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Abstract                                                                                                 

Background: Renal denervation (RDN) is an endovascular ablation technique for 
the treatment of resistant hypertension through disruption of the afferent and 
efferent renal nerves, thereby abolishing the feedback loop which drives 
increased sympathetic nerve activity and hypertension. This study aimed to 
develop measures of technical efficacy for RDN and to identify parameters to 
guide patient selection for this invasive therapy. 
 
Methods: Autonomic profiling, including measurement of office and ambulatory 
BP, muscle sympathetic nerve activity (MSNA), heart rate variability, 
sympathovascular transduction, baroreflex sensitivity (BRS), chemoreflex 
sensitivity, and markers of inflammation, was carried out at 0,1,3,6 and 12 
months, with quantification of aortic distensibility, left ventricular mass and 
function and cerebral blood flow at baseline and 6 months post-RDN. Procedural 
success was assessed through abolition of the reflex systemic BP response to 
intra-renal adenosine infusion (afferent nerves) and of the reflex reduction in 
renal blood flow in response to a handgrip stressor (efferent nerves).  
 
Results: 18 participants (office BP 192 ± 21/105 ± 23 mmHg, 5.2 ± 1.8 
antihypertensive medications) underwent RDN. Office SBP (oSBP) reduced by 16 
± 9mmHg (n=18, p=0.10) and 26 ± 8 mmHg (n=17, p=0.005) at 6 and 12 months 
post-RDN, respectively. MSNA incidence did not change following RDN (n=11, 61 
± 7 bursts/100heartbeats versus 66 ± 5 bursts/100heartbeats, p=0.47). Baseline 
oSBP (n=18, R=-0.61, p=0.01) and spontaneous sympathetic BRS (n=13, R=0.56, 
p=0.045) correlated with the change in oSBP post-RDN. Post-RDN non-responders 
had an increase in renal vascular resistance not seen in responders (n=7 arteries; 17 ± 
5%, p=0.01, n=6 arteries; -9 ± 12%, p=0.49, respectively). 
 
Conclusions: These preliminary studies suggest that patients with a higher office 
SBP and greater spontaneous sympathetic BRS may respond to RDN, and that an 
inability to increase renal vascular resistance with handgrip stress after 
denervation is indicative of disruption of the renal sympathetic nerves.  
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1 Introduction 

 
Hypertension is a global health problem with world-wide prevalence predicted to rise to 

1.56 billion by 2025 (Kearney, Whelton et al. 2005). In England approximately 30% of the 

adult population has hypertension, but blood pressure (BP) remains uncontrolled in over 

40% of those receiving treatment (Foundation 2017). These patients have treatment 

resistant hypertension, which is defined as the failure to achieve a BP of <140/90 mmHg 

despite compliance with ≥3 anti-hypertensive medications including a diuretic. There are 

many causes of resistant hypertension, but differentiating between patients with true 

drug resistance, as opposed to those with pseudo-resistance due to factors such as poor 

medication adherence, drug intolerance or secondary hypertension is essential. 

Hypertension is a significant risk factor for cardiovascular disease with the World Health 

Organisation reporting that 11% of all disease burden in developed countries is due to 

high BP (WHO 2013), and financial estimates indicate that if BP could be reduced to less 

than 140/90mmHg, the NHS could save around £97.2 million from reduced 

complications such as stroke, heart failure and renal failure (Lloyd, Schmieder et al. 

2003).  

Previously, the treatment options for patients with drug resistant hypertension were 

very limited, but the advent of novel interventional therapies such as renal denervation 

(RDN) has generated considerable interest. RDN is an endovascular ablation technique 

which aims to disrupt the afferent and efferent renal nerves, thereby abolishing a 

feedback loop which drives up sympathetic nerve activity (SNA) and hypertension. Initial 

proof of concept and safety studies (Symplicity HTN-1 and EnligHTN I) and a subsequent 

randomised controlled trial (RCT, Symplicity HTN-2) reported response (≥10 mmHg drop 

in office systolic blood pressure (oSBP)) rates of ≥80% at 6 months following RDN (Krum, 

Schlaich et al. 2009, Esler, Krum et al. 2010, Worthley, Tsioufis et al. 2013). Significant 

reductions in office BP were maintained out to at least 24 months after denervation in 

all three of these studies (-29/-14 mmHg, -29/-13 mmHg and -30/-11 mmHg 

respectively) (Esler, Bohm et al. 2014, Krum, Schlaich et al. 2014, Tsioufis, 

Papademetriou et al. 2015). These initial finding fuelled a huge acceleration of research 

in the field, but did not reflect data from other European groups reporting response 

rates of closer to 50%, with considerable variability in the BP outcomes post-RDN 

between individual patients (Brinkmann, Heusser et al. 2012, Prochnau, Lucas et al. 

2012, Vase, Mathiassen et al. 2012, Kaltenbach, Franke et al. 2013). It was in this context 

that this pilot study was designed, aiming to investigate factors which would predict 

whether an individual would response to this expensive and invasive new technique.  

Two years into this project, the outcomes of the American sham-RCT (Symplicity HTN-3) 

were published and this pivotal study failed to meet its primary outcome of a reduction 

in office BP at 6 months, prompting renewed discussion into the efficacy of RDN (Bhatt, 

Kandzari et al. 2014). The mechanisms underlying the effect of RDN remain unclear and 

given the significant variability in the BP response to RDN between studies, generating 

an individual patient’s autonomic profile and relating this to their treatment outcome 

should help to guide patient selection for this invasive therapy. There has been 

considerable debate about the optimal study design and outcome measures to be used 

when assessing the efficacy of novel treatments of hypertension, and indeed whether 

RDN has any clinical antihypertensive effect at all (Esler 2014, Mahfoud, Edelman et al. 
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2014, Kandzari, Bhatt et al. 2015, Lobo, de Belder et al. 2015, Gulati, Raphael et al. 2016, 

Howard, Shun-Shin et al. 2016).  

If RDN is effective in reducing blood pressure, then why are individual outcomes so 

variable? If a patient fails to respond to RDN is it because the procedure itself was not 

effective at ablating the renal nerves, or is it because hypertension in that individual is 

driven by factors other than raised sympathetic nerve activity, and that a therapy 

targeting this mechanism was never going to be beneficial in that particular patient? It is 

the latter question that this study aims to address through measures of the efficacy of 

renal denervation at the time of the procedure, and through comprehensive autonomic 

profiling of participants before and after RDN with a view to establishing physiological 

predictors of response for this novel, interventional therapy for the management of 

resistant hypertension.  

We measured a range of physiological parameters in patients before and after RDN, 

including muscle sympathetic nerve activity (MSNA) using a technique called 

microneurography, as well as heart rate variability, sympathovascular transduction, 

baroreflex sensitivity and chemoreflex sensitivity, markers of inflammation, cerebral 

blood flow, and measures of left ventricular function and mass and aortic distensibility. 

These indices will be correlated against changes in office BP following denervation, and 

we hypothesise that this will facilitate the identification of those most likely to response 

to RDN. We also aimed to develop measures of technical efficacy for RDN by examining 

its effect on reflex responses to stimulation of both the afferent and efferent renal 

nerves, thus enabling the appropriate interpretation of BP outcomes and helping to 

direct the development of future generations of ablation catheters. 

Our data are presented in the context of the highs and lows seen in the field of renal 

denervation over the course of this study, and look to the future of this exciting, but at 

times controversial, new technique. 
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2 Literature review 

 

2.1 Blood pressure regulation 

2.1.1 The role of the kidney in blood pressure regulation 

The kidney has long been established as central in the regulation of blood pressure. As 

early as the 19th century, Bright proposed that alterations in urine production by the 

kidney were associated with changes in the blood which caused increases in vascular 

resistance, and thus increased blood pressure and cardiac mass (Bright 1836). In 1909, 

Starling discussed the interdependence of fluid balance and circulatory stability, and the 

regulatory function of the kidney; the heart responds to the volume of the circulation 

and the kidneys adjust the volume of excretion (Starling 1909). These concepts were 

developed by Guyton and Coleman in the 1960s to form the Guytonian (or more 

correctly Coleman-Guytonian) Paradigm, the ‘renal – body fluid feedback control 

system’, in which the kidney underpins blood pressure control (Guyton 1961, Guyton 

and Coleman 1969, Guyton 1989).   

2.1.1.1 The Coleman-Guytonian Paradigm 

The renal – body fluid control system establishes several core concepts for the long-term 

control of blood pressure (Guyton and Hall 1996, Brands 2012, Pao 2014, Evans and Bie 

2016, Osborn and Foss 2017). 

1. Increased extracellular fluid volume causes increased arterial pressure, which 

has a direct effect on the kidney, increasing sodium ion (and water) filtration 

and excretion known as pressure natriuresis. 

2. The point at which sodium ion (Na+) intake intersects with the renal sodium 

handling/function curve determines the blood pressure set point (Figure 2-1).  

3. There is infinite gain within the pressure natriuresis system which will return 

blood pressure to its equilibrium point. To change the blood pressure set point, 

there must either be an increase in salt intake or a shift in the renal function 

curve (deteriorating renal function and thus Na+ excretion would shift the curve 

to the right, increasing the set point of arterial pressure). 

4. Blood flow is precisely controlled to each tissue (autoregulation); cardiac output 

is the sum of blood flow to all tissues.  

5. Arterial pressure is kept constant, independent of cardiac output. This prevents 

changes in blood flow in one organ affecting flow elsewhere in the body as the 

pressure head remains constant. 

6. According to Ohm’s law, pressure = flow x resistance. However, changes in 

systemic vascular resistance do not increase the long-term blood pressure set 

point, since the initial increase in arterial pressure related to increased systemic 

vascular resistance drives pressure-natriuresis, returning blood pressure to 

normal. 
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Figure 2-1. Pressure natriuresis curve 
 

Whilst pressure natriuresis is the main tenet of the renal – body fluid system, there are 

other neurohormonal mechanisms which influence the renal control of blood pressure. 

The renin angiotensin aldosterone system (RAAS) is the predominant of these pathways, 

with a key role in maintaining blood pressure homeostasis despite fluctuations in salt 

intake (Guyton and Hall 1996); important given that a high salt diet does not cause 

hypertension in all cases. The RAAS pathway is summarised in Figure 2-2. 

Renin is released from the juxtaglomerular cells in the kidney in response to a fall in 

arterial pressure, which leads to an increase in the circulating levels of highly potent 

angiotensin II (Ang II). Ang II acts on the kidney to constrict the efferent renal arteriole, 

increasing glomerular filtration, but acts to increase Na+ and water reabsorption in the 

renal tubules, resulting in net Na+ and water retention. Ang II resets the arterial 

baroreflex, activating the baroreceptors and reducing sympathetic nerve activity (SNA), 

acting to buffer increases in blood pressure in response to Ang II (Lohmeier and Iliescu 

2015). Ang II also stimulates aldosterone release from the zona glomerulosa of the 

adrenal gland by action on angiotensin II type 1 receptors (AT1R) (Hall 1986, Guyton and 

Hall 1996, Coffman 2014). Aldosterone works through activation of the 

mineralocorticoid receptor and consequent assembly and translocation of the epithelial 

sodium channel (ENaC) which facilitates sodium reabsorption in the distal renal tubules, 

as well as having a role in regulating water absorption by decreasing aquaporin 

expression in the collecting ducts (Guyton and Hall 1996, Nielsen, Kwon et al. 2006, 

Coffman 2014). Well known antihypertensive medications, including angiotensin 

converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB), direct renin 

inhibitors (aliskiren) and aldosterone antagonists, all act to block the rise in blood 

pressure triggered by RAAS activation. 
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Figure 2-2. Renin angiotensin aldosterone system 
ACE; angiotensin converting enzyme. 

The RAAS pathway takes the Guytonian paradigm beyond simple pressure natriuresis, 

but does not contradict it, since the RAAS pathway also responds to falls in arterial 

pressure and thus extracellular fluid volume with an increase in sodium reabsorption 

and a consequent rise in pressure.  

The sympathetic nervous system also has a synergistic role to play in blood pressure 

control via the kidney. Increased renal sympathetic nerve activity causes constriction of 

the renal arterioles, resulting in reduced renal blood flow and glomerular filtration, 

increased sodium reabsorption in the Loop of Henle, and increased renin and Ang II 

formation (Guyton and Hall 1996). Stimulation of the β-adrenoreceptors causes macula 

densa cells to increase renin release (Holdaas, DiBona et al. 1981), and also increases 

blood pressure by suppressing WNK4 (with no lysine kinase 4) and, in turn, enhancing 

sodium chloride cotransporter (NCC) activity and hence sodium reabsorption (Mu, 

Shimosawa et al. 2011).  

2.1.1.2 Neural mechanisms for the short-term regulation of blood pressure 

Whilst the kidney plays a central role in the long term regulation of blood pressure and 

contributes to the chronic set point for blood pressure, Guyton highlights several other 

key mechanisms which help the body to maintain a constant blood pressure in response 

to physiological challenges in the short term (Guyton and Hall 1996). We have already 

considered the RAAS system which adapts to changes in blood pressure over the short 

to medium term, fluctuating over minutes and hours, but there are a range of reflexes 

which respond to acute changes in pressure, such as changes in posture or acute 

blood/volume loss (Guyton and Hall 1996). These short-term mechanisms primarily act 

through modulation of the sympathetic nervous system, with parasympathetic activity 

via the vagal nerve mainly limited to reflex changes in heart rate (Guyton and Hall 1996). 
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The central integration of the reflexes and their control of sympathetic outflow is 

summarised in Figure 2-3.  

The vasomotor neural network is located within the brainstem at the level of the 

medulla oblongata. The centre consists of:  

i. a sympathoexcitatory area located in the rostral ventrolateral medulla (RVLM). 

These neurons contain VGLUT2 (vesicular glutamate transporter 2) and tyrosine 

hydroxylase and send axons to the spinal cord and are therefore termed 

bulbospinal pre-sympathetic motoneurons (Guyenet 2014).They innervate the 

sympathetic preganglionic neurons located in the intermediolateral cell column 

of the spinal cord that via the postganglionic sympathetic neurons innervate the 

heart, arterioles and venules (Guyenet 2006). The adrenal medulla is innervated 

directly by the preganglionic neurons for the secretion of adrenaline and 

noradrenaline into the blood (Guyton and Hall 1996, Fisher and Paton 2012). 

ii. a sympthoinhibitory area located in caudal ventrolateral medulla (CVLM). The 

CVLM contains neurons containing GABA (γ- aminobutyric acid) that project to 

and terminate on the RVLM bulbospinal pre-sympathetic neurons and have an 

inhibitory effect, thereby reducing heart rate, total peripheral resistance and 

venous pressure  (Guyton and Hall 1996, Guyenet 2006, Fisher and Paton 2012). 

iii. a sensory area in the nucleus of the solitary tract (NTS) in the dorsomedial 

medulla receives sensory signals from the vagus and glossopharyngeal nerves 

(including signals from the baroreceptors and peripheral chemoreceptors) and 

acts to control the CVLM and RVLM; providing reflex control of circulatory 

function (Guyton and Hall 1996, Guyenet 2006, Fisher and Paton 2012).  

The RVLM pre-sympathetic neurons transmit continuous signals resulting in sympathetic 

vasomotor tone (Guyton and Hall 1996, Guyenet 2006). The significance of this has been 

demonstrated in animal studies since a fall in arterial pressure is seen following total 

spinal anaesthesia and blockade of the sympathetic vasoconstrictor neurones (Guyton 

and Hall 1996).  
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Figure 2-3. Central neural sites involved in the integration of cardiovascular reflexes 
and the control of sympathetic outflow. 
Chemoreceptor circuit is shown with dashed lines to differentiate from the baroreceptor 
circuit; the chemo circuit inputs directly from the NTS to the RVLM. CVLM, caudal 
ventrolateral medulla; CVO, circumventricular organs; IML, intermediolateral cell 
column; mnPO, median preoptic nucleus; NTS, nucleus of the solitary tract; PVN, 
paraventricular nucleus; RVLM, rostral ventrolateral medulla; SGN, sympathetic 
ganglionic neuron; SPGN, sympathetic preganglionic neuron, SPVGC, sympathetic 
paravertebral ganglionic chain. Adapted from Fisher & Paton 2012 and Guyenet 2006  
(Guyenet 2006, Fisher and Paton 2012). 
 
 
Stretch receptors in the aorta and carotid sinus are the origin of the sensory afferent 

components of the arterial baroreflex. This highly sensitive system has evolved as a 

homeostatic mechanism enabling us to adapt to changes in posture, immersion in water 

and volume loss due to haemorrhage or dehydration. The arterial baroreflex is activated 

between 60-180 mmHg, with maximal sensitivity in the normal operating range of 100 

mmHg (Guyton and Hall 1996). Distension as a result of increased intravascular pressure 

activates this sympathoinhibitory reflex; the signal from the baroreceptors is 

transmitted via the NTS and has an excitatory effect on the CVLM which in turn inhibits 

the RVLM sympathoexcitatory neurons resulting in systemic and venous vasodilation 

and negative chronotropic and inotropic effects on the heart (Guyton and Hall 1996, 

Guyenet 2006). The baroreflex is crucial in the control of beat-to-beat changes in blood 

pressure, but resets to a new operating blood pressure over 1-2 days. This was 

demonstrated in experiments by Cowley in the 1970s, in which complete surgical 

disruption of the arterial baroreceptors produced only a transient elevation in BP in 

awake dogs (Cowley 1992). The baroreflex was not felt by Guyton to have a role in the 
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long-term control of blood pressure, although this perspective has been brought into 

question more recently by evidence from Lohmeier and Thrasher for a long-term role for 

the baroreflex in BP regulation (see Section 2.1.2.3.2) (Guyton and Hall 1996, Thrasher 

2002, Malpas 2010, Lohmeier and Iliescu 2015).  

The peripheral chemoreceptors trigger respiratory drive and sympathetically mediated 

reflex increases in BP when stimulated with hypoxia and/or hypercapnia (or acidic pH) 

(Paton, Sobotka et al. 2013). They are located bilaterally at the carotid bifurcation 

(carotid bodies), and the aorta (aortic bodies) (Paton, Sobotka et al. 2013) and excite 

carotid sinus and aortic nerve fibres respectively that terminate in the NTS. When blood 

pressure falls these highly sensitive organs are subject to decreased oxygen and 

increased carbon dioxide tension (due to reduce blood flow) and trigger reflex increases 

in sympathetic activity to increase arterial pressure (Guyton and Hall 1996).  

Right atrial and pulmonary low pressure receptors primarily respond to changes in blood 

volume in the low pressure circulation (Paintal 1973, Guyton and Hall 1996), for 

example, an increase in right atrial pressure causes an increase in heart rate and 

reduction in vasomotor sympathetic activity reducing total peripheral resistance known 

as the Bainbridge reflex (Jones 1962). In addition to this neural mechanism, atrial 

natriuretic peptide (ANP) is released from cardiac muscle cells in response to 

overstretching of the atria, therefore acting as a parallel response to volume overload by 

increasing glomerular filtration rate, reducing Na+ reabsorption in the distal renal tubule 

and collecting duct, decreasing renin release, and by causing vasodilatation of the 

arterioles and venules (Ballermann and Brenner 1987, Guyton and Hall 1996). 

Conversely, when there is a fall in extracellular volume with an increase in osmolarity, 

the osmoreceptor cells in the anterior hypothalamus are stimulated, triggering release 

of vasopressin (also known as anti-diuretic hormone (ADH)) from the posterior pituitary. 

Vasopressin , increases the water permeability of the distal renal tubules and collecting 

ducts, increasing water reabsorption to maintain volume (Guyton and Hall 1996). 

Guyton describes the central nervous system (CNS) ischaemic response, which activates 

an at arterial pressure of <60 mmHg, as the final defence mechanism against cerebral 

hypoperfusion (Sagawa, Ross et al. 1961, Guyton and Hall 1996); if blood flow to the 

brainstem drops sufficiently to cause ischaemia, neurons within the RVLM are directly 

excited and act to dramatically increase blood pressure through intense peripheral 

vasoconstriction (Koganezawa and Paton 2014). Initially described by Harvey Cushing in 

1901, the Cushing response is a specific type of CNS ischaemic response which occurs 

when blood flow to the vasomotor centre is restricted due to increased pressure within 

the cranial vault (Cushing 1901). More recently, Paton et al. have argued that the 

Cushing’s response lies the extreme end of a more sensitive Cushing’s mechanism, which 

responds to changes in changes in cerebral perfusion at normal physiological levels of 

arterial pressure, although this is yet to be validated (Paton, Dickinson et al. 2009). 

2.1.1.3 How does the Guytonian Paradigm explain hypertension? 

Guyton describes the condition of volume loading hypertension (Guyton and Hall 1996). 

On a simplistic level, fluid retention and increased extracellular volume will cause an 

initial increase in cardiac output and blood pressure. Total peripheral vascular resistance 

then increases in response to this to protect target organs from hyperperfusion through 
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the mechanism of ‘whole-body autoregulation’1. Left heart cardiac output (the sum of 

blood flow to all tissues) thus returns to normal, but blood pressure remains high due to 

the sustained increase in total peripheral vascular resistance (PVR). Thus, increased PVR 

can maintain hypertension but does not cause it without an initial increase extracellular 

fluid volume due to sodium (or volume) loading. However, this raises questions; in the 

short term, where does the excess volume go (a shift into capacitance vessels would 

contradict the increase in PVR), and why does BP not return to normal if the increased 

pressure causes a natriuresis/diuresis (the natriuresis curve would have to shift if 

hypertension is sustained)? When blood pressure increases, the short-term pressure 

regulatory mechanisms described in Section 2.1.1.2 must also reset to operate over the 

higher BP range. For example, regardless of whether it is involved in the long-term 

regulation of BP or not, the baroreflex must have a rightward shift to reset over a higher 

pressure range.   

Conversely, pathological renal hypoperfusion can also cause hypertension. In the 

Goldblatt one-kidney, one-clip model, there is an initial increase in arterial pressure 

related to renin release and activation of the RAAS, and a sustained increase in pressure 

due to salt retention and volume expansion resulting in renovascular hypertension 

(Liard, Cowley et al. 1974). Renal artery stenosis also results in a relative reduction in 

renal blood flow; this stimulates increased renin release from the juxtaglomerular cells 

and activation of the RAAS, including action of renin and Ang II on the contralateral 

kidney (Guyton and Hall 1996).  Reduced renal blood flow will also cause a shift of the 

pressure-natriuresis curve and therefore promote increased sodium reabsorption and 

inappropriate extracellular volume expansion because of pathological renal 

hypoperfusion.  

It is intuitive to understand how impaired renal function can cause hypertension based 

on the renal – body fluid system. In chronic kidney disease patients develop patchy renal 

ischaemia which once again drives renin release and activation of the RAAS, as well as a 

right-ward shift in the renal function/sodium handling curve (Guyton and Hall 1996).   

2.1.1.4 Evidence to support the central role of the kidney in hypertension 

Liddle‘s syndrome is a classic example of the way in which changes in renal salt handling, 

in this case increased sodium reabsorption, result in an increase in blood pressure. 

Individuals with this condition have a gain of function mutation in the epithelial sodium 

channel (ENaC) which acts to increase sodium reabsorption, thus shifting the set point of 

the pressure natriuresis curve to a higher arterial pressure (Pao 2014). Blood pressure 

control can be achieved in patients with Liddle’s syndrome following treatment with 

triamterene, an ENaC-specific inhibitor, and a low salt diet (Botero-Velez, Curtis et al. 

1994, Pao 2014).  

                                                           
1 Autoregulation of blood has both metabolic (through regulation of local vasodilatory 
substances, such as adenosine and nitric oxide, in response to local tissue oxygenation 
and nutrient supply) and myogenic mechanisms (with the sudden stretch of small blood 
vessels causing the smooth muscle of the vessel wall to contract).  
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Cross-transplantation studies provide evidence that hypertension tracks intrinsic kidney 

function (Pao 2014). For example transplantation of the kidneys from a Dahl salt-

sensitive rat into a normotensive salt-resistant rat results in hypertension in the 

normotensive animal, regardless of whether transplantation occurs before or after the 

introduction of a high-salt diet (Dahl, Heine et al. 1974). The converse is also true, with 

transplantation of kidneys from a normotensive donor animal into a hypertensive 

recipient blunting the hypertensive propensity of the strain (Dahl, Heine et al. 1974). The 

same phenomenon is observed following renal transplantation in hypertensive humans 

receiving graphs from normotensive donors (Curtis, Luke et al. 1983).  

Transgenic transplantation studies have also demonstrated the key role for local RAAS 

feedback within the kidney. Hall et al. had previously demonstrated that intra-renal 

infusion of Ang II increases sodium reabsorption, shifting the renal function/sodium 

handling curve to the right, and thereby causing hypertension (Hall 1986). Coffman’s 

group transplanted kidneys from AT1R knockout mice into normal recipients expressing 

systemic AT1R (and vice versa), demonstrating that expression of the AT1R in the kidney 

is necessary and sufficient for the development of Ang II induced hypertension  

(Crowley, Gurley et al. 2006), although the important central effect of Ang II must also 

be considered (see section 2.1.2.3.6). 

Importantly for this research project, denervation of the kidney has been shown to 

reduce blood pressure in both animal and human studies (Liard 1977, Katholi, Winternitz 

et al. 1982, Lee and Walsh 1983, Esler, Krum et al. 2010, Schlaich, Bart et al. 2013). This 

demonstrates the central role of the kidney in the neural regulation of blood pressure, 

but whether disruption of efferent sympathetic signals to the kidney, or sensory afferent 

signals from the kidney providing central feedback, underpins this anti-hypertensive 

effect is still unknown (Grassi, Mark et al. 2015). The data supporting renal denervation 

will be discussed in detail in Section 2.3. 

2.1.1.5 Hypertension: Going beyond Guyton 

Guyton’s renal – body fluid control hypothesis provides a robust explanation for blood 

pressure control; however, it does not fit all data, particularly mechanisms effective 

beyond the kidney, and other factors should be considered. Importantly, the paradigm 

does not include the autonomic nervous system – where does sympathetic nerve 

activity fit in? 

Extra-renal angiotensin II type 1a receptors, most likely those located within the brain 

and vasculature, have a role to play in blood pressure regulation (Pao 2014). Further 

data from Coffman’s group using cross-transplantation between wild-type and AT1R 

knockout mice found that AT1R knockout mice without renal or peripheral angiotensin II 

type 1 receptors are hypotensive, but that transplantation of a wild-type AT1R+ kidney 

into an AT1R knockout recipient was not sufficient to increase the blood pressure to that 

of AT1R+ wild-type controls with both renal and peripheral angiotensin II type 1 

receptors (Crowley, Gurley et al. 2005). In vivo gene transfer studies have also 

demonstrated that Ang II can act via endothelial nitric oxide synthase (eNOS) to release 

nitric oxide from the vasculature within the NTS, which then modulates the baroreflex 

through vascular neuronal signalling (Paton, Waki et al. 2003, Paton, Wang et al. 2008). 
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Guyton hypothesised that hypertension does not occur due to a primary increase in 

total peripheral resistance (TPR), and that any increase in TPR is secondary to whole 

body autoregulation in response to sodium/volume loading (Guyton 1989). However, 

there is increasing evidence that primary increases in TPR can cause hypertension (Pao 

2014), for example through the action of aldosterone on the mineralocorticoid receptor 

in vascular smooth muscle, which causes vasoconstriction. McCurley et al. reported that 

transgenic mice with an inducible deletion of the mineralocorticoid receptor in vascular 

smooth muscle did not have the age-related increase in arterial pressure seen in wild-

type mice but showed no difference in renal sodium handling to their wild-type 

counterparts (McCurley, Pires et al. 2012). Likewise, mice with a constitutively inactive 

mineralocorticoid receptor in the vascular smooth muscle endothelium, demonstrated 

normal sodium excretion, but were hypotensive with attenuated aldosterone-induced 

vascular stiffness (Galmiche, Pizard et al. 2014). 

The renal-body fluid hypothesis as applied to renovascular hypertension and the 

Goldblatt model described above must also be reconsidered. Oliveira-Sales et al. have 

shown that sympathetic nerve activity is raised prior to the development of 

hypertension in a rat two-kidney, one-clip Goldblatt model (Oliveira-Sales, Colombari et 

al. 2016). Furthermore, elevated superoxide levels in the RVLM are required for the 

development and maintenance of one-kidney, one-clip hypertension, emphasing the 

risks of over-simplification (Oliveira-Sales, Colombari et al. 2010).  

Sodium homeostasis may also be more complex than represented by the Guytonian 

paradigm. Guyton’s hypothesis is based on the concept that the two components of 

extracellular fluid volume, intravascular and interstitial fluid, are in equilibrium (Coffman 

2014). However, work by Titze’s group suggests that the interstitium of the skin may act 

as a sodium reservoir, buffering the impact of sodium accumulation on intravascular 

volume and arterial pressure (Machnik, Neuhofer et al. 2009). This is of particular 

relevance in understanding the mechanisms driving salt-sensitive hypertension, in which 

individuals demonstrate an exaggerated blood pressure effect in response to changes in 

salt intake, which may not solely relate to alterations in sodium handling. 

There is increasing evidence that the immune system has a key role to pay in the 

development of hypertension. Disruption of T cell function, particularly T cell activation, 

is protective against the development of Ang II mediated hypertension (Guzik, Hoch et 

al. 2007, Vinh, Chen et al. 2010). Furthermore, whilst the development of hypertension 

maybe dependent on CD8+ T cells (Trott, Thabet et al. 2014), CD4+ T cells may be 

relevant to sustained hypertension, with Th17 cells (secreting IL-17) and Th1 cells being 

implicated in the potentiation of hypertension (Madhur, Lob et al. 2010) and 

hypertension related kidney injury (Zhang, Patel et al. 2012), respectively. The NF-κβ 

(nuclear factor kappa-light-chain-enhancer of activated B cells) cascade is a pro-

inflammatory pathway which mobilises inflammatory cytokines and reactive oxygen 

species; blockade of NF-κβ signalling protects against hypertension (Muller, Dechend et 

al. 2000), and interestingly, central NF-κβ activation by Ang II in the paraventricular 

nucleus of the hypothalamus has been shown to increase sympathetic nerve activity 

(Kang, Ma et al. 2009). Systemic inflammation can upregulate microglia, pro-

inflammatory cytokines and reactive oxygen species within the rostral ventrolateral 

medulla, with an associated rise in blood pressure and increased sympathetic vasomotor 

tone (Wu, Chan et al. 2012). A range of inflammatory cytokines have been implicated in 
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hypertension, for example, knockouts for the interferon-γ receptor are protected 

against end organ damage in hypertension (Marko, Kvakan et al. 2012), and interleukin-

6 knockout mice have a blunted hypertensive response to Ang II (Lee, Sturgis et al. 

2006). Some consideration must be attended to the Ang II model of hypertension, which 

is far from realism, since homeostatic responses to an increase in Ang II would usually 

act to return the activation of the RAAS system to resting levels. These animal studies 

indicate that immune modulation may represent an exciting novel target for the 

management of hypertension, and whilst this is supported by preliminary clinical data 

(Herrera, Ferrebuz et al. 2006), this is a field that will benefit from further clinical 

research. 

The selfish brain hypothesis places the brain, rather than the kidney, at the centre of 

blood pressure control, and is based on the concept that the brainstem will maintain 

adequate perfusion and oxygenation at the expense of systemic hypertension, hence 

‘essential hypertension’ (Cates, Dickinson et al. 2012). Patients with hypertension have 

relative narrowing of the vertebral arteries (Dickinson and Thomson 1960) and raised 

SNA (Smith, Graham et al. 2004), and there is evidence to suggest that cerebro-

hypoperfusion drives sympathoexcitation (Cates, Dickinson et al. 2012). It is observed 

that sympathetic overdrive may fuel the pathogenesis of hypertension, with a 

progressive increase in SNA from normal to mild-moderate hypertension and then 

severely hypertensive patients, corroborating findings in the animal models of 

hypertension (Grassi, Seravalle et al. 2010). Fisher and Paton propose a paradigm 

relating raised SNA with inflammation, cerebral hypoperfusion and angiotensin II activity 

in the aetiology of hypertension (see Figure 2-4) (Fisher and Paton 2012); this concept of 

‘neurogenic hypertension’ will be explored in the following section. 

 

 

Figure 2-4. Triangulation of neurogenic hypertension 
The establishment of positive feedback loops between angiotensin II, inflammation and 
vascular dysfunction/brain hypoperfusion may form the basis of refractory hypertension 
(Fisher and Paton 2012). 
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2.1.2 Neurogenic hypertension 

The pathogenesis of hypertension is highly complex and due to a combination of genetic 

and environmental factors, the severity of which will vary between individuals. In ~95% 

of cases there is no clear aetiology, and the diagnosis of exclusion – ‘primary (or 

essential) hypertension’ - is given (Carretero and Oparil 2000). The genes responsible for 

certain monogenetic hypertensive syndromes (e.g. glucocorticoid-remediable 

aldosteronism, Liddle’s syndrome, and apparent mineralocorticoid excess) have been 

identified (Carretero and Oparil 2000, Lifton, Gharavi et al. 2001), but these conditions 

are rare, and family and twin studies suggest that in the majority blood pressure is a 

classic complex genetic trait with a heritability of 30-50% (Ehret and Caulfield 2013). 

Genome-wide analysis has now identified at least 43 genetic variants associated with 

systolic blood pressure, diastolic blood pressure and hypertension, but it is likely that 

hundreds of loci are involved, and the effect size of each of the identified variants is only 

~1 mmHg of systolic BP (Ehret and Caulfield 2013). Environmental and physiological 

factors that increase blood pressure include aging, obesity, insulin resistance, high 

alcohol intake, high salt intake (in salt-sensitive patients), stress and a sedentary life-

style; several of these are also partially genetically determined, thus complicating the 

picture even further (Carretero and Oparil 2000).  

On a physiological level, blood pressure is the product of cardiac output (CO) and 

peripheral vascular resistance (PVR). These parameters are controlled by intermediary 

mechanisms including the sympathetic nervous system (SNS), parasympathetic nervous 

system (heart rate), renin-angiotensin-aldosterone system, renal kallikrein-kinin systems 

and endothelial factors, which in turn influence sodium excretion, vascular reactivity, 

and cardiac contractility and respond to blood pressure feedback (Carretero and Oparil 

2000). The 1967 Guyton and Coleman model for the control of blood pressure directly 

relating changes in mean arterial pressure and kidney perfusion to renal sodium and 

water excretion has now been expanded to incorporate the dynamic role of the SNS in 

long-term blood pressure regulation (Osborn, Averina et al. 2009). Hypertension can be 

regarded as neurogenic if it is due to an abnormality of the autonomic nervous system, 

as opposed to being caused by a primary vascular, renal, or specific endocrine 

abnormality (Guyenet 2006)  

Historically, centrally acting sympatholytic agents (clonidine, methyldopa) have often 

been poorly tolerated, and the majority of pharmacological research in the field has 

targeted the RAAS (ACE inhibitors/ARB), salt and water retention (diuretics) or increased 

peripheral vascular tone and myocardial contractility (calcium channel blockers, beta 

blockers, alpha blockers). However, the pivotal role of the SNS in neurogenic 

hypertension is now coming to the fore, and the relationship between excessive SNA 

and the development and progression of hypertension, insulin resistance, chronic renal 

disease and heart failure has been demonstrated in both preclinical and human 

experiments (Goldstein 1983, Cohn, Levine et al. 1984, Hasking, Esler et al. 1986, 

Mancia, Grassi et al. 1999, Hausberg, Kosch et al. 2002, Penne, Neumann et al. 2009, 

Grassi, Quarti-Trevano et al. 2011, Sobotka, Mahfoud et al. 2011, Schlaich, Hering et al. 

