al., 2014; 

Diaz-Martin et al., 2014). These studies usually focused on one or few species, and decided 

which plant species were keystone resources a priori, based on specialist knowledge. For 

instance, keystone plant resources for vertebrates were defined in terms of their temporal non-
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redundancy and reliability, and on the size and abundance of the fruits produced (Diaz-Martin 

et al., 2014). The keystone role of mistletoes had, in fact, been empirically tested with the 

systematic removal of mistletoes from replicate plots (Watson and Herring, 2012). In this 

thesis, I contributed to the study of keystone plant resources by using a replicable 

methodological procedure, and my results contribute to the studies of biodiversity in 

agricultural systems and to geographical variation on species network roles.  

In Chapter 3, I used a field experiment to test whether plant species roles in pollination 

networks could be used to promote the recovery of pollinator communities. I found that plant 

species network roles in natural pollination systems were a good indicator of their 

attractiveness to pollinators. One possible explanation for the consistent network roles 

observed for plant species in this study, is the high level of generalisation in pollination systems 

(Waser et al., 1996; Fontaine et al., 2009), which can make plant-pollinator interactions flexible 

in space and time (Olesen et al., 2008; Petanidou et al., 2008; Carstensen et al., 2014; 

Trøjelsgaard et al., 2015). Therefore, the likely turnover in the available pool of pollinator 

species from the original to the experimental locations, did not appear to affect the number of 

pollinator species able to visit introduced plants in the experimental plots, explaining their 

conserved network roles across space. The observed results, also suggest that the central 

network roles of the selected plant species potentially reflect generalised morphologies - i.e. 

traits which allow visitation by insects with a range of morphologies (Fontaine et al., 2005; 

Stang et al., 2006) - allowing central species to be visited by more insect species than peripheral 

plants regardless of the location. Generalised morphologies, combined with high rewards, as 

reported in Chapter 3, could explain why some plant species consistently present central 

network roles across communities, although further work is needed to confirm this.  

In the same experiment, I also assessed whether plant species with different network 

roles had contrasting effects on the visitation received by resident plant species. I did this by 
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comparing the network roles of resident species in treatments in which no species (control), 

peripheral or central plant species had been introduced. My results suggest that, despite the 

higher attractiveness of central species to pollinators, their effect on resident plants was not 

more damaging than the introduction of peripheral plants, as introducing peripheral and central 

species produced quite similar results. Visitation, however, is only the first step to be assessed, 

and if the effect on resident plants had been further investigated, different results could have 

been found. For instance, in a field experiment, a community with open flowers produced more 

seeds per fruit when visited by pollinators with short than with long mouth parts. However, this 

difference was compensated at the stage of recruitment which was similar with both pollinator 

types (Fontaine et al., 2005). My study would have benefitted from a more detailed exploration 

of the reproductive success of resident plant species. I considered looking at the pollen 

transported from introduced to resident species to infer negative effects on reproductive 

success. However, due to the difficulty in separating pollen from different species of the same 

family based in morphology (Moore et al., 1991), this idea was discarded.  

The results of my experimental study suggest that pollination function was higher in 

central than in peripheral or control subplots, since high richness and abundance of pollinators 

are usually associated with higher pollination function (Albrecht et al., 2012; Garibaldi et al., 

2013). However, pollination function can be measured directly with phytometer experiments. 

For instance, Orford et al. (2016) investigated pollination function promoted by different 

pasture plant communities and management regimes, by measuring the fruit and seed set, and 

weight and quality of fruits of three phytometer species. Following a similar procedure, I ran a 

further experiment where I added strawberry plants (Fragaria x ananassa) to each subplot, but 

I found no difference in strawberry weight across treatments. I did not include this result in the 

thesis however, as it could simply reflect the small spatial scale of the study, rather than a lack 

of treatment effect.  
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Most restoration studies which target insects explore whether the insect community had 

been re-established in restored sites, by comparing the pollinator (Tarrant et al., 2013; 

