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Abstract 

The process of forming supramolecular hydrogels through the assembly of gelators into high-aspect 
ratio nanofilaments is heavily kinetically dependent. Furthermore, the assembly process is highly 
sensitive to conditions such as ionic strength and temperature. Therefore, the process and 
environment in which self-assembly occurs can considerably alter the structures formed and the 
subsequent macroscopic properties of the hydrogel.  

Since the type of trigger used and experimental conditions can affect the gel properties, investigations 
into novel stimuli and the effect on hydrogel properties are warranted. The first experimental chapter 
of the thesis demonstrates the use of nitric oxide radicals for the dephosphorylation of the N-
fluorenylmethyloxycarbonyl tyrosine phosphate (FYP) to form N-fluorenylmethyloxycarbonyl tyrosine 
(FY) gelator molecules.  This novel stimulus resulted in much narrower filaments with a reversed 
supramolecular chirality, compared to filaments form through enzymatic cleavage of FYP.  

The second chapter of the work highlights the design and construction of a nucleotide-amino acid 
multicomponent hydrogel. This is achieved through the addition of an inorganic stimulus, silver ions, 
to guanosine monophosphate (GMP) N-fluorenylmethyloxycarbonyl tyrosine (FY) solution. This 
exploits the association between silver and the guanine residue of GMP to form Ag-GMP dimers via 
an enolate tautomer and subsequent abstraction of a proton. The subsequent drop in pH can then 
triggers the gelation of the second gelator, FY. The ratio of Ag:GMP affects the assembly kinetics, the 
supramolecular organisation and the mechanical properties of the hydrogel. Higher stoichiometries 
result in rapid gelation and non-orthogonal assembly. However, at lower stoichiometries, this 
disruptive assembly is avoided, and FY filaments can be selectively disassembled through the raising 
of pH. This demonstrates the possibility of creating a hydrogel with adaptable network density and 
mechanical properties.  

The final chapter investigates the potential of a nucleotide-based hydrogel (Ag-GMP hydrogel) as an 
antimicrobial agent.  The antibacterial properties of this gel were characterised using a series of 
microbiological techniques. Significantly, the gel demonstrated substantial killing of gram-negative 
bacteria (E. coli) and gram-positive bacteria (E. faecalis). Gel electrophoresis experiments indicated 
that this activity seems to be, in part, due to damage caused to the chromosomal DNA. 
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Chapter Outline: 

In this chapter, the basics of self-assembly are summarised with examples of natural and synthetic 

systems. Then fundamentals of supramolecular hydrogelation and the state of the field are introduced 

with references to the experimental chapters to follow. Thus, the reader may become to be familiar 

with the key concepts necessary to understand the experimental results reported later. 
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Self-assembly: 

Self-assembly is ubiquitous in natural systems, being responsible for the emergence and maintenance 

of life (e.g. protein folding, virus assemblies and the formation of  

cell membranes).1–3 Grzybowski et al. define self-assembly as the “spontaneous formation of 

organized structures from many discrete components that interact with one another either directly 

and/or through the environment.” 4 This definition rules out less ordered aggregation processes such 

as precipitation and the requirement for discrete building blocks rules out the pattern formation in 

continuous media. 

The transformation from a less ordered state to a more ordered state results from a reduction in the 

Gibbs free energy. At a constant temperature (T), pressure and number of molecules the changes in 

enthalpy (H) and entropy (S) determine the spontaneity of self-assembly processes:  

∆𝐺 = ∆𝐻 − 𝑇∆𝑆     equation 1.1 

These processes occur through a balance of attractive and repulsive non-covalent forces (van der 

Waals, electrostatic, hydrophobic etc.) between neighbouring molecules (intermolecular forces) and 

within molecules (intramolecular interactions). These forces are individually weak (2-250 kJ mol-1) in 

comparison to covalent bonds (100-400 kJ mol-1),5–10 yet collectively they can yield stable structures 

with extraordinarily different structures and function. A summary of these interactions is included 

below. 

Van der Waals (VdW) Forces 

VdW forces are non-directional and arise from the fluctuations of electron distribution of two 

neighbouring molecules to induce temporary electric dipoles.6,11,12 These interactions are generally 

fairly weak ~5 kJ mol-1.6,12 As they arise from neighbouring bodies, these interactions are ubiquitous 

and therefore it is hard to design supramolecular structures using predominantly VdW forces, though 
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such forces are used to drive the assembly of nanoparticles. 13,14  Furthermore, several groups have 

utilised vdW forces to direct 2D self-assembly on surfaces. 15–17 

Molecular-dipole 

Dipole-dipole forces allow molecules with a permanent electric dipole moment to interact in low-

dielectric solvents e.g. n-hexane. However, charges are needed to induce significant electrostatic 

interactions in water as the dipole forces are screened by water. 6 

Ion-Ion Electrostatic Interactions 

Almost as ubiquitous as vdW forces, electrostatic interactions are long-range Coulombic forces, which 

can be either attractive (between opposite charges) or repulsive (between like-charges).6,10–12,18 

Through the alignment of opposite charges, electrostatic interactions can be used to direction 

assembly in one dimension.19–21 Such interactions can be very strong (~500 kJ mol-1) and are 

determined by the dielectric constant of the solvent, the concentration, and the chemical nature (e.g., 

size and valence) of the surrounding counterions, which can screen the charges.6,12,20,22–28 

Most commonly, attractive electrostatic forces are exploited to trigger self-assembly e.g. oppositely 

charged peptide amphiphiles29 or binary nanoparticle crystals.30 However, Aida’s group have 

demonstrated the use of electrostatic repulsion to impart unusual behaviour into two different 

polymeric gels. Firstly, Liu et al. demonstrated that the inclusion of unilamellar titanate(IV) nanosheets 

into the hydrogel resulted in anisotropic mechanical properties.31 Such a hydrogel easily deforms due 

to a shear force applied parallel to the nanosheets (Figure 1.1a)  but it resists compression orthogonal 

to the sheets due to electrostatic repulsion between the sheets (Figure 1.1b). Kim et al. also used a 

similar approach to produce a thermoresponsive hydrogel actuator.30 Electrostatic repulsion is 

triggered by a thermoresponsive phase transition in the gel, with heating expanding the gel and 

cooling causing contraction. Thus, an L-shaped hydrogel demonstrated unidirectional procession (in 

effect, walking) in response to heating cycles (Figure 1.1c)! 
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Hydrogen bonding 

Hydrogen bonding occurs between an electronegative atom (e.g. N, O, or F) and a hydrogen atom 

covalently bonded to a second electronegative atom, inducing a slight positive charge on the hydrogen 

atom. These two species are the hydrogen bond acceptor and donor, respectively. Thus, it can be 

considered a dipolar interaction and is largely electrostatic in nature. 6,32 Though stronger than vdW 
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forces, the hydrogen bond is considerably weaker than ionic interactions with typical strengths of 10-

40 kJ mol-1 and depends strongly on the solvent conditions.  6,12,33 Hydrogen bonds are however highly 

directional and can be combined to increase specificity, either intermolecularly or intramolecularly. 

17,34–39 Thus, hydrogen bonding is one of the key forces determining supramolecular structure in self-

assembly. For instance, the secondary structure of protein folding is heavily determined by hydrogen 

bonding, with intramolecular bonding favouring α-helices and intermolecular bonding favouring β-

sheets. 18 This process is key to proper function as misfolded polypeptides have a propensity to form 

aggregates which are associated with Alzheimer’s, Parkinson’s and Huntington’s diseases, and 

atherosclerosis. 40–47  

Hydrophobic effect 

Unlike the previous enthalpic interactions, the hydrophobic effect is an entropic organising force of 

non-polar molecules to avoid contact with an aqueous solvent. 2,9,12,22,48,49 Water molecules are not 

able to form favourable interactions with the apolar molecules and instead preferentially form 

hydrogen bonds with each other. When these species are mixed they, in a sense, act ‘frozen’ to 

maintain interaction with like molecules.  Thus, apolar moieties are repelled by the aqueous solvent 

and aggregate to minimise their contact with water. Both expelled species then have an increased 

entropy resulting from the increased degrees of freedom. This process is less specific and as such, the 

effect is less geometrically constrained and can result in amorphous assembly. This effect is a key 

driving force for self-assembly in aqueous solvents.33,50 For instance, it is the primary driving force for 

monomeric surfactants to assemble in aqueous solvents and is responsible for the assembly of cell 

membranes and intracellular compartments.4,49 

Aromatic Stacking (π-π stacking) 

These are attractive electrostatic interactions (5-40 kJ mol−1) that occur through the stacking of 

aromatic moieties. The π electrons form a quadrupole moment due to the stronger electronegativity 

of sp2 carbons compared to hydrogen atoms. This polarity creates a partial negative charge on both 
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faces of the aromatic ring and a slight positive charge around the σ-framework of the aromatic ring 

(Figure 1.2a).32,51–54 This polarity determines the geometry of the interactions as face-centred stacking 

would be unfavourable and instead aromatic rings interact via T-shaped (edge to face) and parallel 

displaced stacking (Figure 12b and c).32 Such arrangements induce directional growth, tending to be 

more ordered than assembly through the hydrophobic effect alone, thus they are often introduced to 

encourage self-assembly in water.12 Unsurprisingly, therefore aromatic-aromatic interactions are key 

to stabilising protein structures across multiple length scales by stabilising the secondary, tertiary and 

quaternary structure. The prevalence of these interactions is thought to be key to the evolution of 

proteins. 55 

 

Rather than due to any one force, self-assembly occurs by the delicate balance of different non-

covalent interactions. For instance, Tsonchev et al. demonstrated that the assembly of peptide 
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amphiphiles (peptide residues covalently linked to a hydrophobic segment) is dependent on hydrogen 

bonding, electrostatic and hydrophobic interactions.56 Through the combination of molecular 

dynamics simulations and experimental observations, a phase diagram was constructed to relate 

changes in environmental conditions to self-assembly and phase transitions between different 

supramolecular structures.  

 

 

Self-assembly in nature and biomimicry  

The interactions summarised above are responsible for a diverse variety of structures found in nature. 

These functional structures are formed of biocompatible building units and assemble in aqueous 

solutions, thus they provide inspiration for the formation of many structures over different length 

scales. 12,57–62  In this section, natural assemblies and synthetic structures are summarised below. 

The nucleic acid molecules of DNA and RNA are fundamental to life, being critical to gene heredity, 

regulation and expression. Double-stranded DNA assembly occurs through complementary hydrogen 

bonding between the two strands and this assembly then is reinforced by π-π stacking between the 

nucleobases (Figure 1.3a). These biological polymers can be synthesised with an almost infinite 

number of sequences. 63 Thus, their propensity to self-associate and their biological nature has made 

them a useful building unit for bottom-up designed assembly. Such structures have relevance as 
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vehicles for drug delivery and biosensing. 63–66 For instance, Andersen et al. generated a nanoscale box 

through a bottom-up approach that would open under certain conditions (in this report, 

complementary DNA, though other stimuli are possible triggers) and allowing for controlled release 

of cargo.67  
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DNA and organelles are confined to the cell and isolated from the external environment through the 

assembly of phospholipids into the cytoplasmic membrane. These amphiphilic molecules form a 

bilayer to expose their polar head groups (the phosphate and glycerol), whilst the nonpolar chains 

cluster in the membrane. This leads to the stabilisation of transmembrane proteins.68 These stable 

membranes act as a barrier to water-soluble ions whilst its non-covalent and dynamic assembly 

imparts fluidity allowing for the uptake of particles via mechanisms such as endocytosis.69 

Aggregated species are also fundamental for the light-harvesting antennae of photosynthetic plants 

and bacteria. Many structurally diverse photosynthetic antennae exist in nature, including the green 

sulphur bacterial chlorosome (a complex of aggregated pigment molecules), higher plant light-

harvesting complexes and the purple bacterial light-harvesting complexes (both of these are 

membrane pigment-protein complexes).61 Despite the structural variances, they all feature highly 

ordered arrays of pigments. For instance, crystal structures of the light-harvesting antenna complexes 

of photosynthetic bacteria show the presence of highly symmetric supramolecular architectures. 70–72   

In these light-harvesting complexes, sophisticated self-organised chromophore arrays are essential for 

efficient light capture and funnelling exciton flux to the reaction centre, where the electron transfer 

drives photosynthesis (Figure 1.4a).61,70–74 The coupling of many hundreds of these chromophores 

enables a strong transition dipole moment along the head-to-tail arrangement of the chromophores. 

This allows for the transfer of exciton energy to peripheral chromophores in a few picoseconds and 

allowing for remarkable transfer efficiencies of more than 95%. 74–76  
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Accordingly, much research has been done into creating synthetic light-harvesting antenna consisting 

of multiple porphyrin units, analogous to the pigment units bacteriochlorophyll and chlorophyll; the 

chromophores for bacteria and plants, respectively.72,75,77,78   Porphyrins (Figure 1.4b) are large, flat, 

conjugated tetrapyrrole macrocycles, which can be functionalised to allow further interactions 

between the molecules.79–82  With the appropriate choice of substituents, the assembly of porphyrins 

can be promoted by intermolecular π−π interactions, electrostatic interactions, hydrogen bonding, 

and metal coordination. As a result, many self-assembled photo-responsive structures have been 

formed using porphyrins including nanoporous solid materials, rigid and ordered monolayers, rings, 
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columnar stacks, linear tapes, rigid rods and nanoparticles. 23,48,70,78,79,83–85 The assembly of an iconic 

porphyrin, meso-(4-sulfonatophenyl) porphyrin (H2TPPS4), depends heavily on the experimental 

conditions (pH, ionic strength, ageing of stock solutions). For instance, Arteaga et al., demonstrated 

that flows directed the chirality of assembled porphyrin structures that chaotic flows were responsible 

for producing a racemic mixture of chiral shaped supramolecular species.86 Even the order of addition 

of protons and NaCl determined whether self-assembly occurred.  87 

Supramolecular hydrogels 

Supramolecular hydrogels are an excellent example of self-assembly structures, which can be 

composed of all the previously mentioned biomolecules and, through their hierarchical assembly, 

produce viscoelastic gels.  (This class of gels has several names, supramolecular gels, molecular gels, 

low molecular weight gels and self-assembled gels which all cover the same types of gels. This 

differentiates them from polymeric gels whereby polymers are chemically or physically crosslinked to 

form a three-dimensional network.) 

Lloyd famously claimed that “colloidal gels are easier to recognise than define” and proposed that gels 

must be composed of a liquid and solid component which together have the mechanical properties of 

a solid.88 Hermans expanded the definition stating that both the dispersed component and dispersing 

medium extend themselves continuously throughout the whole system.89 These are useful but 

imprecise definitions as not all colloidal suspensions form molecular gels and not all molecular gels 

are colloidal.90 Ferry proposed a less rigorous definition that a gel is a substantially diluted system 

which exhibits no steady state flow.91 

It is possible to link the microscopic and macroscopic definitions of a gel, importantly defining 

structural and mechanical properties to create a definition that encompasses both. Such that “gels are 

viscoelastic solid-like materials comprised of an elastic network that extends through the solvent and 

is permanent for the time-scale of the experiment.” 33,90,92,93 It is the entrapment and adhesion of the 
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solvent in a large surface area, three-dimensional matrix that produces the solid-like behaviour and 

thus prevents steady-state flow (Figure 1.5b).39,92–95 

 

In the case of molecular hydrogels, the solvent is aqueous, and, unlike polymeric gels, they are formed 

through the assembly of low weight molecular gelators (LWMG) into one-dimensional filaments which 

then comprise the three-dimensional network. LWMG are arbitrarily defined as <3000 Da, 93 which 

corresponds to ca. 25 amino acids or 16 glucose units, though many gelators are much smaller. These 
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gelators are essentially zero-dimensional objects which assemble via non-covalent interactions into 

one-dimensional filaments. These then entangle, branch and laterally associate to form a three-

dimensional hydrogel network (Figure 1.5a).96–98 The morphology of these filaments may be strands, 

ribbons, tapes or any aggregate with a large aspect ratio that can entangle or branch.21,95,99,100 Herein, 

the term ‘hydrogel’ will refer to molecular hydrogels rather than polymeric hydrogels, unless stated 

otherwise. 

The applicability of all gelators first existing as zero-dimensional dissolved molecules, as in the 

common schematic of gelation (Figure 1.5a), has recently been challenged by Adams et al.99,101  It is 

clear that certain amphiphilic gelators act as surfactants with very low critical micelle concentrations 

(<0.2 mM), thus, depending on the concentration, spherical or wormlike micelles may first exist prior 

to gelation.101–107 It is not currently clear however whether these structures are retained in the gelation 

process or whether a structural reorganisation occurs. However, it is likely the presence of different 

micellar assemblies, rather than molecularly dissolved gelators, will impact gelation and result in 

different gel properties due to different assembly processes. For instance, Draper et al. demonstrated 

that a common gelator, known as  2NapFF (2-(naphthalen- 2-yl)-acetamido)-3- phenylpropanamido)-

3- phenylpropanoicacid), formed micelles and through heating cycles (perhaps the most common 

process solubilise gelators) would irreversibly dehydrate the micelle fibres.102 This resulted in the 

fusion of the fibres and different rheological properties to those that had not undergone the same 

cycles.  

Still, gelation is always initiated by a trigger (e.g. lowering of temperature, 92,108,109  charge screening 

to lower repulsion and hydrophilicity, 20,110 cleavages of hydrophilic residues, 111–113 etc.) to lower the 

solubility of a well-dissolved gelator to form an isotropic supersaturated solution. 33,92,93 (The author 

is not aware of any examples whereby gelation occurs instantly for a single gelator after dissolution, 

though this can be achieved through the mixing of two gelators.)114,115 This supersaturation drives 

aggregation via stochastic nucleation rather than spinodal decomposition (rapid unmixing with no 
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barrier to nucleation).90,95 Also, unlike crystallisation whereby macrophase separation occurs and the 

separation solid and liquid components are often visible, gelation occurs via microphase separation 

to form a continuous phase.93,108,116 

As this supersaturation is not at equilibrium, error correction in the assembly process is often not 

possible and such processes are often kinetically dependent. 99 In fact, the rate of the assembly can 

be comparable to the rate of the mixing of components and ultimately affects how gelation occurs. 

117–119 It is now well observed that the pathway to gelation can affect the supramolecular structure 

and the properties of the hydrogel.20,38,120–125 This will be explored in Chapter 3 by demonstrating a 

novel stimulus and the consequences of this process.  Further to this, kinetically trapped gel structures 

could be altered by using elevated temperatures to overcome kinetic barriers to evolve into the same 

gel prepared through other routes. 4,126–128  This implies that there is a thermodynamic minimum which 

can be reversibly accessed.129 Several reports demonstrate that small modifications to gelator 

structures can affect the supramolecular structure through subtly different intermolecular 

interactions. 130–134 These observations indicate that there are both thermodynamic and kinetic 

aspects to the formation and subsequent structure of hydrogels.  

As most LWMGs that gel water are amphiphilic, the assembly into fibres requires a delicate balance 

of gelator-gelator and gelator-solvent interactions.33,99,129,135 This balance may result in molecularly 

dissolved gelators, ordered or amorphous aggregation (e.g. crystallisation or precipitation, 

respectively), or filament growth. 33,92,123,136 

Since these interactions are enthalpically weak, aggregation in aqueous solvents, at the molecular 

level, is normally entropy driven, owing to the dominance of the hydrophobic effect confirmed by 

studies into the thermodynamics of gel solubilization. 50,137,138 However, the thermodynamics of the 

one-dimensional assembly is not well understood. As this process is often considered an intermediate 

structure, between being fully solubilised and forming a solid aggregate, the gel state is considered a 

kinetically trapped metastable state, avoiding transformation to the crystal state. 12,34,108,136 Indeed, 
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the crystal state should allow for more interactions between gelators in three dimensions rather than 

just one. 12,129,139 Metastable gels have exhibited gel-crystal transitions, which limits long-term stability 

of the gel state through gradual disassembly of the gel network. 108,139–145  

However, as the gelators are amphiphilic, maintaining solvent interactions in one-dimensional 

assemblies is expected to be favourable, as with the formation of wormlike micelles. 146,147 Also, self-

healing gels rely on the gel state being, at the very least, a local thermodynamic minimum that can be 

reversibly accessed.129,148 Molecular dynamics simulations have been used by Tuttle et al. and Ulijn et 

al. to understand gelation under thermodynamic control. 50,107 Thermodynamically stable gels may 

exist in a deep energy minimum surrounded by a high activation barrier which makes access to the 

crystal state impossible.34  

Indeed, Ulijn et al. demonstrated that the solvophilic interactions (favourable interactions with the 

solvent, either organic or aqueous) are key to forming thermodynamically favourable one-dimensional 

fibres over three-dimensional crystals. 129 Their model considers the thermodynamics of the initial 

fibre formation, as this stage was deemed critical for determining whether one-dimensional or three-

dimensional structures formed. Prisms were used as analogues for gelators, with the number of 

solvophilic and solvophobic faces and the interaction strength between prisms and the solvent 

determined by the user. Without any solvophilic faces, the Gibbs free energy for fibre formation is 

always positive and crystallisation is preferred. However, by introducing amphiphilicity to the 

assembling units, fibre formation was thermodynamically favoured for certain parameters of 

interactions, i.e. gelator- gelator and gelator-solvent interactions. These parameters also determined 

fibre thickness and the model could be verified by experimental conditions for a well-known gelator, 

N-(fluorenyl- 9-methyloxycarbonyl)-diphenylalanine (Fmoc-diphenylalanine of Fmoc-FF). However, if 

the network formation involves significant overlap of the fibre surfaces, then the approximations of 

the model are no longer valid. In this case, the network would be a metastable state and will tend 

towards the crystal state.  
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Williams et al. demonstrated that by working close to equilibrium (i.e. with small changes of Gibbs 

free energy), it is possible to form gels under thermodynamic control. 107 This is more akin to self-

assembly in natural systems where conditions are overall constant, and assembly occurs through 

spatially confined molecular mechanisms.18,149,150 Through reversible enzyme-catalysed condensation 

reactions, self-correction in the assembly process could occur. Thus, the most stable molecular self-

assembly structures would be formed through thermodynamic control. Reactions were carried out 
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with a series of different nucleophilic dipeptides that could reversibly condense with N-protected 

amino acids, the final products having different stabilities. It was demonstrated, through HPLC analysis 

of the peptide chain formed, that the most stable structure would be produced in two methodologies. 

Firstly, with multiple nucleophiles present in the reaction media, the most stable product would form 

due to the reversibility of the reaction. In the second approach, this reversibility was exploited, as the 

nucleophile which produced the most stable structure could be added after structures were already 

formed. These would disassemble and reassemble after reaction with the preferred nucleophilic 

amino acids. This demonstrated that by working close to equilibrium, the most thermodynamically 

stable structures could be formed.  

Overcoming serendipity 

The thermodynamic and kinetic components of gelation make the de novo design of new gelators 

challenging. As previously mentioned, the assembly must favour one-dimensional growth into 

aggregates that can entangle to form a hydrogel network. Predicting which molecules will do this is 

difficult and gelation is often described as an empirical science with many gelators being discovered 

serendipitously.39,92,136,151 Currently, a priori design rules are lacking for synthesising new gelators. 

Many analogues of gelators do not gel. Altering the gelator structure can affect its sterics, ability to 

form directional interactions and its conformations.  For instance, Fmoc-TF-OMe (N-(fluorenyl-9-

methyloxycarbonyl)-threonine-phenylalanine-propanoate) forms gels but replacing the threonine 

with serine produces a non-gelator.152 The threonine analogue shields the methyl residue from water 

contact by inducing a twisted conformation and the additional chiral centre constrains the structure 

encouraging directional hydrogen-bonding. These features induce a twist as the self-assembled 

structures form to favour epitaxial growth and thus preventing indefinite growth in two dimensions. 

This causes, filaments, capable of gelling water, rather than two-dimensional sheets to form. 

One approach to designing new gelators has been to link gelation to crystal structures, though it is not 

clear that there is a link between the interactions favouring crystallisation and gelation. 99 In fact, the 
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work previously mentioned by Uljn et al. demonstrates different interactions are key to fibre 

formation. 129 Further to this, multiple reports demonstrate different packing between the crystal and 

gel state. 139,153,154 

Library and computational approaches have also been employed to determine which similar 

candidates are likely to gel. For instance, Frederix et al. used coarse grain molecular dynamics to probe 

the aggregation propensity in water of all 8000 possible combinations of amino acids to form 

tripeptides. 50 Unsurprisingly, the most hydrophobic combinations exhibited the strongest propensity 

for aggregation (AP). However, amphiphilic peptides also demonstrate a tendency to aggregate and, 

as these are easier to dissolve, a positive bias was included in the model to favour hydrophilic amino 

acids. From this modified model, several design rules were generated, e.g. inclusion of proline on the 

N-terminus induces a kink and more ordered self-assembly or that zwitterionic peptides have an 

increased AP, presumably through the alignment of appositive charges. However, the rationale is not 

always straightforward. Though the structures generated are validated by reports in the literature and 

experimental observations. For instance, aggregation was confirmed with diffusion-ordered NMR and 

dynamic light scattering experiments and the conformation and structure were determined by 

Fourier-transform infrared spectroscopy and transmission electron microscopy.  

Also, Gupta et al. used a computational approach to predict the gelation likelihood for different 

molecules. 155 Quantitative structure-property relationships were used, a technology that links 

measured properties to chemical structure, and have proven successful in drug discovery. However, a 

simple association between the physical descriptors and the capability to gel was not discovered. Thus, 

more complex models were developed and added to the approach. By using several techniques, it was 

possible to overcome the individual failings from each model in the hope to avoid false positives. 

Predictions by this approach were validated by literature reports and were expected to be more 

reliable if similar structures to the test molecules were submitted. 
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As gels are dynamic assemblies, another approach has been to create dynamic combinatorial libraries. 

