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Abstract 

Optical metro/core and data centre networks are under pressure to manage the exponential 

growth and dynamic nature of internet traffic. As a result, innovative technologies and 

approaches to improve the flexibility of the network infrastructure and operations need to be 

developed. However, the provisioning of networks with innovative technologies and resources 

to deliver flexibility without any design or allocation policy does not guarantee cost efficiency 

and optimum network performance when managing traffic demands. The introduction of 

flexibility as a measurable key performance indicator for networks has opened up potential 

prospects for the design of efficient optical networks. However, there is limited understanding 

on how quantitative levels of flexibility relates to other key performance indicators and design 

features. In addition, the combination of server resource disaggregation, electrical/optical 

technologies and network function programmability in data centres provides a promising 

solution to eliminate the limitations of conventional server-centric data centres. However, for 

this concept to materialize, resource allocation policies which ensure an optimum level of 

network performance must be developed. 

The first part of this thesis investigates flexibility as a measurable key performance indicator 

for optical transmission and switching systems. Flexibility measurement models for different 

optical components and subsystems are derived and proposed based on maximum entropy. In 

addition, the flexibility of the examined optical components and subsystem are measured, and 

the relationship between flexibility, other measurable key performance indicators and design 

features are highlighted and discussed. The second part of this thesis investigates network 

strategies and algorithms for selecting and deploying electronic packet switching/optical circuit 

switching services and network resources to build Virtual Machines on reconfigurable 

disaggregated data centre resources. A comprehensive performance evaluation of the proposed 

network strategies and algorithms across different disaggregated data centre architectures is 

conducted. 
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1 Introduction 

1.1 Motivation and Problem Statement 

The Cisco forecast in [1] reported that global internet traffic is estimated to rise in next few 

years and by 2021 will be about 127 times the total size of global internet traffic in 2005. The 

growth in internet traffic is attributed to an increase in demand from consumers for bandwidth-

intensive internet applications such as internet video and online gaming. The global internet 

traffic growth will also lead to unpredictable traffic patterns due to dynamic consumer demands 

and behaviour. These traffic trends will have a direct impact on the resources of existing optical 

metro/core and data centre (DC) network infrastructure because these bandwidth-intensive 

applications are hosted on servers in DCs and are transmitted over optical metro/core networks 

between DCs and from DCs to consumers. According to [2], a major amount of internet traffic 

will be dominated by global DC traffic, and since 2008 the DC has been the origin or 

destination of most of internet traffic. It was also reported in [2] that by 2021, 14.9% of the 

global DC traffic will occur between DC to user, 13.6% of the global DC traffic will occur 

between DC to DC, and 71.5% of the global DC traffic with occur within the DC (Figure 1.1 

illustrates an overview of flow of DC traffic across optical metro/core and DC network 

infrastructures). To efficiently manage these traffic trends, innovative and efficient 

technologies, network infrastructure and network resource planning policies for metro/core and 

DC networks must be developed to provide optimum levels of network flexibility and 

performance.  

 

Figure 1.1: Optical metro/core and data centre network. 
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Due to the dynamic and diverse nature of internet traffic, flexibility is an essential prerequisite 

and key performance indicator (KPI) for the design of optical metro/core and DC networks. 

Researchers have explored various ways to deliver flexibility in networks with the development 

of innovative hardware technologies, network infrastructure, and software  technologies such 

as software defined networking (SDN) and network function virtualisation (NFV) which 

enable network programmability and control. However, provisioning of networks with 

innovative technologies and resources to deliver flexibility without any design or allocation 

policy does not guarantee cost efficiency or optimum network performance in handling traffic 

demands. There two possible approaches to address this issue. The first approach is through 

developing efficient resource allocation strategies and algorithms that guarantee cost efficiency 

and optimum network performance. The second approach is through determining and 

quantifying different levels of flexibility required to deliver cost efficiency and ranges of 

certain performances. There have been extensive studies which have evaluated the flexibility 

of communication networks in respect to hardware technologies, network infrastructure and 

software technologies, however, the performance of these approaches were evaluated in terms 

of KPIs such as blocking probability, cost and energy efficiency, and not as a function of 

flexibility as a measurable KPI. Interestingly, in the context of manufacturing, an extensive 

amount of studies have examined flexibility as a measurable KPI and proposed several 

measurement techniques to quantify flexibility [3]. However, in the context of communication 

networks, flexibility as a measurable KPI has remained generally unexplored by research 

community, only studies in [4]–[7] have attempted to quantify flexibility as a measurable KPI. 

This can be attributed to the fact that flexibility can be defined in a wide variety of contexts or 

there is complexity involved in developing measurement models for the different building 

blocks of communication networks. The study of flexibility as a measurable KPI and the 

development of efficient resource allocation policies are key research areas in which 

continuous innovation is required to deliver flexible optical metro/core and DC networks with 

optimum network performance.     

1.1.1 Optical Metro/Core Networks 

In optical metro/core networks, one of the most significant elements introduced to add 

flexibility is the reconfigurable optical add/drop multiplexer (ROADM). ROADMs allow 

network operators to remotely select, switch and route wavelength channels, and also configure 

the network to support different traffic requirements without the need to physically disrupt 
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network operations [8]. Also, enabling technologies such as wavelength selective switch 

(WSS), multicast switch (MCS), couplers and optical transmitters that make up a ROADM’s 

structure play an important role in defining the flexibility, functionality and performance of 

ROADMs. Therefore, the design features of each of these devices are vital for delivering 

efficient network services which can support unpredictable traffic trends. In addition, elastic 

optical networks (EONs) have emerged as a potential solution to address the limitations 

associated with fixed grid networks and meet the ITU G.694 grid channel spacing 

recommendation [9]. EONs provide flexible and efficient use of the spectrum to support 

different combinations of optical paths with variable bandwidths. The introduction of EONs 

have led to the development of devices such as spectrum selective switch (SSS) and bandwidth 

variables transponder (BVT) which can support flexible grid optical networks [10][11].  

Regardless of prior efforts to deliver flexible optical networks, there are still critical challenges 

and questions that need to be addressed to effectively determine the levels of flexibility 

required to deliver cost effective and optimum network services. Therefore, crucial questions 

such as “what amount of flexibility in an optical component is required to achieve a certain 

level of performance?” are vital to understand how different levels of flexibility relates to 

design features, other KPIs and network resource requirements. This may assist network 

designers and equipment manufacturers to understand the amount of flexibility required to 

ascertain different levels of performance, which may in turn lead to resource savings, and a 

reduction in system complexity and equipment manufacturing time. In [4], a measurement 

approach to quantify flexibility of optical network elements based on maximum entropy was 

proposed. The authors proposed flexibility measurement models for different optical node 

architectures and switching optical components, and evaluated the flexibility of the different 

optical node architectures. The same flexibility measurement technique was also used in [5] to 

evaluate the flexibility of different add/drop bank structures considering the drop direction. 

Despite the previous works on flexibility measurement for optical networks and the promising 

potential of flexibility as a measurable KPI, there still remains an extensive range of complex 

optical switching and transmission components, and optical subsystems that have not been 

studied.  

1.1.2 Data Centre Networks 

DC networks have an important role to play in effectively managing the increasing and 

unpredictable traffic trend as bandwidth intensive applications such as internet video are hosted 
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and ran on DC servers and network infrastructure. With about 71.5% of DC traffic remaining 

within the DC [2], and conventional server-centric DCs infrastructure experiencing inefficient 

server utilisation, high-power consumption and cost-intensive scalability. Novel and cost-

effective DC technologies, architectures, and resource allocation strategies must be 

investigated to deliver optimum levels of flexibility and network performance while managing 

the exponential growth and dynamic nature of internet traffic. Disaggregation of server 

resources into separate standalone CPU, memory, storage and network resource pools has been 

projected in [12][13] as a promising solution to improve resource utilization, efficiency, 

flexibility and upgradeability in DCs. In addition, hybrid DC architectures employing both 

electronic/optical technologies [14]–[16] and all-optical technologies [17]–[19] have been 

explored and have demonstrated benefits in terms of power consumption, modularity and cost 

in comparison to conventional DCs. Therefore, the combination of server resource 

disaggregation with hybrid technologies provides a promising solution to mitigate the 

drawback experienced by conventional server-centric DCs. However, for this concept to 

materialize, there are several challenges that need to be addressed. First, the authors in [12] 

stated that communication network will be a challenge for the realization of server resource 

disaggregation. This is because communication between resources (e.g. CPU to CPU and CPU 

to memory) for Virtual Machines (VM) placement which occurred within a server will now be 

distributed throughout the DC network. Secondly, existing hybrid DCs still suffer from one 

main drawback. The network function services in these hybrid DCs are hardwired with fixed 

electronic packet switching (EPS) to optical circuit switching (OCS) proportionalities and are 

dedicated to specific network resources. This limits the ability to dynamically deploy or 

upgrade network function services, which in turn limits the flexibility and performance of the 

DC to efficiently manage diverse network traffic requirements. 

The dRedBox (Disaggregated Recursive Data Centre in a Box) architecture offers promising 

solutions to overcome these challenges. This architecture combines server resource 

disaggregation with state of the art software, optical and electronic technologies to deliver a 

DC architecture with efficient resource utilization, low power consumption, low latency, high 

throughput and non-disruptive upgradeability [13]. In addition, the dRedBox architecture 

provides improved flexibility and connectivity compared to conventional hybrid DC 

architectures due to deep multi-layer network function service programmability at end nodes 

(i.e., embedded CPU, memory) [20]. Unlike conventional hybrid DCs where a fixed amount 

of network resources for server input/output (I/O) ports are dedicated to either optical circuit 
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or electronic packet network, the dRedBox architecture allows for dynamic and run-time 

deployment of on-chip packet/circuit switching service to any I/O port to handle variable 

network requirements. Thus, VM requests can be implemented using a custom-built network 

topology with a network service chain spanning over multiple network hops. However, the 

introduction of these amount of flexibility and programmability features opens up challenges 

on how to effectively deploy and manage these network function services to deliver optimum 

network performance when deploying VMs. Typically, a VM request specifies the amount of 

CPU cores, memory and bandwidth connectivity required. Furthermore, the deployment of a 

VM request in disaggregated DCs requires two main phases: IT resource and network resource 

allocation. Factors such as resource availability, resource capacity, location of the different 

resources types across the DC network (i.e., how CPU and memory resources are arranged), 

network fabrics and allocation strategies should be considered when deploying VMs. Several 

studies [21]–[24] have proposed IT and network resource allocation algorithms for the 

deployment of VMs in disaggregated DCs and carried out simulation studies to evaluate the 

performance of the proposed algorithms. However, none of these studies implemented a 

comprehensive performance analysis or proposed policies and algorithms to address the 

challenges associated with the deployment and allocation of EPS/OCS network services to 

build VMs on reconfigurable disaggregated DC resources. The term “reconfigurable” and 

“programmable” are used interchangeably in this thesis.  

1.2 Research Objectives and Contributions 

The first research objective of thesis is to derive and propose flexibility measurement models 

for different design configurations of optical and transmission systems for flexible optical 

networks, and evaluate the design trade-offs and relationships between flexibility, measurable 

KPIs (i.e., capacity, connectivity, spectral efficiency, cost etc.) and design features. The 

research contributions associated with this research objective are:  

 

v Derived and proposed models to measure the flexibility of WSS and SSS under 

different design conditions which include: WSS and SSS with no contention, WSS and 

SSS with contention, and WSS and SSS with port dimension reconfigurability.  

v Derived and proposed models to measure the flexibility of different optical transmitter 

configurations. These transmitter configurations range from single carrier transmitters 

to multicarrier transmitters with fixed or variable transmission features such as 
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modulation formats, symbol rates, tuneable wavelength channels, electrical subcarriers 

and optical carriers. 

v Derived and proposed models to measure the flexibility of optical subsystems with 

variable transmission and switching features. These subsystems include: WSS 

combined with BVTs, MCS combined with BVTs and SSS combined with BVTs. 

v The flexibility of different configurations of the studied optical components and 

subsystems are measured using the proposed flexibility measurement models. 

Furthermore, the relationship between flexibility, other KPIs and design features are 

evaluated, and design trade-offs of the optical components and subsystems based on 

the results presented and theoretical analysis were highlighted. 

The second research objective of this thesis is to develop and propose networking strategies 

and algorithms to select and deploy EPS/OCS services, generate multi-layer custom 

network topologies, and allocate network resources to builds VMs across the dRedBox 

architecture and other conventional hybrid disaggregated DC architectures in the most 

efficient way. The research contributions associated with this research objective are:   

v Developed and proposed several networking strategies and algorithms for selecting 

EPS/OCS services, creating multi-layer custom network topologies and, allocating 

network resources to build VM network requests across the dRedBox architecture and 

other conventional hybrid disaggregated DC architectures.  

v A comprehensive performance evaluation of the different networking strategies across 

the dRedBox and conventional hybrid disaggregated DC architectures is conducted and 

analysed under different traffic patterns.  

v A benchmark of the dRedBox architecture against conventional hybrid DC 

architectures in terms of blocking probability, network resource utilization, cost and 

energy efficiency is conducted.  

1.3 Thesis Organisation 

This thesis is structured as follows: Chapter 2 reviews existing literature on the different aspects 

which are vital for the design and implementation of flexible optical metro/core and DC 

networks. Existing literature on the hardware technologies, optical metro/core and DC network 
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infrastructure, software technologies which enable network programmability and control, 

resource allocation, and flexibility as a measurable KPI are reviewed and discussed. The 

literature review reported in this Chapter has been used in publications [A], [B], [C], [D] and 

[E].  

Chapter 3 reports on the flexibility measurement methodology utilized in this thesis. Following 

this, the derivation of the proposed flexibility measurement models for different configurations 

of WSS and SSS are reported. The design trade-off between flexibility and design features of 

the studied switches are discussed and highlighted. The contributions reported in this Chapter 

have been used in publications [C] and [E].  

Chapter 4 reports on the derivation of the proposed flexibility measurement models for 

different configurations of BVTs and optical transmission and switching systems. The design 

trade-offs between flexibility, other KPIs and design features of the different BVT 

configurations and optical systems are discussed and highlighted. The contributions reported 

in this Chapter has been used in publications [C], [D] and [E]. 

Chapter 5 describes features of a reconfigurable hybrid disaggregated DC architecture and two 

conventional hybrid disaggregated DC architectures. Following this, several proposed network 

strategies and algorithms to select EPS/OCS services, create custom network topologies, and 

allocate network resources to build VMs across the various hybrid disaggregated architectures 

are reported. The contributions reported in this Chapter have been used in publications [A] and 

[B].  

Chapter 6 presents a comprehensive network performance analysis of the different proposed 

networking strategies across the various hybrid disaggregated DC architectures. Two 

simulation scenarios are presented. The first simulation scenario is a performance evaluation 

of the dRedBox architecture and two different conventional hybrid disaggregated DC 

architectures. The second simulation scenario is a performance evaluation of dRedBox with 

different arrangement of disaggregated resource pools. The contributions reported in this 

Chapter have been used in publications [A] and [B].  

Chapter 7 presents the conclusion and future work of this thesis.  
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2 Literature Review 

2.1 Introduction  

This chapter introduces and critically reviews the different aspects of delivering/improving 

flexibility in optical metro/core and DC networks. The different aspects reviewed are: hardware 

technologies, network infrastructures, software technologies which enable network 

programmability and control, resource allocation policies, and the study of flexibility as a 

measurable KPI. First, the meaning of flexibility is discussed. Next, the features of enabling 

hardware technologies for the design of ROADMs and EONs are discussed. Following this, 

network infrastructures for the design and implementation of optical metro/core networks are 

presented. Particularly, different approaches for ROADM design are reviewed, and the 

characteristics and benefits of EONs are discussed. Furthermore, disaggregation of DC server 

resources and different DC architectures which are essential parts of DC infrastructures are 

reviewed. Particularly, the benefits and challenges of disaggregation of DC server resources 

are presented, and the different approaches which have addressed the challenges and 

demonstrated the benefits of disaggregation of DC server resources are reviewed. Also, the 

features, benefits and shortcomings of different DC architectures are evaluated. Next, software 

technologies such as NFV and SDN which are key enablers of network programmability and 

control are introduced. The different approaches which have been proposed to solve the 

resource allocation problem associated with the optimum placement of virtual network 

functions in DCs are reviewed. Finally, literature on flexibility as a measurable KPI in the 

context of optical networks, SDN, and NFV are reviewed.   

2.2 What is Flexibility?  

The term “flexibility” can be defined in a wide variety of contexts and sectors, hence, the 

definition and interpretation of flexibility remains ambiguous and subjective to a particular 

context or sector. Also, other terms such as “programmability”, “reconfigurability” and 

“elasticity” are synonymous to the term “flexibility” and have been used interchangeably by 

the engineering community. In the context of optical networks, N. Amaya, et al [4] defined 

flexibility as the ability of a system to adapt to change. The authors further defined flexibility 

based on the design features and functionality of an optical network element. For example, an 

optical component which has the ability to route wavelength channels from an input point to 
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an output point through different paths has routing flexibility, an optical component which has 

the ability to rearrange its design structure to build different configurations or architectures has 

architectural flexibility, an optical component which has the ability to establish a connection 

between input ports and output ports in multiple dimensions (space and spectrum) has 

switching flexibility, and an optical subsystem which has the ability to support variable bitrates 

and select and route the wavelength channels to multiple destination has channel and routing 

flexibility.  

As previously mentioned in the introduction chapter, there has been an extensive amount of 

research conducted in different essential aspects (i.e., hardware technologies, network 

infrastructure, software technologies, and resource allocation) that deliver flexibility in optical 

metro/core and DC networks. However, these studies evaluated flexibility in respect to other 

measurable KPIs and not considering flexibility as a measurable KPI. For instance, a recent 

comprehensive tutorial on flexible optical networks in [25] discussed the different building 

blocks of flexible optical networks but did not review or discuss any work related with the 

study of flexibility as a measurable KPI. In this regard, the study presented in this thesis touches 

on the different aspects of delivering flexibility with the inclusion of the study of flexibility as 

a measurable KPI.  

2.3 Hardware Technologies  

2.3.1 Wavelength and Spectrum Selective Switch 

The WSS is a fundamental building block of ROADMs. A WSS can select and switch 

wavelength channels between multiple input and output ports, perform power equalization and 

attenuation of wavelength channels, and support bidirectional transmission through software 

control [26][27]. A WSS is made up of free space optics integrated with switching technologies 

such as liquid crystal on silicon [28]–[30] and micro electromechanical mirrors (MEMs) [31]–

[33]. Once a light path signal is injected into the input port of a WSS, the light path is directed 

onto a diffractive grating. The diffractive grating separates the light path into individual 

wavelength channels and directs the separated wavelength channels onto a switching element. 

The switching element then redirects individual wavelength channels to the desired output 

ports through the diffractive grating [34].   

Over the past few years, researchers and engineers have developed and introduced the 1	´	𝑀 
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WSS which has played a crucial role in developing ROADMs currently deployed in existing 

optical networks. However, the port dimension which limits the switching functionality of the 

WSS from one input port to 𝑀 output ports or from N input ports to one output port limits 

network flexibility and connectivity. This limitation drove the need for a WSS with multiple 

input and output ports, i.e., 𝑁	´	𝑀 WSS. The 𝑁	´	𝑀	WSS can be implemented by coupling an 

𝑁	´	1	WSS with a 1	 × 	𝑀 WSS in series or by coupling 𝑁 number of 1	 × 	𝑀	WSSs with 𝑀 

number of 𝑁	´	1	WSSs in parallel [8][26]. However, these techniques of implementing the 

𝑁	´	𝑀 WSS have disadvantages. The 𝑁	´	𝑀 WSS design with WSSs coupled in series has 

wavelength contention because the two WSSs are connected through a single fibre link, and 

the 𝑁	´	𝑀 WSS design with WSSs coupled in parallel is not cost efficient because a high 

number of 1	´	𝑀 and 𝑁	´	1	WSSs are required to implement an 𝑁	´	𝑀 WSS with a large port-

dimension. Thus, the need for an 𝑁	´	𝑀 WSS as a single component without wavelength 

contention is of crucial importance. A standalone 𝑁	´	𝑀 WSS without contention offers 

benefits such as supporting multi-flow applications from BVTs [35] and providing 

contentionless features in ROADMs [8].  

The ITU-T G.694.1 has recommended a channel spacing of 12.5 GHz for flexible grid 

networks [9], however, the filtering functionality of the WSS is limited to fixed grid networks 

with a rigid channel spacing (50GHz or 100 GHz) and cannot meet this requirement. This 

challenge has been overcome with the introduction of SSS. The SSS provides a finer spectral 

granularity which supports flexible grid networks. Thus, an SSS can route and switch spectral 

slots of different widths, and flexible-grid ROADMs are realized by upgrading WSSs to SSSs 

[4][36][37]. Though a standalone 𝑁	´	𝑀	WSS/SSS without contention is highly desirable 

because of the numerous benefits, this design is not technically mature. The commercially 

available 𝑁	´	𝑀 WSS/SSS can be seen in [38][39], these designs provide I/O port dimension 

reconfigurability but suffer from internal contention.  

2.3.2 Multicast Switch 

The MCS is an alternative essential optical component for ROADM design. The MCS is 

fabricated with silica-based planar lightwave circuit technology and is implemented using a 

multicast switch design consisting of 𝑁 number of 1 ´ 𝑀 optical splitters connected to 𝑀 

number of 𝑁 ´ 1 optical switches [40][41]. The MCS is reliable and supports large scale 

production. However, due to the presence of optical splitters, as the port dimension of the MCS 
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increases, the optical loss also increases. In addition, unlike the WSS which has filtering 

functions to select and block wavelength channels, an MCS does not have this functionality, 

thus, 𝑀 number of tuneable filters have to be externally connected to optical switches to 

achieve wavelength filtering [40].  

2.3.3 Flexible Optical Transmitters 

Flexible optical transmitters are important for implementing ROADMs and delivering efficient 

optical network operations. Different transmission requirements and levels of network 

performance can be achieved by varying programmable transmission features such as number 

of optical carriers, modulation formats, symbol rates and tuneable wavelength channels. 

Numerous studies [42]–[44] have demonstrated single carrier software defined optical 

transmitters with high performance digital to analogue converters (DAC) and digital signal 

processing (DSP) techniques where different modulation formats and multiple bitrates were 

achieved. Furthermore, the introduction of multicarrier transmitters technologies such as 

electrical and optical orthogonal frequency division multiplexing [45]–[47], optical arbitrary 

waveform generator [48] and Nyquist wavelength division multiplexing [49] have further 

increased the capacity, flexibility and connectivity of optical transmitters. It is worth 

mentioning that various multicarrier technologies used for developing BVTs have been 

discussed in [10]. Also, in order for fixed grid optical transmitters to meet the requirement of 

flexible grid networks, they have to be equipped with lasers which support finer spectral tuning 

granularities [50].  

Sliceable bandwidth variable transponders (SBVTs) which are also referred to as multi-flow 

optical transponders have been reported in [10][51][52] as an innovative technology which 

significantly increases flexibility, connectivity and efficiency of optical transmission. In an 

SBVT, different combination of optical paths with equal or variable bandwidth form supper 

channels or multiple optical flows to serve a single or multiple traffic demands. Different 

designs of SBVTs have been proposed and experimentally demonstrated in [53][54]. Also in 

[55], a cost evaluation of SBVT in a network scenario showed that SBVT decrease 

transponders cost.  
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2.4 Optical Metro/Core Network Infrastructure 

2.4.1 Reconfigurable Add/Drop Multiplexer 

ROADMs are fundamental building blocks of flexible optical networks. ROADMs provide 

routing and switching functions of wavelength channels through remote software control [8]. 

A ROADM node architecture consists of an express cross-connect structure and add/drop 

cross-connect bank. The express structure provides non-blocking interconnection between 

different node degrees, and the add/drop bank provides interconnection between the node 

degrees and transmitters/receivers of the resident ROADM node [5][8]. ROADMs with 

colourless, directionless and contentionless (CDC) functionality further improve the overall 

flexibility and performance of optical networks by providing improved connectivity and 

efficient use of wavelength resources [5][8][56]. The colourless feature is when there are no 

restrictions in the selection of any wavelength from any port on the add/drop bank. The 

directionless feature is when there are no directional routing restrictions of wavelength 

channels to/from any port on the add/drop bank. The contentionless feature is when there are 

no wavelength conflicts in the add/drop bank (i.e., multiple copies of the same colour of 

wavelength channel can be simultaneously added from the add/drop bank to any node degree 

and dropped from any node degree to the add/drop bank).  