Sant’Anna et al., 2014) or herbivore (Rowe and Holland, 2013; Borchard and Fartmann, 2014) 

community with the ones from reference or historical sites. However, few restoration studies 

investigate the effects of individual plant species on the next trophic levels (Moir et al., 2010; 

Barton et al., 2013; Schuldt and Scherer-Lorenzen, 2014), even if there is ample evidence that 

not all plant species are equally important for herbivores and pollinators (Pywell et al., 2003; 

Barton et al., 2013). In Chapters 2 and 3, I followed the approach of Pocock et al. (2012), who 

suggested that ecological networks could be used to identify keystone species for restoration 

purposes, as these would have a high potential of reaching positive results for biodiversity and 

ecosystem services. My work added to this research field as, in addition to identifying the 

keystone species, as done by Pocock et al. (2012), in Chapter 3 I then tested the plants’ network 

roles using a field experiment and found it to be consistent in new combinations of species. 

In Chapter 4, instead of focusing on single plant species which are important for insects, 

I investigated how whole plant-insect communities collapse with the loss of plant species. I 

have achieved this by specifically addressing observed differences between pollination and 

herbivory systems. Despite having been intensively studied, pollination and herbivory 

networks are still mostly studied separately. Several studies on herbivory networks have 

focused on understanding its frequently modular structure (Prado and Lewinsohn, 2004; 

Cagnolo et al., 2011; Elias et al., 2013; Pires and Guimarães, 2013; López-Carretero et al., 

2014; Bergamini et al., 2017). While pollination networks have been intensively studied in 

terms of structure (Dalsgaard et al., 2013) and robustness to species loss (Astegiano et al., 2015; 

Santamaría et al., 2016), they have also been considered in terms of their temporal and spatial 

dynamics (Petanidou et al., 2008; Carstensen et al., 2014) and macroecological patterns 

(Trøjelsgaard and Olesen, 2013). When the two types of network are studied together, then it 
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is possible to compare and contrast them showing, for instance, that phylogenetic conservatism 

if higher for plants in herbivory than in pollination networks (Fontaine and Thébault, 2015), 

and that asymmetric specialisation is more frequent in pollination than in herbivory systems 

(Thébault and Fontaine, 2008).  

Having studied herbivory and pollination separately in Chapters 2 and 3, in Chapter 4 

I asked how differences in natural history and network structure affected the robustness of both 

systems. First, I was interested in the different population feedbacks associated with 

mutualisms and antagonisms, which I expected to have profound consequences for extinction 

cascades. Second, I looked at differences in generalisation between the two systems, as I 

expected this to affect rewiring opportunities. There are several challenges involved in 

comparing networks of different interaction types (Thébault and Fontaine, 2008; Dáttilo et al., 

2016), since the organisms involved in the interaction might vary in taxonomic resolution, the 

interaction could vary in the degree of intimacy and interactions may be sampled using 

different methods. All these factors are likely to affect network structure and interaction 

frequencies. By (i) focusing on similar groups in both types of network (plants and insects), 

(ii) using a design in which comparisons were made between scenarios, using the same 

network, instead of between networks, and (ii) adding simulated information strategically to 

avoid comparisons which could be misleading (e.g. species abundance), I was able to compare 

the robustness of both systems. This framework allowed me to avoid differences in network 

size, sampling methods and interaction strengths between interaction types, so that features of 

interest could then be isolated. 

 

5.2 Future directions  

The study of ecological networks can provide data which is very pertinent for the practice of 

conservation and ecological restoration. In this section I discuss how the data collection, 
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including the one from my own field experiment, could be improved in future studies so that 

ecological theory and practice can become more aligned.  