2012). Exactly why sympathetic up-regulation occurs and how to most reliably measure 

it will form the subject of this review, with particular reference to the roles of the renal 

afferent and efferent nerves in the development and maintenance of neurogenic 

hypertension.  
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2.1.2.1 Sympathetic overdrive in hypertension 

A causal relationship between raised SNA and hypertension is suggested by effect of 

both surgical sympathectomy and sympatholytic drugs (Guyenet 2006). Surgical 

sympathectomy was used in the 1950s as a treatment for hypertension, successfully 

lowering blood pressure, but with significant orthostatic side-effects (Whitelaw and 

Smithwick 1951, Morrissey, Brookes et al. 1953, Longland and Gibb 1954).Sympathetic 

ganglionic blockade, starting with drugs such as hexamethonium discovered by William 

Paton in the early 1950s (Paton 1982), was employed to replace surgical 

sympathectomy, and likewise lowered blood pressure but with significant side effects, 

including constipation, mydriasis and impotence (Fisher and Paton 2012). Anti-

adrenergic drugs, such as beta blockers, peripheral α1 receptor blockers,  and centrally 

acting sympatholytics (α2 receptors blockers and imidoline antagonists) also have a 

blood pressure lowering effect, and therefore support a role for sympathetic nervous 

system involvement in hypertension (Fisher and Paton 2012), as do the established 

antihypertensive agents ACEi (angiotensin converting enzyme inhibitors), ARBs and CCBs 

(calcium channel blockers) which all decrease sympathetic nerve activity (Niederberger, 

Aubert et al. 1995). 

Evidence for raised SNA in hypertension comes from a wide range of animal and human 

studies. Plasma catecholamines are frequently elevated in patients with HTN, especially 

younger patients with established hypertension, which might suggest a role for 

sympathetic overdrive in the aetiology of hypertension in this group (Goldstein 1983). 

However, whilst plasma adrenaline and noradrenaline (NA) levels are easily quantified, 

inter and intra study variability is high and these measures reflect a global marker for 

systemic rather than organ-specific sympathetic activity and are a blunt tool for the 

investigation of hypertension (Goldstein 1983). SNA varies between organs, with 

differential control (Esler, Jennings et al. 1984, Guyenet 2006). Organ specific SNA can 

be determined using a constant-rate intra-arterial infusion of radiolabelled NA with 

quantification of venous endogenous NA as measured by isotope dilution, known as 

‘noradrenaline spillover’ (Esler, Jackman et al. 1980, Esler, Jennings et al. 1984, Esler 

2010). Systemic and renal NA turnover is increased in hypertensives, particularly in 

those with obesity related hypertension (Goldstein, Horwitz et al. 1983, Esler, Jennings 

et al. 1986, Esler and Kaye 2000); however, this is an invasive technique and can’t be 

used for large-scale clinical autonomic phenotyping or for repeated measures to assess 

long-term treatment effects.  

SNA controls vasomotor tone in peripheral blood vessels. In humans, muscle 

sympathetic nerve activity (MSNA) can be measured directly from the peroneal nerve in 

the leg using a technique called microneurography.  The technique, initially established 

by Hagbarth, Vallbo, Sundlof and Wallin in the 1960s, is now well validated (Hagbarth 

and Vallbo 1968, Sundlof and Wallin 1978, Wallin 1978, Wallin and Eckberg 1982, 

Eckberg, Wallin et al. 1989, Vallbo, Hagbarth et al. 2004, Hart, Charkoudian et al. 2009, 

Hart, Joyner et al. 2009).  Measures of SNA using microneurography correlate well with 

measures of whole body SNA measured by NA spillover (Wallin, Sundlof et al. 1981, 

Wallin, Esler et al. 1992). Microneurography has the limitation of measuring an isolated 

region of sympathetic outflow to one muscle vascular bed, and there are many vascular 

beds, including the renal and splanchnic circulations, that cannot be accessed using this 

technique. However, the skeletal muscle is a large vascular bed providing a major 
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contribution to TPR. Microneurography is also advantaged by its high temporal 

resolution allowing the dynamic assessment of on-going activity levels and baroreceptor 

and chemoreceptor reflex sensitivity. MSNA is minimally invasive and can be repeated 

on multiple occasions to investigate a response to therapy over the longer term, and 

there is good reproducibility in this measurement for a given individual over time 

(Yamada, Miyajima et al. 1989, Hart, Joyner et al. 2010). Microneurography can be used 

to measure both single and multi-unit MSNA, enabling the interpretation of both the 

central modulation of SNA and the global sympathetic input controlling vasomotor tone 

within a vascular bed respectively (Hering, Lambert et al. 2013). Single unit 

measurement of sympathetic neurons (classified as vasoconstrictor neurons by careful 

consideration of appropriate firing latency and consistent burst morphology), may give 

additional information about the frequency of post-ganglionic neuron firing, the 

probability of neuron firing in any particular multi-unit burst, and the occurrence of 

multiple unit firing in a single burst of activity to a vascular bed, providing more detailed 

information about the modulation of SNA (Macefield, Wallin et al. 1994). For the 

purposes of this review and subsequent data analysis, MSNA refers to multi-unit 

recording which are more widely used and validated.  

MSNA is higher in patients with hypertension than in age-matched controls, although 

MSNA increases with age in both groups (Yamada, Miyajima et al. 1989), but is this 

increased SNA a consequence raised blood pressure and aging, or does elevated SNA 

have a role in the aetiology of hypertension? Data from animal models suggests a role 

for SNA in the development of HTN (Judy, Watanabe et al. 1979, Antic, Kiener-Belforti et 

al. 2000). Young, normotensive SHR (spontaneously hypertensive rats) have elevated 

SNA prior to the development of hypertension (Cabassi, Vinci et al. 1998, Simms, Paton 

et al. 2009), and removing sympathetic and adrenal influences from the SHR in the first 

8 weeks of life (sympathectomy and alpha blocker administration) prevents the 

development of hypertension and left ventricular hypertrophy (LVH) in these animals 

(Korner, Bobik et al. 1993). Of note, brief treatment with an ACE inhibitor has a similar 

effect in young SHR, preventing the development of hypertension, and may suggest a 

central role for Ang II in the development of hypertension in this animal model, 

illustrating the likely interaction between these different pathologic mechanisms 

(Harrap, Van der Merwe et al. 1990). SNA has also been shown to be elevated prior to 

the development of hypertension in rats using a Goldblatt two-kidney, one-clip model 

(Oliveira-Sales, Colombari et al. 2016).  

In humans, MSNA is increased in patients with borderline hypertension when compared 

against normotensive controls (Anderson, Sinkey et al. 1989), and interestingly, MSNA is 

higher in those with borderline or early-stage hypertension, and in hypertension with 

LVH, than in patients with established uncomplicated hypertension, suggesting that it 

may play a particularly important role in the initiation of the hypertensive state, with 

persistently high level of SNA potentially conferring a greater risk of target organ 

damage (Mancia, Grassi et al. 1999, Smith, Graham et al. 2004). MSNA is also increased 

in white-coat hypertension, although not to the same degree as seen in fulminant 

disease, consistent with evidence that this is not a completely benign condition (Glen, 

Elliott et al. 1996, Owens, Lyons et al. 1998, Smith, Graham et al. 2002). The on-going 

role of SNA in the maintenance of hypertension is illustrated by the administration of 

centrally acting sympatholytic agents such as moxonidine, which reduce both BP and 

MSNA in patients with established hypertension (Wenzel, Spieker et al. 1998).  
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2.1.2.2 Consequences of chronically elevated sympathetic tone 

Chronically elevated sympathetic tone causes hypertension by causing vasoconstriction 

and increasing vascular stiffness. Raised sympathetic outflow impacts upon multiple 

systems, these changes which often further compound the rise in BP are illustrated in 

Figure 2-5, and include the well documented association between elevated sympathetic 

tone and other conditions such as insulin resistance, obstructive sleep apnoea and heart 

failure (Narkiewicz, van de Borne et al. 1998, Spaak, Egri et al. 2005, Grassi, Seravalle et 

al. 2010, Sobotka, Mahfoud et al. 2011, Fisher and Paton 2012). Signals transmitted via 

the efferent renal nerves, which are composed of postganglionic sympathetic fibres, act 

to increase renin release and sodium retention, and to reduce renal blood flow (RBF) 

(Winternitz and Oparil 1982, Katholi 1983, DiBona 2005). Increased renal SNA acts 

predominantly via three different mechanisms; stimulation of β1-adrenoceptors on 

juxtaglomerular granular cell triggers increased renin secretion, stimulation of α1B-

adrenoceptors on renal tubular epithelial cells causes increased sodium reabsorption, 

and stimulation of α1A-adrenoceptors on the vascular smooth muscle cells of the 

afferent and efferent renal arterioles decreases RBF (DiBona 2005). Additionally, 

sympathetic innervation of the renal pericytes modulates vasoconstriction of the 

medullary vasa recta through ATP (adenosine triphosphate) release (Crawford, Wildman 

et al. 2013); contraction of the vasa recta causing a reduction in medullary blood flow, 

increases Na+ reabsorption and can drive hypertension (Cowley, Abe et al. 2015). 

Patients with hypertension and borderline hypertension also have decreased heart rate 

variability (HRV), indicating that reduced vagal tone, as well as elevated SNA, contributes 

to their autonomic imbalance (Liao, Cai et al. 1996, Singh, Larson et al. 1998). Data from 

groups including the Framingham Study has shown that low HRV is a predictor of both 

cardiac and all-cause mortality (Tsuji, Larson et al. 1996, Gerritsen, Dekker et al. 2001, 

Liao, Carnethon et al. 2002). Likewise, sympathetic overdrive with elevated MSNA is 

associated with end-organ damage, including LVH, congestive cardiac failure, ischaemic 

cardiac events, arrhythmias and sudden death (Burns, Sivananthan et al. 2007, Grassi, 

Seravalle et al. 2011, Grassi, Bombelli et al. 2012). Treatments directed at this 

autonomic pathophysiology may therefore have a significant impact on clinical 

outcomes, and if the mechanism driving raised SNA in an individual patient can be 

established, targeted therapy could have an even more beneficial effect.  
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Figure 2-5. Consequences of raised sympathetic nerve tone 
Adapted from Fisher and Paton, 2012 and Sobotka et al., 2011 (Sobotka, Mahfoud et al. 
2011, Fisher and Paton 2012). 
 

2.1.2.3 Causes of chronically elevated sympathetic tone  

The concept of neurogenic hypertension develops the hypothesis that high blood 

pressure is driven by raised sympathetic nerve activity. This sympathoexcitation is 

caused by a variety of factors including rises in Ang II, inflammation, cerebral 

hypoperfusion and vascular dysfunction (see Figure 2-4). Alterations in other pathways 

with feedback to the vasomotor centre, including signals transmitted via the afferent 

renal nerves and alterations in baroreflex and peripheral chemoreflex sensitivity, along 

with metabolic dysfunction, have also been implicated in the aetiology of raised SNA 

and neurogenic hypertension (Mancia, Grassi et al. 1999, Grassi, Seravalle et al. 2010). It 

is estimated that at least 50% of cases of essential hypertension have an underlying 

neurogenic component (Esler 2010), and therefore understanding these mechanisms 

and developing techniques to modulate these pathways will hopefully provide novel 

treatment strategies for these individuals. 

2.1.2.3.1 Impaired brain blood flow and the Cushing mechanism 

I have already introduced the concept of the ‘Selfish Brain Hypothesis’, under which the 

brain will act to maintain cerebral perfusion and oxygenation, even at the detriment of 

raised systemic arterial pressure (see section 2.1.1.5). This is refined by Paton at al. as 

Cushing’s mechanism (Paton, Dickinson et al. 2009), through which brainstem 

hypoperfusion activates the sympathoexcitatory networks to increase TPR and therefore 

increased systemic arterial pressure, but what is the evidence that cerebral 

hypoperfusion causes long term arterial hypertension? 

Cerebral hypoperfusion can occur due to increase cerebral vascular resistance (CVR) 

(Paton, Dickinson et al. 2009). As early as 1948 Kety demonstrated that CVR rose in 
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accordance with arterial pressure in people with essential hypertension despite 

relatively normal levels of cerebral blood flow (CBF) (Kety, Hafkenschiel et al. 1948); 

whilst it could be hypothesised that increased CVR is due to increased arterial pressure, 

the converse could also be true and raised CVR could result in raised arterial pressure in 

order to maintain CBF. Post mortem studies by Dickinson and Thomson demonstrated 

that people with previous hypertension had stenotic vertebral and carotid arteries, and 

that hypertensives had increased vascular resistance in the arteries supplying the 

brainstem (Dickinson and Thomson 1960). Our group has demonstrated an increased 

prevalence of vertebral artery hypoplasia and incomplete Circle of Willis in patients with 

hypertension (Rodrigues, Hart et al. 2015), particularly those with resistant 

hypertension, and Hart et al. have shown that these vascular abnormalities are not only 

more prevalent in hypertensives, but associated with increased CVR and decreased CBF 

(Warnert, Rodrigues et al. 2016). Looking prospectively, CVR was elevated before, and 

predictive of, the onset of hypertension in humans (Warnert, Rodrigues et al. 2016).  

Further insight has been obtained from an animal model for hypertension, the 

spontaneously hypertensive rat (SHR). Paton’s group has shown that pre-hypertensive 

(i.e. young pups) SHR rats already have raised SNA, as well as vertebral artery 

remodelling, and increased brainstem vascular resistance compared to age- and sex-

matched normotensive rats (Cates, Steed et al. 2011). Additionally, occlusion of both 

vertebral arteries in the young, pre-hypertensive SHR resulted in a greater increase in 

SNA compared with aged matched controls, suggesting that vascular remodelling, 

increased CVR and a raised responsiveness to brainstem hypoperfusion (a sensitised 

Cushing mechanism) are all present in these animals prior to development of fulminant 

hypertension (Cates, Steed et al. 2011).  

So how does brainstem hypoperfusion cause an increase in SNA: how is the Cushing’s 

mechanism activated? The site/s of the central sensor for the Cushing’s mechanism 

remains to be confirmed, although the RVLM, and particularly the NTS, are likely 

candidates (Paton, Dickinson et al. 2009, Cates, Dickinson et al. 2012). SHR have a shift 

from oxidative to non-oxidative metabolism in the brainstem (Paton, Wang et al. 2008), 

and Paton et al. hypothesise that the brainstem in hypertensive humans may have a 

limited capacity for oxidative metabolism if it is already running borderline hypoxic due 

to increased CVR, and that the consequent shift to non-oxidative metabolism, with the 

production of non-oxidative metabolites including reactive oxygen species, may act 

locally to stimulate increased sympathetic outflow from the vasomotor centre 

(Peterson, Sharma et al. 2006, Paton, Dickinson et al. 2009). Increased CVR also blunts 

the central transmission of the baroreflex, so that there is limited opposition to any 

increase in arterial pressure (Paton, Dickinson et al. 2009). 

 

2.1.2.3.2 A long-term role for the baroreflex in hypertension 

There is evidence that arterial baroreflex sensitivity (BRS) is impaired in hypertension, 

dampening the reflex inhibition of sympathetic overdrive (Matsukawa, Gotoh et al. 

1991, Pikkujamsa, Huikuri et al. 1998, Ding, Zhou et al. 2011). The baroreflex both 

declines in sensitivity and re-sets to operate over higher pressures in chronic 

hypertension, as illustrated by a progressive loss of baroreceptor buffering of mean 

arterial pressure and renal SNA in the older SHR (Judy and Farrell 1979). This may be 
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associated with increased arterial stiffness, hence reduced carotid distensibility, and/or 

central nervous system re-setting with decreased excitability of the brainstem reflex or 

decreased transduction (Paton, Dickinson et al. 2009).  

Is impaired BRS a cause or consequence of hypertension? Sympathetic BRS has been 

shown to be impaired in patients with borderline hypertension (Matsukawa, Gotoh et al. 

1991), and reduced BRS has been implicated in the pathogenesis of hypertension. 

Cardiac BRS is impaired in young, pre-hypertensive SHR (Minami, Imai et al. 1989). In 

humans, sympathetic vascular BRS is impaired in normotensive adolescents with a 

family history of hypertension (Yamada, Miyajima et al. 1988), and adolescents  with 

white coat hypertension have reduced cardiac BRS which provides an early marker for 

the onset of hypertension (Honzikova and Fiser 2009). Reduced BRS is an independent 

indicator for all-cause mortality and of cardiovascular morbidity in hypertensive patients 

(and in other conditions of sympathetic over activity)  (Johansson, Gao et al. 2007, 

Ormezzano, Cracowski et al. 2008).  

In the classic Guytonian paradigm, the baroreflex resets in response to sustained 

changes in the level of arterial pressure and therefore has no role in the long-term 

regulation of blood pressure. More recently there is evidence to counter this view. 

Thrasher demonstrated that chronic unloading of the carotid baroreceptors (by ligation 

of the common carotid artery proximal to the sinus in a canine model) could produce 

arterial hypertension. Lohmeier et al. have investigated the effect of chronic baroreflex 

activation using electrical stimulation, which achieved significant reduction in MAP 

(Iliescu and Lohmeier 2009, Lohmeier and Iliescu 2015). Mechanisms for this effect 

include incomplete central resetting of the baroreflex, and suppression of the RAAS 

system due to decreased renal sympathetic nerve mediated renin release, although this 

requires elucidation (Lohmeier and Iliescu 2015). The central component of the 

baroreflex has been shown to reset; as described above, Ang II, acting centrally on the 

NTS depresses the baroreflex (cardiac and sympathoinhibitory pathways), potentiating 

hypertension (Tan, Killinger et al. 2007, Paton, Wang et al. 2008).  

 

2.1.2.3.3 Visceral afferent hyperactivity 

Koeners et al. have recently highlighted the importance of visceral afferent hyperactivity 

in the pathogenesis of hypertension (Koeners, Lewis et al. 2016). They consider the 

problem of a supply-demand mismatch resulting for impaired visceral autoregulation: 

under pathological conditions metabolically sensitive afferents that trigger increased 

SNA can become sensitised and hyper-reflexic, generating raised sympathetic tone 

(Koeners, Lewis et al. 2016). In the context of increased oxygen demand, if local 

autoregulatory mechanisms of vasodilation become saturated, then there is a failure of 

functional sympatholysis, and the vasoconstrictor action of SNA caused by afferent 

sensitisation may overcome the increased perfusion driven by local autoregulation. 

Administration of Ang II results in an increase in reactive oxygen species within skeletal 

muscle and disrupts the nitric oxide synthase dependent attenuation of sympathetic 

vasoconstriction (Zhao, Swanson et al. 2006). 

There are several examples of visceral afferent hyperactivity, including sensitisation of 

the afferent renal nerves, carotid body chemohypersensitivity and sensitisation of the 
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adipose afferent reflex in hypertension (Sinski, Lewandowski et al. 2012, Xiong, Chen et 

al. 2012, Koeners, Lewis et al. 2016). Abnormal afferent nerve activity from skeletal 

muscle has also been observed. Skeletal muscle afferents comprise stretch-activated 

mechanoreceptors and metabolically sensitive metaboreceptors. In humans, the 

vasoconstrictor effect of SNA is usually blunted in exercising muscle to improve local 

blood flow, however, this functional sympatholysis is impaired in patients with 

hypertension (Vongpatanasin, Wang et al. 2011). In patients with heart failure, passive 

leg movement resulted in increased norepinephrine spillover and arterial pressure, but 

reduced femoral blood flow, indicating abnormal muscle afferent feedback (Ives, Amann 

et al. 2016). The exercise pressor response (an increase in arterial pressure, heart rate, 

ventilation, stroke volume and SNA, and the redistribution of blood to exercising 

muscle) is exaggerated in hypertension (Li and Xing 2012), and an increased pressor 

response to exercise amongst normotensive humans is associated with the development 

of hypertension (Berger, Grossman et al. 2015).  

It is well established that obesity can drive sympathoexcitation (DiBona 2013); rabbits 

develop an increase in weight, mean arterial pressure, heart rate, renal SNA, and insulin 

and leptin levels within one week of starting a high-fat diet (Armitage, Burke et al. 2012), 

and rats fed a high-fat diet have an increase in adipose tissue and leptin levels which 

precede a rise in SNA (Muntzel, Al-Naimi et al. 2012). Increased leptin and insulin levels 

have therefore been implicated in the development of hypertension (Armitage, Burke et 

al. 2012, DiBona 2013). Stimulation of adipose tissue using capsaicin results in an 

increase in arterial pressure and SNA via the adipose afferent reflex (Xiong, Chen et al. 

2012). This reflex is sensitised in obese animals and can be blocked via injection of 

lignocaine into the PVN (paraventricular nucleus), demonstrating tonicity (Xiong, Chen 

et al. 2012). 

Visceral afferent hyperactivity involving the kidneys and carotid bodies will now be 

discussed in more detail. 

 

2.1.2.3.4 Peripheral chemoreceptor reflexes in hypertension 

In human and preclinical models of hypertension peripheral chemoreceptor reflexes are 

modulated making them pro-sympathoexcitatory.  

The peripheral chemoreflex is predominantly mediated via the highly-perfused carotid 

bodies (Paton, Sobotka et al. 2013). Activation of the chemoreflex by hypoxia, 

hypercapnia or increase hydrogen ion concentration, causes sympathoexcitation via 

action on the NTS, RVLM and PVN (Koeners, Lewis et al. 2016). Schultz’s group have 

demonstrated that hypoperfusion of the carotid body in a rabbit model of chronic heart 

failure increases chemoreflex sensitivity, and primarily attribute the consequent 

maladaptive increase in sympathetic tone to carotid body afferent drive (Ding, Li et al. 

2011, Schultz, Marcus et al. 2013). In human normotensive controls, the MSNA response 

to hypoxia is augmented by prior exposure to repeated hypoxic apnoeas (Cutler, Swift et 

al. 2004); this increased chemosensitivity helps to explain the pathological relationship 

seen between the intermittent hypoxias of obstructive sleep apnoea and hypertension 

(Weiss, Liu et al. 2007). Relative to normotensive control animals, SHR exhibit elevated 

sympathoexcitatory responses to peripheral chemoreceptor stimulation, and the 
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peripheral chemoreceptors exert a tonic excitatory influence on sympathetic activity 

(Abdala, McBryde et al. 2012). Raised tonic chemoreceptor activity has also been 

demonstrated in hypertensive humans; these patients had elevated baseline MSNA 

which was reduced in response to exposure to hyperoxia in contrast to normotensive 

controls who had normal baseline MSNA with no change in response to a hyperoxic 

stimulus (Sinski, Lewandowski et al. 2012). Denervation of the carotid body in both pre-

hypertensive SHR and rats with established hypertension results in a reduction in BP and 

sympathetic vasomotor tone, suggesting an intrinsic role for chemosensitivity in both 

the development and maintenance of hypertension (Abdala, McBryde et al. 2012, 

McBryde, Abdala et al. 2013).  Increased chemosensitivity is also observed in the early 

stages of human hypertension, supporting this causal relationship (Trzebski, Tafil et al. 

1982, Somers, Mark et al. 1988).  

A joint study between our team in Bristol, led by Prof. Paton, and the team in Gdansk, 

Poland, led by Prof. Narkiewicz has demonstrated the safety and feasibility of unilateral 

carotid body resection in patients with hypertension (Narkiewicz, Ratcliffe et al. 2016). 

The study showed a reduction in ambulatory BP and MSNA in 8 out of 15 participants 

three months after surgery. This effect was sustained out to 6 months, before returning 

towards baseline levels, potentially reflecting adaptation from the remaining carotid 

body.  

Evidence is now in place for a novel pharmacological agent to inhibit chemoreceptor 

activation in hypertension. Pijacka et al. have demonstrated the upregulation of the 

purinergic receptor P2X3 in chemoreceptive petrosal sensory neurons in rats with 

hypertension (Pijacka, Moraes et al. 2016). Antagonism of P2X3 receptors inhibited both 

the tonic and hyperreflexic chemoreceptor activity seen in the hypertensive (but not 

normotensive) rats, and furthermore, was shown to reduce BP and SNA in the 

hypertensive animals. The authors also demonstrated P2X3 receptor expression in 

human carotid bodies and hyperactivity of carotid bodies in individuals with 

hypertension, thus P2X3 receptor antagonists may represent an exciting novel 

pharmacological approach for the treatment of hypertension (Paton, Sobotka et al. 

2013, Pijacka, Moraes et al. 2016). 

 

2.1.2.3.5 The role of the renal afferent nerves in sympathoexcitation 

Renal afferent nerves project to, and terminate in, the dorsal horn of the thoracic spinal 

cord. Signals are then relayed to the brain and trigger activation of brainstem and 

hypothalamic neurones that control sympathetic activity (Guyenet 2006). Renal 

afferents are both mechanically and chemically sensitive. Mechanoreceptors, located 

primarily in the renal pelvis, are sensitive to increases in intrarenal pressure caused by 

renal compression, renal vein occlusion or increased arterial perfusion pressure (Nijima 

1971, Winternitz, Katholi et al. 1980, Johns, Kopp et al. 2011, Koeners, Lewis et al. 2016). 

Renal chemoreceptors respond to hypoxia and changes in the ionic composition of the 

renal pelvis (Winternitz, Katholi et al. 1980). 

Figure 2-6 illustrates factors that can drive renal afferent nerve activity; these include 

ischaemia, adenosine hypoxia, inflammation and chronic kidney disease (CKD) 

(Converse, Jacobsen et al. 1992, Campese and Kogosov 1995, Hausberg, Kosch et al. 
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2002, Sobotka, Mahfoud et al. 2011). This response to renal injury has been 

demonstrated in a rat model using an injection of phenol (causing local haemorrhage, 

congestion and necrosis (Ye, Gamburd et al. 1998)) into the kidney, which was shown to 

cause an increase in BP and SNA; subsequent renal denervation reverses this effect and 

normalises BP and SNA, confirming that it is the afferent nerve signal, rather than 

hormonal changes, that have mediated the response to phenol (Campese 1997, Ye, 

Zhong et al. 2002). Bilateral dorsal rhizotomy, disrupting the afferent renal nerves, 

prevents the development of hypertension in rats with a 5/6 model of CKD (Campese 

and Kogosov 1995).  

 

 

Figure 2-6. Renal sensory nerve activity, a source of reflexly elevated sympathetic 
tone. (Sobotka, Mahfoud et al. 2011) 
 

 
Patients with CKD on haemodialysis have MSNA levels 2.5 times that of healthy controls 

(Converse, Jacobsen et al. 1992). Following renal transplantation, patients whose 

diseased kidneys are left in situ continue to have raised SNA despite normalisation of 

their renal function, that it is the afferent signals from the disease kidney (e.g. fibro-

proliferative scarring, local ischaemic or the release of mediators such as adenosine), 

rather that the impairment in renal function or uraemic milieu, that drives 

sympathoexcitation (Hausberg, Kosch et al. 2002). In contrast, SNA in patients who have 

undergone bilateral nephrectomy at the time of transplantation returns to normal, once 

again emphasising the importance of the afferent signals from the diseased kidney in 

driving elevated SNA, although renin release due to renal hypoperfusion, and activation 

of the RAAS could also provide an ‘afferent’ signal through central action of Ang II 

(Hausberg, Kosch et al. 2002).  

Intra-renal adenosine has both systemic effects on blood pressure (Katholi, Hageman et 

al. 1983), and local autoregulatory effects (Wierema, Houben et al. 2005). Adenosine is 

released in the kidney in response to hypoxia (Miller, Thomas et al. 1978), and has been 

shown to activate the afferent renal nerves located in the renal pelvis, primarily through 

action on A1 receptors, to cause a systemic rise in arterial pressure (Katholi 1983, 

Katholi, Hageman et al. 1983, Ma, Liu et al. 2004). In a one kidney, one-clip rat model of 
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hypertension, urinary adenosine concentration was lowered by infusion of adenosine 

deaminase into the renal artery. When urinary adenosine levels fell, sympathetic nerve 

activity and hypertension were blunted; this effect was abolished by RDN (Katholi, 

McCann et al. 1985). In chronically instrumented, uni-nephrectomised sodium-replete 

conscious dogs, an increase in systemic arterial BP seen in response to intra-renal 

arterial adenosine infusion (0.6-3 mcg/kg/min)was abolished by renal artery denervation 

due to the interruption of the renal afferent nerve fibres (Katholi, Whitlow et al. 1984).  

When considering local haemodynamic effects, animal models indicate that adenosine 

acts via high affinity A1 receptors which trigger vasoconstriction and activate the 

tubuloglomerular feedback system, and lower affinity A2 receptors which cause 

vasodilatation and inhibition of tubular sodium reabsorption (Biaggioni 1992). In vitro 

studies using a blood-perfused rat juxtamedullary nephron preparation, demonstrated 

afferent and efferent renal arteriolar A1 receptor mediated vasoconstriction in response 

to superfusion of 1, 10 and 100 micromol/l adenosine, which was partly buffered by A2a 

receptor mediated vasodilatation (Nishiyama, Inscho et al. 2001). In man, intra-renal 

arterial adenosine administration has been shown to cause both renal vasoconstriction 

(e.g. in response to 1ml boluses of 10-5-1 mg/ml adenosine (Marraccini, Fedele et al. 

1996)) and vasodilatation (at concentrations in the range of 1-10 mcg/kg/min (Smits, de 

Leeuw et al. 1991, Wierema, Houben et al. 2005)).  

Bradykinin also causes a reduction in RBF and a reflex increase in systemic mean arterial 

pressure (MAP) when infused into the renal artery in rats, an effect that is, abolished by 

RDN (Smits and Brody 1984). Foss et al. have developed a novel method for selective 

disrupting afferent renal nerve signals in a rat model, using peri-axonal capsaicin (an 

agonist of the transient receptor potential (TRP) V1 receptor) (Foss, Wainford et al. 

2015). In these animals, blockade of the afferent renal nerves abolished the rise in MAP 

seen following intrarenal bradykinin infusion, and blunted the development of 

deoxycorticosterone acetate-salt hypertension2 to the same extent as surgical RDN, 

indicating the anti-hypertensive effect of RDN in this model was primarily due to 

disruption of the afferent, rather than efferent renal nerves (Foss, Wainford et al. 2015). 

Afferent neurones also project to the contra-lateral kidney generating a tonically active, 

inhibitory reno-renal reflex (Johns, Kopp et al. 2011, Kopp 2015); as evidenced by the 

abolition of reflex responses to contralateral afferent nerve stimulation or ureteric 

occlusion by spinal cord transection (Calaresu, Kim et al. 1978, Protasoni, Golin et al. 

1996). Spontaneously hypertensive rats have an impaired reno-renal reflex (defect at 

the level of the renal chemo- and mechano-sensory receptors) which may contribute to 

their increased level of efferent renal SNA (Kopp, Smith et al. 1987, Kopp, Cicha et al. 

2011, DiBona 2013). 

There is increasing evidence for a central role for renal afferent nerves in the 

pathogenesis of hypertension; even a small degree of renal injury/hypoxia (not effecting 

renal function) can be sufficient to increase blood pressure (Koeners, Lewis et al. 2016). 

Stimulation of the afferent renal nerves in hypertension due to increase arterial 

                                                           
2 DCOA-salt hypertension model: similar to mineralocorticoid excess in humans, results in volume 
overload, very high levels of DOC and salt intake required, progresses rapidly with severe 
hypertension and hypertrophy, therefore not suitable for long-term studies. Dornas, W. C. and 
M. E. Silva (2011). "Animal models for the study of arterial hypertension." J Biosci 36(4): 731-737. 
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pressure, microvascular damage, Ang II mediated hypoperfusion, hypoxia and 

inflammation, may act to drive up blood pressure through a reflex increase in SNA, 

creating an adverse positive feedback loop (Koeners, Lewis et al. 2016). Disruption of 

these afferent signals therefore represents yet another therapeutic target for the 

treatment of hypertension and will be explored in this study. 

 

2.1.2.3.6 Sympathoexcitation via angiotensin II 

Angiotensin II increases blood pressure through a range of mechanisms, including 

increased renal sodium and water reabsorption and peripheral vasoconstriction. 

However, Ang II also acts centrally to increase SNA, which feeds into a positive feedback 

loop by stimulating renin release and further Ang II production through activation of the 

RAAS. 

In the SHR levels of Ang II are increased in several areas of the brain, including the RVLM 

and NTS, compared to normotensive controls, and SHR also have a heightened pressor 

response to microinjection of Ang II into these areas (Veerasingham and Raizada 2003). 

Furthermore, intracerebroventricular infusion of the AT1R blocker losartan blocked the 

development of salt-sensitive hypertension in SHR (Huang and Leenen 1996, 

Veerasingham and Raizada 2003), and bilateral microinjection of peptide AT1R 

antagonists into the RVLM reduced both SNA and blood pressure in the SHR model of 

hypertension (Ito and Sved 1996, Veerasingham and Raizada 2003). Ang II also acts on 

the NTS to decrease baroreflex gain which may also contribute to the development of 

hypertension (Kasparov and Paton 1999, Paton and Kasparov 1999, Paton, Waki et al. 

2003, Veerasingham and Raizada 2003, Paton, Wang et al. 2008). The situation may be 

even more complex; McBryde et al. have shown that high central doses of Ang II have a 

sympathoinhibitory effect due to baroreflex activation, but that a lower dose, associated 

with more gradual onset hypertension, can be sympathoexcitatory, showing a 

synergistic hypertensive action with increased salt intake (due to Ang II mediated 

potentiation of the osmoreceptors in the circumventricular organs) (McBryde, Guild et 

al. 2007),  

Ang II mediated hypertension causes central inflammation, with elevated levels of TNFα 

(tumour necrosis factor-alpha), NF-κβ and reactive oxygen species (Fisher and Paton 

2012), which may have a key role to play in the development of neurogenic 

hypertension. For example, the enzyme nicotinamide adenosine dinucleotide phosphate 

(NADPH) oxidase, which plays a central role in the generation of reactive oxygen species, 

can be upregulated via activation of the AT1R (Gao, Wang et al. 2005, Fisher and Paton 

2012), and specifically infusion of Ang II into the RVLM increases NADPH expression, 

reactive oxygen species levels and renal SNA (Gao, Wang et al. 2005). Ang II also 

stimulates T cell activation and the production of pro-inflammatory cytokines (Guzik, 

Hoch et al. 2007). This central inflammation can result in increased SNA and systemic 

hypertension (Fisher and Paton 2012). 

 

2.1.2.3.7 Inflammation and raised sympathetic nerve activity 
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As introduced above, systemic and central inflammation are increasingly seen to play an 

important role in the development of hypertension. Levels of systemic inflammatory 

markers such as such as TNFα, interleukin-6, C-reactive protein (CRP) and adhesion 

molecules are increased in hypertension and may have a pro-hypertensive role (Fisher 

and Paton 2012). Disruption of T cell function, the use of anti-TNFα therapy (etanercept) 

and blockade of the pro-inflammatory NF-κβ signalling pathway are protective against 

the development of Ang II mediated hypertension (Muller, Dechend et al. 2000, Guzik, 

Hoch et al. 2007, Vinh, Chen et al. 2010). Systemic inflammation can upregulate 

microglia, pro-inflammatory cytokines and reactive oxygen species within the rostral 

ventrolateral medulla, with an associated rise in blood pressure and increased 

sympathetic vasomotor tone (see section 2.1.1.5) (Wu, Chan et al. 2012). Furthermore, 

Marvar et al. demonstrated that blockade of central Ang II action using an electrolytic 

lesion of the anteroventral third ventricle (abolishes virtually all of the central actions of 

Ang II), reduced peripheral T-cell activation, and also provided evidence of a feed-

forward loop whereby high blood pressure in itself can cause T-cell activation (so called 

baro-trauma), which in turn acts to worsen hypertension (Marvar, Thabet et al. 2010). 