Numerous studies have presented and proposed add/drop banks with CDC features using 

several optical technologies which provide different levels of performance. The authors in [57] 

proposed a CDC ROADM with an add/drop bank which is implemented in two parts. The first 

part consists of multiplexers interconnected to bulky optical switches and the second part 

consist of optical splitters. The study in [58] presented an extended version of the previously 

discussed add/drop bank in [57], the first part of the add/drop bank is implemented with WSSs 

interconnected to optical splitters while the second part consists of optical splitters 

interconnected to smaller optical switches. The study compared the two architectures and 

reported that the add/drop bank with WSSs and smaller optical switches is better than the 

add/drop bank with large optical switches in terms of modularity, but has a disadvantage of an 

increased optical loss for both the add and drop paths. The disadvantages of the two add/drop 

bank designs in [57][58] are the large sizes of the optical switches, and questionable scalability 

of the add/drop bank as there is a possible increase in optical loss if the port count of the optical 

splitters are increased. Furthermore, studies in [40][41] presented a CDC ROADM with an 

add/drop bank which is implemented with an MCS (i.e., a silica-based planar lightwave circuit 
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transponder aggregator). The authors also presented a fabricated prototype of the MCS and 

emphasized of the advantages of the proposed MCS in size (i.e., a compact design structure) 

in comparison to the add/drop bank structure in [57], which is implemented using a bulky 

optical switch. The authors in [59] proposed a CDC ROADM architecture in which the express 

cross-connect structure is implemented with 1 ́  43 WSSs, and the add/drop bank with an MCS. 

The CDC ROADM was experimentally demonstrated with a DP-QPSK transmission system 

without any significant penalties. As previously mentioned in section 2.3.2, the major 

disadvantage of the MCS is that as the port dimension increases, there is an increase in optical 

loss due to the presence of optical splitters. Thus, optical loss is an issue for scaling add/drop 

banks implemented with MCSs. 

The add/drop bank of CDC ROADM can also be implemented with different design 

configurations of WSS [8][26][35][59]: (i) interconnection of an 𝑁	´	1	WSS with a 1	 × 	𝑀 

WSS in series, (ii) interconnection of 𝑁 number of 1	 × 	𝑀	WSSs with 𝑀 number of 

𝑁	´	1	WSSs in parallel, and (iii) a standalone contentionless 𝑁	 × 	𝑀	WSS.  In the add/drop 

bank implemented by interconnecting an 𝑁	´	1	WSS with a 1	 × 	𝑀 WSS in series, because 

there is internal wavelength contention present in a single module, a sizeable number of 

modules are required to eliminate wavelength contention within the add/drop bank. This leads 

to an increase in cost. The add/drop bank design implemented by the interconnecting 𝑁 number 

of 1	´	𝑀	WSSs with 𝑀 number of 𝑁	´	1	WSSs in parallel can deliver CDC functionality, 

however, this design introduces design complexity and cost because a large number of switches 

are required to implement an add/drop bank with a large port count. The add/drop bank 

implemented with a standalone contentionless 𝑁	´	M	WSS overcomes the drawbacks of the 

previously discussed WSS-based add/drop banks, this is because it can provide CDC features 

from a single device and has lower optical loss in both the add/drop direction (i.e., the optical 

signal travels through only one WSS in the add/drop bank). However, the limitation of this 

design of WSS is that it is not yet technically mature.  

There have been several studies which have evaluated the performance of different add/drop 

bank architectures and design features. The authors in [56] presented a study which evaluated 

the effect of add/drop bank CDC features on the performance of optical networks. Results from 

analytical models and simulations showed that in terms of blocking probability, an add/drop 

bank with CDC features performs better than an add/drop bank with only colourless and 

directional features, and an add/drop bank which has colour, direction, contention restrictions. 
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The study in [60] presented a performance evaluation of various ROADM node architectures 

in terms cost, optical loss and size of equipment.  Another study in [61] presented a comparative 

evaluation of an MCS based add/drop bank and an optical cross-connect WSS based add/drop 

in terms of OPEX and CAPEX.  

The flexibility of ROADM architecture has further been increased with the introduction of the 

architecture on demand (AoD) concept. The concept of AoD which was first introduced in 

[62], consist of an optical backplane (implemented using a high port count MEMs optical 

switch) which interconnects optical modules such as WSS, multiplexers, demultiplexers, 

couplers and optical amplifiers. Unlike traditional ROADM architectures where the 

interconnection between components are hardwired, in an AoD node architecture, the 

interconnection between modules are not hardwired. Therefore, different architectures can be 

setup to handle different traffic requirements and support various network functions such as 

fibre switching, spectrum switching and packet switching without overuse of resources. For 

instance, assuming all wavelength channels from node degree 1 are to be passed to node degree 

2, in a broadcast and select (BS) ROADM architecture, all wavelength channels will be routed 

through an optical splitter and WSS, whereas in an AoD node architecture, only a single fibre 

switch interconnection from node degree 1 to node degree 2 is required. However, even with 

the promising benefits, the AoD concept still has some challenges [62]. Firstly, the introduction 

of this amount of flexibility requires efficient resource allocation algorithms for construction 

of architecture while considering dynamic network requirements, cost and energy efficiency. 

Secondly, deploying an AoD node in a network scenario with dynamic traffic trends is 

challenging because the switching time required to setup an optical cross-connection on the 

optical backplane can hinder hitless routing and switching operations.  

Since the introduction of the AoD concept, various studies have proposed strategies and 

algorithms to address the challenges and demonstrate the potential benefits. The authors in [63] 

proposed a synthesis algorithm to address challenges associated with the number of network 

components utilised when building architectures in an AoD node. Results from the study 

showed that in comparison to different traditional hardwired ROADM architectures, an AOD 

node can decrease the number of hardware components utilised. A similar study in [64] 

proposed an extended synthesis algorithm addressing different types of switching traffic 

requests and the selection of network components when building AoD node architectures. 

Results showed that the AoD can achieve better performance than traditional ROADMs in 
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terms of power consumption and cost. The authors in [65] proposed a strategy and an algorithm 

to decrease power consumption in AoD nodes by avoiding the utilisation of unnecessary 

amplifiers and turning them into sleep mode. The results from the simulation study showed 

that networks equipped with AoD nodes can achieve a reduction in power consumption and 

improve network availability in comparison to networks equipped with traditional ROADMs. 

Despite the benefits of the AoD concept demonstrated in [63]–[65], none of these studies 

considered a dynamic traffic scenario and the negative impact of the switching time introduced 

by the optical back plane of the AoD. Another study in [66] proposed ILP formulations and 

heuristic algorithms to address network planning problems and deliver cost-efficient optical 

networks with AoD nodes in static and dynamic network scenarios. Results from the study 

showed that optical networks equipped with AoD nodes achieved switching module savings 

and lower power consumption in comparison to optical networks equipped with traditional 

hardwired ROADMs. However, in order to reduce network blocking in the dynamic network 

scenario, the location for the placement of optical components at different AoD nodes was 

implemented using approximations from a set of random static traffic. This approach does not 

fully represent a dynamic network scenario where network requests are not known in advance. 

The feasibility of the AoD concept has been enhanced with experimental demonstration in 

[4][67][68].  

This section reviewed numerous studies which have proposed different designs and approaches 

to deliver/improve flexibility in ROADMs and evaluated different ROADM architectures in 

terms of energy efficiency, scalability, cost and optical loss. However, the study of flexibility 

as a measurable KPI for the design of ROADMs is minimal, only studies in [4][5] have 

investigated flexibility as a measurable KPI for the design of ROADMs. These studies are 

reviewed and evaluated in section 2.7. 

2.4.2 Elastic Optical Networks 

The spectrum of traditional wavelength division multiplexing (WDM) networks is divided into 

fixed channel spacings of 50GHz or 100 GHz, this rigid framework leads to wastage of 

bandwidth and inefficient utilisation of the spectrum [10][36]. EONs have been introduced as 

a solution to overcome the drawback of traditional WDM networks and provide greater 

flexibility for optical transmission. EONs support flexible utilisation of the spectrum such that 

a suitable size of spectral slot is allocated to an optical signal to prevent spectrum wastage 

[10][11][36]. The realization of EONs has been made possible with the development of 
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hardware technologies like the BVTs and SSSs (discussed in section 2.3). In addition, several 

studies [69]–[73] have evaluated and demonstrated the benefits of EONs over traditional WDM 

networks in terms of KPIs such as energy efficiency, spectrum utilisation and cost.  

Despite the promising benefits of EONs, there are numerous challenges associated with 

delivering efficient and optimum network performance. In traditional WDM networks, a key 

challenge for delivering optimum performance when serving a traffic demand is finding a 

suitable network path and allocating a wavelength channel while satisfying the wavelength 

continuity constraint. This problem is commonly known as the routing and wavelength 

assignment (RWA) problem [74]. In EONs, apart from selecting a suitable network path, 

spectrum contiguity and spectrum continuity constraints must also be satisfied in order to 

successfully establish a lightpath. This problem in EONs is known as the routing and spectrum 

allocation (RSA) problem [75][76]. The RSA problem can also be extended to the joint 

optimization other transmission features (e.g. modulation formats, number of carriers or 

symbol rates) to improve network performance and solve spectrum fragmentation problems 

which occurs as a result of stranded bandwidth introduced by dynamic arrival and release of 

traffic demands [75].   

An extensive amount of studies have proposed ILP and heuristics algorithms to solve the RSA 

problems and other challenges associated with EONs such as spectral fragmentation. The study 

in [77] proposed RSA algorithms to improve spectrum utilization and fragmentation in EONs 

with mixed line rates. The proposed algorithms were evaluated in comparison to existing RSA 

algorithms in a dynamic network scenario. Results from the study showed that the proposed 

RSA algorithms can minimize blocking probability and spectrum fragmentation. Other studies 

have proposed RSA algorithms in EONs considering additional transmission constraints such 

as modulation formats [70][78][79] and transponders [80]. In addition, the authors in [75] 

presented a comprehensive tutorial and review on RSA methodologies for EONs. The study 

discussed different strategies for solving RSA problems and spectrum fragmentation in 

dynamic and static network scenarios. 

2.5  Data Centre Network Infrastructure 

2.5.1 Disaggregation of Data Centre Server Resources 

Traditional server-centric DCs consist of a rigid resource framework where each server is 
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composed of a fixed amount of CPU, memory, storage and network resources which are tightly 

packed and coupled onto a single mother board [12]. This server design has limitations in 

resource utilisation and modularity due to the disparity between different  types of DC 

workloads and the static server resource configurations [12][81].  Disaggregation of DC server 

resources into standalone resource pools (i.e., CPU, memory, storage, and network) has been 

proposed as a solution to address the limitations of traditional server-centric DCs, and offer 

benefits such as an increase in server resource utilization, modularity and flexibility [12]. 

However, the authors in [12] pointed out the DC communication network design as a key 

challenge which must be explored to reap the benefits of server resource disaggregation. This 

is because communication between resources (e.g. CPU to memory) which has traditionally 

been restricted within a server blade with compactly integrated resources will now be 

distributed throughout the DC network. Another key challenge for the realization of 

disaggregation of DCs is IT and the network resource allocation. This is because a wide variety 

of factors such as resource availability, resource capacity, location of the different resources 

types across the DC network (i.e., how CPU and memory resources are arranged) and the 

network fabrics will have to be considered when deploying resources to build VMs in 

disaggregated DCs.  

Recent Studies have proposed algorithms for IT and network resource allocation, and carried 

out simulations studies to evaluate the performance of disaggregated DCs [21]–[24]. A. Pages 

et al. [21] presented an integer linear programming and heuristic based model to minimize the 

computing resources required for the deployment of virtual DC traffic requests on 

disaggregated DC resources in a static network scenario. The resource utilization of a 

disaggregated DC was evaluated and compared with a server-centric DC with the same 

resource pool. Results from the study showed that disaggregated DCs offer better resource 

utilization than server-centric DCs. Also in [22], results from a mixed-integer linear 

programming and heuristic model showed that disaggregated DCs offer better power savings 

than server-centric DCs for different types of VMs. The authors in [23] proposed and evaluated 

several algorithms for dynamic IT and network resource allocation for dRedBox architecture. 

The results from the study demonstrated that the dRedBox architecture can achieve better 

resource utilisation than server-centric DCs. Another study in [24] proposed a scheduling 

algorithm with the objective of maximizing CPU resource utilization without performance 

degradation when deploying VMs in a disaggregated DC. The study evaluated the performance 

of the proposed algorithm in comparison to existing algorithms. Results from the simulation 
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study showed that the proposed algorithm outperformed the existing algorithms in terms of 

resource utilization and energy efficiency. The existing research work on resource allocation 

in disaggregated DC is minimal and various challenges associated with the allocation of IT and 

network resources have not yet been studied. For instance, none of these studies have proposed 

strategies and algorithms to solve challenges associated with the selection and allocation of 

EPS/OCS network services to build VMs on hardware programmable disaggregated resources 

or carried out a comprehensive performance evaluation of their proposed algorithms across 

different disaggregated DC architectures. Therefore, in order for the concept of server resource 

disaggregation in DCs to materialize, continuous studies and innovations through the 

development of efficient resource allocation strategies and algorithms, and the comprehensive 

performance evaluation of the proposed algorithms across different DC architectures are 

required.  

The concept of disaggregated DC resources have been experimentally demonstrated in [82]–

[86]. P. Gao et al. [82] investigated network bandwidth and network latency performance 

requirements for DC disaggregation to avert application performance degradation. The study 

showed that for certain applications, 20-40 Gb/s for remote memory access can achieve 

minimal (under 10%) application performance degradation. In addition, the authors in [83] 

experimentally demonstrated communication between Multi-Processor System on Chip 

(MPSoC) hardware with multiple cores and remote access memory over 10 Gb/s lanes. The 

authors reported that a bandwidth of 582 Mib/s (~ 5 Gb/s) can be realized between a single 

CPU core and remote access memory. Also, the authors in [84] experimentally demonstrated 

remote memory access with 10 Gb/s links and up to 68% sustained memory bandwidth.  

2.5.2 Data Centre Architectures 

Pure electrical DCs such as Fat tree [87] which consist of multiple layers of electronic packet 

switches connected in a tree like approach have experienced shortcomings due to high power 

consumption, cost intensive-scalability and fixed switching capacity. To overcome this, there 

has been a shift in focus from conventional electronic-based DCs to DCs which have 

incorporated either electronic/optical technologies or all-optical technologies. This is because 

of the significant benefits that optical technology provides (i.e., low latency, energy efficiency 

and high data rates).   

 



 

 22 

Electrical/optical switching DC architectures  

The authors in [14] proposed HELIOS, a hybrid DC architecture which incorporates 

electronic/optical switching fabrics. HELIOS has a 2-tier network level of core and pod 

switches. Each pod (ToR) switch houses several hosts and are embedded with 10G 

transceivers. The layout of the core switches are a blend of electronic packet switches and 

MEMs optical switches. Half the transceivers on each pod are connected to electronic packet 

switches while the remaining transceivers are connected to a MEMs optical switch through 

multiplexers. The electrical network handles bursty inter-pod communication while the optical 

network handles slowly varying inter-pod communication. The control loop of HELIOS 

architecture is made up of a topology manager, a pod switch manager and a circuit switch 

manager. The topology manager is the centre of the HELIOS architecture and its functions 

include examination of varying communication patterns, computation of new topologies and 

traffic demand estimation. The topology manager also interfaces with the circuit switch manger 

and pod switch manager which are run on the circuit switch and pod switches, respectively. 

The authors also carried out a simulation study by comparing HELIOS to a traditional DC 

architecture which has a pure electrical packet network. Results showed that HELIOS 

outperforms the traditional DC with a decrease in cost, power consumption and port count.   

Another hybrid DC architecture called c-Through has been proposed in [15]. c-Through 

consists of a multi-tier electrical packet network with Ethernet switches connected in a tree-

like manner and an optical network which consist of a MEMs optical circuit. Both the electrical 

network and optical network are connected to the ToR switches. In the optical network, each 

ToR can only be interconnected to another ToR at a time. The differences between HELIOS 

and c-Through architectures are: (i) The electrical network of HELIOS is a 2-tier network while 

the electrical network of c-Through is a 3-tier network. This could potentially lead to an 

increase in power consumption in c-Through because inter-ToR communication in the 

electrical network may transverse more one network hop. However, in HELIOS, inter-ToR 

communication in the electrical network is limited to just one network hop. (ii) In the optical 

network, c-Through only allows each ToR to communicate with another ToR at a time. This 

point to point communication restriction does not occur in HELIOS.  Hybrid electrical/optical 

DCs can deliver significant benefits over pure electrical DCs in terms of energy efficiency and 

cost. However, the presence of power hungry electronic switches at the core switching layer 

still presents a limitation in terms of energy efficiency.  
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All-optical switching DC architectures 

The authors in [88] proposed an optical switching DC architecture called OSA (previously 

presented as PROTEUS in [89]). In OSA, each ToR (electrical switch) is connected to a MEMs 

optical switch through an optical module consisting of a WSS, a MUX, a DEMUX, a coupler 

and optical circulators. The outbound traffic from the ToR is transmitted through an 

interconnection of a MUX, a WSS and circulators, while inbound traffic to the ToR is 

transmitted through an interconnection of circulators, a coupler and a DEMUX. Each ToR is 

interconnected to only k other ToRs, and communication to other ToRs that are not directly 

connected is achieved by multi-hop chaining through the MEMs optical switch and ToR 

switches. This architecture offers efficient port utilization due to the use of optical circulators, 

flexibility in link capacity through WDM, and flexibility in topology computation through the 

reconfigurability of MEMs optical switch. The authors evaluated OSA in terms of network 

bisection bandwidth. The results presented showed that the OSA can achieve high bisection 

bandwidth of about 60% -100% of non-blocking networks under different traffic patterns.  

Another optical DC architecture called WaveCube has been proposed in [90]. The composition 

of the WaveCube architecture is similar to OSA, the major difference is that there is no MEMs 

optical switch in WaveCube. ToR to ToR connectivity is achieved by direct interconnections 

through the optical modules. WaveCube achieves fault-tolerance since a single point of failure 

is eliminated by the removal of the MEMs optical switch. Since there is no optical back plane 

to deliver a dynamic topology, the authors mitigate this disadvantage by proposing an optimum 

solution for dynamic link bandwidth scheduling and multi-pathing routing. A major drawback 

of OSA and WaveCube is the possible increase in latency due to the multi-hop chaining of 

bursty traffic flows.  

The study in [91] proposed a Petabit optical switch architecture for DCs which employs arrayed 

waveguide grating routers (AWGRs) and tunable wavelength converters (TWCs). The optical 

switch is implemented using a 3-stage switching network where the AWGR is the fundamental 

switching device at each stage. The TWCs are attached to the input of the AWGRs at the second 

and third stages to perform wavelength conversion for dynamic configuration. Each ToR 

switch is interconnected to the optical switch through WDM (MUXs and DEMUXs). In 

addition, none of the three switching stages needs buffers and fibre delays lines because 
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buffering occurs at the line cards which are connected to the input of the switch fabric. This 

design feature reduces latency and system complexity. The authors in [19][92] proposed a DC 

architecture called HOSA. HOSA is a 2-tier network level architecture. ToR switches which 

are electronic switches (first-level) are interconnected to slow optical and fast optical switches 

(second-level). The slow optical switches are based on MEMs technology while the fast-optical 

switches are based on AWGR or semiconductor optical amplifier technologies. Furthermore, 

the control of the DC is achieved via a centralized controller which carries out scheduling, 

routing and switching configuration tasks. 

A flat optical DC architecture based on optical circuit and optical packet switching (OPS) 

called LIGHTNESS has been proposed in [93]. The data plane of LIGTHNESS is implemented 

based on the AoD concept. An optical backplane (i.e., a high port-dimension MEMs based 

optical switch) interconnects ToR switches, optical packet switch fabric, MUXs and DEMUXs. 

OCS is provided by the MEMs based optical switch to serve high bandwidth long-live traffic 

flows while OPS is provided by the optical packet switch fabric to serves short-lived traffic 

flows. The control plane of LIGHTNESS is achieved through SDN, which provides network 

control and management of the DC infrastructure. The authors in [18] carried out a simulation 

study and proposed a VM placement strategy to enable multi tenancy in LIGHTNESS and 

compared it with a pure optical switching DC. Results showed that LIGHTNESS achieved a 

higher VM acceptance ratio than the pure optical switching DC under the same traffic and 

network configurations. Another study in [17] proposed an ILP model and heuristic algorithms 

for minimizing the number of transceivers used when deploying virtual slices in LIGHTNESS 

and compared it with a pure OCS DC architecture. An evaluation of the results showed that 

LIGHTNESS performs better that the pure OCS DC architecture in terms of resource utilisation 

under the same traffic distribution and network configuration as a result of the statistical 

multiplexing function of the OPS technology. Despite the promising advantage and flexibility 

of the LIGHTNESS architecture, the main shortcoming of this architecture is that technical 

maturity and feasibility of OPS switching technology is still uncertain.   

Despite the benefits of the previously discussed electrical/optical and all-optical DC 

architectures, the collective limitation of these DC architectures is that their network function 

services are hardwired to specific network and server ports and cannot be reconfigured. This 

limits the optimization of service offering at the planning and dimensioning phase and in turn 

the reaction to unpredictable future demands which can lead to a decline in performance. This 
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limitation has created a need to introduce dynamic network function service programmability 

in DCs. As previously mentioned in the introduction chapter, the dRedBox architecture which 

is examined in this thesis overcomes the limitations of traditional server-centric DC 

architectures. The dRedBox architecture combines server resource disaggregation with 

software, optical and electronic technologies, and supports deep network function 

programmability (the dRedBox architecture is described in detail Chapter 5).   

2.6 Network Programmability and Control 

2.6.1 Network Function Virtualisation 

Network hardware devices deployed in traditional networks are proprietary to specific network 

equipment vendors and manufactured to perform specific network functions [94][95]. This 

limits network functions service reconfigurability to handle dynamic traffic trends, and 

introduces unnecessary incurred CAPEX and OPEX because upgrading/changing network 

services in existing network infrastructure will require the manual installation of additional 

network equipment by experts. NFV has been proposed as a solution to address these 

challenges. NFV separates network function from hardware and executes network functions 

via software on commodity hardware devices (servers, switches and storage) which can be 

remotely and dynamically deployed to different locations within the network [94][95]. A study 

in [20] proposed and demonstrated NFV service reconfigurability on an FPGA platform made 

up of partial reconfigurable regions interconnected through a network of chip. The authors 

demonstrated network function service reconfiguration on run-time between layer 1 circuit 

switching service and layer 2 Ethernet packet switch service without service disruption or 

packet loss. In addition, a programmable hybrid DC with network function service 

programmability was presented and demonstrated in [96]. This work involved replacing static 

NICs with FPGA based interfaces on server resources and deploying network service chains 

to deliver multi-layer networking services.  

An important issue associated with NFV is resource allocation for the implementation of virtual 

network functions (VNFs) [97]. The introduction of network function reconfigurability 

introduces challenges on how and where VNFs should be deployed in order to achieve 

optimum network performance. Thus, efficient resource allocation strategies and algorithms 

must be developed to address this issue. There has been an extensive amount of studies which 

have proposed ILP formulations and heuristic algorithms for the placement of VNFs across 
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different types for NVF network environments such as intra/inter DC networks and mobile 

networks. The authors in [98] proposed a binary integer programming formulation and 

heuristic algorithm to reduce the number of O/E/O conversions for VNFs placement and NFV 

service chaining in packet/optical DCs. Results showed that in terms of number of O/E/O 

conversions, the proposed heuristic algorithm delivers an optimum performance similar to the 

binary integer programming solution, and a better performance than a first-fit algorithm (i.e., 

utilizes less O/E/O conversions). The authors in [99] proposed an ILP formulation and heuristic 

algorithms for VNF service chaining on an optical DC architecture. The VNF service chaining 

was divided into 3 interrelated issues which includes VNF chaining multiplexing problem, 

VNF placement problem and RWA problem. These problems were addressed in a sequential 

manner. Results from a performance evaluation showed the efficiency of the proposed 

algorithms in terms of implementing VNF service chains on network and IT resources. The 

authors in [100] proposed an optimization solution (minimum vortex cover and bin packing) 

and a greedy heuristic algorithm for the placement of security monitoring VNFs between VMs 

or VMs and external users in a DC network. Results showed that the performance of the 

proposed greedy algorithm is close to the optimum solution. Another study in [101] proposed 

an ILP formulation and algorithms to address the network function service chaining placement 

issue in a multi-layer tree like DC. Results showed that in comparison to conventional best-fit 

algorithm, the proposed algorithms can minimize bandwidth consumption while delivering 

similar performance in terms of server utilisation. The authors in [102] proposed a mixed 

integer programming formulation and heuristic algorithm for VNF placement and antenna 

scheduling in a hybrid DC. The hybrid DC is composed of ToR, core and aggregate switches. 

