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Abstract

Nuclear waste currently created and placed in interim storage is expected to be fully known

and characterised, with records kept and regularly checked, per IAEA regulations. However,

there is also historical nuclear waste that was created at a time when these records were not

required and presumably the problem of nuclear waste disposal was not such a concern as it is

today. Not only the initial materials stored may not be known, but they may also have undergone

changes, such as the oxidation of uranium that produces hydrogen gas. This brings a demand

for techniques to characterise nuclear waste that both make sure that its records are current,

and that historical waste can also be fully characterised and properly taken for final disposal or

long term storage. Muon scattering tomography is a technique that can be used for this purpose.

It consists of measuring individual cosmic-ray muons before and after they cross the volume of

interest, and obtaining the angular distribution of their scatter and related variables. The width

of the angular distribution is larger for materials with higher atomic numbers, so it allows for

high-Z materials to be found in concrete. Several methods were developed that, when combined,

can give a description of the contents of nuclear waste. This starts with an imaging algorithm

that can first find lumps of high-Z materials and then detect the edges of these materials with

a good precision. The same algorithm can also be used to determine the amount of gas present

in the containers. This thesis shows that this algorithm can measure the length of uranium

blocks in concrete with a resolution of 3.2± 0.6 mm when not using momentum information, for

lengths down to 5 mm. A resolution of 0.98± 0.03 mm was obtained when including the muon

momentum, for lengths down to 2 mm. In a following step, high-Z materials can be identified

to verify if they come from nuclear fuel (uranium and plutonium), or if they are other materials

such as lead and tungsten. It is shown that the distinction between uranium and lead or tungsten

is possible for block sizes down to a cube of 2 cm side, with data taking times up to 70 hours.

Some discrimination between uranium and plutonium was also obtained, for 3 cm side cubes and

requiring more data, corresponding to 200 hours.
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1 | Introduction
Nuclear waste needs to be characterised in order to be disposed of in the cor-

rect manner. It is required nowadays to keep records of the nuclear waste from its

creation, and to monitor it regularly [1]. However, there is historical nuclear waste

that lacks this information. This can be either legacy waste, or even current waste

that has not been tracked according to the International Atomic Energy Agency

(IAEA) regulations. Some other challenges to nuclear waste characterisation in-

clude the existence of shielded waste, the requirement to perform non-destructive

assays in many cases, and the changes that the waste goes through, such as cor-

rosion, breaches and overflow [2]. This characterisation is essential for the correct

disposal or long term storage of the nuclear waste, where making the wrong clas-

sification can mean either creating dangerous waste, or needlessly increasing the

cost by orders of magnitude.

For intermediate or low level waste, it is necessary to determine if there are any

pieces of nuclear fuel, such as uranium or plutonium present. For high level waste,

it is important to ascertain if there is any gas formed by the oxidation of uranium,

and if the gas is in separate small bubbles or concentrated in big bubbles.

Some of this nuclear waste is encased in concrete, and this thesis proposes scan-

ning this type of waste using muon scattering tomography. There are several other

techniques that can be used to scan nuclear waste encased in concrete, which can

be classified into passive and active scanning. Passive scanning consists mainly

of measuring emissions (such as radiation or heat) from the materials present in

nuclear waste. Uranium and plutonium emit radiation from nuclear decays, so neu-

trons and gammas can be measured in order to determine the presence of these

materials. However, the concrete and other materials present in the containers can

absorb both neutrons and gammas, in particular in large containers, preventing

the identification of the radioactive materials. Uranium and plutonium also emit

alpha particles, which are absorbed within a few millimetres of concrete and hence
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1. Introduction

cannot be detected outside. Another passive scanning technique is calorimetry,

in which the total radiation rate can be estimated from how much it heats the

sample. Active scanning consists of introducing external particle beams and mea-

suring either the same beam on the opposite side of the sample, and thus inferring

its scatter and absorption, or the radiation induced by the source. This can be

achieved with X-rays, where high energy photons are introduced on one side and

detected on the other side. Materials with a higher density will absorb more pho-

tons, and so can be distinguished against the lower density concrete. Neutron

beams can also be used, by inducing nuclear fission of uranium and plutonium,

which generates gammas with characteristic energies that can be used to identify

the fissioned material and measure its amount. However, active scanning methods

can be costly, since they need not only detectors but also a radiation source.

The method described in this thesis is muon scattering tomography, which is

considered a passive scanning method, as it does not need an artificial source of

particles. Instead, it uses cosmic-ray muons as probes. Muons are naturally occur-

ring in the atmosphere, as a product of cosmic rays. They are highly penetrating

particles, crossing dense materials and large volumes. Therefore very few will be

absorbed by any materials in nuclear waste.

Muons undergo multiple Coulomb scattering in matter, which makes them

change direction. The width of the angular distributions depends on the atomic

number, so we can distinguish materials with higher or lower atomic number. More

details on this technique will be given in Chapter 2.

It has been shown in several sources that it is possible to detect the presence

of high-Z materials embedded in concrete, but it is more difficult to distinguish

uranium and plutonium from other high-Z materials such as lead and tungsten,

that could also be present in nuclear waste. This thesis will show a method that

uses variables obtained from muon tomography and distinguishes pairs of these

materials. It will then be possible to identify which high-Z material is present in a

real container by comparing it to different cases and finding the most similar one.
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1. Introduction

This thesis is structured as follows: the theory behind and the state of the art

of muon scattering tomography is discussed in Chapter 2. Chapter 3 describes the

methods used in the simulations and analyses of the subsequent chapters. The

imaging algorithm, previous results and new edge finding technique are given in

Chapter 4. The material discrimination method and respective results are de-

scribed in Chapter 5. Finally, conclusions are given in Chapter 6.
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2 | Theory and state of the art
This chapter gives an overview of the origin and characteristics of cosmic-ray

muons, as well as their interaction via multiple Coulomb scattering and absorption.

It will then explain how these interactions can be exploited for passive scanning of

large objects using muon scattering tomography. It will give some examples of po-

tential applications of this technique, and address in more detail the motivation to

use it for nuclear waste monitoring. Finally, it describes the muon detectors (resis-

tive plate chambers) used in the University of Bristol particle physics laboratory,

and it gives an overview of the different ways to measure muon momentum.

2.1 Cosmic rays

Cosmic rays are high energy particles produced by astrophysical sources and

are for the most part protons, neutrinos, electrons, photons and alphas, although

some heavier nuclei are also present.

When cosmic rays reach the Earth, they interact with the atmosphere, creating

new particles, which interact with the atmospheric molecules, generating showers

of particles. Muons are produced by the decay of charged pions, which decay

predominantly into a muon and a neutrino (π+ → µ+ + νµ, π− → µ− + ν̄µ).

2.1.1 Cosmic-ray muons

Muons are leptons with a mass of 105.6583745± 0.0000024 MeV [3]. They are

produced high in the atmosphere, at an altitude of around 15 km, and deposit

around 2 GeV of their energy in the air before they reach the ground. Muons

at ground level have a mean energy of ∼ 4 GeV and their angular distribution is

approximately proportional to cos2 θ, where θ is the zenith angle (angle between

the muon trajectory and the vertical line) [3]. Low energy muons at higher angles

are more likely to decay before reaching the surface, so there are fewer low energy

muons at high zenith angles. This can be seen in Figure 2.1, which shows the

muon spectrum at sea level for muons with zenith angles of 0◦ and 75◦.
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2. Theory and state of the art

Figure 2.1: Muon spectrum, weighted by the momentum, at zenith angles of 0◦
and 75◦ [3]. The open diamonds are for θ = 75◦ and all the other points are for
θ = 0◦.

2.1.2 Interaction of muons with matter

When high energy charged particles cross matter, they interact with the atoms

present and transfer energy. The mean rate of energy loss in MeV g−1 cm2, or

stopping power, of muons and other relativistic charged heavy particles is described

by the Bethe-Bloch equation as [3]

〈
−dE

dx

〉
= Kz2Z

A

1
β2

[
1
2 ln 2mec

2β2γ2Wmax

I2 − β2 − δ(βγ)
2

]
, (2.1)

where K is 4πNAr
2
emec

2 = 0.307075 MeV mol−1 cm2 (NA is Avogadro’s number,

r2
e is the electron radius and mec

2 is the electron mass in MeV), z is the charge

number, Z is the atomic number, A is the mass number, I is the mean excitation

energy in eV, Wmax is the maximum energy transfer to an electron in a single

collision and δ(βγ) is the density effect correction to ionization energy loss. This

equation describes the mean rate of energy loss with an accuracy of a few percent,

for particles in the range 0.1 . βγ . 1000. Figure 2.2 shows the stopping power of

muons in copper as a function of their momentum. In the momentum range of most

cosmic-ray muons, ionisation is close to the minimum, so cosmic-ray muons can

be considered minimum ionising particles. Since the mass of the muons is about
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207 times larger than the electron’s mass, the energy loss due to Bremsstrahlung

by muons is small compared to the energy loss by electrons. This is because

the Bremsstrahlung cross-section is proportional to the radius, which is inversely

proportional to the square of the mass [3, 4]. For the electron the cross-section is

σ ∝ r2
e =

(
e2

4πε0mec2

)2

. (2.2)

Therefore, cosmic-ray muons lose much less energy in matter than electrons, so

they can travel longer distances before losing all their energy and being absorbed.

The mean life time of muons is τ ' 2.2 × 10−6 s [3]. Due to their relativistic

speed, the distance a muon would travel in this time can be considered to be

about cτ ' 660 m. But, also because they are relativistic, the distance the muons

travel in the Earth’s reference frame is even longer. In summary, cosmic-ray muons

deposit little energy in matter and are able to travel long distances before decaying;

because of these two properties, they are highly penetrating. This can be seen in

Figure 2.3, which shows the vertical muon intensity as a function of the depth in

rock, measured in km water equivalent, where 1 km.w.e. = 105 g cm−2 of standard

rock (km.w.e. is the product between depth and density). The inset shows the

vertical muon intensity for water and ice.

Muon scattering tomography (MST) exploits the fact that muons scatter in

matter. More details on MST will be given in Section 2.2. Charged particles, like

muons, interact with the nuclei present in matter via Coulomb’s law, which results

in elastic scattering. If the volume crossed is thick enough so that there are many

independent scatterings (called multiple Coulomb scattering), this interaction can

be treated statistically [4]. This results in a random walk, where the particle

changes direction many times. A representation of this random walk is shown

in Figure 2.4. It is shown therefore that when a muon crosses an object, it can

exit with a different direction from that it entered the object. The scattering

angle is the angle between the entry and exit vectors. The 2D projected scattering

7
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Figure 2.2: Mass stopping power for positive muons in copper as a function of
βγ = p/Mc [3].

Figure 2.3: Muon flux versus depth in rock, in km water equivalent (1 km.w.e. =
105 g cm−2 of standard rock) [3]. The inset shows the vertical intensity curve
versus depth for water and ice.
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Figure 2.4: Two dimensional representation of the random walk due to multiple
Coulomb scattering [3].

angle distribution is approximately Gaussian [5, 6], whose width σ depends on the

radiation length of the material traversed,

σ ≈ 13.6 MeV
βcp

z
√
X/X0(1 + 0.038 ln(X/X0)), (2.3)

where p is the momentum of the muon, βc its velocity, z its charge number, X

the thickness of the material, and X0 the radiation length. Radiation length is

the distance an electron can travel through a material, reducing its energy by a

factor of 1/e. It is a property of materials which depends on the atomic number

and density as

X0 ≈
A · 716.4 g/cm2

ρ · Z(Z + 1) ln (287/
√
Z)
, (2.4)

where A is the mass number, Z the atomic number and ρ the density [3]. Table 2.1

shows examples of radiation length values for different elements. It is clear thatX0,

in g·cm−2, decreases for an increasing atomic number. However, when weighted

by the density to obtain X0 in length (cm), its value does not always decrease

monotonically with higher atomic number.
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Element Z X0 (g·cm−2) X0 (cm) ρ (g·cm−3)
H2 gas 1 63.05 7.528×105 8.376×10−5

C 6 42.70 21.35 2.000
O2 gas 8 34.24 2.571×105 1.332×10−3

Si 14 21.82 9.370 2.329
Ca 20 16.14 10.42 1.550
Fe 26 13.84 1.757 7.874
Cu 29 12.86 1.436 8.960
W 74 6.76 0.3504 19.30
Pb 82 6.37 0.5612 11.35
U 92 6.00 0.3166 18.95
Pu 94 5.93 0.2989 19.84

Table 2.1: Values of atomic number, radiation lenght and density for different
elements [3, 7]. Radiation length is given both in g·cm−2 and in cm, being weighed
by the density in the latter case. Density of gases is given at 20◦C and 1 atm.

2.2 Muon Scattering Tomography

As discussed in Section 2.1.2, the scattering angle distribution of muons de-

pends on the atomic number of the material they traverse. This means that in

principle, by measuring these distributions, it is possible to identify those mate-

rials. The muon scattering tomography (MST) concept is depicted in Figure 2.5.

The incident muons are tracked before and after crossing the volume of interest,

by using several detector layers. Then, there are different ways to obtain a scat-

tering angle (and 2D projected scattering angles) from the track fit. For example,

this can be done using the point of closest approach, which is the point where

the incoming and outgoing tracks are closest to each other. It is possible then to

obtain the angles projected in x and y. The algorithms that will be described in

Sections 2.2.3.1, 2.2.3.2 and 2.2.3.3 use this method. Alternatively, a vertex can

be calculated from the fit of the incoming and outgoing tracks, and both a 3D

angle and projected angles obtained. A more detailed explanation of this second

method will be given in Chapter 3.

2.2.1 Applications of Muon Tomography

The applications of muon tomography can be divided into two types: muon

radiography, that exploits the absorption of muons; muon scattering tomography

10
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Figure 2.5: Illustration of the muon scattering principle. Each muon is tracked
before and after crossing the volume to be scanned. As muons undergo a random
walk in matter, a scattering angle ∆θ and an offset ∆x can be calculated.
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(MST), that uses muon scattering. The results shown in this thesis use MST. A

key difference between the two techniques is that radiography only requires one

detector system to measure the muons that made it through the object under

investigation, while in MST it is necessary to measure the incoming and outgoing

trajectory of each muon.

2.2.1.1 Muon radiography

It is possible to use muon absorption instead of scattering to perform density

maps of large structures, such as pyramids, volcanoes and nuclear reactors. In 1970

results from muon radiography on the Second Pyramid of Chephren, one of the

three pyramids of Giza, were published in [8]. Simulations of the pyramid, which

assumed no unknown chambers existed, were compared to measurements of muons

crossing the pyramid. If there were chambers, more muons would be detected from

that area, as fewer muons would be absorbed than if the whole volume were made

of rock. No difference was observed, within uncertainties, between the number of

muons detected and the expected number of muons from simulations, which proved

the absence of unknown chambers. More recently, in November 2017, a study of

the Great Pyramid of Cheops showed the presence of a new void which indicates

the existence of unknown chambers in this pyramid [9]. Three different detector

systems were used in this experiment, where two were placed in one of the known

chambers inside the pyramid and another was placed outside the pyramid, close

to its base. An example of the results obtained from the detectors at the pyramid

base can be seen in Figure 2.6. The 2D figures in the a and d graphs show the

number of muons, in logarithmic scale, measured in two detectors. It is possible

to distinguish the shape of the pyramid, with fewer muons, against the sky, with

more muons. Horizontal slices taken from the 2D graphs show the excess of muons

both from the known (c and f) and the previously unknown chambers (b and

e). In g and h the position of the detectors and the triagulation of the position

of the chambers are shown. The fact that the position of the known chambers
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was correctly identified confirms the hypothesis that the new void is an unknown

chamber, or collection of chambers.

Figure 2.6: Results from muon radiography of the Great Pyramid of Cheops using
gas detectors at the base of the pyramid [9]. a and d show the number of muons,
in logarithmic scale, from the two detectors. From these 2D images, horizontal
slices were obtain that show an excess of muons: in c and f it is possible to see the
muon excess from the Grand Gallery, and in b and e from the new void. g and h
illustrate the position of the detectors relative to the pyramid and the triagulation
of the position of the chambers. In h the Queen’s chamber can be seen at the
bottom, the King’s chamber in the middle, with the new void above it.

As it is possible to use muon radiography to determine the internal structure

of pyramids, it is also possible to use it to monitor geological structures, such as

volcanoes. The measurement of the density in a volcano can provide a survey of the

changes that may occur, such as to the localisation of magma, water and gas, as

well as the chemical alterations of the volcanic rock [10]. Figure 2.7 shows the muon

radiography concept applied to scan a volcano. In this case, the muons that crossed

the volcano are compared to the ones coming from the opposite direction, in order

to calculate the attenuation provided by the volcano. In [11], a study is described

that uses this technique to obtain a map of the average density distribution along

the paths of muons that crossed the Satsuma-Iojima volcano (Mt. Iwodake). The

average density projected in the plane parallel to the detectors, calculated from

the muons measured in this experiment is shown in Figure 2.8. A region of lower
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density is visible inside the volcano. In [10], results are shown from the scanning

of the La Soufrière volcano in Guadeloupe over 5 weeks. Regions of lower and

higher densities are observed, as shown in Figure 2.9. The low density region RF4

corresponds to a known cave, RF2 is a hydrothermal area and RS3 a dense rock

separating these low density regions. Higher density regions of massive lava are

also visible: RS2, RS5 and corresponding RF1, and RF5.

Figure 2.7: Illustration of the muon radiography concept for volcanos [12].

Figure 2.8: Average density distribution of the Satsuma-Iojima volcano with muon
radiography [11].

Muon radiography has also been used to perform imaging of the nuclear fuel

in the damaged reactors of Fukushima Daiichi. Current publications such as [13]
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Figure 2.9: Average density relative to a reference density (in title) [10]. Ravine
Sud is south of the mountain and Roche Fendue is at the East.
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only describe the proposal and validation studies of this possibility, but results

from muon detectors at the power plant can be found in handouts from TEPCO

(Tokyo Electric Power Company), available online: results from muon radiography

performed in Units 1, 2 and 3 reactors are shown in [14], [15] and [16] respectively.