Waki et al. demonstrated that inducing inflammation in the brainstem of normotensive 

rats, specifically with elevated levels of junctional adhesion molecule-1 (JAM-1), a major 

chemoattractant, in the NTS, resulted in the development of raised arterial pressure 

(Waki, Liu et al. 2007). Additionally, there was upregulation of JAM-1 in the NTS of SHR 

with evidence of invasion of leukocytes which predated the onset of hypertension 

(Waki, Liu et al. 2007). An association has since been found between peripheral levels of 

JAM-1 and hypertension in a Hong Kong population, associated with specific single 

nucleotide polymorphisms (SNPs) (Ong, Leung et al. 2009). This has raised the question 

as to whether an inflammatory process, in which JAM-1 is upregulated centrally, may 

drive hypertension through excessive SNA originating from a relatively under-perfused 

brainstem (Fisher and Paton 2012). Central NF-κβ activation by Ang II in the 

paraventricular nucleus of the hypothalamus has also been shown to increase 

sympathetic nerve activity (Kang, Ma et al. 2009).  

Additional data come from further animal studies; Wu et al. reported that systemic 

inflammation promoted sustained hypertension, and induced not only rises in the 

plasma level of CRP, TNFα and interleukin-1β (IL-1β), but also resulted in activation of 

microglia and increased levels of IL-1β, IL-6, TNFα reactive oxidative species in the RVLM 

(Wu, Chan et al. 2012). Importantly, both the pressor response and the central 

inflammatory changes were blunted by intracisternal infusion of either a cycloxygenase-

2 (COX-2) inhibitor, minocycline (and anti-inflammatory antibiotic which inhibits 

microglial activation), or pentoxifylline (a cytokine synthesis inhibitor), provided that 

these agents were administered centrally (Wu, Chan et al. 2012). Likewise, the 

peripheral administration of TNFα and direct injection of prostaglandin-E2 into the 

paraventricular nucleus or RVLM, both resulted in an increase in arterial pressure and 

SNA; the pressor effect of the prostaglain-E2 administration was blocked by central COX-

2 inhibition (Zhang, Wei et al. 2003). In wildtype mice, stress-related hypertension is 

associated with T cell activation (and augmented by Ang II), however, in T-cell deficient 

RAG knockout mice repeated stress did not cause hypertension, furthermore, the 

increase in BP in response to stress was restored by adoptive transfer of T cells into the 

deficient strain (Marvar, Vinh et al. 2012). In humans, the angiotensin receptor blocker 

valsartan has been shown to reduce both arterial pressure and levels of the pro-
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inflammatory cytokines TNFα and IL-6. The role of inflammation, particularly central 

inflammation, in driving high blood pressure may therefore represent a novel 

therapeutic target for the clinical management of hypertension. 

 

2.1.2.3.8 Hypertensive Hypotheses 

The pathogenesis of human hypertension is a complex process, with a chronic imbalance 

in the homeostatic reflexes which have evolved to protect us from insults such as 

dehydration, haemorrhage and hypoxia. Guyton placed the kidney at the centre of blood 

pressure control, and primarily attributed hypertension to an alteration in salt/volume 

loading or renal sodium handling, but as discussed, the situation is far more complex 

(Guyton and Hall 1996). Increased activity in the RAAS, with emphasis on both the 

central and peripheral actions of Ang II, is clearly partly to blame (Guyenet 2006). Whilst 

Ang II can act to drive sympathoexcitation, the concept of neurogenic hypertension with 

associated sympathetic overdrive, and the importance of afferent feedback from the 

kidneys, carotid bodies, adipose tissue and skeletal muscle, as the primary driver in the 

development and maintenance of high BP, continues to gain momentum (Fisher and 

Paton 2012, Koeners, Lewis et al. 2016). None of these hypotheses stand alone, and the 

central reflexes which aim to preserve cerebral blood flow and the pro-inflammatory 

milieu seen in patients with (and even prior to the development of) hypertension, 

provide further therapeutic targets for the treatment of this condition (Cesari, Penninx 

et al. 2003, Paton, Dickinson et al. 2009, Zubcevic, Waki et al. 2011). It is likely that the 

predominant mechanism driving hypertension will vary between subjects, and the 

ability to establish the autonomic profile of a patient would enable physicians to tailor 

their therapeutic approach to the individual. Given the prevalence of treatment 

resistant hypertension, and the rapidly evolving field of interventional therapy in 

hypertension, a firm understanding of the pathology underlying both treatment failure 

and potential targets for future success is key, and I will now go on to explore the clinical 

challenge of hypertension resistant to existing pharmacological therapy.  
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2.2 Resistant Hypertension: The clinical challenge 

 

Hypertension presents a significant challenge for health care providers, with the world-

wide prevalence predicted to rise to 1.56 billion by 2025 (Kearney, Whelton et al. 2005). 

In England 31% of men and 26% of women have been diagnosed with hypertension 

(Townsend, Bhatnagar et al. 2017). In those receiving treatment, 6% have high blood 

pressure (BP) that remains uncontrolled, furthermore, in 16% of men and 11% of 

women, BP remains untreated (Townsend, Bhatnagar et al. 2017). There are multiple 

causes for resistant hypertension, and differentiating between patients with true drug 

resistance, as opposed to those with pseudo-resistance due to factors such as poor 

medication adherence, drug intolerance or secondary hypertension, will help to guide 

therapeutic strategies.  

 

2.2.1 Definition and diagnosis of hypertension 

Hypertension is defined as an office (clinic) systolic blood pressure (SBP) of ≥140 mmHg 

and/or an office diastolic blood pressure (DBP) of ≥90 mmHg (Mancia, Fagard et al. 

2013). Blood pressure and its relationship to cardiovascular risk lie on a continuum, but 

for practical purposes different levels of hypertension have been defined. The 

definitions differ slightly between the National Institute of Health and Care Excellence 

(NICE) in the UK, and the joint European Society of Cardiology/ European Society of 

Hypertension (ESC/ESH) guidelines (see  Table 2-1 and Table 2-2, respectively). 

Importantly, the 2011 NICE guidelines recommend ambulatory blood pressure 

monitoring (ABPM) in patients with a clinic BP of ≥140/90 mmHg to confirm 

hypertension and address the issue of white-coat hypertension. If ABPM is not possible 

or not tolerated, then home BP monitoring (HBPM) is advised with similar numerical cut-

off points between stages of hypertension. It is important to remember that these 

definitions do not take into account the aetiology of the raised BP, which may differ 

between individuals. 

These definitions are based on evidence targeting blood pressure control to <140/90 

mmHg (National Clinical Guideline 2011), however more recent data from the SPRINT 

trial has shown a reduction in major cardiovascular events and death following intensive 

(target SBP <120 mmHg) as opposed to standard (SBP< 140 mmHg) blood pressure 

control among patients at high risk for cardiovascular events but without diabetes 

(Wright, Williamson et al. 2015). In light of these data it may be that future guidelines 

advocate a lower blood pressure threshold and treatment target.  

 

Stage Clinic BP ABPM 
daytime 
average 

Recommendation 

Normotensive <140/90 <135/85 Offer BP check at least every 5 years 

Normotensive 
(White-coat) 

≥140/90 <135/85 Offer BP check at least every 5 years 
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Stage 1 ≥140/90 ≥135/85 Offer lifestyle interventions 
If target organ damage or 10-year 
cardiovascular risk >20% offer 
antihypertensive treatment 

Stage 2 ≥160/100 ≥150/95 Offer antihypertensive treatment 

Severe Systolic>180 
or 
Diastolic>110 

 Consider starting antihypertensive 
drug treatment immediately.  
If accelerated hypertension or 
suspected phaeochromocytoma 
same day specialist referral. 

Table 2-1. The Stages of Hypertension. (National Clinical Guideline 2011) 
Blood pressure in mmHg. If younger than 40 years, consider specialist referral. 
 
 
 
 

Category Systolic  Diastolic 

Optimal <120 And <80 

Normal 120-129 and/or 80-84 

High normal 130-139 and/or 85-89 

Grade 1 hypertension 140-159 and/or 90-99 

Grade 2 hypertension 160-179 and/or 100-109 

Grade 3 hypertension ≥180 and/or ≥110 

Isolated systolic hypertension ≥140 And <90 

 
Table 2-2. Definitions and classification of office blood pressure (Mancia, Fagard et al. 
2013).  
Blood pressure in mmHg. 

Ambulatory BP monitoring goes a long way to address the diagnosis of white-coat 

hypertension, although some patients with clinically significant hypertension may still be 

missed, including those with masked hypertension (office BP <140/90 mmHg, but 

ABPM/HBPM >135/85 mmHg), a non-dipping blood pressure profile, or a pronounced 

early morning surge despite a normal range mean BP on ABPM; these individuals remain 

at increased cardiovascular risk compared to the normotensive population (Pickering, 

Eguchi et al. 2007, Pierdomenico, Pierdomenico et al. 2017). 

Blood pressure is the product of blood flow (with total blood flow equalling cardiac 

output) and peripheral vascular resistance. In patients with established hypertension the 

primary abnormality is an increase in total peripheral resistance rather than an increase 

in cardiac output (Lund-Johansen 1983). Patients with increased arterial stiffness, who 

are frequently more elderly, may have isolated systolic hypertension (ISH, BP ≥140/<90 

mmHg). ISH is not a benign phenomenon and antihypertensive treatment reduces 

mortality and morbidity, however the aggressive BP control indicated by the SPRINT trial 
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may not translate to all groups with hypertension (Bavishi, Goel et al. 2016). Caution is 

required in elderly patients, with results from the Predictive Values of Blood Pressure 

and Arterial Stiffness in Institutionalized Very Aged Population (PARTAGE) study 

suggesting that tight SBP control in frail elderly patients may have a negative effect on 

mortality and cognition (Benetos, Labat et al. 2015, Mossello, Pieraccioli et al. 2015, 

Kulenthiran, Ewen et al. 2017). Interestingly, the PARAMETER (Prospective Comparison 

of ARNI with ARB Measuring Arterial Stiffness in the Elderly) study, which looked at the 

effect of LCZ696 (sacubitril/valsartan; a combined angiotensin receptor neprilysin 

inhibitor (ARNI) and angiotensin receptor blocker (ARB)) on central aortic 

haemodynamics and arterial stiffness in comparison to the ARB olmesartan, showed 

that the combined drug was more effect at reducing central BP and pulse pressure than 

the ARB alone, without any increase in adverse events (Williams, Cockcroft et al. 2015, 

Kulenthiran, Ewen et al. 2017). The results of these recent studies emphasise the 

importance of individualised patient care in hypertension. A raised BP may give a 

diagnosis of hypertension but does not reflect the cause of the condition which may be 

wide ranging (Section 2.1 and Box 2.1). 

2.2.1.1 Definition of resistant hypertension 

Failure to achieve blood pressure control despite treatment is known as resistant 

hypertension, however, this broad term covers both drug resistant hypertension, and 

pseudo-resistant hypertension which can be attributed to a range of pathological and 

practical problems. Drug resistant hypertension is more specifically defined as the 

failure to achieve an office BP of <140/90 mmHg despite compliance with ≥3 anti-

hypertensive medications including a diuretic or, by some parties, as any BP (controlled 

or uncontrolled) on 4 or more agents (Calhoun, Jones et al. 2008). The challenges 

presented by pseudo-resistance are discussed below.  

The term refractory hypertension is increasingly being used to describe the failure to 

control BP with use of ≥5 antihypertensive medications, with the most rigorous 

definition requiring the use of ≥5 agents, including a long-acting thiazide or thiazide-like 

diuretic and an aldosterone antagonist, such as spironolactone (Cai and Calhoun 2017).  

 

2.2.2  Pseudo-resistant hypertension  

White-coat effect (a discrepancy of more than 20/10 mmHg between clinic and average 

daytime ABPM) is only one explanation for pseudo-resistance in patients treated for 

hypertension. Causes of resistant hypertension, including pseudo-resistant and 

secondary hypertension are summarised in Box 2.1. Patients presenting with resistant 

hypertension or young onset hypertension (age <40 years), warrant further investigation 

for secondary causes (National Clinical Guideline 2011).  

2.2.2.1 Secondary hypertension 

Patients diagnosed with resistant hypertension are more likely to have previously 

unidentified secondary causes for their high BP (Limonta, Valandro Ldos et al. 2012). 

Common contributors include high salt intake, excess alcohol intake, obesity, obstructive 
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sleep apnoea (OSA), chronic kidney disease, renal artery stenosis and 

hyperaldosteronism, with other secondary causes being hyper- or hypothyroidism, 

Cushing’s Syndrome, phaeochromocytoma, hyperparathyroidism and aortic coarctation 

(De Nicola, Borrelli et al. 2011, Oliveras and Schmieder 2013). Co-prescribing of 

hypertensive medications including non-steroidal anti-inflammatory drugs, 

decongestants, oral contraceptives and corticosteroids (see Box 2.1), can also make 

hypertension very difficult to control (Oliveras and Schmieder 2013). In a small study of 

125 patients, OSA (apnea-hypopnea index (AHI) >15 events per hour) was the most 

common condition associated with resistant hypertension (64.0%), followed by primary 

aldosteronism (5.6%), renal artery stenosis (RAS, 2.4%), renal parenchymal disease 

(1.6%), oral contraceptives (1.6%), and thyroid disorders (0.8%) (Pedrosa et al. 2011). In 

34.4% of these patients (43/125), no secondary cause of hypertension was identified 

giving a diagnosis of primary, and true resistant, hypertension (Pedrosa, Drager et al. 

2011). In another study 16/83 (19%) of patients with apparent treatment resistant 

hypertension where found to have secondary causes for their high BP following 

investigation at a specialist hypertension clinic (seven had hyperaldosteronism (including 

two adrenal adenomas), three with RAS, three with CKD and three with OSA) (Heimark, 

Eskas et al. 2016). 

Subclinical hyperaldosteronism and OSA have previously been particularly under-

diagnosed (Logan, Perlikowski et al. 2001, Clark, Ahmed et al. 2012). Pimenta et al. 

studied 97 patients with resistant hypertension using polysomnography and plasma 

renin and urinary aldosterone levels, 77.3% had OSA and 28.9% had hyperaldosteronism 

(Pimenta, Stowasser et al. 2013). Lloberes et al. have published similar findings, with a 

prevalence of severe OSA (AHI >30) of 70% in those with resistant hypertension, and 

report that excessive daytime somnolence as assessed using the Epworth Sleepiness 

Scale could be a marker of a pathological mechanism linking OSA and hypertension 

(Lloberes, Lozano et al. 2010). A randomised controlled trial examining the use of 

continuous positive airway pressure (CPAP) in the treatment of those with OSA and 

resistant hypertension demonstrated a significant reduction in BP and an increase in the 

number of patients exhibiting a nocturnal dipping BP profile (Lozano, Tovar et al. 2010). 

OSA and HTN are both characterised by sympathoexcitation (Kario 2009). Treatment of 

OSA with CPAP has been shown to reduce muscle sympathetic nerve activity (MSNA) 

(Narkiewicz, Kato et al. 1999, Henderson, Fatouleh et al. 2016), providing a potential 

mechanism for the antihypertensive effect of CPAP in resistant hypertension.  
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Box 2.1. Causes of resistant hypertension. 
Adapted from Fagard 2012 and Calhoun et al. 2008. (Calhoun, Jones et al. 2008, Fagard 
2012) 
 

There has been ongoing debate about the prevalence of primary hyperaldosteronism as 

a secondary cause for hypertension. Primary hyperaldosteronism was identified in 7% of 

hypertensive patients in a German epidemiological study (Hannemann, Bidlingmaier et 

al. 2012), and in a separate cohort, 11.3% of patients with resistant hypertension were 

diagnosed with primary aldosteronism (Douma, Petidis et al. 2008). Notably, 

hypokalaemia was only seen in 45.6% of this latter group, and therefore may represent 

Causes of resistant hypertension 

• Pseudo-resistant hypertension 
‒ White coat hypertension 
‒ Non-adherence to medication 
‒ Physician inertia in optimising antihypertensive regimen 
‒ Poor BP measurement technique 

• Secondary causes of hypertension, such as: 
‒ Vascular 

▪ Renal artery stenosis 
▪ Aortic coarctation 

‒ Renal parenchymal disease 
‒ Endocrine 

▪ Phaeochromocytoma 
▪ Primary hyperaldosteronism (Conn’s syndrome) 
▪ Hypercortisolism (Cushing’s syndrome) 
▪ Hyperparathyroidism 
▪ Hyper- and hypothyroidism 

‒ Obstructive sleep apnoea syndrome (OSAS) 
‒ Intracranial tumour, cerebral vasculitis 

• Volume overload 
‒ Progressive renal insufficiency 
‒ High sodium intake 
‒ Inadequate diuretic therapy 

• Drug induced hypertension 
‒ Non-steroidal anti-inflammatory drugs (NSAIDs) 
‒ Cocaine, amphetamines, other illicit drugs 
‒ Sympathomimetic agents 
‒ Oral contraceptive hormones 
‒ Ciclosporin, tacrolimus 
‒ Erythropoietin 
‒ Corticosteroids 
‒ Liquorice 
‒ Herbal compounds (ephedra, ma huang) 

• Associated lifestyle conditions 
‒ Weight gain, obesity 
‒ Excessive alcohol intake 
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a poor screening index for the condition. The authors are also critical of the 

aldosterone:renin ratio to screen for hyperaldosteronism, which had a sensitivity of only 

53.8% in their cohort, and recommend suppression testing with either salt loading (2 

litres of saline over 4 hours, sensitivity 97.3%, specificity 80.1%) or fludrocortisone 

dosing for 4 days (0.1mg every 6 hours, used as the gold standard in this study), 

however these tests are clearly more invasive and burdensome for the patients (Douma, 

Petidis et al. 2008). Investigating along similar lines, Martins et al report that 8% of 

patients with resistant hypertension studied had subclinical hypercortisolism; 

particularly older patients, those with diabetes and those with non-dipping nocturnal BP 

(Martins, Conceicao et al. 2012). Unfortunately, it can be difficult to screen for 

subclinical hyperaldosteronism routinely, due to the need to discontinue 

antihypertensive medications which may give false positive results, particularly beta 

blockers, in individuals with elevated BP (Schmiemann, Gebhardt et al. 2012), and a 

more pragmatic approach of introducing an aldosterone antagonistic such as 

spironolactone may be sensible in patients without electrolyte abnormalities or adrenal 

abnormalities on imaging.   

2.2.2.2 Inadequate pharmacotherapy 

Concordance with medication is an established problem, with two retrospective cohort 

studies reporting a medication discontinuation rate of around 40% (Mazzaglia, 

Mantovani et al. 2005, Van Wijk, Klungel et al. 2005). Low adherence was reported by 

8.1% of those with apparent drug resistant hypertension in the Reasons for Geographic 

and Racial Differences in Stroke (REGARDS) trial when questioned directly using a 

medication adherence scale (Irvin, Shimbo et al. 2012). Jung et al. investigated 375 

patients with uncontrolled hypertension using toxicological urinalysis, after screening for 

white-coat hypertension, secondary hypertension and optimisation of antihypertensive 

therapy (including an increase to four drug therapy in 17 patients), 76 patients 

remained; of these, 53% were non-adherent (Jung, Gechter et al. 2013). A population-

based study from Israel (172,432 patients) reported uncontrolled BP in 35.9% of 

patients. In the majority of cases these patients were undertreated, with 21% receiving 

less than maximal dosages of prescribed medications, 9% not prescribed a diuretic, 48% 

dispensed <3 antihypertensive medications, and most worryingly, 20% having not been 

dispensed/not purchased any their prescribed blood pressure medication during a thirty 

day period (Weitzman, Chodick et al. 2014). Once these factors were excluded, only 

2.2% of the patients in the study were defined as having true resistant hypertension.  

A recent systematic review looking at the reasons for poor adherence with 

antihypertensive medications identified three consistent factors; higher financial cost to 

the patient for medication, side-effects causing discomfort (such as dry mouth, itching, 

tiredness, dizziness or sexual dysfunction) and a poor patient-provider relationship (van 

der Laan, Elders et al. 2017). The other factors associated with poor adherence are 

summarised in Box 2.2 (van der Laan, Elders et al. 2017). One strategy to target this poor 

adherence is the use of combination tablets, and there is increasing evidence to show 

that these medications can improve compliance and BP control (Egan, Bandyopadhyay 

et al. 2012). Further research is required to develop novel pharmacological agents with 

more tolerable side-effect profiles in order to improve quality of life for people with 

hypertension.  
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Patients with multiple drug intolerance also present a significant challenge for clinicians; 

in a condition which is largely asymptomatic, uncomfortable drug side effects and 

potentially expensive and onerous polypharmacy, can present a significant physical and 

financial burden for patients, and must be balanced against a far less tangible, statistical, 

cardiovascular disease risk. A lack of engagement with, or knowledge of, the current 

guidelines and evidence base for prescribing in hypertension amongst some medical 

professionals, or limited time and resources for regular patient contact to enable 

education, BP monitoring and drug titration, can also account for a failure in the 

optimisation of drug regimens. For example, beta blockers were previously widely used 

as a first line treatment for hypertension, but have now been shown to be significantly 

less effective than other agents, and even simple factors such as poor BP measurement 

technique (cuff too small, patient not sat quietly for long enough) can lead to an 

inaccurate diagnosis (National Clinical Guideline 2011).  
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Box 2.2. Factors associated with non-adherence to antihypertensive medication.  
The three factors most consistently identified via systematic review are highlighted (van 
der Laan, Elders et al. 2017). 
 
  
In conjunction with the British and Irish Hypertension Society (BIHS), NICE now 

recommends a structured step-wise approach to prescribing in hypertension, which 

aims to improve BP control in primary care (Figure 2-7). The PATHWAY 2 study has 

provided much needed evidence to guide the choice of drug at step 4 of the pathway, 

with spironolactone performing superiorly to both bisoprolol and doxazosin (and all 

three drugs significantly better than placebo) in a randomised, double-blind, crossover 

trial (Williams, MacDonald et al. 2015). When reviewing antihypertensive medication, 

aliskiren, a direct renin inhibitor, should also be considered. Aliskiren has been shown to 

Factors associated with non-adherence to antihypertensive medications 

• Clinical factors 

‒ Side-effects causing discomfort 

‒ High body mass index 

‒ Number of co-morbidities 

‒ Having diabetes, depression, history of cardiovascular disease 

‒ Duration of hypertension 

 

• Social and demographic factors 

‒ Male gender 

‒ Younger age 

‒ Racial/ethnic minority status 

‒ Marital status 

‒ Employment 

‒ Low income, insecure financial status 

 

• Educational and psychological factors 

‒ Low education level 

‒ Low self-efficacy 

‒ Low concerns about the illness or potential adverse effects of 

medication 

‒ Poor hypertension knowledge 

 

• Healthcare factors 

‒ Higher payment for medication 

‒ Poor patient provider relationship 

‒ Complex medication regime 

‒ Multiple dosing regimen 

‒ Fewer health-care provider visits 

‒ Specialised health-care use 

‒ Dissatisfaction with the communication of health-care providers 
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lower blood pressure to a similar degree to ACEi and ARB drugs and is usually well 

tolerated (may cause diarrhoea) (Pantzaris, Karanikolas et al. 2017). However, the 

ALTITUDE (ALiskiren Trial In Type 2 diabetes Using cardiovascular and renal Disease 

Endpoints) trial, which assessed the effect of adding aliskiren to an ACEi or an ARB, had 

to be prematurely terminated due to an increased number of adverse events (renal 

dysfunction, hyperkalaemia, and hypotension) with no outcome benefit (Parving, 

Brenner et al. 2012). The use of aliskiren is not recommended routinely in the 

management of hypertension, and should only be used under specialist supervision, and 

certainly not in conjunction with ACEi or ARB medication (Agency 2012). Protocol driven 

prescribing in hypertension has gone a long way to improve and standardise patient 

care, but as discussed below, this approach does not fully address the different 

mechanisms underlying hypertension or the need for individualised treatment 

strategies. 

 

 
Figure 2-7. NICE Hypertension Guidelines 2011: Summary of antihypertensive drug 
treatment. (National Clinical Guideline 2011) 

2.2.2.3 Mechanisms underlying treatment resistant hypertension  

Failure to achieve BP control may be attributable to causes of secondary hypertension 

and inadequate pharmacotherapy, but there remains a tranche of patients with 

refractory hypertension, who are adherent to medication and have no evident, treatable 

secondary cause, but remain hypertensive. The question remains as to what is driving up 

blood pressure in these individuals. Treatment resistant hypertension is multi-factorial, 

with resistant patients more likely to be older, obese, black, and have a higher 

prevalence of cardiovascular disease, diabetes mellitus, OSA and chronic kidney disease  
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than those who respond to medication (Borrelli, De Nicola et al. 2013, Calhoun, Booth et 

al. 2014, Hwang, Dietrich et al. 2017).  

Thinking more mechanistically, Hwang et al. propose that refractory hypertension is 

likely to be driven by several key factors; excess fluid retention (e.g. due to a high salt 

diet, obesity or CKD), hyperaldosteronism due to activation of the RAAS (which will 

exacerbate fluid retention), activation of the sympathetic nervous system (causing RAAS 

activation and increased vascular resistance), and vascular remodelling and arterial 

stiffness (may give isolated systolic hypertension) (Hwang, Dietrich et al. 2017). There is 

conflicting evidence over which of these factors is most important. The pronounced 

response to spironolactone in the PATHWAY-2 study may suggest that most patients are 

likely to have volume expansion and low-renin hypertension,  (Williams, MacDonald et 

al. 2015), however, there is evidence to suggest that raised sympathetic tone, rather 

than fluid overload, may be the prevalent factor in resistant hypertension, with data 

from Dudenbostel et al. showing that individuals with resistant hypertension have 

higher urinary normetadrenaline levels, clinic and ambulatory heart rate, pulse wave 

velocity and systemic vascular resistance, and lower heart rate variability, than those 

with controlled blood pressure (Dudenbostel, Acelajado et al. 2015). Thinking about a 

multifactorial condition such as hypertension in this way is always going to be an over 

simplification, and these physiological systems interact on many levels, but it may be a 

helpful model to consider when planning fourth line treatment for individual patients. 

Figure 2-8 shows a potential patient-centred, physiology driven, approach to the 

pharmacological management of resistant hypertension. In a world of evolving 

interventional therapies for hypertension, the blood pressure phenotype of a patient 

may become increasingly important to appropriately direct more invasive treatments.  
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Figure 2-8. Possible mechanism-based treatment algorithm for treatment-resistant 
hypertension. 
The recommendation is for a thiazide or thiazide-like diuretic, preferably chlorthalidone 
or alternatively indapamide or twice-daily hydrochlorothiazide. ACEi; angiotensin 
converting enzyme inhibitor, CCB; calcium channel blocker, SNS: sympathetic nervous 
system, ISMN; isosorbide mononitrate. Figure adapted from Hwang et al. (Hwang, 
Dietrich et al. 2017). 
    

 

2.2.3 Prevalence of resistant hypertension 

Given the frequency of pseudo-resistance the true prevalence of primary drug resistant 

hypertension has proven difficult to quantify, but in a comprehensive review of the data 

Carey estimated a prevalence of pharmacological resistance to treatment for 

hypertension of around 14% (Carey 2013). 

The reported prevalence of resistant hypertension is extremely variable with data 

ranging from 10-30% in different observational cohorts (Calhoun, Jones et al. 2008, de la 

Sierra, Segura et al. 2011, Egan, Zhao et al. 2011, Persell 2011, Barochiner, Alfie et al. 

2013), with true refractory hypertension affecting only 5-10% of patients referred to a 

specialist hypertension clinic for uncontrolled BP (Cai and Calhoun 2017). Retrospective 

analysis of patients in large clinical antihypertensive medication trials suggesting drug 

resistance in as many as 35% of those enrolled hypertensives (Myat, Redwood et al. 

2013), whilst the recent data from Israel looking at the prescribing and dispensing of 

antihypertensive medication would reduce this rate to only ~2% once sub therapeutic 

pharmacotherapy has been taken into account (Weitzman, Chodick et al. 2014). Two 
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studies examining the USA National Health and Nutrition Examination Survey (NHANES) 

estimated the prevalence of resistant hypertension to be between 12.8 and 28% 

amongst treated hypertensive patients (Egan, Zhao et al. 2011, Persell 2011). The data 

from Jung et al. showed a prevalence of resistant hypertension of 9.6% amongst 

referrals to a specialist hypertension clinic (Jung, Gechter et al. 2013). The prevalence of 

resistant hypertension is significantly higher in high risk groups, for example, ~25% of 

patients with CKD have drug resistant hypertension (Borrelli, De Nicola et al. 2013). 

Amongst the 14,809 Participants in the REasons for Geographic And Racial Differences in 

Stroke (REGARDS) study who were receiving antihypertensive medications, only 78 

(0.5%) had refractory hypertension with BP ≥140/90 mmHg on ≥5 classes of 

antihypertensive drugs (Calhoun, Booth et al. 2014). 

A large cohort of 68,045 treated hypertensive patients from the Spanish Ambulatory 

Blood Pressure Monitoring Registry, described a prevalence of resistant hypertension of 

12.2%, however, differentiating between true drug resistant hypertension and pseudo-

resistance is vital (de la Sierra, Segura et al. 2011). In the Spanish Registry 37.5% of those 

initially diagnosed with resistant hypertension had white-coat hypertension with normal 

pressures on ABPM, and more recent data from the same group increased this 

proportion to 40% (de la Sierra, Banegas et al. 2012). In light of these findings, the latest 

NICE guidance recommends the use of ABPM in the diagnosis of hypertension (see Table 

2-1) (National Clinical Guideline 2011).  

 

2.2.4 Consequences of hypertension 

Hypertension is often referred to as a silent killer, because whilst most suffers are 

asymptomatic, the condition is an established risk factor for cardiovascular disease 

(CVD). The World Health Organisation estimates that 11% of all disease burden in 

developed countries is due to high BP, and 50% of all coronary heart disease (CHD) and 

75% of all stroke in these countries can be attributed to a systolic BP of >115mmHg 

(WHO 2013). This finding was reaffirmed by the INTERHEART study which reported that 

22% of myocardial infarcts in Western Europe were due to hypertension (Yusuf, Hawken 

et al. 2004). This cardiovascular risk is incremental; with each 20mmHg rise in SBP or 

10mmHg rise in DBP above 115/70mmHg giving a doubling in the risk of death from CVD 

in adults aged 40-69 (Lewington, Clarke et al. 2002). Treating hypertension is, however, 

beneficial; a reduction in DBP of 5/7.5/10 mmHg gives a 34/46/56% reduction in stroke 

and a 21/29/37% reduction in CHD (MacMahon, Peto et al. 1990). Similarly, a sustained 

reduction in DBP of 5-6mmHg over 5years reduced the relative risk of stroke and CHD by 

42% and 14% respectively (Collins, Peto et al. 1990). 

The financial and logistical implications of managing hypertension are huge, accounting 

for 12% of primary care consultations and £1 billion in drug costs in 2006 (National 

Clinical Guideline 2011), but it is estimated that the NHS could save around £97.2 million 

from reduced complications such as stroke, heart failure and renal failure if BP could be 

reduced to less than 140/90mmHg (Lloyd, Schmieder et al. 2003) .  
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2.2.4.1 Prognosis in resistant hypertension 

Unfortunately, this patient group has a particularly high risk of serious cardiovascular 

complications including development of stroke, heart failure and chronic renal disease. 

Identifying those most at risk remains key; those with drug resistant hypertension are 

nearly 50% more likely to suffer a CVD event than those on <3 antihypertensive 

medications (Daugherty, Powers et al. 2012). In the Reduction of Atherothrombosis for 

Continued Health (REACH) registry of 53,530 patients, the prevalence of resistant 

hypertension was 12.7%, and the condition conferred a significantly increased risk of 

cardiovascular death, myocardial infarction, or stroke at 4 years (Kumbhani, Steg et al. 

2013). Hospitalisations due to congestive heart failure were also increased. A sub-

analysis of the ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent 

Heart Attack Trial) study identified 1870/14684 (13%) participants with resistant 

hypertension. When compared with study participants without resistant hypertension, 

participants with resistant hypertension had a 44%, 57%, 23%, 88%, 95%, and 30% 

higher risk of incident coronary heart disease, stroke, peripheral artery disease, heart 

failure, end-stage renal disease, and all-cause mortality, respectively, after adjustment 

for traditional risk factors (Muntner, Davis et al. 2014). Risk factors for resistant 

hypertension include diabetes, renal impairment, obesity and advancing age, all of 

which are increasing in prevalence in the UK (de la Sierra, Segura et al. 2011, de la Sierra, 

Banegas et al. 2012, Calhoun, Booth et al. 2014).  

Previously, patients failing to achieve BP control despite pharmacological and life-style 

interventions have been left with few therapeutic options. There have been no new 

classes of anti-hypertensive medication approved for clinical use in recent years 

(sacubitril valsartan not yet licenced for use in hypertension), and research into drug 

development in this field is now a vastly expensive and time consuming process (Garber 

2009) . The development of novel techniques such as renal denervation, baroreflex 

stimulation and carotid body modulation, offers new avenues for these high-risk 

individuals, in what is now a rapidly developing field. 
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2.3 Renal Denervation: A novel therapy for resistant hypertension 

2.3.1 The Evolution of Renal Denervation 

At the beginning of the 20th century, there was no treatment available for hypertension 

until progress was made with the introduction of surgical sympathectomy in 1935 (Esler 

2015). Surgical sympathectomy was used into the late 1950s as a treatment for 

hypertension, and successfully lowered blood pressure, but with significant side-effects, 

including orthostatic and post-prandial hypotension, syncope and sexual dysfunction  

(Whitelaw and Smithwick 1951, Morrissey, Brookes et al. 1953, Longland and Gibb 1954, 

Esler 2015). Sympathetic ganglionic blockade, starting with drugs such as 

hexamethonium discovered by William Paton in the early 1950s (Paton 1982), was 

employed to replace surgical sympathectomy, and lowered blood pressure without 

exposure to surgical risks, but with similar significant side effects, including orthostatic 

hypotension, syncope, constipation, mydriasis and impotence (Fisher and Paton 2012, 

Esler 2015). Building on this concept of sympathoinhibition, anti-adrenergic drugs, acting 

both centrally (methyldopa, clonidine) and peripherally (α and β adrenergic blockers) 

were developed over the following decades, and their use, in combination with diuretics 

and vasodilators, and then more recently calcium channel blockers and drugs targeting 

the renin angiotensin aldosterone system (RAAS) have become the mainstay of anti-

hypertensive therapy (see Figure 2-7 (National Clinical Guideline 2011, Mancia, Fagard 

et al. 2013, Esler 2015)). 