These are formed by the combining components that react through reversible covalent bonds or non-

covalent interactions. The structures can be adjusted through external stimuli and over time the 

distribution of products tends towards the thermodynamic minimum.108 Such approaches can bias 

processes that form a gel phase and select components to form stable materials. Indeed, this approach 

was used to study derivatives of the versatile hydrazine functionalised guanosine gelator. Through this 

approach, Lehn and Sreenivasachary could determine the most stable derivative and present a 

strategy for others to determine the best selection of constituents form stable hydrogels. 144  

These approaches were powerful at determining similar candidates likely to gel but often lack an 

explanation as to why gelation occurs. However, the number of gelators discovered serendipitously 

indicates that their formation is a general phenomenon and a common process. Thus, it makes sense 

to seek the inspiration of self-assembly in water from nature for different classes of gelators are 

described below.   

Gelators  

Self-assembly is integral to the formation of many different intricate systems in nature and provides 

inspiration to design novel supramolecular structures. 70,71,85,151,156 For instance, biological systems 

have three key classes of biomolecules (nucleic acids, proteins and polysaccharides) which are 

excellent examples of molecules that self-assemble in water to carry out biological functions. 

Therefore, it is not surprising that these molecules provide inspiration for the discovery of new 

hydrogelators.  

Sugars are good candidates as gelators as they are biocompatible and can be modified to tune their 

solubility.  A common strategy is the introduction of an aromatic group to promote π-π stacking.157,158 

Bhattacharya and Acharya demonstrated that the acyclic derivates lacked the conformational rigidity 

to gel. 159  Whereas the cyclic derivatives were conformationally restricted imposing directional 

hydrogen bonding to encourage filament formation and subsequent hydrogelation.  
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Amino acids are another excellent candidate as hydrogelators as they are readily available, and there 

is extensive research into peptide synthesis and the structures that they form. Also, they have a vast 

sequence space available such that the balance of different physical properties can be encoded into 

the gelator structure.159 

Oligopeptides often possess sufficient conformational flexibility to favour non-covalent interactions. 

151 As a result, oligopeptide-based hydrogels are prevalent. 110,160–165  For example, Schneider and 

Pochan designed de novo β-hairpin peptides for the formation of supramolecular hydrogels. 161,165 

These peptides exist in an unfolded, random coil structure and are very soluble in water. However, 

upon stimuli triggering their folding, the peptides undergo a conformational change to form 

amphiphilic β-hairpins and self-assemble into a highly crosslinked network of filaments yielding rigid 

hydrogels.  

However, perhaps one of the most researched class of hydrogels are peptide amphiphiles. Protected 

amino acids, i.e. with an attached aromatic group, are of particular interest as these groups introduce 

a significant increase in possible intermolecular interactions through π-π stacking and the hydrophobic 

effect. For instance, Shi et al. demonstrated that by derivatizing phenylalanine with a cinnamoyl group 

they were able to form the smallest peptide-based hydrogelator to date, thus indicating that aromatic 

groups can provide sufficient aromatic-aromatic interactions to stabilise hydrogelation (Figure 1.#a). 

166 
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Therefore, it is not surprising that other aromatic motifs have been found to be capable of stabilising 

self-assembly. Zhang et al. unexpectedly discovered the first fluorenylmethyloxycarbonyl (Fmoc) 

dipeptide hydrogel during the synthesis of pyrene butyryl dialanine. 167 As a commercially available 

biomolecule, Fmoc-protected amino acids and peptides have been used a hydrogelator by multiple 

groups and have been extensively researched.  

With biocompatibility in mind, alternative aromatic moieties were investigated, which lead to the use 

of naphthalene group as the protecting group in peptide-based hydrogels. As a common fragment 

found in clinically-approved drug molecules, e.g. propranolol, naphazoline and nafronyl, it has been 

found to be more biocompatible than the Fmoc group.151 It has since been established that 

Naphthalene-di-phenylalanine is an exceptionally effective hydrogelator, leading it to become a motif 

to which other biofunctional molecules can be attached to.168–170  For instance, Yang et al. reported d-

Glucosamine-based supramolecular hydrogels capable of wound healing. 171 Also, the same group 

designed a hydrogelator which gelated via cleavage of phosphate group with the enzyme phosphatase 

and could be returned to sol state via phosphorylation in the presence of kinase and adenosine 
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triphosphate. 113 Significantly, subcutaneous injection of the phosphorylated hydrogelator in mice 

caused in vivo gelation and no long-term in vivo toxicity of the hydrogelator was observed.  

Many hydrogels are also derived from nucleobases and their derivatives due to their existing 

propensity to self-assemble into higher order structures. The nucleobases, particularly the purines 

(adenine and guanine), have multiple faces for hydrogen bonding and these residues are readily able 

to π-stack with one another.108  Furthermore, addition of either just a ribose sugar or also a phosphate 

group, forming either nucleosides or nucleotides, respectively, increases solubility and provides more 

motifs for intermolecular interactions.108 

These water-soluble molecules often require derivatization to attach hydrophobic group to introduce 

the necessary degree of hydrophobicity for hydrogelation.108 For instance, Park et al. demonstrated 

that introducing hydrophobic moieties to 2′-Deoxyuridine yielded a series of hydrogelators. 172 Prior 

to functionalisation, 2′-deoxyuridine itself is very hydrophilic due to the multiple functional groups 

capable of hydrogen bonding but derivatization allowed for a suitable balance between hydrophilicity 

and hydrophobicity to yield a series of hydrogels. Shimizu et al. demonstrated the gelation of 3’-

phosphorylated thymidine bolaamphiphile. 173 Despite a variety of linker lengths being used, only the 

longer chains imparted sufficient hydrophobicity for gelation. Also, Shimizu et al. reported that it was 

necessary for the phosphate group to be ionised (via neutral or high pHs) to introduce sufficient 

solubility. Taken together, these two requirements further demonstrate the necessary balance 

between hydrophilicity and hydrophobicity for gelation via derivatization with functional groups.  

Conversely, guanosine-based hydrogels can be formed without functionalization. For instance, 

guanosine monophosphate (GMP) hydrogels have been reported for more than 40 years, with most 

hydrogels being formed using acidic pH or by adding excess alkali metals. 174–176 This is possible due to 

the self-complementary hydrogen bonding present in the guanosine nucleobase.  

A major limitation of such gels is their poor lifetime stability; arising from crystallisation of the 

nucleoside within a few hours causing a collapse of the hydrogel. 140–145 This occurs because of 
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hydrogelators in solution aggregate and forms a nucleation point thereby lowering the gelator 

concentration in solution allowing more hydrogelator molecules to be released from the gel and 

incorporated into the crystal. Davis et al.  have overcome this by forming a guanosine-borate ester, 

and doing so elevates the solubility of guanosine to form a hydrogel with enhanced stability. 176  

Conversely, Dash et al. exploited the known ability for GMP to chelate silver ions, 177–179  to generate 

stable hydrogels without the need for functionalization. 156 Doing so yielded a gel matrix comprised of 

silver ions and nanofilaments adorned with discrete silver nanoparticles.  

There are of course other classes of hydrogelators, with many being derivatives of small organic 

molecules. For instance, urea-based and pyridine-based moieties are common motifs used in 

hydrogelators.138,180–184 Also, functionalisation of hydrophilic groups, e.g. dye molecules, acidic 

residues etc., with alkyl groups introduces sufficient hydrophobicity to promote self-assembly and 

subsequent gelation. 119,138,185–188 Chromophores are another common motif as they often contain 

aromatic residues to allow for π- π stacking and hydrophobic interactions to encourage directional 

interactions promoting epitaxial growth, and can be functionalised to modulate water solubility 

allowing for filament formation. 25,27,189–192 

Multicomponent system 

Owing to the diversity of gelators, a growing area of research is the formation of multicomponent 

supramolecular hydrogels through the gelation of two (or more) gelators. These gelators often have 

different functionality or responsiveness to a stimulus, e.g. light, pH, temperature etc. Also, the 

gelators can be combined with other components to affect their mechanical properties or long-term 

stability. 

For instance, Ryan et al. stabilised Fmoc-F5-Phenylalanine hydrogels through co-assembly with 

polyethyleneglycol (PEG) functionalised monomers. 193 Assembly of Fmoc-F5-Phenylalanine alone 

produces unstable hydrogels, lasting only one to two weeks, due to the hydrophobic nature of the 
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gelator. Also, these gels wouldn’t reform after being sheared, which is particularly relevant to 

biomedical applications,161,194,195 as the hydrophobic fibrils were desolvated and couldn’t reform.  

Thus, a proportion of the monomers were functionalised with PEG to increase solution phase stability. 

This produced a more stable hydrogel that also fully recovered after the cessation of strain.   

Multicomponent supramolecular hydrogels are also appealing to optoelectronic applications as it 

should be possible to form bulk p-n heterojunctions from gelators with sufficiently different electronic 

properties.25,136,190,196–198 For instance, Ardoña et al. demonstrated the kinetics of the co-assembly of 

different peptide-based chromophores determined the mixing of these gelators and hence the energy 

transport properties. 25 This is another example of the stimuli affecting the supramolecular ordering 

and consequently the properties of the material.  

Also, the gelators in the multicomponent supramolecular hydrogels can have different stability to 

different stimuli e.g. light, heat, pH changes etc. For instance, Draper et al. could selectively remove 

the fibres of one gelator by a light-triggered gel-to-sol transition. 199 The ability to tune the network 

density and mechanical properties is appealing to drug release and tissue scaffold applications. 200,201 

The design of a new multicomponent supramolecular hydrogel is the focus of the work detailed in 

Chapter 4, along with an expanded introduction to multicomponent hydrogels. Presented is the 

gelation of one gelator used to trigger the gelation of the second gelator. The second gelator is more 

susceptible to pH and thus it is possible to selectively remove one gelator. It is also demonstrated that 

the kinetics of assembly dramatically affects the properties of the resulting hydrogel.  

Applications 

As a wide class of gelators exists, molecular hydrogels are excellent candidates for a diverse range of 

applications. The type of gelator can be chosen for different concerns (i.e. biocompatibility, 

processing, cost etc.) and can be functionalised.  They also differ from crosslinked polymeric gels which 

often can’t be altered once gelled. 99  Conversely, the network of molecular hydrogels is dynamic and 
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can be reversibly destroyed by a change environmental conditions (e.g. pH, ionic strength) or through 

the input of energy (e.g. heat, light, shear strain.)  

The high water content and amphiphilic nature of molecular gels allows for high drug loading and 

makes them an ideal candidate to deliver therapeutic drugs. 202–206 These can be designed to break 

down and release their cargo under specific conditions such as pH or through enzyme hydrolysis to 

allow for very localised drug release. Molecular hydrogels can even be used to encapsulate live cells. 

207,208  

The aforementioned properties i.e. high-water content, porosity, biocompatible materials also make 

hydrogels excellent candidate materials for tissue engineering. These are being researched to replace 

polymers which are often not adhesive to cells.209 However, the structures formed are often 

susceptible to the experimental conditions used. For instance, Stupp et al. demonstrated that the 

thermodynamically favoured form of the peptide amphiphiles were long bundled fibres. Whereas, the 

metastable form of the peptide amphiphiles were short monodisperse fibres. The former promoted 

cell adhesion and survival.24 Kasai et al. demonstrated that fibril structure was crucial for obtaining 

hydrogels with biological activity.210 

As applied shear-strain can overcome the weak interactions responsible for filament assembly, 194,211–

213 so-called ‘shear-thinning’ gels can be injected as a liquid and regel almost instantly. Gaharwar et al. 

produced a hydrogel containing silicate nanoplatelets which instantly re-gels after the high strain is 

removed.195 The silicate nanoplatelets could induce blood clotting and therefore can be used as a 

physical barrier to prevent haemorrhage. 

Alongside the network structure, the assembly into one-dimensional filaments is particularly relevant 

to photoresponsive applications. 116 The self-assembly of one-dimensional nanostructures may be the 

best candidate for use in electronic devices (such as field effect transistors or photovoltaic devices) 

due to their intriguing optoelectronic properties, which include sharp exciton transitions, high exciton 

mobilities and photoconductivity. 25,73,79,190,196–198,214,215 For instance, Weingarten et al. functionalised 
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a perylene monoimide chromophore that would gel through appropriate charge screening by 

introducing different salts or a cationic nickel catalyst.27 The salt used affected H2 production, with 

multivalent cations performing better than monovalent cations. This increases the electronic coupling 

of the chromophores and the nickel catalyst can be used for light-driven hydrogen production. Recent 

research by Dave Adams group has demonstrated several chromophores can be functionalised to form 

gels, with their conductivity improved and combined in multicomponent systems to form photonic 

donor−acceptor pairs. 25,191,196 

Summary 

Summarised above are many opportunities to use the fundamental of self-assembly in water to form 

a myriad of structures and materials. Of these, hydrogels are perhaps one of the most interesting 

owing to their versatility and hierarchical assembly. As mentioned so far, the experimental conditions 

used for the formation of hydrogels can dramatically affect the supramolecular ordering of the 

gelators. As a result, these changes are then amplified in the hierarchical assembly to produce gels 

with very different properties, e.g. cell adhesion, energy transport, mechanical strengths etc.  

Hence, the work carried out in this thesis will explore the effects of different stimuli on the assembly 

and properties of different hydrogels. Firstly, a novel stimulus, i.e. radicals, will be employed as a 

trigger for supramolecular gelation. Then the gelation of one gelator will be used to trigger the gelator 

of a second, pH-responsive, gelator to generate a novel multicomponent hydrogel. In both chapters, 

the consequence of these new stimuli on the supramolecular organisation and macroscopic properties 

of the gel will be investigated. For the third and final experimental chapter, silver will be used to trigger 

the gelation of guanosine monophosphate. The ratio of silver to gelator has already been 

demonstrated to affect the mechanical properties of this gel. Instead, the antibacterial properties of 

this material will be studied, and the stimulus chosen, i.e. molar ratio of silver, will be contrasted 

between samples and against gels formed without silver present.  
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Chapter Outline:  

This chapter summarises the methods and equipment used for the experiments contained within this 

thesis, as well as an overview of the relevant theory of the methods used.  
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2.1 Laboratory Procedures and Data Processing 

Optical microscopy and transmission electron microscopy were analysed using ImageJ 

(http://rsb.info.nih.gov/ij) or FIJI (http://fiji.sc/). Atomic force microscopy images were analysed and 

exported using NanoScope Analysis 1.5.  Numerical data processing, mathematical operations and 

graph production were performed on Microsoft Excel 2016 and Origin 2016 64 bit. Nuclear magnetic 

resonance spectra were analysed using MestReNova. Rheology experiments were undertaken and 

analysed using rSpace for Kinexsus and processed with Origin 2016 64 bit. Skeletal chemical structures 

were drawn using ChemBioDraw Professional 15.1 (Cambridgesoft) 

Technical details specific to each project are detailed in the relevant chapter.  

2.2 Atomic Force Microscopy 

Atomic force microscopy (AFM) is a form of scanning probe microscopy to measure local properties 

such as height, friction, conductivity etc. An image is created from raster scans over an image with a 

cantilever and tip which oscillates close to the sample surface. Deflection of the tip due repulsive 

forces is measured by a laser pointed at cantilever, which is reflected to the photodiodes to record 

changes in position in three dimensions. Conventionally, when a free AFM cantilever oscillates at its 

resonant frequency, there is a phase lag between the excitation of the cantilever and its response of 

a 90° (π/2). The interaction of an oscillating AFM tip adds an additional phase shift and is used to 

produce phase images and can be useful to observe samples during the imaging process.1 

Samples were prepared by diluting the sample either 10 or 100-fold in deionised water and drop cast 

on either freshly cleaved mica. These were left to dry before imaging. PeakForce atomic force 

microscopy was conducted by Dr R Harniman in the Chemical Imaging Facility, University of Bristol, 

with equipment funded by EPSRC under Grant "Atoms to Applications" Grant ref. (EP/K035746/1).  

http://fiji.sc/
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2.3 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR) 

FTIR probes the absorption of infrared electromagnetic radiation due to transitions between different 

vibration modes. This energy gap between vibrational modes is much smaller than electronic 

transitions but infrared electromagnetic radiation can match the energy gap between vibrational 

modes, creating absorption induced vibrational transitions. The energy of these transitions is 

characteristic of bonds in different functional groups in molecules with particular interactions and 

therefore can be used to identify inter and intramolecular interactions to investigate supramolecular 

structure.  

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was performed using 

a PerkinElmer Spectrum 100 FTIR spectrometer fitted with a universal attenuated total reflection 

accessory. The hydrogels were lyophilized by freezing in liquid nitrogen followed by freeze-drying for 

at least 24 hours. 

2.4 Circular Dichroism Spectroscopy 

Circular dichroism  (CD) is a very sensitive, non-destructive and rapid method to study stereostructures 

and the intra- and intermolecular interactions of various classes of chiral supramolecules.2 CD 

measures the difference in the absorbance (dichroism) of right and left-handed circularly polarized 

light. If vertically and horizontally polarized light is in phase you get 45° polarized light. If the polarized 

light is out of phase by half the wavelength then it ceases to be linearly polarized and is instead 

circularly polarized light. Also, a quarter waveplate can be used to slow one linearly polarized 

component to generate circularly polarized light. This polarized light will be absorbed at a particular 

wavelength by asymmetric chromophores or symmetric chromophores in an asymmetric environment 

(i.e. a chiral assembly) due to the difference in extinction coefficients. In CD spectroscopy it is not the 

configuration of the molecule in space, rather the corresponding asymmetric electron distribution 

that is responsible for absorptions and therefore probed.   
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CD will be used to understand the chiral supramolecular packing of a series of gelators throughout all 

three experimental chapters.  

CD spectra were recorded at room temperature using a JASCO J-810 spectrometer through the two 

quartz plates. Samples were prepared by spreading hydrogels (ca. 25 µL) between two quartz plates 

to produce a homogeneous film and to reduce scattering of light by the hydrogel sample. The units 

used for CD spectra is degrees of ellipticity, a historical convention. It defines the difference between 

the magnitudes of the electric field vectors or right-circularly and left-circularly polarized light. Such 

that for 0° there is no difference in the absorbance or right-circularly and left-circularly polarized light. 

2.5 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the 

amount of heat required to increase the temperature of a sample and reference sample, often an 

empty pan, is measured as a function of heat flow. As the pressure is kept constant, heat flow is 

equivalent to enthalpy changes. Thus, DSC can be used to probe phase transitions such as 

crystallisation, glass transition or as a solid sample melts to a liquid. DSC is used to monitor gel-sol 

melting transitions for hydrogels and can be used understand differences in the different gel 

structures. 

Differential scanning calorimetry (DSC) was carried out using a Mettler Toledo TGA/DSC1 Star System 

at a scan rate of 1 °C min -1 with a nitrogen flow of 25 mL min -1. 

2.6 Optical Microscopy 

Alongside conventional optical microscopy, polarized and phase contrast microscopy was used to 

image hydrogel samples. Phase contrast generates contrast due to different structures having 

different refractive indices such that light waves become ‘out of phase’ with others. Polarized light 

uses a polarizing filter to polarise light and second filter below the focal point is perpendicular to the 

first and therefore no light reaches the detector. However, if the sample is anisotropic double 
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refraction occurs, polarizing the light perpendicular to one another allowing for light to pass through 

the second filter and produce contrast against the isotropic background.  

Confocal microscopy was also used and differs from conventional fluorescence microscopy in 

numerous ways. Firstly, excitation of the sample is not from excitation filters but by the beam source 

and rasters for point-by-point illumination and rejects out of focus light. This allows for illumination 

at a desired depth to penetrate the structure and in some cases create a three-dimensional image.  

2.7 Nuclear Magnetic Resonance Spectroscopy 

Nuclear Magnetic Resonance (NMR) spectroscopy probes the chemical environment of certain nuclei 

which can be used to understand structural information about the molecules studied. NMR 

spectroscopy relies on nuclear spin (S) of certain nuclei. 1H, 13C and 31P nuclei have a nuclear spin of ½. 

This spinning charge generates a magnetic field, with a magnetic moment (μ) proportion to the spin. 

These spins exist in two degenerate states, but in the presence of an external magnetic field (B0) these 

states are no longer degenerate, and the spin state aligned with the external field is at a lower energy 

than the spin state opposed to this field. The energy difference is very small (ca. 5J for nuclei 

experiencing the Earth’s magnetic field): 

∆𝐸 =
𝜇𝐵0

𝑆
                                                      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1) 

This energy difference is therefore increased using powerful magnetic fields several orders of 

magnitude stronger than Earth’s. Absorption by the nuclei of the appropriate electromagnetic energy 

(radio frequencies of 20- 900 MHz), results in excitation of nuclei in the lower energy state to the 

higher spin state. The charged electrons around the nuclei create a secondary, induced magnetic field 

that opposes the external applied magnetic field. Thus, different electron density (due to covalent 

bonding, and through space and bond interactions) shields the nuclei resulting in different resonant 

frequencies. Thus, it is possible to differentiate nuclei in a molecule and infer information about the 

chemical environment of each nucleus. However, as the induced field is very small compared to the 
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applied field these increments are reported in parts per million (ppm). As the resonance peaks depend 

on the external magnetic field and the radio frequency, the NMR signals are reported as a difference 

from a reference known as the chemical shift (δ). 

𝛿 = (
𝜈𝑠𝑎𝑚𝑝𝑙𝑒 − 𝜈𝑟𝑒𝑓

𝜈𝑟𝑒𝑓
) × 106                                       (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2) 

 

Hydrogel samples were either diluted to lower viscosity or freeze-dried and resuspended in the 

deuterated DMSO to aid NMR measurements as gel samples produce excessively broad peaks. Further 

experimental details are explained in later chapters. Chemical shifts were recorded in parts per million 

(ppm). 

2.8 Rheology 

Rheology is the study of sample behaviour prior to bulk flow, i.e. deformation, in response to the 

application of force. 3 From this, the mechanical properties of the material can be quantified, which is 

particularly useful when compared to other samples. Rheological characterisation of supramolecular 

gels are often necessary as qualitative observations, such as resistance to flow induced by gravity, are 

not sufficient to differentiate a viscous solution from a self-supporting gel. Also, the behaviour of gels 

in response to different conditions such as temperature or shear can be investigating with direct 

relevance to the eventual application of the hydrogel. Materials are classified based on ideal situations 

for solids and liquids in their response to shear stress (force per area) (σ), however, viscoelastic 

materials commonly have properties between the two.  

A Hookean solid exhibits ‘perfectly’ elastic behaviour, with the shear stress being proportional to the 

shear strain (γ) and the shear modulus (G) 3,4: 

𝜎 = 𝐺𝛾                                                 (𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟑) 



Chapter 2: Materials and Methods 

62 
 

Whereas for a Newtonian liquid, a shear stress produces a flow of the material with a constant strain 

rate (𝛾)̇ which is proportional to the viscosity (η) of the material: 

𝜎 = 𝜂𝛾̇                                                 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4) 

However, self-assembled hydrogels are classified as viscoelastic materials with the behaviour of both 

ideal materials which can be characterised using rheology. Rheology is a well-established field with a 

myriad of measurements that can be taken. For instance, viscosity measures the resistance by the 

sample to flow by determining the force (stress) required to move a sample a certain speed (shear 

rate): 

𝜂 =
𝜏

𝛾̇
                                                          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.5) 

Whereby, η refers to the viscosity, τ to the shear stress, and γ ṫo the shear strain rate. If the viscosity 

of a sample remains constant with shear rates it classed as a Newtonian material. 3,4 However, many 

fluids are non-Newtonian and show a shear rate dependence with either shear thinning (bingham, 

pseudoplastic) or shear thickening (dilatant fluid) viscosities.  

Oscillatory experiments are also commonplace for the characterisation of supramolecular gels, 

whereby the response to deformation without bulk flow is measured. Unlike viscosity measurements, 

as the name implies, the force applied oscillates with either a constant frequency or amplitude.  

Depending on the rheometer used there is either an applied stress or strain and the shear strain or 

shear stress response is recorded. 

Shear stress (Pa): 

𝜎 =
𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎
                                                          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.6) 

Whereby, F is the force and A the area. 

Shear strain: 
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𝛾 =
𝑢

𝑑
                                                      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.7) 

Whereby, u is the deflection or displacement and d is the height to measure a deformation of the 

material.  

These forces are applied as a sinusoidal signal and there is a lag between the input and measured 

shear response measured, measured as the phase difference (δ) in radians.  For an elastic material 

these signals are in phase, for a viscous material, this is out of phase by 90° and viscoelastic materials 

fall between the two extremes.  

The ratio of the maximum stress to the maximum strain at a given frequency (f), measured in Hertz, 

defines the complex modulus (G*) relative to the radial frequency (𝜔 = 2𝜋𝑓) 3 : 

𝐺∗(𝜔) =
𝜎𝑜

𝛾𝑜
                                                 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.8) 

At a given frequency, the phase difference is constant with time. The complex modulus and phase 

difference (or phase angle) is characteristic of a material and describes its ability to store energy 

(elastic component) and dissipate energy (viscous component). Further to this, G* can be represented 

as separate moduli describing the elastic and viscous response of a material by the storage, solid-like, 

moduli (G’) and the loss, liquid-like, moduli (G’’): 

𝐺′(𝜔) = 𝐺∗(𝜔)𝑐𝑜𝑠𝛿                           (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.9) 

𝐺′′(𝜔) = 𝐺∗(𝜔)𝑠𝑖𝑛𝛿                           (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.10) 

These are then related by the following relationship to the complex modulus G*: 

𝐺∗(𝜔) =
𝜎𝑜

𝛾𝑜
= 𝐺′(𝜔) + 𝑖𝐺′′(𝜔)                          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.11) 

 

Rheometry was performed using a Malvern Kinexus fitted with a parallel plate geometry (gap width 

of 200 µm) at room temperature. Prior to rheology experiments, all hydrogel samples were aged for 
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one day and were added to the rheometer using a spatula to minimise shear. The top plate 

is lowered, and the normal force is measured and allowed to reach equilibrium. Further experimental 

are detailed in later chapters. 