Imaging results form Unit 1 reactor indicate that there is very little fuel left in

the reactor pressure vessel (RPV). It is assumed then that most of the fuel melted

and fell into the primary containment vessel (PVC). Imaging results from Unit 2

reactor can be seen in Figure 2.10, where high density material, believed to be fuel

debris, is located at the bottom of the RPV. In Unit 3 reactor, like for Unit 2,

some fuel was found at the bottom of the RPV. Part of the fuel of Units 2 and 3

is expected to have fallen into the PVC (more for Unit 3 than 2).

Figure 2.10: Quantitative distribution of material in Unit 2 reactor [15].

In summary, muon radiography is good to perform density maps of large struc-

tures, although precision is limited because of their size.

2.2.1.2 Muon scattering tomography

While muon radiography uses only one tracking detector system to measure the

muons coming from the volume of interest, muon scattering tomography (MST)

needs two tracking systems: one to track the muon before and the other after it
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traverses the object to be scanned. This limits the size of the object to the space

between both detector systems, and inside their angular acceptance, making MST

more suited to smaller objects than muon radiography. Assuming it is possible to

place the tracking systems below and above the object of interest, it is possible to

use the muons coming from vertical or almost vertical directions.

MST can be used, for example, to scan shipping containers to find smuggled

special nuclear material, and to scan nuclear waste and determine its contents.

The first proposal of using MST to scan shipping containers was in 2003 [17].

Several systems and algorithms have been developed, and can be found for example

in [18–21].

In [18], simulations were performed of cargo vans, containing a 10 cm cube of

tungsten to replicate a high-Z threat object. Different scenarios for the cargo were

simulated, with and without the threat object. The scattering density was obtained

using the Maximum Likelihood/Expected Maximisation algorithm (ML/EM), which

will be described in Section 2.2.3.2. In order to compare the performance of dif-

ferent scanning times, ROC graphs (Receiver Operating Characteristics) can be

used, which plot the rate of detection versus the false positive rate. More details

on ROC graphs will be given in Chapter 5. The ROC graphs obtained from the

average scattering density in the different scenarios, for different data taking times,

are shown in Figure 2.11. The identification of the tungsten block is very good

after 90 seconds.

In [20], lead and iron blocks with a volume of 10× 10× 20 cm3 were scanned,

with a layout shown in Figure 2.12a. Figure 2.12b shows the reconstruction of

the scattering density of the blocks, using an iterative tomographic algorithm

(ML/EM), with 3 cm side voxels and 40 iterations. It is possible to distinguish the

lead blocks, with a larger scattering density, from the iron blocks. It is also clear

that the reconstruction has a limited space resolution, especially in the vertical

direction.
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Figure 2.11: ROC graphs for the detection of a 10 cm cube of tungsten in a cargo
van, average over different scenarios [18].

(a) (b)

Figure 2.12: Illustration of the placement of two blocks of lead (dark) and two
blocks of iron (light) with a volume of 10×10×20 cm3 (a) and image reconstruction
of the blocks (b) [20].
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An algorithm has been developed at the University of Bristol to use MST for

cargo screening [22]. Figure 2.13 shows the ROC graphs for the identification of a

simulated 10 × 10 × 10 cm3 uranium block in a cargo container. In one scenario,

it is shielded by rock (1.1 cm thick, above and below the block), where 2 minutes

of data are needed to detect the uranium, and in another scenario, it is shielded

by scrap iron (filling the container to the weight limit), where 3 minutes of data

are needed for identification. These results include momentum information. If

this is not available more data would be needed. Smaller uranium blocks will

also require more data to be calculated. The area under the curve (AUC) of the

ROC graphs from different uranium block sized and scanning times can be seen

in Figure 2.14. The AUC is a measure of the classification performance, obtained

from ROC graphs, which will be explained in more detail in Section 5.1.1.3.

(a) (b)

Figure 2.13: ROC graphs for finding a uranium block in a cargo container, shielded
by rock (a) and scrap iron (b) [22].

In a real application for border security, most containers going through are safe.

It is important therefore to determine how much data is needed to assure that a

container is safe, hence clearing most containers under a minute and taking more

data only in the few cases where it is necessary. This can be done by defining the

variable ‘clear fraction’ as the percentage of cases that can be clearly classified as

“safe”, therefore not containing any special nuclear materials. The clear fractions

are shown in Figure 2.15, with a comparison between using the true momentum

information, using 50% momentum resolution and not using the momentum [23].
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(a) (b)

Figure 2.14: Area under the curve (AUC) of ROC graphs for finding a uranium
block in a cargo container, shielded by rock (a) and scrap iron (b) [22].

The value shown is the total sum of clear fractions for different weight categories

of the containers, weighted by the frequency of containers in each weight category

(up to 0.1 g/cm3, 0.3 g/cm3, 0.5 g/cm3 and 0.7 g/cm3). Two values are shown: the

clear fractions for the highest weight in each category, labelled “clear fraction”, and

the “average clear fraction” for each category. The same algorithm was shown to

allow for imaging. It will be described in Chapter 4, and results from the imaging

of simulated nuclear waste containers will be shown.

(a) (b)

Figure 2.15: Clear fractions overlapping 50% momentum error to perfect momen-
tum (a) and to no momentum (b) [23].

A commercial system was developed and marketed by Decision Sciences, a

spin-off company from the Los Alamos National Laboratory. This system is

called Multi-Mode Passive Detection System (MMPDS) and it combines MST
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with gamma detection. A test system was operated in Freeport, Bahamas, which

can be seen in Figure 2.16.

Figure 2.16: Multi-Mode Passive Detection System from Decision Sciences, in
Freeport, Bahamas [24].

It was also proposed that MST can be used for nuclear waste characterisation.

This is the main application considered for the studies in this thesis, hence more

details will be given in Section 2.2.2. In both cases, MST has advantages over

X-ray or neutron scanning, such as the fact that it is a passive method and that

muons are more penetrating than X-rays or neutrons, and it is also more easily

scalable to scan large volumes.

2.2.2 MST for nuclear waste characterisation

There is a need to characterise nuclear waste in order to meet its disposal re-

quirements. Nuclear waste can be stored in concrete drums, so it is necessary to

develop methods to look through these drums from a safe distance and without

opening them. This is of particular importance for legacy nuclear waste, that may

have been produced several decades ago, potentially contains unknown materials

and has possibly undergone changes, such as uranium oxidation, producing hy-

drogen bubbles. This section attempts to restrict the broad subject of nuclear

waste characterisation to the cases where MST can be applied. The assessment

of the applicability of a specific method depends on several factors, such as the
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form and type of the waste, the existing regulations, the disposal concept and the

characteristics to be measured.

Radioactive nuclear waste can be divided into different types, depending on

its level of radioactivity. These types are high-level waste (HLW), intermediate

level waste (ILW) and low level waste (LLW), very low level waste (VLLW), very

short lived waste (VSLW) and exempt waste (EW). The exact definition of each

category can differ slightly from country to country, but this division is generally

the same. The definitions given here are from the IAEA [25]. An illustration of

the classification of nuclear waste from the IAEA is show in Figure 2.17, which

illustrates how this classification depends on both the activity and the half-life of

the isotopes present in the waste.

HLW consists mainly of spent nuclear fuel and by-products from nuclear fuel

reprocessing, and it generates a significant amount of heat. ILW can be filters and

residues from treatment of the reactor cooling water, parts of the nuclear reactor

and graphite from reactor cores. LLW comprises contaminated materials from the

every-day operation or decommissioning of nuclear power plants, such as paper,

plastics, protective clothing and scrap metal. VLLW has an even lower activity

limit and can include for example soil and rubble. VSLW is composed of isotopes

with very short half-lives, that can be stored for decay for up to a few years, after

which it can be cleared from regulatory control. EW is waste that can be cleared

from regulatory control and subsequently handled as normal waste.

Dry waste is generally stored in cylindrical steel containers, and use a shielding

material such as concrete. They have different sizes and structures depending

on the needs and regulations for the type of waste. Their sizes vary, and some

examples are small containers for LLW and ILW with diameter of 40 cm and

height of 50 cm, or diameter of 18 cm, and height of 38 cm. HLW may need

a different structure in order to store safely fuel assemblies and allow for their

transportation. Examples of containers for intermediate storage of spent fuel are

the CASTOR® (cask for storage and transport of radioactive material) and the
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Figure 2.17: Concept of the waste classification scheme from the IAEA [25].

CONSTOR® (concrete storage cask), produced by Gesellschaft für Nuklear-Service

(GNS), in Germany. They are 6 m long and about 2 m in diameter, and their

purpose is to store nuclear fuel safely, providing radiation shielding, dissipation

of heat and protecting it from impact [26]. Figure 2.18 shows some designs of

CASTOR®, for different types of fuel assemblies.

MST is most applicable to solid waste, already conditioned, and stored in

containers, for LLW, ILW or HLW. It is of particular interest to detect nuclear

fuel and other high-Z materials. However, another application to HLW will also be

shown, in which MST is used to measure the amount of gas present in a container,

that can be formed by spent fuel in HLW.

The methodologies used for characterising nuclear waste can be non-destructive

examination (NDE), which is the examination of physical and mechanical prop-

erties, non-destructive assay (NDA), which involves measuring radiation from the

waste (either spontaneous or induced), and destructive assay (DA), which involves

sampling the waste and chemically treating the samples in order to determine their
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Figure 2.18: CASTOR® designs for different types of fuel assemblies and HLW:
for fuel from pressurised water reactors (PWR) on the left, from boiling water
reactors (BWR) in the middle, and high-active waste (HAW) generated from the
reprocessing of spent fuel on the right [26].
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composition and activity [1]. In this section, only NDA methods will be mentioned,

since MST belongs to this category. In particular, NDA can be divided between

passive and active scanning methods.

Active scanning methods probe the samples with artificially introduced par-

ticles using radiation sources or particle beams. X-ray radiography is an active

scanning method, which uses a source of high-energy photons and a detector on

the opposite side to measure the photons that are were able to cross the sample.

This allows an image to be created, since the absorption of X-rays depends on the

density and thickness of the material. So, for example, high-Z materials can be

seen in concrete. In addition, neutrons can induce nuclear fission in uranium and

plutonium. The resulting emitted gamma rays have specific energies depending on

which nucleus fissioned. The main advantages of active neutron radiography over

the other techniques are that it allows for the identification of the isotopes present

in nuclear fuel and for the measurement of their amount. The general disadvan-

tages of active scanning methods are their high cost compared to passive methods

and the additional hazard created by the use of an external radiation source.

Passive scanning methods do not introduce artificial radiation sources. In most

cases, passive methods use detectors to measure radiation or heat naturally emit-

ted by the sample. Spontaneous decay of uranium and plutonium results in the

emission of neutrons and gammas, which can then be detected and used to find

these materials. The alpha particles emitted in these decays cannot be used in the

same way, because they are absorbed within a few millimetres from where they are

produced. The main disadvantage of this method is that some of these neutrons

and gammas can be absorbed by the concrete, especially if the container is large.

This would result in a signal dependent on the unknown location of the radia-

tion sources, and thus introduce a larger uncertainty in the isotope identification.

Calorimetry is an example of a passive scanning method, which measures the heat

produced by the sample. The heat is due to the radiation originating from all the

sources present in the sample, and it can be used to estimate the total radiation
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rate. It is used in waste that produces high levels of radiation, such as HLW and,

in some cases, ILW.

MST uses the naturally occurring cosmic-ray muons as scanning probes. How-

ever, as this is not an artificial source, MST can be considered a passive method.

It offers a good solution for characterisation of solid nuclear waste, because it is

sensitive to different atomic numbers, so it can both distinguish high-Z materi-

als such as uranium, plutonium, lead and tungsten, and low-Z materials such as

hydrogen pockets, from the concrete background, as will be shown in Chapters 4

and 5.

2.2.3 Algorithms for muon scattering tomography

Several algorithms have been developed to perform imaging of high-Z materials.

The most common algorithms found in literature will be discussed here: the Point

of Closest Approach, the Maximum Likelihood/Expected Maximisation and the

Scattering Density Estimation.

2.2.3.1 PoCA algorithm

The PoCA (point of closest approach) algorithm was the first one to be devel-

oped for MST, and is described in detail in [27]. The principle of this algorithm

is shown in Figure 2.19, which is in 2D for simplicity, although in practice it is

applied to 3D. The volume is divided in voxels. As the scattering angle tends to be

small, the path of the muon is at first considered to be a straight line connecting

the entry and exit points, and the voxels through which the line passes are selected.

It is assumed that there was only one scattering point, which is chosen to be the

point of closest approach of the extrapolated incoming and outgoing tracks, and a

signal S is assigned to the voxel that contains the point. This value is calculated

as

S =
∆θ2

x + ∆θ2
y

2L(1 + E2
p)
·
(
p̂

p0

)
, (2.5)

where ∆θx is the scattering angle in x, L is the height of the voxel, p̂ is the estimate

of the muon momentum, Ep is the fractional momentum uncertainty and p0 is
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reference momentum. The momentum is estimated from the multiple scattering

(this method is more detailed in Section 2.2.4). A value of 0 is assigned to the

other selected voxels. The scattering strength λ of each voxel is calculated as the

mean of S (including the ones of 0) from all the muons that crossed it.

Figure 2.19: Representation of the PoCA method [27]. Stochastic path of a muon
(a). Straight line apporoximation and selected voxels (b). Extrapolated incoming
and outgoing trakcs, and respective point of closest approach (c). Signal values
attributed to each selected voxel (d).

Results of the application of the PoCA algorithm to simulated materials are

shown in Figure 2.20. Three levels are attributed to different ranges of λ: high-Z

(λ > 20), medium-Z (3 6 λ 6 20) and low-Z materials (0.25 6 λ 6 3). Each of the

three simulated materials (tungsten, iron and carbon) produced a λ in one of these

ranges, and hence corresponds to one of these levels. Tungsten was measured as a

high-Z material (dark in Figure 2.20), iron as medium-Z (lighter colour) and carbon

as low-Z (the lightest colour). This results show that materials with very different

atomic numbers can be distinguished with the PoCA algorithm. It does not show,

however, if it is possible to distinguish between different materials with similar

atomic numbers (such as different high-Z materials), or how good the imaging

reconstruction can be (as there is some blurring for all blocks).

2.2.3.2 Expected Maximisation algorithm

The Maximum Likelihood/Expected Maximisation (ML/EM) [28], also applied

by others such as in [20], [2] and [29], first calculates the point of closest approach,

27



2. Theory and state of the art

Figure 2.20: Simulated 5×5×5 cm3 cubes of different materials (a) and respective
reconstruction with the PoCA algorithm (b) [27]. The darkest is tungsten, the
medium is iron and the lightest is carbon.

to obtain the scattering angle and offset. Then, from the simplified formula for

the scattering width

σθ = 15 MeV
βcp

√
H

X0
, (2.6)

where p is the muon momentum and X0 is the radiation length of the material, it

calculates a scattering density for a material as

λ(X0) =
(

15
p0

)2 1
X0

, (2.7)

where p0 is a nominal muon momentum and β = 1. The variance of the scattering

angle can then be obtained as

σ2
θ = λH

(
p0

p

)2

, (2.8)

For each muon, a scattering angle ∆θ and an offset ∆x are calculated and a

data vector is defined as

Di =

∆θi

∆xi

 , (2.9)

and a covariance matrix as

Σi =

 σ2
∆θi

σ∆θi∆xi

σ∆θi∆xi
σ2

∆xi

 , (2.10)

28



2. Theory and state of the art

The likelihood of the density profile λ is

P (D|λ) =
∏
i

P (Di|λ), (2.11)

where

P (Di|λ) = 1
2π|Σi|1/2

exp
(
−1

2D
T
i Σ−1

i Di

)
. (2.12)

The density profile to be calculated is the one that maximises the likelihood. This

is an iterative algorithm, which may need substantial computing resources.

Some examples of results using this method to perform imaging of nuclear

waste drums filled with concrete can be found in [29]. A steel drum was filled with

concrete and three different objects were encased in it, as shown in Figure 2.21. The

steel drum is 1.2 cm thick, with a height of 25.5 cm and a diameter of 17.5 cm. The

samples are a lead cube with 4 cm side, a uranium cylinder with 3 cm in height and

2 cm of diameter, and a brass cylinder with 2 cm in height and 4 cm of diameter.

The reconstruction of the scattering density λ for uranium and lead using the

ML/EM algorithm is shown in Figures 2.22 and 2.23, using data collected over 30

weeks. Both materials can be clearly seen in these images. It is also possible to

see that they have different sizes, but the shapes are blurred, due to the limitation

of the voxel size (5 × 5 × 10 mm3). The article claims that the amount of data

used is not indicative of the real time needed to determine the presence of high-Z

materials, and that there is indication of their presence within a “short timescale”.

However, this time is not given. Although good imaging results are shown, a

quantitative study in terms of the imaging performance and the time required to

obtain good images is essential to determine the efficiency of the method.

This method was also used to perform material discrimination, which is shown

in Figure 2.24, where λ is shown for different materials, in air and in concrete. The

two points furthest to the right for both cases correspond to lead and uranium.

It is clear that discrimination between lead and uranium is better when they are

in air than in concrete because the difference of their λ in air is larger than in
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Figure 2.21: Geometry of the experiment performed in [29]. Three different ma-
terials are encased in concrete: lead (top), uranium (centre) and brass (bottom).

Figure 2.22: Section containing uranium from the image reconstruction of the
drum in Figure 2.21. The colour scale is the most-likely λ value in each voxel [29].
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Figure 2.23: Section containing lead from the image reconstruction of the drum in
Figure 2.21. The colour scale is the most-likely λ value in each voxel [29].

concrete. The different λ for materials in air and in concrete is understood as

being due to the higher contribution of the scattering from the concrete along the

muon path, which reduces the contribution of the scattering in other materials.