In addition, each ToR switch is equipped with antennas which creates a wireless network. 

Simulation results showed that the performance of the proposed greedy algorithm is close to 

the optimum solution. The main drawbacks of the previously discussed studies on VNF 

placement in DCs [98]–[102] are that the studies did not consider dynamic network scenarios 

for VNF placement, and validate the performance of the proposed algorithms across different 

DC architectures. In addition, work on resource allocation for VNFs placement in 

disaggregated DCs is still unexplored.  

In the case of VNF placement in inter-DC networks, a joint allocation of wavelength/spectrum 

resources from optical metro/core networks which interconnects DCs and IT resources across 

the DCs are required for the placement and service chaining of VNFs [103]. The authors in 

[103] proposed an ILP formulation and heuristic algorithm for optimum placement and service 
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chaining of VNFs in inter DC EONs. The objective was to solve the issues associated with the 

joint allocation of spectrum and IT resources in a static network scenario. The proposed 

algorithms were compared against benchmark algorithms, and results from the study showed 

that the proposed ILP and algorithms can efficiently decrease the maximum utilised frequency 

slot and reutilize VNFs. Other studies in literature [104]–[106] have also proposed ILP 

formulations and heuristic algorithms to solve the joint allocation problem of IT and spectrum 

resources associated with VNF placement in inter DC EONs.  

2.6.2 Software Defined Networking 

The data and control plane of traditional networks are placed within the proprietary network 

hardware devices, therefore, manual intervention is required in order to change/upgrade 

management and control policies of the network [107][108]. This limits operational flexibility 

and network scalability, and leads to disruption of network services. Software defined 

networking (SDN) has been proposed a solution to eradicate this issue. In SDN, the control 

plane functionality is separated from the data plane of network devices and is placed in a central 

SDN controller which manages the entire network and enables network programmability 

[107][108]. The introduction of SDN has opened up pathways to achieve improved network 

management and configuration, enhance network performance and optimization, and simplify 

implementation and testing of novel ideas [109]. However, there are some challenges relating 

to issues such as scalability, performance and security that have to be addressed to fully realise 

its full potential [110]. The reference model for SDN comprises of three layers 

[107][109][111]: infrastructure, control and application layer. The infrastructure layer is made 

up of interconnected switching devices (e.g. routers) which process and forward packets based 

on the network policy of the controller. The control layer is a link between the infrastructure 

and application layer, it comprises of a controller which maintains and keeps records of the 

state of network and provides instructions to hardware devices using protocols. The application 

layer consists of network service applications for users.   

2.7 Flexibility as a Measurable Key Performance Indicator 

Measurable KPIs aid network operators and engineers to determine optical network behaviour 

and understand the relationship between design features and performance output, which in turn 

leads to efficient design and management of network infrastructure and operations. There are 

numerous studies on flexibility as a measurable KPI in the field of manufacturing [3][112]–
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[116]. These studies reviewed and discussed existing literature on manufacturing flexibility, 

presented various definitions for manufacturing flexibility in different contexts such as 

machine flexibility, expansion flexibility, process flexibility etc., and discussed different 

approaches to measure flexibility. In particular, studies in [115][116] have proposed entropy 

as an approach for measuring flexibility in manufacturing systems.  

In the context of SDN and NFV, studies in [6][7] have discussed the importance of flexibility 

as a measurable KPI for network design and proposed methods to quantify flexibility. The 

study in [6] proposed an approach for measuring the flexibility of mobile core networks with 

SDN and NFV technologies. The study evaluated three design choices (SDN only, NFV only, 

and a combination of SDN and NFV) across logically centralized and distributed DC 

infrastructure. The flexibility was measured based on a weighted feasibility solution for 

function placement under control and latency constraints. Results from the study showed that 

a combination of SDN and NFV provides the greatest flexibility for centralized DC 

infrastructure scenario. For the distributed DC infrastructure, results from the study showed 

that the flexibility of all three design choices are approximately equal. The study in [7] 

proposed a flexibility measurement approach for SDN networks and evaluated design trade-

offs between flexibility, cost and time. The authors defined the flexibility as a measure of the 

portion of requests that can be sustained from a known set of requests within a time limit. The 

network flexibility was evaluated in two different cases. The first case evaluated network 

flexibility with respect to SDN controller placement, and the second case evaluated network 

flexibility with respect to failure recovery. In the first case, the flexibility is expressed as the 

ability of the SDN control plane to adjust to varying flows of traffic within a migration time 

limit. An evaluation of four systems with different controller numbers was carried out. Results 

showed that the flexibility of the different systems increases as the migration time limit 

increases. This is due to the fact that more reconfigurations can occur within larger values of a 

migration time limit. Furthermore, at large values of a migration time limit, there is a reduction 

in the operational cost of the systems as the flexibility increases. The reduction in cost is more 

evident as the number of controllers increase. In the second case, the flexibility was expressed 

as the ability of the network to recover from failure within a specified time limit. Three different 

approaches were evaluated. In the first approach which is called 1+1 protection, resources are 

duplicated into a separate path-pair and the time for recovery is almost immediate. In the 

second approach called 1:1 protection, the recovery time is increased despite the fact that 

resources are reserved in advance, this is because redirection of the traffic through the backup 
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path are compulsory after failure detection. In the third approach which is called restoration, 

the recovery time is highest because no resources for protection are duplicated or reserved prior 

to a failure occurrence. Results from the study showed that the 1+1 protection approach 

demonstrated the highest cost but with a constant and high level of flexibility irrespective of 

the recovery time limit, while the restoration approach demonstrated the lowest cost and 

highest flexibility which is only achieved after a certain value of recovery time limit has been 

surpassed.  

Although these studies provided significant insight into network flexibility as a measurable 

KPI for network design in the context of SDN and NFV, some key issue were not considered. 

First, a generic framework and approach for developing flexibility measurements models were 

not provided. The lack of a generic framework and approach introduces complexity because 

different approaches for measuring flexibility will need to be developed for the wide variety of 

networking scenarios. Second, the impact of network devices on network flexibility were not 

taken into consideration when developing the flexibility measurement approaches.  

In the context of optical network hardware and infrastructure, studies in [4][5] have evaluated 

and discussed flexibility as measurable KPI. The authors in [4] derived and proposed flexibility 

measurement models based on maximum entropy for key optical components of optical nodes, 

an optical switching subsystem, and several elastic optical node architectures. The optical 

components studied include a 1 × 1 WSS, a 1 × 𝑁 WSS, a 1	´	𝑁 SSS, and a 𝑁	´	𝑁 optical 

switch. The optical subsystem studied was a combination of 1	´	𝑁	DEMUX and 𝑁	´	𝑁 optical 

switch. In terms of elastic optical node architecture, the design features and working principle 

of a BS node architecture, a spectrum routing (SR) node architecture, a switch and select with 

dynamic functionality (SSDF) node architecture, and an AoD node architecture were discussed 

and evaluated in terms different types of flexibility, through loss and hardware resource. In the 

BS node architecture, the ingress and egress nodes are implemented with optical splitters and 

SSSs, respectively. This architecture provides switching flexibility, no routing flexibility as 

only a single path between an ingress and egress node degree can be established, and limited 

functional flexibility (i.e., restricted to only functions provided by SSS such as filtering). In the 

SR node architecture, both the ingress and egress nodes are implemented with SSSs making it 

more expensive than the BS architecture. However, it does not have questionable scalability 

like the BS node architecture where optical losses are determined by the number of node 

degrees (i.e., port count of optical splitter). This architecture provides switching flexibility, no 
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routing flexibility and limited functional flexibility. In the SSDF node architecture, the ingress 

nodes and egress nodes are implemented with optical splitters and SSSs, respectively, and are 

interconnected via an optical switch. Different modules can be plugged to the optical switch to 

provide different functions such as packet switching. This architecture provides switching 

flexibility, routing flexibility as several network paths between ingress and egress node degrees 

can be established via the optical switch, and functional flexibility as different network function 

modules can be plugged to the optical switch. In AoD node architecture, different architectures 

can be constructed to suit different requirements, thus, AoD node architecture provides 

architectural flexibility. In addition, the AoD node architecture provides switching flexibility, 

and a higher routing and functional flexibility than the SSDF architecture. Among all the 

examined optical node architectures, the AoD is the most flexible architecture while the SSDF 

ranks second. In the case of the BS and SR node architectures, their switching flexibility were 

measured as a function of number of node degrees. Results from the study showed that the BS 

architecture has greater switching flexibility than the SR architecture when the number of node 

degrees exceeds two. This was attributed to the multicasting feature of BS architecture.  

The same flexibility measurement approach utilised in [4] has also been utilised in [5] to 

evaluate the flexibility of different add/drop banks considering the drop direction. In more 

detail, flexibility measurement models for a WSS based add/drop bank (i.e., 𝑁 × 1 WSS 

interconnected to 1	 × 	𝑀 coupler), an MCS based add/drop bank, a variable splitter MCS 

add/drop bank, and AoD add/drop bank were derived and proposed. The flexibility of the 

different add/drop architectures were measured as a function of node degrees. From the results 

presented, the MCS based add/drop bank demonstrated a higher flexibility than the WSS based 

add/drop bank due to avoidance of wavelength contention. The variable splitter MCS add/drop 

bank demonstrated greater flexibility than the WSS based add/drop bank and MCS based 

add/drop bank due to additional routing paths. The AoD add/drop bank demonstrated the 

highest flexibility among the various add/drop banks due to its architectural flexibility.  

Despite previous works which provided insights into the benefits of the design/performance 

evaluation of optical nodes and add/drop banks using flexibility as a measurable KPI, an 

extensive range of key enabling technologies such as 𝑁	´	𝑀 WSS/SSS, programmable single 

and multicarrier optical transmitters, and optical transmission and switching subsystems which 

are vital for ROADM design and delivering flexible optical network have not been studied. In 

particular, none of these studies considered the different transmission features such as 
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modulation formats when deriving the flexibility measurements models for evaluating the 

flexibility of the optical nodes and add/drop banks, or studied the relationship between 

flexibility and other significant KPIs such as connectivity or capacity. 

2.8 Chapter Conclusion  

This chapter presented a review of existing literature on different aspects that constitute flexible 

optical metro/core and DC networks. The aspects reviewed include: hardware technologies, 

optical metro/core and DC network infrastructure, software technologies for network control 

and programmability, resource allocation, and the study of flexibility as a measurable KPI. 

Research gaps, challenges and limitations of existing literature were reported and identified.  

Different studies which have proposed and demonstrated various designs and approaches to 

deliver flexibility in ROADMs and EONs were reviewed. Majority of these studies evaluated 

the performance and benefits of their various designs and approaches of delivering flexibility 

in terms of KPIs such as energy efficiency, scalability, blocking probability, cost, and optical 

loss, but without considering flexibility as a measurable KPI. The study of flexibility as a 

measurable KPI for network design is a research area that has generally been unexplored by 

the research community due to the subjective interpretation of flexibility, and the challenges 

and complexity involved in developing flexibility measurement models. The few existing 

studies which examined flexibility as a measurable KPI in the context of optical networks, 

SDN, and NFV were reviewed in this chapter. In the context of optical networks, these studies 

proposed flexibility measurement models based on maximum entropy for different optical 

components, elastic optical node architectures and add/drop bank architectures. Also, 

comparative evaluations of the design/performance of various elastic optical node architectures 

and add/drop bank architectures in terms of different types of flexibility, design features, and 

through quantitative measurement of flexibility were reported. Regardless of the progress made 

in this research area, an extensive range of key enabling technologies such as 𝑁	´	𝑀 WSS/SSS, 

BVTs and optical transmission and switching subsystems, which are vital for delivering 

flexibility in ROADMs and  EONs have not been studied. Therefore, developing  flexibility 

measurement models for these optical components and subsystems, and evaluating the 

relationship between flexibility, other KPIs and design features are essential to understanding 

flexibility as a KPI for network design. This may in turn assist network designers to determine 

the different quantitative levels of flexibility required to provide cost effective and optimum 

levels of network performance.  
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Additionally, existing literature on disaggregation of server resources in DCs, different DC 

architectures and network function virtualization in DCs were reviewed and discussed. It was 

reported that disaggregated DCs offer better performance in server resource utilization, 

flexibility and modularity in comparison to traditional server-centric DCs. However, the 

communication network design and allocation of resources are key challenges that have to be 

solved for the concept of disaggregation of DC servers to materialize. Various studies which 

have proposed IT and network resource allocation algorithms and carried out simulation studies 

on disaggregated DCs to address the challenges and demonstrate the benefits of DC server 

resource disaggregation were reviewed. However, these studies did not consider issues 

associated with the selection and deployment of EPS/OCS services to build VMs on hardware 

programable disaggregated resources or carry out a detailed performance evaluation of their 

proposed algorithm across various DC architectures. Furthermore, several DC architectures 

employing either electrical/optical or all-optical technologies were discussed and reviewed. 

The benefits and shortcomings of the various architectures were reported. It was established 

that the collective limitation of these DC architectures is that their network function services 

are hardwired and dedicated to specific sever and network resources. This limits the ability of 

these DCs to respond to variable and dynamic networking requirements. Thus, the need for the 

introduction of network function programmability in DCs. The advantages and challenges of 

NFV which enables network functions service reconfigurability were discussed. It was reported 

that a key problem in NFV is resource allocation for the optimum placement of VNF. Various 

studies which have proposed algorithms for optimum VNF placement in DCs were reviewed. 

However, it was noted that these studies did not take into account dynamic network scenarios 

or validate the proposed algorithms across different DC architectures. Also, none of the studies 

examined VNF placement on disaggregated DC resources.  

The combination of server resource disaggregation with electrical/optical technologies and 

network function programmability has promising potential to eliminate the limitations of 

traditional server-centric DC architectures. However, there are still critical challenges on how 

to efficiently deploy and manage these network services to deliver an optimum level of 

performance when building VMs on programmable disaggregated resources. It is therefore 

necessary propose and develop novel network strategies and algorithms to address these issues. 
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3 Wavelength and Spectrum Selective Switch 

3.1 Introduction  

In this chapter, the approach used to derive and develop flexibility measurement models in this 

thesis is presented. Next, the flexibility measurement models for the WSS and SSS under the 

following design conditions are presented: without contention, with contention, and with I/O 

port dimension reconfigurability. The flexibility of different port-dimension of WSS and SSS 

are measured, and the relationship and design trade-offs between flexibility and design features 

are evaluated and discussed. Finally, numerous significant insights from the results and 

theoretical analysis reported in this chapter are highlighted. Table 3.1 presents the list and 

definition of all parameters used in the derivation of all flexibility models in this chapter. All 

flexibility measurements models used to measure the flexibility of optical components in this 

chapter were implemented in MATLAB.  

Table 3.1: Parameter definition for flexibility measurement models of WSS/SSS 

Parameter Definition  
𝑁  Number of input ports  
𝑀 Number of output ports 
𝑃 Total number of ports 
𝑊 Number of wavelength channels  
𝑘 Spectral granularity factor 

𝑘𝑊 Number of spectral slots 

𝑎 Number of copies of the same colour of wavelength channel/spectral slot 
that can be passed from 𝑁 input ports to 𝑀 output ports at the same time 

𝑥 Maximum number of copies of the same of colour wavelength 
channel/spectral slot that can be passed from 𝑁 input ports to 𝑀 output ports 
at the same time  

 

3.2 Approach for Developing Flexibility Measurement Models  

N. Amaya, et al [4] proposed an approach to measure the flexibility of optical network 

elements. The authors stated that the flexibility of a system can measured considering the 

maximum entropy of a system, and the flexibility of a system is obtained by 

𝐹(𝑆) = 𝑙𝑜𝑔(𝑀) (3.1) 
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where 𝑆	 = 	 {𝑠!, 𝑠", … , 𝑠#} is the set containing all unique possible states of the system (i.e., 

assuming all states are equiprobable) and 𝑀 is the number of elements in the set 𝑆. For clarity 

in the derivation of flexibility measurement models in this thesis, the symbol 𝑀 is substituted 

with the symbol 𝑇. Thus, the model for flexibility of a system (Equation.3.1) is rewritten as 

𝐹(𝑆) = 𝑙𝑜𝑔(𝑇)   (3.2) 

Optical subsystems are constructed by combining two or more standalone optical components 

with different design features. Thus, the design features of the optical components determine 

the resultant flexibility and functionality of an optical subsystem. According to [4], if an optical 

subsystem consists of two optical components 𝑎 and 𝑏. Assuming the flexibility of 𝑎 is 𝐹$	and 

𝑏	is	𝐹%. The resultant flexibility 𝐹$% of the optical subsystem is  

𝐹$% ≤ 	𝐹$ 	+ 𝐹% (3.3) 

The flexibility of the optical subsystem 𝐹$%	is only equal to the sum of the individual 

flexibilities of components 𝐹$ and 𝐹% when the optical components of the subsystem are 

disjointed.  

3.3 Flexibility Measurement of Wavelength Selective Switch  

3.3.1 𝑵	´	𝑴 WSS without Contention 

In an 𝑁	 × 	𝑀 WSS without contention, copies of the same colour of wavelength channel or 

copies of different colours of wavelength channels can be switched or blocked from any 

number of input ports to any number of output ports provided that wavelength collisions are 

avoided, i.e., switching copies of the same colour of wavelength channel to the same output 

port. This design of WSS provides space and spectrum switching flexibility. Figure 3.1 

illustrates two possible designs of an 𝑁	 × 	𝑀	WSS without contention. Figure 3.1(a) presents 

a design of an 𝑁	 × 	𝑀 WSS without contention as a single independent component while 

Figure 3.1(b) presents a design of an 𝑁	 × 	𝑀	WSS without contention as a combination of 

components which is implemented by coupling 𝑁 inbound 1	 × 	𝑀 WSSs to 𝑀	outbound 

𝑁	 × 	1 WSSs in parallel.  
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Figure 3.1: Designs of 𝑁	´	𝑀 WSSs without contention. 

Assuming an 𝑁	´	𝑀 WSS without contention supports 𝑊 number of wavelength channels 

where multiple wavelength channels can be switched or blocked between 𝑁 input ports and 𝑀 

output ports. Suppose the number of copies of the same colour of wavelength channel that can 

be passed from 𝑁 input ports to 𝑀 output ports at the same time is 𝑎, the number of copies of 

the same colour of wavelength channel that can be blocked across 𝑁 input ports is (𝑁 − 𝑎), 

and the maximum number of copies of the same colour of wavelength channel that can be 

passed from 𝑁 input ports to 𝑀 output ports at the same time is 𝑥. The number of different 

ways that (𝑁 − 𝑎) can be chosen from 𝑁	input ports is A &
&'$B and the number of different ways 

that 𝑎 can be switched to 𝑀 output ports without wavelength collisions is (!
(('$)!

. For all 

possible values of 𝑎 and for 𝑊 number wavelength channels, the total number of possible states 

of the 𝑁	´	𝑀 WSS without contention is 

𝑇 = CD
𝑀!

(𝑀 − 𝑎)! F
𝑁

𝑁 − 𝑎G
,

$-.

H
/

		 (3.4) 

𝑖𝑓	𝑁 ≤ 𝑀, 𝑥 = 𝑁, 𝑒𝑙𝑠𝑒𝑖𝑓	𝑁 > 𝑀, 𝑥 = 𝑀  

Thus, the flexibility of an 𝑁	 × 	𝑀 WSS without contention is 

𝐹(𝑆) = 	𝑊𝑙𝑜𝑔CD
𝑀!

(𝑀 − 𝑎)! F
𝑁

𝑁 − 𝑎G
,

$-.

H (3.5) 

𝑖𝑓	𝑁 ≤ 𝑀, 𝑥 = 𝑁, 𝑒𝑙𝑠𝑒𝑖𝑓	𝑁 > 𝑀, 𝑥 = 𝑀  
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Note that the flexibility measurement model in Equation.(3.5) can be utilized to measure the 

flexibility of any port dimension of WSS. Also, when 𝑁 ≤ 𝑀, 𝑥 = 𝑁, this is because the 

maximum number of copies of the same of colour wavelength channel that can be passed from 

𝑁 input ports to 𝑀 output ports at the same time without wavelength collisions at the output 

ports is 𝑁. Otherwise, when 𝑁 > 𝑀, 𝑥 = 𝑀, this is because the maximum number of copies of 

the same of colour wavelength channel that can be passed from 𝑁 input ports to 𝑀 output ports 

at the same time without wavelength collisions at the output ports is 𝑀. The derivation process 

is validated in Figure 3.2 with an illustration of the total number of possible states of a 2 × 3 

WSS without contention which supports one colour of wavelength channel. When 𝑎 = 0 (see 

Figure 3.2(a)), the WSS has only 1 state because wavelength-1 and wavelength-2 (which are 

the same colour of wavelength) are blocked at input port-1 and input port-2, respectively, i.e., 

no wavelength channel is successfully passed. When 𝑎 = 1 (see Figure 3.2(b)), only one 

wavelength channel can be successfully passed at a time. Either wavelength-1 on input port-1 

is switched to any of the 3 output ports while wavelength-2 on input port-2 remains blocked or 

wavelength-2 on input port-2 is switched to any of the 3 output ports while wavelength-1 on 

input port-1 remains blocked. Thus, the number of possible states when 𝑎 = 1 is 6. Finally, 

when 𝑎 = 2 (see Figure 3.2(c)), wavelength-1 and wavelength-2 can successfully be switched 

from input port-1 and input port-2, respectively, to any of the 3 output ports provided that 

wavelength collisions are avoided. The number of possible states when 𝑎 = 2 is 6. Thus, the 

total number of possible states 𝑇 is 13.  
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Figure 3.2: The total number of possible states of a 2 × 3 WSS without contention which 
supports one colour of wavelength channel. 

Using Equation.(3.4), the total number of possible states of the 2 × 3 WSS is calculated as 

follows: 

Ø Number of states when 𝑎 = 0 is  

F
𝑁

𝑁 − 𝑎G	×	
𝑀!

(𝑀 − 𝑎)! 	= 	 F
2

2 − 0G	×	
3!

(3 − 0)! 	= 1	 

Ø Number of states when 𝑎 = 1 is  

F
𝑁

𝑁 − 𝑎G	×	
𝑀!

(𝑀 − 𝑎)! 	= 	 F
2

2 − 1G	×	
3!

(3 − 1)! 	= 6	 

Ø Number of states when 𝑎 = 2 is  

F
𝑁

𝑁 − 𝑎G	×	
𝑀!

(𝑀 − 𝑎)! 	= 	 F
2

2 − 2G	×	
3!

(3 − 2)! 	= 6	 
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The total number of possible states 𝑇 = 	(1 + 6 + 6)! = 13. Thus, the total number of states 

calculated from Equation.(3.4) is the equal to the total number of possible states displayed in 

Figure 3.2.  

In order to evaluate the relationship between the flexibility of a WSS without contention and 

design features such as spectral range and port dimension, the measured flexibility of a 20 port 

WSS as a function of different port dimensions and number of wavelength channels is 

illustrated in Figure 3.3. Several insights are noted from Figure 3.3. Firstly, it can be noted that 

the flexibility of each port dimension configuration increases as the number of wavelength 

channels increases. This is due to the fact that more connection states can be establish as the 

spectral range of the WSS increases. Secondly, it is observed that from 9 to 100 wavelength 

channels, as the equilibrium between 𝑁	input ports and 𝑀	output ports reduces, the flexibility 

of the WSS also reduces as a result of lower port cross-connections between input ports and 

output ports. The 10 × 10 port dimension demonstrated the highest flexibility while 1 × 19 

port dimension demonstrated the lowest flexibility. These observations show that port cross-

connection and spectrum range are important design features for determining the resultant 

flexibility and connectivity of an 𝑁	 × 	𝑀 WSS without contention. 

 

Figure 3.3: Flexibility of different port dimensions of a 20 port WSS. 
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3.3.2 𝑵	´	𝑴 WSS with Contention 

Figure 3.4 illustrates an 𝑁	´	𝑀 WSS design with contention which is implemented by 

connecting an inbound 𝑁	´	1 WSS to an outbound 1	´	𝑀 WSS in series. In this design, multiple 

copies of the same colour of wavelength channel cannot be simultaneously passed from 

multiple input ports to multiple output ports. This is because the two WSSs are connected 

through a single fibre. Thus, in comparison to the 𝑁	´	𝑀 WSS design without contention 

(Figure 3.1), the flexibility and connectivity of this design of WSS is drastically reduced.    

 

Figure 3.4: Designs of an 𝑁	´	𝑀 WSS with contention. 

The flexibility measurement model for an 𝑁	´	𝑀	WSS with contention is derived in a similar 

way to the 𝑁	´	𝑀 WSS without contention. The difference is that the maximum number of 

copies of the same colour of wavelength channel than can be passed from 𝑁 input ports to 𝑀 

output ports at the same time is equal to one (i.e., 𝑥 = 1). Therefore, the flexibility 

measurement model of an 𝑁	´	𝑀 WSS with contention is  

𝐹(𝑆) = 𝑊𝑙𝑜𝑔 CD
𝑀!