2.10 Transmission Electron Microscopy  

Transmission Electron Microscopy (TEM) uses electrons to image structures at much higher 

magnification than optical microscopy with an atomic resolution possible. For TEM high energy 

electrons are generated by thermionic emission from a metallic filament (often tungsten) and 

focussed onto the sample. These electrons can have no interaction (and are transmitted) or are 

scattered either elastically (no energy loss) or inelastically (energy loss via interactions). Electrons that 

are transmitted are detected and thus the contrast arises from interactions by the electrons with the 

sample which lowers their transmission, relative to where the sample is absent. 

The electron beam can also be used for energy dispersive X-ray spectroscopy (EDX, EDS), to ionise and 

remove core-shell electrons. This generates a vacancy which is filled by an electron with a higher 

quantum number. This process is accompanied by a simultaneous emission of an x-ray of a defined 

wavelength that is characteristic of different elements and therefore can be used to undertake an 

elemental analysis of the sample.  

Transmission electron microscopy (TEM) was performed in bright-field mode using a JEOL TEM 1400 

electron microscope and JEOL TEM 2010 electron microscope operating at 120 keV. TEM samples 

were prepared by drop casting a dilute suspension of hydrogel (5 µL) onto carbon-coated copper TEM 

grids for three minutes and wicking excess fluid away using filter paper. All samples were left to dry 

overnight at room temperature. 

Cryogenic-transmission electron microscopy (cryo-TEM) was also undertaken as it allows for the 

imaging of materials in a hydrated state, with the aim to decrease artefacts that occur from drying.5,6 

This is achieved through rapid freezing of aqueous samples (≥ 104Ks-1),7 which immobilises ice before 

nucleation can occur to form amorphous ice with the sample density as water to preserve the 
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structure.5 Carbon-coated grids are cooled using liquid nitrogen cooled ethane, capable of more rapid 

cooling than nitrogen alone and therefore result in better quality ice for cryo-TEM imaging.  

Cryo-TEM samples were prepared by dilution with deionised and were imaged using an FEI Tecnai 

Twin Lens electron microscope fitted with an FEI Eagle 4k x4k CCD camera and is operated at 200 keV. 

Imaging was undertaken with Judith Mantell and sample preparation was aided by Jen Coombs and 

Judith Mantell.  

2.11 Ultraviolet-Visible and Fluorescence (fluorimetry) spectroscopy: 

Ultraviolet-Visible (UV-Vis) spectroscopy measured the absorbance of light (A) by chemical systems at 

a fixed wavelength (λ). This absorbance is determined by the Beer-Lambert law: 

𝐴 = 𝑙𝑜𝑔10 (
𝐼0

𝐼
) = 𝜀𝐶𝑙                                               (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.12) 

Whereby, I0 and I are the intensity of the incident and transmitted light, respectively, and C refers to 

the concentration of the chemical species (M), l to the path length (cm) and  𝜀 the extinction 

coefficient (M-1 cm-1). The extinction coefficient is effectively the likelihood of an electronic transition 

at a fixed wavelength and is an inherent property of the chemical species. Absorption of light occurs 

dues to the excitation of an electron from the highest occupied electronic orbital (HOMO) to the 

lowest unoccupied molecular orbital (LUMO). This energy gap is comparable to the wavelength of light 

(as described by ∆𝐸 = ℎ
𝑐

𝜆
 .Whereby, E is the energy of electromagnetic radiation, ℎ is the Planck’s 

constant, and c is the speed of light). Many inorganic species show charge-transfer absorption and are 

called charge-transfer complexes. For a complex to demonstrate charge-transfer behaviour, one of its 

components must have electron donating properties and another component must be able to accept 

electrons. Absorption of radiation then involves the transfer of an electron from the donor to an 

orbital associated with the acceptor. For organic species, the energy of UV-vis is sufficient to excite π 

electrons and valence electrons of heteroatoms.  
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Conversely, fluorescence spectroscopy (fluorimetry) is the measurement of the LUMO to HOMO 

transition. This radiative decay occurs when a photon of light is emitted upon transition from an 

excited electron state to a lower state. Within these electronic states, there are vibrational modes 

resulting from the dynamic behaviour of bonds (which are probed using FTIR). Each electronic 

configuration will have the lowest energy state or nuclear configuration which is adopted after the 

electronic transition. If energy was totally conserved by the molecule it would not be possible to 

distinguish the incident irradiation and the emitted photons, however, energy is lost through non-

radiative mechanisms such as vibrational relaxation such that there is a difference in energy. This often 

lower such that the emitted photon is stoke-shifted though anti-stoke shifts can occur through charge 

transfer and aggregation effects.  

UV-Vis spectra were recorded at room temperature using a Perkin Elmer LAMBDA 750 UV/Vis/NIR 

Spectrophotometer through the two quartz plates. Samples were prepared by spreading hydrogels 

(ca. 25 µL) between two quartz plates to produce a homogeneous film and to reduce scattering of 

light.  

2.12 Small-angle neutron scattering (SANS): 

Scattering techniques are complementary to microscopic techniques, allowing for analysis on solvated 

samples, often without the need for modification (i.e. negative staining) to the sample. SANS is 

particularly appropriate as neutrons interact weakly with the nuclei of the sample avoiding radiation 

damage common with synchrotron x-rays. Scattering techniques provide quantitative information on 

the size, shape and structure of colloidal particles based on interactions between incident radiations 

(e.g., light, X-ray or neutrons) and particles. Spectra can be matched to models to extract such 

information. LMWGs, fit best to cylinder models (and variants e.g. a flexible cylinder, a hollow cylinder, 

or some other long, anisotropic structure) or fractal models. 6,8–10 These fits provide information as to 

the radius of the structure, the length, network structure etc.  
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Solutions and gels were prepared as described in Chapters 3 and 4, with H2O and NaOH replaced with 

D2O and NaOD. Quartz plates were used and stored in a temperature-controlled sample rack for the 

duration of the measurements. SANS measurements were performed using the D33 instrument 

(Institut Laue Langevin, Grenoble, France). A neutron beam, with a fixed wavelength of 10 Å and 

divergence of Δλ/λ = 9%, allowed measurements over a large range in Q range of 0.005 to 0.3 Å−1, by 

using three sample-detector distances.  

The data were reduced to 1D scattering curves of intensity vs. Q using the facility provided software 

by Isabelle Grillo. This involves the following key steps: the electronic background is subtracted; the 

full detector images for all data are normalised; scattering from the empty cell is subtracted, and 

finally the data are radially averaged to produce the 1D curves for each detector position. The absolute 

scaling of the middle detector position data, taken under optimum conditions, is then used as the 

reference point for the other two data sets as they are scaled to form a single curve. The instrument-

independent data were then fitted to customized models in the SasView software package.11 All 

experiments were conducted with the assistance of Dr Gavin Hazell, who also provided assistance with 

data analysis.  
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Chapter Outline: 

Herein, the use of radicals to form a supramolecular hydrogel is reported, thereby expanding the 

available synthetic methodologies.   Utilising the photolysis ( = 254 nm) of sodium nitroprusside, in 

this work nitric oxide radicals were generated capable of dephosphorylating the water soluble 

fluorenylmethyloxycarbonyl tyrosine phosphate to form the less soluble fluorenylmethyloxycarbonyl 

tyrosine, demonstrated via NMR. The resulting hydrogelator self-assembles into high-aspect ratio 

nanofilaments which entangle to form a viscoelastic hydrogel. Interconnecting nanofilaments were 

visualised with cryo-TEM, high-resolution AFM, and CD, demonstrated periodic twisting of these fibrils 

of opposing chirality, compared to the same hydrogels formed via conventional means. Thus, the use 

of sodium nitroprusside (SNP) to trigger gelation has unexpected implications on the self-assembly 

process of the hydrogelator molecules. How the use of SNP effects the hydrogel assembly has been 

further investigated using DSC, rheometry, FT-IR, and fluorimetry. 

  



  Chapter 3: Radical Induced Gelation 

72 
 

Introduction 

Supramolecular hydrogels are formed through the self-assembly of low-molecular-weight gelators 

into high aspect ratio, one-dimensional nanofilaments. These filaments laterally associate, entangle 

and/or branch to form a three-dimensional solid-like network. This acts as a scaffold to immobilise its 

solvent through surface tension and capillary forces to form a viscoelastic material. 1–3  

This self-assembly occurs due to stimuli lowering the solubility of the gelator, encouraging the growth 

of and bundling of filaments, shielding from the solvent. These can either be a physical or chemical 

perturbation to the gelator. The most common stimulus is the lowering of temperature, whereby the 

gelator is easily dissolved at higher temperatures and cooling results in a supersaturated solution and 

subsequent hydrogelation.4–6 Alternatively, solvent switches can be made from a ‘good’ solvent by 

dilution with water until the volume fraction increases sufficiently to saturate the solution and induce 

a phase change for gelation. 7–10 

Chemical changes to the gelators can also trigger gelation. For instance, modulation of the pH results 

in either protonation or deprotonation, thus, changing the degree of polarization. Pochan and 

Schneider designed pH-responsive de novo proteins that fold into β-hairpins (Figure 3.1a). Below pH 

9 the lysine residues of the peptide are positively charged, preventing the folding. Raising the pH 

removes the charge, encouraging the peptide to fold about the proline kink. These β-hairpins then 

assemble into filaments to shield the hydrophobic residues (Figure 3.1a), thus forming the hydrogel 

network. 11,12  Similar charge screening can be achieved through the addition of sodium chloride or 

cell culture media. 13 

Enzymatic and biomimetic means have also been employed to trigger supramolecular 

hydrogelation.14–20 For example, alkaline phosphatase (ALP)18 and cerium oxide nanoparticles19 have 

been used to trigger gelation of fluorenylmethyloxycarbonyl tyrosine phosphate (FMOC tyrosine 

phosphate, FYP) via dephosphorylation of the tyrosine residue. Consequently, the ionic group (-PO3
2- 
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) is converted into a neutral group (–OH), reducing the electrostatic repulsion between molecules and 

its hydrophilicity, causing bundling of filaments and subsequent gelation. 

 

These processes are likely to have a strong kinetic dependence and hence will affect the properties of 

the hydrogel through determining nucleation process and growth rates. Furthermore, the assemblies 

formed are a result of balancing attractive forces (e.g. hydrophobic interactions, hydrogen bonding 

etc.) against repulsive forces (e.g. electrostatics). Thus, the conditions of assembly e.g. ionic strength, 

temperature etc., will affect the strength of these interactions and hence structures formed, resulting 

in different properties for the hydrogels. Most commonly, this is used to modulate the macroscopic 

mechanical properties of the gel through enzyme concentration21, ionic strength22,23 or even the mode 
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of agitation24.  Though gelation time, filament and network structure, and optical properties can also 

be affected. 20,22,24–29 These can then alter the performance of the gels, such as cell adhesion, survival,30 

and energy transfer through filaments31.   

Since the type of trigger used and experimental conditions can affect the gel properties, an 

investigation into a novel stimulus and the resulting variation in properties is warranted. For instance, 

despite radicals being routinely used to crosslink hydrophilic polymers to form hydrogels, they have 

not been used to form supramolecular hydrogels.32–37 This unexplored route will be used as a novel 

stimulus in this chapter. For a proof of concept, it is sensible to first demonstrate the capability of this 

route using a known system as this allows for easy comparisons between the two triggers. Though 

there are many routes to generate radicals,  e.g. electrochemically, 38 photochemically, 39,40 or through 

the decomposition of peroxides, 41,42 the reported reactivity of nitric oxide against phosphates 43–45 

makes it ideal to replicate the activity of alkaline phosphatase against Fmoc-tyrosine-phosphate.  

Cleavage of phosphate groups by radicals, has been studied previously due to its relevance to 

biological systems, such as DNA. 46–52 In these reports, the phosphate ester is bound to a ribose ring 

or a similar cyclic group. The first stage in the reported mechanism is the abstraction of a proton by 

the radical from the ring to form a radical. This is followed by elimination of the phosphate group to 

form a radical carbocation.46–49,52 This group then reacts with water, producing an alcoholic radical. 

The final stage is disproportionation with another radical. The reactivity of nitric oxide radicals against 

phosphorus compounds is determined by solvent polarity, which has been proposed due to the 

formation of a charged intermediate. 53,54 Thus, a similar mechanism is plausible for nitric oxide to 

eliminate phosphate from Fmoc-tyrosine-phosphate. 

As a therapeutic agent,55–57 there are many strategies to deliver nitric oxide, though SNP (Figure 3.2a) 

is an appealing source as it is stable and does not form any products unless irradiated with UV light or 

the addition of reducing agents (thiols etc.) 43,55,58–60 
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There has been some contention as to which product is formed when SNP is irradiated. For instance, 

some authors proposed that photolysis of SNP resulted in the photoejection of a nitrosyl cation (NO+) 

rather than a nitric oxide radical (NO)61–64. However, the bond cleavage is followed by oxidation of 

the iron centre which indicates charge transfer to the nitrosyl which would not be the case for the 

cationic species (NO+).55,61,62,65–67 Also, isotopically labelling with 18O ruled out the formation of the 

nitrosyl cation. 61,68 The photolysis has also been extensively studied, being well reported that 

irradiation >480 nm results in no reaction. 43,60,61,66,69,70 This is because the lowest energy band, 

associated with the dxyπ* (NO) transition is mostly (ca. 98%) metal dxy in character so does not 

interact with the nitrosyl group. 61,66 Thus, it does not sufficiently affect the metal-nitrosyl bond 

strength to result in bond cleavage. 61 At shorter wavelengths(<400 nm) the transitions overlap but 
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are centred on the nitrosyl ligand. 61,62 These are molecular bonding orbitals and thus result in a 

transition to an excited state. The energy is lost through photoemission, vibrational relaxation, or 

charge transfer to the nitrosyl ligand and subsequent bond cleavage43,61,62,66 This is followed by 

oxidation of the metal centre from Fe(II)Fe(III) and rapid aquation of the pentacyanoferrate(III) 

intermediate to yield the hydrodrate (NC)5FeIIIH2O2- ( equation 3.1). 43,61,62,66,71 

[𝐹𝑒𝐼𝐼(𝐶𝑁)6(𝑁𝑂)]2− + 𝐻2𝑂 → [𝐹𝑒𝐼𝐼𝐼(𝐶𝑁)6(𝐻2𝑂)]3− + 𝑁𝑂 (equation 3.1) 

Also, irradiation at ca. 200 nm, assigned to the dxyπ*(CN) CT transition, may lead to the 

photoreduction of the central ion, with the ejection of a CN radical (CN•)43,60–62,66,72.  However, cyanide-

based products are only observed after an extended period (>3 hours) of photolysis. 43,60,66  

Significantly, SNP solutions are stable in the dark and do not form any products, hence UV irradiation 

will be necessary to trigger supramolecular gelation. 43,58,60 

Thus, SNP is a good source for nitric oxide radicals through UV irradiation, which can be used to cleave 

phosphorous from Fmoc-tyrosine-phosphate to produce the gelator Fmoc-tyrosine and hence trigger 

supramolecular gelation (Figure 3.2b).  The properties of the resulting hydrogel will be discussed in 

the following sections and compared to a Fmoc-tyrosine-phosphate hydrogel prepared via the alkaline 

phosphatase mediated phosphate cleavage of FYP,15 and is referred to as the ALP-FYP gel and the 

enzymatic route.    
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Experimental  

Preparation  

Radical induced FMOC-Tyr hydrogels (SNP-FYP gels): Hydrogels were prepared by first dissolving N-

fluorenylmethyloxycarbonyl tyrosine phosphate (FMOC tyrosine phosphate, FYP) (Novabiochem, 

Merck) in 250 µL of a pH 10.1 alkaline buffer ((50 mM Tris-HCl (Sigma), 50 mM Na2CO3 (VWR Life 

Science), 1 mM MgCl2 (Sigma)) at a concentration of 100 mM. Vortexing and sonication were necessary 

to aid dissolution. Then, a solution of sodium nitroprusside dihydrate (SNP) (250 µL) (Sigma) was 

added in varying molar ratios (10:1, 5:1, 2:1 and 1:1), and vortexed, giving a final FYP concentration of 

50 mM. Samples were then irradiated with UV light ( = 254 nm) using a 6W UVP UV Lamp (1290 

µW/cm²). 

Alkaline phosphatase-mediated FMOC-Tyr Hydrogels (Enzymatic route/ALP-FYP gels): Hydrogels were 

made in 200 µL of a pH 10.1 alkaline buffer (50 mM Tris-HCl (Sigma), 50 mM Na2CO3 (VWR Life Science), 

1 mM MgCl2 (Sigma)) at concentrations of 50 mM. Vortexing and sonication were used to aid 

dissolution. Calf intestine alkaline phosphatase (ALP) (10 μL, 1000 U mL-1) (Calbiochem, Merck) was 

added to dephosphorylate FYP and trigger gelation.  These solutions were heated to 37oC for 6 hours 

and left to cool to room temperature.  

Characterisation 

Nuclear magnetic resonance spectroscopy (NMR):  

Carbon (13C) and Phosphorous (31P) were recorded respectively at 125.7 and 202.4 MHz. 13C NMR, 31P 

NMR were performed on the FMOC-Tyr hydrogels to confirm dephosphorylation. Norell Select Series 

500 MHz NMR Tubes were used. 31P NMR spectra were reported using 0.01% triethyl phosphate as an 

internal standard and 10% D2O. Hydrogels were diluted 4-fold with the reaction buffer to raise the pH 

and lower the viscosity for analysis. For 13C NMR hydrogels were freeze-dried and redissolved in 
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deuterated DMSO (d6DMSO) (Sigma) to aid in solubility as has been reported elsewhere. 73,74 Chemical 

shifts were recorded in parts per million (ppm).  

Differential scanning calorimetry (DSC):  

DSC was carried out using a Mettler Toledo TGA/DSC1 Star System at a scan rate of 1 °C min-1 with a 

nitrogen flow of 25 mL min-1. 

Rheology:  

Rheometry was performed using a Malvern Kinexus fitted with a parallel plate geometry (gap width 

of 200 µm) at room temperature. Hydrogels, which were aged for one day, were added to the 

rheometer using a spatula to minimize shear. The top plate was lowered, and the normal force is 

measured and allowed to reach equilibrium. Further details of the experimental setup, e.g. frequency 

and strain range, are included in the result and discussion section.  

Optical and Confocal Laser Scanning Microscopy:  

For optical microscopy, hydrogel samples were imaged without any modifications or dilutions by 

placing a small volume (ca. 5 µL) between a microscope slide and a coverslip. Brightfield, phase 

contrast, and polarized light microscopy were performed on samples. For confocal microscopy, the 

fluorescent dye Hoechst 33258 (Sigma) was added to both samples prior to gelation such that the final 

concentration was 200 µM. An excitation wavelength of 405 nm and emission cut off at ## nm was 

used to visualise Hoechst 33258 within the hydrogel matrix. All images were collected using a Leica 

SP5-II confocal laser scanning microscope attached to a Leica DMI 6000 inverted epifluorescence 

microscope 

Transmission electron microscopy (TEM), cryogenic-TEM, Scanning Transmission Electron 

Microscopy (STEM), and energy dispersive X-ray analysis (EDXA):  

TEM imaging was performed in bright-field mode using a JEOL TEM 1400 electron microscope and 

STEM imaging was performed using a JEOL TEM 2010 electron microscope operating at 120 keV. TEM 
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samples were prepared by drop casting a dilute suspension of hydrogel (5 µL) onto carbon-coated 

copper TEM grids for three minutes and wicking excess fluid away using filter paper. When negative 

staining was necessary, an aqueous solution of uranyl acetate (1% w/v, 5 µL) was also drop cast onto 

the carbon coated TEM grid and wicked off after three minutes. All samples were left to dry overnight 

at room temperature. Cryo-TEM samples were imaged using an FEI Tecnai Twin Lens electron 

microscope fitted with an FEI Eagle 4k x4k CCD camera and was operated at 200 keV. Samples were 

prepared by diluting the hydrogel sample and then drop casting onto glow discharged lacey carbon 

grids. This was achieved using either FEI Vitrobot™ Mark IV or a Leica GP plunge freezer at 25℃, 90% 

humidity with a 10-second wait before plunging the samples liquid nitrogen cooled liquid ethane.    

All STEM imaging and EDXA were performed by Jonathan Jones. All cryogenic-TEM was performed by 

Judith Mantell. Samples for cryogenic-TEM were prepared with the assistance of Judith Mantell and 

Jen Coombs. 

Atomic force microscopy (AFM):  

AFM tapping mode images were obtained using a Bruker Multimode atomic force microscope with 

Nanoscope V controller and Picoforce Extender. Samples were prepared by diluting the sample either 

10 or 100-fold in deionised water and drop cast on either freshly cleaved mica or carbon-coated TEM 

grids. All AFM experiments were performed by Dr Robert Harniman in the Chemical Imaging Facility, 

University of Bristol, with equipment funded by EPSRC under Grant "Atoms to Applications" Grant ref. 

(EP/K035746/1). 

Circular dichroism spectroscopy (CD):  

CD spectra were recorded at room temperature using a JASCO J-810 spectrometer through two quartz 

plates. Samples were prepared by spreading hydrogels (ca. 10 µL) between two quartz plates to 

produce a homogeneous film and to reduce scattering of light by the hydrogel sample. This avoided 

dilution into a cuvette that could alter the filament environment and concentration.  
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Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR): 

 FMOC-Tyr hydrogels were lyophilized by freezing in liquid nitrogen followed by freeze-drying for at 

least 24 hours. ATR-FITR was performed using a PerkinElmer Spectrum 100 FTIR spectrometer fitted 

with a universal attenuated total reflection accessory.  

Fluorescence spectroscopy (fluorimetry): Fluorimetry measurements were recorded at room 

temperature using a Horiba FluoroMax 4 spectrometer. Fluorimetry was carried on supramolecular 

hydrogels with an excitation wavelength of 265 nm, with excitation bandwidth of 1 nm and emission 

bandwidth of 5 nm. Samples were prepared by spreading hydrogels (ca. 10 µL) between two quartz 

plates to produce a homogeneous film. 
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Results and Discussion 

Radical triggered gelation was induced by irradiating SNP-FYP solutions with UV light ( = 254 nm) 

from a hand-held lamp.  Experiments were undertaken for the following ratios (SNP: FYP) 10:1, 5:1, 

2:1 and 1:1, indicating the molar ratio of SNP to FYP, with the latter always at a final concentration of 

50 mM. Control samples were also prepared with either FMOC tyrosine phosphate, SNP, or UV light 

exposure absent. For these experiments, we exploited the ability of nitric oxide to cleave 

phosphoesters to dephosphorylate Fmoc-Tyr-POH via non-enzymatic means to form a self-supported 

Fmoc-tyrosine supramolecular hydrogel (Figure 3.3a).  

 

 

 

Gelation was first observed macroscopically when the material did not flow after inversion. This 

phenomenon occurs because the entangled nanofilaments form a network that traps the solvent via 

surface tension and capillary forces, preventing flow unless a shear is provided 1,5,75,76. According to 

this test (Figure 3.3a), all ratios except 1:1 and the controls (0:1 and 1:0) gelled in under 3 hours. 
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Furthermore, samples left in the dark did not gel, confirming that the presence of SNP, Fmoc-Tyr-POH 

and exposure to UV light were all necessary for hydrogelation. The yellow-red colour of the 

supramolecular hydrogels is due to the iron(III) of the sodium nitroprusside.  

Successful dephosphorylation was demonstrated using 13C and 31P NMR spectroscopy. The 31P NMR 

spectrum (Figure 3.3b) of the Fmoc-Tyr-POH solution gave a resonance peak at -4.05 ppm 

corresponding to the aryl phosphate ester group,77,78 which disappeared for gelled samples. 

Concomitantly, a peak was observed for gelled samples at 0.20 ppm corresponding to cleaved 

phosphorous. This was slightly higher than would be expected for H3PO4 as the pH was increased to 

disassemble the hydrogel filaments for the NMR experiment. Hence the phosphoric acid will be 

partially deprotonated. Correspondingly, the 13C spectrum (Figure 3.4) of the Fmoc-Tyr-POH solution 

had a resonance at 150.59 ppm which is associated with an aryl C-O-P(O)(OH)2 and is absent in all 

gelled samples. Instead, it is replaced by a peak at 152.87 ppm, corresponding to an aryl C-OH 19,79,80, 

as observed for FMOC-Tyr. This demonstrates SNP as an effective source of nitric oxide radicals to 

cleave the phosphate ester bond of the Fmoc-Tyr-POH to form the gelator FMOC-tyrosine.  
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Next, the structural and mechanical properties of the formed gels were investigated via differential 

scanning calorimetry (DSC) and rheology. This analysis demonstrated that the stoichiometry of sodium 

nitroprusside to Fmoc-Tyr-POH affected the mechanical properties of the gel. Though, as total 

cleavage of Fmoc-Tyr-POH is observed through 31P NMR for the gelled samples, this is not due to 

varying gelator concentration. Firstly, DSC demonstrated a broad endothermic peak for all samples 

(Figure 3.6a), increasing from ca. 51 to 71 °C with increasing SNP: FYP ratio compared to ca. 45 °C for 

the ALP-FYP. These peaks correspond to the breaking of the noncovalent crosslinkages of the 

supramolecular hydrogel which causes a gel to sol transition. 19,81,82  This variation in gel-sol transition 

temperature due to SNP stoichiometry indicates that its presence affects the hydrogel network 

formed. 
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Rheological analysis (Figure 3.5) was undertaken to determine the mechanical properties of the 

supramolecular hydrogels. At minimal shear, the viscosity of the hydrogels (Figure 3.5b) increased 

from 0.3 to 137 Pa.s  with increasing molar ratio. The viscosity then decreased for all samples with 

increasing shear rates (known as shear-thinning), typical of supramolecular hydrogels.83–86 The applied 

shear can overcome the weak physical interactions responsible for the hydrogel network allowing the 

sample to flow more easily, corresponding to a lower viscosity.86  
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Oscillatory amplitude sweeps (Figure 3.5d) at a constant frequency (1 Hz) demonstrated a linear 

viscoelastic region (LVR) 87,88 in which the storage (elastic) G’ modulus is approximately an order of 

magnitude higher than the loss (viscous) G” modulus for all stoichiometries except 1:1 (not shown). 