The point for the external steel casing (effective Z of around 24) has a similar

λ to the corresponding point for steel in air because, although the steel drum

contains concrete, it is surrounded by air. The lines are exponential fits to the

data, showing an exponential dependence between λ and Z. This demonstrates

that material identification is possible, but a more detailed study is required, to

quantify the performance of the material discrimination, and to show how good it

is when using a shorter data taking time.

2.2.3.3 Scattering Density Estimation algorithm

The Scattering Density Estimation (SDE) algorithm, shown in [2, 31], starts

by calculating the point of closest approach for each muon. It then calculates a

scattering density for each voxel with a pitchfork method, which adds four ‘satellite

tracks’ around the incoming and outgoing muon trajectories (the dashed lines

shown in Figure 2.25). In order to obtain these tracks, a set of four perpendicular

vectors is randomly generated on the plane perpendicular to the muon track. Their
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Figure 2.24: Material discrimination using the ML/EM algorithm, using experi-
mental data [29]. The blue squares are the λ from different materials in air and
the red circles are for materials embedded in concrete. The lines are exponential
fits to the data.

32



2. Theory and state of the art

magnitude corresponds to the detector resolution. The scattering density for each

voxel is given by

λ =

[
Σiwi|µ̂i

2 − µ̂i
1| · |βcqi2|

]2
Σiwi(|di| · |βcqi2|)2|µ̂i

2 − µ̂i
1| · |βcqi2|

Σiwi(|di| · |βcqi2|)3 , (2.13)

where µ̂1 and µ̂2 are the incoming and outgoing muon trajectories respectively,

wi is the product of the weights given to the incoming and outgoing tracks (a

weight of 1/3 is given to the real track and 1/6 to the satellite tracks), and q is

the momentum vector. The sums are over the absolute value of the differences

between each of the 25 possible combinations of a pair of vectors, for each of the

5 incoming and 5 outgoing vectors.

Figure 2.25: Representation of the pitchfork method [2]. The central solid line is
the measured muon track and the four dashed lines are the randomly calculated
satellite tracks.

Figure 2.26 shows an image reconstruction of a simulated steel drum, filled

with paraffin wax and with a UO2 fuel pin. A day of muon data was used for

this simulation. The ML/EM algorithm, with 60 iterations, was used to produce

Figure 2.26a and the SDE algorithm for Figure 2.26b. The fuel pin is clearly visible

in both images. The performance of both methods for imaging this high-Z object

is comparable but, since the SDE method is not iterative, it can be faster than the

ML/EM, providing a good alternative.

2.2.3.4 Metric distance algorithm

A weighted metric distance algorithm, previously developed in the University

of Bristol, is described in [22] for nuclear security applications, and in [32] for
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(a) ML/EM (b) SDE

Figure 2.26: Scattering density per voxel, in arbitrary units, for a simulated UO2
fuel pin inside a steel drum filled with paraffin wax [2]. The image reconstruction
was done using the ML/EM algorithm with 60 iterations (a), and using the SDE
algorithm (b).

nuclear waste imaging. In Chapter 4 this method will be described and applied to

perform imaging of nuclear waste. It will also be shown how this algorithm can

be used to determine the amount of gas in a concrete container. This is a fast

algorithm, and the time that it takes to run is negligible compared to the data

taking time needed for imaging. As an example, although there is variability in

the run time, the algorithm takes about 25 minutes to analyse data corresponding

to 6 days of muon exposure.

2.2.4 Momentum measurement

The muon momentum is used in all the algorithms described in Section 2.2.3. It

is also possible to perform analyses without the momentum information, as will be

seen in several sections of this thesis. However, some of the algorithms mentioned

before require the muon momentum, or can be improved by using the momentum

information. Therefore, it can be beneficial to add the momentum measurement

to muon tomography systems.

In high energy physics experiments, muon momentum is measured by applying

a magnetic field: the lower the momentum, the more bent the particle track will

be. This can also be used to measure the momentum of cosmic-ray muons [33].
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Due to their relativistic speeds, measuring the muon momentum using time of

flight (TOF) requires detectors with very good timing resolution. An example of

this is a fast scintillator coupled to a silicon photomultiplier. In [34], it was shown

that fast scintillator crystals, such as LYSO:Ce (lutetium-yttrium oxyorthosilicate

doped with cerium) and LSO:Ce,Ca (lutetium oxyorthosilicate doped with cerium

or calcium), coupled to an SiPM (silicon photomultiplier) yield a time resolution

under 20 ps for a 150 GeV muon beam. Another example are multigap RPCs

(MRPCs), which are stacks of resistive plates separated by gas gaps, and where

the voltage is applied to the outermost plates. This detector has a better time

resolution than a single gap RPC because the variation on the position of the initial

electron cluster introduces a time jitter [35]. Therefore, RPCs with smaller gaps

(700 µm in this case) have better time resolution than larger gaps (for example,

the RPCs for the Bristol system use a 2 mm gap). Having multiple small gaps

allows for a detector with the same performance of one with a larger gap, as the

signal is the sum of all gaps, but with a better time resolution [36]. Results for the

TOF measurement of 150 GeV muons with a MRPC can be found in [37], which

had 5 gaps of 220 µm. The time resolution obtained was 70 ps. Table 2.2 shows

some values of the time a muon would take to cross a 3 m tall detector system,

for different values of momentum. The reported time resolution of 20 ps would

be good enough to measure the momentum for low-momentum muons using TOF,

while the resolution of 70 ps would not be useful to measure the momentum of

cosmic-ray muons.

momentum (GeV) time (ps)
0.1 14557.82
1 10062.62
2 10020.88
3 10013.13
4 10010.41
5 10009.16
10 10007.48
50 10006.95

Table 2.2: Time that a muon takes to traverse 3 m, as a function of the momentum.
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Another way to measure the muon momentum is to use the multiple Coulomb

scattering. This is for example described in [38]. If the material of the detectors

is known, the respective radiation length is also known. The scattering angle

between each detector layer is measured, and the momentum can be calculated

from the width of their scattering angle distribution, as seen in equation 2.3.

However, when applied to a muon scattering tomography system, this method

gives a poor momentum resolution of 100% to 200% (from preliminary results

of a feasibility study). It is possible to improve the resolution by introducing a

high-Z material, such as lead, between the layers to increase the scattering angles

(for example conceptualised for muon tomography in [27]), increasing the number

of layers, or increasing the spacing between layers. This concept is illustrated in

Figure 2.27, which shows a MST system with two upper and two lower detector

layers for muon tracking, and an added three more detector layers at the bottom,

separated by a known material, in order to measure the momentum using the

multiple Coulomb scattering information. The OPERA collaboration in [38] also

shows this momentum measurement technique, using several layers separated by

lead.

Figure 2.27: Illustration of the concept for momentum measurement using multiple
Coulomb scattering integrated in a muon scattering tomography system [27].
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analysis
Since it would be difficult to have access to real nuclear waste to test the

methods proposed in this thesis, Monte Carlo simulations were performed instead,

with a detector system tuned to match the performance of a real detector. Testing

novel methods using data from simulations is useful to show feasibility studies,

before investing more effort in a muon tomography system.

The different results shown in Chapters 4 and 5 use similar simulation setups

and analysis methods. This chapter describes the details of the simulations, track

fitting, and multivariate analysis method that are common to those chapters. The

application to simulate the muon tomography system includes muon detectors

and a test nuclear waste drum. Simulations were performed of muons arriving

from the atmosphere, producing hits in the detectors and scattering in the test

drum, to reproduce what happens in a real system. The simulations are described

in Section 3.1. The hits obtained in the simulated detectors are then fitted in

order to reproduce the expected muon tracks through the system and measure the

scattering they underwent in the sample. The method for track fitting is discussed

in Section 3.2.

A multivariate analysis method, the Fisher linear discriminant, was used for

different purposes in both Chapters 4 and 5. This method is explained in Sec-

tion 3.3, while its applications to the muon tomography data will be detailed in

the respective chapters.

3.1 Simulations

Simulations of a muon tomography system were performed in Geant4, which

is a toolkit developed to simulate the passage of particles through matter [39–

41]. The Geant4 version used was 9.4, including the muon processes of multiple
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scattering, ionisation, Bremsstrahlung and pair production. The cosmic muons

were generated by CRY, a library that generates muons according to the measured

energy and angle distributions [42]. These distributions were obtained for the CRY

software by simulating primary protons with energies between 1 GeV and 100 TeV

through a model of the atmosphere, creating showers of secondary particles. These

simulations were performed using MCNPX [43, 44] and benchmarked against other

simulation software and against cosmic-ray measurements, as seen in Figure 3.1.

As the particle distributions depends on the altitude, three altitudes are available

in CRY: sea level, 2100 m, and 11300 m, from which sea level was chosen. It

also depends on the effect of the magnetic at different latitudes, so the latitude of

51.46 deg was chosen, corresponding to the coordinate of the H. H. Wills Physics

Laboratory at the University of Bristol.

Figure 3.1: Muon spectrum at sea level [42]. The red circles are measurements
from [33] and the blue squares are from Monte Carlo simulations in [42].

Each simulation event corresponds to a single muon. In reality, it is possible

to detect multi-muon events, where two or more muons are detected after a single

trigger event. However, the multiple tracks in these events can usually be distin-

guished, by performing all possible linear fits of the hits in the different detector
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layers, and assigning the best fits as the most likely real muon tracks. Therefore,

the simulations did not create multi-muon events.

The concept of muon tomography was explained in Section 2.2. Tomography

requires the measurement of the incoming and the outgoing muon, hence detectors

need to be placed on either side of the object under test. Our default geometry

is shown in Figure 3.2, which was also used for the simulations. A 1 × 1 m2

plane was used as the initial source of the muons. There were 6 pairs of RPCs

in the simulation, with 3 pairs above and 3 under the sample, each with an area

of 1× 1 m2. In each detector pair, one RPC was used to define the position in x

and another in y. The RPCs were 6 mm thick, and made of glass. The spacing

between each xy pair was 19 mm, and 58 mm between each of the pairs. The

height between the upper and lower tracking systems was 548 mm. The drum was

placed in the centre of this space, which means that there were 274 mm between

the centre of the drum and both the upper and lower plates closest to the drum.

The test sample was a small concrete drum, consisting of a cylinder 40 cm long

and with 13 cm radius. This concrete cylinder was encased in a 1.5 cm thick steel

container. The base and cap of the steel container (the ends of the cylinder) were

2 cm and 3.5 cm thick. In order to simulate realistic RPCs, the detectors had a

resolution of 450 µm, which is close to the values measured in [45] and [46] (these

values will be shown in Section 3.1.1.2).

The key parameters of the materials used were taken from the Geant4 ma-

terial database [47]. The simulated concrete has a density of 2.3 g/cm3, the air

of 1.225×10−3 g/cm3, the lead of 11.35 g/cm3, the tungsten of 19.3 g/cm3, the

uranium of 18.95 g/cm3, and the plutonium of 19.84 g/cm3.

3.1.1 Simulation validation

The results shown in this thesis depend on simulations. Therefore, it is nec-

essary to prove the validity of these simulations by using realistic detector per-

formance and showing the comparison between results from simulations and ex-
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Figure 3.2: Illustration of the simulation geometry. The detectors have an area of
1 × 1 m2 and the concrete cylinder has a length of 40 cm and a radius of 13 cm.
The 10× 10× 10 cm3 block inside the concrete is an example of a material to be
found and identified.

periments. All performance parameters like the hit resolution are consistent with

measured with our prototype system [45]. This system will be briefly described.

3.1.1.1 Muon detectors: Bristol system

Since muons are charged particles, they can be detected with various different

types of radiation detectors. Several types of detectors have been used for muon ra-

diography and tomography, such as spark chambers [8], nuclear emulsion films [9],

scintillator bars [9], and micro-pattern gaseous detectors (Micromegas) [9].

The detectors used in the University of Bristol particle physics laboratory are

resistive plate chambers (RPCs), which are gaseous detectors. Additionally, plastic

scintillators, coupled to photomultiplier tubes, are used for coincidence triggering,

with one above and another below the system.

Resistive plate chambers have been developed since the 1980s [48]. They are a

good candidate for muon tomography applications because of their good detection

efficiency and low cost. They can be built with a good spatial resolution [46], and

they can have large areas. A photograph of a 180 × 60 cm2 RPC can be seen in

Figure 3.3.
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Figure 3.3: Resistive plate chamber (180× 60 cm2) [46].

An RPC consists of two parallel electrodes, to apply an electric field over a

gas volume encased between the electrode plates. Charged particles ionise the gas.

The resulting electrical charge drifts to an electrode, due the electric field, where

it induces a signal on metal strips. Combining the signal on several strips allows

to extract the position of the traversing particle. The RPCs are made of glass and

have a single gap, which include glass spacers, which are lines of glass touching

both side of the gap, in order to better maintain the gap size constant. They have

an active area of 50× 50 cm2. A printed circuit board (PCB) with 320 strips at a

pitch of 1.5 mm is glued on top of each chamber. This gives the readout position

in one direction, and the other chamber in the same cassette has the readout strips

perpendicular to the first. The gas mixture consists of about 95% of freon and

5% of isobutane. The components of an RPC detector are shown in an exploded

diagram in Figure 3.4. An example of the full system can be seen in Figure 3.5,

with a total of 16 RPCs: 8 cassettes (4 above and 4 below the scanning area),

containing 2 RPCs each can be seen.

3.1.1.2 Previous experimental results

The efficiency obtained for the RPCs in was between 87% and 95%. The sim-

ulated detectors were 100% efficient in order to be able to use all the simulated
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Figure 3.4: Exploded view of an RPC [46].

Figure 3.5: Muon telescope with 4 layers (each with a pair of xy RPCs).

muons that crossed the full height of the detector system, and because the real

efficiency is also high. The only difference when comparing the results from simula-

tion to real data would be a time factor (in reality it takes slightly longer to detect
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Layer Resolution (µm)
0 310
1 410
2 430
3 410
4 910
5 700
6 340
7 840
8 910
9 410
10 490
11 550

Table 3.1: Spatial resolution obtained for 12 50× 50 cm2 RPCs [45].

the same number of muons as in the simulation). The spatial resolution obtained

for 12 50 × 50 cm2 RPCs can be seen in Table 3.1 [45] and for 24 180 × 60 cm2

RPCs in Figure 3.6 [46]. The resolution values are between 300 µm and 1 mm.

However, most values are under 500 µm. A resolution value of 450 µm was used

in the simulations, as a reasonable value that can be achieved with a real system.

Figure 3.6: Spatial resolution obtained for 24 180× 60 cm2 RPCs [46].

The parameters of the simulated system used in this thesis were the same as

described in [22], whose algorithm (that will be explained in Chapter 4) was first

applied to simulations. These results were then compared to real data in [46], by

showing that it was possible to find a 9×9×9 cm3 tungsten block. This block was

used because the development of muon tomography systems and analysis methods
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at the University of Bristol was at first with the purpose of being used to find

special nuclear materials (SNM) in shipping containers. The tungsten block was

used as an SNM surrogate in experiments. Additionally, a different algorithm (not

used in this thesis) can be found in [49]. It is based on the same simulation work.

That paper compared results from simulations with other published EM results.

This showed that the simulations are consistent with the results of other groups

using different algorithms.

3.2 Track fitting

Muons scatter very little when crossing the 6 mm detectors, so their tracks

are approximated as a straight line through the upper detector layers and another

through the lower detector layers. The incoming and outgoing muon tracks are

therefore reconstructed by fitting a straight line through the hit positions measured

by the upper and lower detectors in the simulation. The incoming and outgoing

tracks allow for the calculation of the scattering angle and offset of the muons after

crossing the sample. The method for the track fit will be explained in more detail.

The output from Geant4 of the hit positions on the detector plates was analysed

with a ROOT [50] application that performed a fit of the upper and lower tracks,

as described in [22]. For a system with 3 pairs (for x and y directions) of upper

and 3 of lower detector layers, 12 hit points are obtained for each muon. A first fit

is performed separately for each 3 points in upper and lower, x and y directions,

to guarantee that a muon track is present, by accepting only fits with a χ2 under

a cutoff value. In the second step, all the 12 points obtained from an event are

fitted at the same time. The fit has 7 parameters, which are the 4 track slopes

(for upper and lower, x and y) and the 3 coordinates of the vertex position. This

is done by minimising, using MINUIT [51], the function

E = Ex + Ey. (3.1)
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Ex (and, analogously, Ey) is given by

Ex =
3∑
i=1

(hi − (vx + kx,upper · (zi − vz)))2

σ2
hi

+
6∑
i=4

(hi − (vx + kx,lower · (zi − vz)))2

σ2
hi

(3.2)

where hi are the measured hit positions, zi the vertical position of the detectors,

vx, vy, vz the vertex positions, k the track slopes, and σhi
the errors on the mea-

surement of the hit positions. As explained in Section 2.2, the scatter vertex point

calculated by the fit (Figure 3.7) is not a real point where the muon scattered,

since muons scatter in multiple points, but it is a useful approximation, as will

be seen in Chapters 4 and 5. The χ2 values from the 3-point fits and from the

combined fit are calculated and used as a cut: tracks with χ2 values above the

cutoff are discarded. Tracks with a reconstructed vertex outside the volume of

interest are also rejected.

Figure 3.7: Illustration of the vertex reconstruction principle. The angle is exag-
gerated for better visualisation.
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3.3 Fisher linear discriminant

The Fisher linear discriminant is a multivariate analysis (MVA) method that

was used in this thesis. MVA is a broad subject that comprises techniques to

combine several variables to classify data. In this case, it is used to separate the

data into two classes (which we can call signal and background) and requires three

steps. The first step is training, in which data samples, correctly identified as

signal or background, are analysed in order to calculate weights for each variable,

depending on how much they discriminated between the two classes. Finally,

the weights calculated for each variable are used to classify data of an unknown

category.

The Fisher linear discriminant was first developed by Ronald A. Fisher in [52]

for taxonomy applications, to classify different species of plants based on data

with several variables. In summary, this method finds the direction w in the

L-dimensional space, for L variables measured, so that orthogonally projected

samples, yi = wTxi, from the two classes onto w are better discriminated [53].

It is based on principal component analysis (PCA), but contrary to PCA, it is

supervised (the training data includes label information on the respective class)

and it also takes into account the spread of the data.