(𝑀 − 𝑎)! F
𝑁

𝑁 − 𝑎G
!

$-.

H		      (3.6) 

Equation.     (3.6) can be utilized to measure the flexibility of any port dimension of WSS. In 

order to evaluate the effect of wavelength contention on flexibility, Figure 3.5 presents a 

comparison of the flexibility of a 4 × 16 WSS without contention and a 4 × 16 WSS with 

contention as function of number of wavelength channels. As expected, the 4 × 16 WSS 

without contention demonstrates a higher flexibility than the 4 × 16 WSS with contention 

across the different number of wavelength channels. Particularly, it is noted that as the number 

of wavelength channels increases, the difference in flexibility between the 4 × 16 WSS without 

contention and the 4 × 16 WSS with contention increases. This is because the 𝑁	´	𝑀 WSS 

design without contention allows multiple copies of the same colour of wavelength channel to 
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be simultaneously passed from multiple input ports to multiple output ports whereas the 𝑁	´	𝑀 

WSS design with contention does not allow. Thus, in 𝑁	´	𝑀 WSS design with contention, there 

is internal wavelength blocking and the use of wavelength resources are restricted. Therefore, 

the 𝑁	´	𝑀 WSS design without wavelength contention provides greater flexibility, 

connectivity and more efficient use of wavelength resources.  

 

Figure 3.5: Comparison of the flexibility of a 4 × 16 WSS without/with contention.  

3.3.3 𝑵	´	𝑴 WSS with I/O Port Dimension Reconfigurability 

A design of 𝑁	´	𝑀 WSS with I/O port dimension reconfigurability has the ability to rearrange 

its port dimensions to meet different switching/routing requirements. Thus, this WSS design 

provides architectural, spectrum switching and space switching flexibility. Figure 3.6 

illustrates a 10 port WSS with port dimension reconfigurability rearranging its port dimension 

connection state from a 2 × 8 port dimension to connection state of a 4 × 6 port dimension. 
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Figure 3.6: An 𝑁	´	𝑀 WSS with I/O port dimension reconfigurability. 

To derive the flexibility measurement model, it is assumed that the total number of ports 𝑃 =

𝑁 +𝑀. Therefore, 𝑀 = 𝑃 −𝑁. Assuming an 𝑁	´	𝑀 WSS without contention which supports 

𝑊 number of wavelength channels, can switch or block a single colour or multiple colours of 

wavelength channels between 𝑁 input ports and 𝑀	output ports, and can independently be 

reconfigured to different configurations of input to output ports dimensions. The flexibility is 

𝐹(𝑆) = 	𝑙𝑜𝑔 Q D QCD
(𝑃 − 𝑁)!

A(𝑃 − 𝑁) − 𝑎B!
F

𝑁
𝑁 − 𝑎G

,

$-.

H
/

R
(0'!)

&-!					

R  (3.7) 

𝑖𝑓	𝑁 ≤ 𝑃 −𝑁, 𝑥 = 𝑁	𝑎𝑛𝑑	𝑖𝑓	𝑁 > 𝑃 − 𝑁, 𝑥 = 𝑃 − 𝑁  

 

Note that the possible range of values of the index summation of	𝑁 depends on the step size of 

the WSS. For example, a 10 port WSS with a I/O port dimension reconfigurability step size of 

1 will have index summation values of {1, 2, 3, 4, 5, 6, 7, 8, 9} which represent the following 

port dimensions {1 × 9, 2 × 8, 3 × 7, 4 × 6, 5 × 5, 6 × 4, 7 × 3, 8 × 2, 9 × 1}. In another example, 

a 10 port WSS with a I/O port dimension reconfigurability step size of 2 will have index 

summation values {1, 3, 5, 7, 9} which represent the following port dimensions {1 × 9, 3 × 7, 

5 × 5, 7 × 3, 9 × 1}. Additionally, the flexibility of a WSS design with wavelength contention 

and I/O port dimension reconfigurability is modelled in a similar way, the only difference is 

that the maximum number of copies of the same colour of wavelength channel that can be 

successfully passed from 𝑁 input ports to 𝑀 output ports at the same time is one (i.e., 𝑥 = 1).  

In order to evaluate the impact of port reconfigurability feature on the flexibility of a WSS, a 

comparison of the flexibility of a non-configurable 1 × 19 WSS, a non-configurable 10 × 10 

WSS and four 20 ports WSSs with port dimension reconfigurability step sizes of 1, 2, 4 and 8, 

as function of the number of wavelength channels is shown in Figure 3.7. The following 

observations are noted from Figure 3.7. Firstly, at 25 wavelength channels, among the WSSs 
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with I/O port dimension reconfigurability, the WSS with step size 1 demonstrates the highest 

flexibility due to its ability to be reconfigured to the most number of possible port dimensions, 

while the non-configurable 1 × 19 WSS demonstrates the lowest flexibility because it has the 

lowest number of port cross-connections. Secondly, the non-configurable 10 × 10 WSS 

demonstrates a lower flexibility than the reconfigurable 20 port WSSs with step sizes 2, 4 and 

8 due to its static port configuration, but offers a higher achievable port connectivity (port 

connectivity is defined as the number of port cross-connection between input and output ports 

and is equal to the product of the number of input ports and output ports). This is due to the 

fact that the maximum achievable port cross-connections from all possible port dimensions of 

the reconfigurable 20 port WSSs with step sizes 2, 4 and 8 are always lower than the 10 × 10 

WSS. This analysis shows that the port reconfigurability step size is important in determining 

the resultant flexibility and connectivity of a WSS. 

 

Figure 3.7: Comparison of the flexibility a non-configurable 1 × 19 WSS, a non-configurable 

10 × 10 WSS, and four 20 port WSSs with different port reconfigurability step sizes of 1, 2, 4 

and 8. 
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3.4 Flexibility Measurement of Spectrum Selective Switch 

3.4.1 𝑵	´	𝑴 SSS without Contention 

An 𝑁	´	𝑀 SSS without contention can independently switch or block multiple spectral slots of 

different widths across multiple input ports and output ports. Compared to the WSS without 

contention, this device provides space switching and finer spectral switching flexibility. Figure 

3.8 illustrates an 𝑁	´	𝑀 SSS without contention as a single component.  The 𝑁	´	𝑀 SSS design 

without contention can also be implemented by coupling 𝑁 inbound 1 × 𝑀 SSSs to 𝑀 outbound 

𝑁 × 1 SSSs in parallel. In flexible grid networks, an optical signal may occupy one or more 

spectral slots or infinite number of combinations of spectral slot sizes. Thus, because of the 

complexity and dynamic nature of flexible grid networks, a spectral granularity factor is used 

in this thesis. If the spectrum of a fixed grid network has a channel spacing of 50 GHz and the 

spectrum of a flexible grid network has a spectral slot spacing of 12.5 GHz. For every 

wavelength channel in the fixed grid network, it is assumed there are 4 spectral slots in the 

flexible grid network, i.e., the spectral granularity factor of the SSS is 4. 

 
Figure 3.8: Design of an 𝑁	´	𝑀 SSS without contention. 

In order to derive the flexibility measurement model of the 𝑁	´	𝑀 SSS without contention, the 

following assumption are made: 𝑎 is the number of copies of the same colour and size of 

spectral slots that can be passed from 𝑁 input ports to 𝑀 output ports at the same time, 𝑁 − 𝑎 

is the number of copies of the same colour and size of spectral slots that are blocked, 𝑥 is the 

maximum number of copies of the same colour and size of spectral slots that can be passed 

from 𝑁	input ports to 𝑀 output ports at the same time, 𝑘 is the spectral granularity factor, and 

𝑘𝑊 is the number of spectral slots that the SSS can support. Suppose an 𝑁	´	𝑀 SSS can 

independently switch or block 𝑘𝑊 spectral slots between 𝑁	input ports and 𝑀 output ports. 

The flexibility is    
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𝐹(𝑆) = 	𝑘𝑊𝑙𝑜𝑔CD
𝑀!

(𝑀 − 𝑎)! F
𝑁

𝑁 − 𝑎G
,

$-.

H		             (3.8) 

𝑖𝑓	𝑁 ≤ 𝑀, 𝑥 = 𝑁	𝑎𝑛𝑑	𝑖𝑓	𝑁 > 𝑀, 𝑥 = 𝑀  

Equation.(3.8) can be utilized to measure any port dimension of SSS. To evaluate the impact 

of spectrum switching on flexibility, and design trade-off between flexibility and port 

connectivity, Figure 3.9 depicts the measured flexibility of various port dimensions of WSS 

and SSS without contention as a function of different number of wavelength channels. A 

spectral granularity of 12.5GHz was used to calculate the flexibility of the SSS. It can be noted 

from Figure 3.9 that for each port dimension pair of the WSS and SSS, the flexibility increases 

as the number of wavelength channels increases. Furthermore, it is noted that the increase in 

flexibility has a greater effect on the SSS than the WSS, this is due to the finer spectral 

switching granularity of the SSS. Also, trade-offs between flexibility and port connectivity of 

the WSS and SSS can be observed. For example at 100 wavelength channels, the 10 × 11 WSS 

has a greater port connectivity than the 5 × 6 SSS but with a lower flexibility. The same trade-

off exists between the 5 × 6 WSS and the 2 × 3 SSS. Therefore, such design trade-offs and 

analysis provide information on different levels of flexibility and port connectivity for the 

design of optical subsystems and ROADMs.  

 

Figure 3.9: Comparison of the flexibility of different port dimensions of WSSs/SSSs. 
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The difference in flexibility between the WSS and SSS is further evaluated based on the 

maximum port dimension of a commercially available WSS/SSS, which is to the best of my 

knowledge a 1 × 35 WSS/SSS [39]. Figure 3.10 displays the measured flexibility of a WSS 

and SSS with a 1 × 35 port dimension as a function of wavelength channels. The flexibility of 

SSS was calculated with spectral granularity of 12.5GHz. It can be observed from Figure 3.10 

that the SSS demonstrates higher flexibility than the WSS across all the different number of 

wavelength channels. This is due to the spectral granularity of the SSS. In particular, at a 

spectral range of 100 wavelength channels, the SSS demonstrates about 300% higher flexibility 

than the WSS. 

 

Figure 3.10: Comparison of the flexibility of a 1 × 35 WSS/SSS without contention. 

3.4.2 𝑵	´	𝑴 SSS with Contention 

The flexibility measurement model of the 𝑁	´	𝑀 SSS design with contention is derived in a 

similar way to the 𝑁	´	𝑀	WSS design with contention, the only difference is the spectral 

granularity factor	𝑘 of the SSS. Thus, the flexibility is  

𝐹(𝑆) = 	𝑘𝑊𝑙𝑜𝑔 CD
𝑀!

(𝑀 − 𝑎)! F
𝑁

𝑁 − 𝑎G
!

$-.

H			 (3.9) 
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3.4.3 𝑵	´	𝑴 SSS with I/O port Dimension Reconfigurability 

An 𝑁	´	𝑀 SSS with I/O port dimension reconfigurability provides port dimension 

reconfigurability in addition to finer spectrum switching granularity. This SSS design has a 

greater level of flexibility in comparison to the previously discussed 𝑁	´	𝑀 WSS and 𝑁	´	𝑀 

SSS designs. The flexibility measurement model of the 𝑁	´	𝑀 SSS design with port 

reconfigurability is modelled in a similar way to the 𝑁	´	𝑀 WSS design with port 

reconfigurability but with a spectral granularity factor 𝑘. Thus, assuming this SSS design does 

not have contention, the flexibility is    

𝐹(𝑆) = 	𝑙𝑜𝑔Q D QCD
(𝑃 − 𝑁)!

((𝑃 − 𝑁) − 𝑎)! F
𝑁

𝑁 − 𝑎G
,

$-.

H
2/

R
(0'!)

&-!,					

R (3.10) 

𝑖𝑓	𝑁 ≤ 𝑃 −𝑁, 𝑥 = 𝑁	𝑎𝑛𝑑	𝑖𝑓	𝑁 > 𝑃 − 𝑁, 𝑥 = 𝑃 − 𝑁  

3.5 Chapter Conclusion 

In this chapter, a flexibility measurement methodology for optical networks was reported. 

Using this methodology, flexibility measurement models for different design configurations of 

WSS and SSS were derived and proposed. Also, an example to validate the derivation process 

was presented. Furthermore, the flexibility of different configurations of WSS and SSS were 

measured, and design trade-offs between flexibility, connectivity and design features were 

evaluated.  

Numerous significant insights for the design of WSS and SSS were noted from the results and 

analysis reported in this chapter. First, it was observed that design features such as: contention, 

spectral range, switching dimensions (space and spectrum), port dimension, I/O port dimension 

reconfigurability and spectral granularity determine the resultant performance of WSS and 

SSS. Also, the selection and combination of these design features offer different levels of 

flexibility and performance. Hence, an WSS/SSS can be designed to deliver a set of functions 

or a certain performance. Figure 3.3 showed that the flexibility of a WSS increases with higher 

port cross-connections and spectral range, and Figure 3.5 showed that a WSS without 

contention has a greater amount of flexibility than a WSS with contention due to more efficient 

use of wavelength resources. Hence, if an 𝑁	´	𝑀 WSS design is required to build an optical 

node with high connectivity, flexibility and node degree scalability; the port dimension size, 

spectral range and wavelength contention are important design features to be considered. A 
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high level of port cross-connection and an equilibrium distribution between the number of input 

ports and output ports increases the connectivity and switching flexibility of a WSS, this is 

because multiple network paths between input ports (source) and output ports (destination) can 

established. Also, for node degree scalability, the port dimension of the device is important, 

this is because there must be enough input/output ports provisions for node degree expansion, 

i.e., adding more node degrees to an existing mesh network or expanding the add/drop network 

of an optical node. Furthermore, a WSS without contention improves connectivity of add/drop 

networks of optical nodes as the selection of wavelength resources are not restricted and 

internal wavelength blocking is eliminated.  

Another important design feature for a WSS/SSS design is port dimension reconfigurability 

and spectral granularity. Figure 3.7 showed that a WSS with different steps of port dimension 

reconfigurability offers greater flexibility than a non-configurable WSS. If a WSS design is 

required to manage varying and unpredictable bidirectional traffic flows, port dimension 

reconfigurability is an important design feature because the WSS can adjust is structure to 

respond to the varying traffic. Spectral granularity is another important design feature for a 

WSS/SSS. Figure 3.9 and Figure 3.10 show that an SSS has more flexibility than WSS, this is 

due to spectral granularity of the SSS. Therefore, when designing flexible grid networks, 

spectral granularity is an important design feature because the switching components in the 

network should be able to provide finer spectrum switching flexibility for optical signals of 

variable sizes.  
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4 Bandwidth Variable Transponders and Optical Subsystems 

4.1 Introduction  

In this chapter, the flexibility measurement models of different configurations of optical 

transmitters ranging from single optical carrier to multiple optical carriers with 

fixed/programmable transmission features are derived and proposed. Furthermore, the design 

trade-offs between the flexibility, other KPIs and design features of different BVT 

configurations are evaluated. Next, the flexibility measurement models of different optical 

switching and transmission subsystems are derived and proposed, and the design trade-offs 

between the flexibility, other KPIs and design features of different optical switching and 

transmission subsystems are also evaluated. Numerous significant insights from the results and 

theoretical analysis reported in this chapter are highlighted. All flexibility measurements 

models used to measure the flexibility of BVTs and subsystems in this chapter were 

implemented in MATLAB. The different BVT modules in Table 4.3 and cost model in 

Equation.(4.16) presented in this chapter was contributed by Matthias Gunkel of Deutsche 

Telekom.  

4.2 Flexibility Measurement Models for Bandwidth Variable 

Transponders 

This section examines a variety of transponder configurations which provide different degrees 

of flexibility and performance. Table 4.1 displays an extensive range of optical transponder 

configurations equipped with different functionalities, and Table 4.2 presents the list and 

definition of all parameters used in the derivation of all flexibility measurement models for 

optical transponders. 

Table 4.1: Summary of different transponder configurations 

Transponder 
Configuration Laser Type 

Optical 
Carrier 
Category 

Programmable 
Features 

1 Fixed grid non 
-tunable 

Single 
carrier All parameters are fixed 

2 
 

Fixed grid 
tunable laser 

Single 
carrier 

Modulation formats, Symbol rates, 
and Wavelength channels 
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3 Flexible grid 
tunable laser 

Single 
carrier 

Modulation formats, Symbol rates, 
and Spectral slots 

4 Fixed grid 
tunable laser 

Single 
carrier 

Modulation formats, Symbol rates, 
Wavelength channels, and Electrical 
subcarriers 

5 Flexible grid 
tunable laser 

Single 
carrier 

Modulation formats, Symbol rates, 
Spectral slots, and Electrical 
subcarriers 

6 Fixed grid 
tunable laser 

Multi 
carrier 

Modulation formats, Symbol rates, 
Wavelength channels, and Optical 
carriers 

7 Flexible grid 
tunable laser 

Multi 
carrier 

Modulation formats, Symbol rates, 
Spectral slots, and Optical carriers 

8 Fixed grid 
tunable laser 

Multi 
carrier 

Modulation formats, Symbol rates, 
Wavelength channels, Optical 
carriers, and Electrical subcarriers 

9 Flexible grid 
tunable laser 

Multi 
carrier 

Modulation formats, Symbol rates, 
Spectral slots, Optical carriers, and 
Electrical subcarriers 

Table 4.2: Parameter definition for flexibility measurement models of optical transponders 

Parameter Definition 

𝑁  Number of BVTs in a subsystem  

𝑊 Number of tunable wavelength channels 

𝑘 Spectral granularity factor 

𝑘𝑊 Number of tunable spectral slots 

𝐷 Total number of optical carriers 

𝑢 Number of optical carriers transmitting at the same time 

𝐷 − 𝑢 Number of optical carriers that are off 

𝐵 Number of programmable modulations formats 

𝐸 Number of programmable symbol rates 

𝑟 Number of programmable electrical subcarriers 

Configuration 1: This configuration is the least flexible transmitter design, which is a single 

optical carrier transmitter with fixed capacity, i.e., all parameters are fixed. The transmitter 

consists of a single non-tunable laser, supports one modulation format, and one symbol rate on 

fixed grid networks. This transmitter design provides no channel flexibility as it supports only 

one bitrate. As illustrated in Figure 4.1, this transmitter configuration has only two states, i.e., 
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when the transmitter is transmitting an optical channel and when the transmitter is off (no 

transmission). 

 

Figure 4.1: Possible states of configuration 1. 

The total number of possible states of this transmitter configuration	𝑇 = 2 and the flexibility 

is  

𝐹(𝑆) = log(2) (4.1) 

Configuration 2: This is a single optical carrier transmitter which supports multiple bitrates 

with tunable wavelength channels, i.e., the transmitter can independently be configured to 

different modulation formats, symbol rates and tunable wavelength channels on fixed grid 

networks. This transmitter configuration provides channel flexibility and can adapt to different 

transmission requirements. Assuming that an optical channel can be independently 

programmed to 𝐵 modulation formats, 𝐸 symbol rates, and 𝑊 tunable wavelength channels, 

the total number of possible states is 

𝑇 = 𝐵𝐸𝑊 + 1 (4.2) 

Therefore, the flexibility is  

𝐹(𝑆) = log(𝐵𝐸𝑊 + 1) (4.3) 

Figure 4.2 illustrates the possible states of a fixed grid transmitter with programmable 

modulations formats, programmable symbol rates, and tunable wavelength channels.  

 

Figure 4.2: Possible states of configuration 2. 



 

 51 

It should be noted that the model in Equation.(4.3) can be used to measure the flexibility when 

not all parameters are programmable. For example, a transmitter that supports multiple bitrates 

with programmable modulation formats but at a fixed symbol rate and wavelength channel. In 

this transmitter design, different modulation formats are achievable at a fixed symbol rate and 

wavelength channel, therefore the value of 𝐸 and 𝑊 is one and the total number of possible 

states is 

𝑇 = 𝐵 + 1 (4.4) 

Configuration 3: This configuration is a single carrier optical transmitter which supports 

multiple bitrates on flexible grid networks. This transmitter configuration has similar design 

features to the configuration 2 transmitter. However, the difference is that the fixed grid tunable 

laser is upgraded to a flexible grid tunable laser with finer tuning and spectral granularity. This 

configuration is modelled in a similar way to configuration 2 but with a spectral granularity 

factor of the laser. Suppose, the transmitter can be configured to 𝑘𝑊 spectral slots (over the 

same spectral range with configuration 2), and programmed to 𝐵	modulation formats and 𝐸 

symbol rates. The flexibility is 

𝐹(𝑆) = log(𝐵𝐸𝑘𝑊 + 1) (4.5) 

Configuration 4: This configuration is a single optical carrier transmitter where multiple 

orthogonal electrical subcarriers with different combinations of modulation formats and 

symbol rates can be created in the electrical domain and injected onto an optical carrier on 

fixed grid networks. In addition to channel flexibility, finer bitrate granularity may be realized. 

Suppose 𝑟 electrical subcarriers can be independently configured to 𝐵	modulation formats, 𝐸 

symbol rates, and injected onto any 𝑊	wavelength channels, then the flexibility is  

𝐹(𝑆) = 𝑙𝑜𝑔QCD(𝐵𝐸)4
4

4-!

𝑊H + 1R (4.6) 

Configuration 5: This configuration is a single optical carrier transmitter design similar to 

configuration 4 but in flexible grid networks. This transmitter design provides spectral 

granularity in addition to finer bitrate granularity. Therefore, multiple subcarriers with different 

modulation formats and symbol rates are electrically generated and injected on 𝑘𝑊 tunable 

spectral slots. The flexibility of this configuration is       
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𝐹(𝑆) = 𝑙𝑜𝑔QCD(𝐵𝐸)4
4

4-!

𝑘𝑊H+ 1R (4.7) 

Configuration 6: This is a multicarrier optical transmitter design which supports multiple 

bitrates on fixed grid networks. Figure 4.3 presents a schematic of a sliceable, tunable, 

bandwidth variable yet fixed grid transmitter. 

 

Figure 4.3: Multicarrier optical transmitter. 

This transmitter configuration consists of tunable lasers, modulators, DACs and a DSP unit. 

Different number of optical carriers can be generated and combined to form super channels or 

multiple flows of optical paths of different bandwidths by turning on and turning off carriers, 

which in turn can be transmitted to a single destination or sliced to multiple destination, i.e., 

the transponder is sliceable. Figure 4.4 illustrates some possible states of a 3-optical carrier 

transmitter with programmable features. State-1 shows optical carrier one is active while 

optical carrier 2 and 3 are off. State-2 shows optical carrier 1 and 3 transmitting to form a super 

channel while optical carrier 2 is off. State-T shows optical carrier 1, 2 and 3 transmitting 

optical channels of different bandwidths to form multiple optical flows which are to be sliced 

to different destinations.  
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Figure 4.4: Possible states of a multicarrier optical transmitter. 

Suppose 𝐷 is the number of optical carriers of the transmitter, 𝑢 is the number of optical carriers 

that are transmitted at the same time, and (𝐷 − 𝑢) is the number of optical carriers that are off. 

The different number of possible ways that (𝐷 − 𝑢) can be selected from 𝐷 optical carriers is 

A 5
5'6B. Suppose the different number of possible ways that 𝑢 can be independently reconfigured 

to 𝐵	modulations, 𝐸	symbol rates and 𝑊 tunable wavelength channels is (𝐵𝐸𝑊)6 (note that 

each carrier has the same number of programmable parameters), then the total number of 

possible states of the transmitter for all values of 𝑢 is  

𝑇 = D](𝐵𝐸𝑊)6 F
𝐷

𝐷 − 𝑢G^
5

6-7

 (4.8) 

Thus, the flexibility of this transmitter configuration is 

𝐹(𝑆) = 𝑙𝑜𝑔CD](𝐵𝐸𝑊)6 F
𝐷

𝐷 − 𝑢G^
5

6-.

H		 (4.9) 

It should be noted that the flexibility model for this transmitter design was derived without 

considering wavelength contention between optical carriers.  
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Figure 4.5: Impact of optical carriers and modulation formats on the flexibility of a transmitter. 

To evaluate the impact of transmission features, i.e., optical carriers and modulation formats, 

on the flexibility of a transmitter, Figure 4.5 depicts the measured flexibility of a configuration 

6 optical transmitter across different number of programmable modulation formats and optical 

carriers while other parameters are fixed (all other parameters are equal to one). In can be noted 

that both an increase in the number of programmable modulation formats and the number of 

optical carriers increases the flexibility of the transmitter. However, increasing the number of 

optical carriers has a greater impact on flexibility than increasing the number of programmable 

modulation formats. This is due to the fact that optical carriers provide more flexibility and 

connectivity in transmitter output. Such design features trade-offs are vital for optical 

transmitter design based on transmission requirements.  