 

5.2.1 The identification of keystone resource plant species in plant-insect food webs   

An obvious improvement to the study presented in Chapter 2 would be to have more 

detailed plant abundance data, and to have independently collected plant-herbivore and plant-

parasitoid interactions. With this extra level of detail, the identification of keystone resources 

for both groups of insects would likely be more accurate. I am aware, however, of the 

challenges involved in adding these refinements to the collection of such intensive and well 

replicated datasets (in the original farm project the data collection already involved two years 

of field work, two full time staff and two seasonal field assistants). A further limitation is the 

short temporal scale of the study, as the data was collected over two years, which I then 

combined into one single dataset. In reality, studies involving field data at the community level 

with good replication will frequently present these sort of limitations, i.e. information will be 

less detailed than single-site studies. Nevertheless, both study types are equally important as 

they address different types of questions, single-site studies will provide detailed mechanistic 

explanations about the study systems (Danieli-Silva et al., 2012; Elias et al., 2013), while 

replicate and broad scale studies are the best way to identify patterns (Macfadyen et al., 2011b; 

Trøjelsgaard and Olesen, 2013).  

 Despite the challenges involved, data collected from longer temporal and larger spatial 

scales is needed if we aim to truly understand patterns and processes at the community level 

(Lawton, 1999). The reward for this can be high, for example, with a 8-year dataset on plant-

pollinator interactions following hedgerow restoration, researchers were able to show how 

these communities reorganise over time, how reorganisation affected network structure and 

which network roles were occupied by the most persistent species across time (Ponisio et al., 
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2017). In reality, temporal and spatial scales are system dependant and here a careful choice of 

study system is helpful – for example it is logistically simpler to replicate an experimental 

system on hedgerow restoration than on woodland restoration. 

 

5.2.2 Plant species roles in pollination networks: an experimental approach.  

I sampled pollinator abundance and richness, and plant-pollinator interactions to test 

whether different plant treatments, central vs. peripheral plant species, attract a higher diversity 

of pollinators and to infer pollination function. Another way to measure diversity, however, 

which is closely connected with ecosystem functioning, is to measure the functional diversity 

(Cadotte et al., 2011). With data on plant species traits (e.g. colour, shape of floral tube, type 

of reward) and pollinator species traits (e.g. size, length of proboscis, phenology) I could have 

tested: a) whether central plants attract a higher functional diversity of pollinators, b) whether 

the functional diversity of pollinators was a response to the functional diversity of plants 

(instead of their network role) and, c) what is the effect of introducing functionally similar or 

dissimilar species over the community of resident plants and pollinators. Additionally, instead 

of inferring pollination function, I could have directly measured it using phytometer 

experiments, or by measuring seed production or seedling establishment of introduced and 

resident species (Fontaine et al., 2005; Brosi and Briggs, 2013). I suggest both improvements 

to be made in future field experiments on species network roles and alternative restoration 

treatments. 

Another important point to be made is that for species network roles to be successfully 

applied in restoration or habitat creation schemes, other features of the selected plant species 

should be considered. Examples are: what are effort and cost required to manage these species, 

which species could be easily grown from seed and therefore could be added to seed mixes, 

and what is the phenology of the selected plants (Russo et al., 2013). For instance, plant species 
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mixes encompassing a wide phenology would provide resources for pollinators for the whole 

season, and could be designed to provide for pollinators in periods of higher vulnerability 

(Kudo, 2014). Furthermore, with another year of experimentation I could have assessed how 

the community composition is likely to progress, for instance, whether central species are more 

likely to outcompete resident plants than peripheral species. 

 

5.2.3 The effect of generalisation and population feedbacks on the robustness of plant-insect 

assemblages: a comparison of pollination and herbivory networks 

An important limitation of the study presented in Chapter 4 is the absence of 

competitive interactions between plant species and between insect species. However, since the 

model was built to include such competitive interactions at a future stage, then plant species 

host to both herbivores and pollinators could compete for resources such as space, water and 

soil minerals. Resource competition between insect herbivores is thought to be low as plants 

are an abundant resource (Hairston et al., 1960; Tack et al., 2009; but see Denno et al., 1995; 

Kaplan and Denno, 2007). Insect pollinators, however, compete for flower resources (Goulson 

and Sparrow, 2009; Brosi and Briggs, 2013) and plants can compete for pollinators (Jakobsson 

et al., 2009). Apparent competition between plants is also a possibility in herbivory systems 

(van Veen et al., 2006). Therefore, the next step of this study is to include competition scenarios 

to explore how they affect robustness in these systems.  