In the Fisher linear discriminant, the w direction maximises the difference

between the mean values (projected in the w direction) of classes 1 and 2, |µ̃1−µ̃2|,

weighted by their scatter (the spread of the data points around the mean). This

normalisation is done because if the points are projected on a direction that has

a large |µ̃1 − µ̃2| but also a large scatter, the classes can be more overlapped than

if projected on a direction with a smaller |µ̃1 − µ̃2| but a small scatter. So the

function to be maximised is

J(w) = (µ̃1 − µ̃2)2

s̃2
1 + s̃2

2
(3.3)
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where s̃c is the scatter for projected samples of class c, given by

s̃2
c =

∑
yi∈ class c

(yi − µ̃c)2

=
∑

yi∈ class c
(wTxi −wTµc)2

=
∑

yi∈ class c
wT (xi − µc)(xi − µc)Tw

= wTScw,

(3.4)

where Sc is the scatter matrix for each class (before projection), defined as

Sc =
∑

xi∈ class c
(xi − µc)(xi − µc)T . (3.5)

We can define matrices SB and SW as the scatter matrices between and within

classes, respectively,

SB =
∑
c

Nc(µc − x̄)(µc − x̄)T (3.6)

SW = S1 + S2 =
∑
c

∑
i∈c

Nc(xi − µc)(xi − µc)T , (3.7)

where µc and x̄ are

µc = 1
Nc

∑
i∈c

xi (3.8)

x̄ = 1
N

∑
i

xi = 1
N

∑
c

Ncµc, (3.9)

Nc is the number of points in class c and N is the total number of points. The

denominator of the ratio in equation 3.3 can be rewritten as

s̃2
1 + s̃2

2 = wTS1w + wTS2w

= wTSWw.
(3.10)
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The square difference between the projected means can also be rewritten as

(µ̃1 − µ̃2)2 = (wTµ1 −wTµ2)2

= wT (µ1 − µ2)(µ1 − µ2)Tw

= wTSBw.

(3.11)

Therefore, equation 3.3 can be expressed as [53, 54]

J(w) = wTSBw
wTSWw

. (3.12)

Intuitively, the direction that maximises the ratio in equation 3.12 has the largest

scatter between classes, relative to the scatter within classes, for samples projected

in that direction [55]. To maximise J(w), its derivative is set to 0 and solved for

w. Non-labelled data can then be classified, by being projected onto the calculated

direction w.

3.4 Summary

This section described the simulations performed of a muon tomography system

and a nuclear waste container. These simulations will be used in Chapters 4 and 5

to evaluate the imaging and material discrimination methods described in those

chapters. It was shown how the simulations were tuned using the resolution from

the real detectors and benchmarked against real data.

The track fitting algorithm was explained, which fits an upper and lower track

for each muon, as well as a scatter vertex. This vertex is not a real point where

the muon scattered, but it is a useful approximation, as the results in subsequent

chapters will show.

Finally, a description of the Fisher linear discriminant was given. This method

is a multivariate analysis, which combines different variables from 2 categories,

and is trained with known data in order to better classify unknown data into
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one of those categories. The Fisher linear discriminant will be used for different

applications in Chapters 4 and 5.
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4 | Imaging and edge finding
Performing imaging of nuclear waste drums can help identify the materials

present, as well as their amounts. Some algorithms have already been developed to

perform imaging of nuclear waste containers using muon tomography. This chapter

describes one of these algorithms [22, 23], and shows previous imaging results, in

Section 4.1. Section 4.2 shows an extension to this method to find edges of uranium

blocks in concrete with a very good resolution. Results both with and without

momentum information are shown. The existing imaging methods use the muon

momentum, but by not requiring momentum information, the method can be also

applied by systems without momentum measurement, which is important as it is

not feasible to measure the muon momentum with great precision. These imaging

methods were first developed and tested to find and image high-Z materials encased

in concrete. However, the oxidation of uranium present in nuclear waste leads

to the production of hydrogen. Therefore it is also necessary to determine the

presence of gas in containers. Section 4.3 shows results using the imaging method

to find gas bubbles in concrete and calculate the amount of gas in a container.

Discussion and conclusions are given in Section 4.4.

4.1 Metric distance method for imaging

The method described in [22] and applied to imaging in [32] uses an algorithm

based on the density of reconstructed vertices, that also takes into account the

scatter angle and muon momentum. This algorithm divides the volume into cubic

voxels and selects a fixed number of the most scattered tracks in each voxel. The

method relies on the fact that there is a larger density of high angle scatters in

high-Z materials, so the distance between two reconstructed vertices, divided by

their scatter angle, will be smaller. A further advantage is that highly scattered

tracks allow to extract a scattering vertex position with good precision, because a

vertex reconstructed from a low-scattering track has a larger uncertainty, especially
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in the vertical direction. The metric distance is also weighed by the momenta of

both muons because a highly scattered muon with a large momentum is more

likely to have scattered in a higher Z material, while a highly scattered muon with

a low momentum could also have been scattered by lower Z nuclei. For each pair of

selected vertices reconstructed in a voxel, a weighted metric distance is calculated

as

mij = ‖vi − vj‖
(θipi)(θjpj)

, (4.1)

where vi is the reconstructed vertex position of muon i, θi its scatter angle and pi

its momentum (if it is available). This is done for a fixed number of vertices in

each voxel in order to make the resulting distribution equivalent for all voxels. The

distributions of the natural logarithm of the weighted metric distance were used.

Figure 4.1 shows these distributions for 4 different 1 cm3 voxels: with only uranium

or concrete, both far and close to the edge of a uranium block. The distributions

for uranium and concrete far from the edge are well separated. However, the

distributions of each material at the edge between concrete and uranium are partly

overlapped.

Figure 4.1: Distributions of ln(m) for 4 voxels: with only uranium or concrete,
both far and close to the edge of a 10× 10× 10 cm3 uranium block.

The median of ln(m) from each voxel was used as a discriminator value: as

it is clear in Figure 4.1 the median is lower for higher radiation length materials.
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In Figure 4.2 the first imaging results of a simulated drum using this method

are shown, where the colour scale corresponds to the discriminator value (red

is a lower and blue a higher value) [23, 32]. It can be seen that this method

allows to distinguish high-Z materials from the concrete background. It used data

corresponding to 2 weeks of muon flux, divided in 4 different rotations (0°, 90°,

180°, 270°), and using true momentum information. The fixed number of most

scattered tracks per voxel was chosen to be 70 because it guarantees that all the

voxels in the volume of interested have enough tracks to be included. In this

example, it is possible to see the steel flanges from the steel drum, a (0.5 × 10 ×

10 cm3 uranium sheet, a uranium rod with 1 cm radius and 10 cm height, and two

1 cm thick tungsten pennies with 2 cm and 4 cm diameter. It is also possible to

distinguish a cylindrical air enclosure with 10 cm radius and 5 cm height. The only

high-Z object that is not visible by eye in the image is the 1 cm diameter tungsten

penny. An edge finding method was also developed in that article, resulting in a

resolution of 1.2± 0.4 mm for uranium blocks. A new edge finding method, which

will be described in Section 4.2, was later developed, showing an improvement on

the resolution, as well as new results without momentum information.
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Figure 4.2: Imaging of high-Z and high density materials in a simulated concrete
container using the metric distance method. The colour scale corresponds to the
discriminator value, where red is lower and blue is a higher value. A region of
lower density material (air) can also be seen [23, 32].

4.2 Edge finding

Figure 4.2 shows that lumps of material can be distinguished from concrete by

eye. This raises the question of whether it is possible to measure their size. To this

purpose, a method for determining edges of uranium blocks encased in concrete was

developed and tested in simulations. Several simulations of the concrete cylinder

described in Section 3.1 were performed, each containing a block of uranium with

different sizes. The length of the blocks along the cylinder ranged from 0.2 cm to

10 cm. Blocks with a length of 3 cm or more were cubic, while smaller blocks had

a width and height of 3 cm.

For the case of the edge finding, the fixed number of most scattered tracks was

chosen to be 26. It is not obvious that using as many tracks as possible would yield

the best results with this method, because the chosen tracks are the most scattered

ones. Therefore, using more tracks will not necessarily add more information. The

value of 26 was chosen because it results in enough data for the metric distance
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distributions (the combination of pairs of 26 vertices results in 325 entries of mij in

each voxel), and because, when using more tracks with the chosen muon exposure

time of 5.8 days, some concrete voxels did not have enough tracks to be included.

4.2.1 Previous edge finding method

In the previous edge finding method [32], the distribution of ln(mij) was plotted

for each voxel and it was fitted with a Landau distribution, where the peak location

was fixed to the value for the metric distance obtained when only using concrete

or uranium. For each voxel the ratio of the amplitude of the fitted Landau for

concrete and uranium was calculated. To obtain a good resolution determining

the edges of the blocks, this was done for several grids, with the same voxel size but

each shifted by 1 mm in the direction of the edge scanning (the x-axis, along the

length of the concrete cylinder). When defining the start and finish of each block

as the voxel where the amplitude fraction exceeded 99% for uranium, a resolution

of 1.2±0.5 mm was obtained using 25 days of muon data.

4.2.2 New edge finding method

In the new method shown in this thesis, the distributions of ln(mij) were fitted

with a Landau distribution convoluted with a Gaussian. This was proven to be

a better fit than only a Landau distribution. Figure 4.3 shows the distribution

of ln(mij) for a voxel inside uranium fitted with a Landau (Figure 4.3a) and a

Landau convoluted with a Gaussian (Figure 4.3a). A goodness of fit χ2 test was

performed. Using Figure 4.3 as an example, the χ2 test on the Landau only fit

resulted in a p-value < 0.00001, while the Landau and Gaussian fit resulted p-value

of 0.9999. Therefore, it the Landau convoluted with a Gaussian fits this metric

distance distribution better than the Landau alone.

An example of the metric distribution for a voxel in a uranium block and a

voxel in concrete, including the fit, can be seen in Figure 4.4. It is clear that

the distributions have different positions and shapes. This indicates that the edge
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Figure 4.3: Distribution of the logarithm of the metric distance for a voxel inside
uranium, fitted with a Landau (a) and a Landau convoluted with a Gaussian (b).

between uranium and concrete could be better defined than with the previous

method by combining different variables from these distributions.
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Figure 4.4: Distributions of the logarithm of the metric distance for a voxel inside
uranium and a voxel in concrete, as well as respective fit with a Landau distribution
convoluted with a Gaussian.

A multivariate analysis (MVA) was performed to classify each voxel as concrete

or uranium. The MVA method used was the Fisher linear discriminant, and the

value used was the Fisher probability output, which is between 0 and 1, where

a voxel with probability of 0 is more likely to be in concrete and 1 to be in

uranium. Details about the Fisher linear discriminant can be found in Section 3.3.

Variables for the MVA were obtained from the metric distribution. These were

the maximum value and respective bin position, and from the fit of a Landau and
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Gaussian: their widths, peak positions and peak amplitudes. The training data

were simulations with a sample of 1 cm3 voxels with pure concrete (from a tube

filled with concrete) and another of 1 cm3 voxels with pure uranium (at the edges

of 4 × 4 × 4 cm3 blocks encased in a concrete tube), and its output can be seen

in Figure 4.5. It is clear that it is possible to separate concrete from uranium

voxels, since most concrete voxels result in a Fisher probability value close 0, and

uranium to 1. Additionally, it can be seen in Figure 4.5b, in a logarithmic scale,

that there are very few entries which are neither close to 0 nor 1. As, in practice,

the muon momentum is either not measured, or measured with a large uncertainty,

the momentum was not used in these results. Instead, the fixed value of 3 GeV,

which is the peak of the energy spectrum of cosmic muons at sea level, was used

as the momentum for the calculation of the metric distance mij. Section 4.2.4 will

show results for an ideal system that measures the muon momentum.
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Figure 4.5: Output from the training with the Fisher linear discriminant without
momentum information, using samples of pure concrete and pure uranium. In (b)
the same data are shown in a logarithmic scale.

The metric distributions were obtained, and MVA performed, for 1 cm3 voxels.

The grid that divides the volume in voxels was then shifted by 1 mm along the

concrete cylinder, and the analysis was carried out for the new voxels. This was

done for 9 grid shifts, until the shift matched the first grid. A Fisher probability

value was therefore obtained for sections of 1 mm, which allows for a more precise

measurement of the edge than using just the 1 cm side voxels. For each uranium

block size, 5 simulations were performed, using the amount of muons corresponding
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to 139h (or about 5.8 days), with 7000 muons per m2 per minute. With this rate,

the total data taking time for the 5 simulations corresponds to 29 days.

4.2.3 Results

In order to quantify its quality, the edge finding method was applied to sim-

ulated uranium blocks of different lengths, ranging from 0.3 cm to 5 cm, which

were then measured from the method output. The Fisher probability output for

reconstruction of the blocks is shown in Figure 4.6. Each point in these figures is

the average of the values from the 5 simulations with the same block size for single

voxels along x, at fixed y and z values. Unlike in the training, the Fisher proba-

bility is not exactly 1 for the uranium region. However, the Fisher probability for

most points in the concrete background was zero, so it is possible to distinguish

the uranium from the much lower concrete background, and consequently recon-

struct the block length. These were measured by taking the region between the

first and the last point whose ξ was above a given threshold, for a range where

at least two consecutive points were above zero. Thus a single spike above the

threshold is considered concrete, but more consecutive points above the thresh-

old are considered uranium. The threshold value was chosen by testing different

thresholds, as seen in Table 4.1. The chosen value was 0.1 for several reasons.

Firstly, it resulted in the most accurate reconstructed lengths. Secondly, the de-

crease in the reconstructed lengths with the threshold increase was not linear for

all lengths, therefore there would be varying accuracies for different lengths if the

threshold were higher. Lastly, although the value of 0.1 seems low, it is high when

compared to the points classified as concrete, which had values of the order of

10−12 to 10−10. Uncertainties on the measurement of the length of each block were

calculated by performing the same length measurement for 5 different simulations

with data corresponding to about 5.8 days of muon flux each, and calculating the

standard error on the mean. Blocks of 0.3 cm or smaller yielded an output that

would be interpreted as only concrete, as Figure 4.6a shows for a 0.3 cm block.
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Figure 4.6: Fisher probability outputs, ξ, as a function of the x coordinate for
different uranium block sizes without momentum information.
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Real length Reconstructed length for each threshold (cm)
(cm) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5 0.7 0.6 0.5 0 0 0 0 0 0
1 0.9 0.9 0.9 0.9 0.8 0.7 0.5 0.4 0
1.5 1.5 1.4 1.2 1.1 0.6 0.4 0.3 0.2 0.3
2.25 1.9 1.9 1.9 0.8 1.9 1.7 0.9 0.8 0.2
3 2.2 2.2 1.9 2.2 0.3 0.3 0 0 0
4 2.9 2.9 2.9 2.9 2.8 2.8 2.8 2.7 1.5
5 3.9 3.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Table 4.1: Reconstructed lengths using different threshold values for the Fisher
probability output.

The reconstructed sizes versus the real sizes are shown in Figure 4.7. It is

clear that there is a monotonic relation between the reconstructed and simulated

lengths, and the respective linear fit is given by

Reconstructed Size = (0.65± 0.08)× Real Size + (0.34± 0.03) cm. (4.2)

Although it was possible to perform a good linear fit, the linear function ob-

tained has an offset from zero, and its slope is not 1, which implies that the

simulated length cannot be reconstructed directly from the length measured with

this method. This is likely due to the fixed size of the 1 cm voxels, and to the

“mixing region” around the uranium blocks, where some vertices of muons that

scattered in uranium are reconstructed in concrete and vice-versa: for blocks that

are close to the voxel size or smaller, most voxels from the 1 mm shifts contain

the mixing regions from both sides of the block, stretching their measured length,

while for larger blocks the voxels at each edge only contain the mixing region of the

respective edge. Therefore, it is necessary to correct the reconstructed values to

obtain a 1:1 correspondence with the real sizes. Each point was corrected by per-

forming the fit excluding that point and using the resulting equation to obtain the

corresponding corrected length. Excluding the point to be corrected is necessary

to guarantee that the correction is independent of the data from this particular

simulation. In a real scenario, new data would be obtained, so the parameters

from Equation 4.2 could be used instead, and the real size would be calculated as
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Real Size = (Reconstructed Size − 0.34)/0.65. The corrected results can be seen

in Figure 4.8. They were fitted with a line of equation

Reconstructed Size = (1.06743± 3× 10−5)×Real Size− (0.11593± 9× 10−5) cm.

(4.3)

Having a slope close to 1 and an intercept value close to 0 is good, as it shows a

direct correspondence between the real and corrected values.

The uncertainty in the reconstructed length is independent on the real size.

This can be seen from the size of the error bars, which indicate the error on

the mean of 5 simulations for the same real size. Because of this and since the

reconstructed size is linearly dependent on the real size, we can combine all data

points in this graph to calculate the position resolution as the standard deviation

of the reconstructed minus the real size, as

σ =
√∑

i(lt,i − lr,i)2

n− 1 , (4.4)

where lt,i is the true simulated size, lr,i the reconstructed sizes, and n the number

of data points used. The value obtained was σ = 3.2 ± 0.6 mm. The smallest

length that was possible to measure with this method was 0.5 cm.

4.2.4 Results using momentum information

The method above does not use the momentum information in the determi-

nation of the discriminator because, in reality, it is difficult to determine the mo-

mentum as, in a system such as the one simulated, the only information on the

momentum can come from the multiple scattering in the detectors. However, it is

of value to perform the same study using the true momentum to show how that

information can improve the results, and to compare with a previous edge finding

method that used true momentum information [32]. Therefore, the same method

was applied using momentum information to uranium blocks with lengths from

0.2 to 10 cm. The training for the MVA was also done with momentum since this
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Figure 4.7: Reconstructed lengths as a function of the real lengths without mo-
mentum information before correction, including the linear function fitted to the
data.
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Figure 4.8: Reconstructed lengths as a function of the real lengths without mo-
mentum information, after correction.
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changes the distribution of the metric distance. The concrete voxels used to obtain

the training data were from a tube filled with concrete and the uranium voxels

were the ones from the edges of a 18 × 18 × 18 cm3 block encased in a concrete

tube. The Fisher probability output from the training data with pure concrete

and pure uranium voxels can be seen in Figure 4.9. The difference in geometry

for the training with and without momentum information may account for the

apparently better classification after the training without momentum (Figure 4.5)

than with momentum (Figure 4.9). However, when applied to new data, including

the momentum improves the results.
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Figure 4.9: Output from the training with the Fisher linear discriminant using
momentum information, with samples of pure concrete and pure uranium. In (b)
the same data are shown in a logarithmic scale.