This observation is indicative of a solid-like network throughout the gel 23,87–91 for all stoichiometries 

except the 1:1 molar ratio which likely has an insufficient network of nanofilaments for hydrogelation.  

Increasing the SNP: FYP stoichiometry resulted in an increase in the storage modulus at low strains 

from 430 to 3500 and then to 4700 Pa, indicating that stoichiometry determines the stiffness of the 

resulting gel. At increased strains, the viscous moduli (G”) increased and at a crossover point, there is 

a concomitant sharp decrease in the storage moduli (G’) indicating a transition from an elastic gel to 

a viscous fluid. 19,28,81,92  Oscillatory frequency sweeps (Figure 3.6c) at a fixed amplitude demonstrated 

that G’, arising from the elastic network, was higher than G” across all frequencies, which is 

characteristic of the presence of a solid-like network of filaments in the viscoelastic gel. 18,91 

Rheological analysis revealed very little difference in the properties of hydrogels formed at 5:1 and 

10:1 molar ratios, thus it is likely that raising the molar ratio above 5:1 has minimal impact on the 

resulting structure. Hence, it has been demonstrated that increasing the molar ratio of SNP: FYP up to 

5:1 impacts the rheological properties of the gel. These increased viscosities and changes in storage 

and viscous moduli are consistent with observed molar ratio dependence of the gel to sol transition 

temperature.   

It is proposed that the increased SNP ratio aids in further crosslinking the hydrogel network, as has 

been shown previously, to produce a denser network and consequently a stiffer hydrogel.23,93,94 In 

fact, adding a concentrated solution of SNP (50 μL, 1M) to the top of a gel formed through the 

enzymatic route resulted in a stiffer gel (Figure 3.6), despite the obvious dilution factor, further 

supporting this assertion. When accounting for the dilution of the gelator concentration, the 

measured storage modulus of the prepared ALP gel 108.5 Pa mM-1) roughly doubles for the doped gel 

(180.5 Pa mM-1). 
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DSC and rheological analysis demonstrate that the stoichiometry of SNP affects the bulk properties of 

the hydrogels, despite total cleavage of FYP, meaning that these observations are not due to gelator 

concentration. However, these are bulk properties of the hydrogel, therefore additional techniques 

are necessary to determine further information about how the use of sodium nitroprusside affects 

the hydrogel network. Next optical, electron and atomic force microscopy were used to image the 

hydrogel network and filament structure. 
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Optical and fluorescence microscopy demonstrated differing network structure for the two types of 

the gels (Figure 3.7 and Figure 3.8). For instance, phase contrast microscopy images of the ALP-FYP 

revealed striations resulting from the fibril bundles. Here, the contrast originates from differences in 

the refractive index due to the density of bundles against the lower density background. This sheet-

like morphology is also observed for SNP-FYP hydrogels, however, rather than just uninterrupted 

isotropic filaments, there is a more matted and entangled network, as well as regions of dense 
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filaments around what is presumed to be SNP (yellow arrows in Figure 3.8b). The orange colour of 

these solids indicates that they are indeed SNP. The observation of anisotropic structures around the 

SNP demonstrates its role in directing the supramolecular ordering of nanofilaments. This is clearer 

under polarising microscopy (Figure 3.7d), which revealed domains displaying nematic birefringence, 

indicating ordering of the filaments.  Birefringence was not observed for enzyme-triggered gels with 

samples under crossed-polarizers, instead appearing isotropic. 
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The differences in hydrogel network are obvious when imaging hydrogel samples stained with Hoechst 

33258 using confocal microscopy (Figure 3.8). As before, the ALP-triggered gels show a dense network 

of filaments. Bundled filaments are also observed for radical-triggered gels however a more entangled 

network is observed with dense regions from which filaments are seen to be protruding. These 

differences were observed without drying and therefore these artefacts were avoided.95,96 Thus, 

radical-triggered gels form a different and denser network, agreeing with observations from the 

rheology data.  Hence, it was necessary to study the differing hydrogel network further with higher 

resolution techniques, e.g. transmission electron microscopy (TEM) and high-resolution atomic force 

microscopy (AFM). 

The supramolecular nanofilaments of the hydrogel were imaged using TEM and AFM. Due to the low 

electron density of the carbon-based filaments, negative staining with uranyl acetate was used to 

discern individual filaments via TEM. Although samples at the 1:1 ratio did not gel, only appearing 

slightly more viscous, high-aspect-ratio filaments were still observed (Figure 3.9a). Therefore, it is 

likely that at this stoichiometry, insufficient filaments are formed for there to be a critical density of 

filaments to provide a sufficient scaffold for water gelation. Also, another consideration is the 

inevitable concentrating effect that results from drying the hydrogel suspension on the TEM grids and 

therefore the density of nanofilaments isn’t necessarily representative of the bulk sample. 



  Chapter 3: Radical Induced Gelation 

91 
 

 

For higher ratios, it is possible to observe the high density of nanofilaments, which twist together to 

form bundles and extend to form the network acting as the scaffold for hydrogelation. At higher 

dilutions, it is possible to discern individual filaments and bundles against the substrate. In such cases, 

it has been shown that the filaments are 2-4 nm in width. These filaments are much smaller than those 

formed by the enzymatic route which are ca. 14 nm wide, indicating that the radical-triggered gels 

have a different filament structure as well as variable mechanical and network properties.   
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As observed with optical measurements, radical-triggered gels form a different network.  Radical-

triggered gels form more entwinned filaments (Figure 3.10b), whereas the enzymatic-triggered gels 

are formed of flat tape filaments that appear to be less entwinned (Figure 3.10c and d). It is not 

possible to rule out drying artefacts affecting network morphology, however, these observations 

agree with confocal microscopy images which did not require any dilution or drying. Also, unstained 

images reveal that this differing network is due to SNP salt, as conjectured earlier.  For instance, for 

unstained samples (Figure 3.11), it is possible to visualise salts decorating the hydrogel filaments and 
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acting as junction points around which the filaments entangle to form a denser network. Energy 

dispersive X-ray spectroscopy (Figure 3.11) demonstrated localization of SNP (via the Fe atom), on 

filaments (locations ii and iii) at least on the TEM grid. Small amounts of iron were detected at location 

i, between filaments, due to iron present in the sample holder. These observations support the 

hypothesis that SNP is integrated into the hydrogel structure to form a more extensively cross-linked 

network. The metal salts were also observed to be forming along the hydrogel filaments (Figure 

3.11b).  
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The differences in the filament structures were further investigated using cryogenic-TEM, as this 

technique preserves the native structure in the hydrated state by rapid freezing.97 Once again, much 

narrower filaments were observed for the SNP-FYP gel (Figure 3.13a) when compared to the ALP-FYP 

gel (Figure 3.13b). Interestingly, twisted filaments were observed for both, but the SNP gel (yellow 

arrows Figure 3.13a) had a much narrower pitch between twists, ca. 130 nm compared to ca. 220 nm. 

Twisting in amino acid based fibril assemblies have been shown to be enhanced due to electrostatic 
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repulsion between the amino acids98, thus, such electrostatic repulsion could arise from the anionic 

sodium nitroprusside ions decorating the nanofilaments leading to an increase in twisting. SNP-FYP 

samples were prepared at a lower pH than the ALP samples due to the higher starting concentration 

of FYP, a weak acid, and the SNP solution being prepared at a neutral pH. However, these narrower 

filaments were not due to the lower pH, as if FY was first dissolved at a higher pH and the gelled 

through the lowering of the pH, wider filaments are still observed (12.1 ±3.3 nm) (Figure 3.12), 

comparable to the ALP-FYP filaments.  

 

Also, for the SNP-FYP gel only, the unravelling of these twisted nanofilaments into much wider tapes 

(ca. 52 nm) is observed (Figure 3.14a). These tapes have striations which are visible in the direction of 

the tape, and these are potentially individual protofilaments.91 Presumably, this unravelling is the 

reverse of the assembly process by which the filaments form. This likely occurs through the shearing 

and dilution necessary for the sample preparation. These are unlikely to be observed with 

conventional TEM, owing to the low contrast of the carbon-based filaments against the carbon coating 

of the TEM grid. 
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The observation of sheets is in agreement with the coiling tape mechanism of filament growth, 

whereby twist is imparted on the filament due to the curvature arising from the H-bonding between 

chiral gelators. 99  This curvature results in the formation of metastable twisted structures, preventing 

indefinite 2D lateral growth into sheets, instead favouring 1D growth in the direction of the filament 

to eventually form more twisted helical ribbons (Figure 3.14b). 100,101 For instance, Fmoc-SF-OMe 

assembles into 2D sheets producing a colloidal suspension that does not gel. Yet, simply substituting 

the serine for threonine induces twists into the supramolecular structure to minimise water contact 

with the methyl group. Also, the additional chiral centre promotes chiral assembly, both effects 

encourage 1D assembly over 2D sheets. 102 
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The different filament structure was apparent from TEM. However, as the images obtained by TEM 

are projections, high-resolution AFM was employed to visualise 3D profiles of filaments. For the gel 

formed through the enzymatic route, large bundles of filaments were observed, from which smaller 

bundles were seen to be branching out to form the hydrogel network. There appear to be a large 

amount of filaments which may be an artefact of the drying process. 103 

Individual filaments were observed against freshly cleaved mica with a twisted ribbon morphology. 

These filaments (Figure 3.15b) had a wide tape structure 13.19 (±1.25 nm) (blue arrows) that 

narrowed at the twists 10.49 (±0.89 nm) (red arrows). The 3D image shows the flattening of the tape 

against the substrate, though the height changes for individual filaments are very subtle.  
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For the radical induced hydrogels, the highly entangled network of supramolecular nanofilaments 

(Figure 3.16a) is observed in line with TEM images. At higher dilutions, individual, periodically twisted 

filaments (Figure 3.16b), attributed to the chiral packing of the dephosphorylated hydrogelator 

molecules, are imaged. Significantly, this demonstrated that left-handed helical nanofilaments were 

formed rather than right-handed helical nanofilaments (arrows indicate the location of twisting), as 

would be expected from previous studies involving FMOC-L-tyrosine. 18,19,21,73,88,104,105 This is also 

demonstrated by the height profile measured along the deposited nanofilament (Figure 3.16c). Thus, 

the use of sodium nitroprusside as nitric oxide source has unexpected implications on the self-

assembly process of the hydrogelator molecules.  

 

The unexpected chirality of the hydrogels was studied further using circular dichroism (CD) 

spectrometry (Figure 3.17). There was no observed chirality arising from either SNP or FYP solutions, 

although the former gave a low signal-to-noise ratio at low wavelengths, presumably due to 

absorbance and scattering from SNP.  The absorptions observed at ca.  270 – 310 nm and 210 nm were 
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attributed to offset stacking of the fluorenyl moieties and π – π interactions between the phenyl side 

chains, respectively. 7,8,106 The peak at 304 nm has been attributed to π−π* transition induced by 

interactions of fluorenyl groups in the supramolecular assembly. 107–111 Remarkably, all radically 

induced supramolecular hydrogels had the opposite ellipticity when compared to the hydrogels 

formed when using alkaline phosphatase. Both hydrogels were formed using L-amino acid derivatives, 

and therefore it is expected that the opposite ellipticity must be due to opposite chirality inherent to 

the fibrillar assemblies.8,106 

 

As was mentioned previously the chirality of the nanofilaments originates from hydrogen bonding 

between chiral amino acids and is inherently dependent on the stereochemistry of these gelators.  

Therefore, it was considered whether any unintended molecules were generated because of the UV 

irradiation and/or the use of radicals, that could disrupt the normal stacking of the gelators. This was 

a concern because chemical additives have been shown to affect the chirality of supramolecular 
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structures.111–114 These chiral additives can stack between achiral units or bind to pendant functional 

groups to perturb interactions along the filament to alter supramolecular chirality. 

Thus, it was considered how the use of UV irradiation and generation of radicals could result in 

unintended chemical modifications to the gelator. For instance, many radicals (e.g. superoxide radical 

(O2
-), hydroxyl radical (HO), hydroperoxyl radical (•OOH) etc.), colloquially referred to as reactive 

oxygen species, can oxidize and damage macromolecules.42,115–119  In particular, the one-electron 

oxidation of tyrosine through such radicals has been widely studied, owing to such damage being 

associated with Alzheimer’s, Parkinson’s and Huntington’s diseases, and atherosclerosis.41,42,117–122  

 

Commonly, tyrosyl radicals are formed through the abstraction of the hydrogen atom from the 

hydroxyl group of tyrosine. Of the many possible products, ab initio studies demonstrated that 

dimerization of two tyrosyl radicals to form either dityrosine or isodityrosine are major products. This 

is due to strong electron correlation between the two tyrosyl moieties, which is stabilised when the 
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two are stacked, as the highest energy occupied molecular orbital electron pair is highly delocalised. 

It is plausible that the tyrosine residues will be in close proximity throughout the gelation process for 

stacking to occur (Figure 3.18). Furthermore, oxidising agents such as potassium ferricyanide and 

other iron containing compounds have been used to catalyse the oxidation of tyrosine leading to the 

formation of dityrosine.115,116,119,123   

 

Also,  tyrosyl radicals are also formed as a result of the photoexcitation of the tyrosine by UV 

irradiation followed by the abstraction of the hydroxyl proton via electron ejection.124,125 Both of these 

conditions mentioned are met and could lead to the formation of dityrosine or isodityrosine (Figure 

3.19). 

 

Dityrosine is thought to stabilise assembles of amyloid β-protein into oligomer filaments and trigger 

Alzheimer’s disease. 116,118–120,122,124,126–129 Dityrosine affects the assembly process of peptides into 

Amyloidβ fibrils and has been shown to affect the conformation of β-sheet assemblies. 116,118 

Obviously, the assembly process between peptides and protected single-amino acids is not 

interchangeable. However, it is plausible that any unexpected formation of dityrosine could perturb 

assembly between gelators in a similar way to produce unanticipated filament structures.  
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Indeed, 13C NMR spectroscopy (Figure 3.20) demonstrated that small amounts of dityrosine were in 

fact formed, as identified by the resonance peak at several resonance peaks associated with formation 

of dityrosine, at 115.32, 127.98 and 130.47 ppm corresponding to the perturbed tyrosine ring.119,130 

Significantly, increasing the stoichiometry of SNP increased the intensity of peak associated with 

dityrosine formed indicating that SNP played a significant role in the formation of dityrosine rather 

than the UV irradiation.  
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However, on investigating the stability of the supramolecular chirality to melting, it was observed that 

melting and then cooling the gel caused it to reform with the expected chirality (Figure 3.21). 

Significantly, the resonance peak at 128 pm associated with the carbon-carbon bond between the 

tyrosine moieties of dityrosine was retained. This indicated that the formation of dityrosine was not 

the cause of the unexpected chirality. Rather, the unexpected chirality is the result of kinetically 

trapped structures formed in the gelation process but after the heating and cooling cycle, a more 

thermodynamically favoured state is reached,20 with chirality in line with what would be expected.  

The filaments formed in the presence of SNP are less stable compare to the filaments formed through 

the enzymatic cleavage due to the different curvatures for the different structures. Work by Oda et 

al. demonstrated that twisted ribbons, like those formed in the enzymatic route, are 

thermodynamically more stable compare to helical ribbons, formed by the SNP route.114,131 This can 

be explained due to geometric reasons, as the interlayer coordination favours a saddle-like curvature, 

resulting in the formation of twisted ribbons, over the formation of cylindrical sheets, forming helical 

ribbons. This is because for the later the contact area varies for each layer with the outermost layer 

twisting the most.  
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Heating has been shown to allow for the rearrangement of kinetically trapped structures through the 

disassembly of such assemblies and subsequent assembly into more thermodynamically favoured 

fibril morphologies. 30,132–134 Thus, it is necessary to consider the environment in which the FMOC-

tyrosine self-assembles and how this differs between the two routes. Most obviously, the high 

stoichiometries of sodium nitroprusside appear to be affecting the network structure and to be 

interacting with the nanofilaments. Therefore, it was considered that the presence of the SNP could 

be affecting the chirality.  

 

Hence, experiments were set up whereby SNP was present in solution but not used to trigger gelation 

in order to determine whether its presence in solution was sufficient to affect the supramolecular 

chirality. This was possible because SNP does not spontaneously release nitric oxide radicals and is 

stable in the dark,58,60 rather, it is widely reported that either irradiation with light or one-electron 

reduction by reducing agents (e.g., thiols, hemoproteins, ascorbate) present in most biological tissues 

is necessary for the production of nitric oxide radicals. 55,58,59 

Therefore, SNP was doped into an enzymatically- triggered gel and a pH-triggered gel. Both of which 

were prepared and gelled in the dark. These experiments demonstrated (Figure 3.22) that the 

supramolecular chirality of the hydrogels, again observed via CD, could be affected when SNP was 
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present in the gelling solution but not used to trigger the gelation. This demonstrates that it is the 

presence of the sodium nitroprusside affecting the supramolecular chirality.  

It has previously been shown that anionic salts can polarize the water molecules to affect the hydrogen 

bonding to peptides or have direct interactions with the amides of gelators themselves to affect their 

assembly. 20,22,94,98,135,136   

Yang et al. proposed that Fmoc-tyrosine hydrogen bonds with solvent molecules as part of its 

supramolecular packing18,73 and interactions between similar salts, i.e. potassium ferricyanide and 

peptides have been shown,136 it possible that either of these effects could alter the hydrogen bonding 

and therefore the supramolecular packing of Fmoc-tyrosine. 

As mentioned, the supramolecular chirality observed in the CD spectrum, TEM and AFM arises from 

the curvature of the H-bonding between the chiral gelators. Thus, it is unsurprising that FT-IR 

demonstrates that the SNP-FYP gels exhibit a different hydrogen bonding network compared to the 

ALP gels. Both gels exhibit peaks between 1600-1700 cm-1 arising from the carbonyl hydrogen bonding 

(Figure 3.23a), indicative of a β-sheet-like assembly.91,137–139 Unfortunately, part of the region is 

masked by OH bend vibrations of water weakly associated with SNP,67 though it is possible to integrate 

other peaks. The broad band at 1565 cm−1  only present for the ALP FYP gel corresponds to the 

unprotonated carboxylic acid, arising due to the higher pH of this gel and is not indicative of different 

packing.22,139 It may also be that the presence of the enzyme in the ALP-FYP samples contributes to 

the signal in this region. However, the peak associated with hydrogen bonding originating from the 

carbamate is significantly red shifted by 20 cm-1. This shift to a higher frequency indicates a weakening 

of the intermolecular hydrogel bonding for the SNP gels compared to the ALP gels.138,140,141 Also, at 

lower wavenumbers, with contributions from N-H bending vibrations141–143, also demonstrated shifts.  

At higher wavenumbers, it is possible to probe how the hydroxyl groups of the carboxylic acid and 

phenyl residue are affected. First, consider the peaks at 2143 and 2157 cm−1 that are associated to 

equatorial C≡N IR stretching bands and then the band at 2174 cm−1 corresponding to the axial C≡N 
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stretch.61,66,144 For, the radical-triggered gel sample, there is also a new peak at 2122 cm−1
 indicating 

that these groups are forming a new interaction in the gels. Notably, these are not present for 

irradiated SNP dissolved in the buffer.  There is a very small peak at 2100 cm-1 which is assigned to 

free ejected C≡N- and thus the peak at 2122 cm-1 is not indicative of ejected C≡N-.66 

Therefore, this new peak is likely a result of interactions with the gelator instead. Concomitantly there 

are changes in peaks from 2800-3400 cm-1 associated with hydrogen bonded hydroxyl groups of the 

pendant carboxylic acid and the phenyl residue. Thus, as with the carbonyl peaks, this may be 

associated with these groups hydrogen bonding to polarised solvent molecules. Additionally, the 

nitrogen of cyanide has been reported as a hydrogen bond acceptor,145–147 which may allow for direct 

interactions with the gelator through hydrogen bonding with the pendant carboxylic acid and the 

phenol moiety, both of which will be protonated. The two peaks at 3546 and 3628 cm-1 are 

antisymmetric OH stretches for water solvating the sodium nitroprusside. 67  

Previously, peptide-based fibrils formed through a β-sheet hydrogen bonding network have shown 

variations in chirality due to assembly conditions, indicating that such a motif is sufficiently versatile 

to allow filaments of either handedness to form.148–150  Hence, a perturbed hydrogen bonding 

arrangement could conceivably affect the curvature and consequently the supramolecular chirality of 

the hydrogel filaments.  

Another consideration is that the hydroxyl group is an electron donating group and therefore polarises 

the π-system of the phenyl residue; different hydrogen bonding for the SNP-FYP gel would affect the 

electronics of the aromatic ring relative to the enzyme-mediated system. Indeed shifts are observed 

relative to ALP-FYP gel, at 1402 cm-1 to 1413 cm-1 and 1446 cm-1 to 1438 cm-1, associated with the 

hydroxyl (C-O-H) bending vibration of the tyrosine and ring vibrations, respectively. 151,152 

It is known that the electronic nature of aromatic rings, determined by substituents, can tune the 

strength and geometry of intermolecular aromatic interactions. 153–156 Thus, alongside hydrophobic 

and Van der Waals, the electrostatic component is a key contribution to aromatic-aromatic 
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interactions.  The electrostatics arise, in part due to the quadrupole moment of aromatic rings, 

resulting from the positively charged σ-framework between two regions of negatively charged π-

electron density, which is present on the face of the ring. 153,156,157 The geometries for intermolecular 

π-π interactions are, partly, determined by the quadrupole moment and therefore any perturbation 

could conceivably encourage different arrangements. 153 Finally, the different aromatic stacking 

arrangements were investigated below.  
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Beyond hydrogen bonding, another key driving force for the assembly of amphiphilic gelators is the 

π-π stacking and hydrophobic interactions between the aromatic residues. These give rise to a series 

of different stacking modes for the aromatic residues18,100 (Figure 3.23c). Unfortunately, the 

crystallinity of the SNP excludes powder x-ray diffraction and wide-angle x-ray scattering as useful 

techniques, yet fluorimetry yields an insight into these assemblies. Figure 3.#c shows the emission 

spectra for FMOC tyrosine phosphate solution and hydrogel samples. The solution exhibited an 

emission at 311 nm and all other samples showed a slight red-shift in their emission indicative of 

inefficient π–π stacking73,158 which has been attributed to Fmoc-phenyl stacking (Figure 3.23d(i)). At 

higher wavelengths, differences between the two samples are evident. For instance, the ALP-FYP gel 

exhibits a peak at 331 nm, indicative of anti-parallel stacking of the Fmoc residues18 (Figure 3.23d (ii)), 

which is absent in the SNP-FYP gels. Although there is significant broadening for all SNP-FYP gels there 

is instead a peak at 395 nm, associated with parallel stacking of Fmoc residues18 (Figure 3.23d (iii)).  

Most significantly of all, however, is that with increasing SNP: FYP ratios there is an increase in intensity 

for substantially red-shifted emission peaks, attributed to excimer formation as a result of extended 

and conjugated π– π stacking interactions. 73,89,91,100,139 Thus, the increased amounts of SNP present in 

solution encourage extended aromatic stacking. This is in line with previous reports that observed that 

hydrophobic interactions become dominant when anionic salts are involved in the assembly process. 

94,159   
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Conclusions 

To conclude, herein is the first ever use, to the best of the author’s knowledge, of radicals to form a 

supramolecular hydrogel, thereby expanding the synthetic methodologies available.  The formed 

hydrogelator self-assembles into high-aspect ratio nanofilaments that entangle to form a self-

supported viscoelastic hydrogel. The mechanical properties of this network are affected by the 

stoichiometry of SNP used. The interconnecting nanofilaments were visualised via TEM and high-

resolution AFM with the latter, surprisingly, revealing periodically twisted fibres with left-handed 

chirality, which was corroborated by CD analysis. We envisage that this methodology should open new 

routes to altering the molecular packing of gelator molecules to construct novel chiral supramolecular 

architectures. 
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Future Work 

In this chapter, the use of nitric oxides radicals as a trigger for gelation, through dephosphorylation of 

Fmoc-tyrosine, has been demonstrated. However, it would be advantageous to pursue alternative 

means of nitric oxide release. Beyond the toxicity issues arising from using sodium nitroprusside, 59 its 

presence has proved problematic when trying to image individual nanofilaments, particularly when 

using sensitive techniques such as AFM. 

Thankfully, owing to the extensive use of nitric oxide as a therapeutic agent, there has been extensive 

research into alternative nitric oxide donors. 55–57,59,160–176 For instance, one of the most common 

classes of donors are S-Nitrosothiols which dissociate, when appropriately triggered, e.g., photolysis, 

to form nitric oxide and their corresponding disulphide. 163,165–168,177  However, these are not an 

appropriate replacement to SNP owing to their relatively low solubility and high cost. Instead, amine-

derived diazeniumdiolates are a more promising alternative, being both cheaper and more soluble 

than S-nitrosothiols.  