In the 21st century, the increasing support for the concept of neurogenic hypertension, 

particularly the important link between afferent and efferent renal signalling and 

elevated sympathetic tone in the development and maintenance of hypertension, has 

led researchers to renal denervation as a therapeutic strategy for patients with resistant 

hypertension. In the 1970s and 80s, the efficacy of RDN in the reduction of sympathetic 

nerve activity and BP was established in animal models (Liard 1977, Katholi, Winternitz 

et al. 1982, Winternitz and Oparil 1982, Katholi 1983, Lee and Walsh 1983). In humans, 

radical nephrectomy is associated with normalisation of muscle sympathetic nerve 

activity (MSNA) in hypertensive patients with CKD, and disruption of afferent signals 

from the renal nerves, which drive central up-regulation of the sympathetic response, is 

believed to contribute to this reduction in vasomotor tone (Converse, Jacobsen et al. 

1992, Phillips 2005). In recent years, improvements in endovascular ablation techniques, 

a decline in the development of new pharmacological therapies for hypertension, and 

the growing appreciation of the neurogenic hypertension paradigm, have refocused 

research.  This has led to the development of novel non-pharmacological interventions 

targeting the sympathetic nervous system. One such intervention is catheter-delivered 

renal denervation.  

2.3.1.1 Catheter development and pre-clinical studies 

RDN developed as a percutaneous endovascular technique that achieves denervation 

using a radiofrequency ablation catheter. A catheter is used to apply radio-frequency 

energy to the inner wall of each renal artery, disrupting the renal nerves. The hypothesis 

was, that by disrupting the efferent sympathetic nerves which stimulate 

vasoconstriction with reduced RBF, renin release and sodium retention, BP would be 
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reduced (DiBona and Esler 2010). Stimulation of the afferent renal nerves in 

hypertension due to increase arterial pressure, microvascular damage, angiotensin II 

mediated hypoperfusion, hypoxia and inflammation, may act to drive up blood pressure 

through a reflex increase in SNA (Koeners, Lewis et al. 2016). Thus, targeted ablation of 

both the afferent and efferent renal nerves will interrupt a pathological positive 

feedback loop in which the kidneys are, essentially, driven to reduce their own blood 

supply, whilst avoiding the adverse effects of denervating other structures observed in 

earlier studies (i.e. target specific ablation). Denervation of the renal efferent nerves 

results in a shift in the pressure-natriuresis curve to the left, encouraging renal sodium 

excretion, and renal afferent denervation disrupts the pro-hypertensive 

sympathoexcitation seen as a result of renal afferent hyperactivity (Sobotka, Mahfoud et 

al. 2011). 

In 1859, Claude Bernard demonstrated that cutting the greater splanchnic nerve 

(includes denervation of the kidney) resulted in an ipsilateral diuresis, and that 

stimulation of the distal end of the nerve (renal nerve stimulation) gives an antidiuresis 

(Bernard 1859, DiBona and Esler 2010). Since then, renal denervation has been shown to 

prevent or delay the onset of hypertension in a wide arrange of animal models, 

including the spontaneously hypertensive rat, Goldblatt one-kidney, one-clip and two-

kidney, one-clip rats, the DOCA-Na+ rat (deoxycorticosterone acetate), and the DOCA 

dog models (DiBona and Esler 2010). In the 1980s, Katholi et al. demonstrated a 

reduction in plasma norepinephrine levels following renal denervation in the one-

kidney, one-clip Goldblatt rat model, indicating an effect of RDN on sympathetic tone 

(Katholi, Winternitz et al. 1982). More recently, Hart et al. reported a reduction in 

arterial pressure, renal norepinephrine content and lumbar SNA following renal 

denervation in conscious spontaneously hypertensive rats (Hart, McBryde et al. 2013). 

Three factors governed the development of endovascular RDN for use in clinical practice 

(Esler 2015).  

1. Evidence for sympathoexcitation in human hypertension, including raised renal 

SNA (see Section 2.1.2.1) (Goldstein, Horwitz et al. 1983, Esler, Jennings et al. 

1986, Yamada, Miyajima et al. 1989, Esler and Kaye 2000). 

2. Evidence showing a blood pressure reduction following surgical renal 

denervation in animal models (Liard 1977, Katholi, Winternitz et al. 1982, 

Winternitz and Oparil 1982, Katholi 1983, Lee and Walsh 1983, DiBona and Esler 

2010, Hart, McBryde et al. 2013). 

3. The anatomy of the renal nerves which lie in a reticular network within the 

adventitia of the renal artery, making them amenable to endovascular ablation 

(Sakakura, Ladich et al. 2014). 

Levin and Gelfand were the first to patent a renovascular catheter for the ablation of 

renal nerves as a treatment for hypertension in 2002 (Esler 2015). This patent was 

acquired by the start-up company Ardian (California, USA) under whose auspices the 

first pre-clinical study, using a custom designed catheter, was carried out in a porcine 

model, demonstrating safety and efficacy for renal nerve ablation (Rippy, Zarins et al. 

2011).    

The first catheter to become commercially available for clinical use was the Symplicity 

Flex catheter (Medtronic, Minneapolis, Minnesota, USA, previously Ardian). The 
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catheter had a single radio-frequency electrode at its tip, which could be angulated to 

administer a series of 4-8, 2-minute-long ablations distributed in a spiral pattern going 

from the distal to proximal aspect of the renal artery. Software within the catheter 

console monitored the arterial wall temperature and resistance to aid the successful 

administration of therapies (see Figure 2-9) (Krum, Schlaich et al. 2009). The duration of 

the RDN procedure (requiring multiple, bilateral ablations) and the technical challenge 

of achieving adequate circumferential denervation using the Symplicity Flex catheter, 

and the financial incentive of entering the market in a novel procedure, have driven the 

development of second generation devices using multi-electrode spiral, multi-pronged 

basket, or balloon mounted technologies. At the peak of the RDN boom in early 2014, 

there were over 50 RDN catheters in development. 

 

 

Figure 2-9. Renal denervation using the Symplicity Flex catheter. 
(http://www.medtronicrdn.com).  

 

2.3.2 Renal Denervation: the early clinical trials 

In the first published clinical RDN case, Schlaich at al. describe a patient in which BP was 

successfully reduced from 161/107 mmHg at baseline, to 141/90 mmHg at 30 days and 

to 127/81 mmHg at 12 months after ablation (Schlaich, Sobotka et al. 2009). In this case 

whole-body NA spillover was reduced by 42%, elevated baseline MSNA returned to 

normal levels, cardiac baroreflex sensitivity improved and cardiac magnetic resonance 

imaging (MRI) showed a reduction in the left ventricular mass following RDN (Schlaich, 

Sobotka et al. 2009). 

2.3.2.1 Symplicity HTN-1 

Proof of concept for RDN, and an initial demonstration of procedural safety, was 

achieved in the Symplicity HTN-1 study (Krum, Schlaich et al. 2009). The initial cohort of 

45 patients with a mean office blood pressure of 177/101, had an average office BP 

reduction of -22/-11 (n=26) and -27/-17 (n=9) mmHg at 6 and 12 months post RDN 

respectively. Renal NA spillover was assessed in a subgroup of 10 patients and was 

reduced by 45% following RDN. At 36 months post-procedure, 93% of the 88/153 

patients who remained under follow-up had a reduction in office SBP of ≥10 mmHg 

(Krum, Schlaich et al. 2014). The mean change in office BP was -32/-14 mmHg, sustained 

out to three years post-denervation (Figure 2-10).  
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Figure 2-10. Change from baseline in office blood pressure (BP) in patients who 
completed 36 months of follow-up in the Symplicity HTN-1 study.  
(Krum, Schlaich et al. 2014) 
 

2.3.2.2 Symplicity HTN-2 

In Symplicity HTN-2, a highly-publicised multi-centre randomised controlled trial of RDN 

in patients with resistant, an office BP reduction of -32/-12mmHg (-33/-11mmHg 

difference versus control, p<0.0001) was observed at 6-months post RDN, again with no 

significant sustained adverse sequelae (Esler, Krum et al. 2010). Symplicity HTN-2 was a 

cross-over study with the control group offered RDN 6 months after the treatment 

group (Esler, Krum et al. 2012). As can been seen from Figure 2-11, the RDN group had a 

significant reduction in office BP after six months, not seen in the control group, with 

the control group showing a similar BP reduction following cross-over to RDN therapy 

after six months (Esler, Krum et al. 2012). 
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Figure 2-11. Change in office-based blood pressure after 1-year follow-up in Symplicity 
HTN-2 study.  

*P<0.001 for SBP and DBP change after renal denervation; †p=0.026 for SBP change 
from baseline and p=0.066 for DBP change from baseline for the crossover group before 
denervation at 6 months (Esler, Krum et al. 2012). 
 

There have been several technical issues raised regarding the Symplicity studies that 

should be highlighted (Krum, Schlaich et al. 2009, Esler, Krum et al. 2010); for example, 

these studies, and several others in the field, report clinic BP (or office BP) as their 

primary outcome measure. Ambulatory BP monitoring (ABPM) is now recommended as 

the gold standard in the diagnosis of hypertension, and the use of office BP may have 

resulted in the overestimation of BP and the inclusion of ‘white-coat’ hypertensives, 

rather than those with true ‘resistant’ hypertension, in these studies. It is also of note 

that 35% of the control group, who received standard medical therapy, in Symplicity 

HTN-2 had a >10mmHg reduction in systolic BP at 6 months (Esler, Krum et al. 2010); an 

observation that could be explained by improved compliance with medication, or 

optimisation of medications, following enrolment in the study, and which must also be 

transposed to the treatment group (a Hawthorne effect (McCambridge, Witton et al. 

2014)). Changes in drug regimens pre- and post RDN were discouraged in the Symplicity 

studies, but these did occur and must be factored into data interpretation. Given the 

gain in emphasis for the use of aldosterone antagonists in the most recent NICE 

Hypertension Guidelines (National Clinical Guideline 2011), now supported by evidence 

from the PATHWAY-2 study (Williams, MacDonald et al. 2015), and although RDN 

remained effective in Symplicity HTN-2, it is notable that only 17% of patients in 

Symplicity HTN-2 were on spironolactone and therefore many participants were 

receiving sub-optimal medical management.  

2.3.2.3 EnligHTN-I & II 

The main competitor rivalling the Medtronic Symplicity Flex catheter was the EnligHTN 

catheter produced by St Jude Medical (St Paul, Minnesota, USA). The EnligHTN catheter 

employs a basket design with four electrodes which can ablate simultaneously, aiming 

to target circumferential ablation and speed up the procedure (Worthley, Tsioufis et al. 



72 
  

2013). EnligHTN-I, a safety and feasibility study, reported an office BP reduction of 26/10 

mmHg six months post-RDN, with 80% of participant s (n=45) achieving an office SBP 

reduction of ≥10 mmHg (Worthley, Tsioufis et al. 2013). The study also reports ABPM 

outcomes, with a significant -10/-6 mmHg change in mean 24hr BP. The BP reductions 

seen in EnligHTN-I persisted out to 24 months with falls of -29/-13 mmHg and -13/-7 

mmHg for office and ambulatory BP respectively. 

EnligHTN-II recruited patients into three sub groups: severe hypertension (office SBP 

≥160 mmHg and estimated glomerular filtration rate (eGFR) ≥45 mL/min per 1.73 m2), 

moderate hypertension (office SBP ≥140–159 mmHg and eGFR ≥45 mL/min per 1.73 m2) 

and hypertension with renal impairment (office SBP ≥140 mmHg and eGFR ≥ 15 mL/min 

per 1.73 m2). Interestingly, the study recruited both patients with drug resistant 

hypertension and those with drug intolerance, unable to take three antihypertensive 

medications (Lobo, Saxena et al. 2015). Data have been published for the severe 

hypertension group, reporting significant reductions in office BP (18.2/8.5 mmHg) and 

ABPM (7.9/4.8 mmHg) 6 months after the RDN procedure (Lobo, Saxena et al. 2015). 

2.3.2.4 Renal denervation in acceleration 

On the back of the positive outcomes seen in Symplicity HTN-1 &2 and EnligHTN-I, the 

field of renal denervation went into rapid acceleration, with multiple independent 

clinical groups publishing outcome data, and industry embracing the field with the 

development of other radiofrequency ablation catheters and the use of alternative 

technologies to achieve renal nerve ablation (e.g., focussed ultrasound or perivascular 

chemoablation). The range of catheters under development is summarised in Table 2-3 

with the results from clinical trials (where available) summarised in Table 2-4. This list is 

not exhaustive but covers those devices with a significant, published, clinical evidence 

base, other devices under development and/or clinical trial include the Allegro and 

Iberis (AngioCare Medical, Shanghai, China), Redy (Renal Dynamics, Stuttgart, Germany) 

and Chilli II (Boston Scientific Corporation, San Jose, California) radiofrequency ablation 

catheters, the TIVUS ultrasonic ablation catheter (CardioSonic, Tel Aviv, Israel) and the 

targeted sympathetic mapping/ablation catheter, SyMapCath I (SyMap Medical, Suzhou, 

China). The results of these studies largely support the antihypertensive effect of RDN 

seen in Symplicity HTN-1&2, but not universally so, with some of the independent 

groups reporting little or no blood pressure effect from the procedure. Published data 

from the Bristol CardioNomics group and St Bartholomew’s Hospital in London, and 

results from other European centres suggest that in contrast to Symplicity HTN-2, only 

up to around 50% of patients achieve a clinically significant reduction in BP with RDN 

(Brinkmann, Heusser et al. 2012, Vase, Mathiassen et al. 2012, Kaltenbach, Franke et al. 

2013, Hameed, Pucci et al. 2015, Rohla, Nahler et al. 2015, Burchell, Chan et al. 2016). 

Notably, Brinkmann et al. reported no significant reduction in mean BP, MSNA, heart 

rate variability (HRV) and blood pressure variability (BPV), or increase in sympathetic or 

cardiac baroreflex sensitivity (BRS), following RDN in their patients (Brinkmann, Heusser 

et al. 2012). Their study was criticised for the inclusion of patients with relatively low 

baseline BP and MSNA levels, and for the reporting of supine beat-to-beat BP results, 

rather than office BP, or more preferably ABPM. One interpretation was that Brinkmann 

et al.’s results suggested that patients with more severe hypertension are more likely to 

respond to RDN, a finding reported by other groups (Kandzari, Bhatt et al. 2015, Rohla, 
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Nahler et al. 2015, Burchell, Chan et al. 2016). However, similar findings have been 

published by the Bristol CardioNomics group, with preliminary data from a small study 

of 8 patients, showing no overall reduction in BP or MSNA  1 and 6 months post-RDN 

(p<0.05), with no correlation between BP reduction an MSNA in the 4 patients who did 

respond to treatment (Hart, McBryde et al. 2013). Interestingly, in this translational 

study, a reduction in BP and SNA was seen in all of the rats (n=7) which underwent 

surgical renal denervation, and baroreflex sensitivity was consistently improved in both 

animals and humans, even when BP remained unchanged in the human subjects (Hart, 

McBryde et al. 2013). It remained evident that RDN was not a panacea, and it was still 

unclear whether patients failed to respond due to inappropriate patient selection for 

RDN, or technical limitations with the procedure itself resulting in incomplete 

denervation.  

2.3.2.5 Data from renal denervation registries 

As renal denervation moved into clinical practice, several registries were established to 

collate safety and outcome data. The largest of these is the Global Symplicity Register 

which reported a response (office BP reduction ≥10 mmHg) rate of 67% in 998 patients 6 

months post-RDN (Bohm, Mahfoud et al. 2015). The UK Renal Denervation Affiliation 

has reported an office BP reduction of 22/9 mmHg (p<0.001) with a 65% response rate, 

in a cohort of 246 patients from 16 centres (Sharp, Hameed et al. 2015). The TREND 

registry of 407 patients from 14 centres in Austria, reported an office BP responder rate 

of 69% (128 of 185 patients) (Zweiker, Lambert et al. 2016). The ALSTER, Heidelberg and 

Greek registries also report real-world data, with better response rates of 76% (n=93), 

73% (n=63) and 85% (n=79), respectively (Kaiser, Beister et al. 2014, Vogel, Kirchberger 

et al. 2014, Tsioufis, Ziakas et al. 2017). The recently published Swedish registry of 252 

patients reported an office SBP response rate of only 58% (Volz, Spaak et al. 2018).  

 

Devices (producer) Characteristics Major Trials (n) 
Radiofrequency ablation 
SymplicityTM Renal 
Denervation System 

(Medtronic, Santa Rosa, 
CA, USA) 

Non-occlusive flexible 
catheter with a single 
electrode tip 

Symplicity HTN I (152) 
completed  
Symplicity HTN II (106) 
completed  
Symplicity HTN III (530) 
completed  

EnligHTNTM Multi 
Electrode Renal 
Denervation System  

(St. Jude Medical, St. 
Paul, MN, USA) 

Occlusive, over the wire 
balloon catheter with 
embedded multi-
electrodes 

EnligHTN I (47) completed  
EnligHTN II (500) full results 
awaited 
EnligHTN III (39) completed 
EnligHTN IV (4) sham RCT, 
terminated 

OneShotTM Renal 
Denervation System 

(Covidien, Campbell, CA, 
USA) 

Irrigated, helical over 
the wire balloon 
catheter 

RHAS (12) completed  
RAPID (50) follow-up 

V2 Renal Denervation 
SystemTM  

Over the wire variable 
size balloon catheter 

REDUCE-HTN (150) completed 
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(Vessix Vascular, Boston 
Scientific, Marlborough, 
MA, USA) 

with embedded bipolar 
electrodes 

REDUCE-HTN: REINFORCE (100) 
recruiting, uncontrolled HTN 
off-medications, vs masked 
procedure (renal angiogram) 

Celsius® ThermoCool® 
Renal Denervation 
Catheter  

(Biosense Webster, CA, 
USA / Cordis) 

Irrigated, multi-
electrode 

RENABLATE (30) completed 
RENABLATE-II (14) completed 

Symplicity SpyralTM Renal 
Denervation System 

(Medtronic, Santa Rosa, 
CA, USA) 

Non-occlusive, multi-
electrode helical 
catheter 

SPYRAL HTN-ON MED (100) 
preliminary data published 
SPYRAL HTN-OFF MED 
(170)preliminary data 
published, both sham 
controlled 

Ultrasonic ablation 
ParadiseTM Renal 
Denervation System  
(ReCor Medical, Palo Alto, 
CA, USA) 

Endovascular balloon 
catheter combined with 
a US-emitting 
transducer and cooling 
system 

REDUCE (11) completed  
REALISE (20) completed 
ACHIEVE (96) follow-up 
REQUIRE (140) recruiting, sham 
controlled 
RADIANCE-HTN (292) recruiting, 
sham controlled (SOLO: off 
medications, TRIO: triple fixed 
dose combined medication) 

Surround Sound System 
(Kona Medical, Bellevue, 
WA, USA) 

Externally delivered 
focussed ultrasound 

WAVE I, II &III (69) completed 
WAVE IV (81) stopped 
prematurely 

Tissue-directed pharmacological ablation 

Peregrine Ablation 
System 
(Ablative Solutions, 
Kalamazoo, MI, USA) 

Three-needle device for 
the peri-adventitial 
injection of micro-doses 
of ethanol 

Fischell et al. 

Bullfrog Microinfusion 
Catheter  
(Mercator MedSystems, 
Emeryville, CA, USA) 

Balloon sheathed 
micro-needle 

TREND-I (7) completed 

Table 2-3. Catheters developed for renal nerve ablation using radiofrequency, 
ultrasound and pharmacological ablation technologies. 
RDN; renal denervation, US: ultrasound. (Gulati and White 2013, Heeger, Kaiser et al. 

2013) 
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Trial Device(s) No. 
of 
Pts 

Baseline 
BP 

(mmHg) 

Change in 
oBP at 6 
months 
(mmHg) 

Response 
rate at 6 
months 

(%) 

Comment 

Symplicity HTN-1(Krum, 
Schlaich et al. 2009) 

Symplicity Flex  45 177/101 -22/-11 87 Single RF electrode on flexible catheter tip 

Symplicity HTN-2 (Esler, Krum 
et al. 2010) 

Symplicity Flex 
Control 

49 
39 

178/96 
178/97 

-32/-12 
1/0 

84 
- 

Randomised controlled study with cross-over to 
RDN at 6 months 

Symplicity HTN-3 (Bhatt, 
Kandzari et al. 2014) 

Symplicity Flex 
Sham 

364 
171 

180/97 
180/99 

-14/-7 
-12/-5 

58 
49 

Sham controlled trial, showing no benefit of RDN 
over medical therapy 

SPYRAL HTN-ON MED 
(Kandzari, Bohm et al. 2018) 

Spyral 
Sham 

38 
42 

165/100 
164/103 

-9/-5 
-3/-2 

- 
- 

Sham controlled trial, standardised medication 
regime with objective quantification of adherence, 
oBP data shown, ABPM used as primary endpoint. 

SPYRAL HTN-OFF MED 
(Townsend, Mahfoud et al. 
2017) 

Spyral 
Sham 

38 
42 

162/100 
161/102 

-10/-5 
-2/0 

- 
- 

Sham controlled trial, patients off antihypertensive 
medication, 3-month oBP data shown, ABPM used 
as primary endpoint. 

Symplicity HTN-Japan (Kario, 
Ogawa et al. 2015) 

Symplicity Flex 
Control 

22 
19 

181/ 
179/ 

-17/-6 
-8/1 

 No significant difference between treatment 
groups, terminated early due to HTN-3 results. 

Brinkmann et al. (Brinkmann, 
Heusser et al. 2012) 

Symplicity Flex 
 

12 157/85 0/0 25 Reports supine beat-to-beat BP data collected 3-6 
months post RDN, also no effect on MSNA. 

DENERHTN (Azizi, Sapoval et 
al. 2015) 

Symplicity Flex 
Control 

48 
53 

160/93 
156/91 

-15/-9 
-10/-6 

42* 
21* 

Assessed RDN added to standardised stepped 
antihypertensive treatment.  
*% with ≥20 mmHg reduction in daytime ABPM 

Hameed et al. (Hameed, Pucci 
et al. 2015) 

Symplicity Flex 34 185/103 -15/-6 51 Medication adherence confirmed by directly 
observed medication administration. 

PRAGUE-15 (Rosa, Widimsky 
et al. 2016) 

Symplicity Flex 
Spironolactone 

52 
54 

159/92 
155/89 

-13/-8* 
-11/-6* 

57* 
50* 

RDN vs addition of spironolactone, outcome data 
is for 12-month post-RDN 

EnligHTN I (Worthley, Tsioufis 
et al. 2013) 

EnligHTN  45 176/96 -26/-10 80 Basket with four RF electrodes 
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EnligHTN III (Worthley, 
Wilkins et al. 2017) 

EnligHTN 39 174/93 -25/-7 81 2nd generation EnligHTN catheter 

INSPIRED (Jacobs, Persu et al. 
2017) 

EnligHTN 
Control 

6 
9 

173/103 
159/95 

-12/-8 
8/2 

 Quality of life and adherence similar between 
groups 

RHAS (Ormiston, Watson et 
al. 2013) 

OneShot 9 186/92 -34/-13 75 Irrigated RF balloon catheter 

RAPID (Verheye, Ormiston et 
al. 2015) 

OneShot 50 162/96 -20/-8 62  

REDUCE-HTN (Sievert, Schofer 
et al. 2015) 

Vessix V2  146 182/100 -25/-10 76 Balloon catheter with 4-8 bipolar RF electrodes on 
surface 

RENABLATE-II, 2013 
(NCT02095691) 

Celsius 
ThermoCool  

14  -11/-1 50 Limited data only available via clinicaltrials.gov 

Fischell et al. (Fischell, Ebner 
et al. 2016) 

Peregrine 18 175/- -25/-12 75 Three-needle device for the peri-adventitial 
injection of micro-doses of ethanol 

REALISE (Montalescot, Cluzel 
et al. 2014) 

Paradise 20 167/- -41/-  Reduction in SBP in responders, abstract only 

RADIANCE HTN-SOLO (Azizi, 
Schmieder et al. 2018) 

Paradise 
Sham 

74 
72 

155/100 
154/99 

-11/-6 
-4/-1 

- 
- 

Sham controlled trial, off medication, 2-month oBP 
data shown, ABPM used as primary endpoint. 

WAVE I, II, III (Neuzil, 
Ormiston et al. 2016) 

Surround 
Sound 

69 180/98 -25/-9 75  

WAVE IV (Schmieder, Ott et 
al. 2018) 

Surround 
Sound 
Sham 

42 
39 

181/100 
185/100 

-13/-5 
-23/-9 

- 
- 

Sham controlled, terminated early 

TREND-I (Kipshidze, Sievert et 
al. 2017) 

Bullfrog 7 189/94 -36/-1  Injection of a single dose of NW2013, a 
neurotropic Na+/K+ ATPase antagonist 

Table 2-4. Summary data from clinical renal denervation studies illustrating the range of catheters in use and variable blood pressure outcome data 
reported. 
RDN; renal denervation, RF; radiofrequency, MSNA; muscle sympathetic nerve activity, oBP; office blood pressure, BP; blood pressure, ABPM; ambulatory 
BP monitoring, RHAS; renal hypertension ablation system. *ABPM data shown.
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2.3.3 Symplicity HTN-3 

2.3.3.1 The trial 

Symplicity HTN-3 was a large randomised controlled trial (RCT) undertaken in the USA 

with a view to obtaining FDA (Food and Drug Administration Agency) approval for RDN 

(Bhatt, Kandzari et al. 2014). A total of 535 patients with resistant hypertension were 

randomised on a 2:1 basis to either denervation with the Symplicity Flex catheter 

(Medtronic) or a sham procedure. The primary endpoint of the study was the change in 

office systolic blood pressure 6 months after the procedure in comparison to the sham 

control group, with a superiority margin set at 5 mmHg. The results of the study, 

published at the beginning of April 2014, sent shockwaves through the renal 

denervation community. The blinded study failed to show a benefit of RDN over the 

sham procedure, with both cohorts having a significant reduction in office SBP at 6-

months (-14.1 ± 23.9 mmHg and -11.7 ± 25.9 mmHg respectively (both p<0.001, see 

Figure 2-12) (Bhatt, Kandzari et al. 2014). There was similarly no benefit of RDN over 

sham for a reduction in 24-hour ambulatory BP or conversion to nocturnal dipping 

status (Bakris, Townsend et al. 2014). The results of the study had a huge impact on the 

field, including the premature termination of EnligHTN-IV (the competing sham RCT 

from St Jude) amongst other studies. In the UK, RDN had been moving towards review 

with NICE for potential NHS funding, and this process was suspended. 

2.3.3.2 The critique 

The results of Symplicity HTN-3 raise into question the efficacy of RDN for the treatment 

of resistant hypertension. However, the design and conduct of the trial have come 

under substantial review and criticism, particularly by proponents of the technique 

(Esler 2014, Luscher and Mahfoud 2014, Pathak, Ewen et al. 2014, Kandzari, Bhatt et al. 

2015, Pocock, Bakris et al. 2016, Raman, Tsioufis et al. 2017). In reviewing the major 

issues affecting Symplicity HTN-3, Felix Mahfoud attributed factors to three P’s; Patient, 

Pills and Procedure (oral presentation, European Society of Cardiology, Rome, 2016). For 

consistency, I will review the study under these headings. 
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Figure 2-12. Office systolic blood pressure outcomes after renal denervation or sham 
procedure in the Symplicity HTN-3 study  
(Bhatt, Kandzari et al. 2014). 
 

1.1.1.1.1 Patient: Selection for Renal Denervation 

When enrolling patients into studies of renal denervation (or any other intervention), it 

is important to thoroughly screen patients so that a definite baseline has been 

established; causes of pseudo-resistant hypertension may act as confounders. In 

Symplicity HTN-2, 109 out of 190 (56%) patients screened were eligible for RDN.  In 

Symplicity HTN-3, tighter screening including ABPM found that 561 (39%) of 1441 

patients assessed across 88 sites, were eligible for enrolment (Esler, Krum et al. 2010, 

Bhatt, Kandzari et al. 2014). In a review of patients attending the Specialist Hypertension 

Clinic at the Bristol Heart Institute, 184 underwent renal magnetic resonance or 

computerised tomography (CT) angiography as part of their assessment for secondary 

hypertension; 20% of these patients (36/184) were anatomically ineligible for RDN 

including 8 cases of renal artery stenosis (Burchell, Rodrigues et al. 2017). This is a 

slightly higher anatomical exclusion rate that the 16% (30/190) of patients with ineligible 

anatomy in Symplicity HTN-2, but of a similar magnitude to the 20% (179/880) 

anatomical exclusion rate in Symplicity HTN-3 (Esler, Krum et al. 2010, Bhatt, Kandzari et 

al. 2014).  

Mahfoud et al. compared the reduction in office and ambulatory BP in patients with 

resistant and pseudo-resistant hypertension following renal denervation; whilst both 

groups demonstrated a reduction in office BP, only those with true resistant 

hypertension demonstrated a significant reduction in 24hr ABPM (-10/-5 mmHg) 

(Mahfoud, Ukena et al. 2013).  

Verloop et al. screened 181 patients for severe resistant hypertension prior to RDN and 

found that 121 (67%) were ineligible for their study, due to a range of factors: 23 

patients (19%) had an office SBP <160 mmHg, 26 patients (22%) showed a white-coat 

effect, 14 patients (12%) had a previous undetected underlying cause of hypertension 

(primary aldosteronism in 11), and 9 patients (7%) had ineligible renal anatomy 

(Verloop, Vink et al. 2013). The combined experience of the Bristol CardioNomics group 



  

79 
   

and St Bartholomew’s Hospital, reported that meticulous screening of 321 patients 

identified only 33 individuals (10%) with true treatment resistant hypertension, suitable 

renal artery anatomy, and without significant excluding comorbidities (including eGFR 

<45 ml/min/1.73m2 as per Symplicity HTN-2 (Esler, Krum et al. 2010)) who were eligible 

for RDN (Burchell, Chan et al. 2016). This is consistent with estimates that 10-15% of 

patients with hypertension are genuinely treatment resistant once secondary causes of 

hypertension, pseudo-resistant hypertension and poor medication adherence are 

excluded (de la Sierra, Segura et al. 2011, Persell 2011). In the case of Symplicity HTN-3, 

was the screening process rigorous enough to ensure a robust baseline? Enrolling 

patients with pseudo-resistant hypertension into RDN studies for resistant hypertension 

not only jeopardises the results, as these patients may not respond to RDN in the same 

way as the defined cohort, but also puts the patients at risk by exposing them to a 

procedure which may well be unnecessary or to which they will not respond. 

The question also goes beyond negative screening (aiming to exclude those ineligible for 

the study), to positive screening, and whether it is possible to identify patients who are 

more likely to respond to the procedure. Sympathoexcitation or markers of renal injury 

would hypothetically indicate efferent or afferent renal nerve overactivity respectively 

and could be used to select patients who may be more likely to respond to renal nerve 

ablation. These autonomic or biochemical markers are not yet in clinical use but are 

reviewed in Section 5.6. One factor that has been highlighted from the results of 

Symplicity HTN-3 is that patients with isolated systolic hypertension (ISH) have a far less 

pronounced response to RDN that those with combined systolic and diastolic 

hypertension (pooled data for patients with ISH from the Symplicity HTN-3 study and the 

Symplicity Global Registry, (Mahfoud, Bakris et al. 2017)). This result supports findings 

by Ewen et al. indicates that patients with ISH and therefore lower DBP, have a 

restricted response to RDN (Ewen, Ukena et al. 2015). Further research is required to 

identify which individuals are most likely to benefit from this invasive procedure and 

addressing this issue through detailed autonomic profiling of patients undergoing RDN is 

a major aim of this thesis. 

1.1.1.1.2 Pills: Medication Alteration and Adherence 

There are important limitations with all of the Symplicity HTN studies surrounding the 

confirmation of adherence to medications and also changes in antihypertensive 

medication during the follow-up period (Krum, Schlaich et al. 2009, Esler, Krum et al. 

2010, Bhatt, Kandzari et al. 2014).  

In Symplicity HTN-2&3 there were medication changes in 23% and 39% of patients prior 

to 6 month follow-up respectively, however, the primary study outcomes were 

unaltered if patients with medication changes were removed from analyses (Esler, Krum 

et al. 2010, Bhatt, Kandzari et al. 2014, Kandzari, Bhatt et al. 2015). The standardised 

stepped-care antihypertensive treatment (SSAHT) regime used in the DENER-HTN study 

demonstrates that this issue can be well managed, although adequate patient support 

and infrastructure is required (Azizi, Sapoval et al. 2015). In this study patients treated 

with SSAHT plus RDN had a greater reduction in daytime ambulatory BP than those 

treated with SSAHT alone (-15.8 mmHg vs -9.9 mmHg).  

In the Symplicity HTN-3 trial, only 1 in 5 patients had received a trial of spironolactone, 

and 22% of patients had a medication change 2–6 weeks before the study started 
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(Yerasi, Baker et al. 2015). The PRAGUE-15 study showed that spironolactone, when 

tolerated and continued, is more effective at reducing BP than RDN (Rosa, Widimsky et 

al. 2016). The run-in period prior to RDN should also be considered; in Symplicity HTN-3 

patients were only required to be on a stable drug regimen for two weeks prior to 

baseline assessments and it is therefore possible that medication changes could have 

influenced the data if there was an inadequate wash-in/wash-out period. An eight-week 

period on stable medication should be required to ensure that any intervention is not 

confounded by a time-dependent drug effect (Lobo, de Belder et al. 2015). 

Symplicity HTN-3 did not simply show a failure to alter BP, it demonstrated a significant 

reduction in office SBP in both RDN and sham groups (Bhatt, Kandzari et al. 2014). Of 

note, in Symplicity HTN-2 35% of control subjects had a ≥10 mmHg reduction in office 

SBP six months post RDN (Esler, Krum et al. 2010). This decrease in BP may be explained 

by an improvement in medication adherence. The phenomenon of a ‘placebo’ effect due 

to enrolment in a clinical study (also known as the Hawthorne effect) is well established 

(McCambridge, Witton et al. 2014) and it is likely that the 8 study contact points 

between screening and 6 month follow-up in Symplicity HTN-3 provided greater patient 

support than standard medical care (Kandzari, Bhatt et al. 2015). Yerasi et al. have 

undertaken an interesting assessment of 45 patients who were screened for, but 

ultimately not included in, the Symplicity HTN-3 study. In this group, 6-8 months after 

previous study contact, only 20% had resistant hypertension with 60% of patients having 

controlled BP (Yerasi, Baker et al. 2015). This partly reflects the fact that some of the 

patients had been excluded due to controlled BP on screening but does emphasise the 

challenge of comparing hypertension control in daily life with BP regulation in clinical 

trials.  

Kandazari et al. highlight the significant reduction in office SBP in RDN vs sham patients 

amongst non-African American subjects in Symplicity HTN-3 (-15.2 vs -8.6 mmHg, 

p=0.01) (Kandzari, Bhatt et al. 2015). In fact, African American and non-African American 

subjects had similar office SBP responses 6 months after RDN (-15.5 and -15.2 mmHg 

respectively), and the difference in the office SBP outcomes lies in the sham arm of the 

study (Kandzari, Bhatt et al. 2015). Amongst the sham group, African American 

participants demonstrated a borderline significant greater reduction in office SBP than 

non-African American subjects (-17.8 vs -8.6 mmHg, p=0.057)(Flack, Bhatt et al. 2015, 

Kandzari, Bhatt et al. 2015). Flack et al.’s recent multivariate analysis of Symplicity HTN-3 

demonstrated that African American race did not independently predict SBP outcomes 

in either the RDN or sham groups, however, in the sham group the interaction between 

African American race and being prescribed at least one antihypertensive medication 

three times per day was associated with a greater reduction in office SBP at 6 months 

(Flack, Bhatt et al. 2015). In the sham group there was also a trend towards a greater 

reduction in office SBP for patients living in the south/south-eastern regions of the USA 

(Flack, Bhatt et al. 2015); areas which have previous been associated with lower rates of 

medication adherence (Couto, Panchal et al. 2014).  