Figure 4.10 shows examples of the Fisher probability output for the reconstruc-

tion of 0.5 cm and 3 cm block lengths. For the study using momentum information,

the reconstructed length of the blocks was considered to be from the first voxel

which had a probability value over 0.9 to the last voxel over this value. The un-

certainties were calculated as in the study without momentum. Figure 4.11 shows

the reconstructed sizes as a function of the simulated sizes. The linear relation

obtained was

Reconstructed Size = (0.76± 0.01)× Real Size + (0.44± 0.02) cm. (4.5)
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With this equation, the reconstructed sizes were corrected, as shown in Figure 4.12.

Figure 4.13 is the same graph, but zoomed in on the lengths under 2 cm. The

correction was performed in the same way as for the previous points without

momentum information: a fit was done with a point omitted, and that point was

corrected using the resulting equation. The linear fit performed over the corrected

values follows equation

Reconstructed Size = (0.998716±7×10−6)×Real Size+ (0.03117±3×10−5) cm.

(4.6)

The resolution obtained using momentum information was σ = 0.98 ± 0.03 mm,

which shows an improvement over the previous result in [32]. As expected, the res-

olution is better than the one without momentum information (σ = 3.2±0.6 mm).

It was also possible to measure smaller lengths when using the momentum, down

to a 0.2 cm length.
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Figure 4.10: Fisher probability output, ξ, as a function of the x coordinate for a
0.5 cm (a) and a 3 cm block (b) of uranium inside concrete.

The new edge finding method was shown to improve the resolution over the

previous method, and to allow the measurement of the edges of uranium blocks in

a more realistic case without momentum information.
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Figure 4.11: Reconstructed lengths as a function of the real lengths before correc-
tion using momentum information, including the linear function fitted to the data
(equation 4.5).
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Figure 4.12: Reconstructed length as a function of the real length using momentum
information, after correction.
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Figure 4.13: Reconstructed length as a function of the real length for the smallest
lengths using momentum information, after correction (Figure 4.12 zoomed in the
small values).

4.3 Low-Z materials

It has already been shown in Sections 4.1 and 4.2 that it is possible to perform

imaging of high-Z materials in concrete drums, but it is also important to find gas

pockets in nuclear waste, to predict any overflowing. In several countries, nuclear

waste can be stored in bitumen instead of concrete. Uranium and other metals

present in nuclear waste can oxidise, producing bubbles of hydrogen gas, which can

move in the bitumen and possibly accumulate in bigger bubbles. It has already

been observed that a large amount of gas can be trapped in real containers: sealed

220 L drums of bitumenised waste that were filled to 180 L have been found to

overflow, which shows that the accumulation of gas can make the content of the

containers expand by 20% of their volume.

Since the concrete has higher atomic number and density than gas, the muon

scatter angle distribution will be different for both materials. This was already

seen for example in Figure 4.2, where an air enclosure can be seen, but a method

to measure the volume of gas had not been developed.

The metric method was also used to measure the amount of gas embedded in

concrete. Just like the imaging method from [32] and summarised in Section 4.1,
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the discriminator value chosen was the median of the metric distance distributions

from every voxel in the volume. This value is plotted in Figure 4.14, for steel drums

full of air and concrete. Several variables from this distribution were studied: the
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Figure 4.14: Distribution of the discriminator for air and concrete. Each entry
corresponds to a 1 cm3 voxel.

mean, the skewness, the kurtosis and the RMS. The dependence between each

of these variables and the bubble volume can be seen in Figure 4.15. The first

point of each graph corresponds to a drum full of gas and the last point to a drum

full of concrete. RMS was rejected as a discriminator because it had the lowest

slope. Kurtosis was also rejected because it was not monotonic for low volumes,

unlike the other variables. Therefore only the performance of the mean and the

skewness were compared. For a preliminary comparison between the performance

of the mean and the skewness, and also between using 72 million muons and 159

million muons, three points were used, for the volumes of 7,125 cm3, 4,423 cm3

and 2,001 cm3. The resolutions were calculated as r = ∆V
V

and are shown in

Table 4.2. The best resolutions can be seen in the last column of the table, which

corresponds to using the mean, with 159 million muons. Therefore, the mean

was found to be the most sensitive variable to the amount of gas in a concrete

container. By calculating the mean of several containers with different gas bubble

volumes, their volumes were measured, as will be described in the next section.

The chosen number of muons corresponds to an exposure time of about 15.8 days

at the rate of 7000 muons per m2 per minute.
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(a) Mean. (b) Skewness.

(c) Kurtosis. (d) RMS.

Figure 4.15: Variables obtained from the discriminator distribution. In each graph,
the first point was obtained from a drum full of gas and the last point from a drum
full of concrete.

Gas volume Resolution (using the skewness) Resolution (using the mean)
(cm3) 72M muons 159M muons 72M muons 159M muons
7,125 4.8% 30% 3.9% 0.9%
4,423 4.4% 88.2% 6.1% 3.8%
2,001 34.7% 103.8% 20.1% 3.5%

Table 4.2: Resolution of the bubble volume measurement obtained using the mean
or the skewness, and using 72 million muons or 159 million muons.
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A study was performed to determine the best fixed number of tracks for each

voxel. Figure 4.16 shows the mean of the discriminator for 2 cm slices along the

concrete drum, for a drum with one gas bubble and a drum with two bubbles,

using different fixed numbers of tracks (15, 25, 35 and 45 tracks). It can be seen

that using 35 tracks results in a better distinction between the drum with one

bubble and the drum with two bubbles, than the other chosen values. This is a

larger number of tracks than the one used for the edge finding method, which was

expected because the chosen exposure time is longer.

(a) 15 tracks. (b) 25 tracks.

(c) 35 tracks. (d) 45 tracks.

Figure 4.16: Mean of the discriminator for 2 cm slices of the volume in the x
direction, for a drum with a 4.4 L gas bubble and a drum with two 2.2 L bubbles,
for different fixed number of tracks.

4.3.1 Total amount of gas

To evaluate this method when applied to measure the gas volume present in a

contained, several concrete containers were simulated, with air bubbles of different

sizes. The container shape and size was the same as detailed in Section 3.1.

The simulated bubbles were cylindrical, with different volumes, with varying

radius and length. Their dimensions are shown in Table 4.3. For each configura-

tion, the metric distance distributions were calculated (using the 35 most scattered
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tracks) and the discriminator value was obtained from those distributions. Finally,

the mean of the discriminator value, µdiscr was calculated. Figure 4.17 shows a

monotonic dependence of µdiscr on the volume of the gas bubble. It is clear that

µdiscr depends only on the bubble volumes and not their shapes (which are shown

by the different radii and lengths in Table 4.3). This dependence was parametrised

and fitted with a linear function in a range starting at 1 L (because for smaller

volumes there is no linear dependence). The line equation obtained for the mean

as a function of the volume V was

µdiscr = (6.0± 0.2)× 10−6 V + (10.010± 0.002). (4.7)

Each bubble volume was reconstructed by performing a linear fit excluding the cor-

responding point, and using the parametrisation obtained to calculate the volume

for that point. Figure 4.18 shows the reconstructed bubble volumes as a function

of the simulated volumes. These values are also shown in Table 4.3. Figure 4.19

shows the relative uncertainties on the volume reconstruction of bubbles of 1 L or

more. It can be seen that for 1 L bubbles the relative uncertainty obtained was

approximately 20%. The resolution for the volume reconstruction for bubbles of

2 L or more was 1.6 ± 0.8%, which is the standard deviation obtained from the

Gaussian fit to these uncertainties (Figure 4.19). This shows that it is possible to

reconstruct these gas volumes with a good resolution.

The measurement of the total gas volume in a concrete container was performed

using a single cylindrical gas bubble, placed in the centre of the drum, for each

volume measured. However, it is important to determine if the results would be

influenced by the position and shape of the bubble. The different shapes of these

cylinders, shown in Table 4.3, suggest that the method does not depend on the

shape of the bubble. To confirm this, the study was also performed using spherical

bubbles, comparing them to the cylindrical bubbles. In order to determine if the

location of the bubble in the drum would alter the results, the study was also

done with a spherical bubble shifted away from the centre of the concrete drum.

70



4. Imaging and edge finding

Radius (cm) Length (cm) Volume (L) Reconstructed volume (L)
2 4 0.050 0.2 ± 0.2
2 5 0.063 0.3 ± 0.2
2 6 0.075 0.1 ± 0.2
3 9 0.254 0.2 ± 0.2
4 10 0.503 0.7 ± 0.2
5 15 1.178 1.3 ± 0.2
7 13 2.001 2.0 ± 0.2
7 19 2.925 3.0 ± 0.2
8 22 4.423 4.3 ± 0.2
8 30 6.032 6.0 ± 0.2
9 28 7.125 7.1 ± 0.2
10 30 9.425 9.4 ± 0.3
11 34 1.2925 13.1 ± 0.3
12 38 17.191 17.1 ± 0.4
13 40 21.237 21.3 ± 0.4

Table 4.3: Radius, length and volume of the simulated cylindrical air bubbles and
respective reconstructed volumes.
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Figure 4.17: Mean of the discriminator distribution as a function of the volume of
the air bubble.

Finally, the method was applied to simulations with two spherical bubbles with

the same volume, to show if the total gas volume can be measured when it is

split in two bubbles. Figure 4.20 shows the results from these studies. The values

of µdiscr obtained for these four different geometries are the same within errors,

demonstrates that the method does not depend on the shape or position of the
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Figure 4.18: Reconstructed volume as a function of the generated volume of the
bubble using the mean of the discriminator distribution.
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Figure 4.19: Relative uncertainties on the reconstructed bubble volume, for bub-
bles of 1 L or more. The parameters obtained from the Gaussian fit (shown in
red) were µ = 0.6±0.7% and σ = 1.6±0.8%. The entry on the left of the graph is
the relative uncertainty on the volume reconstruction of a 1 L bubble, which was
excluded from the calculation of this resolution.
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bubbles. This shows the robustness of the method and its applicability to real

waste drums.

Figure 4.20: Mean of the discriminator distribution as a function of the volume
of the air bubble for different simulation geometries: a single spherical bubble, a
spherical bubble shifted from the centre, two spherical bubbles (each with half of
the total gas volume) and a single cylindrical bubble. The actual volume of gas
corresponding to each point is the one from the single spherical bubble series, and
a small horizontal offset was applied to the other points to make the results visible.

4.3.2 Localisation of gas bubbles

In the previous results the amount of gas in a single bubble in a container

was measured. It was also shown that the method gives the same results when

measuring the total gas volume when it is split into two bubbles. Therefore, a

different technique is required if one wants to determine if the gas is in only one

bubble, or split in more than one smaller bubbles. This is important for the

risk assessment of each container, since a large bubble poses a higher risk than

several separated smaller bubbles. To determine the position of the bubbles, the

mean of the discriminator was plotted for slices of the container. The simulations

performed for this study used spherical bubbles. Figure 4.21 shows the mean for

2 cm slices along X for a concrete container with one 3 L bubble (which is seen in

the middle) and for a container with two separate bubbles of 1.5 L each, as well

as for a container with only concrete. Figure 4.22 shows the same thing, but for a

4.4 L bubble compared to two 2.2 L bubbles. The bracket lengths correspond to
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the diameter of each bubble. The edges of the graphs have a higher µdiscr because

these sections are located in the air outside the container, and the points with

lower µdiscr just inside the edges correspond to the steel caps of the drum. Slices

in the concrete have a higher µdiscr value, and it can be seen that the µdiscr is

even higher where bubbles are located. In the slices outside the bubbles, and at

the edges of the bubbles (which correspond to the edges of the brackets), it can

be seen that the µdiscr values are the same within errors for the drum with only

concrete and the ones with bubbles. However, in the centre of the bubbles, the

µdiscr value is higher than the value obtained for the concrete.

Figure 4.21: Mean of the discriminator for 2 cm slices of the volume in the x
direction, for a drum with a 3 L gas bubble, and a drum with two separate bubbles
of 1.5 L bubbles. Each bracket length represents the diameter of the corresponding
bubble.

To determine the location of the bubbles, the significance of the difference

between µdiscr from the container with bubbles and from the container with only

concrete was calculated. These values can be seen in Figures 4.23 and 4.24, for a

total amount of gas of 3 L and 4.4 L, respectively. A value of 3σ was chosen as a

threshold to detect bubbles. In Figure 4.23a, the bubble is found between the 25

and the 27 cm slices, and in Figure 4.24a, it is found between the 21 and the 31 cm

slices). In Figures 4.23b and 4.24b, where the same volume of gas is divided in two

separate bubbles, the calculated differences are lower and, although two regions of

higher differences can be seen, one for each bubble, these values are not over 3σ
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Figure 4.22: Mean of the discriminator for 2 cm slices of the volume in the x
direction, for a drum with a 4.4 L gas bubble, and a drum with two separate
bubbles of 2.2 L bubbles. Each bracket length represents the diameter of the
corresponding bubble.

(except for one of the slices from the right-side bubble in Figure 4.24b). It has

been shown in the previous section, in particular with Figure 4.20, that the total

amount of gas can be measured even if it is divided in two bubbles. Therefore, if

the total volume of gas from the containers in Figures 4.23b and 4.24b is measured,

it is possible to conclude from these graphs that the gas is not located in one single

bubble. This proves that this technique can distinguish between a container with

one single bubble (or a big conglomerate of bubbles) and the same gas volume split

in separate regions of the container, which is important for the risk assessment of

the drums.
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Figure 4.23: Difference of µdiscr in each slice, between a 3 L bubble and a concrete
container (a) and between two 1.5 L bubbles and a concrete container (b), divided
by its error.
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Figure 4.24: Difference of µdiscr in each slice, between a 4.4 L bubble and a concrete
container (a) and between two 2.2 L bubbles and a concrete container (b), divided
by its error.

Additionally, the bubble shown in Figure 4.24a was also simulated in different

positions in the drum, shifted from the centre by 2, 4, 6, 8 and 10 cm. This can

be seen in Figure ??. It is clear that a shift from the centre makes the bubbles

harder to detect, shown both by having fewer points over 3σ and by the larger

spread of values in the bubble region, when compared to Figure 4.24a. This is due

to the smaller angular resolution and the lower acceptance closer to the edges of

the scanned volume than at the centre.

In order to make the waste drum more realistic and show that it is still possible

to locate a gas bubble next to uranium, a 3× 3× 3 cm3 uranium block was added

to the geometry, 1 cm away from the edge of the bubble. Figure 4.26 shows the

results obtained for this volume, compared to a drum containing only concrete.

The uranium block is found where µdiscr is lower than the concrete baseline (slices

at 13-15 cm) and the bubble where it is above (slices at 23-27 cm).

4.3.3 Time needed to detect a gas bubble

In order to determine how long a container needs to be scanned for a gas

bubble to be found, plots were obtained for different scanning times. These can be

seen in Figure 4.27. The difference of µdiscr between each slice of the waste drum

containing the 4.4 L bubble and the drum containing only concrete (in Figure 4.22)

76



4. Imaging and edge finding

X plane [cm]
0 10 20 30 40 50

di
ffe

re
nc

e/
er

ro
r

1−

0

1

2

3

4

5

6

(a) 2 cm shift.
X plane [cm]

0 10 20 30 40 50

di
ffe

re
nc

e/
er

ro
r

1−

0

1

2

3

4

5

6

7

(b) 4 cm shift.
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Figure 4.25: Difference of µdiscr in each slice, between a 4.4 L bubble and a concrete
container, for different positions of the bubble in the drum: shifted from the centre
by 2, 4, 6, 8 and 10 cm.
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Figure 4.26: Mean of the discriminator for 2 cm slices of the volume in the x
direction, for a drum with a 2 L gas bubble and a uranium cube 1 cm away from the
edge of the bubble, and a drum with only concrete. Each bracket length represents
the diameter of the corresponding bubble or uranium block length respectively.

was calculated (only for the slices inside the drum). This difference was calculated

for each slice, then integrated and divided by its error, as

weighted difference =

∑
slices

(µbubble − µconcrete)√ ∑
slices

(σ2
µbubble

+ σ2
µconcrete)

, (4.8)

where µbubble and µconcrete are the µdiscr from a slice in the drum with a gas bubble

or in the drum with only concrete, respectively. This weighted difference is shown

in Figure 4.28 as a function of the scanning time. If the minimum value to detect

a bubble is chosen to be 3σ, the graphs shows that it takes about 9 days to find a

4.4 L bubble. It can be seen that for longer scanning times than 11 days the ratio

of the integrated difference remains approximately constant, as the difference mea-

surement itself does not improve anymore. The point at 5.4 days shows a negative

integrated difference, which is due to statistical fluctuations in the simulations.

This is proven by Figure 4.27b, which shows several points corresponding to the

concrete to be below the uranium, but most of which within error bars.
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Figure 4.27: Mean of the discriminator for 2 cm slices of the volume in the x
direction, for a drum with a 4.4 L gas bubble and a drum with only concrete for
different scanning times. Only points for the slices inside the drum are shown,
because these were the ones used to calculate the integrated difference.
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Figure 4.28: Integrated difference of µdiscr divided by the error in each slice, be-
tween a 4.4 L bubble and a concrete container.

4.4 Discussion and Conclusions

It has been shown in this chapter that it is possible to use MST to perform

imaging of concrete nuclear waste containers, in particular to find lumps of high-Z

materials, defining edges of uranium blocks, measuring the amount of gas present

in a waste drum, and finding large gas bubbles.