 

Dissociation of the anion provides two equivalents of nitric oxide radicals and has been shown to occur 

via the protonation of the amino nitrogen, making the rate of dissociation pH dependent.57,59,174,176 

Interestingly, the dissociation rate can also be carefully modulated via a choice of the R- group, which 

could affect the rate of dephosphorylation and gelation which could then have consequences to the 

mechanical properties of resulting supramolecular gel.178,179 For instance, the work by Adams et al. 
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demonstrated that by utilizing the slow hydrolysis of glucono-δ-lactone to gluconic acid resulted in a 

uniform pH change and produced more uniform and reproducible hydrogels. 90,180 

 

The diazeniumdiolate, 2,2′-(Hydroxynitrosohydrazono)bis-ethanimine (DETA), has been shown to be 

a promising candidate as it is capable of completely dephosphorylating FYP, as shown by NMR studies 

(Figure 3.25). 

The use of photo irradiation to trigger gelation could also be used pattern hydrogel structure. Initial 

studies demonstrated localised gelation. Spatial resolution could be improved by undertaking such 

experiments within an existing hydrogel network. For instance, Cornwell et al. demonstrated that 

convection and diffusion of the gelation trigger could be limited in an existing gel to better localise 

gelation at the point of irradiation. 180  
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Chapter Outline: 

This fourth chapter of the work highlights the design and construction of a nucleotide-amino acid 

multicomponent hydrogel. Multicomponent hydrogels are a growing area of research owing to the 

possibility to impart a higher information content into assemblies, thus allowing researchers to build 

more complex materials. Current approaches often rely on gelation due to a single stimulus for all 

components. Herein, one stimulus is used to trigger gelation of one component and this gelation 

process triggers the gelation of the second component. This is achieved through the addition of silver 

nitrate to a guanosine monophosphate (GMP) N-fluorenylmethyloxycarbonyl tyrosine (FY) solution. 

This results in the formation of silver-guanosine dimers stabilised through the enol tautomerisation 

and subsequent proton abstraction. The associated drop in pH then triggers the gelation of the second 

gelator, FY, through protonation of its pendant carboxylic acid.  

As observed in the previous chapter, the process of gelation can be heavily kinetically dependent. The 

assembly process is highly sensitive to environmental conditions such as, but not limited to, ionic 

strength and temperature.  Alterations in the supramolecular structure due to the assembly conditions 

are also observed here, with the ratio of Ag: GMP affecting the assembly kinetics, the resulting 

supramolecular organisation and mechanical properties of the hydrogel. These gels were formed at 

two Ag: GMP ratios, 2:1 and 1:1. The higher stoichiometries resulted in almost instantaneous gelation 

with non-orthogonal assembly between the gelators. However, at lower stoichiometries, this 

disruptive assembly is avoided and the second component, FY, can be selectively disassembled 

through the raising of pH. This demonstrates the possibility of creating a hydrogel with adaptable 

network density and mechanical properties. Such a strategy may be advantageous to many 

applications e.g., drug delivery, tissue engineering, wound dressing etc. 
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Introduction: 

This chapter will focus on the formation of a multicomponent gelation system, a rapidly growing area 

of research. This self-assembly is more akin to biological assembly in which different components (e.g. 

nucleosides, lipids and amino acids) must self-sort or combine to assemble into a myriad of structures. 

For example, the cytoskeleton of cells is made up of microtubules and actin filaments which undergo 

orthogonal assembly and disassembly resulting in varied mechanical properties. Other biological 

systems form assemblies with multifunctional behaviour with different responses to different stimuli.  

Such complex biological systems are emergent, and the result of incremental, evolutionary steps. 

Thus, the assembly of more complex abiotic systems can inform origin of life studies and researchers 

wishing to engineer more sophisticated self-assembled structures over different length scales.1–3 For 

instance, the design of multicomponent systems can produce gels with a higher information content 

as gelators with different functionality and responsiveness can be combined, e.g. modulating 

mechanical strength or having only one gelator susceptible to a stimulus.  

In an excellent review, Buerkle and Rowan outlined three classifications of multicomponent 

supramolecular gels. 4 They are as follows (Figure 4.1): 

1. A supramolecular gel formed from two (or more) compounds which do not gel individually.  

2. A supramolecular gel formed from a gelator plus an additive that does not gel but modulates 

some property of the gel. 

3. A supramolecular gel formed from two (or more) gelators that do gel individually. 
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The first classification is perhaps the most studied, particularly for organogels (gels formed through 

an organic solvent) and involves the combination of non-gelators. These can then assemble via 

complementary interactions, e.g. hydrogen bonding, metal-ligand or donor acceptor interactions.4 A 

common strategy is to couple components with complementary hydrogen bonding interactions to 

encourage co-operative assembly. The first report within this classification by Hanabusa et al. 

exploited well-known interactions between barbituric acid and pyrimidine units. These motifs were 

functionalised to encourage hydrogen bonding between each other and with alkyl chains to induce 

steric constraints, both of which promote one-dimensional assembly.5 Also, Xu et al. demonstrated 

that two amino acids, based on a class of anti-inflammatory agents, gelled when both were present 

upon the addition of Na2CO3, which solubilised the amino acids and was proposed to be involved in 

hydrogen bonding between two components.6 Owing to the prevalence of aromatic groups to 

encourage self-assembly, donor-acceptor interactions can promote assembly between two normally 
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non-gelating components. For instance, Rao et al. demonstrated the gelation of a coronene derivative 

and a dodecyl-functionalized methyl viologen derivative through π-π, charge-transfer, and 

electrostatic interactions.7 This resulted in an assembly of alternating stacks of the two components 

to form one-dimensional filaments and subsequent gelation. The authors proposed that such an 

assembly of chromophores may have relevance to sensing applications. 

The second classification has also been widely researched and refers to the combination of an additive 

and a gelator to modulate mechanical properties, to enhance the stability of the gel or to use the gel 

as a scaffold for crystallisation. Work by Van Esch’s group highlights some interesting consequences 

of combining gelators with surfactants. 8,9 The gelators (derivatives of 1,3,5-cyclohexyltrisamide) were 

either mixed with a micelle-forming surfactant, cetyltrimethylammonium tosylate (CTAT), or vesicle 

forming surfactant, 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC). Gelation in the presence of 

CTAT resulted in gel fibres and cylindrical micelles, which increased the Tgel value, presumably due to 

the surfactant creating a more entangled network. The orthogonal assembly also occurred in the 

presence of DOPC, with vesicles forming alongside hydrogel filaments, as confirmed with cryo-TEM 

(Figure 4.2a). Though, if the gel network was disassembled and then reassembled inside the DOPC 

vesicles and therefore constrained filament length (Figure 4.2b). 
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Furthermore, Fuhrhop et al. demonstrated that gelation in the presence of sodium dodecyl sulfate 

(SDS) would increase the long-term stability of gels that are susceptible to gel-crystal transformations 

which gradually disassembled the gel network.10 This occurs because gelators exist in both the gel and 

sol phases and the latter act as a nucleation point for crystallisation.11–14 This effectively lowers the 

concentration of gelators in solution, promoting gelators to move from the gel to the sol phase. It was 

conjectured that the SDS would solubilise the gelator nuclei preventing further macroscopic 

crystallisation and thus averting network disassembly. Yu et al. demonstrated that the gelation of the 

insoluble nucleoside guanosine (G) in the presence of its more soluble analogue, guanosine 

monophosphate (GMP), resulted in stable hydrogels.15 Unlike individual G gels, this binary mixture 

exhibited thermoassociative behaviour (gelling as the temperature is raised), attributed to the 

solubilisation of G into GMP aggregates existing prior to heating. This reduced the repulsion between 

anionic GMP stabilising further aggregation and gelation.   

An alternative approach under this second classification is to use the supramolecular gel to promote 

the crystallisation of the second component under non-equilibrium conditions. Simply put, 

crystallisation occurs through an unenergetically favourable nucleation step, followed by an 
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energetically favourable crystal phase growth.  However, this explanation is an oversimplification as 

there are kinetic and thermodynamic aspects involved and hence metastable structures are common 

and polymorphism is prevalent in crystallisation.1 The study of different crystal forms is extremely 

valuable owing to their different bioavailability and solubility, which also affects processing, with 

obvious consequences to applications of pharmaceutical agents.1 The gel network can affect the 

crystallisation process by modulating diffusion of reactants, preventing convection currents and 

sedimentation and reducing the number of nucleation sites.1 The gel can also selectively act as a 

nucleating point through interactions with the crystallising material. The synthetic and structural 

versatility of LMWGs allows for specific interactions with the crystallising material thus making 

molecular gels particularly attractive as crystallisation scaffolds. For instance, Estroff et al. 

demonstrated that the carboxylate groups of a bis-urea dicarboxylic acid-based gelator functioned as 

calcium binding domain, to grow calcite crystals.16 The gelator itself was occluded into the crystalline 

lattice which is expected to affect crystal properties.  

 

Daly et al. demonstrated the formation of single-crystal halide nanowires from supramolecular gel 

surfaces.17 The supramolecular gel stabilizes the growth of these wires by facilitating a diffusion-driven 

base growth mechanism. Though the mechanism wasn’t fully understood the authors proposed that 

the supramolecular gel was key to directing anisotropic growth. In addition, Pandoli et al. 

demonstrated that GMP hydrogels could be used to produce chiral silver nanoparticles templated by 

the helical supramolecular GMP assemblies.18 These reports demonstrate that supramolecular gels 

have a role in controlling the morphology of crystallising material. 

 

Finally, the third classification concerns the formation of a multicomponent supramolecular hydrogel 

using two gelators which are capable of gelling individually and is the focus of experimental work 

reported in this chapter. Such systems can increase the information content by mixing gelators with 

different properties or to functionalise the same gelator differently.  
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These gelators can orthogonally ‘self-sort’ into separate narcissistic filaments or co-assemble into 

mixed filaments.4,13,19–22 If mixed filaments form, there are several ways for the gelators to order in 

the filaments: alternating or mixed in an ordered or random way. Additionally, these filaments may 

then self-sort or entangle together. Finally, the co-assembly of the gelators can be disruptive such that 

the properties are hampered, e.g. either the mechanical properties or a disordered supramolecular 

assembly. This often occurs through a mismatch in the alignment of the gelators such that the ordering 

of the intermolecular interactions is perturbed, relative to how the individual gelators assemble.13 It 

is also possible for a mixture of these assemblies to occur.  

 

Multicomponent hydrogels are relevant to forming more complex hydrogel scaffolds with a higher 

information content, e.g. multiple synergistic functional groups which affect tissue growth.23  For 

instance, Horgan et al. combined two Fmoc-protected peptides functionalized with different 

biologically active epitopes.24 This produced a scaffold more chemically and physically similar to the 

extracellular matrix suitable for tissue engineering applications. Also, the co-assembled gel induced 

changes in the cells not achieved when either of the individual gelators was used separately. Another 

key focus is using mixed systems for optoelectronics.25–29 For instance, through the formation of ‘self-

sorted’ filaments it should be possible to generate bulk p-n heterojunctions.30 Indeed, Sugiyasu et al. 

successfully demonstrated a gel capable of photoelectrical conversion through the self-sorting of p-

type oligothiophene and n-type perylene derivatives.31 Such an approach produces a solution-

processible material that showed promising photoelectrical conversion by visible light irradiation. 

 

The co-assembly of different gelators allows for different responses to various stimuli e.g. light, heat, 

pH changes etc. For instance, Draper et al. could selectively remove the fibres of one gelator by a light-

triggered gel-to-sol transition.32 Irradiation of the gel with 365 nm light induced a trans-cis 

isomerisation in a stilbene-based gelator, with the latter isomer being a poor gelator. The second, 
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naphthalene-amino acid gelator was unaffected, leaving a hydrogel network intact with rheological 

properties comparable to the naphthalene-amino acid gelator gelling by itself. As opposed to 

“negative etching” (removing one component), Cornwell et al. demonstrated “positive writing” by 

forming a multicomponent gel using two different proton sources to trigger the assembly of two DBS 

(1,3:2,4-dibenzyldene-D-sorbitol) derivatives with different pKas (Figure 4.3).33 The first gelator (DBS-

CO2H), gels due to the hydrolysis of glucono-δ-lactone (GdL) and the associated pH drop. Then the 

second gelator (DBS-Gly), with a lower pKa can be selectively gelled using a mask and photoactivation 

of diphenyl iodonium nitrate (DPIN). Doing this in a preformed gel network lowers convection and 

diffusion effects, thus enhancing spatial resolution. Gels with tuneable network properties are 

attracting interest owing to numerous applications such as determining cargo release and affecting 

the mechanical properties of tissue culture scaffolds. 34,35 

 

 

 

Further elegant work has been reported by Singh et al., who produced a bola-amphiphilic hydrogelator 

capable of catalysing the formation of a second trishydrazone hydrogelator from a trishydrazide and 
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benzaldehyde. 36 The formation of the second gelator is enhanced by acid catalysis and it was 

proposed the fibres of the first gel have acidic interfaces resulting in local decrease in the pH.  

 

Herein, is reported the gelation of one component producing the trigger for the gelation of the second 

component. This is achieved through the addition of silver nitrate to a GMP and FY solution, which 

lowers the pH, through abstraction of a proton from the guanine residue of GMP. 18,37–39  Silver-GMP 

dimers are formed which stack into nanofilaments through π-stacking and hydrogen bonding. The 

drop in pH then triggers the gelation of FY, which is soluble at high pH (ca. >pH 8) but protonation of 

the pendant carboxylic acid lowers its hydrophilicity and electrostatic repulsion. (Figure 4.3) This 

promotes one-dimensional assembly and entanglement of these filaments to form the hydrogel 

network. Doing so produces a multicomponent hydrogel of which one component is more pH sensitive 

and can be disassembled. The ratio of silver to GMP determines the kinetics of assembly and hence 

the process of assembly and properties of the gel across multiple length scales, e.g. supramolecular 

packing, mechanical properties will be discussed below.  
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Experimental  

Preparation  

Single component hydrogels: Silver nitrate (AgNO3) (Alfa Aesar) and guanosine 5'-monophosphate 

sodium salt (Na2GMP) (Signma) were used as received and all solutions prepared using Milli-Q TM 

water. Ag-GMP hydrogels with AgNO3: GMP molar ratios of 1:1 and 2:1 were prepared at room 

temperature by adding an appropriate concentration of aqueous AgNO3 (25-100 mM) to an aqueous 

solution of Na2GMP (25-50 mM) whilst vortexing (1,000 rpm) to aid dissolution of the silver salt for 

homogenous gelation.   

N-Fluorenylmethyloxycarbonyl tyrosine (Fmoc tyrosine, FY) (Novabiochem, Merck) was dissolved in 

25 mM NaOH with the aid of sonication and vortexing. Aliquots of NaOH (1 M) were also added to 

raise the pH of the solution to 9, above the pKa of the pendant carboxylic acid. The solutions were 

filtered through a 0.44 μm polyethersulfone syringe filter to remove any undissolved solid. Then 

glucono-δ-lactone (GdL) (3 mg/mL) was dissolved in the Fmoc-tyrosine solution. 

Multicomponent hydrogels: Fmoc-tyrosine solutions were prepared as above and were then used to 

dissolve GMP. Multicomponent hydrogels were formed adding an appropriate concentration of 

aqueous AgNO3 (25-100 mM) to an aqueous solution of Na2GMP (25-50 mM) and FY (25-50 mM) whilst 

vortexing (1,000 rpm) to aid dissolution of the silver salt for homogenous gelation.  Gels were left to 

form in the dark. These gels were formed at a 2:1 or 1:1 molar ratio relative to the GMP concentration.  

The samples were prepared such that either the GMP and Fmoc-tyrosine were the same concentration 

(25 mM), or that one gelator was at a lower concentration (12.5 mM). This resulted in nine samples 

(three single component samples and six multicomponent samples). The ratios are listed here and 

summarised again in the next section. 1:1 AgGMP (25 mM) Fmoc-tyrosine (25 mM) (A), 1:1 AgGMP 

(25 mM) Fmoc-tyrosine (12.5 mM) (B), and 1:1 AgGMP (12.5 mM) Fmoc-tyrosine (25 mM) (C), 2:1 
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AgGMP (25 mM) Fmoc-tyrosine (25 mM) (D), 2:1 AgGMP (25 mM) Fmoc-tyrosine (12.5 mM) (E) and 

2:1 AgGMP (12.5 mM) Fmoc-tyrosine (25 mM) (F),  

Characterisation 

Differential scanning calorimetry (DSC): DSC was carried out using a Mettler Toledo TGA/DSC1 Star 

System at a scan rate of 2 °C min-1 with a nitrogen flow of 25 mL min-1. All experiments were carried 

out with the assistance of Maddy Nichols. 

Rheology: Rheometry was performed using a Malvern Kinexus fitted with a parallel plate geometry 

(gap width of 200 µm) at room temperature. Hydrogels, which were aged for one day, were added to 

the rheometer using a spatula to minimise shear. The top plate was lowered, and the normal force 

was measured and allowed to reach equilibrium. For oscillatory amplitude sweeps, a constant 

frequency was maintained for all experiments and the sweep runs from 0.01-500% strain. To measure 

gelation, samples were prepared as normal and loaded as above. Then a constant strain (0.1 %) was 

applied at a constant frequency (1 Hz) and the moduli were recorded every 10 seconds. The specimen 

chamber was kept slightly humid to prevent drying of the sample. These measurements were followed 

by the aforementioned oscillatory amplitude sweep to demonstrate that mechanically equivalent gels 

were formed. Further details of the experimental setup e.g. frequency and strain range are included 

in the result and discussion section.  

Transmission electron microscopy (TEM), Scanning transmission electron microscopy (STEM) and 

energy dispersive X-ray analysis (EDXA): TEM imaging was performed in bright-field mode using a JEOL 

TEM 1400 electron microscope and STEM imaging was performed using a JEOL TEM 2010 electron 

microscope operating at 120 keV. TEM samples were prepared by drop casting a dilute suspension of 

hydrogel (5 µL) onto carbon-coated copper TEM grids for three minutes and wicking excess fluid away 

using filter paper. When negative staining was necessary, an aqueous solution of uranyl acetate (1% 

w/v, 5 µL) were also dropcast onto the carbon coated TEM grid and wicked off after three minutes. All 
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samples were left to dry overnight at room temperature. STEM imaging and EDX data collection was 

undertaken by Dr Jean-Charles Eloi. 

Circular dichroism spectroscopy (CD): CD spectra were recorded at room temperature using a JASCO 

J-810 spectrometer through two quartz plates. Samples were prepared by spreading hydrogels (ca. 10 

µL) between two quartz plates to produce a homogeneous film and to reduce scattering of light by 

the hydrogel sample. This avoided dilution into a cuvette that could alter the filament environment 

and concentration.  

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR): Fmoc-Tyr hydrogels 

were lyophilized by freezing in liquid nitrogen followed by freeze-drying for at least 24 hours. ATR-

FITR was performed using a PerkinElmer Spectrum 100 FTIR spectrometer fitted with a universal 

attenuated total reflection accessory.  

Fluorescence spectroscopy (fluorimetry): Fluorimetry measurements were recorded at room 

temperature using a Horiba FluoroMax 4 spectrometer. Fluorimetry was carried on supramolecular 

hydrogels with an excitation wavelength of 265 nm, with excitation bandwidth of 1nm and emission 

bandwidth of 5 nm. Samples were prepared by spreading hydrogels (ca. 10 µL) between two quartz 

plates to produce a homogeneous film, as for CD. 
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Results and Discussion 

Single component supramolecular hydrogels were formed as reported previously to act as controls for 

multi-component hydrogels.34,38,40,41  The first class of these gels were formed by adding silver nitrate 

(50mM or 100mM) at an equal volume to give a guanosine monophosphate (GMP) aqueous solution 

(50 mM) to a final concentration of 25 mM. This gives the two Ag-GMP ratios that will be used for the 

multi-component hydrogels. The 2:1 molar ratio forms an opaque self-supporting hydrogel almost 

instantaneously, but the 1:1 molar ratio forms a viscous solution which is not self-supporting after vial 

inversion (Figure 4.7 (a) (ii)).  The second gelator, N-fluorenylmethyloxycarbonyl tyrosine (Fmoc-

tyrosine, FY), is first dissolved at a high pH to deprotonate the pendant carboxylic acid which aids 

dissolvation as the sodium salt is more soluble.40,42 This then forms a gel after lowering of pH through 

protonation of the terminal carboxylic acid. As the protonated form is less soluble than the sodium 

salt, its hydrophilicity and electrostatic repulsion are lowered, allowing for kinetically trapped 

nanofilaments to grow and entangle. These then form the scaffold to immobilise the aqueous solvent 

to form a supramolecular hydrogel.  

Lowering of pH can be achieved via addition of mineral acids (i.e. HCl) or through the hydrolysis of 

glucono-δ-lactone (GdL), forming gluconic acid (Figure 4.4a). It has been reported that gelation tends 

to occur on shorter timescales than it takes to adequately dissolve mineral acids which causes very 

localised gelation, resulting in irreproducible gels. 40,42,43 Alternatively, GdL is more soluble and thus 

allows for a homogenous pH change for consistent gelation throughout the sample (Figure 4.4b).   Also, 

as the rate of hydrolysis is determined by the starting OH- concentration and temperature, this allows 

for reproducible gelation.27,40,42,44 This method was used to trigger gelation of Fmoc-tyrosine gels and 

produced slightly turbid self-supporting supramolecular hydrogels (Figure 4.6 (a) (iii)).   
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In the Fmoc-tyrosine solution (Figure 4.5a), there is a rapid pH drop after the addition of GdL (at ca. 

10 minutes) as the hydrolysis of GdL is base catalysed. 27,40,42,44 Surprisingly, the Fmoc-tyrosine solution 

gels, despite the final pH being above that of the predicted pKa for N-protected amino acids of 3.2-

3.7.45 This can be understood by a transition at ca. pH 7.10 and the plateau observed at pH ca. 5.6. 

This plateau indicates a region of buffering by the Fmoc-tyrosine well above expected pKa, 

characteristic of a shift in apparent pKa of the carboxylic acid. 46–49 Similar shifts of apparent pKas have 

been widely reported for other carboxylic acids, such as amino acids in hydrophobic environments 

and fatty acids. 50–52  
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These shifts are associated with structural behaviours dependent on the pH, whereby the assemblies 

are stabilised through interactions such as hydrogen bonding with the carboxylic acid. As such, this 

disfavours deprotonation of the carboxylic acid resulting in a shift in the apparent pKa. Due to the 

amphiphilic nature of the gelators at high pHs, the gelators act as surfactants and therefore can self-

assemble into spherical or worm-like micelles. 25,46,48,53–56  These assemblies result in the observed shift 

of apparent pKa, relative to what would be predicted for well dissolved individual monomer units.  

Thus, the two observations can be understood by protonation of the FY molecules at ca. pH 7.1 

encouraging self-assembly. With a further drop in pH, further FY molecules will be protonated, 

lowering the degree of ionisation allowing for the lateral association of these filaments and 

subsequent entanglement of these filaments to form a 3D network and gel. 46 

Addition of silver nitrate to a GMP solution (Figure 4.5b) results in a stark pH drop, not observed when 

added to just water (Figure 4.5b). This is in line with the proposed model of Ag-GMP dimerization that 

results in the abstraction of the proton from the guanine residue through the enolate tautomerization 

(Figure 4.3). 18,37–39  
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Multicomponent gels were formed by adding silver nitrate at equal volumes to a FY GMP solution at 

either a 2:1 or 1:1 molar ratio relative to the GMP concentration.  The samples were prepared such 

that either the GMP and Fmoc-tyrosine were the same concentration (25 mM), or that one gelator 

was at a lower concentration (12.5 mM), producing six multicomponent samples. A summary of the 

three single component gels and six multicomponent samples are listed in Table 4.1. The 

multicomponent samples are abbreviated to one letter codes for clarity and listed alongside their 

colour code that are kept constant for all figures. Any alterations to these will be referred to in the 

figure captions. 
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The different ratios of the GMP and FY gelators showed interesting behaviour in the gel formation. 

For the 2:1 gels, samples D gelled after a few minutes, E gelled almost instantly despite a lower gelator 

concentration, and then F gelled after several hours.  The quicker gelation time of E was surprising 

and indicated non-orthogonal assembly between GMP and Fmoc-tyrosine which was lessened by 

lowering the Fmoc-tyrosine concentration. Then for the 1:1 gels, A and B gelled overnight, and C failed 

to gel (Figure 4.3 (c). This can be understood with the pH measurements, as all the gels are below pH 

7 except C and thus cannot sufficiently protonate the carboxylic acid of Fmoc-tyrosine to promote 

gelation. Additionally, sample C, is below critical gelation concentration to promote AgGMP gelation. 

Significantly, neither GMP-FY solutions nor addition of silver to FY resulted in gelation (Figure 4.5b). 

Thus, indicating that all three components must be necessary for FY molecules to gel water and 

therefore form a multicomponent hydrogel.  
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The nanofilament network of these hydrogels can be visualised using transmission electron 

microscopy. Due to the low electron density of the carbon-based filaments of the Fmoc-tyrosine gels, 

negative staining with uranyl acetate was used to discern individual filaments. For all samples, it is 

possible to observe the high density of nanofilaments which entangle to form the scaffold for 

hydrogelation. FY filaments had a flat tape morphology with filaments of 12.1 ±3.3 nm (Figure 4.8a). 

Ag-GMP filaments could be observed without staining due to electron-dense silver nanoparticles 

present in the filaments as confirmed by EDX analysis (Figure 4.8b).  Filaments of 3-8 nm and 3-10 nm 

were imaged for 1:1 and 2:1 molar ratios, respectively. 
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High-aspect-ratio filaments were observed for all multicomponent samples, including sample C. This 

isn’t surprising as filaments are still expected for this sample and their density may be increased due 

to the concentrating effects of the sample preparation. It appears that there is significant disorder 

around the filaments, most clearly observed for sample A, though it is not clear whether this is an 

artefact of the sample preparation.  Interesting observations are made in filament widths for samples 

A and B. Both have narrower filaments present 2-8 nm and 2-6 nm, respectively and wider filaments 
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9-16 nm and 8-13 nm, respectively. The smaller filaments may be, at least predominantly, Ag-GMP 

filaments and the wider filaments may be FY filaments as these filament widths are in line with single 

component widths. Sample C also has a spread of filament widths from 4-9 nm. Samples prepared at 

the 2:1 ratio also demonstrated a breadth of widths; D (3-14 nm), E (3-11 nm), and F (4-14 nm). 