Configuration 7: This transmitter configuration is a multicarrier transmitter design equipped 

with flexible grid tunable lasers for flexible grid networks. Modelled in a similar way to 

configuration 6, assuming that each carrier can be independently tuned to 𝑘𝑊	spectral slots, 

𝐵	modulations and 𝐸	symbol rates. The flexibility is  

𝐹(𝑆) = 𝑙𝑜𝑔CD](𝐵𝐸𝑘𝑊)6 F
𝐷

𝐷 − 𝑢G^
5

6-.

H (4.10) 
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Note that the flexibility measurement model for this transmitter design was derived without 

considering spectral slot contention. 

Configuration 8: This transmitter configuration is a multicarrier optical transmitter design 

where electrical subcarriers with different combinations of modulation formats and symbol 

rates can be generated and inserted onto different optical carriers to form super channels or 

multiple optical flows. Modelled in a similar way to configuration 6 but with an addition of 𝑟 

electrical subcarriers. The flexibility of this configuration of transmitter for fixed grid networks 

is 

𝐹(𝑆) = 𝑙𝑜𝑔 QDQCD(𝐵𝐸)4
4

4-!

𝑊H
6

F
𝐷

𝐷 − 𝑢G
R

5

6-.

R (4.11) 

The flexibility measurement model for all the previously presented fixed grid multicarrier 

optical transmitters were derived without considering wavelength contention between carriers. 

A flexibility measurement model to consider such contention is described below. To derive 

this model, the different number of possible ways that different 𝑊 tunable wavelength channels 

can be selected without repetition for 𝑢 optical carriers is calculated by 𝑾!
(𝑾'𝒖)!

. Thus, the 

flexibility of configuration 8 transmitter without wavelength contention is 

𝐹(𝑆) = 𝑙𝑜𝑔QDQCD(𝐵𝐸)4
4

4-!

H
6

𝑊!
(𝑊 − 𝑢)! F

𝐷
𝐷 − 𝑢G

R
5

6-.

R (4.12) 

It should be stated that Equation.(4.12) can only be applied when the number of tunable 

wavelength channels 𝑊 is equal or greater than the number of optical carriers	𝐷 (𝑊 ≥ 𝐷), and 

that Equation.(4.11) and Equation.(4.12) are the generic flexibility measurement models for all 

transmitters configurations on fixed grid networks.  

Configuration 9: This transmitter is similar to configuration 8, however the tunable lasers are 

upgraded to flexible grid tunable lasers with finer spectral tuning granularity. The flexibility is 

𝐹(𝑆) = 𝑙𝑜𝑔QDQCD(𝐵𝐸)4
4

4-!

𝑘𝑊H
6

F
𝐷

𝐷 − 𝑢G
R

5

6-.

R (4.13) 

The flexibility measurement model for all the previously presented flexible grid multicarrier 
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optical transmitters were derived without considering spectral slot contention between carriers. 

Modelled in a similar way to Equation.(4.12), the flexibility of configuration 9 transmitter 

without spectral slot contention is  

𝐹(𝑆) = 𝑙𝑜𝑔 QDQCD(𝐵𝐸)4
4

4-!

H
6

𝑘𝑊!
(𝑘𝑊 − 𝑢)! F

𝐷
𝐷 − 𝑢G

R
5

6-.

R  (4.14) 

It should be stated that this model can only be applied when 𝑘𝑊 tunable spectral slot is equal 

or greater than the number of optical carriers	𝐷 (𝑘𝑊 ≥ 𝐷), and that Equation.(4.13) and 

Equation. (4.14) are the generic flexibility measurement models for all transmitters 

configurations on flexible grid networks. 

4.3 Design Trade-offs of Bandwidth Variable Transponders 

In order to evaluate the design trade-offs between different transmission features and KPIs, a 

comparative evaluation of the design features and KPIs of different BVTs modules presented 

in Table 4.3 which deliver rates between 100 Gb/s and 1 Tb/s is presented.  

Table 4.3 Different BVT Modules 

Module 
name 

Normalized 
cost 

No of 
carriers 

Baud 
rate 
per 
carrier 

Occupied 
bandwidth 
(GHz) 

Reach 
(km) 
 

Line 
Rate 
(Gb/s) 

Modulation 
formats 

CG-
400-1L 9 1 32 37.5 

38 
116 
536 
2714 

400 
300 
200 
100 

DP-256QAM 
DP-64QAM 
DP-16QAM 
DP-QPSK 

CG-
400-2L 11.7 2 32 75 

536 
2714 
5429 

400 
200 
100 

DP-16QAM 
DP-QPSK 
DP-BPSK 

CG-1T-
5L 16.2 5 32 175 

536 
2714 
5429 

1000 
500 
250 

DP-16QAM 
DP-QPSK 
DP-BPSK 

CG-1T-
4L 18.75 4 40 175 

429 
2171 
4343 

1000 
500 
250 

DP-16QAM 
DP-QPSK 
DP-BPSK 

CG-1T-
3L 15 3 36 125 

104 
482 
2443 
4886 

1000 
666.7 
333.3 
166.7 

DP-64QAM 
DP-16QAM 
DP-QPSK 
DP-BPSK 

Figure 4.6(a)-(e) shows a visualization of the possible states and design features of each of 

BVT modules listed in Table 4.3. Each plot illustrates the trade-offs in line rates and lightpath 
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reach as a result of different adaptive transmitter features. Figure 4.6(f) shows a comparison of 

different KPIs (i.e., flexibility, maximum capacity, normalized cost, maximum spectral 

efficiency, connectivity, lightpath reach and through loss) for the various BVT modules 

presented in Table 4.3.  

 

 
Figure 4.6: KPIs and design parameters of the various transponder molules in Table 4.3. (a) 

CG-400-1L. (b) CG-400-2L. (c) CG-1T-5L. (d) CG-1T-4L. (e) CG-1T-3L. (f) KPIs of the 

various trasnponder modules. 

The connectivity of a BVT module is equal to the maximum number of optical carriers the 

BVT module can support. The spectral efficiency is calculated with a channel spacing of 

50GHz. The through loss is calculated with Equation.(4.15), where 𝐿 is equal to the total 

number of optical lasers connected to the optical coupler. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ	𝑙𝑜𝑠𝑠 = −10𝑙𝑜𝑔!. F
1
𝐿G (4.15) 

The normalized cost is scaled with respect to the number of lasers and baud rate as illustrated 
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in Table 4.4. The cost of the CG-400-1L BVT module is used as reference with a normalized 

cost value of 9. 𝑌 is equal to the percentage rise in cost of the number of lasers and 𝑅 is equal 

to the percentage rise in the cost of the baud rate. Hence, Equation.(4.16) is used for calculating 

the normalized cost.   

Table 4.4: Cost Scaling for BVT modules 
No of lasers Reference (%) Baud rate Reference (%) 
1 100 32.0 100 
2 130 35.6 111 
3 150 40 125 
4 167 42.7 133 
5 180  

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑐𝑜𝑠𝑡 = A(𝑌 − 100%) × 9 + (𝑅 − 100%) × 9B + 9 (4.16) 

CG-400G-1L: The CG-400G-1L module is the least expensive transponder module but has the 

lowest connectivity and flexibility when compared to the other BVT modules. This is because 

the module consists of only one optical laser and therefore can transmit only one optical 

channel to a single destination at a particular time. Despite the disadvantages introduced by a 

single optical carrier, the BVT module has no through loss because no optical coupler is needed 

for transmission operations. Furthermore, additional design trade-offs in maximum capacity, 

spectral efficiency and lightpath reach are noted when compared to the CG-400G-2L module. 

The CG-400-1L module provides the same maximum capacity as the CG-400L-2L module but 

with a greater spectral efficiency and a lower lightpath reach. This is due the fact that the CG-

400-1L BVT has the highest spectral efficient programmable modulation format, i.e., 

256QAM, among all the BVT modules.  

CG-400L-2L: The CG-400L-2L is the second least expensive module and it has the second 

lowest flexibility and connectivity. Its low cost, flexibility and connectivity is attributed to the 

fact that it has only two lasers. This module has the same equivalent line rates with the CG-

400-1L module but offers greater flexibility and connectivity because it has more 

programmable optical carriers. However, this comes at a demerit of a higher through loss due 

to the presence of a coupler. As highlighted in Figure 4.5, the number of optical carriers has a 

greater impact on flexibility than the number of programmable modulation formats. Such a 

trade-off is demonstrated between the CG-400L-1L module and the CG-400-2L module. CG-

400G-2L has a higher number of optical carriers than CG-400G-1L but has a lower number of 

programmable modulation format. Therefore, CG-400G-2L demonstrates greater flexibility 
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than CG-400L-1L.  Furthermore, in terms of spectral efficiency, the CG-400G-2L has the 

lowest maximum spectral efficiency among all BVT modules.  

CG-1T-5L: The CG-1T-5L module has the highest flexibility and connectivity which is 

attributed to the fact that the BVT has the highest number of optical lasers. Therefore, it is the 

most flexible transponder module in terms of transmitter output and has the highest number of 

multi-flow optical channel combination. However, the merit in performance introduces a 

demerit of this module demonstrating the highest through loss. The CG-1T-5L module has the 

same line rates and maximum spectral efficiency as the CG-1T-4L module.  

CG-1T-4L: The CG-1T-4L module is the most expensive module and this is due to the fact 

that it consists of 4 lasers and has a higher baud rate compared to all the other modules. From 

this module, it can be observed that the number of optical carriers as well as the DSP and 

electronics are important factors that determine the cost of a BVT module. This module has a 

higher flexibility and connectivity than the CT-1T-3L but with an equivalent maximum 

capacity. 

CG-1T-3L: The CG-1T-3L module ranks in the middle in terms of flexibility, cost and 

connectivity. The CG-1T-3L has the same maximum capacity with CG-1T-5L and CG-1T-4L 

but with a greater maximum spectral efficiency. However, the merit in spectral efficiency 

introduces a drawback of a lower lightpath reach due to the BVT design having a higher 

spectral efficient modulation format which is DP-64QAM. 

Significant insights into design trade-offs between different KPIs and design features for BVTs 

can be gained based on the KPIs and design features of the different transponder modules 

presented in Figure 4.6, and the theoretical analysis and results presented in this chapter. It can 

be observed from Figure 4.6(f) that connectivity scales directly with flexibility, i.e., the 

connectivity of a transponder module increases as the number of optical lasers increases and in 

turn the flexibility of the transponder module also increases. This proportional relationship also 

exists between connectivity and through-loss. This is because the higher the number of lasers 

present in the BVT module, the higher the port count of the optical coupler and in turn the 

higher the through loss. Furthermore, it was observed from Figure 4.6(f) that connectivity and 

flexibility relates directly with cost for the CG-1T-1L, CG-1T-2L and CG-1T-3L only. 

However, for the CG-1T-5L and CG-1T-4L, the CG-1T-5L offers a higher flexibility and 

connectivity than CG-1T-4L but at a lower cost. This is because the CG-1T-5L has a lower 
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baud rate electronic design. Capacity, spectral efficiency and lightpath reach do not 

demonstrate any direct relationship with any KPI. However, design trade-offs are noted when 

a certain performance or a combination of KPIs are required. For instance, if an operator 

requires a BVT module with a high line rate of 1 Tb/s. From Figure 4.6, it is observed that 

three BVT modules CG-1T-3L, CG-1T-4L and CG-1T-5L offer this performance requirement. 

It now depends on the trade-off or other KPIs which are important to the operator. For instance, 

if 1Tb/s is required with a high level of flexibility and connectivity while other KPIs are 

negligible, the CG-1T-5L fits this profile. If cost, through loss and spectral efficiency are 

important factors to deliver 1Tb/s, the CG-1T-3L fits this design requirement because it has 

the lowest cost, lowest through loss and the highest spectral efficiency at a demerit of lower 

lightpath reach. Alternatively, if an operator requires a BVT design with high spectral 

efficiency while other indicators are negligible, the CG-400G-1L fits the profile of this 

performance requirement. This is because it has the most spectral efficient modulation format. 

Also, the analysis described above helps understand the relationship between KPIs and design 

features of BVTs. The different transmitter configurations with various design features 

displayed Table 4.1 can aid network vendors/designers to select/design transmitters based on 

different degrees of flexibility and associated performance. For instance, if a single carrier 

transmitter with the flexible rate in a fixed grid network is required. The transmitter 

configuration will require a single fixed grid non-tunable laser with programmable modulation 

formats or programmable symbol rates or a combination of both depending on the performance 

required (e.g. variable spectral occupancy and spectral efficiency).  

4.4 Flexibility Measurement Models for Optical Transmission and 

Switching Subsystems 

This section presents the flexibility measurement models for optical transmission and 

switching subsystems. Table 4.5 presents the list and definition of all parameters used in the 

derivation of all flexibility models for optical transmission and switching subsystems presented 

in this chapter, and  Figure 4.7 presents different optical subsystems discussed in this chapter. 

Table 4.5: Parameter definitions for the flexibility measurement of optical subsystems. 

Parameter Definition 

𝑁  Number of BVTs in a subsystem/number of input ports on the 
WSS/SSS/MCS 
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𝑀 Number of output ports on the WSS/SSS/MCS 

𝑐 Number of BVTs transmitting at a time/number of active input ports on 
the WSS/SSS/MCS 

(𝑁 − 𝑐) Number of BVTs that are off/number of input ports of the 
WSS/SSS/MCS that are not active 

𝑊 Number of tunable wavelength channels 

𝑘 Spectral granularity factor 

𝑘𝑊 Number of tunable spectral slots 

𝐷 Total number of optical carriers 

𝑢 Number of optical carriers transmitted at the same time 

𝐷 − 𝑢 Number of optical carriers that are off 

𝐵 Number of programmable modulations formats 

𝐸 Number of programmable symbol rates 

𝑟 Number of programmable electrical subcarriers 

𝑎 Number of copies of the same colour of wavelength channel/spectral 
slot that can be passed from 𝑐 active input ports to 𝑀 output ports at the 
same time. 

(𝑐 − 𝑎) Number of copies of the same colour of wavelength channel/spectral 
that are blocked on 𝑐 active input ports 

𝑥 Maximum number of copies of the same colour of wavelength 
channel/spectral slot that can be passed from 𝑐 active input ports to 𝑀 
output ports at the same time. 

𝑖 Number of active input ports on the MCS that are unblocked 

(𝑐 − 𝑖) Number of active input ports on the MCS that are blocked.  
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Figure 4.7: Different optical transmission and switching subsystems. 

4.4.1 𝑵 BVTs + 𝑵	´	𝑴	WSS 

BVTs only offers channel flexibility. Nevertheless, when a BVT is combined with an 𝑁	´	𝑀 

WSS to form a subsystem, spectrum and space switching flexibility is achieved in addition to 

channel flexibility. Figure 4.7(a) illustrates a subsystem which consist of 𝑁 BVTs combined 

with an 𝑁	´	𝑀 WSS. Each BVT is a flexible multi-carrier transmitter with programmable 

features for fixed grid networks. Thus, a single or multiple flows optical channels of 

different/same bandwidth can be fed into the input ports of the WSS which can either be 

blocked or switched to the same or different output ports. This subsystem design has 

application in data centres networks, and provides CDC functionality for ROADMs provided 

the lasers are tunable and the WSS design is without wavelength contention. To obtain the 

flexibility, the following assumptions are made: the subsystem is considered as a single system, 

each transponder is a multicarrier BVT with programmable features, the 𝑁 number of BVTs 

are synchronized (i.e., if more than one BVT is transmitting, the same number of carriers and 

the same colours of wavelength channels are transmitted at the same time across all 

transmitting BVTs), and finally, the 𝑁	´	𝑀 WSS is without contention. The  steps mentioned 

below show the derivation process to obtain the flexibility measurement model.  

Ø Suppose 𝑐 is the number of BVTs transmitting at the same time and the number of active 

input ports on the 𝑁	´	𝑀 WSS (i.e., if two BVT are transmitting, two of the 𝑁 input ports 

of the WSS are active), and (𝑁 − 𝑐) is the number of BVTs that are off and the number of 

input ports of the WSS that are inactive. The different number of ways (𝑁 − 𝑐) can be 

chosen from	𝑁 is  
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F
𝑁

𝑁 − 𝑐G (4.17) 

Ø Suppose 𝐷 is the number of optical carriers on each of the active BVTs, 𝑢 is the number of 

optical carriers that are transmitted at the same time, and (𝐷 − 𝑢) is the number of optical 

carriers that are off. The different number of possible ways that (𝐷 − 𝑢) can selected from 

𝐷 optical carriers is 

F
𝐷

𝐷 − 𝑢G (4.18) 

Ø For 𝑐 active BVTs, suppose 𝑟 is the number of electrical subcarriers, 𝐵 is the number of 

programmable modulation formats, 𝐸	is the number of programmable symbol rates, and 𝑊 

is the number of tunable wavelength channels. The different number of ways that 𝑟 

electrical carriers can be independently configured to 𝐵	modulations, 𝐸	symbol rates, and 

injected unto 𝑢 optical carriers with different wavelength channels is 

CCD(𝐵𝐸)4
4

:-!

H
;

H

6
𝑊!

(𝑊 − 𝑢)! 
(4.19) 

Ø For the 𝑐 active ports on the 𝑁	´	𝑀 WSS, suppose 𝑎 is number of copies of the same colour 

of wavelength channels that can be passed from 𝑐 active input ports to 𝑀	output ports at 

the same time, (𝑐 − 𝑎) is the number of copies of the same colour of wavelength channels 

that are blocked on 𝑐 active input ports, and 𝑥 is the maximum number of copies of the 

same colour of wavelength channels that can be passed from 𝑐 active input ports to 𝑀 

output ports at the same time. The different number of ways that (𝑐 − 𝑎) can be chosen 

from 𝑐 active input ports is A ;
;'$B, and the number of different ways that 𝑎 can be switched 

to 𝑀 output ports without wavelength collisions is (!
(('$)!

. Thus, for all possible values of 

𝑎, the number of possible states is  

QD
𝑀!

(𝑀 − 𝑎)!

,

$-.

j
𝑐

𝑐 − 𝑎k
R (4.20) 

 



 

 64 

Combining Equation.(4.17), Equation.(4.18), Equation.(4.19) and Equation.(4.20), and 

summing all possible values of 𝑐, 𝑢 and when the subsystem is off, the flexibility of the 

subsystem is  

 

𝐹(𝑆) = 𝑙𝑜𝑔

⎝

⎜
⎜
⎜
⎛
D

⎝

⎜
⎜
⎜
⎛DCCD(𝐵𝐸)4

4

4-!

H
;

H

6
𝑊!

(𝑊 − 𝑢)! F
𝐷

𝐷 − 𝑢G
5

6-!

×			QD
𝑀!

(𝑀 − 𝑎)!

,

$-.

j
𝑐

𝑐 − 𝑎k
R

6

F
𝑁

𝑁 − 𝑐G
⎠

⎟
⎟
⎟
⎞
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&

;-!

⎠

⎟
⎟
⎟
⎞

   (4.21) 

                                   𝑊	 ≥ 𝐷	𝑎𝑛𝑑	𝑖𝑓	𝑐 ≤ 𝑁	𝑥 = 𝑐, 𝑒𝑙𝑠𝑒𝑖𝑓	𝑐 > 𝑀, 𝑥 = 𝑀  

This model can be used to measure any configuration of the 𝑁 BVTs + 𝑁	´	𝑀 WSS. Note that 

Equation.  (4.21) can only be applied when the number of tunable wavelength channels 𝑊 is 

equal or greater than the number of optical carriers	𝐷 (𝑊 ≥ 𝐷). In addition, when 𝑐 ≤ 𝑀, 𝑥 =

𝑐, this is because the maximum number of wavelength channels of the same colour that can be 

successfully passed at the same time from 𝑐 active input ports to 𝑀 output ports without 

wavelength collisions at 𝑀 output ports is 𝑐. Otherwise, when 𝑐 > 𝑀, 𝑥 = 𝑀, this is because 

the maximum of number of wavelength channels of the same colour that can be successfully 

passed at the same time from 𝑐 active input ports to 𝑀 output ports without wavelength 

collisions at 𝑀 output ports is 𝑀. 

4.4.2 𝑵 BVTs + 𝑵	´	𝑴 Multicast switch 

Figure 4.7(b) illustrates the 𝑁 BVTs + 𝑁	´	𝑀 MCS subsystem design. Each BVT is a flexible 

multi-carrier transmitter and therefore provides channel flexibility for fixed grid networks. 

Because the MCS does not provide filtering functions, this subsystem provides only space 

switching and channel flexibility. Therefore, super channels or multiple channel flows 

generated from a BVT can only be switched to one output port and cannot be sliced across 

different output ports therefore providing low connectivity. This subsystem design provides 

CDC functionalities in ROADMs. The flexibility of this subsystem is modelled in a similar 

way to the 𝑁 BVTs + 𝑁	´	𝑀 WSS but without spectrum switching flexibility. The definition 

of parameters for the BVT is the same as the parameters of the BVT described in the 𝑁 BVTs 

+ 𝑁	´	𝑀 WSS subsystem. However, for the MCS, 𝑐	indicates the number of input ports that 

are active, 𝑖 indicates the number of active input ports that are unblocked (i.e., allow optical 
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channels to pass at a time), and (𝑐 − 𝑖) is equal to the number of active input ports that are 

blocked. Thus, flexibility of the subsystem is      

𝐹(𝑆) = 𝑙𝑜𝑔
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                                  	𝑊	 ≥ 𝐷	𝑎𝑛𝑑	𝑖𝑓	𝑐 ≤ 𝑁	𝑥 = 𝑐, 𝑒𝑙𝑠𝑒𝑖𝑓	𝑐 > 𝑀, 𝑥 = 𝑀  

4.4.3 𝑵	BVTs + 𝑵	´	𝑴 SSS 

Figure 4.7(c) illustrates the 𝑁 BVTs + 𝑁	´	𝑀 SSS subsystem design. The BVTs are flexible 

multi-carrier transmitters equipped with tunable lasers with finer tuning spectral granularity for 

flexible grid networks. This subsystem provides channel flexibility, space switching flexibility 

and spectrum switching flexibility with a finer spectral granularity when compared to the 𝑁 

BVTs + 𝑁	´	𝑀 WSS subsystem. This subsystem design is vital for EONs and realization of 

flexible grid ROADM with CDC features. The flexibility of this subsystem is derived in a 

similar way to the 𝑁	BVTs + 𝑁	´	𝑀 WSS subsystem, the only difference is the finer spectral 

granularity of the BVTs and SSS. Suppose the spectral granularity factor is 𝑘 and a single or 

multiple flows optical spectral slots can be fed from the BVT into the SSS, and can be blocked 

or switched by the SSS to the same or different output ports. The flexibility of the subsystem 

is  

𝐹(𝑆) = 𝑙𝑜𝑔
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                                   𝑘𝑊 ≥ 𝐷	𝑎𝑛𝑑	𝑖𝑓	𝑐 ≤ 𝑁	𝑥 = 𝑐, 𝑒𝑙𝑠𝑒𝑖𝑓𝑐 > 𝑀, 𝑥 = 𝑀	  

4.5 Design Trade-offs of Optical Transmission and Switching Subsystems  

To evaluate the impact of varying the number of optical carriers of BVTs on the flexibility of 

different subsystems, Figure 4.8 depicts the measured flexibility of the 4 BVTs + 4 × 16 WSS, 

4 BVTs + 4 × 16 MCS and 4 BVTs + 4 × 16 SSS under the same design conditions and across 
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different number optical carriers per BVT. The flexibility is measured by varying the different 

number of optical carriers while other parameters are kept constant (𝐵 = 5, 𝐸 = 5	𝑎𝑛𝑑	𝑊 =

30). From Figure 4.8, it is noted that increasing the optical carriers has the greatest impact on 

the flexibility of the 4 BVTs + 4 × 16 SSS compared to the other subsystems due to finer 

spectral granularity of the SSS and BVTs. Furthermore, the increase in the number of optical 

carriers has a greater impact on the flexibility of the 4 BVTs + 4 × 16 WSS than the 4 BVTs + 

4 × 16 MCS. This is attributed to the fact that the 4 BVTs + 4 × 16 WSS provides space and 

spectrum switching functions, i.e., slicing of optical channels across different output ports 

while the 4 BVTs + 4 × 16 MCS only provides space switching functions.  

 

Figure 4.8: Comparison of the flexibility of 4 × 16 WSS/MSC/SSS across different numbers 

of optical carriers per BVT. 