The imaging results using the metric distance method, showing lumps of high-

Z materials, had been previously developed, and published in [32], as well as

a first edge finding method, with a resolution of σ = 1.2 ± 0.4 mm, and with a

smallest length measured of 5 mm. However, these results used the true momentum

information, which is not a realistic assumption since most muon tomography

systems cannot measure the momentum, or do not have a good resolution. For

example, a momentum resolution of 30% to 200% is expected if multiple Coulomb

scattering were used to measure the momentum. Therefore, a new edge finding

method was developed, and tested both with and without momentum information.

The resolution obtained without momentum was σ = 3.2 ± 0.6 mm, and the

smallest length was also 5 mm. The resolution obtained when using momentum

information was σ = 0.98± 0.03 mm, which is an improvement over the previous
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method. The smallest uranium block length was also improved from 5 mm down

to 2 mm.

Another possible future study is to apply the method to irregular shapes, which

could be done by performing the measurements along x but for several different y

and z values, resulting in different lengths and allowing to better define different

shapes.

A possible future development is the combination of the 5 data points in a way

that does not only take their average. For example, if one of the points has a value

of 1, and the others a value closer to 0, it is still likely that it corresponds to a

uranium voxel, since concrete voxels have a very low probability of obtaining a

value of 1 (which can be seen in the graphs from the MVA training). Other future

developments include performing the same analysis method using other materials

instead of uranium and reduce the data taking time.

It had been shown that the metric distance method was also sensitive to a

gas volume enclosed in concrete [32], but a more detailed study on its application

to low-Z materials had not been developed. Therefore, a study was also shown

in this chapter on measuring the gas content of concrete containers. This is an

important application because the oxidation of uranium forms hydrogen gas, which

accumulates in the drums and causes them to overflow. Results from simulations of

gas bubbles show that it is possible to use the metric distance method to measure

the volume of gas in concrete, for bubbles of 2 L or more, achieving a resolution

of 1.6 ± 0.8% on the volume. Furthermore, it is possible to localise a single gas

bubble, for example with 3 L, distinguishing it from a scenario where the same

volume of gas was separated in two smaller 1.5 L bubbles. This is particularly

important because the same gas volume can pose a higher risk when it is located

in a larger bubble than when separated in smaller ones.

In summary, it has been shown that a muon tomography clustering algorithm,

based on the density of high scatter angles, can be used not only to perform
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imaging of high-Z materials, but also to find gas bubbles in nuclear waste. These

are both important applications for the characterisation of nuclear waste.
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5 | Discrimination of high-Z

materials
It was shown in Chapter 4 that it is possible to find high-Z materials in concrete.

The next step for nuclear waste characterisation is to identify these materials.

Distinguishing between different high-Z materials, such as uranium, plutonium,

lead and tungsten, is challenging, since they have similar radiation lengths. There

have been other attempts to identify materials, such as in [20], but for high-Z

materials this distinction had not been shown yet.

In this chapter a method is presented to distinguish between two high-Z ma-

terials. The majority of this research has been published in [56]. This method is

based on the premise that the position of the high-Z materials is known. Chapter 4

shows an imaging method that allows for the position information to be obtained

with a good resolution. The discrimination between two materials is the first step

towards material identification. The principle is that an unknown material can

be compared to known data from standard high-Z materials. Any material from

which it is discriminated can be excluded, and if there is only one material from

which the unknown object is not discriminated, it can be determined that this is

the material present in the unknown sample.

Section 5.1.1 describes the material discrimination method using multivari-

ate analysis, and explains how the performance of this method is assessed. Sec-

tion 5.1.2 shows the results of discrimination between uranium and lead, uranium

and tungsten, and uranium and plutonium for different block sizes and data tak-

ing times. Section 5.1.3 shows how the material discrimination is improved by

adding muon tracks reconstructed in the concrete region around the target block.

It also determines the ideal volume of this extra region that maximises the dis-

crimination. Section 5.1.4 discusses how the material discrimination results were

compared between the case with perfect momentum information, adding an error
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to the momentum, and removing the momentum information altogether. It shows

how including the momentum information does not improve the material discrim-

ination. Section 5.1.5 shows the comparison between using only the 3D scatter

angle and using the MVA. Discussion and conclusions are given in Section 5.2.

5.1 Material discrimination simulations

The simulations were performed using Geant4, with the same settings, as well as

detectors, concrete tube, cosmic muon generator and fit of muon hits as described

in Section 3.1. Only the sample materials inside the concrete were different. The

materials used were lead, tungsten, uranium and plutonium. These were chosen to

be high-Z materials that could potentially be found in nuclear waste. In particular,

it is important to determine the presence or absence of uranium and plutonium.

The block shapes were all cubic, with edges of 1 cm, 2 cm, 3 cm, 5 cm and 10 cm.

Different data taking times were compared as well, in order to determine for how

long a drum with a high-Z object needs to be scanned, depending on the size of

the object. A multivariate analysis method, presented in Chapter 3, was used to

combine information from several variables obtained from the track fit, in order to

distinguish pairs of materials.

The momentum information was used because most MST analysis methods

use it (as it was shown in the description of some of these methods in Chapter 2).

The Monte-Carlo truth momentum was smeared by adding a random value from

a Gaussian distribution centred around zero and with 50% of the true momentum

as the standard deviation (as in [18]). All the results used this smearing, except

where stated otherwise. Additionally, these results were compared to the ones

using the true momentum and not using any momentum information. As will be

shown in Section 5.1.4, the discrimination performance is similar with and without

momentum information.
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5.1.1 Method for material discrimination

Several variables are obtained from the fitting of muon tracks, such as scatter

angles, offsets and χ2 from the fit, that can be sensitive to different materials. A

multivariate analysis (MVA) was performed in order to combine all these variables

to distinguish between two materials, namely uranium and lead, uranium and

tungsten, and uranium and plutonium. The MVA method used was the Fisher

linear discriminant. Details on MVAs and Fisher linear discriminants can be found

in Section 3.3. The training was done using the same geometry as the application.

5.1.1.1 Variables for MVA

To choose the variables to use, simple simulations of different materials (ura-

nium, tungsten and lead) irradiated by mono-energetic 1 GeV, 2 GeV and 10 GeV

vertical muons were performed. The geometry and resolution of the detectors were

the ones described in Chapter 3. Two geometries were used for each sample: a

10×10×10 cm3 block, and a plate with thickness of 6 mm and the same area as the

detector plates, in order to guarantee that all detected muons crossed the material

in question. Several variables obtained from the track fitting of those simulations

were compared in order to choose the ones most sensitive to different materials.

These variables were the projected and 3D scatter angles, offsets, vertex positions,

errors on the vertex position, χ2 from different fits (upper and lower track fits,

6 point fit with both upper and lower points, and combined fit of the upper and

lower hits and the vertex), and distance between the reconstructed vertex and the

lower and upper tracks (labelled track distance). Graphs of all these variables can

be found in Appendix A. This first comparison used all the variables that can be

obtained from the track fitting without any additional analysis. A significance

value was defined as

Significance = 1
N

N∑
i=1

Si√
B2
i + S2

i

, (5.1)
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where S and B are signal and background, and N is the number of bins in the

distribution. Examples of the values obtained, for the case where uranium was

considered “signal” and lead “background”, can be seen in Table 5.1, which were

obtained using the 6 mm thick plate. Both tables show the significance values for

each variable, but the table on the left is in descent order of the significance values.

This makes clear the gap in significance between the variables with a value over 0.4

and the ones with a value under 0.2. Therefore, variables with significance values

over 0.4 were chosen for the MVA. Although the χ2 from combined fit shows a

lower value in Table 5.1, it had a significance above 0.4 for the simulations with a

10× 10× 10 cm3 block, so it was also included in the MVA.

Variable Significance
Angle (x) 0.565775
Angle (y) 0.531012
3D Angle 0.484635

Upper offset (x) 0.439282
Upper offset (y) 0.443182
Lower offset (x) 0.536945
Lower offset (y) 0.587794

Longitudinal error -0.0627532
Transversal error (x) 0.132827
Transversal error (y) 0.13854
Vertex position (x) -0.0462523
Vertex position (y) -0.0240665
Vertex position (z) -0.176026
χ2 from upper fit (x) 0.122719
χ2 from upper fit (y) 0.137903
χ2 from lower fit (x) 0.191506
χ2 from lower fit (y) 0.123077

χ2 from six point fit (x) 0.610759
χ2 from six point fit (y) 0.639472
χ2 from combined fit 0.13668

Upper track distance (x) 0.0568133
Upper track distance (y) 0.124223
Lower track distance (x) 0.121605
Lower track distance (y) 0.13497

Variable Significance
χ2 from six point fit (y) 0.639472
χ2 from six point fit (x) 0.610759

Lower offset (y) 0.587794
Angle (x) 0.565775

Lower offset (x) 0.536945
Angle (y) 0.531012
3D Angle 0.484635

Upper offset (y) 0.443182
Upper offset (x) 0.439282

χ2 from lower fit (x) 0.191506
Vertex position (z) -0.176026
Transversal error (y) 0.13854
χ2 from upper fit (y) 0.137903
χ2 from combined fit 0.13668

Lower track distance (y) 0.13497
Transversal error (x) 0.132827

Upper track distance (y) 0.124223
χ2 from lower fit (y) 0.123077
χ2 from upper fit (x) 0.122719

Lower track distance (x) 0.121605
Longitudinal error -0.0627532

Upper track distance (x) 0.0568133
Vertex position (x) -0.0462523
Vertex position (y) -0.0240665

Table 5.1: Significance values (equation 5.1) obtained from the distributions of
each variable, comparing simulations of 2 GeV muons crossing a plate of uranium
and a plate of lead. Both tables show the same values, but the table on the left is
in descent order of the significance value.
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The chosen variables were then used as inputs into a multivariate analysis to

compare pairs of materials. There were 11 chosen variables, which were the scatter

angles (the 3D angle and the 2D projections in x and y), the lower and upper offsets

in x and y (distance between the extrapolated track and the real hit, as shown

in Figure 2.5) the χ2 of a linear fit to all six hit points (in x and y), and the χ2

of the combined fit of incoming and outgoing tracks, including the reconstructed

vertex. The muon momentum was initially also included because it was expected to

enhance sensitivity to the material, as will be explained in Section 5.1.4. However,

the momentum cannot be easily obtained without additional analysis apart from

the track fitting.

An example of each type of variables used in the MVA is shown in Figures 5.1-

5.6, normalised, and both in linear and logarithmic scales. It can be seen that the

all distributions for uranium (except the momentum) are shifted to higher values

than the lead. The 3D angle is the variable whose distributions for uranium and

lead are more clearly different. The muon momentum was not expected to show

any discrimination by itself, since it does not depend on the material the muon

crosses.
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Figure 5.1: Projected angle in x for uranium and lead, for a 10 × 10 × 10 cm3

block, in linear (a) and log (b) scales. The histograms are normalised.

The 3D scatter angle is linearly correlated to all the other variables used, which

can be seen in Figure 5.7, which shows the correlation coefficients for all variables,

from the training using a 10 × 10 × 10 cm3 uranium block as signal and a lead
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Figure 5.2: 3D angle for uranium and lead, for a 10× 10× 10 cm3 block, in linear
(a) and log (b) scales. The histograms are normalised.
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Figure 5.3: Upper offset in x for uranium and lead, for a 10× 10× 10 cm3 block,
in linear (a) and log (b) scales. The histograms are normalised.
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Figure 5.4: Six points fit χ2 (in x) for uranium and lead, for a 10 × 10 × 10 cm3

block, in linear (a) and log (b) scales. The histograms are normalised.
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Figure 5.5: Combined fit χ2 for uranium and lead, for a 10 × 10 × 10 cm3 block,
in linear (a) and log (b) scales. The histograms are normalised.
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Figure 5.6: Muon momentum for uranium and lead, for a 10× 10× 10 cm3 block,
in linear (a) and log (b) scales. The histograms are normalised.
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block the same size as background. Its linear correlation coefficients with the 2D

angles and the offsets are over 80%. The 3D angle has correlation coefficients with

the different χ2 of between 50% and 70%, and with the momentum of 22% (in

absolute value). Variables that are highly correlated (such as 3D angle, 2D angles

and offsets) may be redundant for the linear discriminant, and may even diminish

the discrimination power. The comparison done in Section 5.1.5 between using

only the 3D angle and the multivariate analysis shows that, in fact, using the 3D

angle would be enough to achieve material discrimination.
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Figure 5.7: Correlation coefficients from the training for the comparision between
a 10× 10× 10 cm3 uranium block and a lead block.

5.1.1.2 Application of MVA

As shown in Figure 4.2, the metric method yields an approximate position of

the material and the method presented in Chapter 4 allows precise determination

of the position of the material. Therefore, only the tracks that passed through the

block were used for the training and testing. They were selected by registering, for
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each simulated muon, if it entered the target block or not. For the application of

MVA, the tracks were selected by choosing the ones whose reconstructed vertex was

inside the target block (for 5 cm and 10 cm side cubes) or inside a small volume that

included the whole block (for 2 cm and 3 cm side cubes). Additionally, for the 2 cm

and 3 cm side cubes, different volume sizes were studied, as shown in Section 5.1.3,

starting from the exact size of the block in question and then increasing the edge

length in all sides by 1, 2, 3 and 4 cm. Due to the results obtained in that study,

the volume in which the tracks were selected for the 2 cm and 3 cm side cubes

included an extra 1.5 cm and 2 cm, respectively, from each edge of the cubes. The

discrimination method can be executed using exactly the same muon sample as

the imaging method, hence no new data needs to be acquired.

The number of muons used for training was different for each block size: for

10×10×10 cm3 and 5×5×5 cm3 blocks, 10h of muon exposure were used, which

yielded about 13000 and 3300 selected muons respectively, 50h for the 3×3×3 cm3

and 2 × 2 × 2 cm3 blocks yielded about 6000 and 2600 muons, and 100h for the

1 × 1 × 1 cm3 block yielded about 1400 muons. To see how the amount of data

affected the results, some training was performed with less data.

An example of the output of the training for the Fisher linear discriminant

comparing 10×10×10 cm3 blocks uranium and lead is shown in Figure 5.8. Several

values from this distribution were tested as potential discriminators between the

two materials, such as the mean, the integral over a cut, the maximum value,

the integral weighted more for higher values, and the weighted integrals over and

under a cut. It was observed that the mean offered the best discrimination, which

will be shown later in Section 5.1.1.3.

5.1.1.3 Analysis of discrimination performance

After training, the Fisher linear discriminant was applied to sets of events,

where an event denotes one track of a simulated muon and a set of events is a

collection of muon tracks, which corresponds to a fixed time of muon exposure.
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Figure 5.8: Output of the Fisher MVA method, comparing uranium and lead, on
linear (a) and logarithmic (b) scales for a 10× 10× 10 cm3 block.

Several sets with the same time of muon exposure were created. A distribution

of the Fisher output was obtained for each set, and the respective mean was

calculated and plotted as an entry in a histogram like in Figure 5.9a, where each

entry corresponds to 1h of muon exposure. This process was also done for sets

with other exposure times. These results will be discussed in Section 5.1.2.
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Figure 5.9: Mean value (a) and ROC curve (b) from the Fisher discriminant
method, distinguishing uranium from lead, for a 10× 10× 10 cm3 cube and 1h of
muon exposure.

In order to assess the performance of this discriminator, ROC curves (Receiver

Operating Characteristics) were made. These are graphs of the true positive rate

(in the case of Figure 5.9b, correctly identifying uranium) as a function of the false

positive rate (incorrectly identifying lead as uranium). ROC curves are useful to

visualise the performance of classifiers [57]. A possible value for the quality of
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the discrimination performance is the area under the curve (AUC) of the ROC

curves. The AUC is shown here as a percentage, where 50% is the worst possible

discrimination, corresponding to a random classifier, and 100% is an ideal classifier

with total separation between the two materials. A classifier may perform better

than another with a higher AUC in a given region of the ROC curve [57]. An

example of this can be seen in Figure 5.10, where ROC curve B has a higher AUC

than A. However, A has a higher true positive rate when the false positive rate

is over 0.6, and hence performs better in that region. However, the ROC curves

obtained do not show this behaviour (some examples of ROC curves will be shown

in Section 5.1.2): ROC curves with lower AUC have not been found to perform

better than curves with higher AUC in any region of the graphs.

Figure 5.10: Example of a ROC curve A with a lower AUC than B, but that
performs better at false positive rate over 0.6 [57].

A 10 × 10 × 10 cm3 uranium cube is distinguished from a lead cube, for 1h

of muon exposure, in the example of the ROC curve shown in Figure 5.9b. To

produce the ROC curve the true positive and the false positive rate were calculated

for all possible cut values using Figure 5.9a, and plotted against each other. The
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95% confidence regions of the ROC curves and respective confidence of the AUC

were calculated using the R package pROC [58], which uses the DeLong method,

described in [59].

A perfect discrimination, corresponding to a discriminator value with no over-

lap between the two categories, requires an AUC of 100%. But a good discrimi-

nation can also be obtained with a slightly lower AUC. Figure 5.9 can be used as

an example: there is a small overlap, so the operator can choose as the cut value

(above which the block is identified as uranium instead of lead) a discriminator

value which is lower than all the values obtained for uranium. Because of the

overlap, in some cases a lead block will be incorrectly identified as uranium, but

all uranium blocks would be correctly identified. Different cut values will result

in different probabilities of incorrect identification. Furthermore, the operator can

decide that if a discriminator value is in the overlapping region, more data need to

be taken in order to obtain a perfect discrimination. But, as most of the entries in

Figure 5.9a are outside the overlapping region, in most cases more data will not be

needed. It is also up to the operator to choose what is the minimum AUC value

needed to obtain the required discrimination performance. In this thesis discrimi-

nation with an AUC of at least 95% will be referred to as good discrimination.