My robustness estimates are based on a number of assumptions about species 

abundance distributions, about the strength of interactions between species (i.e. the 

demographic effect of one species on another), and about the frequency of rewiring 

opportunities in each interaction type. These standardised assumptions between the two 

interactions types is what enables the two types of networks to be compared. However, 

increasing information on the natural history of species interactions is likely to produce 
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increasingly realistic results (Traveset et al., 2017; Ramos–Jiliberto et al., 2018). For instance, 

if collection data is standardised between interaction types (e.g. similar sampling effort, 

standardised protocols on whether or not observed insects are removed or returned to the 

community) information on the interaction frequency could be made comparable between 

interactions types. With comparable interaction frequency information, field data on insect 

abundance could be used (rather than generating abundance data as was done in Chapter 4). 

Similarly, with increasing data availability on species traits, phenology and distribution 

(Morales-Castilla et al., 2015), more realistic rewiring opportunities for different species and 

interactions could be incorporated in future simulation studies. However, as detailed empirical 

data on species traits and on interaction strengths and plasticity at the community level is still 

very limited and I believe theoretical studies such as the one presented in Chapter 4 will 

continue to be relevant and informative for some time yet. 

 

5.3 Final considerations 

Throughout this thesis, I have repeatedly highlighted the degree of uncertainty associated with 

ecological restoration. Restoration schemes can end up with an unexpected composition of 

species and with lower levels of ecosystem functioning and services than reference 

communities (Henson et al., 2009; Audino et al., 2014; Barak et al., 2017). To address these 

uncertainties, it has been suggested that a mechanistic understanding of how communities 

assemble and persist and why some species more important community roles than others (e.g. 

keystones) should be pursed and incorporated into restoration practice (Suding, 2011; Brudvig, 

2017). Aiming to contribute to this mechanistic understanding, in the second chapter of this 

thesis I looked for an association between plants species’ local importance (i.e. strength) and 

relatedness to the remaining plant community. A mechanistic understanding of species roles 

and functioning should greatly improve the communication between ecological theory and 
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practice. For instance, had a strong association between plant species’ strength and relatedness 

been found, practitioners could be better advised on how to assemble plant communities with 

a focus on herbivores and parasitoids with a higher degree of certainty regarding the outcome.  

When I experimentally tested, in the following chapter, whether plant species’ 

centrality could predict their importance for pollinators, I favoured a phenomenological 

approach instead. A mechanistic approach would also have involved finding the features (e.g. 

traits) associated with plant species’ centrality, so that species presenting those features could 

be used to increase the certainty of pollinator recovery. Despite the phenomenological approach 

used, my field experiment showed that central plant species attracted more pollinators than 

peripheral species, suggesting that plant species’ centrality could serve as a shortcut to a 

mechanistic understanding, still benefiting the recovery of pollinator communities.  

The high complexity of ecological communities hampers our complete understanding 

of how communities should be restored to better function and persist. Studies performed in 

academia can sometimes present spatial and temporal limitations, so that the practice of 

ecological restoration also feeds from these incomplete assessments. As it is not always 

straightforward to extrapolate results from smaller to larger scales, scientists can occasionally 

distance themselves from the debate on how to convert ecological theory into practice. For 

instance, one could argue that results from the second chapter of this thesis apply to a limited 

geographical range (southwest, UK), or that it is not certain that central plant species would 

more attractive to pollinators than peripheral ones had my field experiment been extended for 

another year. Studies performed at larger scales do indeed produced more general findings, but 

small-scale studies should still be communicated to practitioners and policy makers together 

with associated uncertainties and with strategies on how to deal with those uncertainties. To 

deal with restoration uncertainty, one suggestion would be to create heterogeneous restoration 

strategies (Benton et al., 2003; Baer et al., 2005; Suding, 2011; but see Palmer et al., 2010). 
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Heterogeneity allows the long-term persistence of systems at other levels of biological 

organisation (Agashe, 2009), so that heterogeneous restoration strategies (e.g. spatial 

heterogeneity in species composition or genotypes, and temporal heterogeneity in disturbance 

frequency) might result in long term persistence of restored ecosystems.  