Electron-dense silver nanoparticles, confirmed by EDX, are also observed for the multicomponent 

samples at both Ag:GMP ratios. There are a large number of these observed at the 2:1 ratio as the 

silver is in excess, relative to GMP. However, as gelators are in equilibrium between the filaments and 

the solution, silver ions will be available to form silver nanoparticles.  
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Although others have demonstrated self-sorting through the observation of very different widths, 57,58 

in this case it is not reliable as the filament widths are relatively comparable between the two gelators. 

Also, the work detailed in Chapter 3 demonstrates that the same gelator can form filaments with 

different widths depending on how they are prepared. Also, Mears et al. demonstrated that 

measurements of dry filaments by electron microscopy were wider than measurements of wet 

filaments by cryo-TEM and small angle neutron scattering.59 

Since the GMP gelator has phosphorus and potentially higher levels of silver present energy-dispersive 

X-ray spectroscopy (EDXS) was employed to determine whether any filaments could be imaged 

without these elements present, which would indicate that the filament was composed just FY 

corresponding to self-sorting. However, this was not achieved (Figure 4.10) and therefore, 

spectroscopic analysis was undertaken to better understand the assembly of the two gelators in the 

multicomponent systems.  
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As it is not possible to differentiate the filament structures of each gelator via TEM other techniques 

were employed to characterise the hydrogel and understand the assembly. Firstly, a series of 

spectroscopic methods were used to understand the supramolecular organisation of the gelators, 

comparing their assembly to the single component gels.  
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UV-vis spectroscopy (Figure 4.8) of the hydrogels exhibited multiple peak maxima, as the spectra were 

collected from samples between quartz plates the path length was variable and thus the data was 

normalised. Also, the different gelator concentration between samples would inevitably lead to 

different absorbance values. Thus, exact absorbance values were not informative.  Though 

hypochromicity was observed for all samples because of gelation. This can be understood when 

considering the two different environments for the gelators prior to and post gelation. Before gelation, 
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in solution, the gelators are relatively free to rotate allowing for unhindered transitions. In contrast, 

after gelation, these molecules are confined in nanofilaments that bundle and entangle together.  This 

relatively confined, and more rigid assembly reduces rotation such that electron transitions are less 

favourable. This observation is analogous to the hyperchromic effect that occurs with denaturing of 

the DNA helix, which disrupts the bonding between nucleobases, allowing for freer rotation of its 

aromatic groups and increased absorbance values.60  

Substantial peaks shifts are observed for the AgGMP gelation, Na2GMP solution exhibited peaks at 

196, 252 and 276 nm. The absorbance peak at 196 nm undergoes a bathochromic shift to 200 nm, as 

well as significant shifts for other peaks, indicative of aromatic stacking. The Fmoc-tyrosine solution 

exhibited absorbance at around 210nm and then 265, 288 and 299 nm with peaks around 210 nm 

previously being attributed to fluorenyl n→π* transitions and absorbances between 265 to 300 being 

attributed to the tyrosine and fluorenyl π→π*.61,62  Less significant shifts are observed due to Fmoc-

tyrosine gelation, indicating similar assemblies for the aromatic residues before and after gelation. For 

the multicomponent hydrogels, hypochromocity is also observed, characteristic of supramolecular 

gelation. 38,63,64 As both gelators absorb within the same wavelengths, there is broadening of the peaks. 

The absorbance peaks are somewhat similar to the single component hydrogels, perhaps indicating 

self-sorting into separate filaments. Fluorimetry and circular dichroism were used to study the 

molecular arrangements of the gelators further.  

Circular dichroism (CD) was employed to further understand the supramolecular organisation and how 

it differs in the multi-component hydrogels (Figure 4.10). The Fmoc-tyrosine solution (Figure 4.12a) 

did exhibit peaks prior to gelation, indicating that there is already some supramolecular organisation 

in solution. Fmoc-tyrosine and structurally similar gelators have been shown to form micelles, and at 

the concentrations used here, often worm-like in nature. 13,41,53,54,62 Thus they are expected to exhibit 

supramolecular chirality. Upon the gelation of the Fmoc-tyrosine solution (Figure 4.12b), the ellipticity 

and hence supramolecular chirality is substantially increased, attributed to extended filament growth 
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and bundling. 61,62 The absorptions observed at ca. 210 nm characteristic of fluorenyl the n→π* 

transitions and absorbances between 265 to 300 being attributed to the tyrosine and fluorenyl π→π* 

transitions.61,62  Then the peak at 304 nm has been attributed to π−π* transition induced by 

interactions of fluorenyl groups in the supramolecular assembly. 13,61,62,65 

The GMP aqueous solution exhibits relatively low ellipticity (Figure 4.12a), with a negative band at 196 

nm arising from the chiral ribose moiety, a positive band centred at 219nm, due to a n → π * transition 

and two weak negative bands at  250 and 253 nm appear, due to π → π * transitions originating from 

the guanine chromophore. 66–68 At 25 mM and pH 8, GMP can exist as monomers, dimers and tetramer 

stacks which would give rise to a CD signal. 68,69 The Ag-GMP hydrogel spectra (Figure 4.12c) have a 

marked increase in ellipticity and a red-shift for the π → π * transition, indicative of an overlap 

between the aromatic moieties contributing to exciton coupling. 37,70–73 
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Also, included is the CD spectra for GMP tetramers that can assemble (Figure 4.13c), known as G-

quartets, due to various stimuli such as lowering of pH, for GMP this from 2-6 and therefore is an 

alternative assemble that could conceivably form. 15,67,74,75 The GMP tetramers assemble through 

Hoogsteen style hydrogen bonding between the guanine bases (Figure 4.12) and monovalent cations 

can stabilise the electron density allowing for stacking. 67,76–83 For GMP, the protonation of the 

phosphate groups lowers electrostatic repulsion between the tetramers, promoting stacking and 

hydrogen bonding interactions between the phosphate groups and the sugar moieties. 18,68,75  These 

structures have characteristic peaks at 213 nm and 272 nm typical of a left-handed superhelix.67,84  
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Significantly, for the multi-component hydrogels, the CD signal of both gelators appear in the spectra 

(Figure 4.12c and d.), indicating both components gel. Also, the characteristic peaks for G-quartets are 

not observed indicating that these are not formed at a significant level in this system.  

For the 1:1 ratio, samples A and B exhibit a split cotton effect with a negative and positive peak at 315 

and 304 nm, respectively. This is characteristic of extended helical arrangements of the fluorenyl 

groups. 85,86 These are red-shifted relative to the Fmoc-tyrosine gel, which is not too surprising as these 

filaments are likely to be in a different environment in the multicomponent system, potentially 

bundling with GMP filaments.  This could occur as the tyrosine has previously been reported to 

intercalate between GMP stacks. 83,87 Thus, they could potentially form self-sorted filaments but mixed 

bundles.  However, shifts for turbid samples have also been attributed to chiral scattering and 

therefore may not necessarily be indicative of different assembly relative to the single component 

samples. 88 This spilt cotton effect is notably absent from sample C and is instead dominated by noise, 

indicating that there isn’t sufficient filament formation by Fmoc-tyrosine to generate a sufficient CD 

signal. This agrees with the pH measurement and observation that this sample doesn’t gel. For 

samples A and B, peaks at 285 and 293 nm associated with Fmoc-tyrosine gelation are observed.  

Surprisingly, the peak structure at 270 nm, characteristic of Fmoc-tyrosine gelation is not present, the 

reason for this is not known though it may indicate that at this ratio an insufficient amount of FY gels 

to present a sufficient FY signal. However, the peak at 275 nm associated with Ag-GMP gelation is 

present. 

At shorter wavelengths (ca. 190-250 nm), the broad peak is characteristic of Ag-GMP gelation (221 

nm) causes significant broadening than would be expected for just Fmoc-tyrosine gelation, indicating 

both have gelled.  There is also a shoulder peak at ca. 200 nm associated with Fmoc-tyrosine gelation.  

For C, as observed at longer wavelengths only peaks associated with GMP are observed for this 

sample.   
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Interestingly for the 2:1 ratio gels, the split Cotton effect is absent for all samples, despite all gelling, 

this may be related to the turbidity of the sample but may also indicate disruption to the FY assembly. 

For samples D and F, there was a significant bathochromic shift for the 300 nm peak to 306 nm and 

304 nm, respectively. Other peaks between 250-300 nm, associated with fluorenyl and phenyl π- π* 

transitions, are also present. The peak at 270 nm is particularly prominent for these samples, 

potentially due to the lower pH achieved at this ratio, thus promoting more Fmoc-tyrosine gelation.46  

For sample E, these peaks are present as well as the broad peak at 217 nm associated with AgGMP 

gelation and the peaks as a shoulder peak at 209 nm and a negative peak at 188 nm, indicating Fmoc-

tyrosine gelation. Whereas, when the Fmoc-tyrosine concentration is the same as GMP or higher, as 

with samples D and F, the most prominent peak is significantly shifted to ca. 220 nm and the shoulder 

peak at ca. 200 nm and the associated negative at ca. 190 nm is not observed for D and F. This cotton 

effect is characteristic of helical assembly,12,89,90 and its absence further indicates disruption to the 

supramolecular assembly of FY.  

 As well as the chiral environments, CD measurements are sensitive to the electronic environments 

but these are comparable between samples. 91–93 Thus, these observations indicate that there is 

significant disruption to the supramolecular organisation of the gelators in the multicomponent 

system.  Fourier-transform infrared spectroscopy (FT-IR) (Figures 4.11 and 4.12) was employed to 

understand this further.  

Firstly, there are numerous peak shifts associated with the gelation of GMP compared to the GMP 

powder (Figure 4.13 a and b). Most notably, the carbonyl vibration of the guanine residue shifts 

sustainably from its conjugated keto form (1669 cm-1),39,94,95 to a lower wavenumber in its enolate 

form (1606 cm-1 and 1605 cm-1, for ratios 1:1 and 2:1, respectively), in line with previous reports. 39,96 

This hypsochromic shift is indicative of a higher energy bond formation, relative to the conjugated 

keto carbonyl.  Loo et al. reported that this binding resulted in a large negative enthalpic change 
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through isothermal calorimetry measurements and therefore, the electrostatic bond between the 

enolate and the silver ion as a dimer is likely stronger than the original carbonyl.37 

Many of the guanine ring stretches in this region observed in the powder are masked by this strong 

enol vibration. However, the C=C vibration (1537 cm-1) is slightly shifted to a higher vibration (1524 cm-

1), possibly a consequence of disrupting the disrupting the conjugated π-orbital system of the guanine 

ring. 39  Also, the NH2 scissoring bend peak (1491 cm-1) broadens and shifts to 1477 cm-1 upon gelation, 

indicative of becoming involved in hydrogen bonding. 49,97  In conjunction with this, at higher 

wavenumbers, are new peaks are observed at 3320 cm-1 and 3440 cm-1 characteristic of symmetric 

and asymmetric stretches, respectively, for hydrogen bonded amine residues.95 The broad peaks at 

1321 and 1341 cm-1 for the 2:1 and 1:1 ratio, respectively, are associated with the full dissociated NO3
- 

stretch, with the shoulder peak due to the vibrational mode for the ionic pair separated by one water 

molecule. 98  
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FTIR of Fmoc-tyrosine (Figure 4.13 c and d) shows several key differences between the gelled sample 

and the Fmoc-tyrosine powder. These mainly originate from the Amide I regions, associated with 

carbonyl stretches, Amide II related to N-H bends and Amide A associated with hydrogen-bonded 

amine and hydroxyl groups. Gelation results in the disappearance of the 1656 cm-1, associated with 

disordered or unstacked carbonyl groups. 13,49 This indicates more ordered assembly, which would be 

expected in the nanofilament formation. Gelation of Fmoc-tyrosine is also marked by a slight 

bathochromic shift in the amide I region for the pendant carbonyl (1611 cm-1) to 1614 cm-1 indicating 

more extended hydrogen bonding, as would be expected as electrostatic repulsion is lowered through 



  Chapter 3: Radical Induced Gelation 

160 
 

protonation. 49,99,100 A broad non-Gaussian peak also emerges with two minima at 1675 and at 1685 

cm-1 characteristic of the carbamate carbonyl group, indicating that this group becomes involved in 

the hydrogen bonding network as a result gelation.13,49,101 The former peak is associated with 

disordered carbamate hydrogen bonding and some disorder is to be expected for such small gelators. 

49,102,103  The peak at 1599 cm-1 is the asymmetric stretching of the carboxylate anion indicating a 

proportion of the terminal carboxylic acid groups remain deprotonated. 13,48,49 Also, associated with 

gelation is a broad peak at 3321 cm-1 characteristic of hydrogen-bonded hydroxyl groups. 104,105 

For the multicomponent gels (Figure 4.14), the spectra are rather complicated owing to similar 

functional groups being present in each gelator, but important observations can still be made. For 

instance, at the 1:1 ratio (Figure 4.14a and b), the carbamate peak is observed for all samples at 1693 

cm-1, indicating that this gelator has assembled due to hydrogen bonding. Also, the prominent enol-

peak (ca. 1610 cm-1), indicating the formation of the GMP dimer via the silver has occurred 96 and not 

through the formation of G-quartets. This supports the observations via CD analysis that both gelators 

gel in the multicomponent system.  

However, for all multicomponent gels, the enol-Ag+ peak is at a slightly higher wavenumber (1608-

1610 cm-1) relative to single component Ag-GMP gels in the absence of FY, indicating a slightly less 

strong bond. This indicates non-orthogonal assembly between Fmoc-tyrosine and GMP, supported by 

the observation that this shift is less perturbed when the Fmoc-tyrosine concentration is lower than 

GMP e.g. sample B. Also, there is a disruption to the amide II region (ca. 1515-1550 cm-1). Furthermore, 

the NH2 scissoring bend peak of GMP involved in hydrogen bonding is effectively absent, except when 

the Fmoc-tyrosine concentration is lower than GMP.  Further indicating that hydrogen bonding 

involved in the GMP supramolecular assembly is perturbed. Also, at higher wavelengths, the 

stretching bands associated with hydrogen bonded amines of the guanine are less pronounced (Figure 

4.13 b) when Fmoc-tyrosine is at the same or higher concentration than GMP. However, at the 1:1 Ag-

GMP ratio the 1675 cm-1 characteristic of disordered carbamate arrangements is absent and 
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therefore, the slow assembly of these gels perhaps allows ordered hydrogen bonding with carbamate 

moiety.   

 

Similar observations are made for multicomponent hydrogels formed at the 2:1 ratio. Again, a broad 

peak is observed for all ratios at 1694 cm-1 attributed to the carbamate associated in hydrogen bonding 

was identified. This is red-shifted relative to the 1:1 ratio gels, perhaps due to the lower pH achieved 

promoting gelation further and therefore a more extended hydrogen bonding network. However, 

there is also a peak at 1672 cm-1. As the enol-Ag+ peak was observed, it was not attributed to the keto 

carbonyl of the guanine ring (1669 cm-1). Rather, this peak is attributed to disordered carbamate 



  Chapter 3: Radical Induced Gelation 

162 
 

assembly which is likely a consequence of the fast kinetics of gelation as this is not observed for sample 

F which gels much slower. The kinetics of gelation has been shown to determine hydrogel ordering at 

the microscale, with slower gelation often producing a more homogenous gel network. 40,106–108  

As for the 1:1 Ag-GMP ratio gels, a slight bathochromic shift, relative to the single component gels, is 

observed for the enolate-Ag+ of 3-5 cm-1. As before, this is less shifted when the Fmoc-tyrosine 

concentration is less than the GMP concentration, again indicating more orthogonal assembly as the 

FY concentration is lowered. Also, the hydrogen-bonded NH2 scissoring bend peak at ca. 1478 cm-1 is 

most prominent at this ratio. 

For all samples, peaks in amide II region (ca. 1515-1550 cm-1), associated with hydrogen bonded 

amines are more prominent than samples prepared at the 1:1 Ag: GMP ratio. Thus, the lower pH likely 

encourages filament formation due to protonation of the terminal carboxylic acid, resulting in more 

extensive hydrogen bonding than at the 1:1 ratio. In addition, at higher wavenumbers (Figure 4.15d), 

peaks associated with the hydrogen bonding for both gelator systems are observed. Though, as with 

the 1:1 gels, these peaks exhibit some broadening due to overlapping peaks from the two gelators.  

The observed non-orthogonal assembly can be understood if there is binding of the silver ions to both 

Fmoc-tyrosine and GMP. This would perturb the assembly of the GMP and thus also affect the pH drop 

required for Fmoc-tyrosine to gelate. Indeed there are reports of amino acids binding silver and these 

are capable of reducing Ag+ to form silver nanoparticles. 90,109–113 Above the pKa of tyrosine  (ca. 10.1) 

the hydroxyl group is deprotonated and subsequent electron transfer to the silver salt results in the 

reduction of silver salts to form silver nanoparticles and a quinone structure. 111 However, Selvakannan 

et al. demonstrated that this does not occur below the pKa and therefore is not expected to occur in 

this system as after addition of the GMP to the Fmoc-tyrosine the solution pH is ca. 8.5. This was 

verified by 13C NMR which demonstrated that no quinone had been formed (Figure 4.16a), due to the 

absence of a resonance peak at ca. 186 ppm 114, with the peak at 156. ppm associated with the tyrosine 

hydroxyl group. The peak 174.6 ppm is characteristic of the pendant carboxylic acid.  Instead, as 
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previously reported, interactions between the carboxylate anion (with a predicted pKa of ca. 3.2-3.745, 

though this likely to be sustainably shifted46) and the silver salt are expected. This would result in a 

stretching vibration at 1601 cm-1. This region is masked in the multicomponent system by the enol 

peak but may explain the broader peaks for samples D and E. Also, gelation of Fmoc-tyrosine in the 

presence of silver resulted in a perturbed hydrogen bonding (Figure 4.16b). The peak at 1672 cm-1 was 

absent, indicating that previous observations were not due to the formation of a quinone silver bond. 

Instead, there is an additional peak at 1579 cm-1 associated with the carboxylate anion and may 

indicate binding with the silver ion resulting in the formation of a new peak.   
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The consequences of this non-orthogonal assembly on the macroscopic properties of the gels were 

studied using via differential scanning calorimetry (DSC) and oscillatory rheology (Figure 4.17). A broad 

endothermic peak was observed for all samples, corresponding to the breaking of the non-covalent 
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crosslinks of the supramolecular hydrogel which causes a gel to sol transition.30,38,64 For the single 

component gels, the Fmoc-tyrosine gel there is a broad minimum at 40.1 °C with a broad shoulder 

from 48-60 °C. For the Ag-GMP gels, the 1:1 AgGMP gel, the broad melting peak is centred at 46.8 °C. 

At the 2:1 ratio, the melting peak is very broad with a minimum at 39.7 °C, with a smaller peak at 52.2 

°C and a shoulder at 55.9-74.4 °C. This indicates heterogeneity in the gelation, which may be a 

consequence of the relatively slow dissolution of the silver salt relative to the gelation. This is 

analogous to using mineral salts to lower the pH as a trigger for gelation.  

 

For the multicomponent hydrogels, interesting observations can be made that demonstrate non-

orthogonal assembly for the two components. Firstly, for multicomponent hydrogels at the 1:1 Ag: 

GMP ratio, samples have a decreasing Tgel-sol for samples A, B and C (Table 4.2).  This is in line with a 

lower total gelator concentration for samples B and C and thus, likely a lower network density, then 

the lower pH drop achieved for sample C will result in less gelation for both components. More 

interestingly though, this relationship does not hold true for multicomponent hydrogels prepared at 

the 2:1 ratio. For instance, two endothermic peaks were observed for samples D and E, indicative of 
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heterogenous gelation. Though not sample F, presumably due to the slower gelation processes 

allowing for more homogeneous gelation. Also, the endothermic peaks for sample E are higher than 

the peaks observed for sample D, despite the lower total gelator concentration. This indicates non-

orthogonal assembly as a the Tgel-sol is expected to increase with increasing gelator concentration.115 

This unexpected observation was probed further using rheology (Figure 4.13 c and d). 

 

Rheological analysis (Figure 4.13 c and d) was undertaken to determine the mechanical properties of 

the multicomponent supramolecular hydrogels. Oscillatory amplitude sweeps at a constant frequency 
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(1 Hz) demonstrated a linear viscoelastic region (LVR) for all gelled samples, in which the storage 

(elastic) G’ moduli are roughly an order of magnitude higher than the loss (viscous) G” moduli. This is 

indicative of an elastic solid-like network of the gel throughout a viscous solvent.38,40,61,116 At increasing 

strains, there is a crossover of the moduli with a sharp decrease of the storage moduli (G’) such that 

it is lower than the viscous moduli (G’’), indicating a transition from an elastic gel to a viscous 

fluid.38,64,117,118  At low strain, the Fmoc-tyrosine gel had an elastic modulus of ca. 310 Pa and had a 

yield strain of ca. 25%. For the 1:1 gel, the elastic moduli (ca. 30 Pa) was not at least roughly an order 

magnitude higher than the viscous moduli (ca. 7 Pa) and hence is not classified as a gel, rather a viscous 

solution. Though a yield strain of ca. 50% was observed, as the filaments formed could still be sheared. 

For the 2:1 gel, within the LVR the elastic modulus is ca. 9500 Pa and has a yield stress of ca. 63%.  

Some key observations can be made for the multicomponent gels. For instance, the multicompetent 

gels at the 1:1 ratio, the gelled samples were stiffer than the AgGMP 1:1 gel by itself but were 

noticeably less stiff than the Fmoc-tyrosine gel. This is likely due to the fact the higher pH resulted in 

lower gelation of the FY molecules. Sample C was too soft to give meaningful data. The 

multicomponent gels also had enhanced yield stress against the single component hydrogels which is 

not too surprising considering the enhanced gelator concentration.  Similar observations were made 

for the gels at the 2:1 ratios. However, most significantly of all is that at both ratios, when the Fmoc-

tyrosine concentration is lower than the GMP concentration the measured elastic moduli is higher. 

This supports observations of the non-orthogonal assembly through CD and FT-IR analysis. 

Significantly, all 2:1 multicomponent gels were less stiff than the 2:1 Ag-GMP which makes sense if 

there is competition for silver ion binding between Fmoc-tyrosine and GMP.  

This non-orthogonally assembly was tracked using rheological analysis. The gels were prepared as 

before and transferred to the rheometer instantly after vortexing. A very low shear strain (0.1%) at a 

constant frequency (1 Hz) was applied throughout the measurement. This allowed for the elastic and 

viscous moduli and phase angle to be measured in real-time to track gelation. The applied strain was 
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well within the LVR, thus it should not have any significant impact on the gelation 

characteristics.20,26,61,119 Indeed, this was confirmed by undertaking oscillatory amplitude strain 

sweeps (Figure 4.15) after the measurement which demonstrated similar moduli and yield strain to 

gels formed normally. 

The moduli for Fmoc-tyrosine rises very quickly within the first 90 minutes or so before beginning to 

plateau. At the 1:1 ratio, the elastic moduli for the single component gel rise very slowly, rising about 

the viscous moduli at ca. 170 minutes. In comparison, the multicomponent gels at this ratio, the elastic 

moduli rise above the viscous moduli within ca. 40 minutes. This is since the other gelator, Fmoc-

tyrosine can assemble much quicker, as observed for the single component gel.  

 

Unlike the 1:1 gel, at the 2:1 ratio, for the single component gel, there is instantly a very fast increase 

in moduli and within ca. 30 minutes the moduli begin to plateau. Significantly, this is also observed at 

this ratio when the Fmoc-tyrosine concentration is lower than that of GMP. A slight reduction of elastic 

moduli of roughly 780 Pa is observed after 90 minutes as well as a slight increase and then a reduction 

in the viscous moduli is observed at ca. 210 minutes. As these observations are absent from either of 

the single component gels, these could represent some supramolecular reorganisation.  As the 
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filament structures are non-covalent assemblies, gelators can equilibrate between sol and gel 

state,11,14,120 this can allow for the transformation of the supramolecular structures.30,115,119–122 For 

instance, Stupp et al. demonstrated the conversion of metastable twisted ribbon structures into 

thermodynamically stable helical ribbon structures without the need for any external stimuli.123  

A similar reduction in moduli has also been made for oligophenylene vinylene and perylene bisimide 

based gelators. 27,124 These also assemble through protonation of pendant carboxylic acids which result 

in the bundling of filaments after a reduction in negative charge, thus these bundles become more 

hydrophobic.  This causes a contraction of the gel network and expulsion of the aqueous solvent, 

known as syneresis. Consequently, there is a weaker contact between the plates of the rheometer 

and the gel, causing an apparent decrease in the mechanical properties.124 For sample E no expulsion 

was observed but very small expulsion may not be noticeable. Castilla et al. reported as much as 60% 

volume loss and much more abrupt changes in moduli were observed. Therefore, this may not be the 

case for this sample. Instead, the possibility of structural rearrangement was considered. CD 

spectroscopy was used to measure supramolecular assembly over time as the single and 

multicomponent samples assembled via changes in the ellipticity (Figure 4.18). 
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Samples were prepared as before but transferred into slightly wider sandwich cells to allow for 

gelation to occur inside the spectrometer. (Samples placed between two plates did not gel and just 

dried up.) Consequently, this increased the absorbance values compared to spectra reported earlier 

(Figure 4.18). As a result, over time, particularly at shorter wavelengths, the HT threshold was 

exceeded which resulted in extremely low ellipticity values measured but this does not correspond to 

suppression of supramolecular chirality: see star symbol in figure 4.18e as an example. Also, inevitably 

the sample loading takes a minute or two and each scan takes roughly a minute. Therefore, taken 

together, the spectra should be used to provide an indication of processes occurring rather precise 

quantitative information of exactly when certain process occur. 