Examples of ROC curves using these discriminators to distinguish between

5 × 5 × 5 cm3 blocks of uranium and lead, for 1h of muon exposure, are shown

in Figure 5.11. These were chosen to be values that can distinguish between the

two overlapped distributions: the mean, the integral over a cut (summing the

bin entries only from the bins over the value above which the distribution for the

higher Z material is larger), the maximum value, a weighted integral (giving more

weight to higher values by multiplying the entries in each bin by the bin number),

a weighted integral over the cut and a weighted integral under the cut (the same

method of weighting the integral, but using only bins over or under the cut value,

respectively). The value used for the cut was 0, which is the observed point above

which the entries obtained from the uranium simulations are higher than the ones

94



5. Discrimination of high-Z materials

from lead and tungsten (this can be seen in Figure 5.8b). The mean has the highest

AUC, of 87.0 ± 2.7%, although it is within errors of several other discriminator

candidates (for example, the weighted integral yielded an AUC of 84.9 ± 2.8%).

However, all other block sizes and data taking times consistently showed a higher

AUC for the mean. Another example can be seen in Table 5.2, for a 3× 3× 3 cm3

block of lead and using 10h of muon exposure. The mean was therefore chosen as

the discriminator.

Discriminator variable AUC for 5 cm, 1h AUC for 3 cm, 10h
mean 87.0± 2.7% 90.2± 3.0%

integral over a cut 84.2± 3.0% 83.2± 4.0%
maximum value 76.7± 3.6% 64.4± 5.6%
weighed integral 84.9± 2.8% 78.9± 3.6%

weighted integral over the cut 84.4± 3.0% 84.5± 3.9%
weighted integral under the cut 83.7± 3.1% 83.7± 4.0%

Table 5.2: AUC of the ROC curves obtained from different discriminator variables,
for a 5 cm side cube with 1h, and for a 3 cm side cube with 10h.

For a certain value of muon exposure time, the number of muons selected was

smaller for smaller blocks, because there were fewer muons crossing the block. The

number of muons that traverse each block size per hour is shown in Table 5.3. It

is clear that fewer muons cross smaller volumes for the same scanning time, but

it can also be seen that the number of muons per unit volume decreases with the

total volume. This is due to the fact that most of the muons detected are vertical,

or almost vertical, so the number of muons crossing the block depends more on

its horizontal area than on its volume. This can also be seen in the last column of

Table 5.3, which shows that the number of muons per unit area of the face of the

blocks is similar for all blocks (approximately 13 muons per cm2).

Block size # muons h−1 # muons h−1 cm−3 # muons h−1 cm−2

1× 1× 1 cm3 14 13.8 13.8
2× 2× 2 cm3 53 6.7 13.3
3× 3× 3 cm3 124 4.6 13.8
5× 5× 5 cm3 332 2.7 13.3

10× 10× 10 cm3 1314 1.3 13.1

Table 5.3: Number of muons that cross each volume per hour, per unit volume,
and per unit area of the upper face of the cubes.
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(a) ROC using the mean.
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(b) ROC using the integral over a cut
at 0.
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(c) ROC using the maximum.
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(d) ROC using the weighted integral.
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(e) ROC using the weighted integral
over a cut at 0.
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(f) ROC using the weighted integral un-
der a cut at 0.

Figure 5.11: ROC curves obtained from the comparison between uranium and lead,
for a 5× 5× 5 cm3 block and 1h of muon exposure. The AUC values obtained are
(a) 87.0± 2.7%, (b) 84.2± 3.0%, (c) 76.7± 3.6%, (d) 84.9± 2.8%, (e) 84.4± 3.0%
and (f) 83.7± 3.1%.
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(a) 2× 2× 2 cm3
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(b) 5× 5× 5 cm3
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(c) 10× 10× 10 cm3

Figure 5.12: ROC curves for the mean of the Fisher determinant distinguishing
uranium from lead for different block sizes, with a muon exposure time of 2h. The
cubic blocks have a side of 2×2×2 cm3, with AUC = 59.1±3.6% (a), 5×5×5 cm3,
with AUC = 95.1± 2.0% (b) and 10× 10× 10 cm3, with AUC = 99.9± 0.1% (c).

5.1.2 Results

As it was already shown in Figure 5.9b, a good discrimination (AUC = 99.7±

0.2%) can be obtained for comparing a 10×10×10 cm3 uranium block to lead with

1h of data. The AUC calculated for the same cube with half an hour of data was

97.3± 0.7%, as seen in Figure 5.14a, which already shows a good discrimination.

For a fixed time, fewer muons cross small blocks than large blocks. Because only

muons tracks that crossed the block are used, the smaller the target volume, the

less data is obtained. This results in a worse discrimination, with lower AUC,

as shown in Figure 5.12, which consists of ROC curves from different block sizes

of uranium and lead for 2h of data acquisition. While the AUC obtained for

2× 2× 2 cm3 blocks was low (59.1± 3.6%), the 10× 10× 10 cm3 yielded a high

AUC, of 99.9 ± 0.1%. The results also show that increasing the exposure time

improves the discrimination power, so a longer data taking time can be used to

achieve a good discrimination. This can be seen in 5.13, where the ROC curves

for different exposure times of a 5× 5× 5 cm3 block can be seen.

Figures 5.14 and 5.15 show the AUC values obtained from comparing uranium

to lead and uranium to tungsten for different block sizes, as a function of the muon

exposure time. It is clear that the time needed to obtain discrimination depends

on the block size. If, for example, the minimum AUC to accept discrimination is
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(c) 4h

Figure 5.13: ROC curves for the mean of the Fisher determinant distinguishing
uranium from lead for different muon exposure times, for a cubic block with 5 cm
side. The muon exposure times are 1h (a), 2h (b) and 4h (c).

chosen as 95%, the 10 cm side cube is separated with 30 min of muon data, while

the 5 cm side cube needs 2h for lead or 3.1h for tungsten (extrapolating between

the points of 2h and 4h in Figure 5.14). Figure 5.15 shows the AUC for longer muon

exposure times, up to 70h, because the 3 cm and 2 cm side cubes require longer

scanning times than the larger volumes. It can be seen that material discrimination

would not be possible, with this system and the scanning times considered, for 1 cm

side cubes, because the AUC obtained is close to 50%. This is due to the fact that

a small amount of muons cross this block compared to the larger ones. Using the

values from Table 5.3, about 967 muons cross the 1 cm side cube in 1 hour, while

3735 cross the 2 cm side cube during the same time. The slow increase of their

AUC suggests that muons may not undergo enough scattering in the 1 cm3 blocks

to provide enough discrimination between high-Z materials. An additional source

of error in the discrimination of 1 cm3 blocks is the vertex approximation: if some

of the few muons that scattered in the block are reconstructed outside the selected

area, more information is lost. These arguments, along with the data from 1 cm3

blocks seen in Figure 5.15, indicate that it would not be possible to obtain a high

AUC value, even with more data.

Figures 5.16 and 5.17 show the same AUC values, but as a function of the

block sizes, instead of the scanning time. These graphs were created in order to

better illustrate the dependence of the discrimination performance on the volume.
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Figure 5.14: Area under the curve of ROC curves distinguishing uranium from
lead (a) and uranium from tungsten (b), as a function of the scanning time, for
different block sizes. The error bars are the 95% confidence intervals of the AUC.

It is important to note, however, that they do not take into account the shape of

the object: for example, a cuboid with the same volume but a larger horizontal

area and a smaller height would have more muons crossing it, but fewer multiple

scattering interactions.

Table 5.4 shows the measurement times required for each block size and ma-

terial to achieve a 95% AUC. The values were obtained by linearly extrapolating

between the calculated points before and after 95%. Although the trend is not

linear, this is a useful estimate, since the shape of the trends is not known. The

time needed to reach the desired AUC value depends, in part, on the amount of

data obtained for each case, which in turn depends on the number of muons that

crossed the block. Table 5.5 shows the number of muons that crossed each block in

the corresponding time from Table 5.4. These numbers were calculated using the

number of muons that cross each block per hour from Table 5.3. It is interesting

to note that, as the block size decreases, the number of muons required to obtain

an AUC of 95% increases. This is due to the fact that muons can interact more in

larger blocks, increasing the chance of having a high scattering angle.

After showing separation of uranium from lead and tungsten, whose atomic

number is lower than that of uranium, the method was applied to the discrimi-

nation between uranium and plutonium. Plutonium is denser and has a higher Z
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Figure 5.15: Area under the curve of ROC curves distinguishing uranium from
lead (a) and uranium with tungsten (b), as a function of the scanning time, for
different block sizes. The error bars are the 95% confidence intervals of the AUC.
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Figure 5.16: Area under the curve of ROC curves distinguishing uranium from
lead (a) and uranium from tungsten (b), as a function of the block size, for different
scanning times. The error bars are the 95% confidence intervals of the AUC.
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Figure 5.17: Area under the curve of ROC curves distinguishing uranium from
lead (a) and uranium with tungsten (b), as a function of the block size, for different
scanning times. The error bars are the 95% confidence intervals of the AUC.
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Block size Time for U vs Pb (h) Time for U vs W (h)
2× 2× 2 cm3 64.2 61.9
3× 3× 3 cm3 25.1 25.8
5× 5× 5 cm3 2.0 3.1

10× 10× 10 cm3 0.5 0.5

Table 5.4: Time to reach 95% AUC of several ROC curves for different block sizes.

Block size # muons for U vs Pb (h) # muons for U vs W (h)
2× 2× 2 cm3 657 657
3× 3× 3 cm3 665 1031
5× 5× 5 cm3 3107 3193

10× 10× 10 cm3 3425 3302

Table 5.5: Number of muons that crossed each block for the corresponding time
in Table 5.4, for different block sizes.

(94) than uranium (92), and hence has a lower radiation length (0.2989 cm and

0.3166 cm respectively, from Table 2.1). Thus, because the radiation length of lead

and tungsten is even higher than the one of uranium, the discrimination between

those materials and plutonium can be assumed to be at least as good as that be-

tween uranium and lead or tungsten. Discriminating uranium and plutonium is

more difficult because of their similar atomic number, which results in a similar

radiation length, as equation 2.4 shows. Therefore, it requires longer scanning

times to obtain discrimination. This can be seen in Figure 5.19, which is a graph

of the AUC as a function of the scanning time, for 3 × 3 × 3 cm3 blocks. It was

found that, for this case, the integral over a cut of the Fisher output was a better

discriminator than its mean. For example, the AUC obtained for 200h of data

with the integral over a cut was 80%, while with the mean a lower value of 69%

was obtained. This is because the means of the Fisher output obtained from the

uranium and the plutonium simulations were very similar, while the tail in the

Fisher output distribution for plutonium is higher than for uranium, introducing

some discrimination power. The value for the cut on the integral was chosen to be

0.01 which is the observed point from where the entries obtained from the pluto-

nium simulations started being higher than the ones from uranium. This can be
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seen in Figure 5.18, which is the Fisher output (in linear and logarithmic scale)

from the training with uranium and plutonium.

The best AUC obtained was 80%, which still allows for a significant discrimi-

nation, even if not a perfect one. For a smaller block, of 2× 2× 2 cm3, it was not

possible to obtain discrimination between uranium and plutonium, with times up

to 200h, as Figure 5.20.
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Figure 5.18: Output of the Fisher MVA method, comparing plutonium and ura-
nium, on linear (a) and logarithmic (b) scales for a 3× 3× 3 cm3 block.
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Figure 5.19: Area under the curve of ROC curves distinguishing uranium from
plutonium for a 3× 3× 3 cm3 block.

5.1.3 Results for different volume sizes

The material discrimination method relies on the fact that the position of the

high-Z material is known, so only muon tracks that were reconstructed in the ma-

terial block are selected. However, it is possible that some muons that crossed
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Figure 5.20: Area under the curve of ROC curves distinguishing uranium from
plutonium for a 2× 2× 2 cm3 block.

and scattered in the target block, especially next to the edges, are actually recon-

structed in the concrete. The information from these tracks is therefore lost when

only exactly the target volume is selected. For this reason, the study was extended

to add an extra volume around the edges of the blocks for the track selection. This

is not only important in order to show if adding some tracks reconstructed next

to the blocks can improve the results or not, but also to understand how precise

the position information needs to be to obtain a good discrimination.

The method was applied to the 2× 2× 2 cm3 and 3× 3× 3 cm3 blocks, adding

tracks that were reconstructed in concrete, but inside a fiducial region centred

around the blocks, increasing the volume on all 6 sides by 1 to 4 cm. The AUCs for

each added length are shown in Figure 5.21. It can be seen that an extra 1 to 2 cm

improves the performance of the material discrimination method for 2× 2× 2 cm3

blocks. This is why 1.5 cm was added to each side of the 2× 2× 2 cm3 blocks in

the previous section. Adding 3 cm results in a lower AUC, (although still within

errors of the AUC for 2 cm extra). Adding 4 cm clearly worsens the performance

compared to the 1 and 2 cm, resulting in a lower AUC, as seen in Figure 5.21d for

the 70h scan. For the 3× 3× 3 cm3 blocks, 2 cm were added to each side, as the

discrimination does not seem worse for larger lengths added (up to 4 cm).

These results, in particular the fact that the performance for 1 cm and 2 cm

added is similar, are relevant to determine the resolution required for the measure-
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Figure 5.21: Area under the curve of ROC curves distinguishing uranium from
tungsten, for different block sizes and different muon exposure times. The error
bars are the confidence intervals of the AUC.

ment of the blocks. For example, if an imaging algorithm with 1 cm resolution

is used, this method can be applied adding 2 cm on each side, and if the edge

measurements are 1 cm off, the discrimination performance is not affected.

5.1.4 Results without momentum information and with

momentum smearing

The muon momentum was one of the variables used in the MVA. Combined

with the angle, the momentum was expected to improve the material discrimina-

tion because a large scatter angle from a high momentum muon strongly indicates

localised scattering in a high-Z material, while the same large angle from a low

momentum muon can also be a common scattering event due to multiple scatter-

ing in lower-Z material. To test this assumption, the AUCs for the comparison of

5×5×5 cm3 uranium and lead blocks with true momentum, with 50% momentum
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smearing and without momentum information were compared. These are shown

in Table 5.6. It can be seen that the results did not alter significantly when the

muon momentum was smeared by 50% or even when the momentum information

was removed, since the AUC remains the same for the three different cases, within

errors.

Time with true momentum with momentum smearing without momentum
1h 87.0± 2.7% 87.0± 2.7% 87.1± 2.7%
2h 95.2± 2.0% 95.2± 2.0% 95.3± 2.0%
4h 99.5± 0.5% 99.7± 0.3% 99.6± 0.4%

Table 5.6: AUC of several ROC curves from the mean of the Fisher discriminant
for the 5× 5× 5 cm3 block, distinguishing uranium from lead, with true momen-
tum information, smearing the momentum by 50% and without any momentum
information.

It is clear that the momentum information does not help high-Z material dis-

crimination. In Chapter 4, it was shown that not using the momentum resulted

in a worse resolution in the measurement of the of length uranium blocks in con-

crete, effectively suggesting that the muon momentum combined with the angle

improves the discrimination between uranium and concrete. This is due to the

fact that the algorithm of Chapter 4 used the momentum directly in the calcula-

tion of the metric distance. It also selected a fixed number of the most scattered

tracks, which may have a different momentum distribution depending on the ma-

terial they crossed, while in the material discrimination method all the muons that

crossed the target block were selected, so their momentum distribution will be the

same regardless of the material. Additionally, in this chapter the materials to be

distinguished all have a high atomic number, unlike in Chapter 4, where the ma-

terials compared were uranium and concrete, so it is possible that the correlation

between the scattering angle of a muon in high-Z materials and its momentum is

not enough to provide discrimination.

It has been shown that the momentum information is not necessary for material

discrimination. Although momentum measurement would result in a better imag-

ing resolution, the results from Section 5.1.3 proved that the resolution without
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momentum (which was σ = 2.9 ± 0.5 mm) would be good enough to identify the

volume required for the selection of tracks for material discrimination. Therefore,

the system and analysis do not need to measure or estimate the muon momentum

in order to perform imaging and material discrimination.

5.1.5 Results using only the scatter angle

It was seen that the most significant variable used in the MVA was the 3D scat-

ter angle, and all the other variables (except the muon momentum) were highly

correlated to it. For this reason, the material discrimination method was applied

using the mean of the 3D scatter angle as a discriminator instead of the mean of the

Fisher output. Table 5.7 shows some AUC values to compare the two approaches.

It shows a small improvement for MVA, which is however not statistically signifi-

cant. Therefore, it is proven that using only the 3D scatter is enough to perform

material discrimination.

Time scatter angle Fisher
1h 86.3± 2.8% 87.0± 2.7%
2h 94.6± 2.2% 95.2± 2.0%
4h 99.1± 0.9% 99.7± 0.3%

Table 5.7: AUC of several ROC curves from the mean of the scatter angle and the
Fisher discriminant for the 5× 5× 5 cm3 block, distinguishing uranium from lead.

5.2 Discussion and Conclusions

It was shown in this chapter that it is possible to distinguish between uranium

and lead or tungsten using MST, for blocks with a volume of 2×2×2 cm3 or bigger.

Taking a minimum AUC of 95% to achieve discrimination between two materials,

the 10×10×10 cm3 cubes only needed 30 minutes of data, the 5×5×5 cm3 blocks

needed 2h (U vs Pb) and 3.1h (U vs W), the 3× 3× 3 cm3 blocks needed 25.1 (U

vs Pb) and 25.8 (U vs W), and the 2 × 2 × 2 cm3 blocks needed 64.2 (U vs Pb)

and 61.9 (U vs W). It was not possible to discriminate 1× 1× 1 cm3 blocks with

scanning times up to 70h. However, it is not expectable that a longer scanning time
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would improve much the discrimination of these blocks. This is because the vertex

reconstruction, assuming that the muon scattered in a single point, implies an

intrinsic uncertainty of this method: the tracks used are the ones reconstructed in

the high-Z volume, but this reconstruction is only an approximation and not a real

guarantee that all muons that scattered in the block are correctly reconstructed in

the respective position (and conversely that all muons reconstructed in the block

have actually scattered in it).