To evaluate the impact of varying the number of modulation formats of BVTs on the flexibility 

of different subsystems, Figure 4.9 shows the measured flexibility between the 4 BVTs + 4 × 

16 WSS, 4 BVTs + 4 × 16 MCS and 4 BVTs + 4 × 16 SSS under the same design conditions 

and across different numbers of programmable modulations while other parameters are kept 

constant	(𝐸 = 5,𝐷 = 10	𝑎𝑛𝑑	𝑊 = 30).	It is observed that there is a general increase in the 

flexibility of all the subsystems as the number of modulation formats increases. In more detail, 

the 4 BVTs + 4 × 16 SSS demonstrates the highest flexibility due to the spectral granularity of 

the SSS. The 4 BVTs + 4 × 16 WSS ranks second in flexibility and demonstrates a higher 
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flexibility than the 4 BVTs + 4 × 16 MCS because the WSS provides space and spectrum 

switching flexibility while the MCS supports only provides space switching flexibility. 

Furthermore, it is observed that the flexibility has a constant impact on all subsystems as the 

difference in flexibility between the subsystems remain constant as the number of modulation 

formats increases. It is also noted in Figure 4.9, that the pace of increase in flexibility reduces 

as the number of programmable modulation formats increases. Thus, comparing Figure 4.8 and 

Figure 4.9, it can be observed that for all subsystems, increasing the number of optical carriers 

has a greater impact on the pace of increase in flexibility than increasing the number of 

programmable modulation format. 

 

Figure 4.9: Comparison of the flexibility of 4 × 16 WSS/MSC/SSS across different numbers 

of programmable modulation formats. 

In order to evaluate the design trade-off between the different subsystems described in the 

previous section, Table 4.6 presents different design configurations of optical transmission and 

switching subsystems while Figure 4.10 displays measured flexibility and other KPIs of each 

of the subsystems. The fibre connectivity of the subsystem is the number of output ports which 

can be connected to different fibres, and the optical carrier connectivity is the number of optical 

carriers in each BVT that can be sliced to different destinations. The maximum capacity is 

calculated with Equation.(4.24) where 𝑀𝑎𝑥𝑂𝐶 is the total number of optical carriers in a BVT, 
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𝑆𝑅#$,  is equal to the maximum achievable symbol rate, and 𝑆𝑀#$, is equal to the modulation 

format with the highest number of bits per symbol.  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑀𝑎𝑥𝑂𝐶		´	𝑆𝑅#$, 	´	𝑙𝑜𝑔"(𝑆𝑀#$,)	 (4.24) 

The minimum granularity is the lowest achievable bitrate and is calculated with 

Equation.(4.25), where 𝑀𝑖𝑛𝑂𝐶 is equal to 1 (i.e., 1 optical carrier), 𝑆𝑅#<=  is equal to the 

minimum achievable symbol rate, and 𝑆𝑀#<= is equal to the modulation format with the lowest 

number of bits per symbol. 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑀𝑖𝑛𝑂𝐶		´	𝑆𝑅#<=	´	𝑙𝑜𝑔"(𝑆𝑀#<=)	 (4.25) 

Table 4.6: Different subsystem configurations 
Subsystem 
Config 

No of  
carriers 
per BVT 

Wavelength 
channels/ 
Spectral slots 

Modulation  
formats 

Symbol  
Rates 
(Gbaud) 

Maximum 
Bitrate per  
(Gb/s) 

Maximum 
Spectral  
efficiency 

Minimum 
Granularity 
(Gb/s) 

8 BVT + 
8 ´12 WSS 

8 80 BPSK, 
QPSK, 
16QAM, 
32QAM, 
64QAM 

30 1440 3.6 30 

8 BVT + 
8 ´ 24 MCS 

10 80 BPSK, 
QPSK, 
16QAM, 
32QAM, 
64QAM 

14,18, 
22, 26, 
30 

1800 3.6 14 

4 BVT +  
4 ´ 16 SSS 

10 160(slots) QPSK,  
64QAM 

14,18, 
22, 26, 
30 

1800 4.8 28 

*Required bandwidth for each optical channel is equal to symbol rate + 5GHz guard band 
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Figure 4.10: KPIs for the different subsystem configurations in Table 4.6. 

The following observation in design trade-offs between KPIs of the different subsystems can 

be noted from Figure 4.10. First, it can be observed that the subsystem 4 BVTs + 4 ´ 16 SSS 

provides the lowest flexibility and has an equivalent maximum capacity to the 8 BVTs + 8 ´ 

24 MCS, but at a higher spectral efficiency due to improved spectrum utilizations with a 

spectral slot slice of 12.5GHz. Secondly, the 8 BVTs + 8 ´ 24 MCS has the highest flexibility 

and fibre connectivity, however, it has the lowest optical carrier connectivity due to the fact 

that the MCS only provides space switching functions and cannot independently slice optical 

channels to different output ports. Finally, the 8 BVTs + 8 ´ 12 WSS has the second highest 

flexibility and has a higher optical carrier connectivity than 8 BVTs + 8 ´ 24 MCS but with a 

lower fibre connectivity. The evaluated design trade-offs highlight the relationship between 

multiple levels of flexibility and associated KPIs of different subsystem, and provides an 

insight into the selection of different combinations of optical components to build subsystems 

with different functionalities. For instance, in a scenario where a subsystem with high fibre 

connectivity, flexible channels, flexible rate and low optical carrier connectivity is required. 

For this scenario, the BVT design should contain tunable fixed grid lasers and programmable 

transmitter features. For the switching component, since optical carrier connectivity is 

negligible, an acceptable port configuration of MCS which supports only space switching 
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functions maybe used to build the subsystem as slicing of optical carriers to different 

destinations is not required. 

4.6 Chapter Conclusion  

This chapter presented models to measure the flexibility of a range of BVT configurations with 

programmable transmission features and different optical transmission and switching 

subsystems. The flexibility of different BVT modules were measured and compared with other 

measurable KPIs and design features. A comparative evaluation of results and theoretical 

analysis of various BVT modules showed that flexibility, connectivity and through loss have a 

proportional relationship, while no direct correlation between flexibility, capacity, spectral 

efficiency, cost and lightpath reach was noted. Also, results show that for BVTs, varying the 

number of optical carriers has a greater impact of flexibility than varying the number of 

programmable modulation formats. The flexibility of different optical transmission and 

switching subsystems under the same/different design conditions were also measured. Results 

showed under the same design condition, the BVTs and SSS subsystem demonstrated the 

highest flexibility, the BVTs and WSS subsystem ranks second, while the BVTs and MCS 

subsystem demonstrated the lowest flexibility. However, the case is not the same for the 

subsystems under different design conditions. Results showed that the combination of optical 

components with different design features can build subsystems which offer different levels of 

flexibility and functionalities.   
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5 Reconfigurable and Conventional Hybrid Disaggregated Data 

Centres 

5.1 Introduction 

In this chapter, the design features of the dRedBox architecture, conventional hybrid 

disaggregated DC architectures, and different arrangement approaches for disaggregated 

resource pools are illustrated and described. Furthermore, an illustration and description of the 

implementation of VM network requests across the various hybrid disaggregated DC 

architectures is presented. Finally, the structure and working principle of algorithms and 

network strategies to select EPS/OCS services, create multilayer custom topologies, and 

allocate network resources to build VM network requests on the various disaggregated DC 

architectures are presented. 

5.2 Features of Hybrid Disaggregated Data Centre Architectures 

This section introduces the various hybrid disaggregated DCs which are examined in this 

thesis. A cluster of dRedBox DC architecture is displayed in Figure 5.1(a). Each tray is 

composed of CPU bricks which hosts an MPSOC that embeds multiple cores, and memory 

bricks. Both the CPU and memory bricks are embedded with a hybrid and programmable 

electronic packet/circuit switch and optoelectronic mid-board with optical transceivers. The 

hybrid and programmable electronic packet/circuit switch can dynamically deploy electronic 

packet or circuit switching services to any I/O ports to handle different networking 

requirements. This allows for programmable ratios of packet to circuit switched services at 

runtime. The edge of tray (EoT), ToR, and top of cluster (ToC) are a hierarchical layer of 

optical circuit switches which provide tray, rack, and cluster level optical networking. Figure 

5.1(b) and Figure 5.1(c) present conventional hybrid EPS/OCS architectures that have a fixed 

ratio of packet to circuit services. Figure 5.1(b) presents a cluster of 1-Tier hybrid 

disaggregated DC (1-Tier-H) architecture, and Figure 5.1(c) presents a cluster of 3-Tier hybrid 

disaggregated DC (3-Tier-H) architecture. The 1-Tier-H tray is composed of CPU bricks which 

hosts MPSOC that embed multiple CPU cores and memory bricks. Both CPU and memory 

bricks are embedded with optoelectronic mid-boards with optical transceivers and do not have 

any programmable electronic packet/circuit switches. EPS is carried out on dedicated EoT 

electronic packet switches, and the network outside tray is supported by an optical network. 
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The 3-Tier-H tray is similar to the 1-Tier-H tray. However, EPS is supported by dedicated ports 

on all network tiers (EoT, ToR, and ToC), while the remaining ports are supported by an optical 

network with a hierarchical layer of optical circuit switches (EoT, ToR, and ToC) that provide 

optical networking.   

 

Figure 5.1: Hybrid disaggregated data centre architectures. (a) dRedBox. (b) 1-Tier-H. (c) 3-

Tier-H. 

Different configurations of the presented DC architectures can be achieved by varying the 

numbers of EoTs per tray, ports/transceivers per brick, trays in a rack, port configurations of 

optical switches, and the arrangement of CPU and memory brick resource pools. There are 

three different arrangement approaches for disaggregated resource pools in DCs which include: 

heterogeneous racks with stacks of heterogeneous trays category (RDC-1), heterogeneous 

racks with stacks of homogeneous trays category (RDC-2), and homogeneous racks with stacks 

of homogeneous trays category (RDC-3). A heterogeneous tray has both CPU bricks and 

memory bricks embedded on the same tray while a homogenous tray has CPU only or memory 

only bricks embedded on a single tray. The RDC-1 is illustrated in Figure 5.1, it can be 
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observed that each rack contains stacks of heterogeneous trays. In the RDC-2, each rack 

consists of a mixture of CPU only trays and memory only trays. The concept of the RDC-2 is 

illustrated in Figure 5.2. 

 

Figure 5.2: Heterogeneous racks with stacks of homogeneous trays. 

In the RDC-3, each rack houses only one single resource type, i.e., each rack consists of stacks 

of either CPU only trays or memory only trays. The concept of the RDC-3 is illustrated in 

Figure 5.3. 

 

Figure 5.3: Homogeneous racks with stacks of homogeneous trays. 
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5.3 Implementation of VM network requests in Hybrid Disaggregated 

Data Centres 

To understand the working principle of the previously described DC architectures, some 

examples of building VM network requests on the disaggregated DC architectures are 

highlighted. In this thesis, it is assumed that the IT resource requirements for VMs have already 

been allocated, and the requests considered are network requests to build VMs on 

disaggregated resources (and not associated with the network bandwidth requests between 

VMs or a VM and the cloud or user). Figure 5.4(a) and Figure 5.4(b) present two VM network 

request matrices that are to be deployed in the dRedBox and conventional tray architectures 

displayed in Figure 5.1. The transceivers embedded on the bricks and electronic packet 

switches are 10G transceivers, and all the links in the DC network are bidirectional and support 

a capacity of 10Gb/s in each direction. The rows and columns of the VM network request 

matrices in Figure 5.4 represents the CPU bricks and memory bricks, respectively. Each 

element in the matrix represents the required bandwidth for a single directional network link 

to be established between a CPU brick and memory brick (i.e., the total bandwidth requirement 

for a complete roundtrip communication between a CPU and memory brick is 2 ´ the 

bandwidth requirement of a single directional transaction). The VM network request 1 in 

Figure 5.4(a) indicates that CPU brick 1 requires network links to memory brick 2 and memory 

brick 4 with bandwidth requirements of 3 Gb/s and 2 Gb/s, respectively, and CPU brick 3 

requires network links to memory brick 2 and memory brick 4 with bandwidth requirements 

of 3 Gb/s and 1 Gb/s, respectively. The VM network requests can be served using an EPS 

logical/virtual topology, an OCS logical/virtual topology or a combination of both. Building 

an EPS logical/virtual topology and serving the VM network request using EPS over OCS 

services is highly desirable due the statistical multiplexing features that EPS technology 

provides. This in turn leads to the best utilization of network and IT resources. However, care 

should be taken to limit its use due to latency overhead. 
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Figure 5.4: VM network request matrices. 

Figure 5.5 displays EPS/OCS service allocation scenarios for deploying VM network request 

1 and VM network request 2 on the dRedBox tray and the conventional tray architecture. It is 

assumed that VM network request 1 arrives before VM network request 2, and the resources 

attached to VM network request 1 are still in use when VM network request 2 arrives. For both 

scenarios, each brick on the dRedBox and conventional tray supports four I/O ports, i.e., four 

transceivers. Figure 5.5(a) illustrates the implementation of VM network request 1. When the 

bandwidth requirements between CPU and memory bricks of a VM network request are low 

(for example between 1 to 5 Gb/s), and each of the CPU bricks require network links to the 

same set of memory bricks, the multiple required network links can share network resources 

through statistical multiplexing, and an EPS virtual/logical topology can be built to implement 

the VM network request. Since VM network request 1 has low bandwidth requirements 

between CPU and memory bricks, and CPU bricks 1 and 3 require network links to memory 

bricks 2 and 4, an EPS virtual/logical topology is built, and EPS over OCS services are selected 

to implement VM network request 1 on the dRedBox and conventional tray architecture 

(details on the strategies for selecting EPS/OCS services are discussed in section 5.4.2). In the 

dRedBox tray, CPU brick 1 is configured as an electronic packet switch to perform statistical 

multiplexing of flows from CPU brick 1 and 3 to memory brick 2 and 4, while in the 

conventional tray architecture, the statistical multiplexing of flows from CPU brick 1 and 3 to 

memory brick 2 and 4 occurs in the EoT electronic packet switch. 
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Figure 5.5: Deployment of VM network request using EPS/OCS services. 

Comparing the two tray architectures in scenario 1 (Figure 5.5(a)), the dRedBox architecture 

(Figure 5.5(a) left) uses six brick I/O ports attached to six transceivers and twelve optical switch 

ports to implement the VM network request, whereas the conventional tray architecture (Figure 

5.5(a) right) uses four brick I/O ports attached to four transceivers and eight electronic switch 

ports attached to four transceivers (i.e., the conventional tray architecture uses a total of eight 

transceivers). In terms of the number of transceivers, the dRedBox architecture offers 

transceiver savings when compared to the conventional architecture. In terms of the number of 

switch (network) ports and brick I/O ports, the dRedBox architecture uses more switch ports 
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and brick I/O ports than the conventional architecture. However, the dRedBox architecture is 

more cost-effective because network transmission is carried out over an optical switch unlike 

the conventional architecture, which uses a power-hungry electronic packet switch. Also, the 

dRedBox architecture also has the advantage of network function programmability and can 

deploy packet/circuit service to any of the I/O ports. Thus, either brick 1, 2, 3, or 4 can be 

configured to perform statistical multiplexing functions to merge flows from CPU brick 1 and 

CPU brick 3 to memory brick 2 and memory brick 4. 

Figure 5.5(b) illustrates the implementation of VM network request 2. The bandwidth 

requirements between CPU and memory bricks for VM network request 2 are high (between 6 

to 10 Gb/s), and multiple links cannot share network resources. Therefore, an OCS 

virtual/logical topology is built, and OCS services are selected to implement VM network 

request 2. In the dRedBox architecture, a point to point link between each pair of CPU brick 

and memory brick is established. Thus, three I/O ports in CPU bricks 3 and 5 and two I/O ports 

in memory bricks 2, 4 and 6 are selected, and the network optical switches are configured to 

implement the VM network request. In the conventional tray architecture, the VM network 

request 2 is either blocked due to unavailable I/O ports on the CPU bricks to support OCS or 

accepted but will have to use EPS resources unnecessarily. 

5.4  Simulator Structure and Working Principle of the Proposed 

Algorithms 

A simulator in MATLAB consisting of several algorithms was developed to investigate the 

performance of networking strategies and network switching services to deploy VM network 

requests on the dRedBox, 1-Tier-H and 3-Tier-H architectures. The simulator builds custom 

multi-layer virtual/logical topologies and allocates network resources at run-time to serve the 

VM network requests. The simulator is divided into three different stages as illustrated in 

Figure 5.6. The operations of the three different stages are consolidated in algorithm 1, and 

Table 5.1 displays the symbols and description for algorithm 1. In addition, the MATLAB 

function files in [117]–[120] from the MATLAB exchange file were used/modified in some 

sub-sections of the simulator.  
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Figure 5.6: Simplified framework for simulator. 

Table 5.1: Symbols and description for algorithm 1 

Symbol Description 

𝐺(𝑁, 𝐸) Graph representing a transparent DC network topology where 𝑁 is the 
set of network nodes (Bricks, EoTs, ToRs and ToCs), and 𝐸 is the set 
of physical links. 

𝑅 Set of sets where each set 𝑅< represents a VM network request to be 
deployed in the DC network.  

𝑁>x
?0@ Set of CPU bricks in 𝑅<. 

𝑁>x
(A(

 Set of memory bricks in 𝑅<. 

𝐵 VM network request matrix where each element is a bandwidth 
requirement for a network link between a CPU brick in 𝑁>x

?0@ and a 
memory brick in 𝑁>x

(A(. The rows and columns of the VM network 
request matrix represents the CPU bricks and memory bricks 
respectively. 

𝑃 Set of subsets where each subset 𝑃< is a unique set or multiset of two 
elements and represents a possible way that different numbers CPU 
and memory bricks in a VM network request can be paired to build 
EPS virtual/logical topologies. The first element 𝑝<,! and second 
element 𝑝<," of each subset represents the number of CPU bricks and 
memory bricks, respectively. 

𝐶 Set of subsets where each subset 𝐶< contains a possible combination of 
the CPU bricks from 𝑁>x

?0@, and each element 𝑐<,B  represents the 𝑗CD  
CPU brick in 𝐶<. 
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𝐶𝑀 Set of memory bricks where element represents a memory brick which 
requires a network link from all the CPU bricks in 𝐶<. 

𝑀 Set of subsets where each subset 𝑀< contains a possible combination 
of the memory bricks from 𝐶𝑀, and each element 𝑚<,B represents the  
𝑗CD  memory brick in 𝑀< 

𝑉 A set which is the union all elements in 𝐶< and 𝑀<. 

𝑇𝑋𝑐𝑎𝑝 Capacity of a transceiver. 

𝑡𝑏;x,|  Sum of required bandwidth of network links from a CPU brick in 𝐶< to 
all memory bricks in 𝑀<. 

𝑡𝑏#x,|  Sum of required bandwidth of network links from all CPU bricks in 𝐶< 
to a memory brick in 𝑀<. 

𝑥;x,| Equals 1 if  𝑡𝑏;x,| ≤ 𝑇𝑋𝑐𝑎𝑝, otherwise equals 0. 

𝑥#x,| Equals 1 if 𝑡𝑏#x,| ≤ 𝑇𝑋𝑐𝑎𝑝 , otherwise equals 0. 

𝐾 Set which contains candidate bricks or electronic packet switches 
which can be used to build EPS virtual/logical topologies. 

𝐿 Number of bricks or electronic packet switches in 𝐾. 

𝑇𝐷𝐵 Database for EPS virtual/logical topologies.  

𝑂𝑇 Set which contains the remaining network links in 𝐵 that have not been 
used to create an EPS virtual/logical topology. 

𝑍 Set of sets where each subset 𝑍: represents a created topology for the 
VM network request 𝑅<, and element 𝑧:,E represents the 𝑑CD link in 𝑍:. 

𝑁𝑍 Number of generated topologies in 𝑍. 

𝑓F� Number of links to established in 𝑍:. 

𝑏G�,� Required bandwidth for a link 𝑧:,E. 

𝑒𝑏G�,�  Bandwidth in an existing network path for link 𝑧:,E. 

ℎG�,� Equals to 1 if resources are available for link 𝑧:,E, otherwise equals 0. 
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5.4.1 Simulator Inputs 

The task achieved in the first stage of the algorithm is the generation of the simulator inputs 

and resource databases. Line-1 of the pseudocode (Algorithm 1) presents the simulator inputs 

which include: 𝐺(𝑁,𝐸), 𝑅 and 𝑃. In particular, 𝑃 is a set of subsets, where each subset 𝑃H is a 

unique set or multiset of two elements which contains a possible way that different numbers of 

CPU and memory bricks in a VM network request can be paired to build EPS virtual/logical 

topologies. The first element 𝑝<,! and second element 𝑝<," of each subset represents the number 

of CPU bricks and memory bricks respectively. An example of the set 𝑃 is illustrated in Figure 

5.7. Assuming that the number of CPU bricks and memory bricks that can be allocated to a 

VM network request is between 2 to 4, 𝑃 is generated with two steps. In the first step, the 

permutation with repetition of two-elements subsets from the set {2,3,4} is calculated. The set 

{2,3,4} is the range between the lowest number of CPU or memory bricks to the highest 

number of CPU or memory bricks that can be allocated in a VM network request which in this 

example is 2 and 4. In the second step, the generated two-elements subsets are sorted and 

rearranged starting from the subset with the elements that have the highest product to the subset 

with elements that have the lowest product. This is because building EPS virtual/logical 

topologies with higher number of CPU and memory brick combinations is beneficial, i.e., the 

higher the number of CPU and memory bricks that are paired to build EPS virtual/logical 

topologies, the more the number of network links in a VM network request can share network 

resources. This in turn leads to conservation of network resources for future use.  

 

 
Figure 5.7: The set 𝑃. 
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Algorithm 1 

1: Inputs: 𝐺 = (𝑁, 𝐸), 𝑅, 𝑃 

2: for each VM network request in 𝑅 

3:     Generate 𝑁>x
?0@, 𝑁>x

(A(, 𝐵 

4:     for each subset of P 

5:       Calculate  𝐶 = j&�x
���

Ix,�
k 

6:       if  𝐶 ≠ ∅ 

7:          for each subset in 𝐶 

8:            Find 𝐶𝑀 

9:            if the cardinality of 𝐶𝑀 ≥ 𝑝<," 

10:                Calculate  𝑀 = j?(Ix,�k 

11:                for each subset in 𝑀 

12:                    if   𝑀< ≠ ∅  

13:                       for each CPU brick in 𝐶< 
14:                            Calculate 𝑡𝑏;x,|  

15:                                if 𝑡𝑏;x,| ≤ 𝑇𝑋𝑐𝑎𝑝 

16:                                   𝑥;x,| = 1 

17:                                else if 

18:                                   𝑥;x,| = 0    

19:                                end if 

20:                        end for      

21:                       if ∑ 𝑥;x,| =;x,|	∈	?x  𝑝<,!                                                

22:                        for each memory brick in 𝑀< 

23:                            Calculate 𝑡𝑏#x,|  

24:                                if 𝑡𝑏#x,| ≤ 𝑇𝑋𝑐𝑎𝑝 

25:                                    𝑥#x,| = 1 

26:                                else if 

27:                                    𝑥#x,| = 0    

28:                                end if 

29:                        end for      

30:                       if ∑ 𝑥#x,| =#x,|	∈	(x  𝑝<," 

31:                                  𝑉 = 𝐶< ∪𝑀< 
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32:                                  Run EPS placement strategy algorithm 

33:                                  Return Output: 𝐾 

34:                                  for each brick or electronic packet switch in 𝐾 

35:                                       Build EPS virtual/logical topology and store in 𝑇𝐷𝐵 

36:                                       Update 𝐵 

37:                                 end for   

38:                          end if 
39:                    end if 

40:                  end if 
41:                end for 

42:          end if 
43:        end for 

44:     end if 
45:   end for 

46:   if T𝐷𝐵 is empty 

47:      Store VM network request as an OCS virtual/logical topology in 𝑍 

48:   else if 𝑇𝐷𝐵 is not empty 

49:      Compute 𝑂𝑇 

50:        if  𝑂𝑇 = ∅ 

51:         Store EPS virtual/logical topologies in 𝑍 

52:      else if  𝑂𝑇 ≠ ∅ 

53:         Combine 𝑂𝑇 with all created EPS virtual/logical topologies in 𝑇𝐷𝐵	and     

              store in 𝑍 

54:      end if 

55:   end if 

56:   for 𝑠 = 1:𝑁𝑍 (for each topology in 𝑍)   

57:      for each link in the selected topology 

58:         ℎG�,� = 0 

59:         find already established paths 

60:         if established paths exist 
61:                    for each established path 

62:                       if   𝑏G�,� + 𝑒𝑏G�,� 	≤ 𝑇𝑋𝑐𝑎𝑝 

63:                            ℎG�,� = 1 

64:                            break  
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65:                       end if 

66:                   end for 

67:         else if established path does not exist & ℎG�,� = 0 

68:               Find least congested path   

69:               if resources are available on the found path 

70:                    ℎG�,� = 1 

71:              end if 

72:         end if         
73:      end for 

74:      if  A∑ ℎG�,�G�,�KF� B = 𝑓F�	  

75:           Accept and implement VM network request  

76:      else if  A∑ ℎG�,�G�,�KF� B ≠ 𝑓F�	&		𝑠 < 𝑁𝑍 

77:           Check next topology 

78:       else if A∑ ℎG�,�G�,�KF� B ≠ 𝑓F�	&		𝑠 = 𝑁𝑍 

79:            VM network request is blocked 
80:       end if 

81:   end for 
82: end for 

5.4.2 Topology Creation Algorithm 

The overall task achieved in the second stage of the algorithm is the creation of custom network 

topologies to implement the VM network request. The topologies could either be an EPS 

virtual/logical topology, an OCS virtual/logical topology or a combination of both. The first 

task of the algorithm is to search for suitable combinations of CPU and memory bricks that can 

be paired to build EPS virtual/logical topologies. When a VM network request is received in a 

DC, the first step generates 𝑁>x
?0@ a set of CPU bricks, 𝑁>x

(A( a set of memory bricks, and 𝐵	a 

VM network request matrix. Next, the set 𝑃 is used to build sets of possible combinations of 

CPU bricks. For each subset of 𝑃, a set of subsets 𝐶 is calculated by j&�x
���

Ix,�
k, where each subset 

𝐶< contains a possible combination of 𝑝<,!-CPU bricks. If the generated set 𝐶 is not empty, for 

each subset 𝐶< starting from the first, the algorithm searches for a set of memory bricks 𝐶𝑀, 

where each of the memory bricks requires a network link from all the CPU bricks in 𝐶<. If the 

cardinality of 𝐶𝑀 is greater than or equal to 𝑝<,", 𝑀, which is a set of subsets where each subset 
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𝑀< contains a possible combination of memory bricks from 𝐶𝑀, is calculated by j?(Ix,�k. In the 

event that 𝐶 is empty, i.e., no CPU brick combination has been generated or the cardinality of 

𝐶𝑀	is less than 𝑝<,", the CPU brick number 𝑝<,! is discarded, and next CPU brick number from 

the next subset of 𝑃 is selected and used to generate another set of CPU brick combinations. 