Bearing this in mind some key observations can be made. For instance, the single component AgGMP 

gels appear to demonstrate an increase in ellipticity overtime, with no fluctuations (Figure 4.18c and 

d). (Though the 1:1 sample exhibits a decrease associated with increasing HT values.) However, the FY 

sample exhibits fluctuations to the ellipticity at the start of the measurement and then a gradual 

decrease followed by a gradual increase again over time at ca. 177 minutes (Figure 4.18a). This could 

be associated with the rearrangements reported by Tang et al.46 for a similar gelator (Fmoc-FF) and 

appears to coincide with to the plateaus observed in the pH decrease (Figure 4.18b), discussed earlier 

in this chapter. Similar observations are made for samples D and E, with decreasing and then 

increasing ellipticity values at ca.  30 minutes and 125 minutes. It is not understood what is causing 

these changes, but it could perhaps indicate structural reorganisation which could correspond to 

different rheological properties throughout the gelation process. It also appears that for sample D 

there is a delay in the increase of ellipticity value but then a very sudden increase and plateau of these 

values.  

Referring to the rheological analysis again. In contrast, to sample E, for sample D with an equimolar 

concentration of Fmoc-tyrosine and GMP for the sample, the rise in elastic moduli is greatly retarded. 

Which is in agreement with the CD observations during the gelling process. At this ratio, there is no 
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sharp increase in elastic moduli, indicative of fast gelation. Rather there is a gradual increase despite 

the higher total gelator concentration, for which faster gelation would be expected.13 This verifies that 

there is non-orthogonal assembly between the two gelators as the increased Fmoc-tyrosine 

concentration perturbs the gelation. 

Rheology has previously been used to infer whether co-assembly or self-sorting has occurred in the 

assembly process. When the assembly of two gelators is suitably slow and separated by enough time 

i.e., large differences in pKa, self-sorting gelators exhibit a plateau in the shear moduli between the 

sequential growth stages.20,26,27,32 This is not observed here but this likely due to the very fast gelation 

for both gelators in the system, and thus sequential gelation would not be observed regardless of 

whether co-assembly or self-sorting occurred. Instead, experiments were undertaken to selectively 

remove one of the gelator networks, as this should be possible if self-sorted filaments and self-sorted 

network assembly had occurred.  

Since the gelation of Fmoc-tyrosine is heavily pH-responsive it was investigated whether one of the 

gelators could be selectively removed by raising the pH. Regardless of trying to determine whether 

self-sorting has occurred, the ability to selectively remove individual gelators is advantageous for 

numerous reasons, such as modulating the mechanical properties of the gel and lowering the network 

density which should affect diffusion of cargo e.g. therapeutics or result in different cell differentiation 

if acting as tissue culture scaffold.34,35,101,125–128 To achieve this, ammonia gas was passively added by 

flowing the gas from the ammonia solution (ca. 18 M) into the vial containing the supramolecular 

hydrogel (Figure 4.19a). This gradually increased the pH of the gel over several hours and was left to 

do so until the pH raised to 8.5, above the pKa of Fmoc-tyrosine, causing deprotonation of the terminal 

carboxylic acid and disassembly of the hydrogel filaments.  At this pH there will be no further 

deprotonation of the guanine residue as the most labile proton, which has a pKa of 9.237 has already 

been abstracted in the formation of the dimer.  This raising of pH was monitored using a pH probe, 

demonstrating a gradual increase in pH over a few hours. It is important to note that the pH is 
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increased gradually through the sample over time as the ammonia diffuses through the sample and 

discussed below. Therefore, apparent drops in pH over time, such as the AgGMP 1:1 gel is due the 

difficulty in measuring the pH at exactly the same location each time and doing so inevitably perturbs 

the network and may affect the raising of the pH.  

 

For the single component hydrogels, only the Fmoc-tyrosine gel was dissembled by raising the pH to 

ca. 8.5. However, raising the pH above ca. 9.5 also results in the disassembly of the AgGMP gels, 

presumably due to deprotonation of the guanine residue and therefore disruption to the hydrogen 

bonding network. At an elevated pH, the AgGMP gels still exhibited rheology behaviour characteristic 
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prior to raising the pH (an LVR) and supramolecular chirality indicative of gelation (Figure 4.20b and 

c). For the multicomponent hydrogels at the 1:1 ratio, gels were retained after raising the pH. 

Interestingly, a separation between a turbid gel at the bottom and a transparent gel at the top. This is 

due to the ammonia gas diffusing through the top of the hydrogel and thus causing the gradual 

disassembly of the Fmoc-tyrosine filaments throughout the sample leaving the AgGMP filaments 

intact (Figure 4.19d). This leaves the transparent 1:1 AgGMP gel intact, as with the single component 

gel. This indicates that at the 1:1 ratio the two networks formed must be independent, analogous to 

interpenetrating polymer hydrogels, whereby two networks exist in sharp contrast to one another. 

32,129,130   
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Significantly, for this sample the CD signal attributed to Fmoc-tyrosine gelation was absent and the 

spectra were instead dominated by ellipticity characteristic to AgGMP, demonstrating that filaments 

of the gelator were intact. Rheological analysis demonstrated that a hydrogel persisted after raising 

the pH and was comparable moduli to the single component 1:1 AgGMP gel. The multi-component 

gels have a higher yield stress (120 % and 80 %) for samples A and B, respectively, vs ca. 55% prior to 

raising the pH). This discrepancy isn’t surprising as self-assembly conditions are widely reported to 

affect mechanical properties. Further, surfactants are routinely used as additives to manipulate 
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mechanical properties of gels. 8–10,131 These surfactants can form micelles which entangle within the 

hydrogel network to provide mechanical support to the gel filaments. By raising the pH, the 

amphiphilic FY molecules will act as a surfactant perhaps forming a more entangled network. Hence, 

the yield strain is higher when the Fmoc-tyrosine concentration is higher, despite this not correlating 

to higher elastic moduli before raising the pH. Indeed, a highly entangled network was imaged via TEM 

for samples are the pH had been raised. 

 

Conversely, even though the single component AgGMP at the 2:1 ratio did not disassemble at pH 8.5, 

multi-component hydrogels at this ratio fully disassembled. Again, this disassembly could be observed 

through the gel sample as the ammonia gas diffuses through the gel. The transparent solution on top 

of the turbid gel indicates disrupting of both the Fmoc-tyrosine and GMP assembly, as an opaque 

would be expected to remain if the 2:1 AgGMP gel remained.  As the pH of 8.5 is reached throughout 

the sample, a clear solution results, indicating disassembly of the self-assembled structures. This 

indicates that at this ratio, separate self-sorted filaments have not been formed and therefore it is not 

possible to selectively remove Fmoc-tyrosine nanofilaments without also disrupting the AgGMP 
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structures. This does not definitely prove that only co-assembled filaments formed. For instance, self-

sorted filaments could assemble that then form mixed bundles, as the tyrosine has previously been 

reported to intercalate GMP stacks. 83,87 As a result, the Fmoc-tyrosine filaments cannot be removed 

without also disassembling the GMP stacks too. The CD spectra for this sample showed peaks not 

associated with Fmoc-tyrosine or AgGMP gelation, confirming that both these filaments were 

disassembled. Interactions between ammonia and silver are well known with the nitrogen acting as a 

lone pair donor, forming a Ag(NH3)2+ complex.132,133 Thus, such complexes would cause the 

disassembly of the Ag-GMP dimers.  Thus, the peaks observed could instead be due to the formation 

of G-quartets.67,84 

Further characterisation of the degree of mixing and self-sorting by the gelators in filaments and the 

filaments themselves is necessary and though has proven challenging to numerous researchers owing 

to the differences between crystal and filament structures, as mentioned in chapter 1.59 For instance, 

information from traditional crystallographic studies, i.e. powder x-ray diffraction may be misleading 

owing to the different packing in the crystal and gel state with the latter considered to be significantly 

amorphous.41,134 Instead, alternative in-situ methods are recommended and are discussed in Chapter 

6. 
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Conclusions and Future Work 

Presented is a novel example of the gelation of one gelator used to trigger the gelation of the second 

gelator which is used to form the construction of nucleotide-amino acid multicomponent hydrogels. 

The second gelator is more susceptible to pH and thus it possible to selectively remove one gelator. It 

is also demonstrated that the kinetics of assembly dramatically affects the properties of the resulting 

hydrogel.  

Beyond this proof-of-concept study and the further characterisation recommended later in chapter 6, 

it would be interesting to apply this process for other pH-responsive gelators with specific functions. 

For instance, the second component could be a lysine, arginine and/or histidine contacting peptide, 

which has been shown exhibit antibacterial properties. 135–137 The cationic charges are thought to 

enable interaction with bacterial membranes.137 Thus, both components, i.e. the silver and the 

peptide, would have anti-bacterial properties and would allow for low concentrations of both. Also, 

multicomponent technologies have been proposed to lower the likelihood of developing resistance.  

Alternatively, the Ag-GMP hydrogel can be combined with catalytically active gelators 57 or with 

gelators that demonstrate optoconductivity, as the alignment of the silver ions and guanosine residues 

may result in interesting conductivity. 138,139 For instance, guanosine analogues are good candidates 

for conductivity due to their sufficient delocalization for the transport of charge along the molecule. 

140 Thus, Livshits et al. demonstrated that guanine stacks imposed sufficient rigidity for reproducible 

charge transport in these stacks adsorbed on a mica substrate. 139  

The selective removal of one gelator through the raising of pH is a promising strategy to affect network 

properties which could lead to a range of applications as already discussed. However, the use of 

concentrated ammonia may not be applicable to many applications owing to the serious health 

concerns of using concentrated ammonia (e.g. being corrosive and toxic to aquatic organisms). 

Therefore, alternative means of increasing the pH are necessary. One promising candidate which 

would the use of photobases, which raise the pH due to photo-irradiation. 141 This could allow for the 
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raising of the pH in a spatially controlled manner which could allow for the creation of multidomain 

materials. Further, the presence of the AgGMP network should lessen the convection and diffusion of 

species in the gel which could increase spatial resolution. 33 
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Chapter Outline: 

In this final chapter, the research presented in this thesis will move beyond investigating new 

strategies for constructing supramolecular hydrogels to characterise the anti-bacterial activity of a 

silver-containing hydrogel. 
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Introduction: 

Recent outbreaks of infectious diseases caused by different pathogenic bacteria and the rise of 

antibiotic resistance underscore the challenge of design and screening of new drugs.1–5 Modifications 

to surgical devices, such as coatings, are often employed to combat infections.6–9 One strategy is 

chemical coatings that rely on the elution of drugs but this approach only has short-term antimicrobial 

effects and could cause cumulative toxicity as well as potentially resulting in antimicrobial resistance.10 

Another strategy is to use cationic polymers11,12 such as methacrylate13–16, poly(phenylene 

ethynylene)17,18, poly(vinyl-N-hexyl pyridinium)19,20  etc., which penetrate and disrupt the bacterial 

cytoplasmic membrane. However, production of these polymers often requires the use of organic 

solvents and their efficacy relies on sufficient diffusion of the polymers into cell membranes. 10  

Supramolecular hydrogels are an attractive alternative owning to their facile synthesis, aqueous 

composition (making them applicable for physiological conditions) and porous nature which allows 

for diffusion of pathogens into the gel network.10,21–24 Also, their shear-thinning behaviour allows for 

them to be injected as a viscous liquid and then regel upon the cessation of any shear.22,25 There is a 

broad range of possible hydrogel systems that could be used as antibacterial agents.   For instance, 

peptide-based hydrogels with inherent antibacterial activity is a popular approach. Salick et al. 

designed a β-hairpin hydrogel scaffold that gels upon addition the of salt, e.g. DMEM cell culture 

media.26 The authors proposed that the activity arises from the positive lysine-rich hydrogel surface 

interacting and disrupting negatively charged bacterial cell membranes, analogous to cationic 

polymers. Liu et al. also demonstrated the antibacterial potential of a series of lysine-based peptide 

gels versus polystyrene controls but gave no quantitative measurements. 27 

Similar approaches use arginine-rich peptides to formulate antibacterial hydrogels. 28,29 Arginine 

content can be modulated to balance hemolytic activity (breakdown of red blood cells) and 

antibacterial activity. The dephosphorylation of tyrosine-phosphate gelators by phosphatase enzymes 

has been exploited by Yang et al. and Hughes et al. for innovative approaches to formulating 
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antibacterial agents.  30,31  The gelators enter the bacteria via diffusion and then enzyme -regulated 

dephosphorylation of the gelators results in intracellular self-assembly and subsequent inhibition of 

cell growth (Figure 5.1a). This accumulation of gelators within the bacteria was confirmed via HPLC 

analysis. The hydrophobicity of the gelators determined the preference for the small molecules to 

accumulate either in the media or bacteria.31 It was hypothesized that the self-assembly affected the 

viscosity of the cytoplasm, leading to cell stress and subsequent inhibition of bacterial growth. 

This approach relied on E. coli to overexpress phosphatase, with a 100-fold increase of gelator 

concentration necessary for bacteria without phosphatase enzymes overexpression. Still, this is 

undoubtedly an interesting approach and could inspire other strategies that make use of enzyme 

triggers.  

 

Composites of hydrogels and nanoscale materials have also emerged as a promising potential 

technology they allow for the combination of effective antibacterial nanoscale materials into diverse 

self-assemblies with tunable properties. 32 Many nanomaterials have demonstrated activity e.g. 

copper,33–35 zinc,36 magnesium,37 gold,38,39 and silver.40–43 Of these, silver nanoparticles have been 

shown to have the highest antibacterial activity.  
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The antimicrobial properties of silver have been known since ancient times, having a broad spectrum 

of activity against bacteria. To this end, silver-containing materials are becoming increasingly more 

popular due to their broad spectrum of activity and expectations that it’ll be harder for bacteria to 

develop resistance to silver. 1,42,44–53  Metallic silver is inert, whereas ionic silver is highly reactive and 

binds to many biomolecules.1,43 Many studies have reported structural and morphological changes to 

the cell membrane as well as observing electron dense silver granules on and inside the bacteria via 

electron microscopy.42,46–49  The silver ions can also interact with DNA, possibly preventing DNA 

replication48,54, as well as interacting with the thiols of vital sulphur-containing enzymes which 

perturbs their structure and inactivates them. 1,44,45,48,50–53 This can interrupt the respiratory system 

leading to the accumulation of reactive oxygen species which can then cause lipid peroxidation, DNA 

and protein damage, eventually contributing to cell death. 40,51,53,55–58  

Several groups have used a hydrogel network to template silver nanoparticles59–62 Whereas, previous 

researchers in the Mann group exploited the association between silver and the guanine residue 62–64 

of guanosine monophosphate to form a supramolecular hydrogel. 65 The silver ions interact with the 

enolate tautomer leading to the stabilisation of GMP dimer (Scheme 5.1), which stack through 

aromatic interactions and hydrogen bonding to form one-dimensional filaments which entangle to 

form the hydrogel network.  Excess silver ions can then be photo-reduced to form silver nanoparticles 

on the nanofilaments. Dash et al. demonstrated the enzymatic activity was retained for protein 

molecules immobilized in the hydrogel, however, given the widely reported antibacterial properties 

of silver, this hydrogel is a strong candidate as an antibacterial material by combining the advantages 

of self-assembled hydrogels and nanoscale materials.  
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Broadly, there are two main divisions of bacteria based on their shape. First, are spherical cocci (ca. 1 

μm diameter), e.g. Staphylococcus (which tend to bunch together) and Streptococcus (which tend to 

adhere into long chains). The second division is rod-shaped bacteria and are usually 1-10 μm and 0.2-

1 μm wide.66 This class is characteristic of the genera Bacterium, Bacillus and others. All bacteria are 

divided into two classes known as Gram-positive and Gram-negative, depending on whether they are 

stained by the crystal violet-iodine complex in the Gram staining test. This variance is due to different 

cell wall compositions for Gram-positive and Gram-negative bacteria (Figure 5.2).67 Usually, the former 

has a single outer membrane and thick peptidoglycan layer (ca. 30 nm), whereas, the latter has a 

second outer membrane and a lipopolysaccharide layer but a much thinner peptidoglycan layer. (ca. 

2-3 nm) and are therefore less protected against the penetration of silver ions into the cytoplasm.1,68,69 
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Therefore, the antibacterial properties of this hydrogel will be investigated in this final chapter against 

a candidate gram-negative bacterium (E. coli) and a gram-positive bacterium (E. faecalis). Included is 

a negative control, silver-free GMP hydrogel. The mechanical properties of the Ag-GMP are dependent 

on the stoichiometry of Ag:GMP and all gels are shown to have gel-sol transition temperature higher 

than 37°C, indicating that the gel network is retained when incubated with the bacteria. Significant 

antibacterial activity is reported over two time scales and preliminary studies are presented to 

demonstrate the mechanisms responsible for the activity.  
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Experimental  

Silver nitrate (AgNO3) and guanosine 5'-monophosphate sodium salt (Na2GMP) were used as received 

and all solutions were made up in sterilised Milli-Q water. Ag-GMP hydrogels with AgNO3: GMP molar 

ratios of 1:1 and 2:1 were prepared at room temperature by adding an appropriate concentration of 

aqueous AgNO3 (200-400 mM) to an aqueous solution of Na2GMP (100 mM) (pH≈ 8).  Hydrogels were 

then formed in well-plates (in a laminar flow cabinet) by adding an equal volume of silver nitrate, at 

the appropriate concentration) to guanosine monophosphate in the well to final concentration GMP 

of 100 mM. Silver free, G-quartet, guanosine monophosphate hydrogels were prepared by dissolving 

glucono delta-lactone (GdL) (10 or 20 mg/mL) with GMP (100 mM) in NaCl (200 mM) and transferring 

to the well plate. All hydrogels had a final volume of 1 mL and were left to form overnight in the dark.  

Characterisation of hydrogels samples 

Differential scanning calorimetry (DSC): DSC was carried out using a Mettler Toledo TGA/DSC1 Star 

System at a scan rate of 1 °C min-1 with a nitrogen flow of 25 mL min-1. All experiments were 

undertaken with Maddy Nichols.  

Rheology 

Rheometry was performed using a Malvern Kinexus fitted with a parallel plate geometry (gap width 

of 200 µm) at room temperature. Hydrogels, which were aged for one day, were added to the 

rheometer using a spatula to minimize shear. The top plate was lowered, and the normal force 

measured and allowed to reach equilibrium. Further details of the experimental setup e.g. frequency 

and strain range are included in the result and discussion section.  

Optical Microscopy:  

Bacteria were imaged using standard Gram-staining procedures. For fluorescence microscopy, 

excitation of 340-380 nm and emission cut off at 400 nm was used to visualise fluorescent GFP-

expressing E. coli. 
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Transmission electron microscopy (TEM)  

TEM imaging was performed in bright-field mode using a JEOL TEM 1400 electron microscope and 

electron microscope operating at 120 keV. TEM samples were prepared by dropcasting a dilute 

suspension of hydrogel (5 µL) onto carbon-coated copper TEM grids for three minutes and wicking 

excess fluid away using filter paper. When negative staining was necessary, an aqueous solution of 

uranyl acetate (1% w/v, 5 µL) also dropped cast onto the carbon coated TEM grid and wicked off after 

three minutes. All samples were left to dry overnight at room temperature in the dark.  
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Characterisation of microbiology experiments 

  

 

Growing the Bacteria with the hydrogel 

E. faecalis were cultivated on Brain Heart Infusion Yeast Neopeptone (BHYN) agar (37g brain heart 

infusion broth, 5g yeast, 5 g neopeptone, 15g agar per litre) at 37°C. Suspensions of cultures were 

growth in BHYN medium (brain heart infusion broth containing 5g/L yeast extract) overnight in an 

incubator (37 oC), without shaking. The cells are collected by centrifugation (5000 rpm, 7 minutes) 

washed in phosphate-buffered saline PBS and re-suspended in BHYN broth to an OD600= 0.5 

(approximately 1 x 10x8 cells/mL), thus, allowing a similar number of bacteria to be used for each 

experiment. The strain of E. coli used contained a plasmid responsible for expressing the green 
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fluorescent protein (GFP). Therefore, all growth media and agar plates also contained the antibiotic 

erythromycin as there was a cassette in the plasmid which made this strain resistant to the antibiotic. 

Therefore, this encourages retention of the plasmid and hence the expression of GFP. Lysogeny broth 

(LB) was inoculated with Escherichia coli (E. coli) and then grown overnight in an incubator (37 oC). The 

cells were washed in phosphate-buffered saline PBS and re-suspended in LB to an OD600= 0.5 

(approximately 2 x 10x8 cells/mL). Microbial suspensions were gently pipetted onto the GMP hydrogel. 

The plate was incubated (37 oC) for 2-24 h in an incubator and then collected for analysis.  

 Gram staining 

Gram staining was used to classify bacteria and aid optical microscopy imaging. An aliquot (ca. 10μL) 

of the inoculum is dried onto a glass slide. Then the first stain, crystal violet (1 mL), is added to slide 

and left for 1 minute before rinsing with water. Then iodine (1 mL, 1%) is added to fix the crystal violet 

to the bacterial cell wall. This is then briefly rinsed with acetone and then water. Then the second dye, 

safranin (1 mL), is added and left for 1 minute before rinsing again.  

Measuring colony forming units (CFUs) 

The total volume of the well-plate (i.e. microbial suspensions and hydrogel) are collected, washed with 

PBS and then serially diluted in PBS by an order of magnitude each time before plating (5x 20μL per 

dilution) onto either BHY or LB agar plates, with sodium thioglycolate.  These plates were incubated 

(37℃) overnight for approximately 18 hours. 
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Chromosomal DNA Extraction  

Chromosomal DNA was isolated from E. faecalis grown in BHYN and E. faecalis grown in BHYN, as for 

previous experiments (in an incubator, 37℃ without shaking), on top of Ag GMP hydrogels using a 

Wizard Genomic DNA Purification kit (Promega, Madison, WI, USA). Broadly, this involved lysing the 

cells, removing cellular proteins by salt precipitation and finally concentrating and desalting the 

chromosomal DNA by isopropanol precipitation70 (Figure  5.5). 
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Gel electrophoresis 

Agarose gels (0.8 wt%) were prepared in Tris base, boric acid, and ethylenediaminetetraacetic acid 

(TBE) buffer, loaded with ethidium bromide (final concentration ca. 0.5 µg/ml), a nucleic acid stain, 

for visualization. In all cases, a 1 kb DNA Ladder, a solution with a set of standard fragments was used 

to estimate approximate sizes of DNA fragments. All other lanes were loaded with DNA solution (10 

µL) and gel electrophoresis was performed for ~30 min at 90 V. 
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Results and Discussion 

Ag-GMP supramolecular hydrogels were formed by the addition of aqueous silver nitrate (AgNO3) 

guanosine monophosphate (GMP) at room temperature to a final concentration of 100 mM (at 20℃).  

Samples were prepared at two Ag:GMP molar ratios: 1:1 and 2:1. Gelation did not occur for molar 

ratios less than 1:1. At molar ratios of 1:1 the gelation occurred within roughly 10 minutes and resulted 

in a transparent hydrogel. At the higher molar ratio, gelation occurred almost instantaneously and 

produced an opaque hydrogel (Figure 5.6a). The addition of silver nitrate to the GMP solution led to a 

drop in pH (to values of 5.19, and 3.74 for the 1:1, and 2:1 samples, respectively), which is associated 

with the abstraction of a proton from the N7 amine in the guanine base as a result of the Ag-GMP 

dimerization (Scheme 5.1). 63–65,71,72 

 

As mentioned in Chapter 4, GMP is also capable of gelation through the lowering of pH via the 

formation of G-quartets (Figure 5.7c). Thus, two control hydrogels were formed by lowering the pH 

through the hydrolysis of glucono-δ-lactone (GdL), forming gluconic acid (Figure 5.7a).  As the mass of 

GdL added reproducibly results in the same pH and therefore can be used to form gels with the same 
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final pH as Ag-GMP hydrogels (Figure 5.6b).73 These gels are referred to as qGMP (in reference to the 

quartet structure) and the mass of GdL used to lower the pH, either 10 or 20 mg/mL. The Ag-GMP 

hydrogel has already been reported by the Mann group65 and in the previous chapter, thus the 

characterisation is only briefly summarised to highlight the significance of the Ag:GMP stoichiometry 

and to compare these samples to the control qGMP hydrogels. 
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Transmission electron microscopy (TEM) was used to image an entangled network of nanofilaments 

for all samples (Figure 5.8). For Ag-GMP samples (Figure 5.8a and b), electron-dense silver 

nanoparticles were imaged decorating the nanofilaments. Filaments of 2-7 nm and 3-10 nm were 

imaged for 1:1 and 2:1 molar ratios, respectively. As expected, these nanoparticles were absent for 

the qGMP gels. Filaments of 2-5 nm and 4-9 nm were imaged for the 10 mg/mL and 20 mg/mL samples, 

respectively. The wider filaments observed at a lower pH may be due to the increased bundling of 
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protofilaments as observed for protected amino acid-based filaments. 74 The pH reached of 3.8 would 

be sufficient to partially protonate the phosphate group and thus reduce the degree of ionisation for 

the filaments, which would increase the hydrophobicity and promote bundling.   

 

As there are silver ions present in solution, these are capable of reducing to form silver nanoparticles. 