In Symplicity HTN-3 African American participants were taking a greater number of 

antihypertensive medications and had more complex medication regimes than non-

African Americans (Flack, Bhatt et al. 2015). Individuals with complex drug regimens or 

who are prescribed a greater number of medications may be particularly likely to be 

non-adherent, and hence more vulnerable to a Hawthorne effect if enrolled in a clinical 
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trial (Baggarly, Kemp et al. 2014, Marquez-Contreras, Gil-Guillen et al. 2014). Hameed et 

al. addressed this issue by using directly observed medication administration with 

subsequent BP monitoring to confirm adherence prior to RDN (Hameed, Pucci et al. 

2015). Their cohort of 34 patients achieved a response rate of 51% with an office BP 

reduction of -15/-6 mmHg (p=0.01/0.2) at 6 months, which is unlikely attributable to 

improved medication adherence. In a small Norwegian study, 5/18 patients were 

excluded from RDN following ABPM assessment after witnessed medication intake as 

part of the screening process (Fadl Elmula, Hoffmann et al. 2013). Given that at least 

50% of patients with treatment resistant hypertension are known to be non-adherent 

with their medications (Jung, Gechter et al. 2013), more thorough assessment of 

medication adherence at screening, and during follow-up, should be mandatory in order 

to assess true drug resistance and establish any unreported changes in medication. The 

SYMPATHY trial, published this year, used blinded liquid chromatography analysis to 

evaluate adherence in 95 patients undergoing RDN and 44 controls; 80% of patients 

were not fully adherent with medication, and in this study, RDN was not superior to 

usual care as a treatment for resistant hypertension (de Jager, de Beus et al. 2017)  

An alternative approach to the problem of medication adherence is to assess the effect 

of RDN on patients who are not taking any BP medications. Data have been published 

for 53 patients from 8 centres who received RDN whilst off medication (De Jager, 

Sanders et al. 2016). There was a reduction in BP in this cohort post-RDN, with a mean 

change in 24-h SBP of -5.7 mmHg (p = 0.04) and a mean change in office SBP of -13.1 

mmHg (p = 0.001). The full results of the SPYRAL HTN ON-MED & OFF-MED studies 

(Medtronic  (Kandzari, Kario et al. 2016)), and similarly REDUCE HTN: REINFORCE (V2, 

Vessix) and RADIANCE-HTN SOLO &TRIO (Paradise, ReCor Medical) (see Table 2-3) will 

hopefully provide a more robust evidence base for the efficacy of RDN in lowering BP in 

resistant hypertension. 

 

1.1.1.1.3 Procedure: RDN Technique 

One of the main critiques of Symplicity HTN-3 has been inadequate denervation due to 

operator inexperience/inadequate proctoring; there were 111 operators across 88 sites, 

of whom 31% contributed only 1 procedure and 23% contributed ≥5 procedures (Bhatt, 

Kandzari et al. 2014). This contrasts with the greater BP reductions seen in the Global 

Symplicity Registry in which 59% of operators performed >15 procedures (Bohm, 

Mahfoud et al. 2015). Only 19/364 patients received per-protocol RDN in Symplicity 

HTN-3 and this, along with the confounding effects due to medication changes in 39% of 

the population, renders the trial difficult to interpret (Bhatt, Kandzari et al. 2014, 

Kandzari, Bhatt et al. 2015). 

It is possible that patients who only receive partial renal denervation may have an 

increase in BP due to unopposed action of the (usually inhibitory) reno-renal reflexes 

(Protasoni, Golin et al. 1996). Alternatively, partial denervation could cause sensitisation 

of those nerves that remain, inflammation of the nerves, or growth of new nerves which 

could exacerbate the degree of hypertension (Booth, Nishi et al. 2015, Sakakura, Tunev 

et al. 2015). 
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So how much denervation is required? In Symplicity HTN-1 a subset of patients 

underwent assessment with norepinephrine spillover, a validated technique for 

assessing regional sympathetic tone (Meredith, Esler et al. 1991); a 47% reduction in 

sympathetic nerve activity appeared sufficient to achieve a reduction in BP (Krum, 

Schlaich et al. 2009, Esler 2014). Further analyses by Esler et al. have shown that 

denervation following renal nerve ablation is highly variable between individuals and it 

is clear that the procedure is far more technically challenging than previously considered 

(Esler 2014, Tzafriri, Keating et al. 2015).  

When the Symplicity catheter was first launched, operators were advised to prioritise 

ablation of the proximal superior aspect of the renal artery in order to target the highest 

density of renal nerves.  However, review of novel anatomical human data indicates that 

the renal nerves accessible to intraluminal RF energy lie more distally in the renal artery 

adventitia (Sakakura, Ladich et al. 2014). Indeed, there is evidence that the right renal 

artery is more densely innervated than the left renal artery, and that the anterior and 

superior quadrants have more innervation than the posterior and inferior quadrants, 

along with a greater density of innervation in the distal versus proximal renal artery 

(Imnadze, Balzer et al. 2016). There are some data to counter this argument; Chen et al. 

did not see a benefit of full length renal artery denervation when compared with limited 

proximal ablation (Chen, Ling et al. 2016). However, based on a porcine model, Mahfoud 

at al. suggest that the denervation strategy should be device specific, with a distal main 

renal artery ablation strategy when using the EnligHTN catheter, and a distal main plus 

branch renal artery strategy when using the Symplicity Spyral catheter, although it is of 

note that all of the strategies used in this study resulted in a similar reduction in renal 

noradrenaline concentration (Mahfoud, Pipenhagen et al. 2017). Lesion placement 

(distal plus branch ablation with the Symplicity Spyral catheter), rather than the number 

of ablation per se, has been shown to correlate with a reduction in renal noradrenaline 

in pigs (Mahfoud, Tunev et al. 2015), and a greater reduction in mean 24-hour ABPM 

when compared with the conventional main renal artery ablation approach in humans 

(Petrov, Tasheva et al. 2018). In light of these novel data, it seems probable that 

operators following the earlier guidance may have been targeting the wrong part of the 

artery, resulting in inadequate denervation (Mahfoud, Edelman et al. 2014). 

The impact and management of accessory renal arteries in patients undergoing RDN has 

also generated conflicting findings. Accessory renal arteries are identified in around 30% 

of those with resistant hypertension (Ewen, Ukena et al. 2016, Burchell, Rodrigues et al. 

2017), although one group has reported accessory renal arteries in 59% of hypertensives 

versus 32% in normotensive controls (VonAchen, Hamann et al. 2016). It has been 

reported that the presence, and non-treatment, of accessory renal arteries is associated 

with a lack of response to RDN (VonAchen, Hamann et al. 2016), but this finding is not 

consistent across all studies (Ewen, Ukena et al. 2016). 

If the ‘completeness’ of denervation relates to procedural success, then a method for 

assessing the degree of renal nerve disruption achieved would be of significant clinical 

benefit and guide development of evolving catheter technologies. Techniques including 

direct electrical renal nerve stimulation, urinalysis for breakdown products of renal 

sympathetic nerve degradation (e.g. tyrosine hydroxylase) and measurement of reflex 

responses to afferent renal nerve stimulation with agents such as adenosine or 

bradykinin are under evaluation and are reviewed in more detail in Section 5.5 (Katholi, 
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Whitlow et al. 1984, Esler 2015, Gal, de Jong et al. 2015). Developing a test which can be 

used to assess for successful renal denervation at the time of the procedure, is another 

major aim of this thesis. 

2.3.4 Renal denervation after Symplicity HTN-3 

2.3.4.1 Study design 

Howard et al. provide a good summary of three biases which can lead to the 

overestimation of the antihypertensive effect of RDN in clinical trials (Howard, Shun-

Shin et al. 2016).  

1. Regression to the mean. The majority of RDN studies have selected patients 

with severe hypertension (office SBP >160 mmHg). Blood pressure varies over 

time, and patients may have been preferentially selected for the study when 

their BP was higher than their long-term average, with subsequent regression to 

the mean during unselected long-term follow-up. This may be addressed by 

adding a randomized control group with similar inclusion criteria to ensure that 

regression to the mean occurs similarly in both arms of the study. 

2. Asymmetrical data handling. If a physician records BP following an intervention 

but fails to see the fall in BP that they expect, then they are more likely to repeat 

the measure rather than document a seemingly incorrect value. This can be 

addressed using studies in which the physician is blinded during data collection. 

3. Confounding. This describes a blood pressure reduction following RDN due to 

factors other than the denervation and would include changes in medication 

adherence and any placebo affect from the procedure. It could be addressed by 

blinding the patient using a sham procedure to counter any placebo affect from 

the intervention, and by ensuring that any changes in medication adherence due 

to enrollment in the study are equally present in both sham and treatment arms 

of the study. Clearly improved measures to standardise medication regimes and 

confirm stable medication adherence would also help to confirm robust 

outcome measures. 

Several meta-analyses have been published following Symplicity HTN-3 which put the 

results of this study into a wider context. Most recently the European Network 

COordinating research on Renal Denervation (ENCOReD) have published a meta-analysis 

of 10 RCTs which shows no significant effect of renal denervation on BP in resistant 

hypertension (Fadl Elmula, Feng et al. 2017). Likewise, Krakoff et al. reviewed findings 

from nearly 2000 patients treated with RDN from meta-analysis and registry data and 

concluded that RDN was not superior to standard medical management of hypertension 

(Krakoff and Sartori 2016). In contrast, Zhang et al. found RDN to be superior to 

pharmacotherapy in their analysis of11 controlled and randomised-controlled trials 

(Zhang, Wu et al. 2016). Interestingly, Qi et al. demonstrated that RDN efficacy differed 

between unblinded and blinded trials, with no significant effect on BP seen in the 

blinded studies (Qi, Cheng et al. 2016). In another meta-analysis, RDN was reported to 

be effective at lowering BP, but on closer consideration, this beneficial effect on BP was 

not seen when only RCTs were included in the analysis (Sun, Li et al. 2016).  
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Data from the ENCOReD group emphasises the importance of using ABPM outcomes but 

did not necessitate sham procedures in RDN studies (Fadl Elmula, Feng et al. 2017). In a 

study focussing on causes of bias, Howard et al. found that (i) office BP reductions were 

much larger than ABPM reductions following RDN, but only in unblinded trials, (ii) the 

unblinded study design was associated with a greater office BP reduction in the 

treatment arm versus the control arm, and (iii) that adding a randomised control arm 

did not reduce bias unless it was blinded. Study design is clearly extremely important for 

all future trials of RDN.  

In the wake of Symplicity HTN-3, Medtronic launched the SPYRAL HTN Global Clinical 

Trial Program of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence 

(SPYRAL HTN ON-MED) of antihypertensive medications (Kandzari, Kario et al. 2016). 

These studies aim to address many of the criticisms raised about the early Symplicity 

studies: 

1. Patients would be studied whilst on a standardised three-drug antihypertensive 

regime (ON-MED) or off all antihypertensive medication (OFF-MED), with 

adherence to (or abstinence from) medication confirmed by liquid 

chromatography–tandem mass spectroscopy. 

2. The studies would enroll patients with moderate, combined systolic and 

diastolic, hypertension with a 24hr ambulatory systolic blood pressure of ≥140 

mmHg and <170 mmHg and an office diastolic BP of ≥90 mmHg 

3. The primary outcome measure would use mean 24hr ABPM results, with 

monitoring following in-office-observed medication in the ON-MED group. 

4. The procedure would be performed using the Symplicity Spyral catheter to try to 

ensure four-quadrant ablation, and a main, branch and accessory renal artery 

ablation strategy was advocated, with one experienced operator per site. 

5. Patients and clinicians undertaking hypertension management would be blinded 

to the study arm (treatment versus sham) for one year.  

The use of 24hr ABPM data as an outcome measure in these studies,  may also prove to 

better reflect the regression of end organ damage in these significantly hypertensive 

patients since nocturnal hypertension in particular correlates strongly with 

cardiovascular morbidity and mortality (Mancia, Zanchetti et al. 1997, Hermida, Ayala et 

al. 2014).  The ASCOT study found that nocturnal SBP was superior when compared with 

office SBP in predicting stroke (Dolan, Stanton et al. 2009), and in the Dublin Outcome 

study nocturnal BP was an independent risk factor for cardiovascular mortality, with a 

10 mmHg increase in nocturnal SBP conferring a 21% increased risk of cardiovascular 

mortality (Dolan, Stanton et al. 2005). Mahfoud et al. reported reductions in both 

daytime and night-time SBP, but no improvement in nocturnal BP dipping status, 

following RDN (Mahfoud, Ukena et al. 2013). In Symplicity HTN-3, 21% of patients 

treated with RDN converted to become BP dippers following treatment, however, this 

did not differ from the 15% increase in dipper status in the sham cohort (p=0.30) (Bakris, 

Townsend et al. 2014).  Ultimately BP is only a surrogate marker for the physical and 

economic burden inflicted by conditions such as stroke, myocardial infarction and 

chronic kidney disease (Metoki, Ohkubo et al. 2006, Mahfoud, Ukena et al. 2013). 
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2.3.4.2 Morbidity and Mortality Outcomes 

The predominant outcome measure in published RDN studies is BP reduction, but does a 

fall in BP equate to an improvement in the morbidity and mortality associated with 

chronic hypertension? RDN has been shown to result in regressions in left ventricular 

hypertrophy (LVH) and atrial enlargement, and to improve cardiac function in patients 

with evidence of hypertensive heart disease (Mahfoud, Urban et al. 2014, Tsioufis, 

Papademetriou et al. 2015, Lu, Wang et al. 2016, Tsioufis, Papademetriou et al. 2016, 

Delacroix, Chokka et al. 2018, Kordalis, Tsiachris et al. 2018, Wang, Yang et al. 2018). 

RDN also reduces arterial stiffness, with a reduction in pulse wave velocity greater than 

that expected secondary to a reduction in BP alone, suggesting an additional effect due 

to sympathoinhibition; a process which may also have important prognostic implications 

(Baroni, Nava et al. 2015, Delacroix, Chokka et al. 2018). In contrast, Verloop et al. 

report no improvement in target organ damage despite a modest reduction in BP 12 

months post denervation (Verloop, Vink et al. 2015).  

Attempts have also been made to assess any improvement in quality of life following 

RDN; whilst patients with chronic resistant hypertension have a subjective reduction in 

quality of life and RDN can improve some of these indices, the degree of BP reduction 

does not correlate with these subjective improvements (Lambert, Hering et al. 2012). 

Twelve months post-RDN, patents with resistant hypertension have shown some 

improvement in the mental health related aspects of quality of life (Lambert, Hering et 

al. 2015), with data from the Global Symplicity Registry showing a particular 

improvement in anxiety and depression (Kindermann, Wedegartner et al. 2017).  

Studies completed thus far have not been of sufficient power or duration to address the 

effect of RDN on major cardiovascular events (MACE) or mortality, however, the 

proposed EnligHTNment trial (St Jude) was due to be the first large-scale study to 

examine whether RDN also reduces the risk of major cardiovascular events such as heart 

attack, stroke and death in patients with resistant hypertension (2017), however this has 

not come into fruition. Based on the 32 mmHg reduction in SBP reported in Symplicity 

HTN-2, RDN was estimated to reduce the 10 year and lifetime relative risk of (10-

year/lifetime relative risks) stroke (0.70/0.83), myocardial infarction (0.68/0.85), heart 

failure (0.79/0.92) and end-stage renal disease (0.72/0.81), and to give a cost-saving of 

$31,460 per quality-adjusted life-year (Geisler, Egan et al. 2012). These estimates will 

need to be revised in the light of more recent (and pending) outcome data, and it is 

likely that studies powered to assess the impact of RDN on MACE or mortality will not be 

undertaken unless a BP lowering effect following RDN has been demonstrated more 

conclusively by the ongoing Symplicity Spyral HTN studies.  

In the UK a joint societies consensus statement currently advises that RDN should not be 

used in routine clinical practice but does support the treatment of patients as part of 

ongoing clinical trials using the technique (Lobo, de Belder et al. 2015). 

 

2.3.5 Spyralling forward 

The preliminary outcome data for the SPYRAL HTN-ON and -OFF MED studies have now 

been published (Townsend, Mahfoud et al. 2017, Kandzari, Bohm et al. 2018).  
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Three-month outcome data for the first 80 patients recruited into the SPYRAL HTN-OFF 

MED study reported significant reductions both ambulatory and office BP in the RDN 

group (n=38, 24-hr SBP -5·5 mmHg (95% CI -9·1 to -2·0; p=0·003), 24-hr DBP -4·8 mmHg 

(-7·0 to -2·6; p<0·0001), office SBP -10·0 mmHg (-15·1 to -4·9; p=0·0004), and office DBP 

-5·3 mmHg (-7·8 to -2·7; p=0·0002)), not seen in the sham-control group (n=42, 24-hr 

SBP -0·5 mmHg (95% CI -3·9 to 2·9; p=0·76), 24-hr DBP -0·4 mmHg (-2·2 to 1·4; p=0·64), 

office SBP -2·3 mmHg (-6·1 to 1·6; p=0·24), and office DBP -0·3 mm Hg (-2·9 to 2·2; 

p=0·81)) (Townsend, Mahfoud et al. 2017). Notably, subjects received an average of 43.8 

ablations with treatment applied to both main and branch renal arteries, which was 

significantly higher than in earlier studies (e.g. mean of 11.2 ablations in Symplicity HTN-

3 (Bhatt, Kandzari et al. 2014)), and overall compliance with the requirement to be off all 

antihypertensive medication was 85.5% (Townsend, Mahfoud et al. 2017).  

In the SPYRAL HTN-ON MED study, data were required out to 6-months post-RDN before 

a significant difference in BP outcome was observed between those treated with RDN 

(n=38) versus a sham procedure (n=42) (Kandzari, Bohm et al. 2018). There was a 

significant reduction in both ambulatory and office BP at 6 months in the RDN treatment 

group (24-hr SBP -7·0 mmHg (95% CI -12·0 to -2·1; p=0·006), 24-hr DBP -4·3 mmHg (-7·8 

to -0·8; p=0.02), office SBP -6·6 mmHg (-12·4 to -0·9; p=0·03), and office DBP -4·2 mmHg 

(-7·7 to -0·7; p=0·02) (Kandzari, Bohm et al. 2018). As with the OFF-MED study, patients 

underwent intensive main and branch renal artery ablations (mean 45.9 ablations), and 

despite the standardised medication regime, adherence was only around 60% over the 

course of the study (Kandzari, Bohm et al. 2018).  

The third key study supporting a clinical BP lowering effect for RDN published within the 

last year is the RADIANCE HTN-SOLO trial (Azizi, Schmieder et al. 2018). This sham-RCT 

investigated the antihypertensive effect of RDN using an endovascular ultrasound 

ablation system with patients off medication for 4 weeks prior, and 2 months after, 

denervation. There were significant differences in the reductions in both 24-hr 

ambulatory and office BP between the RDN (n=74) and sham groups (n=72; 24hr SBP; -

8.5 ± 9.3 mmHg vs -2.2 ± 10.0 mmHg, p=0.0001, 24hr DBP; -5.1 ± 5.9 mmHg vs -2.6 ± 6.5 

mmHg, p=0.01, office SBP; -10.8 ± 13.6 mmHg vs -3.9 ± 17.4 mmHg, p=0.007, office DBP; 

-5.5 ± 8.4 mmHg vs -1.2 ± 10.0 mmHg, p=0.005, RDN vs sham, respectively (data mean ± 

SD)) (Azizi, Schmieder et al. 2018). Interestingly, a mean of only 5.4 ultrasound emissions 

was required to achieve a greater reduction in SBP than that observed in the SPYRAL 

studies (Azizi, Schmieder et al. 2018).  

These positive BP outcomes seen in more rigorously designed trials have reignited 

interest in RDN, but as the individual data show, the response to RDN is still highly 

variable (see Figure 2-2-13), even with more intensive ablation strategies, and 

adherence was difficult to standardise even with a more structured protocol. The 

questions posed in this pilot study are therefore as relevant as ever. 
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Figure 2-2-13. Changes in 24-hour blood pressure at 6 months after denervation for 
individual patients in the SPYRAL HTN-ON MED study. 
Red lines show an increase in 24-hr BP following RDN and green lines indicate a 

decrease in BP following RDN. (Kandzari, Bohm et al. 2018) 

 

2.3.6 Renal denervation: procedural safety 

The data available to date suggest that RDN has an acceptable safety profile (Krum, 

Schlaich et al. 2009, Bhatt, Kandzari et al. 2014, Esler, Bohm et al. 2014, Bohm, Mahfoud 

et al. 2015). The Symplicity HTN-1 Investigators report 4 acute complications in their 

expanded cohort of 153 patients (one renal artery dissection and 3 femoral 

pseudoaneurysms/haematomas), none of which resulted in any long-term adverse 

effects (2011). Renal angiographic studies identified focal renal artery irregularities 

immediately after radiofrequency energy delivery, none of which was judged as flow 

limiting at procedure termination (Krum, Schlaich et al. 2009). In 81 patients with repeat 

renal artery imaging at 6 months there were no cases of novel renal artery stenosis 

(RAS), but one patient developed progression of a pre-existing stenosis which was 

successfully stented (2011). In Symplicity HTN-2 there was a further renal artery 

dissection requiring stenting, and one patient had to be re-admitted following a 

hypotensive episode (Esler, Krum et al. 2012).In Symplicity HTN-3, there was no 

difference in major adverse events between the RDN and sham groups; in the RDN 

group (n=361) there were two deaths (cause unspecified), 5 patients had an increase in 

creatinine of >50% from baseline, 1 patient had a vascular complication requiring 

treatment and one patient developed a de novo renal artery stenosis of >70%, no renal 

artery interventions were required (Bhatt, Kandzari et al. 2014). There were no major 

procedural or safety adverse events reported in either of the SPYRAL HTN studies 

(Townsend, Mahfoud et al. 2017, Kandzari, Bohm et al. 2018).   

Data from the Global Symplicity registry (n=998) also support the procedural safety of 

RDN using the Symplicity catheter (Bohm, Mahfoud et al. 2015). Acutely, there were 2 

(0.2%) renal artery interventions after dissection, 3 pseudoaneurysms (0.3%), and 1 

haematoma (0.1%), and during the first 6 months after the procedure, there was 1 new 
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RAS >70%, 3 cases of an increase in creatinine of >50%, and 5 cases of hospitalisation for 

a hypertensive emergency. The meta-analysis from the ENCOReD group reported no 

adverse effect of RDN on renal function (Fadl Elmula, Jin et al. 2015). Repeat imaging of 

the renal arteries at least 6 months after radiofrequency denervation using either optical 

coherence tomography and angiography, or MRI angiography, support the long-term 

safety profile of the procedure from a vascular perspective (Roleder, Skowerski et al. 

2016, Schmid, Schmieder et al. 2016).  

The safety profiles for the other commercially available denervation catheters and 

therapeutic modalities are similarly positive. In EnligHTN-I (n=45), there were three 

serious adverse events including progression of existing hypertensive  renal disease, 

hypotension, and the progression of a pre-existing RAS, and some transient minor 

adverse events including non-flow limiting vasospasms, vascular access site 

haematomas, vasovagal episodes, bradycardia, transient haematuria, pain, and nausea 

(Worthley, Tsioufis et al. 2013). REDUCE-HTN (n=146) using the Vessix V2 catheter 

reported one mild procedural vessel dissection which did not require intervention, along 

with two access-site infections, one pseudoaneurysm at the access site, and one femoral 

artery thrombus which all resolved (Sievert, Schofer et al. 2015). During the first 6 

months of follow-up, four patients in the REDUCE-HTN study had progression of existing 

renal artery stenoses, one patient had a hypertensive emergency requiring 

hospitalisation and fifteen patients (11%) had an eGFR reduction >25%, although overall, 

mean eGFR remained unchanged (Sievert, Schofer et al. 2015). Use of the Paradise 

ultrasonic catheter was associated with transient vasospasm, but no long term sequelae 

or evidence of new RAS on follow-up imaging (n=50) (Fengler, Hollriegel et al. 2017), 

further supported by recent data from the RADIANCE HTN-SOLO which reported no 

major adverse events (Azizi, Schmieder et al. 2018). The Kona Medical Surround Sound 

system was most frequently associated with post procedural back pain in 32 of 69 

subjects, but there were no short or long-term effects on renal function or evidence of 

renal vascular or parenchymal damage (Neuzil, Ormiston et al. 2016). 

There is also now data from care reports/case series, to support the safety and efficacy 

of a second, redo, renal denervation procedure in patients who fail to respond to initial 

RDN therapy, or who have an increase in BP after primary treatment success (Lambert, 

Nahler et al. 2013, Prochnau, Heymel et al. 2014, Daemen, Feyz et al. 2017).  

These data demonstrate an acceptable safety profile for the use of RDN in the treatment 

of resistant hypertension, and whilst RDN has been used safely in patients with an eGFR 

of <45 ml/min per 1.73 m2 (Hering, Mahfoud et al. 2012), caution should be taken when 

treating patients with pre-existing renal artery stenoses or chronic kidney disease, and 

these patients should be consented accordingly. 

 

2.3.7 Renal denervation for indications other than hypertension 

If RDN results in a reduction in sympathetic nerve activity (SNA), then there is a potential 

benefit of renal denervation in other states of sympathetic activation such as chronic 

heart failure, sleep apnoea, polycystic ovarian syndrome, insulin resistance, chronic 

renal failure and cardiac arrhythmias (Schlaich, Straznicky et al. 2011, Hering, Esler et al. 

2012, Hering, Mahfoud et al. 2012, Schlaich, Hering et al. 2012, Wilson, Kistler et al. 
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2014, Kario, Bhatt et al. 2016). These conditions interact and frequently co-exist in 

individual patients, furthermore, successful renal nerve ablation for the treatment of 

hypertension may also prevent development of these associated pathologies. Since 

these diseases are a major drain on NHS resource, RDN may become a highly cost-

effective procedure if shown to be effective and applied to the appropriate patient 

population. 

2.3.7.1 Heart failure 

Heart failure is associated with chemohypersensitivity and sympathoexcitation (Esler 

and Kaye 2000, Ding, Li et al. 2011, Paton, Sobotka et al. 2013, Bohm, Ewen et al. 2017). 

I have previously reviewed the role of chemohypersensitivity in modulating venous 

capacitance through activation of the sympathetic nervous system in heart failure 

(Burchell, Sobotka et al. 2013). The REACH-HF trial was the first study to investigate the 

use of RDN in systolic heart failure, the study showed no adverse effect on BP, with an 

improvement in 6-minute walk distances and patient symptoms (n=7) (Davies, Manisty 

et al. 2013). RDN may be able to improve symptoms due to congestion in CHF, without 

reducing BP, through redistribution of blood flow due to a reduction of sympathetic 

activation, which modulates control of the venous reservoir and sodium water retention 

(Bohm, Ewen et al. 2017).  

The results of the SYMPATHY-HF feasibility study have recently been published (Hopper, 

Gronda et al. 2017). RDN was performed in 39 patients with a left ventricular ejection 

fraction (LVEF) of <40 %; there was a significant reduction in NT-proBNP (N-terminal pro-

brain natriuretic peptide) following the procedure, but no change in LVEF. In a meta-

analysis of two controlled (80 patients) and 2 uncontrolled (21 patients) studies of 

patients with heart failure and reduced LVEF, Fukuta et al. report that 6 months after 

RDN, there was a greater increase in EF and a greater decrease in LV end-diastolic 

diameter in patients who had undergone RDN versus controls (Fukuta, Goto et al. 2017). 

Gao et al. reported improvements in NT-proBNP, LVEF and NYHA (New York Heart 

Association) class in patients with chronic heart failure following RDN (Gao, Yang et al. 

2018), whereas Geng et al. report that those with early onset heart failure are more 

likely to benefit from RDN then those with late-stage disease (Geng, Chen et al. 2018). 

These results demonstrate that RDN is safe and feasible in the heart failure population, 

however, there are potential issues regarding bias as seen in the studies for resistant 

hypertension and further research is required to support the use of RDN in this 

condition. 

2.3.7.2 Sleep apnoea 

In obstructive sleep apnoea (OSA), intermittent hypoxia, microarousal, chemoreceptor 

activation, decreased pulmonary stretch receptor activation, and increased negative 

thoracic pressure, are associated with sympathoexcitation, insulin resistance and pro-

inflammatory effects (Kario 2009). OSA is not just a cause of excess sympathetic tone, 

but also a consequence of sympathoexcitation. A decrease in SNA following RDN has 

been hypothesised improve OSA by reducing fluid retention, decreasing peri-pharyngeal 

fluid accumulation and pharyngeal wall thickness, and/or by resetting the 

dysrhythmicity of pharyngeal muscles (Shantha and Pancholy 2015). The impact of renal 
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denervation on the severity of OSA in patients with resistant hypertension has shown 

inconsistent results. Some studies have shown an improvement in apnoea-hypopnoea 

index (Witkowski, Prejbisz et al. 2011, Shantha and Pancholy 2015), whilst other studies 

report no improvement in OSA severity following RDN (Daniels, De Freitas et al. 2017). 

Data from the Symplicity HTN-3 study suggests that patients with OSA may be 

particularly responsive to RDN with regard to BP reduction and an improvement in 

nocturnal BP dipping status (Kario, Bhatt et al. 2016). In contrast, there was no 

difference in the BP response to RDN between patients with and without self-reported 

OSA in the Global Symplicity Registry (Linz, Mancia et al. 2017).  

2.3.7.3 Metabolic conditions 

According to the statement of the American Heart Association, metabolic syndrome is 

defined as the presence of ≥3 of the following 5 features: abdominal obesity, 

hyperglycaemia, hypertension, hypertriglyceridemia, and low high-density lipoprotein 

cholesterol levels (Alberti, Eckel et al. 2009). The syndrome is associated with a 2-fold 

risk of cardiovascular disease (Alberti, Eckel et al. 2009). 

In 2011, Mahfoud et al. reported improvements in glucose metabolism (response to an 

oral glucose tolerance test (OGTT)) and insulin resistance (homeostasis model 

assessment – insulin resistance (HOMA-IR) following RDN in patients with resistant 

hypertension (Mahfoud, Schlaich et al. 2011). Since this publication there has been 

conflicting evidence surrounding the effect of RDN on metabolic syndrome. Data from 

the Polish registry (RDN-POL) suggest an improvement in glucose metabolism following 

RDN, with a reduction in 2-hour glucose following an OGTT amongst ABPM responders 

(Kadziela, Prejbisz et al. 2016). In patients with metabolic syndrome and hypertension, 

renal denervation has been shown reduce MSNA and restore the normal neural 

response to oral glucose loading as compared to controls, although HOMA-IR was not 

affected (Tsioufis, Dimitriadis et al. 2017). Insulin resistance also failed to improve 

following RDN in 23 patients assessed using a rigorous hyperinsulinemic-euglycemic step 

clamp technique (Miroslawska, Gjessing et al. 2016). The Denervation of the Renal 

Arteries in Metabolic Syndrome (DREAMS) study aimed to investigate the effect of RDN 

on insulin sensitivity and BP in patients with metabolic syndrome; the study of 29 

patients showed a moderate decrease in 24hr ABPM, but no change in MSNA or insulin 

sensitivity (assessed by an oral glucose tolerance test (OGTT) out to 12 months after the 

procedure (Verloop, Spiering et al. 2015).  

In patients with hypertension, skeletal muscle tissue shows several features that would 

predispose to insulin resistance, including, lower blood flow and delivery of insulin and 

glucose to skeletal muscle tissue because of vasoconstriction and vascular hypertrophy, 

fewer slow-twitch insulin-sensitive muscle fibres with increased fat distributed 

between the skeletal muscle fibres, and abnormal metabolic signalling responses to 

insulin (Rojas, Velasco et al. 2012). The mechanisms through which RDN may improve 

glucose metabolism are unknown, but potential factors may include a decrease in MSNA 

(with a decrease in vascular α-adrenergic tone, leading to an improved distribution of 

skeletal muscle blood flow), decreased RAAS activity, enhanced sensitivity to insulin’s 

non-esterified fatty acid–lowering actions, decreased gluconeogenesis, and changes in 

glucose transporters and glucagon secretion (Egan 2011). 
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Polycystic ovarian syndrome (PCOS) is another condition characterised by metabolic 

disturbance and sympathoexcitation. Data from two subjects with PCOS, obesity and 

hypertension showed a decreased in SNA, BP and insulin resistance, and there was even 

a return of menstruation in one patient after an amenorrhoeic period of three years, 

following RDN (Schlaich, Straznicky et al. 2011). 

2.3.7.4 Chronic kidney disease 

Chronic kidney disease (CKD) is associated with sympathoexcitation and can be both a 

cause and effect of hypertension (Schlaich, Socratous et al. 2009). The first question 

when considering RDN in the context of CKD is that of safety. Hering et al. reported no 

adverse effect on renal function in a small study of 15 patients with moderate-severe 

CKD (eGFR <45 ml/min/1.73m2), with improvements seen in office BP, nocturnal BP 

dipping status and augmentation index (Hering, Mahfoud et al. 2012). Schlaich et al. 

report favourable safety data for the use of RDN in dialysis patients with end-stage renal 

disease, although RDN could not be completed in 2/12 patients due to renal artery 

atrophy (Schlaich, Bart et al. 2013). 

Moving forward, there are data to suggest that RDN may result in an improvement in 

renal function in patients with CKD (Sata and Schlaich 2016). In a cohort of 30 patients 

with mild-moderate CKD, Kuichi et al. have reported significant improvements in ABPM 

(152±17/93±11 vs 132±14/84±12 mmHg), eGFR (61.9±23.9 vs 88.0±39.8 mL/min/1.73 

m2), and urine albumin:creatinine ratio (99.8 vs 11.0 mg/g (all p<0.0001)) (Kiuchi, 

Graciano et al. 2016). Ott et al. observed renal function in 27 patients with stage 3 and 4 

CKD for 3 years before, and 1 year after, RDN: prior to RDN, eGFR declined by -

4.8 ± 3.8 ml/min/1.73 m2 per year, and after RDN eGFR improved by 

+1.5 ± 10 ml/min/1.73 m2 at 12 months (P = 0.009) (Ott, Mahfoud et al. 2015). In the 

latter study, the change in eGFR after denervation did not correlate with the reduction 

in mean 24hr ABPM, and whilst this may reflect the small sample size, it may also 

indicate that the improvement in eGFR is not simply due to a reduction in BP but may 

also reflect changes in renal sympathetic tone and/or sympathetically mediated 

inflammation. 