Focusing on the results presented in this thesis, a few suggestions to practitioners could 

be made. Despite the observed variation in plant species roles across farms, four species 

frequently acted as keystone resources for herbivores: Corylus avellana (common hazel), 

Crataegus monogyna (common hawthorn), Prunus spinosa (blackthorn) and Urtica dioica 

(common nettle). And if involved in more than 19000 herbivore observations in the dataset, 

these plant species were not associated to any of the crop pest species listed by the British Crop 

Production Council. For parasitoids, the most consistent keystone species were Corylus 

avellana, and Ranunculus species, specially Ranunculus repens. Together these species were 

associated to more than 50 parasitoid species. It can also be suggested that previously collected 

pollination networks should be used to identify plant species frequently playing central network 

roles, as these species could be used to increase pollinator diversity in pollinator poor sites. 

Despite not being the focus of my investigation, it could also be mentioned that four (out of 

five) central plant species used in the field experiment belonged to the Asteraceae family, while 

none of peripheral species did. This observation suggests that some shared aspect between 

Asteraceae species might explain their consistent central roles in pollination systems.       

 Scientists have been quantifying the importance of biodiversity for ecosystem function 

and services (Srivastava et al., 2012; Winfree et al., 2015; Soliveres et al., 2016) together with 

the fragility of ecological systems to human disturbance (Dirzo et al., 2014; Allan et al., 2015; 

Oliver et al., 2015). As the amount of threatened habitats continues to be high (Hansen et al., 

2013), clear guidelines on how to manage ecosystems under different levels of degradation 

need to be developed (Tambosi et al., 2014). Ecological restoration is an extremely important 
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strategy to recover highly or completely degraded systems (Chazdon, 2008; Forup et al., 2008; 

Fuentes-Montemayor et al., 2015). Ecological restoration has also been shown to be beneficial 

when dealing with invasive species (Heleno et al., 2010; Kaiser-Bunbury et al., 2017) or lost 

ecological functions. For instance, when important ecological functions have been lost and 

there are no locally occurring species able to execute that function, the introduction of new 

species into the community can be a good (Griffiths et al., 2011; Seddon et al., 2014; Svenning 

et al., 2016), but risky restoration strategy (Rubenstein et al., 2006; Butterfield et al., 2017). 

Under several circumstances, however, restoration should not be regarded as the first resource.  

 In ecosystems where the level of human degradation is low, and which harbours a high 

biodiversity and endemism, conservation should be the priority (Wiens and Hobbs, 2015). 

Protected areas can harbour higher species richness and abundance than unprotected areas 

(Gray et al., 2016), making a strong case for setting separate areas with the sole focus on 

conservation. An additional advantage of conserving existing areas is that its levels of 

biodiversity, ecosystem functioning, and the presence of rare and endemic species are known, 

while there is no guarantee that any of these properties could be restored or recreated anywhere, 

as an attempt to offset the degradation of existing areas (Maron et al., 2010; Sonter et al., 2014). 

As restored sites have frequently been observed to harbour lower biodiversity and functioning 

than reference areas even after long periods since restoration (Audino et al., 2014), offsetting 

should be treated as a second option to conservation whenever possible. Ultimately, we should 

be aiming at mitigating the causes of habitat degradation and, for that, we need to promote 

behavioural change of individuals and policy makers (Cowling, 2014). 

 

5.4 Concluding remarks  

Natural systems are subject to and the result of a combination forces, both deterministic and 

probabilistic, making the study of ecological communities a very exciting and somewhat 
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challenging task. The outcome of these multiple forces are complex systems which require the 

combination of multiple approaches to be truly understood. In this thesis I used both field based 

and theoretical approaches to explore the role of plants in structuring ecological communities.  

While both approaches have their limitations, in combination they inform each other and 

provide a powerful strategy to address issues for both pure and applied ecology.
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