Their formation could also be observed macroscopically due to the plasmonic resonance of nanosized 

silver causing a gradual colour change from either transparent or white to pink and then eventually a 

dark red/brown as the silver nanoparticles grow in size and number (Figure5.9a). 75–77 This observation 
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is supported by UV analysis which demonstrated a distinct surface plasmon resonance band at 452 

nm characteristic of silver nanoparticles (Figure5.9b). 40,43,52,65,75–77 

 

The macroscopic properties of the gels were studied using via differential scanning calorimetry (DSC) 

and oscillatory rheology (Figure 5.10). A broad endothermic peak was observed for all samples (Figure 

5.10a), corresponding to the breaking of the non-covalent crosslinks of the supramolecular hydrogel 

which causes a gel to sol transition. 65,78,79 Significantly, for all gels, these peaks were above 37oC and 

therefore the samples will still be gels in the incubator for the microbiology experiments. The Ag-GMP 

hydrogels exhibited broad endothermic peaks at ca. 46.6 and 48.0 °C for the 1:1 and 2:1 ratio, 

respectively. The qGMP hydrogels exhibited endothermic peaks at ca. 41.5 and 47.4 °C for the 10 

mg/mL and 20 mg/mL, respectively. 
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Oscillatory amplitude sweeps at a constant frequency (1 Hz) demonstrated a linear viscoelastic region 

(LVR) for all gelled samples, in which the storage (elastic) G’ moduli are roughly an order of magnitude 

higher than the loss (viscous) G” moduli. This is indicative of an elastic solid-like network of the gel 

throughout a viscous solvent. 65,73,80,81 All gels exhibited shear-thinning behaviour (Figure 5.10c), with 

viscosity decreasing with increasing shear rates which overcomes non-covalent interactions between 

gelators. 82–84,22  For the AgGMP gel at the 2:1 molar ratio, the viscosity plateaus at low shear and 

behaves like a Newtonian material with viscosity independent of shear.  
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Importantly, the stoichiometry of the silver can be exploited to impart drastic changes to the 

rheological properties of the hydrogel.  As the silver is embedded within the network of the hydrogel, 

it is likely that it could be exploited as a functional soft material. Of the many possible properties of 

silver that could be exploited, e.g. electrical, plasmonic and catalytic,85,86 its antimicrobial properties 

are perhaps the most exciting. Therefore, the rest of this report on the antimicrobial properties of the 

Ag- GMP hydrogel. 

Firstly, the gram-positive opportunistic bacteria Enterococcus faecalis (E. faecalis) was chosen to 

determine the antibacterial activity of the Ag-GMP hydrogel. E. faecalis has previously been 

responsible for highly antibiotic-resistant, hospital-acquired infections. 87–89 Also, as a gram-positive 

bacterium, its peptidoglycan layer that comprises the cell wall can be up to ten times larger than those 

of gram-negative bacteria, which imparts resilience to harsh environmental conditions.69 Thus, 

demonstrating antimicrobial activity against E.faecalis would provide excellent proof of principle of 

using a self-assembled silver containing hydrogel as an antibacterial agent.  

Often, colourimetric assays, i.e. LIVE/DEAD™ Cell Viability Assays, are employed for assessing cell 

metabolic activity or live dead stains can be used to evaluate the population of cell death due to some 

external stimuli.45,90,91 However, owing to the turbidity of the hydrogels and since the hydrogel will 

also be stained by the dyes such an approach was not applicable. Instead, alternative means have 

been used to determine cell death. Colony counts (Figure 5.11) were used to indicate and quantify 

any killing of bacteria by the Ag-GMP hydrogel. For this, the bacteria are collected from each sample 

after incubation for a set time and serial dilutions of this inoculum are pipetted onto agar plates and 

grown for 16 hours. Then, colony forming units (CFU) can be counted and compared between samples.  
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An early concern was whether silver deposited onto the agar plates would affect the growth of the 

bacteria on the agar plates and then over-represent any activity that was occurring over the initial 

incubation period. Thus, the composition of the agar plates was modified to include sodium 

thioglycolate (STG), a strong ligand for silver, which is routinely used to inactivate silver. 49,92,93 

Inclusion of STG into the agar plates does not appear to affect the CFU counts for E. faecalis only 

experiments (Figure 5.9f and g), i.e. incubated in the absence of any hydrogel samples.  
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Although slightly larger colonies grow on the agar plates without STG (Figure 5.11b and c), gram 

staining these colonies do not appear to reveal any significant difference between the morphology of 

bacteria grown on the two plates (Figure 5.9d and e). Hence, the inclusion of STG into the agar plates 

does not seem to interfere with the growth of E. faecalis and will be used to inactivate deposited 

silver, thus making the CFU counts reproducible and reliable. Also, there wasn’t a significant difference 

between CFU/mL counts for E. faecalis grown on Ag-GMP hydrogels on BHYN and BHYN with STG agar 

plates. This indicates that the activity arises from the first incubation period and not from the silver 

deposited on the agar plates.  

 

Thus, further experiments were undertaken with STG-containing agar plates (Figure 5.12). CFU counts 

revealed that within only two hours a small, yet noticeable decrease in the number of colonies formed 

is observed for the 1:1 ratio. However, after 22 hours there is a five orders of magnitude reduction in 
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the CFUs per mL. However, for the 2:1 ratio within 2 hours there is a substantial decrease of 5 orders 

of magnitude for the CFU counts and within 22 hours this drops to 7 orders of magnitude. Importantly, 

not only is there a decrease in the colonies formed, but many of the colonies are much smaller than 

those formed the absence of the silver (Figure 5#b and c). Through gram staining of the bacteria, it 

was confirmed that these smaller colonies were, in fact, E. faecalis and not a contamination. 

Therefore, this observation is due to a stress mechanism observed in bacteria because of the harsh 

growth conditions causing the bacteria to go into an almost metabolic stasis causing fewer bacteria to 

grow and hence forming smaller colonies. Similar observations have been made in the case of E. coli 

grown in the presence of silver nanoparticles. 43,45 

There is a slight reduction in CFU counts between E. faecalis incubated on top of the qGMP gels 

compared to E. faecalis only experiments. Viscous media has been shown to affect growth behaviour, 

with consequences on bacterial dispersal, bacterial mobility and the diffusion of transport molecules. 

94,95 Thus, it isn’t surprising that over long periods growth isn’t optimal. However, the log reduction in 

qGMP samples is far less substantial than gels containing silver.  

As mentioned previously, colourimetric assays are not useful in this case to further understand the 

impact of the silver on the E. faecalis and therefore other methods of analysis are necessary. 

Previously, silver nanoparticles have been shown to degrade plasmid DNA in vitro 96 and also degrade 

chromosomal DNA of Bacillus subtilis.97 Therefore, the chromosomal DNA from E. faecalis was 

extracted and gel electrophoresis used to examine the DNA integrity. Briefly, gel electrophoresis is a 

technique to separate macromolecules through a porous gel according to size, for which smaller 

molecules will travel faster and therefore further down the gel. 98,99 These results have revealed major 

degradation of the chromosomal DNA. 
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Gel electrophoresis experiments (Figure 5.13) demonstrated an intact chromosomal band for E. 

faecalis only samples and for E. faecalis incubated with the qGMP (10mg/mL) sample. There is also a 

very faint band at ca. 6 kb.  From the DNA extraction from the 2-hour Ag-GMP 2:1 sample, there 

appears to be a total disappearance of the band associated with chromosomal DNA. This coincides 

with a ‘smear’ below the DNA ladder indicating that these are small fragments of DNA97. Chromosomal 

DNA extraction is inherently inefficient, and it is highly likely that some intact DNA would be lost or 

damaged. However, as this ‘smear’ is not observed to any substantial level for the E. faecalis only 

experiment this is not likely to be the cause of the smear at the bottom of the gel. In support of this, 

chromosomal DNA extraction was undertaken for the qGMP samples after incubation for 2 hours and 

these samples exhibited intact chromosomal DNA. Therefore, this ‘smear’ is not likely caused by any 

shear used to disassemble the gel network before lysing the cell membrane. Thus, incubating E. 

faecalis with the Ag-GMP hydrogels significantly compromises the integrity of its chromosomal DNA 

and this is almost certainly a contributing factor to the significant killing of E. faecalis. The cause of 

this damage will be considered in future work.  
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As mentioned previously, the AgGMP hydrogel network can be used as a scaffold for the photo-

reduction of silver nanoparticles. Therefore, the prepared AgGMP and qGMP hydrogels were 

irradiated with UV light for 90 minutes and left in the dark overnight. These were then incubated with 

the E. faecalis inoculum and collected for CFU counts, as with previous experiments.  

 

As would be expected, there were no substantial differences between the CFU counts of E. faecalis 

only and E. faecalis incubated with the control samples compared between non-irradiated and 

irradiated hydrogels (Figure 5.14). Unexpectedly, there is a slight increase in the CFU count for the 2:1 

sample. One reason that might explain this increase is that the silver nanoparticles formed are 

produced from excess silver ions in solution. However, this increase from 1.8x103 to 6.9 x103 is not too 

significant. Therefore, this effectively lowers the concentration of silver in solution.   However, there 

is a three orders of magnitude reduction for the 1:1 sample over the two-hour period comparing the 

irradiated and non-irradiated gel samples. This can be understood if the bacteria are entangled in the 

gel network. For the irradiated gel samples, the hydrogel filaments are decorated with silver 

nanoparticles and therefore the bacteria could conceivably be in direct contact with the silver 
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nanoparticles. The activity of silver nanoparticles relies on the positive charge to encourage 

electrostatic attraction with the negatively charged cell membrane of the microorganism. 40 

 

The antimicrobial properties of the hydrogels were also tested on E. coli to compare the effects 

between gram-negative and gram-positive bacteria. The experiments were carried out using the same 

methods used for the gram-positive bacteria, but with some minor modifications (described in the 

methods section).   The E. coli strain expressed a green fluorescent protein (GFP) which allowed the 

cells to be visualised by light microscopy.  Images were taken halfway down the gel and showed that 

that significant numbers of bacteria were present throughout the gel sample i.e. not just at either the 

top or the bottom. Images taken from the AgGMP sample showed low numbers of fluorescent bacteria 

which is likely due to the significant killing of the E. coli prior to imaging. 
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CFU counts were also made for the E. coli experiments (Figure 5.16). For E. coli, measurements were 

only made after 2 hours. As expected, there was a significant drop in CFU counts for bacteria incubated 

with the control hydrogels, though the there was a reduction for the 20 mg/mL sample. However, 

there was a substantial reduction in both AgGMP samples. There was a three and four orders of 

magnitude reduction in the CFU count for 1:1 and 2:1 ratio, respectively. This is in line with previous 

reports demonstrating great effects on gram-negative bacteria.1,45,49,52 Gram-negative bacteria have a 

much thinner peptidoglycan cell wall (~2-3 nm vs ~30 nm) and therefore are less protected against 

the penetration of silver ions into the cytoplasm. 1,69,68 
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Conclusion 

The binding of silver ions to the guanosine residue of GMP has been utilised to form a supramolecular 

hydrogel in one step. The stoichiometry of the silver has substantial influence over the rheological 

properties of the resulting hydrogel. This silver is integral to the formation of the nanofilaments of the 

hydrogel and can be photo-reduced to form silver nanoparticles embedded within the supramolecular 

matrix. The Ag-GMP hydrogels demonstrated substantial, and statistically valid, killing of gram-

negative bacteria (E. coli) and gram-positive bacteria (E. faecalis). Fluorescence experiments 

demonstrated bacteria throughout the gel network and gel electrophoresis experiments indicated 

that this activity seems to be, at least in part, due to damage caused to the chromosomal DNA of E. 

faecalis. In contrast, control hydrogels produced by acidifying GMP solutions, in the absence of silver, 

did not show antibacterial activity. These findings clearly indicate the activity is related to the presence 

of the silver in the AgGMP gels.  These gels could be irradiated with UV light to promote the formation 

of photo-reduced silver nanoparticles. This resulted in increased killing of E. faecalis at for the 1:1 

AgGMP sample for CFU counts at 2 hours, thus indicating that the antibacterial activity was at least in 

part due to the silver nanoparticles formed on the hydrogel filaments and not just dissolved silver ions.  
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Future Work 

As demonstrated via gel electrophoresis, there are severe degradations to the chromosomal DNA of 

E. faecalis when they are incubated with the Ag-GMP hydrogel. DNA damage has previously been 

attributed to the generation of reactive oxygen species (ROS) by silver. 51,53  ROS are highly reactive 

and potentially destructive oxidants such as superoxide-radical (O2
-), hydroxyl radical (.OH), hydrogen 

peroxide (H2O2), and singlet oxygen (1O2).51,53,55–57,100–103 These species are generated naturally as part 

of the normal aerobic mechanism and may be involved in messenger pathways, but levels are kept 

low by cellular antioxidants. 51,56 However, silver has been shown to increase these species either 

acting as a catalytic site to produce ROS or by inactivating enzymes in the respiratory chain via 

interactions with thiols, thereby preventing them from removing ROS, causing an imbalance known 

as oxidative stress. 45,49,51,104–106 This burden allows for the accumulation of these reactive species 

which can then go on to either react directly with DNA or react with lipids to produce malondialdehyde 

which would then go on to react with DNA. 53,97,100,107,108  

To check whether these species are responsible for the DNA degradation and consequently the 

significant killing of E. faecalis, it is necessary to determine whether these species are present at higher 

levels when incubated with the Ag-GMP hydrogel. Stress-specific reporter strains that express 

reporter genes in response to elevated ROS levels, have been used previously 49,51 but would 

complicate the experiments further by introducing new strains. Instead, fluorescent probes can be 

used to detect ROS levels. 53,56–58,106,109 For instance, dichlorodihydrofluorescein diacetate is non-

fluorescent and passively diffuses through the cellular membrane but is sensitive to oxidation. As a 

result, it can react with ROS to form the fluorescent dichlorofluorescein which is then trapped in cells 

and can be detected via fluorimetry or fluorescence microscopy.  Thus, the fluorescence levels are 

proportional to the ROS levels and can then be correlated to the antimicrobial levels of the Ag-GMP 

hydrogel. This experiment can be run with positive controls such as paraquat and Norfloxacin, which 

are well-known to increase intracellular ROS levels. 58,110  
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Further, ROS levels could be suppressed in the presence of an antioxidant (e.g. N-acetylcysteine, L-

cysteine, L-methionine) and the DNA integrity evaluated after incubation with the Ag-GMP hydrogel 

and an applicable antioxidant to corroborate the fluorescent probe experiments.48,53,105,111 

Beyond this, electron microscopy will be used to determine structural changes to E. faecalis and in 

conjunction with energy-dispersive X-ray spectroscopy to detect silver species. This could elucidate 

other mechanisms, other than DNA damage, responsible for the killing of E.faecalis.   
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Conclusions and Future Work 

This thesis presents new stimuli for the formation of single and multicomponent hybrid 

supramolecular hydrogels and explored the consequences of the self-assembly processes for these 

samples. Chapter 3 demonstrates a novel route for gelation in which nitric oxide radicals are used to 

dephosphorylate the amino acid derivative, Fmoc-tyrosine-phosphate, to yield supramolecular 

hydrogels. Further to this, the consequences of different methodologies were explored and 

demonstrated striking differences in the filament morphology compared with filaments produced via 

enzymatic dephosphorylation.  Filaments formed in the presence of sodium nitroprusside (SNP) were 

thinner (ca. 2-4 nm diameter) and exhibited an opposing supramolecular chirality compared to gels 

formed through conventional means. CD and FT-IR were used to demonstrate that self-assembly in 

the presence of SNP (sodium nitroprusside) facilitated the formation of the kinetically trapped 

nanofilaments. It is envisioned that nitric oxide radicals can be readily employed in dephosphorylation 

of other important functional amino acid and peptide derivatives for the construction of 

nanocomposite hydrogels and should open new routes to altering the molecular packing of gelator 

molecules for the construction of supramolecular architectures with chirality. 

The work presented in Chapter 4 is an example of the gelation of one gelator used to trigger the 

gelation of the second gelator which is used to form the construction of nucleotide-amino acid multi-

component hydrogels. The second gelator is more susceptible to pH and thus it possible to selectively 

remove one gelator. This is an exciting avenue to modulate the gel architecture to create complex 

materials which may be relevant to a myriad of applications, e.g., drug delivery, tissue culture scaffolds 

etc. It is also demonstrated that the kinetics of assembly dramatically affects the properties of the 

resulting hydrogel.  

From this work it is clear that unexpected interactions between components were responsible for 

interesting behaviour for the systems presented in Chapters 3 and 4, i.e. opposing chirality in the 

filament structure and disruptive assembly at particular Ag:GMP molar ratios. Therefore, the in-situ 
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analysis of these interactions between components prior to gelation in necessary focusing on any 

alterations to structures present prior to gelation would be insightful. Such studies would ideally avoid 

artefacts common to many techniques such as drying processes which can affect the supramolecular 

structures. Where possible it would also be advantageous to study the gelation process to better 

understand the mechanism of assembly and any associated structural reorganisations and how these, 

and the assembly process more broadly, are perturbed by the presence of other components, i.e. SNP 

or other gelators.  

Further characterisation of gelators prior to gelation is necessary. For instance, the presence of SNP 

in solution affected the filament chirality regardless of whether the nitric oxide radicals were involved 

in the dephosphorylation. It was demonstrated that this was a kinetically trapped structure and a more 

thermodynamically favoured structure could be reached through melting and cooling of the gel. This 

indicates that the interactions responsible for the kinetically trapped structure occur prior to and/or 

during the gelation process since it is possible for the expected chirality to occur in the presence of 

SNP after the heating and cooling cycle. Further to this, circular dichroism analysis for the work 

presented in Chapter 4 indicated disruption to the FY micellar organisation prior to gelation. This could 

arise from intermolecular interactions between GMP and FY such that the gelator molecules are not 

separate in solution and thus do not assemble orthogonally to one another. This could be due to 

possible interactions between the tyrosine and guanine residues,1,2 such that either gelator could 

disrupt supramolecular assemblies that exist before gelation. Such interactions could be probed via 

two-dimensional nuclear magnetic resonance spectroscopy, in particular, 2D Nuclear Overhauser 

effect spectroscopy (NOESY).3,4 NOESY uses information about the nuclear Overhauser cross 

relaxation between nuclear spins (the transfer of nuclear spin polarization) to determine through 

space, dipolar interactions. Two-dimensional plots are created, with spectra along the horizontal and 

vertical axis, whereby cross-peaks appearing off the diagonal of the plot indicates close localisation of 

protons from different molecules (Figure 6.1). 5,6 As these peaks can be related to protons of certain 

functional groups it can be possible to rationalise stacking arrangements for the co-gelators with the 
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knowledge of which functional groups are interacting with one another. Thus, it is also possible to 

characterise and quantify the mixing of components prior to gelation. For instance, Draper et al. 

demonstrated that two naphthalene based gelators intermixed at high pHs.7 They demonstrated a 

reversal of positive to negative NOE signals, that corresponds to aggregation,8,9 upon addition of a 

second component. This was supported by shifts in the aromatic protons, indicating a changed 

environment. Such studies summarised above could be very insightful to understand any interactions 

between the two gelators and therefore determine whether any mixing of the gelators occurs prior to 

gelation.  

 

As mentioned previously, FY and similar gelators have been shown to exist as micellar aggregates prior 

to gelation and it is currently unclear whether these structures persist during gelation, whether there 
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is a structural reorganisation or whether they completely disassemble and reform to form different 

filament structures during gelation.10 Therefore, any interactions may affect these processes or affect 

how the filaments entangle.7 Thus, it would also be informative to undertake more experiments to 

probe the assembly in-situ. For instance, using circular dichroism and rheology indicated structural 

reorganisation for sample E in Chapter 4. 

For these experiments, small angle neutron scattering (SANS) could meet these requirements. For 

instance, SANS is capable of structural interrogation of hydrogels across multiple lengths scales (ca. 

0.6-600 nm)  and therefore can resolve individual nanofilaments and is a highly powerful tool for 

quantitative evaluation of hydrogel networks in aqueous environments.11–15  Neutrons interact weakly 

with the nuclei of the sample and, therefore, will not cause radiation damage (as with synchrotron x-

rays). The neutrons can penetrate the sample giving nanometre scale determination of structures 

within thick samples. As gelled samples exhibit relatively strong intensities, it could be possible to 

characterise the gelation process in situ without the need for modification, therefore overcoming 

drying artefacts.16 Ultra-small-angle neutron scattering (USANS) can also be used in conjunction with 

SANS to probe the microstructure of gels and could provide information regarding the bundling of 

filaments and network properties. 17–19 This could be particularly relevant to understand the 

multicomponent systems. Preliminary SANS experiments have been carried out of on the gels 

presented in chapters 3 and 4 and demonstrate promising results.  
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The branching nature of hydrogel networks can be described as fractal objects, and be described by 

the fractal dimension (Df) which quantifies the complexity of the network.11,19–26 This parameter is only 

an effective fractal dimension as gels are not rigorous fractal objects,20 but can be used to give insight 

into the network structure.19,26 For instance, Lam et al correlated a higher Df to crystallographic 

mismatches to filaments formed rapidly to create a more complex network and conversely a lower Df 

to longer filaments formed more slowly.27 All three single component gels could be fitted to a fractal 

model (Figure 6.2c and e).  The FY gel had a Df of 2.3 and the AgGMP gels had higher fractal dimensions 

of 3 and 2.7 for the 1:1 and 2:1 molar ratios, respectively. Fractal models fit less well at higher Q as 

they describe the junction zones of bundling filaments or branching points from crystallographic 

mismatches and not the filament structure of the filaments. 11 However, supramolecular gels can be 

modelled by various cylinder models to probe filament structure. 10,12,23,28,29 The FY sample fits very 

well to an elliptical flexible cylinder (Figure 6.4d), which describes the flat tape morphology observed 

in TEM images. AgGMP gels could also be fitted with cylinder models but need to be combined with 

the power-law model first (Not shown). 
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SANS profiles were also obtained for four of the multicomponent samples (Figure 6.4). (Sample codes 

and colours summarised below in Table 6.1) All samples could be fitted to fractal models. Sample D 
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best match a core-shell fractal model. Interestingly, the SANS data for sample D (equimolar GMP and 

FY) was different from either of the individual gelators and other multicomponent profiles. The peak 

at high Q is indicative of a core-shell structure present in solution.13,30,31 Therefore, sample D was fitted 

to a core-shell fractal model. Different scattering data demonstrated the formation of a new structure 

which has previously been interoperated as evidence for a co-assembled system.29,32 This is supported 

by substantially different Df values for sample D, compared to the individual gelators and other 

multicomponent samples. Samples A and B both had Df values of 2.2 and sample E had a Df value of 

2.8, which is likely due to a denser hydrogel network due to the lower pH reached this stoichiometry. 

However, sample D had a much lower Df of 1.1. This indicates severe disruption to the branching in 

the hydrogel network. The lower scattering intensity for sample D despite the higher gelator content 

also indicates disruption to the hydrogel network. 7 Both of these agree with the observations made 

in Chapter 4. 
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All multicomponent samples could also be fitted to the flexible elliptical cylinder model, except D 

which was modelled as a hollow cylinder (Figure 6.4 d and e). These different models indicate different 

filament structure. This could be studied further with SANS. The multicomponent system, in particular, 

could also be studied further by partly deuterating one of the components, which would reduce 

scattering intensity from this component and therefore it would be possible to see whether the 

resulting scattering matched that of the other component which could be used to further determine 

whether self-sorting or co-assembly has occurred. 33 

 

 

The SNP-FYP gels exhibited significantly different SANS profiles compared to the ALP-FYP gels, 

displaying a peak at high Q, characteristic of a core-shell structure (Figure 6.5). 13,30,31  As with the FY 

gel, the ALP-FYP gel was fitted using the flexible elliptical cylinder model. Whereas, the SNP-FYP gel 

was fitted with a core-shell cylinder, combined with a power law model to describe the low Q data. 

The different morphology for the SNP-FYP gels is described by the core-shell element describing the 

coiled tape structure discovered via cryo-TEM (Figure 6.6).  
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Work by Adams group has used SANS to demonstrate the difference in structures in solution and 

hydrogel phases 28 and different network structures based on the preparation method.10 It is not clear 

whether the structures in the solution phase are retained and reorganise or whether these structures 

are depleted as hydrogel filaments form.34 SANS could conceivably be used to track gelation in situ for 

both gelator systems, which could be used to probe structural reorganisations prior, due to 

interactions with other components, or during gelation though considerations will need to be made 

about the rate of gelation against measurement times.  
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Finally, chapter 5 investigated the potential application of the Ag-GMP gel. As silver is integral to the 

assembly of GMP and decorates the filaments of the gel the antibacterial properties of this gel were 

characterised. It was demonstrated that the stimuli chosen, i.e. the stoichiometry of silver substantial 

influence over the rheological properties of the resulting hydrogel and its subsequent antibacterial 

behaviour. Through CFU counts substantial antibacterial activity was demonstrated against candidate 

gram-negative bacteria (E. coli) and gram-positive bacteria (E. faecalis). Further, as would be expected, 

higher levels of silver corresponded to higher killing. However, the killing at the lower molar ratio can 

be increased by irradiating these gels Control gels formed in the absence of silver did not demonstrate 

anti-bacterial activity.  

However, further study in combination with other materials is recommended. As discovered in 

Chapter 4, this second component should be one that doesn’t interact with silver or guanosine 

monophosphate.  For instance, this could be a suitable supramolecular hydrogel or even a polymeric 

hydrogel. This could allow for a reasonably mechanical strong material to be produced, allowing for 

lower silver concentrations. This would be advantageous as it may alleviate cytotoxicity issues arising 

from using silver, which also require investigation. 

To end, the work demonstrated within this thesis has demonstrated that the stimulus and the 

environmental conditions affect how single and multicomponent hydrogels form and can also affect 

the properties of the gels relevant to the application.  
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