2.3.7.5 Cardiac arrhythmias 

Renal denervation has also been used as an adjunct in the treatment of cardiac 

arrhythmias, working on the theory that RDN can reduce proarrhythmic sympathetic 

drive. In hypertension, cardiac remodelling with atrial enlargement and autonomic 

sympathovagal imbalance, increase the propensity for atrial fibrillation (AF) (McArdle, 

deGoma et al. 2016). Sympathetic activity increases Ca2+ influx and Ca2+ release from the 

sarcoplasmic reticulum, thus enhancing automaticity and triggered activity in the atria 

(Nammas, Airaksinen et al. 2016). The myocardium is vulnerable to increased SNA 

following myocardial infarction due to increased sensitivity to circulating 

catecholamines, up-regulation of beta-adrenergic receptors and nerve sprouting along 

the border zones of infarcts (Bradfield, Vaseghi et al. 2014). The mechanisms for a 

reduction in ventricular arrhythmias following RDN is likely to be multifactorial because 

of the wide range of underlying pathologies (e.g. acute ischaemia, post-infarct scar 

tissue, dilated or hypertensive cardiomyopathy), but may include, improved volume 
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status in heart failure patients, decreased left ventricular hypertrophy, a decrease in 

arrhythmias triggered through the sympathetic effect on myocardial Ca2+ signaling, and 

decreased repolarisation heterogeneity at scar border zones (Bradfield, Vaseghi et al. 

2014).  

In a first in man study, Pokushalov et al. compared pulmonary vein isolation (PVI; n=14) 

against PVI plus RDN (n=13) in patients with drug resistant hypertension and 

symptomatic paroxysmal or persistent AF refractory to ≥2 antiarrhythmic drugs: 69% of 

those treated with PVI + RDN, versus 29% of those treated with PVI alone, were AF free 

at 12 months (Pokushalov, Romanov et al. 2012). This study was criticised for its small 

sample size and the limited capacity for 24hr Holter monitoring to detect asymptomatic 

tachyarrhythmias (Nammas, Airaksinen et al. 2016). The patients treated with RDN also 

had a significant reduction in office BP, not seen in the PVI-only group, and it is 

therefore not clear whether the reduced arrhythmia burden was due to a reduction in 

BP or reduced cardiac sympathoexcitation. To address some of these issues, the same 

group have published data on patients with paroxysmal and/or persistent AF and 

resistant hypertension, who underwent PVI-only (n=37) or PVI+RDN (n=39), and 

implantable cardiac monitor implantation (Romanov, Pokushalov et al. 2017). RDN was 

associated with a reduction in BP, AF recurrence and AF burden, with a significant 

correlation between the BP reduction and the decline in AF burden; a BP reduction of 5-

10 mmHg was accompanied by a 7.0% decreased AF burden, with greater BP reduction 

(up to 20 mmHg) associated with a 17.7% lower AF burden (Romanov, Pokushalov et al. 

2017). There is also evidence to show that RDN may improve the efficacy of PVI in 

patients with CKD (Kiuchi, Chen et al. 2017), and that the intervention could improve 

ventricular rate control in patients with persistent AF and hypertension (Qiu, Shan et al. 

2016). Sleep disordered breathing, including OSA, is present in 40-50% of those with AF 

(Linz, Linz et al. 2016), and in a porcine model of OSA, RDN reduced spontaneous AF and 

post-apnoeic BP rises (Linz, Hohl et al. 2013). 

Renal denervation may also have a role in the treatment of ventricular tachyarrhythmias 

(VT) through a reduction in SNA. This is an intuitive step, since blockade of the β-

adrenergic receptors is used routinely in clinical practice to prevent VT (McArdle, 

deGoma et al. 2016). In a porcine, post-myocardial infarction model, there was a 100% 

reduction in the rate of spontaneous ventricular arrhythmias after RDN as compared 

with a 75% increase in the rate of spontaneous ventricular arrhythmias after a sham 

procedure, furthermore, in the infarcted myocardium, the presence of sympathetic 

nerves and level of neuropeptide-Y (a marker of SNA), were significantly lower in the 

RDN group (Jackson, Gizurarson et al. 2017). There have been multiple case reports and 

case series describing improvement in VT following RDN, including the adjunctive 

treatment of VT storm, polymorphic VT, and postinfarct VT,  and VT in the context of 

dilated and hypertrophic cardiomyopathy and vasospastic angina (Ukena, Bauer et al. 

2012, Hoffmann, Steven et al. 2013, Remo, Preminger et al. 2014, Scholz, Raake et al. 

2015, Aksu and Guler 2017, Feyz, Wijchers et al. 2017). 

Three small studies and limited registry data provide slightly more substantive evidence 

for the use of RDN in the treatment of VT. Armaganijan et al. presented a series of 10 

patients with implantable cardioverter-defibrillators (ICDs), who underwent RDN for the 

treatment of refractory VT (Armaganijan, Staico et al. 2015). Interrogation of the ICDs 

over a 6-month period, showed a significant reduction in arrhythmia burden, with 8/10 
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responding with reduced levels of ventricular arrhythmia post-RDN. Similarly, Jiang et al. 

reported a reduction in ventricular arrhythmia burden in eight patients with ICDs in situ 

who were treated with RDN (Jiang, Zhou et al. 2018). Evranos et al. looked at the 

evidence for the use of RDN as an adjunct to cardiac VT catheter ablation (Evranos, 

Canpolat et al. 2016). Interrogation of the ICDs in these patients showed that those who 

had been treated with combined VT and renal nerve ablation had a substantial 

reduction in VT/ventricular fibrillation (VF) and antitachycardia pacing and shock 

therapies (both groups n=16). Finally, Ukena et al. have published data on the use of 

RDN in patients with chronic heart failure and refractory VT, from an international 

multicentre registry; there was a reduction in VT/ VF burden, but no reduction in BP or 

NYHA (New York Heart Association) classification following RDN, with 11/13 patients 

being free from VT/VF at 1 and 3 months after the procedure (Ukena, Mahfoud et al. 

2016). 

These preliminary data all suggest additional indications for RDN, moving beyond the 

treatment of resistant hypertension, to target other pathologies associated with 

sympathoexcitation. It is important, however, to exercise caution. These findings are 

based on case reports, case series, and at best small randomised controlled, but non-

blinded, studies; many of the criticisms cited against Symplicity HTN-3 could be applied. 

Further research is required to establish the mechanism of action of RDN, and to 

confirm a sympathoinhibitory effect.  

 

2.3.8 Other interventional strategies for the treatment of resistant 

hypertension 

A review of RDN would not be complete without a summary of other, competing, 

interventional strategies for the treatment of drug resistant hypertension. These 

currently include baroreflex activation therapy (BAT), carotid body modulation, central 

iliac arteriovenous anastomosis (ROX procedure), carotid sinus stenting (Mobius device), 

vagal nerve stimulation, median nerve stimulation and deep brain stimulation. 

2.3.8.1 Baroreflex activation therapy  

Baroreflex sensitivity is known to be impaired in hypertension (see Section 2.1.2.3.2), 

and given this finding, baroreceptor stimulation presents a plausible therapeutic option 

for the treatment of drug resistant hypertension. The first-generation device, the Rheos 

System (CVRx, Inc., Minneapolis, Minnesota, USA), which consisted of large bilateral 

carotid sinus electrodes and a pulse generator (sited sub-clavicularly), was primarily 

limited by a high rate of serious adverse events, primarily including transient or 

permanent nerve damage and device infection, and the low battery life of the device 

(Illig, Levy et al. 2006, Scheffers, Kroon et al. 2010, Bisognano, Bakris et al. 2011, Hering, 

Schultz et al. 2016). The Rheos System did, however, show a stimulation dose related 

reduction in BP (Rheos Feasibility Trial, n=10, (Illig, Levy et al. 2006)), with a -21/-12 

mmHg reduction in office SBP at 3 months (n=37) , sustained out to 2 years (-33/-22 

mmHg, n=17) in the DEBuT-HTN (Device-Based Therapy of Hypertension) study 

(Scheffers, Kroon et al. 2010). The Rheos Pivotal Trial was a double-blind trial in which 

patients were implanted with the device (n=265) and then randomised to stimulation 



  

94 
   

on, or off, during the first six months, after which all devices were switched on 

(Bisognano, Bakris et al. 2011). Six months after implantation, the decrease in SBP was 

16 ± 29 mmHg for those with the device on and 9 ± 29 mmHg for those with the device 

off. This endpoint did not reach significance (p = 0.08), although significantly more of 

those with the device on achieved an office SBP of <140 mmHg. Data compiled from all 

three studies using the first generation Rheos System have shown a sustained BP 

reduction out to six years post implantation (de Leeuw, Bisognano et al. 2017). 

The second-generation device, the Barostim Neo (CVRx, Inc., Minneapolis, Minnesota, 

USA), has a much smaller unilateral electrode, with a substantially improved safety 

profile (Hoppe, Brandt et al. 2012). Furthermore, there is evidence to support a 

beneficial effect of BAT in patients who have failed to achieve BP control following RDN, 

with a 68% response rate to BAT in this cohort (n=28) (Wallbach, Halbach et al. 2016). 

BAT reduced proteinuria and albuminuria in 23 patients with CKD and resistant 

hypertension (Wallbach, Lehnig et al. 2014). BAT has also been trialled in patients with 

heart failure with reduced ejection fraction, with improvements in functional status, 

quality of life, exercise capacity and NT-proBNP (Bisognano, Bakris et al. 2011, Abraham, 

Zile et al. 2015). 

Despite these positive findings, use of the Barostim Neo has experienced important 

limitations. In a study by Heusser et al., 12/18 patients with resistant hypertension 

treated with unilateral, unipolar BAT experienced stimulation related side-effects 

(including  jaw or neck pain, globus or swallowing sensation, coughing, or voice 

problems), necessitating a reduction in the stimulus intensity which resulted in a 

reduced antihypertensive effect (Heusser, Tank et al. 2016). Stimulation at tolerable 

intensities reduced SBP by 16.9 ± 15.0 mmHg (p=0.002), but with considerable 

interindividual variability (range 0.0 to −40.8 mmHg). This BP reduction was more 

modest than the 26.0 ± 4.4 mmHg reduction in SBP seen in the Barostim Neo trial 

(Hoppe, Brandt et al. 2012), and this is attributed in part to insufficient carotid 

baroreceptor engagement due to issues with electrode placement and/or electrode 

design. The unipolar design of the device means that there is spread of the stimulus as it 

travels been the electrode and pacemaker box located in the upper chest, with the 

potential to cause side-effects through stimulation of the surrounding tissues. 

Furthermore, the small electrode must be positioned over a discrete sensitive area of 

the carotid sinus, which may vary anatomically between individuals, in order to achieve 

an optimal effect from this invasive procedure (Heusser, Tank et al. 2016).  

Once again, mechanistic evidence, and evidence from RCTs is required to support the 

use of BAT in hypertension; The Barostim Hypertension Pivotal Trial (clinicaltrials.gov: 

NCT01679132) is currently in progress and aims to enroll 310 patients with resistant 

hypertension, randomised to receive optimal medical management alone or in 

combination with BAT (Ng, Saxena et al. 2016).  

2.3.8.2 Carotid body modulation 

Increased sensitivity of the peripheral chemoreceptors, located in the carotid bodies has 

been shown to increase BP (see Section 2.1.2.3.4), and carotid sinus denervation which 

disrupts the afferent signals from the carotid bodies, has been demonstrated to reduce 

SNA and BP in rats (McBryde, Abdala et al. 2013). A safety and feasibility study of 
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surgical, unilateral carotid body (CB) excision in humans, has now been conducted 

jointly by the CardioNomics research group in Bristol and Prof. Narkiewicz’s group in 

Gdansk, Poland (Narkiewicz, Ratcliffe et al. 2016). In this study 8/15 patients responded 

with a reduction in ambulatory BP of ≥10 mmHg at 3 months post resection. BP rose 

back towards baseline by twelve months after surgery (Narkiewicz, Ratcliffe et al. 2016), 

but has fallen again at 24 months amongst those patients who responded to the 

procedure (unpublished data). In those that responded to CB excision, there was also a 

reduction in MSNA and an improvement in baroreflex sensitivity. Interestingly, before 

surgery, responders had a higher hypoxic ventilatory response and faster ventilatory 

frequency than non-responders, in keeping with a higher peripheral chemoreflex 

sensitivity and drive, respectively. 

Work is now underway to develop a less invasive strategy for carotid body modulation. 

A trial is in progress to assess the feasibility of unilateral endovascular CB ablation in 

patients with resistant hypertension (clinicaltrials.gov: NCT02099851) (Ng, Saxena et al. 

2016). A separate trial looks at alternative methods for achieving transient 

deafferentation of the CB by using local ultrasound-guided infiltration of lidocaine or 

local electrical stimulation to try to reduce BP (clinicaltrials.gov: NCT02519868) (Ng, 

Saxena et al. 2016). The carotid body may also be amenable to pharmacological 

modulation; pre-clinical data have demonstrated that antagonism of P2X3 purinergic 

receptors (which are present in the human CB) reduces BP and SNA, and normalises 

carotid body hyperreflexia in hypertensive rats (Pijacka, Moraes et al. 2016). 

2.3.8.3 Central iliac arteriovenous anastomosis 

Central iliac arteriovenous anastomosis employs a vascular, haemodynamic, as opposed 

to a sympathoinhibitory, approach to regulate BP. In patients with hypertension, the 

ROX Coupler device (ROX Medical, San Clemente, CA, USA) creates a 4-mm anastomosis 

between the iliac artery and vein, diverting a calibrated amount of arterial blood into 

the venous system (≈800 mL/min). The anastomosis reduces vascular resistance and the 

effective arterial circulating volume, and increases arterial compliance, resulting in an 

immediate and substantial reduction in both systolic and diastolic BP (see 

comprehensive review of the potential mechanisms of the antihypertensive  effect of 

the ROX Coupler device (Burchell, Lobo et al. 2014)). In the ROX CONTROL HTN study, 42 

patients were treated with the arteriovenous coupler therapy versus 35 control 

subjects: office SBP was reduced by 26·9 mmHg in the arteriovenous coupler group 

compared with a 3.7 mmHg reduction in the controls (p<0·0001), however,  

implantation of the ROX Coupler was associated with late ipsilateral venous stenosis in 

29% of patients, although this was treatable with venoplasty or stenting (Lobo, Sobotka 

et al. 2015). 12-month follow-up data are now available for the ROX CONTROL HTN 

cohort, which report a 12.6 ± 17.4/15.3 ± 9.7 mmHg reduction in mean daytime 

ambulatory BP (p<0.0001 for both), however, 14/42 (33%) of patients developed iliac 

vein stenoses, although once again the authors reassure that these were successfully 

treated with venous stenting (Lobo, Ott et al. 2017). Further research is required to 

evaluate the long-term safety and efficacy of this technique. 
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2.3.8.4 Deep brain stimulation 

The antihypertensive effect of deep brain stimulation (DBS) was initially reported as a 

serendipitous finding in cases of patients with concomitant hypertension, undergoing 

DBS for the treatment of chronic neuropathic pain (Green, Wang et al. 2007, Pereira, 

Wang et al. 2010, Patel, Javed et al. 2011). In animal models, stimulation of the 

ventrolateral periaqueductal grey elicits a depressor response and bradycardia via 

inhibition of sympathetic premotor neurons in the rostral ventrolateral medulla, and by 

improving baroreflex sensitivity through projections to the nucleus raphe magnus 

(O'Callaghan, McBryde et al. 2014). Recently, DBS has been reported to reduce BP and 

MSNA in a patient with severe hypertension resistant to pharmacotherapy, RDN and 

BAT (O'Callaghan, Hart et al. 2017). A small pilot study is underway in Bristol to further 

assess the safety and efficacy of DBS in patients with refractory hypertension. 

2.3.8.5 Median and vagal nerve stimulation 

Devices are also under development for the treatment of hypertension through 

stimulation of the median and vagal nerves. The rationale for median nerve stimulation 

is based on data from studies of electroacupuncture (Li, Tjen et al. 2015, Ng, Saxena et 

al. 2016). Valencia Technologies (Valencia, CA, USA) are developing an eCoin device for 

median nerve stimulation, with their unpublished interim results suggesting that 

following implantation, those with the device switched on (n=11)  had an 11 mmHg 

reduction in BP vs the sham control group (device implanted but switched off, n= 10) 

who had a 4 mmHg increase in BP(2017). 

Devices targeting autonomic modulation in hypertension have primarily aimed to 

achieve sympathoinhibition, but an alternative approach would be to consider 

parasympathetic excitation. Vagal nerve stimulation (VNS) devices have been developed 

focussing on the treatment of CHF. To date, randomised clinical trials using these 

devices in CHF have produced disappointing results, with high levels of adverse events, 

and a failure to demonstrate an improvement in cardiac remodelling or functional 

capacity (NECTAR-HF (Zannad, De Ferrari et al. 2015)), or the rate of death or heart 

failure related events (INOVATE-HF (Gold, Van Veldhuisen et al. 2016)), although NYHA 

classification did improve in the ANTHEM-HF (Premchand, Sharma et al. 2014) and 

INOVATE-HF trials (Smith, Rossignol et al. 2016). To date, there are limited data on the 

use of VNS in hypertension, with one case report describing an increase in BP (Sokolovic 

and Mehmedagic 2016), despite more positive pre-clinical findings (Ng, Saxena et al. 

2016).  

2.3.8.6 Carotid sinus remodelling 

The MobiusHD (Vascular Dynamics, Mountain View, CA, USA) implant aims to reduce 

blood pressure by remodelling the carotid sinus. This endovascular, self-expanding 

rectangular cuboid implant is proposed to improve baroreflex sensitivity by increasing 

carotid sinus arterial wall strain (Spiering, Van Der Heyden et al. 2015). In the CALM-FIM 

(Controlling And Lowering Blood Pressure With The MobiusHD – First In Man) study, one 

month after implantation, patients treated with the MobiusHD device had a -21/-9 

mmHg fall in office BP (n=15), sustained out to 12 months (-32/-19 mmHg, n=4) 

(Spiering, Van Der Heyden et al. 2015). CALM-DIEM, a single-arm, safety, efficacy study, 
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enrolling 200 patients (clinicaltrials.gov: NCT02827032), and CALM-START, a multicenter, 

prospective, randomized, blinded, sham-controlled study, enrolling 110 patients 

(clinicaltrials.gov: NCT02804087), are currently ongoing and recruiting subjects in 

Europe. 

 

2.3.9 Conclusions 

In less than 10 years the field of interventional therapy in hypertension has exploded 

from first-in-man studies of RDN, into a competitive market encompassing a range of 

catheter technologies and advancing into broader sympathoexcitatory indications. Other 

interventional strategies have built on the renewed interest in the autonomic 

mechanisms underlying hypertension, with most techniques aimed at harnessing the 

antihypertensive effect of sympathoinhibition. This story is however, a cautionary tale, 

with confusion over the interpretation of Symplicity HTN-3 as to whether RDN is 

ineffective at lowering BP, or whether failings in the study design affected its outcome. 

It is now time to go back and consider the physiological basis for RDN in more detail, and 

to confirm the efficacy of the procedure. Large scale outcome data are showing positive 

preliminary results from ongoing commercial studies, whilst this study aims to 

understand the procedural efficacy and autonomic effects on a mechanistic level, with 

focus on devising a test to ensure on table procedural efficacy, and if possible, 

understand whether RDN preferentially affects afferent or efferent renal nerves. 
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3 Study Aims, Hypotheses and Outcome Measures  

 
Currently, when managing patients with resistant hypertension, it is difficult to provide 

evidence as to whether they are likely to benefit from renal denervation. In this pilot 

study, we aim to better understand RDN from the individual patient perspective, and to 

develop a test that will confirm denervation of renal nerves at the time of the 

procedure. When interpreting individual outcomes following RDN, it is impossible to 

know for certain whether any reduction in blood pressure (BP) after treatment is due to 

disruption of the renal nerves, unless renal nerve integrity can be assessed directly.  

 

3.1 Aims of the study 

3.1.1 Primary aim  

To generate data that allow an accurate prediction as to whether a patient with 

resistant hypertension will respond to renal denervation therapy. We will achieve this by 

assessing a pattern of baseline markers of overactive sympathetic activity, heart rate 

variability, sympathovascular transduction3, systemic inflammation, cerebral blood flow, 

and altered sensitivity of peripheral chemoreceptor and baroreceptor reflexes and 

correlate them with procedural success.  

3.1.2 Secondary aim 

To develop methods for quantifying the procedural success of renal denervation 

treatment that can be applied at the time of the procedure. 

1. We will assess the function of  

a. the efferent sympathetic pathway by measuring reflex evoked changes 

in renal blood flow in response to a sympathetic stressor (hand grip 

exercise) using an intra-arterial Doppler flow wire 

b. stimulation of renal afferents with intra-renal artery adenosine infusion 

and measurement of reflex increases in BP.  

3.1.3 Additional aims 

1. To confirm the safety of renal denervation in the treatment of hypertension. 

2. To assess the efficacy of RDN in reducing blood pressure and in reducing 

hypertensive target organ damage. This will be done by measuring the effect of 

RDN on office blood pressure, ambulatory blood pressure, renal function (e.g. 

estimated glomerular filtration rate, urinary albumin:creatinine ratio), aortic 

distensibility and indices of hypertensive cardiac remodeling, including left 

ventricular hypertrophy using magnetic resonance imaging (MRI). 

                                                           
3 Sympathovascular transduction (also sympathetic-vascular coupling) describes the conversion 
of sympathetic nerve activity (peroneal muscle sympathetic nerve activity in this instance) into 
vascular tone, quantifying the efficacy of neuro-vascular transmission. 
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3. To better understand the mechanisms underlying the antihypertensive effect of 

renal denervation by assessing changes in sympathetic nerve activity, cardiac 

and sympathetic vascular baroreflex sensitivity, peripheral chemosensitivity, and 

systemic inflammation following renal nerve ablation. 

4. To establish whether ablation of the afferent renal nerves, efferent renal nerves 

or both groups of nerves underpins the antihypertensive effect of renal 

denervation. 

 
 

3.2 Experimental Hypotheses 

3.2.1 Hypothesis for primary aim 

• Patients with high levels of baseline sympathetic nerve activity, raised markers 

of systemic inflammation, abnormal cerebral blood flow, and altered peripheral 

chemoreceptor and baroreceptor reflex sensitivity will respond to renal 

denervation with a fall in BP in accordance with the primary outcome measure. 

3.2.2 Hypotheses for secondary aim 

• Measures which assess the function of the renal efferent sympathetic pathway 

by measuring reflex evoked changes in renal blood flow and the renal afferent 

pathway by looking at reflex changes in blood pressure following activation of 

the renal chemoreflex by intra-renal artery infusion of adenosine, will confirm 

the procedural success of RDN.  

• The improvement in BP following RDN will correlate with the reduction in reflex 

responses to renal afferent and efferent nerve stimulation.  

3.2.3 Hypotheses for additional aims 

1. Renal denervation will exhibit an acceptable safety profile, in keeping with 

existing adverse event rates from previous published trial and registry data. 

2. Renal denervation will reduce office and ambulatory blood pressure. In patients 

with a reduction in BP and/or sympathetic nerve activity there will be 

prevention of, or an improvement in, target organ damage.  

3. Blood pressure reduction following renal denervation will be associated with a 

reduction in sympathetic nerve activity, systemic inflammation and peripheral 

chemoreceptor hypersensitivity, and an increase in baroreflex gain. 

4. Blood pressure reduction following renal denervation will be dependent on 

disruption of both the afferent and efferent renal nerves. 

Testing these hypotheses will enable confident selection of patients most likely to 

respond to RDN and interpretation of the outcome measures listed below. 

 



  

100 
   

3.3 Outcome Measures 

3.3.1 Primary outcomes 

• The change in office systolic BP and mean daytime ambulatory systolic BP at 6 

months after the procedure will be measured. We define a responder as 

exhibiting a fall in office systolic BP of ≥10mmHg at 6 months post RDN. In 

Symplicity HTN-2, the primary outcome measure was the reduction in office 

systolic BP at 6 months post-RDN, with a response to RDN defined as a 

reduction in office systolic BP of ≥10 mmHg (Esler, Krum et al. 2010). The change 

in office systolic BP will be correlated against baseline: 

‒ muscle sympathetic nerve activity 

‒ heart rate variability 

‒ markers of inflammation 

‒ sympathovascular transduction 

‒ peripheral chemoreflex sensitivity and baroreflex gain 

‒ cerebral blood flow 

3.3.2 Secondary outcomes 

• For efferent procedural success, we will measure the change in renal vascular 

resistance in response to handgrip stress, before and after renal denervation, 

and see if the difference between these measures predicts change in BP at 1-

month post-RDN. 

• For afferent procedural success, we will measure the change in systemic systolic 

BP in response to adenosine infusion into the renal arteries, before and after 

renal denervation, and assess whether the difference between these measures 

predicts change in BP at 1-month post-RDN. 

3.3.3 Additional outcomes 

1. Measures of the safety of the procedure will be assessed by any complications 

or adverse clinical events during or after the renal denervation procedure. We 

will also closely monitor renal function and will assess for the development of 

renal artery stenosis at 6 months using magnetic resonance angiography. 

2. Changes in office and ambulatory BP and measures of muscle sympathetic nerve 

activity, heart rate variability, sympathovascular transduction, baroreflex gain, 

peripheral chemoreflex sensitivity, cerebral blood flow, and markers of 

inflammation will be assessed at 1, 3, 6 and 12 months after the procedure 

(cerebral blood flow measured at baseline and 6 months only).  

3. Renal function, microalbuminuria, aortic distensibility and left ventricular mass 

will be assessed prior to RDN and at 6 months to identify any regression of 

hypertensive end organ damage at 6 months. 

4. Antihypertensive medications will not be altered during the study unless BP falls 

below 120/90mmHg or a patient develops significant symptomatic hypotension. 

Likewise, we will aim to avoid any increases in antihypertensive medications in 

which BP remains elevated, unless the participant experiences worsening 

symptomatic hypertension. If changes are essential, we will document any 
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changes in the number or dosages of antihypertensive medication in patients 

following RDN. 

Outcome measures are summarised in Box 3.1. Physiological measures based on 

autonomic and pathologic markers were assessed at all study visits (0, 1, 3, 6, and 12 

months), however, magnetic resonance imaging was only performed at baseline and 6 

months post-RDN for logistical reasons. 

Summary of outcome variables 

Procedural safety 

• Adverse event reporting 

• Estimated glomerular filtration rate (eGFR) 

• Renal magnetic resonance angiography 

Procedural efficacy 

• Number of ablations administered 

• Reflex change in renal vascular resistance in response to handgrip stress 

• Reflex change in systemic blood pressure in response to renal intra-arterial 

adenosine infusion 

Response to renal denervation 

• Office blood pressure 

• Ambulatory blood pressure 

• Antihypertensive medication: whole dose equivalents 

• eGFR 

• Urinary albumin:creatinine ratio 

• Aortic distensibility 

• Left ventricular hypertrophy 

• Left ventricular strain 

• Left ventricular interstitial fibrosis using T1 mapping (in selected patients) 

Predictors of response to renal denervation (and mechanistic markers) 

• Muscle sympathetic nerve activity 

• Heart rate variability 

• Sympathovascular coupling 

• Cardiac and sympathetic vascular baroreflex sensitivity  

‒ including response to Modified Oxford testing in a subset of patients 

• Hypoxic ventilatory response (peripheral chemoreflex sensitivity) 

• Cerebral blood flow 

• Inflammatory markers 

‒ Interleukin(IL)- 6, IL-8, IL-10, IL-17, myeloperoxidase (MPO), tumour 

necrosis factor (TNF)-α, C-reactive protein (CRP) 
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Box 3.1. Summary of outcome variables for the renal denervation for resistant 
hypertension pilot study. 
  



  

103 
   

4 Overall study design and general methods 

 
This study investigated the changes in a range of physiological parameters in patients 

with resistant hypertension, before and after treatment with renal denervation. The 

study aimed to:  

‒ improve patient selection for RDN 

‒ devise a measure of procedural success which can be used at the time of the 

procedure to guide adequate renal nerve ablation 

‒ better understand the mechanisms underlying the antihypertensive effects of 

RDN. 

 
 

4.1 Subjects and recruitment 

This study aimed to recruit 30 patients with resistant hypertension, meeting the criteria 

below. As an observational, pilot study assessing the feasibility of autonomic screening 

and on-table renal nerve testing in the context of renal denervation, a power calculation 

was not undertaken. Recruitment took place between March 2012 and December 2016, 

with all patients recruited through the tertiary, specialist Hypertension Clinic at the 

Bristol Heart Institute. Formal written consent was obtained from all patients screened 

and enrolled in the study. The study was approved by the South West – Frenchay 

Research Ethics Committee and was conducted in accordance with the Declaration of 

Helsinki.  

4.1.1 Target population 

The target population for the study was patients with resistant hypertension on medical 

management. These patients were defined as having an office systolic blood pressure 

(oSBP) of >140 mmHg, were prescribed at least three anti-hypertensive medications at 

maximum tolerated dose and had no evidence of causes for secondary hypertension 

following thorough clinical assessment. 

4.1.2 Inclusion criteria 

The study inclusion criteria were resistant hypertension (as defined above) and a 

participant age range of 30-75 years.  

 

4.1.3 Exclusion criteria 

The study exclusion criteria were, body mass index (BMI) >35 kg/m2, pregnancy or 

anticipation of pregnancy, palliative care/chemotherapy, anticipated life expectancy less 

than 12 months due to other disease, renal transplant patients, renal function 

impairment (eGFR<45ml/min/1.73m2), heart failure with reduced ejection fraction, 

severe cardiac valvular disease, acute coronary syndrome or unstable angina, untreated 

obstructive sleep apnoea, intravenous drug use, and an alcohol intake >28 units/week. 
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Patients with variant anatomy of the renal artery (e.g. early renal artery bifurcation, 

small renal arteries <4mm diameter, short renal arteries <20 mm, aberrant renal artery 

morphology (Esler, Krum et al. 2010)), which makes the patient unsuitable for renal 

artery denervation, were also excluded. Patients with a BMI of >35 kg/m2 were excluded 

since obesity increases sympathetic nerve activity, particularly in males (Brooks, Shi et 

al. 2015), and therefore aimed to reduce confounding due to potential weight loss.  

There were also specific magnetic resonance imaging (MRI) related exclusion criteria, 

including the presence of a pacemaker, implantable cardiac defibrillator, cerebral 

metallic clips or other implanted metal devices/structures. Additionally, participants 

unable to tolerate the scanner or with a history of panic attacks/claustrophobia, and 

participants with a learning disability, or significant hearing or visual impairment 

(participant would need to be able to communicate from within the MRI scanner) were 

excluded from MRI. If patients had a contraindication to MRI, then renal anatomy was 

determined using CT angiography of the renal arteries. 
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4.2 Study Design  

The overall study design is summarised in Figure 4-1. This was a single centre, open-

label, observational, pilot study, therefore patients were not subject to randomisation. 

Briefly, the patients attended a screening visit with an additional MRI session, and, if 

enrolled into the study, underwent renal denervation with on-table renal nerve testing. 

A significant ethical amendment was approved in December 2012, permitting the ‘on-

table’ measures of procedural success. These measures form a sub-study in patients 

recruited from 2013 onwards and are reported in Section 5.5.  

 

Participants attended for study visits at 0, 1, 3, 6, and 12 months, involving detailed 

autonomic profiling. The format of these study visits is summarised in Figure 4-2. The 

protocol for the blood and urine samples taken at each study visit is summarised in 

Table 4-1. It was not possible to obtain fasting samples for logistical reasons; several 

participants lived a long way from the Bristol Heart Institute, requiring study sessions in 

the afternoon, and therefore could not be expected to fast for a prolonged period. 

Participants were advised to have an early light breakfast or lunch before morning or 

afternoon study sessions, respectively. Study sessions were held at the same time of day 

for any given patient. Patients were advised to abstain from alcohol and caffeine on the 

day of a study visit and to take their prescribed medication at the usual times. 
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Figure 4-1 Summary of the overall study design for the renal denervation for resistant 
hypertension pilot study. 
* Or renal computerised tomography angiogram (CTA) if magnetic resonance imaging 
(MRI) contraindicated. BP, blood pressure; ABPM, ambulatory BP monitoring; ECG, 
electrocardiography; HRV, Heart Rate Variability. 
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Figure 4-2. Study day schedule. 
Detailed methods for these investigations can be found in the general and specific 
methods sections. The full study visit lasts approximately 3 hours. BP, blood pressure; 
MSNA, muscle sympathetic nerve activity; ECG, electrocardiogram. 
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Test Screening Baseline 1 month 3 months 6 months 12 months 

FBC  X X X X X 
U&E X X X X X X 
Lipid 
profile 

 X   X X 

HbA1c  X   X X 
CRP  X X X X X 
Fibrinogen  X X X X X 
MPO  X X X X X 
TNFα  X X X X X 
IL6  X X X X X 
IL8  X X X X X 
IL10  X X X X X 
IL17  X X X X X 
Imm cells  X X X X X 
ACR*  X   X X 

Table 4-1. Blood and urine sample schedule. 
*Urine sample. FBC, full blood count; U&E, urea and electrolytes; HbA1c, haemoglobin 
A1c; CRP, C-reactive protein; MPO, myeloperoxidase; TNFα, tumour necrosis factor 
alpha; IL, interleukin; imm cells, immune cell profiling; ACR, albumin:creatinine ratio. 
 

 

4.3 General methods 

The methods for basic investigations referred to repeatedly in the body of this thesis are 

described below. Detailed methods of more specialist tests are described in Chapter 5, 

Specific Methods and Results. 

 

4.3.1 Baseline demographic data 

Baseline demographics and clinical characteristics were recorded. A detailed 

hypertensive and past medical history was obtained. Prescribed medications were 

documented and whole dose equivalents (WDE; percentage of maximum licensed dose 

of prescribed medication) were calculated (Antoniou, Saxena et al. 2016). Patient height 

and weight were measured with calculation of body mass index (BMI (kg/m2) = height 

/weight2). 

4.3.2 Blood pressure monitoring  

4.3.2.1 Clinic/office BP readings  

A validated oscillometric BP monitor (Omron, Kyoto, Japan), with an appropriately sized 

cuff, was used, and readings were recorded with the subject seated at quiet rest for five 

minutes. BP readings checked in both arms at first attendance, and three BP readings, 

two minutes apart, from the arm with higher level were recorded; the final two readings 

were averaged to give the mean systolic and diastolic office BP. The resting heart rate 

was also recorded. 
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4.3.2.2 Ambulatory BP monitoring  

A validated oscillometric ambulatory BP monitor was used (Spacelabs Healthcare, OSI 

Systems, Hawthorne, CA, USA) with an appropriately sized cuff (NICE 2015). The device 

was left on for a 24-hour period to encompass a ‘routine’ day. BP readings were 

acquired every 30 minutes during the day and every 60 minutes overnight, and the 

subject was advised to pause and support the cuffed arm during readings if possible. For 

the purposes of this study daytime was defined as 0600-2159 hours and night-time was 

defined as 2200-0559 hours. 

4.3.2.3 Home BP monitoring and medication diary 

The use of a home BP diary, including self-reporting of medications taken, also aimed to 

act as an indirect measure of compliance (similar approach to Symplicity HTN-2 study 

design, (Esler, Krum et al. 2010)). A validated oscillometric BP monitor (Omron, Kyoto, 

Japan), with an appropriately sized cuff, was given to the patient, along with appropriate 

instruction, for use at home. 

After sitting in quiet room for 5 minutes, measurements were taken from the arm with 

higher clinic reading, four times a day for eight days. At each measurement session, 

subjects were advised to take three readings, with three minutes rest between each 

reading. Results from the first day (practice readings) were discarded and an average 

was taken of the second and third BP readings for all timepoints over the remaining 

seven days, and then used to calculate an overall mean home BP result. Participants 

were also asked to document medications taken during the day, and data were collected 

using a standardised home BP diary. 