Figure 5.8 illustrates an example of generated combinations of CPU and memory bricks with 

the different subsets of 𝑃 from Figure 5.7, and from a VM network request with four CPU 

bricks {1,3,5,7} and four memory bricks {2,4,6,8} to be interconnected.  

 
Figure 5.8: Example of generated combinations of CPU and memory bricks with the different 

subsets of 𝑃. 

Afterwards, for each subset in 𝑀 starting from the first one, if 𝑀< is not empty, the algorithm 

calculates the 𝑡𝑏;x,| , which is the sum of required bandwidth for network links from a CPU 

brick in 𝐶<	to all memory bricks in 𝑀<. Then, if  𝑡𝑏;x,|  from a CPU brick in 𝐶< is less than or 

equal to the capacity of a transceiver 𝑇𝑋𝑐𝑎𝑝, 𝑥;x,| is marked as 1, otherwise marked as 0. This 

step is carried out for all the CPU bricks in 𝐶<. If the summation of the variable 𝑥;x,| (for all 

CPU bricks in 𝐶<) is equal to 𝑝<,!, the first condition to build an EPS virtual/logical topology is 

satisfied. After the first condition has been satisfied, the next line calculates 𝑡𝑏#x,| , which is the 

sum of required bandwidth of network links from all CPU brick in 𝐶< to a single memory brick 

in 𝑀<. If the 𝑡𝑏#x,|  is less than or equal to 𝑇𝑋𝑐𝑎𝑝, 𝑥#x,| is marked as 1, otherwise marked as 0. 

Then, if the summation of the variable 𝑥#x,| (for all memory bricks in 𝑀<) is equal to 𝑝<,", the 

second condition to build an EPS virtual/logical topology is satisfied. In the event that the 

summation of the variable  𝑥;x,| (for all CPU bricks in 𝐶<) is not equal to 𝑝<,! or the summation 

{1,3, 5, 7}

{ 2, 4, 6 , 2, 4, 8 , 2, 6, 8 , 4, 6, 8 }{1, 3, 5, 7}

{2, 4, 6, 8}

{ 2, 4 , 2, 6 , 2, 8 , 4, 6 , 4, 8 , 6, 8 }{ 1, 3 , 1, 5 , 1, 7 , 3, 5 , 3, 7 , 5, 7 }

Set	of	possible	combination	of	
,-,- − CPU	bricks	

Set	of	possible	combination	of	
,/,- − CPU	bricks

Set	of	possible	combination	of	
,0,- − CPU	bricks	

Set	of	possible	combination	of	
,-,/ −	memory	bricks

Set	of	possible	combinations	of	
,/,/ −	memory	bricks

Set	of	possible	combination	of	
,0,/ −memory	bricks
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of the variable 𝑥#x,| (for all memory bricks in 𝑀<) is not equal to 𝑝<,", the subset of memory 

bricks is discarded, and the next memory brick combination which is the next subset in 

𝑀	selected and checked.  

Once the two conditions to build an EPS virtual/logical topology is satisfied, a set 𝑉, which is 

the union of CPU bricks in 𝐶< and memory bricks in 𝑀<, is generated. The next task of the 

algorithm is to run the EPS placement strategy algorithm for the selected combinations of CPU 

bricks and memory bricks in order to select the most suitable bricks or electronic packet 

switches to perform statistical multiplexing functions when creating an EPS virtual/logical 

topology. There are three different algorithms that can be selected at this stage: the congestion 

aware placement strategy algorithm, the network-hop aware placement strategy algorithm and 

random placement strategy algorithm. Figure 5.9 illustrates examples of different possible EPS 

virtual/logical topologies that are created from a CPU brick combination of {1,3} and a 

memory brick combination of {4,8} across the different disaggregated architectures. Figure 

5.9(a), Figure 5.9(b), and Figure 5.9(c) presents a cluster of dRedBox, 1-Tier-H, and 3-Tier-H 

architectures, respectively. Each architecture consists of two racks which contain two trays 

each, and each tray contains a CPU and memory brick.  
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Figure 5.9: Examples of different EPS virtual/logical topologies. (a) dRedBox architecture (b) 

1-Tier-H architecture. (c) 3-Tier-H architecture. 

For the dRedBox architecture, in the congestion aware placement strategy algorithm, the brick 

with least number of utilized ports is given highest priority to be configured to perform 

statistical multiplexing functions in the created EPS virtual/logical topology. Algorithm 2 

illustrates steps of the congestion aware strategy algorithm for the dRedBox architecture. For 

each brick in 𝑉, the number of utilized brick ports is calculated. Also, the number of network 

hops required for each of the bricks to perform statistical multiplexing of flows to and from 
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other bricks is calculated. Next, the bricks are sorted from the brick with the least utilized ports 

to the brick with the most utilized ports. In a situation where two or more bricks have the same 

number of utilized ports, those bricks are sorted from the brick which requires the least number 

of network hops to the brick which requires the most number of network hops. The sorted 

bricks are stored in 𝐾 in an order that starts from the most suitable brick to least suitable brick. 

The network-hop aware placement strategy algorithm follows a similar procedure to the 

congestion aware placement strategy algorithm. The priority factor for creating an order of 

suitable bricks to perform statistical multiplexing is the number of required network hops. 

Thus, after the number of utilized brick ports and required number of network hops for each 

brick has been calculated, the bricks are sorted from the brick which requires the least number 

of network hops to the brick which requires the most number of network hops. In a scenario 

where two or more bricks have the same number of network hops, those bricks are sorted from 

the brick with the least utilized ports to brick with the most utilized ports. In the random 

placement strategy algorithm, the bricks are selected and sorted randomly without considering 

any factor. Figure 5.9(a) shows examples where possible EPS virtual/logical topologies are 

created with a CPU brick combination of {1,3} and a memory brick combination of {4,8} for 

dRedBox architecture. In one of the topologies, a CPU brick is selected to perform statistical 

multiplexing, while in the other topology, a memory brick is selected to perform statistical 

multiplexing. 

Algorithm 2: Congestion aware placement strategy algorithm for dRedBox architecture 

1: for each brick in 𝑉 
2:   Calculate the number of utilized brick ports 

3:   Calculate the number of network hops required when the brick is configured as an  
      electronic packet switch 

4: end for 
5: Sort bricks from the brick with least utilized ports to brick with most utilized ports 

6: Find any bricks with same number of utilized ports 
7: If there are any bricks with the same number of utilized ports 

8:        Sort the selected bricks from the brick with the least number of network hops to 
           the brick with most number of network hops 

9: end if 

10: Store sorted brick in 𝐾	 
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For the 1-Tier-H architecture, the statistical multiplexing is performed on the EoT electronic 

packet switches and not on the bricks. The candidate EoT electronic packet switches that are 

considered to perform statistical multiplexing are the EoT switches which are attached to a 

tray, where either a CPU or memory brick in 𝑉 is located. For instance, in Figure 5.9(b), the 

candidate EoT switches that will be considered to perform statistical multiplexing when 

building an ESP virtual/logical topology for a CPU brick combination of {1, 3} and a memory 

brick combination of {4, 8}, are EoT-1, EoT-3 and EoT-7. In the congestion aware algorithm, 

the number of utilized ports for each of the candidate EoT switches is calculated, and the 

number of network hops required when each of the candidate EoT switches is selected to 

perform statistical multiplexing of flows to and from the selected CPU and memory bricks is 

calculated. Next, the switches are sorted from the switch with the least utilized ports to the 

switch with the most utilized ports. In a situation where two or more switches have the same 

number of utilized ports, those switches are sorted from the switch that requires the least 

number of network hops to the switch that requires the most number of network hops. Next, 

the sorted EoT switches are stored in K in an order that starts from the most suitable switch to 

least suitable switch. In the network-hop aware placement strategy algorithm, the considered 

EoT electronic switches are sorted from the switch with the least required number of network 

hops to the switch with the most number of network hops. Also, in a situation where two or 

more EoT electronic packet switches have the same required number of network hops, those 

set of EoT switches are sorted from the EoT switch with the least utilized ports to the EoT 

switch with the most utilized ports. In the random placement strategy algorithm, the EoT 

switches are selected and sorted randomly without considering any factor. 

For the 3-Tier-H architecture, statistical multiplexing can occur in EoT, ToR and ToC 

electronic packet switches. The candidate electronic packet switches that are considered to 

perform statistical multiplexing are the EoT switches that are attached to a tray where either a 

CPU or memory brick in 𝑉 is located, the ToR switches that are attached to a rack where either 

a CPU or memory brick in 𝑉 is located, and the ToC electronic packet switch of the cluster 

where either a CPU or memory brick in 𝑉 is located. For instance, in Figure 5.9(c), the 

candidate electronic packet switches which will be considered to perform statistical 

multiplexing when building an ESP virtual/logical topology for a CPU brick combination of 

{1,3} and a memory brick combination of {4,8} are EoT-1, EoT-3, EoT-7, ToR-1, ToR-3 and 

ToC-1. The working principle of the congestion aware, network-hop aware, and random 

placement strategy algorithm follows a similar procedure to the 1-Tier-H architecture, the only 
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difference is that since electronic packet switches considered are on different networking layers 

and have different number of ports, the metric used for determining congestion is the 

percentage of utilized ports of each of the candidate switches instead of the number of ports. 

For all the architectures, after the set 𝐾 has been created, up to 𝐿 number of EPS virtual/logical 

topologies can be created. Next, the EPS virtual/logical topologies that have been built are 

stored in 𝑇𝐷𝐵, and the VM network request matrix 𝐵 is updated by removing all CPU to 

memory network links that have been used in the created EPS virtual/logical topology. Also, 

any subset in 𝑀 that contains any memory brick that has been utilized in the previously built 

EPS virtual/ logical topology with the selected the CPU brick combination in 𝐶< is discarded. 

After all the subset of 𝑃 have been checked for all possible combinations of CPU and memory 

bricks to build EPS virtual/logical topologies, in the event that 𝑇𝐷𝐵 is empty, i.e., no EPS 

virtual/logical topology has been built, an OCS virtual/logical topology for the VM network 

request is built and is stored in Z. Otherwise, if 𝑇𝐷𝐵 is not empty, a set 𝑂𝑇 which contains any 

remaining links in 𝐵 that have not been used to build an EPS virtual/logical topology is 

generated. If 𝑂𝑇 is not empty, the links in 𝑂𝑇 are combined with the EPS virtual/logical 

topologies in 𝑇𝐷𝐵 to form hybrid EPS/OCS virtual/logical topologies which are stored in 𝑍. 

In the event that 𝑂𝑇 is empty, i.e., there are no remaining links in the 𝐵 to be established, all 

the EPS virtual/logical topologies in 𝑇𝐷𝐵	are combined and stored in 𝑍.  

5.4.3 Network Resource Allocation 

The next stage of the algorithm searches for network resources for the created topologies. After 

𝑍	has been created, the algorithm searches for network resources for the first topology stored 

in 𝑍. For each link to be established in the selected topology, the algorithm first searches to 

find an already established path with available bandwidth resources to perform optical 

grooming services. If there is an existing path with available bandwidth resources, i.e.,	𝑏G�,� +

𝑒𝑏G�,� ≤ 𝑇𝑋𝑐𝑎𝑝, the link is marked for optical grooming on the established path (ℎG�,� = 1). 

Alternatively, if there are existing paths but with no available bandwidth for optical grooming, 

or there are no existing paths for optical grooming, the algorithm then searches for free 

resources (I/O and network ports) by searching and selecting the least congested network path. 

If resources are available on the found network path, the link is marked to be deployed on the 

resources on that path (ℎG�,� = 1). If resources are available for all links, the VM network 

request is accepted. If resources are not available for any link, other stored topologies in Z are 
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checked. If resources are not available to any of the topologies, the VM network request is 

blocked. 

5.5 Chapter Conclusion   

In this chapter, the features of the different hybrid disaggregated DC architectures were 

presented. The DC architectures discussed include: dRedBox, 1Tier-H and 3-Tier-H. Also, 

three different arrangement approaches for disaggregated resource pools in DCs were 

presented. Next, an illustration of the implementation of VM network requests using EPS/OCS 

services on the dRedBox and conventional tray architectures was presented. Also, a 

performance trade-off in terms of number of utilized transceivers, brick I/O ports and switch 

ports of both tray architectures based on the illustration was reported. Finally, the simulator 

framework and working principle of the proposed algorithm were described. The simulator 

framework was broken down into three stages: simulator inputs, topology creation algorithm 

and network resource allocation. The task achieved in each of the stages were described. In 

particular, three different networking strategies in topology creation algorithm with objective 

of selecting the most suitable brick or electronic packet switch to perform statistical 

multiplexing functions when building an EPS virtual/logical topology to implement VM 

network requests were proposed and discussed.  

The network strategies and algorithms presented in this chapter are key to evaluating the 

performance of different hybrid disaggregated DC architectures, different arrangement 

approaches of disaggregated resource pools, and providing insights into solutions for the 

challenges associated with the allocation of EPS/OCS services and network resources to build 

VMs on disaggregated resources.  
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6 Performance Evaluation of dRedBox Architecture  

6.1 Introduction 

In this Chapter, the performance of various networking strategies for deploying VM network 

requests across the dRedBox, 1-Tier-H, and 3-Tier-H architectures under different traffic 

patterns are evaluated in terms of blocking probability, number of successfully deployed VMs, 

network utilization, network capacity, and energy efficiency. Also, a cost evaluation of the 

different architectures is presented. Furthermore, the performance of the different arrangement 

approaches of CPU and memory resources in the dRedBox architecture is evaluated in terms 

of blocking probability, number of successfully deployed VMs, and number of utilized switch 

ports. 

6.2 dRedBox Architecture versus Conventional Hybrid Disaggregated 

Data Centre Architectures 

In this section, a comprehensive performance evaluation of the dRedBox, 1-Tier-H and 3-Tier-

H architectures is presented and discussed. 

6.2.1 Simulation Assumption 

The configuration of the dRedBox, 1-Tier-H and 3-Tier-H architectures are simulated as 

illustrated in Figure 5.1. Each of the DC architectures consists of a cluster containing 4 racks 

with each rack consisting of 4 heterogeneous trays. Each tray is populated with 14 bricks, i.e., 

7 CPU and 7 memory bricks. Each brick is interfaced with 24 10Gb/s transceivers. All the DC 

architectures have a 1:1 port connectivity subscription ratio between all networking layers and 

the same number of switch ports on all networking layers. Each of the EoT switches has 672 

ports (i.e., the same performance of each EoT switch simulated can be achieved by connecting 

8 switches with 84 ports each in parallel), each of the ToR switches has 2688 ports (i.e., the 

same performance of each ToR switch simulated can be achieved by connecting 12 switches 

with 224 ports each in parallel), and each of the ToC switches has 5376 ports (i.e., the same 

performance of each ToR switch simulated can be achieved by connecting 16 switches with 

336 ports each in parallel).  

There are different bandwidth requirements for local memory associated with the memory 

technology and processor technology. As mentioned in section 2.5.1, results from a previous 
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study and experiment in [82] showed that for certain applications, 20-40 Gb/s for remote 

memory access can achieve minimal (under 10%) application performance degradation. 

Furthermore, a related study in [83] reported that a bandwidth of 582 Mib/s (~ 5Gb/s) can be 

realized between a single CPU core and remote access memory. Also, the authors in [84] 

demonstrated remote memory access with 10 Gb/s links and up to 68% sustained memory 

bandwidth. In this thesis, VM network requests are randomly generated using the following 

parameters: 2 to 5 number of CPU bricks, 2 to 5 number of memory bricks, and bandwidth 

requirement between a CPU brick and a memory brick that varies between 1 to 5 Gb/s and 6 

to 10 Gb/s, which is classified as low bandwidth traffic pattern (LBTP) and high bandwidth 

traffic pattern (HBTP), respectively (i.e., for a complete round trip transaction between one 

CPU and one memory brick, LBTP is 2 to 10 Gb/s and HBTP is 12 to 20 Gb/s). The authors 

in [17] used a similar bandwidth traffic pattern to evaluate the benefits of an OPS/OCS hybrid 

DC. Also, for each generated VM network request, each of the CPU brick requires a network 

link to each of the memory bricks. It is assumed that VM network requests arrive dynamically 

following a Poison process with a mean inter-arrival rate of 10 time units. A previous study on 

disaggregated DCs in [23] has used a similar approach. A holding time range of 525 to 2100 

time units with increments of 525 time units was selected to ensure different levels of network 

load in the DC. Once the holding time of a successfully deployed VM network request expires, 

the resource attached to that VM network request are released. 

A total of 400 VM network requests are generated, and the results obtained in this thesis are 

averaging 4 simulations runs for each point with a 95% confidence interval. The following 

abbreviations are used for the different EPS function placement strategies on the various 

architectures. The dRedBox congestion aware, dRedBox network-hop aware, and dRedBox 

random placement strategies are represented as D-COS, D-NES, and D-RAS, respectively. The 

1-Tier-H congestion aware, 1-Tier-H network-hop aware, and 1-Tier-H random placement 

strategies are represented as 1-T-COS, 1-T-NES, and 1-T-RAS, respectively. Finally, 3-Tier-

H congestion aware, 3-Tier-H network-hop aware, and 3-Tier-H random placement strategies 

are represented as 3-T-COS, 3-T-NES, and 3-T-RAS, respectively. The various EPS function 

placement strategies are evaluated in terms of blocking probability, network capacity, network 

utilization, energy efficiency, and cost. Blocking probability is the ratio of number of blocked 

requests to the total number of requests that have been processed in the DC network. Network 

capacity is a measure of the total number of bits per second transmitted on all the network links 

of DC network. Network utilization is the ratio of the number of utilized network resources 
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(number of used brick I/O ports and switch ports) to the total number of network resources 

(total number of brick I/O ports and switch ports in the DC network). Energy efficiency (J/b) 

is the ratio of power consumption (W) to network capacity (b/s). The parameters describing 

the cost and power consumption of components are set according to the values presented in 

Table 6.1. The cost of a 10G transceiver is assumed to be $50, and power per optical switch 

port is 0.05 W [121]. The remaining values in Table 6.1 are sourced from [14][19]. Also, the 

cost and power consumption are calculated based on the number of resources used. 

Table 6.1: Power Consumption and Cost Values of DC  
network components  

Component Power (W) Cost ($) 
Optical switch port 0.05 500 
Electronic switch port 12.5 500 
Transceiver 10G 1 50 

6.2.2 Random Bandwidth Traffic Variation 

For the random bandwidth traffic variation simulation scenario, the VM network requests 

generated are randomly assigned to either LBTP or HBTP. Figure 6.1 shows the blocking 

probability of the different EPS placement strategies across the dRedBox, 1-Tier-H, and 3-

Tier-H architectures at different holding times. The points plotted in Figure 6.1 represent the 

blocking probability after the last VM network request, i.e., 400th request, has been received 

and processed in the DC network. It can be noted from Figure 6.1 that the dRedBox architecture 

for all the EPS placement strategies has a lower blocking probability than the 1-Tier-H and 3-

Tier-H architectures across the different holding times. Furthermore, despite the 3-Tier-H 

architecture having more levels for EPS than the 1-Tier-H architecture, Figure 6.1 shows that 

the 3-Tier-H and 1-Tier-H architecture display similar level of blocking probability across all 

EPS placement strategies and holding times. This is because both the 3-Tier-H and 1-Tier-H 

architecture have the same proportions of brick I/O ports dedicated to either optical circuit or 

electronic packet network. This limits resource availability to process different traffic 

variations (LBTH or HBTH). Thus, having different levels of EPS switches in the 3-Tier-H 

architecture has negligible impact on resource availability to serve VMs. In addition, it can be 

observed that D-COS performs the best (has the lowest blocking probability). At 2100 holding 

time units, D-COS demonstrates approximately 9% lower blocking probability than D-NES, 

16% lower blocking probability than D-RAS, and 35% lower blocking probability than the 1-

T-COS, 1-T-NES, 1-T-RAS, 3-T-COS, 3-T-NES, and 3-T-RAS. 



Performance Evaluation of dRedBox Architecture 

 94 

 

Figure 6.1: Blocking probability for random bandwidth traffic variation. 

 

Figure 6.2: Blocking probability for 2100 holding time scenario. 

Figure 6.2 shows the blocking probability of the 2100 holding time scenario with a line 

highlighting the 10% (0.1) blocking probability point. It can be observed in Figure 6.2 that the 

dRedBox architecture for all EPS placement strategies demonstrates lower blocking 

probability that the 1-Tier-H and 3-Tier-H architectures across different numbers of VM 
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network requests. The 0.1 blocking probability point is selected as the maximum threshold 

value to further evaluate the performance of the different EPS placement strategies and DC 

architectures. 

 
Figure 6.3: Performance indicators at 10% blocking probability for dRedBox, 1-Tier-H and 3-

Tier-H architectures. (a) Number of successfully deployed VM network requests. (b) Network 

capacity. (c) Network utilization. (d) Energy per network capacity. 

Figure 6.3(a)-(d) displays the number of successfully deployed VM network requests, network 

capacity, network utilization, and energy efficiency, respectively, from the 2100 holding time 

unit (Figure 6.2) scenario at 10% blocking probability. Numerous insights can be noted from 

Figure 6.3. For the dRedBox architecture, in terms of the number of successfully deployed VM 

network requests, D-COS has deployed approximately 5% more than D-NES and 16 % more 

than D-RAS. A similar trend is observed in terms of network capacity and network utilization. 

Furthermore, D-COS, D-NES, and D-RAS demonstrate approximately the same performance 

in terms of energy efficiency. This implies that D-COS demonstrates the overall best 

(a)

(c) (d)

(b)
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performance, because at 10% blocking probability, D-COS has the highest number of 

successfully deployed VM network requests while achieving approximately the same energy 

efficiency with D-NES and D-RAS. For the 1-Tier-H, it is noted from Figure 6.3 that 1-T-NES 

has the same number of successfully deployed VM network requests with 1-T-COS and 1-T-

RAS but at a slightly lower network capacity and network utilization. Also for the 3-Tier-H, it 

is noted from Figure 6.3 that 3-T-NES has the same number of successfully deployed VM 

network requests with 1-T-COS and 1-T-RAS but at a slightly lower network capacity and 

network utilization. Therefore, for the 1-Tier-H and 3-Tier-H architectures, the network-hop 

aware placement strategy uses resources more efficiently than the congestion aware and 

random placement strategy to achieve the same level of blocking probability. This translates 

into slightly better energy efficiency improvements as depicted in Figure 6.3(d). 1-T-NES 

demonstrates about 2% energy savings in comparison to 1-T-COS and 1% energy savings in 

comparison to 1-T-RAS, while 3-T-NES demonstrates about 5% energy savings in comparison 

to 3-T-COS and 16% in comparison to 3-T-RAS. 