In addition, there is some discrimination between 3×3×3 cm3 cubes of uranium

and plutonium, reaching an AUC of 80%. The same study was done for 2 × 2 ×

2 cm3, but it was observed that discrimination was not possible, as the AUC

obtained was always close to 50%.

Being able to distinguish between two different high-Z materials is not in itself

a method to identify materials. However, material identification can be achieved

by comparing an unknown material to several known ones, from materials that

can be usually found in nuclear waste, and by determining from which ones it is

discriminated, and finally which one is the most similar.

It has also been shown that using only the 3D scatter angle gives similar AUCs

as when combining several variables with the Fisher linear discriminant. This

result allows for future analyses to use the 3D scatter angle without the need of

performing training for an MVA.

For this method to work, the position of the materials has to be known, which

was shown to be possible in Chapter 4. The image reconstruction requires a

reasonable amount of data, that can go up to 2 weeks of muon exposure, such as

in Figure 4.2, or even more if edge finding is needed. However, it was also shown

in this chapter that using the muon tracks from a volume slightly bigger than the

target material can even improve the material discrimination, because it allows

for the use of muons that scattered in the high-Z material but whose vertex was

reconstructed outside it. This means that it is not essential to have a very accurate

image of the materials in the concrete, so the amount of data, and consequently the
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exposure time, can be lower: for example instead of the reported 2 weeks, only 70h

could be used (almost 3 days), which allow for material discrimination of blocks as

small as 2× 2× 2 cm3. Furthermore, the same muon scattering data can be used

for imaging and material discrimination, so the muon exposure times shown in this

chapter are not added to the imaging time. The scanning times required will differ

for different detector sizes and spacing, as a smaller angular acceptance will detect

fewer muons. Increasing the detector area would increase the amount of muons

detected, not only because more muons will cross a larger area, but also because it

would result in a larger angular acceptance, allowing the detection of muons with

higher angles that are unavailable for detector systems with smaller areas. Using

a smaller spacing between tracking planes would also result in a higher acceptance

angle, increasing the number of muons detected. Another factor that will affect

the required time is the position of the high-Z objects relative to the detectors.

But, as it is assumed that their position is known, the high-Z objects of interest

should be placed in the centre of the detector system in order to minimise the

scanning time.

Another important result is the fact that the muon momentum does not im-

prove the discrimination power of high-Z materials. Using the momentum im-

proves the imaging resolution, as Chapter 4 showed, but if the resolution required

for discrimination is, for example, 1 cm, as shown in Section 5.1.3, it is possible

to perform imaging and discrimination of high-Z materials using a system which

does not provide momentum information.
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There is a need to characterise nuclear waste before it can be taken for final

disposal or long term storage. This especially important in the case of legacy waste

whose records may have not been kept, and that may have undergone changes in

its composition. There are several techniques that can be used to characterise the

nuclear waste, both destructive and non-destructive. This thesis proposed using

muon scattering tomography as a non-destructive technique to scan nuclear waste

containers and showed how good this application can be to characterise waste

stored in concrete containers. Muon scattering tomography (MST) is a passive

scanning technique that uses cosmic-ray muons to image and identify different

materials. It exploits the fact that muons undergo multiple Coulomb scattering,

where the scatter angle distributions are wider when crossing materials with higher

atomic number. In MST, an incoming muon is tracked before and after scattering

in the volume to be scanned, in order to measure its scatter angle, the horizontal

offset and other related variables. This thesis explained and showed the evaluation

of different algorithms that combine these variables in order to determine the

content of nuclear waste. These methods were tested using simulation data. The

simulation geometry and parameters, as well as the track fitting algorithm were

described in Chapter 3.

6.1 Imaging

An imaging method was previously developed [32]. It applied the data ob-

tained from a muon tomography system to find lumps of high-Z materials encased

in concrete. It had also been extended to determine the edges of uranium blocks

embedded in concrete. An improved edge finding method was developed (see Chap-

ter 4), in order to obtain a better resolution and to include the possibility of not

using momentum information. The existing imaging methods with muon tomog-

raphy require momentum information. However, some systems may not be able
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to measure it, or have a poor momentum resolution. For example, measuring the

muon momentum using the multiple Coulomb scattering, the expected resolution

for a system similar to ours ranges from 30% to 200%. It is therefore important

to test the performance of methods without using the momentum. A very good

position resolution was obtained of 3.2± 0.6 mm, with the smallest length which

was possible to measure of 0.5 cm, without using momentum information. Apply-

ing the same method but including the true momentum information resulted in

a resolution of 0.98 ± 0.03 mm, which is an improvement over the 1.2 ± 0.4 mm

resolution obtained with the previous method. Another improvement over the

previous method was the smallest length measured of 0.2 cm, which was 0.5 cm

with the previous method.

6.2 Gas bubbles

An interesting application shown in this thesis is the measurement of gas bub-

bles in nuclear waste containers. Uranium present in nuclear waste can oxidise,

leading to the production of hydrogen. It has been observed in certain nuclear

waste containers that the accumulation of gas makes them overflow. Therefore, a

scanning technique for nuclear waste assay will be more versatile if it allows not

only for the imaging of high-Z materials, but also for finding gas bubbles. It was

shown that it is possible to determine the total gas volume encased in concrete,

with a resolution of 1.6 ± 0.8% for volumes over 2 L. Additionally, it was shown

that it is possible to determine if the gas is located in one single bubble, which

could pose a higher risk, or separated into smaller bubbles. This shows that muon

tomography can also be used to find gas bubbles in concrete containers.

6.3 Material discrimination

After showing possibilities for imaging nuclear waste with muon tomography,

a method for distinguishing high-Z materials was presented in Chapter 5. Since

these materials have very similar radiation lengths, methods that perform imaging
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of high-Z materials against the concrete background with a much lower Z, may

not be able to identify which high-Z materials are present. It was shown that it is

possible to distinguish between two high-Z materials when comparing data from

simulations with the same geometry but different materials. A good separation

was shown between uranium and lead, and uranium and tungsten, for different

sizes of blocks, down to 2 × 2 × 2 cm3, needing data taking times of up to 70

hours. The comparison between uranium and plutonium shows some separation

for 3× 3× 3 cm3 blocks, although not reaching a perfect discrimination with the

times used (up to 200h).

We can summarise and combine the imaging and material discrimination stud-

ies. The full process to characterise the content of a nuclear waste drum would start

by performing imaging to find lumps of different materials. Then the muon tracks

reconstructed in the high-Z material regions would be selected, and compared

to existing data or simulations from standard high-Z materials such as uranium,

plutonium, lead or tungsten, being then identified as the most similar material.

Finally, the edge finding method would be applied to each material found, us-

ing the MVA training previously performed with known data, if a good imaging

resolution were required.

6.4 General overview

Results in this thesis have shown that muon tomography can be used to perform

imaging of objects encased in concrete, of both high-Z and low-Z materials. The

main limitation of muon tomography, in particular for imaging, is the fact that

muons undergo multiple scattering along their path, and not in a single point,

which introduces an inherent uncertainty in the technique, when using a recon-

structed vertex, or point of closest approach. However, using the method described

in Section 4.2 which uses voxels of a fixed size for imaging, but shifts them by 1 mm,

it is possible to measure uranium lengths as small as 0.5 cm (without momentum

information) and 0.2 cm (including momentum information). For low-Z materials,
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it was shown that it is possible to measure the gas content of a concrete container,

for gas volumes down to 2 L. It was also shown that it is possible to distinguish

between different high-Z materials, namely between to distinguish uranium from

lead and tungsten, for blocks down to 2 cm side cubes. These results were obtained

from simulations where the objects of interest were placed in the centre of a muon

tomography system. If these objects are shifted from the centre, more data may

be required in order to obtain the same results, as the shifted bubbles results in

Section 4.3.2 indicate.

6.5 Future outlook

Some of the future work required to develop a system for scanning real nuclear

waste to be achieved includes the study of imaging and material discrimination in

larger containers. The concrete container simulated for this thesis was chosen to be

around 21 L because this was the size of a test drum built for a previous experiment.

It is a good size to compare the results from simulations and experiments without

having to change the existing experimental setup to fit a larger container. However,

many real nuclear waste drums can be much bigger, for example 220 L. So studies

on how the size affects these results are necessary, because not only larger drums

contain more concrete, increasing the muon scatter, their height also affects the

angular acceptance of the system, as well as the position and size of the detectors.

It is also interesting to apply the edge finding method to different shapes.

This work showed edge finding results for regular cuboid shapes, but it is not

expected that the objects found in nuclear waste have such regular shapes. This

could be done by performing the measurements along x but for several different y

and Z values, resulting in different lengths and allowing to better define different

shapes. Another future development is the application of this method to different

materials. The resolution obtained for measuring edges of materials with atomic

number lower than uranium is expected to be worse, since their radiation length

will be closer to the one of concrete.
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The gas measurement study should also be performed replacing the concrete

by bitumen (which has a lower density than concrete). This is because, unlike

concrete, bitumen is impermeable, which can lead to the hydrogen accumulating

in large bubbles. Another interesting extension to this study is to show if it is

possible to improve the technique in order to use it for a range of smaller volumes.

It is also important to determine how removing the momentum information will

affect the results on gas measurement.

6.6 Summary

As a general conclusion, this thesis has shown the potential and limits of using

muon scattering tomography for characterisation of dry nuclear waste encased in

concrete. This technique shows good results and some more study and experiments

should be performed in order to finally develop a system that can be used in nuclear

waste storage facilities. Therefore it is recommended that the study continues, in

particular following these suggestions for future work, and testing these methods

with real data from prototype systems.
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Appendix A | Variables

considered for material

discrimination
The variables used to calculate the significance value mentioned in Chapter 5

are shown in the current appendix. These distributions were obtained by perform-

ing simulations of monoenergetic vertical muons, with 1, 2 and 10 GeV, separately

incident on a plate of lead and a plate of uranium (A.1) and on a 10×10×10 cm3

block (A.2).

115



A. Variables considered for material discrimination

A.1 Simulation of a plate
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Figure A.1: Projected angle in x for uranium and lead plates, in linear (left)
and logarithmic (right) scales, for different muon energies. The histograms are
normalised.
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Figure A.2: Projected angle in y for uranium and lead plates, in linear (left)
and logarithmic (right) scales, for different muon energies. The histograms are
normalised.
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Figure A.3: 3D angle for uranium and lead plates, in linear (left) and logarithmic
(right) scales, for different muon energies. The histograms are normalised.
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Figure A.4: Upper offset in x for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.
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Figure A.5: Upper offset in y for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.
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Figure A.6: Lower offset in x for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.
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Figure A.7: Lower offset in y for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.
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Figure A.8: Longitudinal error for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.
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Figure A.9: Transversal error in x for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.

124



A. Variables considered for material discrimination

Transversal error y
0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

is
ed

 e
nt

rie
s

0

0.1

0.2

0.3

0.4

0.5

0.6 U238

Pb

(a) 1 GeV

Transversal error y
0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10

1

U238

Pb

(b) 1 GeV

Transversal error y
0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

is
ed

 e
nt

rie
s

0

0.1

0.2

0.3

0.4

0.5

U238

Pb

(c) 2 GeV

Transversal error y
0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10
U238

Pb

(d) 2 GeV

Transversal error y
0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

is
ed

 e
nt

rie
s

0

0.05

0.1

0.15

0.2

0.25

U238

Pb

(e) 10 GeV

Transversal error y
0 1 2 3 4 5 6 7 8 9 10

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10 U238

Pb

(f) 10 GeV

Figure A.10: Transversal error in y for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.11: Coordinate x of the reconstructed vertex for uranium and lead plates,
for different muon energies, in linear (left) and log (right) scales. The histograms
are normalised.
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A. Variables considered for material discrimination
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Figure A.12: Coordinate y of the reconstructed vertex for uranium and lead plates,
for different muon energies, in linear (left) and log (right) scales. The histograms
are normalised.
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A. Variables considered for material discrimination
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Figure A.13: Coordinate z of the reconstructed vertex for uranium and lead plates,
for different muon energies, in linear (left) and log (right) scales. The histograms
are normalised.
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A. Variables considered for material discrimination
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Figure A.14: χ2 from fit of upper track in x for uranium and lead plates, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

U238

Pb

(a) 1 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10 U238

Pb

(b) 1 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

U238

Pb

(c) 2 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10 U238

Pb

(d) 2 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

U238

Pb

(e) 10 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10 U238

Pb

(f) 10 GeV

Figure A.15: χ2 from fit of upper track in y for uranium and lead plates, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.16: χ2 from fit of lower track in x for uranium and lead plates, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.17: χ2 from fit of lower track in y for uranium and lead plates, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.18: Six points fit χ2 in x for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.19: Six points fit χ2 in y for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.

134



A. Variables considered for material discrimination
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Figure A.20: Combined fit χ2 for uranium and lead plates, for different muon
energies, in linear (left) and log (right) scales. The histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.21: Distance between the reconstructed vertex and upper track in x for
uranium and lead plates, for different muon energies, in linear (left) and log (right)
scales. The histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.22: Distance between the reconstructed vertex and upper track in y for
uranium and lead plates, for different muon energies, in linear (left) and log (right)
scales. The histograms are normalised.
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Figure A.23: Distance between the reconstructed vertex and lower track in x for
uranium and lead plates, for different muon energies, in linear (left) and log (right)
scales. The histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.24: Distance between the reconstructed vertex and lower track in y for
uranium and lead plates, for different muon energies, in linear (left) and log (right)
scales. The histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.25: Projected angle in x for uranium and lead 10× 10× 10 cm3 blocks,
in linear (left) and logarithmic (right) scales, for different muon energies. The
histograms are normalised.

140



A. Variables considered for material discrimination
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Figure A.26: Projected angle in y for uranium and lead 10× 10× 10 cm3 blocks,
in linear (left) and logarithmic (right) scales, for different muon energies. The
histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.27: 3D angle for uranium and lead 10 × 10 × 10 cm3 blocks, in linear
(left) and logarithmic (right) scales, for different muon energies. The histograms
are normalised.
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A. Variables considered for material discrimination
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Figure A.28: Upper offset in x for uranium and lead 10× 10× 10 cm3 blocks, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.29: Upper offset in y for uranium and lead 10× 10× 10 cm3 blocks, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.30: Lower offset in x for uranium and lead 10× 10× 10 cm3 blocks, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.31: Lower offset in y for uranium and lead 10× 10× 10 cm3 blocks, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.32: Longitudinal error for uranium and lead 10× 10× 10 cm3 blocks, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.33: Transversal error in x for uranium and lead 10× 10× 10 cm3 blocks,
for different muon energies, in linear (left) and log (right) scales. The histograms
are normalised.
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A. Variables considered for material discrimination
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Figure A.34: Transversal error in y for uranium and lead 10× 10× 10 cm3 blocks,
for different muon energies, in linear (left) and log (right) scales. The histograms
are normalised.
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A. Variables considered for material discrimination
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Figure A.35: Coordinate x of the reconstructed vertex for uranium and lead 10×
10 × 10 cm3 blocks, for different muon energies, in linear (left) and log (right)
scales. The histograms are normalised.

150



A. Variables considered for material discrimination
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Figure A.36: Coordinate y of the reconstructed vertex for uranium and lead 10×
10 × 10 cm3 blocks, for different muon energies, in linear (left) and log (right)
scales. The histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.37: Coordinate z of the reconstructed vertex for uranium and lead 10×
10 × 10 cm3 blocks, for different muon energies, in linear (left) and log (right)
scales. The histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.38: χ2 from fit of upper track in x for uranium and lead 10×10×10 cm3

blocks, for different muon energies, in linear (left) and log (right) scales. The
histograms are normalised.
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A. Variables considered for material discrimination

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

U238

Pb

(a) 1 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10 U238

Pb

(b) 1 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

U238

Pb

(c) 2 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10 U238

Pb

(d) 2 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

U238

Pb

(e) 10 GeV

^2 (y)χUpper fit 
0 5 10 15 20 25 30 35 40

N
or

m
al

is
ed

 e
nt

rie
s

5−10

4−10

3−10

2−10

1−10 U238

Pb

(f) 10 GeV

Figure A.39: χ2 from fit of upper track in y for uranium and lead 10×10×10 cm3

blocks, for different muon energies, in linear (left) and log (right) scales. The
histograms are normalised.
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Figure A.40: χ2 from fit of lower track in x for uranium and lead 10× 10× 10 cm3

blocks, for different muon energies, in linear (left) and log (right) scales. The
histograms are normalised.
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A. Variables considered for material discrimination
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Figure A.41: χ2 from fit of lower track in y for uranium and lead 10× 10× 10 cm3

blocks, for different muon energies, in linear (left) and log (right) scales. The
histograms are normalised.
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Figure A.42: Six points fit χ2 in x for uranium and lead 10× 10× 10 cm3 blocks,
for different muon energies, in linear (left) and log (right) scales. The histograms
are normalised.
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Figure A.43: Six points fit χ2 in y for uranium and lead 10× 10× 10 cm3 blocks,
for different muon energies, in linear (left) and log (right) scales. The histograms
are normalised.
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Figure A.44: Combined fit χ2 for uranium and lead 10 × 10 × 10 cm3 blocks, for
different muon energies, in linear (left) and log (right) scales. The histograms are
normalised.
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A. Variables considered for material discrimination
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Figure A.45: Distance between the reconstructed vertex and upper track in x for
uranium and lead 10 × 10 × 10 cm3 blocks, for different muon energies, in linear
(left) and log (right) scales. The histograms are normalised.
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Figure A.46: Distance between the reconstructed vertex and upper track in y for
uranium and lead 10 × 10 × 10 cm3 blocks, for different muon energies, in linear
(left) and log (right) scales. The histograms are normalised.
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Figure A.47: Distance between the reconstructed vertex and lower track in x for
uranium and lead 10 × 10 × 10 cm3 blocks, for different muon energies, in linear
(left) and log (right) scales. The histograms are normalised.
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Figure A.48: Distance between the reconstructed vertex and lower track in y for
uranium and lead 10 × 10 × 10 cm3 blocks, for different muon energies, in linear
(left) and log (right) scales. The histograms are normalised.
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