 

4.3.3 Blood and urine samples 

A venous cannula was sited in the right antecubital fossa or forearm, and around 40 ml 

of blood was obtained via the cannula for analysis. This was performed at room 

temperature, with the patient at seated rest. The patients were not in a fasted state. A 

mid-stream urine sample was also collected. The analyses performed during the study 

are summarised in Table 4-1. Routine tests were performed via the Pathology 

Department at the Bristol Heart Institute. Serum samples were frozen for subsequent 

analysis of inflammatory markers by Dr Tanya Smith at the University of Bristol. All blood 

and urine analysis were undertaken by researchers blinded to the study outcome to 

minimise bias. 

 

4.3.4 Magnetic resonance imaging 

Baseline magnetic resonance images were acquired to define the anatomy of the renal 

arteries. Patients with variant renal artery anatomy (e.g. early renal artery bifurcation, 

small renal arteries <4 mm diameter, short renal arteries, aberrant renal artery 

morphology) or renal artery stenosis were excluded from this study in keeping with Joint 

Society UK guidelines (Lobo, de Belder et al. 2015). MRI was also used to assess left 
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ventricular mass (LVM) and fibrosis. A more detailed evaluation was performed in 

patients enrolled in this Renal Denervation for Resistant Hypertension pilot study, which 

were beyond the scope of the routine clinical Hypertension MRI protocol, including 

quantification of left ventricular (LV) strain and cerebral blood flow (CBF) (see Sections 

5.2.2.6 and 5.4.4.2 respectively for full methodology). Patients with an eGFR 

<45ml/min/1.73m2 were excluded from the study as there is a relative contraindication 

to using gadolinium in this group of patients due to an increased risk of nephrogenic 

systemic fibrosis (Prince, Zhang et al. 2008). 

4.3.4.1 MRI protocol 

Our clinical Hypertension MRI protocol has previously been published (Burchell, 

Rodrigues et al. 2017). Images were acquired from the level of the Circle of Willis to the 

level of the femoral heads.  

Cardiac MRI (CMR) was performed at 1.5 Tesla (Avanto, Siemens, Erlangen, Germany). 

Steady-state free precession (SSFP) short-axis whole LV cines (8 mm slice thickness, no 

slice gap, temporal resolution 38.1 ms, echo time 1.07 ms, representative field-of-view 

(FOV) in-plane pixel size 1.5 × 0.8 mm) were used for the estimation of LV mass and 

volumes. Myocardial replacement fibrosis was assessed by late gadolinium 

enhancement (LGE) (Mahrholdt, Wagner et al. 2005). An inversion-recovery fast 

gradient-echo sequence was performed 10–15 min after intravenous administration of 

0.1 mmol/kg gadobutrol (Gadovist, Bayer Pharma AG, Germany), in two phase-encoding 

directions where there was potential artefact. Individually tailored inversion times were 

used in each patient to null normal reference myocardium.  

Renovascular assessment consisted of Time-resolved angiography with Interleaved 

Stochastic Trajectories (TWIST) contrast enhanced magnetic resonance angiography 

(MRA), which creates multi-phase, multi-planar images of the thoracic and abdominal 

vasculature; angiography was analysed using multiplanar reformatting post-processing 

software (cmr42; Circle Cardiovascular Imaging Inc., Calgary, AB, Canada). Axial T1-

weighted images through the abdomen and pelvis with 5mm slice thickness were also 

performed. 

4.3.4.2 CMR analysis 

Blinded MRI analysis was performed by Dr Nathan Manghat and Dr Jonathan Rodrigues 

at the Bristol Heart Institute Cardiac Magnetic Imaging facility. The assessment of left 

ventricular volumes and LVM were performed as described previously (Maceira, Prasad 

et al. 2006). Briefly, endocardial contours were defined at end-diastole and end-systole 

on the LV short-axis stack using blood pool/endocardial border threshold detection 

software (cmr42; Circle Cardiovascular Imaging Inc., Calgary, AB, Canada), which has 

been previously validated (Childs, Ma et al. 2011). Epicardial contours were defined 

manually at end diastole. The LVM was estimated by multiplying the total myocardial 

volume, including papillary muscles and LV trabeculations (equivalent to LV dry weight), 

by 1.05 g/ml, which is the specific gravity of myocardium, as described previously 

(Maceira, Prasad et al. 2006). The LVM was indexed to body surface area, calculated 

using the Mosteller formula. Ejection fraction was calculated from the end-diastolic and 
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end-systolic endocardial volumes, and long axis function was assessed using mitral and 

tricuspid annular plane systolic excursion. 

LVH was defined as indexed LVM >95th percentile of established CMR reference ranges 

indexed to body surface area (men: <35 years, >87 g/m2; ≥35 years, >78 g/m2 and 

women: <35 years, >71 g/m2; ≥35 years, >70g/m2) (Hudsmith†, Petersen† et al. 2005). 

Left ventricular mass is indexed to body surface area, with gender specific cut-offs, to 

account for three different sources of physiologic variation: lean body mass, obesity, and 

gender (Foppa, Duncan et al. 2005). LV remodelling was defined as a ventricle with 

normal indexed LVM but elevated LV mass/volume ratio (M/V) (Buchner, Debl et al. 

2009). An increased M/V was defined as >95th gender-specific percentile (men: >1.12 

g/ml and women:>1.14 g/ml) from healthy volunteers, as described previously (Buchner, 

Debl et al. 2009). The presence of LGE was quantified by visual analysis. 

 

4.3.5 Physiological assessment 

At the baseline and follow-up study visits a range of physiological parameters were 

measured at rest to help to establish an autonomic profile for each patient.  

Baseline measurements were taken over 5 to 10 minutes, with the patients lying supine, 

at quite rest. Simultaneous readings were made of the parameters detailed below.  The 

data were collected via a PowerLab (AD Instruments, Dunedin, New Zealand) and 

recorded continuously using a data acquisition program on a study laptop (LabChart, AD 

instruments, Dunedin, New Zealand). The resting variables included (see Figure 4-3); 

beat-to-beat blood pressure measured using a Finometer device (Finapres Medical 

Systems, Enschede, Netherlands), heart rate (and rhythm) from a 3-lead 

electrocardiogram (ECG) recording, non-invasive oxygen saturations (Radial-7, Masimo 

Corp., Irving, CA, USA), chest excursion using a respiratory belt, and measurement of 

muscle sympathetic nerve activity (MSNA). Heart rate variability, spontaneous cardiac 

and sympathetic baroreflex sensitivity, and sympathovascular transduction were all 

calculated from the above parameters. 

Further to this, baroreflex sensitivity was tested in response to BP modulation via 

injections of sodium nitroprusside and phenylephrine (the Modified Oxford test), and 

peripheral chemoreflex testing included the use of spirometry, and the measurement of 

end tidal carbon dioxide (ETCO2) and the fraction of inspired oxygen (FiO2). More 

detailed methods for these dynamic assessments are found in Sections 5.4.1.2.2 and 

5.4.3.2, respectively. 
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Figure 4-3. Illustration of equipment used for the autonomic assessment of patients 
during the renal denervation study. 
Healthy volunteer shown.  

 

4.3.6 Microneurography 

4.3.6.1 Background 

Sympathetic nerve activity can be measured in humans using a technique called 

microneurography.  The technique of microneurography  is a minimally invasive 

technique to record nerve activity in humans (Vallbo, Hagbarth et al. 2004). The first 

microneurography recording were made by Hagbarth and Vallbo in Uppsala, Sweden in 

1965–1966 (Vallbo, Hagbarth et al. 2004). Work initially focussed on recording multiunit 

activity from the large muscle-spindle afferents (Vallbo, Hagbarth et al. 2004), however, 

investigators soon realised the wider potential of the technique, and sympathetic neural 

recordings were documented from nerves containing muscle afferent, muscle efferent, 

skin afferent, and skin efferent fibres (Hagbarth and Vallbo 1968, Vallbo and Hagbarth 

1968, Wallin, Sundlof et al. 1981, Hart, Head et al. 2017).  

Multiunit MSNA recordings are obtained from the integrated neurogram, quantifying 

the firing of multiple nerve fibres, which demonstrate burst synchronicity in relation to 

the cardiac cycle (example shown in Figure 4-4) (Hart, Head et al. 2017). It is also 

possible to make recordings from individual nerve fibres, or more correctly, recordings 

in which a single fibre predominates, identified from a characteristic waveform 

morphology (Macefield, Wallin et al. 1994, Hart, Head et al. 2017). It has been suggested 

that multiunit neurograms provide a measure of the sympathetic vasoconstrictor 

activity to all muscle beds, since multiunit MSNA recorded from different limbs within a 

subject demonstrate similar behaviour (Hart, Head et al. 2017).  
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Figure 4-4. Integrated neurogram showing multiunit muscle sympathetic nerve activity 
recording (MSNA) and the relationship between MSNA and spontaneous fluctuations 
in blood pressure (BP). 
Sample of an integrated neurogram recording from participant from this cohort at semi-
supine, quiet rest. In addition to the baroreflex modulation shown in the figure, with 
MSNA suppressed by rising BP, MSNA bursting is pulse modulated, with bursts occurring 
when baroreceptors are offloaded in diastole. As can be seen from the figure, there is a 
latency between a change in diastolic BP and a change in MSNA due to the time for 
reflex transmission.  
 

Single-unit recordings provide information about the temporal characteristics of the 

firing of that fibre, including, how often a fibre is active, whether the fibre fires multiple 

times in a burst and whether or not the fibre fires between bursts. These recordings also 

provide information about how the fibre reacts to internal (e.g. BP or respiration) and 

external stimuli. Due to the technical difficulties in obtain a stable single-unit recording 

for more than 3-5 minutes, good quality single-unit recordings are more challenging to 

obtain as a measure of resting MSNA (Hart, Head et al. 2017).   

In this study we present data from multiunit recordings, and henceforth MSNA refers to 

multiunit MSNA. 

MSNA had been shown to have excellent intraindividual reproducibility, however there 

is high interindividual variability, making it difficult to define a valid normal range (Fagius 

and Wallin 1993, Vallbo, Hagbarth et al. 2004). It is also important to note that MSNA 

tends to increase with age and is also affected by gender, oestrus cycle and the state of 

mind further complicating interpretation (Hart, Charkoudian et al. 2009). Despite these 

limitations, resting MSNA has been demonstrated to be elevated in hypertension 

(Yamada, Miyajima et al. 1989), and given the intraindividual reproducibility, a change in 

MSNA following RDN in an individual patient is likely to represent a true physiological 

effect.  

4.3.6.2 Technique 

Muscle sympathetic nerve activity (MSNA) is recorded from the peroneal nerve in the 

lower leg; this is the one of most superficial nerves in the human body which facilitates 

recordings as it is easy to locate. MSNA is conducted by post-ganglionic neurones with 
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small C-fibre (unmyelinated) axons at a velocity of about 1 m/s, and multiunit activity 

from these neurones are quantified as a measure of MSNA (Fagius and Wallin 1980).  

The microneurography procedure utilises two tungsten micro-electrodes (FHC Inc, 

Bowdain, ME, USA), these have a very fine tip which is less than the width of a human 

hair (< 1 micron). The reference electrode (non-insulated) was inserted into the surface 

of the skin around 1-3 cm from the course of the peroneal nerve. The active electrode 

(insulated shaft, non-insulated tip) was inserted into the peroneal nerve to record nerve 

activity, locating a site in the nerve yielding discrete arterial pressure pulse-synchronised 

MSNA bursts (White, Shoemaker et al. 2015, Hart, Head et al. 2017). The location of the 

peroneal nerve was established using anatomical landmarks over the head of the fibula 

and a non-invasive, transcutaneous, stimulating electrode (see Figure 4-5 ). A muscle 

sympathetic fascicle was identified when taps on the tibialis anterior muscle belly or 

passive muscle stretch via flexion of the toes or inversion/eversion of the foot induced 

mechanoreceptive impulses. Bursts of neural activation associated with sensory stimuli 

were excluded by testing for response to light touch or a sudden loud noise/startle, 

which stimulate sensory nerves and skin SNA respectively (White, Shoemaker et al. 

2015, Hart, Head et al. 2017). The recorded signal was amplified 80,000-fold, band pass 

filtered (700 to 5000 Hz), rectified and integrated (time constant 0.1 s) by a dedicated 

amplifier (Absolute Design and Manufacturing Services, Iowa, USA).  

Prior to microneurography, participants were asked to abstain from alcohol and caffeine 

for 24hrs as this are known to impact MSNA (Randin, Vollenweider et al. 1995, Corti, 

Binggeli et al. 2002). Recordings were made at the same time of day in each participant 

with only a light meal prior to recordings (Cox, Kaye et al. 1995), and subjects were 

advised to take their antihypertensive medication at the usual time. Participants were 

asked to void their bladder immediately before this physiological testing since a full 

bladder can increase MSNA (Fagius and Karhuvaara 1989), and background noise was 

kept to a minimum during the recordings. Following instrumentation, 5-10 minutes 

(minimum 5 min) of resting baseline data were collected with the patients lying semi-

supine at quite rest (but not asleep), with simultaneous, continuous measurement of: 

beat-to-beat BP (finger plethysmography), 3-lead ECG, MSNA, non-invasive oxygen 

saturations and chest excursion using a respiratory belt. Data were sampled at 1kHz 

(LabChart, AD Instruments, Dunedin, New Zealand) and stored on a personal computer 

for off-line analysis.   
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Figure 4-5. Method for identifying the course of the peroneal nerve and positioning 
the electrodes for the measurement of muscle sympathetic nerve activity. 
The pre-amplifier and ground were attached to the skin on a flat surface at the lateral 
knee joint with the leg supported by a wedge and flexed at approximately 30o to 
facilitate access to the peroneal nerve. The fibula head was identified using bony 
landmarks which can be palpated on the lateral aspect of the leg just below the knee. A) 
The systematic pattern of cutaneous electrical stimulation to locate and map the path of 
the nerve. B) The dots placed on the skin following the path of the nerve acted as a 
reference for insertion of the recording electrode. 3) The reference electrode (blue) was 
placed beneath the skin and into the tissue within 1-3 cm of the expected recording site. 
The active electrode (white) was inserted through the skin and manipulated until a 
satisfactory nerve signal was acquired. (White, Shoemaker et al. 2015) 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4658261_nihms717776f1.jpg
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4.3.6.3 Safety 

Microneurography has been completed in 100s of studies worldwide (PubMed search: 

human microneurography, 827 citations, March 2018), both in normal healthy 

participants and in patients with neuronal disorders and cardio-respiratory diseases 

(Sundlof and Wallin 1978, Sundlof and Wallin 1978, Wallin 1978, Wallin and Eckberg 

1982, Eckberg, Wallin et al. 1989, Charkoudian, Joyner et al. 2006, Hart, Charkoudian et 

al. 2009, Hart, Joyner et al. 2009). 

Eckberg et al. have published a prospective study of symptoms occurring after 

microneurography (Eckberg, Wallin et al. 1989). The study followed 1000 patient 

recordings and found minor after-effects, such as deep transient aches in specific 

muscles (onset usually 2-3 days after microneurography with resolution within 3-7 days), 

in less than 10% of the studies. Eckberg et al. reported only one major adverse event 

which was a case of small fibre neuropathy. Based on their data, Eckberg et al. 

recommend that the time manipulating the active microelectrode to look for nerve 

activity should be limited to 1 hour to minimise adverse effects.   

4.3.6.4 Data analysis 

Sympathetic bursts (MSNA) in the integrated neurogram comprising multiple units were 

identified by a custom-written script (Dr E. Hart, University of Bristol, UK) using Spike 2 

software (Cambridge Electronic Design Ltd, Cambridge, UK), requiring bursts that are ≥2 

standard deviations above the noise, where bursts occur ~1.3 s (and not <0.9 s) after the 

previous R wave, based on average latencies observed in humans with a conduction 

velocity of ~1m/s (Fagius and Wallin 1980, Wallin, Burke et al. 1994). Burst identification 

was checked by visual inspection by a trained investigator (Dr A. Burchell, unblinded), 

with the burst morphology and burst latency (delay from preceding R wave, mean 

latency ±0.2 s) taken into consideration (Hart, Head et al. 2017). It is also important to 

note that there is only one burst of MSNA per cardiac cycle, and that skin bursts are 

usually broad with a more variable morphology when compared with MSNA. Burst 

latency varies between individuals relative to a mean latency of ~1.3 s, particularly 

affected by the size of the subject (reflecting the time taken for the impulse to travel to 

the level of the fibula head), and is associated with the size of the multi-unit burst, with 

larger bursts having faster conduction velocities and therefore a shorter latency (Hart, 

Head et al. 2017). The inverse correlation between burst amplitude and burst latency 

may be related to what is termed the “size principle” where recruitment of faster 

conducting, bulbospinal fibres may occur as the intensity of the sympathetic burst 

becomes greater (Wallin, Burke et al. 1994).  

MSNA data were expressed as burst frequency (bursts per minute) and burst incidence 

(bursts per 100 heart beats). Burst area was also calculated, requiring manual marking of 

the start and end of each burst, with integration of the neurogram subtended by these 

markers (custom script by Dr L. Briant and Dr E. Hart). The absolute signal to noise of a 

burst depends on its proximity to the active electrode, therefore the maximal area 

(amplitude) of the biggest spontaneous burst in each dataset was identified, and the 

strength of all other bursts are expressed as a percentage of this value, giving a burst 

area in units of %/s (Briant, Burchell et al. 2016). Measures of total area per minute, and 

total area per 100 heart beats were calculated (Hart, Head et al. 2017). Caution must be 
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exercised when compared burst amplitude/area data between different recording, even 

if obtained from the same individual at different times, due to unquantifiable 

differences in the proximity of the nerve fibres from the recording electrode with 

separate instrumentations (Hart, Head et al. 2017). 

A selection 15/56 (27%) of neurograms were independently analysed by a second 

operator (Dr E. Hart), who was blinded to the BP outcome, as a quality control measure. 

The mean coefficient of variation for interobserver variability was 7.0% (within subject 

coefficient of variation = standard deviation/mean*100). A selection of 5/56 (9%) 

baseline MSNA recordings were analysed twice by the author, with a >12-month interval 

been analyses. The mean intra-observer coefficient of variation was 3.8%. This degree of 

intra- and interobserver variability is within the generally accepted coefficient of 

variation of <10%.  

4.3.7 Renal denervation protocol 

Renal denervation was performed in a cardiac catheter laboratory, using standard 

aseptic techniques. The patients were treated under conscious sedation using 

intravenous midazolam, with intravenous fentanyl administered as analgesia, since 

active ablation energy delivery was associated with diffuse visceral pain; the dosages of 

medication used are summarised in Figure 5-43. There was a designated analgesia nurse 

throughout the procedure to monitor the patient’s level of pain and administer further 

analgesia and sedation if required. 

Participants were given intravenous heparin to achieve an activated clotting time (ACT) 

of more than 250 seconds; the ACT was rechecked during the procedure, and further 

heparin administered if required. Femoral arterial access was achieved using a 6 French 

vascular sheath, and the renal arteries were accessed using a 6 French guide catheter. 

The procedure was performed under fluoroscopic guidance, and prior to cannulation of 

the renal arteries, an angiogram was performed of the aorta at the level of the renal 

arteries, in order to confirm suitable renal artery anatomy for denervation, and to 

provide a route-map for the procedure. Physiological measurements to assess afferent 

and efferent renal nerve integrity were then performed as detailed in Section 5.5.2. 

For the renal denervation procedure itself, the Symplicity catheter (Flex or Spyral, 

Medtronic, Santa Rosa, CA, USA) was advanced into the renal artery and connected to a 

radiofrequency generator. For the Symplicity Flex catheter (n=17), four-to-six discrete, 

low-power radio frequency ablations, lasting up to 2 minutes each, and of 8 watts or 

less, were applied along the length of both main renal arteries, at ≥0.5 cm intervals, in 

order to achieve ablation of all four circumferential quadrants of the artery. During 

ablation, the catheter system monitored tip temperature and impedance, altering 

radiofrequency energy delivery in response to a predetermined algorithm (Krum, 

Schlaich et al. 2009, Esler, Krum et al. 2010). The Symplicity Spyral catheter (n=2), 

consists of a 4-electrode array mounted on a 4F catheter that self-expands into a helical 

configuration with electrodes located at 5 mm intervals, at 90° from each other 

circumferentially. Using the Spyral catheter, radiofrequency energy treatment was then 

delivered simultaneously to all 4 renal artery quadrants for 90 seconds (Kandzari, Kario 

et al. 2016). This process was repeated 2-3 times in each renal artery, giving up to 12 

ablations per vessel. When present, accessory renal arteries of ≥4 mm in diameter were 
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treated in a similar fashion to the main renal arteries. Branch renal artery ablation was 

not performed as a part of this study. The number of successful ablation points was 

quantified for each renal artery treated.  All RDN procedures were performed by the 

same operator, Prof. Andreas Baumbach (consultant interventional cardiologist), who 

was experienced in the technique and had undergone formal training and proctoring by 

Medtronic. 

We acknowledge that a switch from the Symplicity Flex to the Symplicity Spyral catheter 

during the course of the study is potentially a confounding factor when assessing the 

response to RDN. We had aimed to use the Flex catheter throughout the study, but due 

to the long period of recruitment, this catheter was no longer commercially available for 

the final two study participants, having been withdrawn by the manufacturer in favour 

of the second generation Spyral device. 

4.3.8 Assessment of efferent and afferent renal nerve integrity 

Renal nerve integrity was assessed at the time of RDN, aiming to establish a method for 

quantifying successful renal nerve ablation, in a sub-study of measures of procedural 

success. Briefly, efferent nerve integrity was assessed by the reflex change in renal 

vascular resistance in response to a handgrip stressor, and afferent renal nerve integrity 

was assessed as the reflex increase in systemic blood pressure in response to renal 

arterial adenosine infusion. These measures were made immediately before and after 

denervation in the first, and then second, renal artery treated, and are described in 

detail in Section 5.5.2. 

  

4.4 Statistics 

Baseline demographic data are presented as mean ± standard deviation and all 

subsequent outcome data are presented as mean ± standard error of the mean (SEM). 

Where data is mean ± standard deviation has been used it is clearly indicated, and data 

should be considered as mean ± SEM unless otherwise specified. Prior to statistical 

analysis, data were assessed for normality using a Shapiro-Wilk test.  An α value of 

p<0.05 was taken to indicate statistical significance throughout the course of the study. 

Primary outcome data, comparing baseline and 6-month results, were analysed using a 

paired Student’s T-test (or Wilcoxon matched-pairs signed rank test for non-parametric 

data). Data were also assessed across multiple study timepoints (0, 1, 3, 6 and 12 

months); when normally distributed, differences between these outcome measures 

were assessed using a repeated-measures ANOVA with a between group Bonferroni 

Multiple Comparison Test. Where data failed the test for normal distribution, they were 

assessed using a Friedman Test, with Dunn’s Multiple Comparison Test (GraphPad Prism, 

GraphPad Software Inc. La Jolla, CA, USA). To enable analysis on the basis of repeated 

measures where there were gaps in the data for a particular follow-up visit, the missing 

data were replaced with the outcome from the previous visit (data carried forward) 

giving the assumption that there was no change in that variable during the intervening 

time period.  
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Univariate correlations were performed using Pearson’s correlation coefficient or 

Spearman’s rank correlation for normally distributed and non-normally distributed data, 

respectively, with additional linear regression.  

 

4.5 Summary 

These general methods apply across all the different sections of the study protocol. 

Detailed descriptions of the methods used for further physiological analyses can be 

found in Chapter 5, Specific methods, results and conclusions. 
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5 Specific methods, results and conclusions 

 

5.1 Screening and recruitment 

5.1.1 Introduction 

The efficacy of renal denervation, and study design in this field, are subject to ongoing 

clinical debate (Esler and Guo 2017), with further stimulus from the publication of 

interim results from the SPYRAL HTN-ON MED and -OFF MED studies (Townsend, 

Mahfoud et al. 2017, Kandzari, Bohm et al. 2018). In the UK, the current Joint Society 

Consensus advises that given the lack of definitive evidence for the procedure, RDN 

should only be performed as part of a formal clinical trial to ensure the appropriate, 

ethical treatment of patients (Mark Caulfield 2011). This pilot study was devised in 2012, 

and methods for the screening and recruitment of patients were based on the 

recruitment methods used in the Symplicity HTN-2 trial (Esler, Krum et al. 2010), to try 

to establish a dataset consistent with contemporaneous clinical research. A clearly 

defined patient cohort is vital in clinical studies to facilitate the appropriate 

interpretation of outcome data, and importantly, all RDN procedures at our centre were 

performed by the same, experienced operator to establish procedural consistency. 

Extended autonomic patient profiling was performed in study participants prior to RDN, 

but it should be emphasised that these autonomic data, and data on renal dysfunction 

beyond an exclusion of eGFR (estimated glomerular filtration rate) <45 mL/min/1.73m2, 

were not used to screen or select patients for the trial. 

In this pilot study, we had originally planned to recruit twenty patients with treatment 

resistant hypertension. Recruitment was extended to thirty patients at the time of the 

ethical amendment to include the procedural efficacy, on-table testing, sub-study 

(October 2013). The methods and results from screening and recruitment for the study 

are detailed below. 

 

5.1.2 Methods 

Recruitment to the Renal Denervation for Resistant Hypertension Study took place 

between March 2012 and December 2016. The inclusion and exclusion criteria for the 

study are summarised in Box 5.1. 

5.1.2.1 Pre-screening 

Pre-screening of patients took place at the specialist Hypertension Clinic, at the Bristol 

Heart Institute, led by Dr Angus Nightingale. I was also an active physician in the 

Hypertension Clinic for a full afternoon per week, participating directly in the diagnosis 

and management of resistant hypertension, and pre-screening for this pilot study. 

Patients attending the clinic for the treatment of resistant hypertension, who 

provisionally met the study and inclusion and exclusion criteria, were approached for 

discussion about the study, and if the patients were interested in participating in the 
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study, they were invited for formal screening. Patients were consented for the study 

prior to formal screening and recruited into the study at the time of their renal 

denervation procedure. 

Standard assessment in the Hypertension Clinic included: 

• Clinical review 

‒ History of course of hypertension 

‒ History and examination for symptoms and signs of secondary 

hypertension 

‒ History and examination for symptoms and signs of target organ damage 

‒ Social history and review of lifestyle factors contributing to hypertension 

• Medication review 

‒ Optimisation of antihypertensive drug regimen based on current evidence-

based practice, including NICE guidelines and trial data (e.g. PATHWAY-2) 

(National Clinical Guideline 2011, Williams, MacDonald et al. 2015).  

‒ Optimisation of antihypertensive drug dosages; titration up to maximum 

licensed dose where possible, but also including strategies such as divided 

doses, nocturnal dosing and fractional dosing to minimize adverse drug 

effects and improve adherence (Antoniou, Saxena et al. 2016). 

‒ Discussion of medication adherence (urine antihypertensive drug 

metabolite testing was not available at the time of study design) 

• Screening for secondary hypertension 

‒ Ambulatory and/or home blood pressure monitoring 

‒ Assessment for obstructive sleep apnoea, including Epworth Score 

‒ Measurement of renal function and albumin:creatinine ratio 

‒ Thyroid function tests 

‒ Aldosterone:renin ratio 

‒ 24hr urinary cortisol 

‒ 24hr urinary catecholamines 

‒ 24hr urinary 5HIAA (5-Hydroxyindoleacetic acid) 

• Hypertension Protocol magnetic resonance imaging (MRI) scan (see Section 

4.3.4) 

‒ Full cardiac MRI to assess left ventricular function and volumetrics, and to 

look for evidence of hypertensive heart disease (including left ventricular 

hypertrophy) or ischaemic heart disease 

‒ Imaging of the aorta to exclude aorta coarctation 

‒ Imaging of the renal arteries and parenchyma to look for evidence of 

renovascular disease or chronic kidney disease 

‒ Simple adrenal imaging to screen for adrenal adenoma or hyperplasia. 

5.1.2.2 Screening 

The study inclusion and exclusion criteria are summarised in Box 5.1. These criteria were 

based on, and are similar to, the enrolment criteria for Symplicity HTN-2 (Esler, Krum et 

al. 2010), with the notable differences being a broader office SBP inclusion level of >140 

mmHg as opposed to >160 mmHg in Symplicity HTN-2 (to optimise recruitment rates), 

and the addition of an upper limit on body mass index (BMI) of 35 kg/m2. Full, written 
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consent was obtained from patients prior to formal screening for the study. Screening 

consisted of a clinical history and examination, clinic BP (blood pressure) measurement, 

and a blood test to assess renal function (eGFR). Before leaving the study visit, patients 

were fitted with a 24hr ambulatory BP monitoring (ABPM) device. Patients also went 

home with a device for home BP monitoring (HBPM) with a home medication diary as a 

surrogate marker for medication adherence.  

All participants underwent a hypertension MRI scan (see Section 4.3.4.1 for full 

protocol). Ethical approval provided for the use of CT angiography to confirm suitable 

renal artery anatomy for RDN if MRI was contraindicated, however, all patients recruited 

to the study were able to have MRI. Ethical approval was also obtained for the 

retrospective use of MRI data from clinical scans performed during the preceding 12 

months to establish eligibility for RDN whilst avoiding duplicate imaging.  

Of note, screening for the study started before a dedicated Clinical Research Fellow was 

in post, and before ABPM and HBPM devices dedicated for use in the study were 

available. Consequently, for the patients recruited in the first few months of the study 

no formal screening (also baseline) ABPM or HBPM/home diary were performed. All 

patients had had ABPM and/or HBPM performed in the Hypertension Clinic prior to 

screening for the exclusion of white-coat hypertension, however, some of this 

monitoring was distant to enrolment in the study, and therefore cannot be used as 

baseline data due to interim changes in medication. This breech in the protocol was 

reported to the local ethics committee and was resolved following the provision of 

appropriate clinical support and equipment.  

Patients meeting the inclusion and exclusion criteria, then underwent baseline 

autonomic profiling prior to elective renal denervation, as per the study protocol (see 

Section Figure 4-1). 
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Box 5.1. Inclusion and exclusion criteria for the Renal Denervation for Resistant 
Hypertension Study 
BP, blood pressure; CKD, chronic kidney disease; BMI, body mass index; GFR, glomerular 
filtration rate. 
 

 

 

 

Inclusion criteria 

• Clinic systolic BP >140 mmHg 

• Patients on at least three anti-hypertensive medications at maximum 

tolerated dose 

• No evidence of secondary hypertension following thorough clinical 

assessment 

• Age 30-75 years 

Exclusion criteria 

• BMI >35 kg/m2 

• Pregnancy or anticipation of pregnancy 

• Palliative care/chemotherapy 

• Expected life expectancy less than 12 months due to other disease 

• Renal transplant patients  

• Variant anatomy of renal artery (e.g. early renal artery bifurcation, small 

renal arteries <4mm diameter, short renal arteries <20 mm, aberrant renal 

artery morphology (Esler, Krum et al. 2010)) which makes the patient 

unsuitable for renal artery denervation 

• Renal function impairment (estimated GFR<45ml/min/1.73m2)  

• Heart failure with reduced ejection fraction  

• Severe cardiac valvular disease  

• Acute coronary syndrome or unstable angina 

• Untreated obstructive sleep apnoea 

• Intravenous drug use 

• Alcohol intake >28 units/week 
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5.1.3 Results 

Nineteen patients were recruited into the study during the screening period. This was 

below the target recruitment of thirty patients. Ten patients were recruited into the 

procedural efficacy sub-study involving on-table testing of afferent and efferent renal 

nerve integrity. 

5.1.3.1 Pre-screening 

For the period of 01/01/2013 through to 31/12/2016, there were 1282 appointments 

scheduled in the Hypertension Clinic at the Bristol Heart Institute. There were 645 

individuals who received at least one appointment during that time, with a range of 1-12 

appointments per patient. A full analysis of the pre-screening data including the full 

clinic demographic, diagnostic and outcome at a has not been possible due to time 

limitations, however, reasons for exclusion from the study at the stage of pre-screening 

are summarised in the consort diagram in Figure 5-1. 

Data from the first 200 patients in the clinic assessed using the Hypertension Protocol 

MRI have been collated and were presented at the European Society of Cardiology 

conference (Rome, 2016), prior to publication (Burchell, Rodrigues et al. 2017). Patients 

who were potentially eligible for the RDN study were referred for MRI, therefore this 

dataset provides insight into the pre-screening outcomes. Of the 200 scans analysed, 

27% of patients had ≥1 accessory renal artery. Furthermore, 29 patients (14.5%) had 

potential secondary causes of hypertension identified on MRI. There were 12 patients 

with adrenal masses/hyperplasia, 10 with renal artery stenoses, 6 with renal 

abnormalities potentially causing secondary hypertension, 7 with thyroid abnormalities, 

one individual with aortic coarctation, and one with an enlarged pituitary gland (non-

functional) (Burchell, Rodrigues et al. 2017). The findings from this study are 

summarised in Table 5-1. 

Patients with resistant hypertension, who were broadly eligible for RDN and interested 

in pursuing the procedure, were approached regarding the study, and with consent, 

attended for formal screening. 

 

5.1.4 Screening 

Thirty-three patients were screened for the RDN for resistant hypertension study, with 

19 patients recruited. Recruitment took place between 20th March 2012 and 15th 

December 2016. Reasons for screen failure are summarised in Figure 5-1, however, 

factors included controlled hypertension (n=3), poor renal function (n=2), unsuitable 

renal anatomy (n=3), adverse comorbidities (previous aortic dissection, recent 

myocardial infarction, active rheumatoid arthritis requiring immunomodulation), newly 

diagnosed Conn’s syndrome, BMI >35 and withdrawal of consent (n=1). 

 

Pathology No. 
cases 

Details 

Adrenal mass 12 • 7 lesions were not hormonally active. 
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• 1 patient with bilateral phaeochromocytomas 
and a thyroid nodule diagnosed with MEN2a. 

• 1 patient had a resolution of their hypertension 
following treatment with spironolactone.  

• 3 patients unable to exclude endocrine 
pathology 

Renal artery 
stenosis 

10 Cases reviewed at renal multidisciplinary team 
meeting:  

‒ 2 referred for stenting 
‒ 8 for medical management 

Renal abnormality 21 6/21 findings may reflect secondary hypertension: 
‒ 2 atrophy secondary to RAS 
‒ 2 atrophy not related to RAS 
‒ 1 polycystic kidney disease.  
‒ 1 renal coloboma syndrome (autosomal 

dominant condition characterised by renal 
hypodysplasia, optic nerve dysplasia and 
hypertension) (Schimmenti 2011). 

Thyroid 
abnormality 

7 Goitre and nodules; assessed biochemically and 
referred for further investigation if indicated. 1 case 
MEN2a see above. 

Pituitary 
enlargement 

1 Investigated with pituitary function testing and a 
pituitary MRI; non-functional. 

Aortic coarctation 1 Associated with bicuspid aortic valve and 
aortopathy. 
 Novel diagnosis, hypertension resolved following 
endovascular stenting. 

Table 5-1. Secondary causes of hypertension in a cohort of 200 consecutive patients 
from a Specialist Hypertension Clinic, as demonstrated by MRI.  
MEN; multiple endocrine neoplasia, RAS; renal artery stenosis. Adapted from Burchell et 
al. 2017. 