Comparing the performance of the dRedBox, 1-Tier-H, and 3-Tier-H architectures, in terms of 

the number of successfully deployed VM network requests (Figure 6.3(a)), the dRedBox 

architecture demonstrates a better performance than the 1-Tier-H and 3-Tier-H architectures 

for all EPS function placement strategies. In particular, the D-COS implemented about 100% 

more VM network requests than 1-T-COS, 1-T-NES, 1-T-RAS, 3-T-COS, 3-T-NES and 3-T-

RAS. Furthermore, in terms of energy efficiency, dRedBox architecture performs the best, the 

1-Tier-H architecture ranks second and the 3-Tier-H architecture has the worst performance 

for all EPS placement strategies. D-COS has energy savings of approximately 92% in 

comparison to 1-T-NES and 96% in comparison to 3-T-NES. This is because dRedBox is 

supported by a pure optical network while 1-Tier-H consist of power hungry electronic 

switches at the tray level, and 3-Tier-H consist of power hungry electronic switches at the tray, 

rack and cluster level. It can also be noted from Figure 6.3(c) that at 10% blocking probability, 

the 3-T-NES and 3-T-COS achieves the same number of successfully deployed VMs with the 

1-T-NES but at lower network utilization. In particular, 3-T-NES demonstrates about 6% lower 

network utilization in comparison to 1-T-NES, while 3-T-COS demonstrates about 4% lower 

network utilization in comparison to 1-T-NES. The lower network utilization demonstrated by 

the 3-T-NES and 3-T-COS in comparison to 1-T-NES is because the 3-Tier-H architecture can 

perform EPS on the tray, rack and cluster networking level, while the 1-Tier-H architecture can 

only perform EPS on the tray level. Thus, 3-Tier-H requires less network hops to implement 
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EPS virtual/logical topologies than the 1-Tier-H. However, this comes at a demerit of increased 

power consumption and a decrease in energy efficiency (see Figure 6.3 (d)) because of multiple 

layers of power hungry electronic switches.  

6.2.3 Proportional Bandwidth Traffic Variation 

For the second simulation scenario, 2100 holding time units is used and different percentage 

ratios of the total generated VM network requests are assigned between LTBP and HTBP. In 

addition, all the points plotted in the figures presented in this section represent the points after 

the last VM network request, i.e., 400th request, has been received and processed in the DC 

network. Figure 6.4 displays the blocking probability for all architectures across different 

bandwidth percentage ratios. It can be observed from Figure 6.4 that D-COS, D-NES and D-

RAS demonstrates lower blocking probability than the 1-Tier-H and 3-Tier-H architectures 

from 50:50 percentage ratio to 0:100 percentage ratio, while 1-T-COS, 1-T-NES, 1-T-RAS, 3-

T-COS, 3-T-NES and 3-T-RAS demonstrates similar blocking probability across all bandwidth 

percentage ratios. In more detail, the D-COS demonstrates the lowest blocking probability for 

all bandwidth percentage ratio except at 0:100, where it is equal to D-NES and D-RAS. This 

is because at 0:100 bandwidth percentage ratio, all VM network requests are served by only 

OCS virtual/logical topologies (i.e., the EPS function placement strategies do not have any 

effect because no EPS virtual/logical topology is built). Additionally, it can be observed that 

the greater the increase in the percentage share of LBTP, the lower the blocking probability of 

all DC architectures and EPS placement strategies. This is because as the percentage share of 

LBTP increases, the greater the probability of forming EPS virtual/logical topologies, which 

in turns leads to conservation of more resources to accommodate future requests. 
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Figure 6.4: Blocking probability for proportional bandwidth traffic variation. 

 
Figure 6.5: Network utilization for proportional bandwidth traffic variation 

Figure 6.5 shows the network utilization across different bandwidth percentage ratios. It is 

noted that the network utilization of the D-COS, D-NES and D-RAS remains approximately 
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constant across different distributions of bandwidth percentage ratios. On the other hand, the 

network utilization for 1-T-COS, 1-T-NES, 1-T-RAS, 3-T-COS, 3-T-NES and 3-T-RAS 

decreases as the percentage share of LBTP decreases from 75% to 0%. The approximately 

constant utilization demonstrated by dRedBox architecture is as a result of its ability to 

reconfigure and deploy either packet or circuit switching services to any I/O ports to handle 

traffic variations. Therefore, as the bandwidth percentage ratio between LBTP to HBTP varies, 

the ratio between packet to circuit switch port utilization on the bricks also varies to match the 

traffic variations. The drop of network utilization demonstrated by the 1-Tier-H and 3-Tier-H 

architecture is due to the fact that the I/O ports are fixed and dedicated to either OCS or EPS. 

This confirms the high blocking probability demonstrated by the 1-Tier-H and 3-Tier-H 

architecture in Figure 6.4.  

Comparing the 1-Tier-H and 3-Tier-H architectures, it can be observed from Figure 6.5 that 3-

T-COS and 3-T-NES demonstrates a lower network utilization in comparison to the 1-T-NES 

from 100:0 to 25:75 bandwidth percentage ratio. This because the 3-Tier-H architecture can 

perform EPS on more networking levels (tray, rack and cluster), while the 1-Tier-H 

architecture can perform EPS at only the tray level. However, the benefits of more layers of 

EPS switches in the 3-Tier-H architecture comes at a cost of increased power consumption and 

a decrease in energy efficiency when compared to the 1-Tier-H architecture, which is supported 

by a pure optical network on the rack and cluster network layer. This evaluation confirms the 

trend demonstrated in Figure 6.3 and discussed in the random bandwidth variation scenario 

regarding the trade-off between energy and network utilization between the 1-Tier-H and 3-

Tier-H architectures. Thus, the following conclusions can be made for the 1-Tier-H and 3-Tier-

H architectures. First, for each of the architectures, the network-hop aware strategy uses less 

networking resources that than the congestion and random aware placement strategies while 

delivering similar levels of blocking probability. Secondly, at the same level of blocking 

probability, the 3-Tier-H architecture uses less networking resources than the 1-Tier-H 

architecture because of the advantage of having more network layers to perform EPS. 

However, this comes at a cost of increased power consumption which leads to a decrease in 

energy efficiency.  
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Figure 6.6: Brick port utilization for proportional bandwidth traffic variation. (a) EPS serviced 

ports. (b) OCS serviced ports. 

Figure 6.6(a) show the number of utilized bricks ports with EPS services, while Figure 6.6 (b) 

shows the number of utilized bricks ports with OCS services. Figure 6.6 verifies the results of 

network utilization shown in Figure 6.5, and blocking probability shown in Figure 6.4. In 

relation to network utilization, the approximately constant network utilization displayed by the 

D-COS, D-NES and D-RAS can be verified by the high number of utilized brick ports across 

all bandwidth percentage ratios. In relation to blocking probability, the dRedBox architecture 

demonstrates a lower blocking probability than the 1-Tier-H and 3-Tier-H architecture from 

50:50 to 0:100 bandwidth percentage ratios. This is because of the ability of the dRedBox to 

reconfigure any or all of the brick I/O ports to support either packet or circuit switching 

services. 

(a)

(b)
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6.2.4 Cost Analysis  

Figure 6.7 displays the cost of the number of transceivers in dRedBox, 1-Tier-H and 3-Tier-H 

architectures across different number of racks. To evaluate the difference in cost of the different 

DC architectures, only the cost of transceivers is considered for two reasons. Firstly, there is 

no extra cost in embedding the hybrid and programmable packet/circuit switch on each brick 

because it is fabricated as part of the MPSoC hardware of the CPU brick where the CPUs 

resides or the memory brick where the memory controller resides. Instead, software is deployed 

on the programmable logic of the MPSoC to provide packet/circuit services [84]. Secondly, 

the prices of an optical switch port and electronic switch port are considered equal based on 

the references provided (see Table 6.1), and the total number of network ports for each of the 

various architectures are equal.  

 

Figure 6.7: Cost of transceivers 

For the dRedBox architecture, the total cost is equal to the cost of all the transceivers embedded 

on the bricks. For the 1-Tier-H architecture, the total cost is equal to the cost of all the 

transceivers embedded on the bricks and EoT electronic packet switches. For the 3-Tier-H 

architecture, the total cost is equal to the cost of all the transceivers embedded on the bricks, 

EoT electronic packet switches, ToR electronic packet switches, and ToC electronic packet 

switches. The results clearly show that dRedBox is the least costly architecture, followed by 1-

Tier-H architecture, and 3-Tier-H architecture which is the most expensive. In more detail, the 

dRedBox has a 50% cost reduction in comparison to 1-Tier-H and an 80% cost reduction in 
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comparison to 3-Tier-H at 4 racks. The improvement in cost savings for the dRedBox 

architecture in comparison to the 1-Tier-H and 3-Tier-H architecture can also be observed for 

8 and 12 number of racks. The reason for the significant reduction in the cost of the dRedBox 

is due to the additional transceivers present on the electronic switches at the tray level in 1-

Tier-H, and at the tray, rack and cluster level in 3-Tier-H. 

6.3 Different Arrangement of Disaggregated Resource Pools  

In this section, a performance evaluation of the congestion aware and network-hop aware EPS 

placement strategies across different resource pools configurations in the dRedBox architecture 

is presented. Recalling from Chapter 6, there are three different arrangement approaches for 

disaggregated resource pools in DCs which include: RDC-1 (see Figure 5.1), RDC-2 (see 

Figure 5.2), and RDC-3 (see Figure 5.3).  

6.3.1 Simulation Assumption 

The simulation assumptions presented in this section are similar to the assumptions presented 

in the dRedBox architecture versus conventional hybrid disaggregated DC architectures 

simulation scenario. The only difference is the arrangement of CPU and memory resources for 

the RDC-2 and RDC-3.   

6.3.2 Random Bandwidth Traffic Variation 

Similar to the dRedBox architecture versus conventional hybrid disaggregated DC 

architectures simulation scenario, the VM network requests generated are randomly assigned 

to either LBTP or HBTP.  In addition, all the points plotted in the figures presented in this 

section represent the points after the last VM network request, i.e., 400th request, has been 

received and processed in the DC network. Figure 6.8 presents the blocking probability for the 

congestion aware and network-hop aware EPS placement strategies across different 

arrangement configurations of resource pools in the dRedBox architecture and different 

holding times. It can be observed from Figure 6.8 that blocking probability for congestion 

aware placement strategy for RDC-1 (COS-RDC-1), congestion aware placement strategy for 

RDC-2 (COS-RDC-2) and congestion aware placement strategy for RDC-3 (COS-RDC-3) 

across different holding times are overlapping, suggesting similarity in terms of acceptance of 

VM requests. The same behaviour in blocking probability can also be observed for the 

network-hop aware placement strategy for RDC-1 (NES-RDC-1), network-hop aware 
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placement strategy for RDC-2 (NES-RDC-2) and network-hop aware placement strategy for 

RDC-3 (NES-RDC-3). 

 
Figure 6.8: Blocking probability for different resource pool configurations 

Figure 6.9(a) and Figure 6.9(b) illustrates the number of successfully deployed VM network 

requests, and number of utilized optical switch ports, respectively, from the 2100 holding time 

scenario (Figure 6.8) and at a point after the 400th request has been received in the DC. 

Numerous insights can be noted from Figure 6.9. It is observed that the congestion aware EPS 

placement strategy across the different resource pool configurations demonstrates 

approximately the same number of successfully deployed VM network requests. However, in 

terms of the number of utilized optical switch ports, the RDC-1 utilizes approximately 425 

optical switch ports less than RDC-2 and 2031 optical switched ports less than RDC-3. This is 

because in the RDC-1, CPU to memory communication can be implemented within the same 

tray, rack and cluster, whereas in RDC-2, CPU to memory communication cannot be 

implemented within the same tray, and can only occur either within the same rack or cluster. 

Furthermore, in the RDC-3, CPU to memory communication cannot be implemented within 

the same tray or rack, and can only occur within the same cluster (i.e., RDC-3 requires the most 

number of network hops to implement CPU to memory communication). The network-hop 

aware EPS placement strategies also demonstrates approximately the same number of 

successfully deployed VM network requests across different resource pool configurations. 

However, in terms of the number of utilized optical switched ports, the RDC-1 utilizes 
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approximately 100 optical switch ports less than RDC-2 and 2101 optical switched ports less 

than RDC-3. Thus, it can be concluded that the RDC-3 for both the congestion aware and 

network-hop aware has the worst performance due to the fact that CPU to memory 

communication must always occur outside the tray and outside the rack, while the RDC-1 

demonstrates the best performance.  

 

 

Figure 6.9: Performance indicators for RDC-1, RDC-2 and RDC-3 of dRedBox architecture. 

(a) Number of successfully deployed VM network requests. (b) Number of utilized optical 

switch ports.  

6.4 Chapter Conclusion 

In this chapter, the performance of the various EPS placement strategies across dRedBox, 1-

Tier-H and 3-Tier-H architectures were evaluated in terms of blocking probability, number of 

successfully deployed VMs, network capacity, network utilization, and energy efficiency under 

different traffic pattern. Also, a cost analysis of the different disaggregated DC architectures 

was presented. Following this, a performance evaluation in terms of blocking probability, 

number of successfully deployed VMs and number utilized of optical switch ports for the 

congestion aware and network-hop aware EPS placement strategies across different resource 

pool configurations for dRedBox architecture was reported.  

Extensive analysis and results show that for the dRedBox architecture, the congestion aware 

placement strategy demonstrates the best performance in terms of blocking probability. 

Furthermore, at 10% blocking probability, the congestion aware placement strategy delivers a 

(a) (b)
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higher number of successfully deployed VM requests than the network-hop aware and random 

placement strategy while delivering a similar level of energy efficiency. For the 1-Tier-H and 

the 3-Tier-H architectures, the network-hop placement strategy performs best because it uses 

less network capacity and networking resources than the congestion aware and random 

placement strategies but demonstrates a similar performance in blocking probability. This 

translates to energy efficiency savings when compared to the congestion aware and random 

placement strategies. Furthermore, comparing the dRedBox, 1-Tier-H and 3-Tier-H 

architectures, the dRedBox architecture delivers substantially better performance than the 1-

Tier-H and 3-Tier-H architectures. In terms of blocking probability, the dRedBox architecture 

demonstrated about 35% decrease in blocking probability compared to the 1-Tier-H and 3-

Tier-H architecture. In terms of energy efficiency, the dRedBox architecture demonstrated 92% 

energy savings in comparison to the 1-Tier-H and 96% in comparison to the 3-Tier-H. In terms 

of cost, the dRedBox is the least expensive architecture with about 50% and 80% cost savings 

in comparison to the 1-Tier-H and the 3-Tier-H, respectively. Regarding the different resource 

pool configurations of the dRedBox, for both the congestion aware and network-hop aware 

strategies, the RDC-1 performs best as it utilizes less number of optical switch ports than the 

RDC-2 and RDC-3 while demonstrating approximately the same number of deployed VMs. 

The RDC-3 demonstrated the worse performance whereas the RDC-2 ranked second.  
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7 Conclusion and Future work 

7.1 Conclusion 

The main motivation of this thesis was to investigate various approaches for 

delivering/improving flexibility in optical metro/core and DC networks in an efficient way. 

This is because provisioning optical metro/core and DC networks with innovative technologies 

and resources to deliver/improve flexibility does not automatically translate to cost-efficiency 

and optimum network performance when handling dynamic and unpredictable traffic trends.  

There have been numerous studies which have proposed and demonstrated approaches to 

deliver flexibility in optical networks. However, most of these studies did not consider 

flexibility as a measurable KPI. Instead, the performance of their various approaches were 

evaluated in terms of other KPIs such as cost and energy efficiency. Thus, there is limited 

understanding of how different levels of flexibility relates to other KPIs and design features. 

Also, the combination of server resource disaggregation, electrical/optical technologies, and 

network function programmability in DCs has great potential to eliminate the limitations of 

conventional server-centric DC architectures by providing benefits such as improved 

flexibility, efficient resource utilisation and energy efficiency. However, in order for this 

concept to materialize, resource allocation policies which ensure optimum level of networks 

performance must be developed. This thesis examines two different approaches to address 

these issues. The first approach investigates flexibility as a measurable KPI for optical 

switching and transmission systems. This is achieved through quantitative measurement of 

flexibility, and studying the relationship between flexibility, other KPIs, and design features. 

The second approach investigates network strategies and algorithms for the optimum 

placement and allocation of EPS/OCS services and network resources to build VMs on various 

disaggregated DC architectures. Several networking strategies and algorithms are proposed, 

and a comprehensive performance evaluation of the proposed algorithms across various 

disaggregated DC architectures and different traffic patterns was conducted.  

In order to achieve the research contributions in this thesis, it was compulsory to first review 

existing literature and understand numerous concepts of the different aspects which are 

essential for delivering/improving flexibility in optical metro/core and DC networks. Chapter 

2 presented a critical review of existing literature on hardware technologies, network 

infrastructure, software technologies such as NFV and SDN, resource allocation, and the study 
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of flexibility as a measurable KPI. The design principles, benefits, challenges and research 

gaps of the various aspects were identified and reported. 

In Chapter 3, measurement models to quantify the flexibility of WSS and SSS under different 

design conditions were derived and proposed. The design configuration evaluated were: 

WSS/SSS without contention, WSS/SSS with contention, and WSS/SSS with port dimension 

reconfigurability. The proposed flexibility measurement models were used to measure the 

flexibility of the various WSS and SSS configurations, and the relationship and design trade-

offs between flexibility and design features were evaluated. Results and theoretical analysis 

showed that design features such as port cross-connections, port dimension reconfigurability, 

spectrum range, equilibrium distribution between input and output port, and spectral 

granularity are vital design features which determine the resultant flexibility and connectivity 

of a WSS and SSS. The selection and combination of these design features offer different levels 

of flexibility and performance.  

In Chapter 4, flexibility measurement models for an extensive range of BVT configurations 

and various optical transmission and switching subsystems (i.e., BVTs and WSS, BVTs and 

MCS, and BVTs and SSS) were derived and presented. The relationship and design trade-offs 

between flexibility, other KPIs and design features for different BVTs and optical transmission 

and switching subsystems configurations were evaluated and highlighted. Based on the results 

and design trade-off analysis presented, key design guidelines for designing BVTs and optical 

subsystems to achieve different levels of performance and functions were reported.   

In Chapter 5, the features of a reconfigurable hybrid disaggregated architecture (i.e., dRedBox 

architecture) and two different conventional hybrid disaggregated DC architectures with static 

EPS/OCS network functions (i.e., 1-Tier-H and 3-Tier-H) were presented. Also, different 

arrangement configurations of disaggregated resource pools in DCs were discussed. 

Algorithms and network strategies for selecting EPS/OCS services, creating multi-layer 

custom network topologies, and allocating network resources to build VM network requests 

across various disaggregated DC architectures were proposed. In particular, three EPS 

placement strategies (i.e., congestion aware, network-hop aware and random placement 

strategies) with the objective of selecting and finding the most suitable brick or electronic 

packet switch to perform statistical multiplexing when building EPS virtual/logical topologies 

were reported.  
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Chapter 6 reported on a performance evaluation of EPS placement strategies across different 

disaggregated DC architectures in terms of blocking probability, number of successfully 

deployed VMs, network utilization, network capacity and energy efficiency. A cost evaluation 

on the different DC architectures was also presented. Furthermore, a performance evaluation 

in terms of blocking probability and number of utilized optical switch ports for different 

resource pool configurations of dRedBox was conducted. Results showed that the dRedBox 

architecture performed better than the 1-Tier-H and 3-Tier-H architectures in terms of blocking 

probability, energy efficiency, cost and number of successfully deployed VMs. For the 

dRedBox architecture, the congestion aware placement strategy performed better than the 

network-hop aware and random placement strategy in terms of blocking probability and 

number of successfully deployed VMs. For the 1-Tier-H and 3-Tier-H architectures, the 

network-hop aware strategy performed better than the congestion aware and random placement 

strategy in terms of network utilization and energy efficiency. Regarding the different resource 

pool configurations for dRedBox architecture, for both the congestion and network-hop aware 

placement strategy, the RDC-1 performs best in terms of optical switch ports utilization 

whereas the RDC-3 displayed the worst performance. The demonstrated benefits of the 

dRedBox architecture and insightful gains into the performance of the various network 

strategies have provided significant information and solutions to overcoming the limitations of 

conventional hybrid architectures and the challenges for network design of disaggregated DCs.  

7.2 Future Work  

The potential future research directions for the contributions reported in this thesis are 

described in this section. 

A. Flexibility Measurement Analysis Considering Time 

Time is an important factor which influences the flexibility of optical networks. For instance, 

the time required for an optical system to change from one connection state to another 

connection state impacts the level of flexibility because it determines how many connection 

states can achieved within a specified time frame. The relationship between flexibility and time 

in the context of SDN has been studied in [7]. However, the flexibility measurement 

methodology proposed did not consider a wide variety of factors and network characteristics. 

Thus, this methodology might not be applicable to other scenarios. In the context of optical 

networks, a methodology for measuring the flexibility of a system over a period time based on 
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maximum entropy has been proposed in [4]. However, the evaluation of the flexibility of the 

elastic optical nodes presented in [4], the add/drop banks presented in [5], and the optical 

components and subsystems presented in this thesis, were performed without considering 

transitions in time. There is limited understanding on the relationship between flexibility and 

time, and therefore, a potential future research direction in this research area.  

B. Flexibility Measurement Analysis on the Network Layer 

Another potential future direction is to extend the study of flexibility as a measurable KPI to 

the network layer. The research contributions presented in this thesis, and previous works [4], 

[5] on flexibility did not consider optical network scenarios. The suitability of using entropy 

as a methodology for measuring flexibility on the network level should be examined. This is 

because a wide variety of factors such as hardware devices, optical subsystem, network 

infrastructure, network topologies, software technologies, and traffic distribution influences 

the resultant flexibility and performance of a network. Thus, considering these factors when 

developing flexibility measurement models might introduce high levels of complexity.  

C. Impact of Latency Constraint on the Performance of EPS Placement Strategies and 

dRedBox Architecture 

Latency is an important design requirement for the realization of disaggregated DCs. It is 

critical that the latency demonstrated in dRedBox architecture when deploying VMs meets 

industry standards and avoids performance degradation. The network strategies and algorithms 

proposed and presented in this thesis did not consider the latency introduced when either EPS 

or OCS services are selected to build VMs. A potential future research direction will involve 

investigating the impact of network latency on the performance of the dRedBox and other 

disaggregated DC architectures. In particular, the algorithms presented in this thesis can be 

extended to take into account the latency introduced from both OCS and EPS technologies 

while considering standard latency requirements for CPU to memory communication. The total 

latency of a roundtrip of packet flows from source (CPU bricks) to destination (memory bricks) 

through either OCS or EPS technologies needs to be determined.  

The latency contributed by optical circuit switching can be obtained from the data sheet of 

commercially available optical switches. In the case of the latency introduced by the 

programmable packet switch in the dRedBox, there are two possible approaches to calculate 

latency. The first approach is creating a network simulator for the dRedBox architecture on the 

packet layer with software package such as OMnet ++ [122]. This simulator can be combined 
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with the existing simulator in MATLAB so that both the circuit and packet layer can be 

monitored. Thus, the latency introduced from the flows of packets between CPU and memory 

through the programmable packet switch can be calculated. The second approach is the 

measurement of latency through an experimental setup consisting of a programmable packet 

switch (an example of this demonstration can be seen in [20]), and using samples of the results 

to develop a mathematical model which can accurately calculate latency in relation to other 

factors such as bandwidth and the different number of CPU and memory nodes interconnected.   

D. Joint Optimisation of IT and Network Resource Allocation  

Both IT and network resource allocations are required for the deployment of VMs in DCs. In 

this thesis, it was assumed that IT resources (i.e., CPU and memory) requirements for VM 

requests have been already been allocated. A complete and deeper understanding on the 

performance and effectiveness of the proposed algorithms and dRedBox architecture can be 

achieved by the combined optimum selection and allocation of IT and network resources. 

Either new IT resource algorithms or existing IT resource algorithms in literature can be 

incorporated into the MATLAB simulator built in thesis. Another potential area for future work 

involves the joint optimization of allocation of spectrum resources, IT resources and 

packet/circuit network services to build VMs across various disaggregated DCs interconnected 

via EONs. The dRedBox architecture can be used as a case study. 
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