5.1.4.1 Study completion and withdrawals 

17 participants completed the study with full 12 months follow-up. Of the remaining 

two patients, one withdrew from the study immediately after the RDN procedure due to 

problems with hypotensive side-effects post-denervation, and one patient withdrew 

after 6 months follow-up due to a lack of treatment effect and long travel times to 

Bristol. The patient who withdrew from the study immediately after the procedure was 

one of the early participants in the study, with more limited data. For this reason, this 

patient has not been included in any of the subsequent data analyses.  
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Figure 5-1. Consort diagram illustrating the study recruitment process and patient 
follow-up. 
Pre-screening commenced in January 2012, and recruitment to the study took place 
between March 2012 and December 2016. BMI, body mass index; eGFR, estimated 
glomerular filtration rate; RDN, renal denervation; TNFα, tumour necrosis factor alpha. 
 

5.1.4.2 Baseline demographic data 

Baseline demographic data for the 18 patients with follow-up to at least 1-month post-

RDN are summarised in Table 5-2. 17 patients were of white Caucasian ethnicity, and 

one patient was of mixed white and Afro-Caribbean ethnicity. Half of the study 

participants were female; of these, three had a history of hypertension in pregnancy or 

pre-eclampsia and four were post-menopausal. Of the patients with diabetes mellitus, 

one individual had type 1 diabetes, one had type 2 diabetes requiring insulin, and a third 

had borderline, diet-controlled type 2 diabetes. In addition, one patient had had a 

thyroidectomy due to thyrotoxicosis with thyroid function stable on replacement 

therapy, one patient had had an aortic valve replacement and coronary artery bypass 

grafting 11 years prior to enrolment in the study due to childhood rheumatic fever, one 

patient was registered as partially-sighted, and one patient who had previous venous 

thromboembolic disease, had undergone unilateral carotid body resection as part of a 
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pilot study investigating carotid body excision as a treatment for hypertension >2 years 

before entering this study. 

 

5.1.4.2.1 Baseline antihypertensive medications 

The 18 participants analysed were prescribed a mean of 5.2 ± 1.8 antihypertensive 

medications (range 3-8), equivalent to 4.0 ± 2.4 whole dose equivalents (WDE; range 

0.7-9.5, see Table 5-3). The WDE is the proportion of the maximum licenced dose of a 

medication that has been prescribed (Antoniou, Saxena et al. 2016). The maximum dose 

is that specified by the British National Formulary (Publications 2017). For example, a 

patient prescribed 5 mg of Ramipril, which has a maximum dose of 10 mg, would be 

receiving 0.5 WDE. 14/18 patients were prescribed a diuretic; all patients had been 

trialled on diuretic medication, but in four patients this medication was discontinued 

due to intolerance. Ten patients were taking an aldosterone antagonist, reflecting 

optimal management of resistant hypertension based on data from the PATHWAY -2 

study (Williams, MacDonald et al. 2015). Of the other eight patients not taking an 

aldosterone antagonist, five had documented intolerance to spironolactone, whilst 

three had not had a documented trial of spironolactone (although it should be noted 

that these patients underwent RDN prior to the publication of the PATHWAY-2 results).  

All patients were asked about whether they took all of their antihypertensive 

medication at the baseline clinical assessments, and all participants confirmed 

adherence, however, medications are documented as having been prescribed since 

adherence was not formally assessed in this study. Home blood pressure monitoring, 

with a surrogate medication diary was completed by 7/18 patients. The mean home BP 

was 184 ± 21/95 ± 16 mmHg amongst these 7 patients; all patients had a home SBP of 

>135 mmHg (range 159-224/ 68-116 mmHg). All patients who completed a HBPM diary 

self-reported medication adherence, but the amount of information provided in the 

diaries was variable.  

 

 

 Participants (n=18) 

Office SBP (mmHg) 192 ± 21 
Office DBP (mmHg) 105 ± 23 
  
24hr SBP (n=10, mmHg) 166 ± 13 
24hr DBP (n=10, mmHg) 94 ± 12 
Day SBP (n=13, mmHg) 171 ± 14 
Day DBP (n=13, mmHg) 99 ± 14 
Night SBP (n=12, mmHg) 156 ± 18 
Night DBP (n=12, mmHg) 86 ± 12 
  
Age (years) 55 ± 11 
Male gender 9 
BMI (kg/m2) 29 ± 3 
eGFR (mL/min/1.73m2) 74 ± 11 
Albumin:creatinine ratio (mg/mmol) 8 ± 13 
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Left ventricular hypertrophy 14 
  
Past medical history  
Ischaemic heart disease 5 
Hypercholesterolaemia 4 
Diabetes mellitus 3 
TIA/CVE 5 
Peripheral vascular disease 1 
Asthma 2 
Treated OSA 1 

Table 5-2. Baseline demographic data for study participants. 
All data shown are for n=18 study participants unless otherwise specified (ABPM data). 
Data are mean ± standard deviation, or (if no units) n. SBP, systolic blood pressure; DBP, 
diastolic blood pressure; BMI, body mass index; eGFR, estimated glomerular filtration 
rate; TIA, transient ischaemic attack; CVE, cerebrovascular event; OSA, obstructive sleep 
apnoea.  
 

 Participants (n=18) 

Antihypertensive medications 5.2 ± 1.8 

Antihypertensive medication classes 4.8 ± 1.8 

Whole dose equivalent 4.0 ± 2.4 

Drug classes  

ACEi/ARB/RI 18 

Calcium channel blocker 12 

Diuretic 14 

Thiazide/Thiazide-like diuretic 11 

Loop diuretic 2 

Aldosterone antagonist 10 

β blocker 11 

α-1 blocker 11 

Centrally acting sympatholytic* 7 

Vasodilator 4 

Table 5-3. Antihypertensive medication prescribed at baseline. 
Data are mean ± standard deviation. Whole dose equivalent is the sum of the 
proportions of the maximum licensed doses for each of the medications prescribed. *All 
patients prescribed moxonidine. ACEi, angiotensin converting enzyme inhibitor; ARB, 
angiotensin receptor blocker; RI, direct renin inhibitor. 
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5.1.5 Discussion 

More than 600 patients were pre-screened via the Bristol Heart Institute Hypertension 

Clinic to identify 19 patients eligible for this study, giving a recruitment rate of 

approximately 3%.  We were unable to achieve the target recruitment of 30 participants 

due to the challenge of identifying patients with true, treatment resistant hypertension, 

suitable renal artery anatomy, who met the stringent inclusion and exclusion criteria, 

and who were happy to participate in a study involving a novel interventional therapy. 

There was a high enrolment rate following formal screening (19/33; 56%), but this 

reflects the fact that most of the patients who attended for screening were well known 

to the clinical members of the research group due to parallel commitments in the 

Hypertension Clinic.  

Symplicity HTN-2 recruited 106 participants out of the 190 patients screened (56%) 

(Esler, Krum et al. 2010), and in Symplicity HTN-3 535/1441 (37%) patients were enrolled 

(Bhatt, Kandzari et al. 2014). This yield must reflect a significant degree of pre-screening, 

as it is considerably highly than the estimated prevalence of resistant hypertension, 

which is likely to be closer to 10% of the hypertensive population (Calhoun, Jones et al. 

2008, de la Sierra, Segura et al. 2011, Egan, Zhao et al. 2011, Persell 2011, Barochiner, 

Alfie et al. 2013). Indeed, in this context, a recruitment rate of 3%, following a thorough 

assessment for pseudo-resistance, optimisation of medications and application of the 

study inclusion and exclusion criteria (e.g. BMI and renal function cut-offs and renal 

artery anatomical criteria), is perhaps not unexpected, and the enrolment target of 30 

patients was always going to have been difficult to achieve in a single-centre study. Any 

future studies in this population should either plan to recruit across multiple sites, or to 

adopt a broader range of hypertensive patients, perhaps including those with multi-drug 

intolerance, who continue to have a significant unmet clinical need. Ideally, an armoury 

of treatment options is needed, such that those with treatment resistant, or drug 

intolerant, hypertension can be offered alternative therapy if they are unsuitable for 

RDN. This was a pilot study, and as such, no power calculation was performed, so it is 

not possible to quantify the impact of sub-optimal participant numbers. 

Despite slightly broader hypertension inclusion criteria, our study population was more 

severely hypertensive than the RDN cohort in Symplicity HTN-2 (mean office BP 192/105 

mmHg vs 178/97 mmHg, respectively), and had a greater proportion of females (50% vs 

35%, respectively), but was similar in other respects (mean values: age 55 vs 58 yrs, BMI 

31 vs 29 kg/m2, eGFR 77 vs 74 mL/min/1.73m2, both 5.2 antihypertensive medication) 

(Esler, Krum et al. 2010). Our participants more closely reflected the RDN treatment 

group in Symplicity HTN-3; office BP 192/105 vs 180/97 mmHg, females 50% vs 40%, age 

55 vs 58 yrs, BMI 29 vs 34 kg/m2, antihypertensive medications 5.2 vs 5.1 (mean values, 

study patients vs Symplicity HTN-3 RDN treatment group patients, respectively) (Bhatt, 

Kandzari et al. 2014). The similarity between our patient cohort’s baseline demographics 

and those of the Symplicity studies reflects the similar inclusion and exclusion criteria 

and is helpful when considering the transposition of findings from this study onto larger 

populations of patients with severe drug resistant hypertension. 

One of the major limitations of the present study, is the lack of formal ABPM baseline 

data in all study participants. 13/18 patients had had a formal ABPM at 

screening/baseline, although the data were not complete in all cases due to extreme 

high BP readings resulting in multiple error readings, or an inability to tolerate the ABPM 
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device for the full 24-hour period. If it was acceptable to the patients, sub-optimal ABPM 

was repeated, but this was not always possible. As explained above, screening for the 

study started before ABPM and HBPM devices dedicated for use in the study were 

available. Consequently, for the patients recruited in the first few months of the study 

no formal screening or baseline ABPM was performed. All patients had had ABPM 

and/or HBPM performed in the Hypertension Clinic prior to screening for the exclusion 

of white-coat hypertension, but this does mean that the baseline dataset for the study 

was incomplete. 

 A major criticism of recruitment in this study, which is also applicable to recruitment in 

Symplicity HTN-2&3 (Esler, Krum et al. 2010, Bhatt, Kandzari et al. 2014), is the absence 

of data confirming medication adherence. Levels of non-adherence may be as high as 

50% in the hypertensive population (Jung, Gechter et al. 2013), and were even higher in 

the SYMPATHY renal denervation study which identified poor adherence, or non-

adherence, in 80% of patients in a retrospective sub-study of urinary drug metabolites 

(de Jager, de Beus et al. 2017). Furthermore, given that non-adherence may be partial 

and variable over time, undocumented changes in antihypertensive medications during 

the study could have represented a significant confounding factor. The blood pressure 

and medication diaries issued to the participants were completed to a varying extent, 

with some patients just documenting the times that medications were taken, whilst 

others provided a comprehensive list of times, drugs and dosages. This could be 

improved by adapting the format of the diary and providing better patient information. 

There is now, however, a wide consensus that the use of a medication diary as a 

surrogate marker for mediation concordance, as used in Symplicity HTN-2, and upon 

which the design of this study was based, is an inadequate tool for the assessment of 

medication adherence in studies of interventional treatments for hypertension (Fadl 

Elmula, Hoffmann et al. 2013, Hameed, Pucci et al. 2015, Schmieder, Ott et al. 2016). In 

light of this, we have obtained ethical approval to obtain consent from our participants 

for the retrospective measurement of drug metabolites in stored and frozen urine 

samples. This will not only inform the interpretation of any changes in BP over the 

course of the study but will also give further insight into levels of adherence amongst 

study participants in trials of interventional therapies for hypertension. 

In Symplicity HTN-2, of the 190 patients assessed for eligibility, 84 were excluded; 36 

(19%) due a systolic BP <160 mmHg after a two week of self-reported confirmation of 

medication compliance, 30 (16%) due to ineligible renal artery anatomy, 10 (5%) who 

declined to participate, and 8 (4%) due to other unspecified factors (Esler, Krum et al. 

2010). Symplicity HTN-3 included ABPM as an additional part of the screening process 

and required a systolic BP of <160 mmHg at two separate screening visits, two weeks 

apart, on stable medication (Bhatt, Kandzari et al. 2014). In Symplicity HTN-3, of the 

1441 patients assessed for eligibility, 463 patients (31%) were found to have an office 

SBP of <160 mmHg, 41 (3%) were not on maximal medical therapy, 178 (12%) had 

unsuitable renal artery anatomy, 50 (3%) had an eGFR of <45 mL/min/1.73m2, 53 (4%) 

had significant comorbid condition, recent hypertensive crises or orthostatic 

hypotension, and 43 (3%) had a 24hr SBP of <135 mmHg on ABPM (the remaining 

patients excluded refused, withdrew or were unable to consent) (Bhatt, Kandzari et al. 

2014, Waksman, Bakris et al. 2017). In both studies, the main reason for exclusion from 

the study was a controlled BP following the use of a medication diary, and repeated BP 

assessment. This emphasises the importance of robust baseline BP assessment, and 
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confirmation of a stable medication regime, prior to enrolment, to limit the impact of 

regression to the mean and Hawthorne effects on BP outcomes. 

Several smaller studies have also looked at the process of screening patients for RDN in 

more detail. Verloop et al. used a standardised, stepwise approach (including 

assessment for secondary hypertension, ABPM and then renal artery imaging) to screen 

181 patients who were referred for RDN (Verloop, Vink et al. 2013). 121 patients (67%) 

were excluded from RDN; 23 patients (19%) had an office SBP <160 mmHg, 26 patients 

(22%) showed a white-coat effect, 14 (12%) had a novel diagnosis of secondary 

hypertension, and 9 patients had ineligible renal artery anatomy. Patel et al. also used a 

stepwise approach to screen 34 patients for renal denervation, at the end of which, only 

5 patients were eligible for the procedure, four of whom refused consent (Patel, Gupta 

et al. 2016). Looking more closely at the reasons for screen failure in the latter study, 

four patients (12%) had insufficiently high BP, two patients (6%) had white-coat effect, 

29% (10 patients) were non-adherent, 6 patients (18%) were on suboptimal treatment, 3 

patients (9%) had primary aldosteronism, and of the seven patients meeting the clinical 

inclusion and exclusion criteria, two were excluded due to inappropriate renal artery 

anatomy. Ultimately these studies, along with published interim data from the 

CardioNomics group combined with data from St Bartholomew’s Hospital which 

reported a 10% yield from screening (33/321 patients) (Burchell, Chan et al. 2016), 

highlight the importance of rigorous assessment for causes of pseudo-resistant 

hypertension if a firm baseline patient demographic is to be established. The process is 

vital to confirm a treatment effect of RDN beyond potential causes of confounding, 

however, it is important to remember that any results obtained from studies using these 

highly defined resistant hypertension cohorts are only directly applicable to other similar 

patients who would meet the study criteria, rather than the general hypertensive 

population. As established above, identifying patients who meet these stringent 

recruitment criteria is challenging, and is a major limitation of the current evidence base 

for RDN 

The SPYRAL HTN studies aimed to address the criticisms over recruitment which have 

been levied against the earlier Symplicity trials through a range of measures (Kandzari, 

Kario et al. 2016, Townsend, Mahfoud et al. 2017, Kandzari, Bohm et al. 2018). ABPM 

was mandated in the screening process to exclude white-coat hypertension, and 

medication adherence to a standardised regime in the ON-MED study (thiazide-type 

diuretic, dihydropyridine calcium-channel blocker, and ACEi or ARB), or the absence of 

medication in the OFF-MED study was confirmed at screening and during follow-up by 

plasma and urine high-pressure liquid chromatography–tandem mass spectroscopy. 

Furthermore, the hypertensive population enrolled was more closely defined, with the 

exclusion of patients with isolated systolic hypertension (office DBP<90 mmHg), and 

patients were required to be on a stable antihypertensive regime, that did not include 

an aldosterone antagonist, for at least 6 weeks (ON-MED study). Interim data are now 

available; for the SPYRAL HTN OFF-MED study 353 patients have been formally screened 

for the study in order to recruit an initial 80 patients for randomisation. This reflects a 

23% recruitment rate from randomisation, reflecting a more moderate level of 

hypertension at baseline, and the exclusion of those with isolated systolic hypertension 

(SYPRAL HTN BP criteria defined as office SBP ≥150 mmHg and <180 mmHg, office DBP 

≥90 mmHg, and a mean 24-h ambulatory SBP ≥140 mmHg and <170 mmHg) (Townsend, 

Mahfoud et al. 2017). The investigators have aimed to try to limit any Hawthorne effect 
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through the removal of inter- and intra-participant differences in  medication 

prescription and adherence as a confounding factor, and through the use of ABPM as 

the primary outcome measure, which due to its automated nature and repeated 

measures is felt to be a less variable measure, and less vulnerable to bias and regression 

to the mean (Townsend, Mahfoud et al. 2017). 

This study was designed to echo the format of Symplicity HTN-2, and before the 

publication and critique of Symplicity HTN-3, and as discussed, there are several 

limitations in the study screening process. The screening methods and criteria for this 

study cannot be altered retrospectively, but these issues will be taken into consideration 

when interpreting the study data and outcomes.  
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5.2 Clinical Outcomes: Safety, blood pressure and target organ 

damage 

5.2.1 Introduction 

Whilst this study aimed to identify markers to aid patient selection and assess 

procedural success in renal denervation, it is important to add to the existing safety and 

clinical outcome data in the field which was presented in Section 2.3.6. These factors will 

ultimately contribute to the successful largescale roll-out of RDN into clinical practice. In 

this section, I will present the safety data for our cohort, along with blood pressure 

outcomes (including reference to medication changes and adherence) and look at the 

impact of RDN on target organ damage including excretory renal function, albuminuria, 

aortic function, and left ventricular function, hypertrophy and fibrosis. The relationship 

between the level of target organ damage and any change in blood pressure following 

RDN will also been assessed. 

 

5.2.2 Methods 

5.2.2.1 Safety  

Procedural safety measures included monitoring of renal function using estimated 

glomerular filtration rate (eGFR) at 1, 3, 6 and 12-month follow-up, and assessment for 

renal artery stenosis by follow-up magnetic resonance angiography (MRA) at 6 months 

post-RDN (see protocol in Section 4.3.4). Adverse events (AEs) occurring between 

enrolment and study completion were documented according to the University 

Hospitals Bristol NHS Foundation Trust Research and Innovation Research Safety 

Reporting protocol (University Hospitals Bristol NHS Foundation Trust 2017). Adverse 

events were classified as mild (easily tolerated by the patient, not interfering with daily 

activities), moderate (sufficiently discomforting to interfere with normal daily activities) 

or severe (preventing normal daily activities), with severe adverse events including those 

resulting in death, that were life-threatening, that required hospitalisation or prolonged 

existing hospitalisation, that resulted in persistent incapacity or disability, or that 

resulted in a congenital abnormality or birth defect. Adverse events were classified as 

expected or unexpected based on previously reported adverse events in the literature, 

with a statement about likely causality. All serious adverse events were reported to the 

study sponsor (University Hospitals Bristol NHS Foundation Trust) and were declared in 

the annual report to the Research Ethics Committee. 

5.2.2.2 Blood pressure outcome data 

Office and ambulatory blood pressure was assessed at baseline and 1, 3, 6 and 12-

months post-RDN according to the methods outlined in Section 4.3.2.   
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5.2.2.3 Heart rate 

Mean resting heart rate (HR) was calculated from the 3-lead ECG recording obtained 

during a 5-10-minute period of quiet, semi-supine, rest. 

5.2.2.4 Total peripheral resistance 

An estimate of total peripheral resistance (TPR) was calculated as follows. TPR = MAP - 

RAP/CO, where MAP was the mean arterial pressure obtained from office BP recordings; 

RAP was the right atrial pressure which for the purposes of this calculation was assumed 

to be negligible, and CO was the cardiac output calculated from the cardiac magnetic 

resonance imaging (CMR) volumetric data (CO = HR x stroke volume). The CMR protocol 

is described in Section 4.3.4.  

5.2.2.5 Prescribed medications 

Prescribed medications were documented at each study visit. Whole dose equivalents 

were calculated for each antihypertensive medication to facilitate the comparison 

between types and classes of drug (see Section 5.1.4.2.1). The patients were also asked 

by the reviewing clinician to confirm adherence to medication. A formal medication 

diary was performed as part of screening but was not repeated at follow-up visits. 

5.2.2.6 Assessment of target organ damage 

Renal function was assessed through the measurement of eGFR from venous blood 

samples, quantified using the MDRD (Modification of Diet in Renal Disease) Study 

equation (Levey and Inker 2017). Renal end-organ damage was also quantified through 

the measurement of the urinary albumin:creatinine ratio. 

All patients underwent comprehensive CMR at baseline and then again 6 months after 

renal denervation. This included quantification of left ventricular (LV) mass and volumes, 

quantification of left ventricular hypertrophy (LVH) and remodelling, assessment of left 

ventricular fibrosis using late gadolinium enhancement and functional quantification 

with measurement of ejection fraction and LV strain parameters.  

The standard CMR protocol is described in Section 4.3.4. Further to this, strain analysis 

assessed the degree of regional myocardial deformation and its timing during the 

cardiac cycle. Strain imaging was performed with voxel-tracking post-processing 

software (Tissue Tracking, CMR42, Circle Cardiovascular Imaging Inc., Calgary, Canada) 

on two-chamber, four-chamber, and short-axis stack SSFP cine images by defining the 

endocardial and epicardial borders (excluding papillary muscles and trabeculae) and the 

mitral valve annular plane at end-diastole (Bistoquet, Oshinski et al. 2008, Rodrigues, 

Amadu et al. 2016). Strain is expressed as the percentage of shortening or lengthening 

of a small element of myocardium in relation to its original length (Gotte, Germans et al. 

2006). Strain analysis uses specialist software to track individual voxels within the 

myocardium. It is then calculated based on an established algorithm (Bistoquet, Oshinski 

et al. 2008, Rodrigues, Amadu et al. 2016). The different directions of myocardial strain 

are illustrated in Figure 5-2. Global longitudinal strain was the averaged strain from four-

chamber and two-chamber analyses. Circumferential and radial strain were calculated as 
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mean values of mid-myocardial segments from the short-axis cine two-dimensional 

strain model (Rodrigues, Amadu et al. 2016).  

In a sub-set of 7 patients, LV interstitial fibrosis was assessed using T1 mapping. 

Myocardial T1 mapping was performed using the modified look-locker inversion-

recovery (MOLLI) sequence [flip angle: 358, minimum time to inversion (TI): 100 ms, TI 

increment: 80 ms, time delay: 150 ms, heart beat acquisition scheme: 5-(3)-3] 

(Messroghli, Greiser et al. 2007). Regions of interest were drawn within the mid-septum 

on short-axis, motion-corrected native T1 maps and transposed onto corresponding 15-

min post-contrast maps for analysis (Rodrigues, Amadu et al. 2016). T1 analysis was 

performed with Argus software (Siemens, Erlangen, Germany), as previously described 

(Pica, Sado et al. 2014). The T1 values were the mean of all pixels within the region of 

interest. The extracellular volume fraction (ECV) was calculated as: ECV = 

(∆R1myocardium/∆R1blood-pool) × (1 - haematocrit), where ∆R1 = (1/post-contrast T1 - 1/native 

T1). Myocardial cell volume (MCV) fraction was defined as 1 - ECV and multiplied by 

indexed myocardial volume (indexed LVM divided by 1.05 g/mL, the myocardial specific 

gravity). Indexed interstitial volume (IV) was defined as ECV × indexed myocardial 

volume (Rodrigues, Amadu et al. 2016). 

 

 

Figure 5-2. Dimensions of myocardial strain. 
Myocardial strain quantifies the degree of myocardial deformation (percent change) in 
three different dimensions; longitudinal strain (LS), radial strain (RS), and circumferential 
strain (CS). These directions of strain are pictured in reference to the long axis (LAS) of 
the left ventricle in the figure above (Cheng-Baron, Nelson et al. 2011). 
 
 
 
Ascending aortic stiffness was also assessed from the CMR data as previously described 

(Groenink, de Roos et al. 2001, Rodrigues, Amadu et al. 2015, Rodrigues, Amadu et al. 

2016). Ascending aortic compliance = ΔA/ΔP where: ΔA (mm2) was defined Asyst–Adiast. 

Asyst and Adiast were measured from cine images perpendicular to the ascending aorta at 

the level of the right pulmonary artery, and are the areas of the ascending aorta 

measured at end-systole and end-diastole respectively. Ascending aortic distensibility 
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was estimated as follows: distensibility = ∆A/(Adiast × ∆P). ∆P (in mmHg) is the pulse 

pressure estimated from SBP minus DBP. Measurements were acquired by an 

experienced blinded CMR reader (Dr J. Rodrigues). Excellent reproducibility of these 

measures has previously been reported (Groenink, de Roos et al. 2001). 

Changes in the recorded measures of target organ damage were correlated against the 

patients’ change in office systolic BP at 6 months post-RDN. 

5.2.3 Results 

5.2.3.1 Safety 

5.2.3.1.1 Renal parameters. 

Assessing data from all 18 participants, there was a significant reduction in eGFR at the 

primary end-point, 6 months post-RDN (74 ± 3 ml/min/1.73m2 vs 71 ± 3 ml/min/1.73m2 

at 0 and 6 months, respectively, p=0.048, see Figure 5-3). Over the full course of the 

study there was also a significant reduction in eGFR (data carried forward, p=0.01) with 

a significant difference between the mean eGFR at baseline and that at 12 months (74 ± 

3 ml/min/1.73m2 vs 67 ± 4 ml/min/1.73m2 respectively, p<0.05; see Figure 5-4). When 

the eGFR data are categorised by BP response to RDN (responders: ≥10 mmHg fall in 

office SBP at 6 months), there was no significant change in eGFR during the study 

amongst the responders, however, the non-responders showed a significant reduction 

in eGFR (data carried forward; see Figure 5-4). At 6 months post-RDN, the change in 

office SBP correlated with the change in eGFR, with those with no change in SBP, or an 

increase in SBP following RDN showing a reduction in eGFR (see Figure 5-5). There was 

no significant difference in baseline eGFR between responders and non-responders (74 ± 

4 ml/min/1.73m2 vs 72 ± 3 ml/min/1.73m2 respectively, p=0.73).  

 

 

Figure 5-3. Significant reduction in estimated glomerular filtration rate (eGFR) at 6 
months after renal denervation. 
Data for all 18 participants, analysed by paired Student’s t-test 
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Figure 5-4. Change in renal function as assess by estimated glomerular filtration rate 
(eGFR) following renal denervation (RDN). 
Data for all 18 participants (A), RDN responders (B, n=11) and RDN non-responders (C, 
n=7) is shown. The upper p value reflects the results from a Friedman Test, the lower p 
value is from Dunn’s Multiple Comparison Test (significant data shown). Please note, the 
maximum eGFR reported by our laboratory is >90 ml/min/1.73m2, limiting assessment 
of change in eGFR in those with normal excretory function. 
 

 

Figure 5-5. Correlation between the change in office systolic blood pressure (SBP) and 
the change in estimated glomerular filtration rate (eGFR) at 6 months post-RDN. 
Follow-up MRI scans were performed on average 207 ± 10 days post procedure (range 

164-318 days). Renal artery stenosis was not detected on MR angiography in any of the 

18 study participants.  



  

138 
   

 

5.2.3.1.2 Adverse Events 

There were 29 adverse events during the study, of these, 21 were classified as serious 

adverse events, affecting 13 patients. Seven of the serious adverse events occurred 

during the screening period in patients not ultimately recruited to the study, however, 

since these events occurred following study consent but prior to formal exclusion and 

withdrawal, they have been reported to the study sponsor. The serious adverse events 

are summarised in Table 5-4, and it should be noted that of the non-serious events, 

syncope was documented in two patients following the procedure, resulting in 

adjustments in antihypertensive medications.  

 

Patient Event Comment 

Events occurring prior to RDN 

A 
Unstable angina requiring bypass 
grafting 

Met exclusion criteria 

A 
Unstable angina requiring percutaneous 
coronary intervention 

Met exclusion criteria 

2 
Chest pain and palpitations Diagnosed with non-cardiac pain 

following investigation 

B Rectal bleeding Met other exclusion criteria 

C Worsening severe renal impairment Met exclusion criteria 

D 
Haematuria and urinary retention 
resulting in hospitalization 

Not recruited 

D 
Fall with head injury secondary to 
hypotension 

Labile BP due to autonomic 
failure, not recruited. 

Events occurring after RDN 

2 Fractured foot following mechanical fall No associated postural 
hypotensive symptoms, felt 
unlikely to be related to RDN. 4 

Fractured fibula following mechanical 
fall 

8 Possible transient ischaemic attack Normal CT brain 

10 
Haematoma at femoral artery access 
site post-procedure 

Related to RDN, recognized 
complication of angiography. 

12 
Pyelonephritis requiring intravenous 
antibiotics 

Remote to procedure, not felt to 
be related 

13 

Cerebrovascular event Remote to procedure, not 
unexpected in patient with 
sustained hypertension following 
RDN. 

15 
Admission following RDN prolonged by 
2 days due to hypotension 

Related to RDN, but not 
unexpected 

17 
Admission following RDN prolonged by 
3 days due to hypotension with acute 
kidney injury 

Sequalae fully resolved. Related 
to RDN, but not unexpected. 
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17 
5 further admissions due to severe 
symptomatic hypertension, including 
novel diagnosis of cerebellar infarction 

Not unexpected, in patient with 
severe hypertension. 
 

18 
Unprovoked pulmonary embolus Remote to procedure, not felt to 

be related to RDN. 

Table 5-4. Summary of serious adverse events occurring during the study. 
Patients enrolled in the study are indicated by their numerical study identification 
number. Patients screened for, but not enrolled in, the study are designed by a letter 
patient identifier. 
 

5.2.3.2 Blood pressure outcomes 

5.2.3.2.1 Office blood pressure 

11/18 (61%) patients responded to RDN with an office BP reduction of ≥10 mmHg at 6 

months post-RDN, however, the individual responses to RDN were highly variable (see 

Figure 5-6), and there was no significant difference in the principle study BP endpoint, 

between baseline office systolic BP (oSBP) and 6-month oSBP (192 ± 5 mmHg vs 177 ± 7 

mmHg, n=18, p=0.10). The mean change in office blood pressure was -11 ± 8/-4 ± 5 

mmHg (n=17, p=0.20/0.67), -13 ± 9/-4 ± 5 mmHg (n=15, p=0.18/0.93), -16 ± 9/-2 ± 6 

mmHg (n=18, p=0.10/0.56) and -26 ± 8/-11 ± 5 mmHg (n=17, p=0.005/0.04) at 1, 3, 6 

and 12 months following RDN, respectively (p values for change in office BP are for 

Student’s t-test versus zero baseline). Whilst there was no significant change in oSBP by 

the primary 6-month outcome measure, office systolic and diastolic BP had significantly 

reduced amongst the 17 participants who attended 12-month follow-up. There were 

also significant changes in mean oSBP and mean office diastolic BP (oDBP) as assessed 

by 1-way ANOVA with data carried forward (see Figure 5-7). 

 

 
Figure 5-6. Change in office systolic blood pressure (oSBP) following renal denervation 
(RDN), shown for individual study participants. 
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Dashed line indicates 10mmHg reduction in oSBP; responders to renal denervation were 
defined as those participants with a ≥10 mmHg reduction in oSBP at 6 months post-RDN. 
 
 
 

 

Figure 5-7. Mean office systolic (A.) and diastolic (B.) blood pressure at baseline and 
then 1, 3, 6 and 12 months follow-up post-RDN. 
There were significant changes in office systolic and diastolic BP by 1-way ANOVA (mean 
carried forward for missing data) across the study visits (upper p value), with a 
significant reduction in oSBP and oDBP seen at 12 months after denervation as 
compared with baseline (Bonferroni between group comparison).  
 

 

 

5.2.3.2.2 Ambulatory blood pressure 

24hr ambulatory blood pressure monitoring (ABPM) data were obtained in 10/18 

participants at baseline. In one of these participants, ABPM data were successfully 

obtained at baseline, but not at any of the study follow-up visits, and therefore outcome 

24hr ABPM data can only be presented for 9/18 patients. This subset of patients 

includes 4 RDN responders and 5 RDN non-responders based on 6-month oSBP results. 

The mean reduction in 24hr ABPM in the subset of patients with available data was -2 ± 

4/-1 ± 2 mmHg (n=7, p=0.56/0.87), -5 ± 7/0 ± 5 mmHg (n=6, p=0.50/0.67), -7 ± 4/-1 ± 3 

mmHg (n=8, p=0.12/0.83) and -5 ± 7/-3 ± 5 mmHg (n=8, p=0.55/0.64) at 1, 3, 6 and 12 

months, respectively (p values for change in office BP are for Student’s t-test versus zero 

baseline). Analysis of the absolute 24hr ABPM data showed no significant change in 

systolic or diastolic BP across the follow-up period post-RDN (repeated measures 1-way 

ANOVA with data carried forward; n= 9, p=0.47/0.82, see Figure 5-8). 

Daytime ABPM data were obtained in 13/18 participants (6/13 of these were RDN 

responders, individual data shown in Figure 5-9). The mean change in mean daytime BP 

in this subset of patients with available data was -3 ± 7/0 ± 5 mmHg (n=11, p=0.64/0.96), 

-9 ± 9/-3 ± 6 mmHg (n=9, p=0.38/0.62), -8 ± 6/-3 ± 4 mmHg (n=12, p=0.37/0.53) and -11 

± 8/-7 ± 5 mmHg (n=10, p=0.28/0.26) at 1, 3, 6 and 12 months, respectively (p values for 

change in office BP are for Student’s t-test versus zero baseline). Analysis of the absolute 
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daytime ABPM data showed no significant change in systolic or diastolic BP across the 

follow-up period post-RDN (repeated measures 1-way ANOVA; n= 13, p=0.14/0.13, see 

Figure 5-10). The was no change in mean night-time ABPM over the course of the study 

(n=11, p=0.19). 

 

 

Figure 5-8. Mean 24hr ambulatory systolic (A.) and diastolic (B.) blood pressure at 
baseline and then 1, 3, 6 and 12 months follow-up post-RDN. 
There was no significant change in 24hr systolic or diastolic BP by 1-way ANOVA across 
the study visits (n= 9, p=0.47/0.82). 
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Figure 5-9. Change in daytime ambulatory systolic blood pressure (ABPM) following 
renal denervation (RDN). 
Data shown for individual patients (n=13). Dashed line shows ABPM reduction of 5 
mmHg which is commonly used as the cut-off to define a clinical response to RDN as 
assessed by ABPM (Mahfoud, Ukena et al. 2013). 

 

Figure 5-10. Mean daytime ambulatory systolic (A.) and diastolic (B.) blood pressure at 
baseline and then 1, 3, 6 and 12 months follow-up post-RDN. 
There was no significant change in daytime systolic or diastolic BP by 1-way ANOVA 
across the study visits (n= 13, p=0.14/0.13). 
 

Data for daytime ABPM, which had the greatest number of available data points (13 

participants), was analysed by RDN response group. When considering the outcome at 6 

months post-RDN analysed by paired Student’s t-test, there was no significant change in 

mean daytime systolic or diastolic BP amongst in either responders (n=5/13, no 6-month 

data for one responder) or non-responders (n=7/13). When data were analysed by 

repeated measures ANOVA with data carried forward, RDN responders (n=6/13) had a 

significant reduction in daytime ABPM (daytime SBP and DBP both p=0.02), with 

significant differences between both systolic and diastolic baseline daytime ABPM 

versus daytime ABPM at 12 months by Dunn’s multiple comparison test (173 ± 7 mmHg 

vs 146 ± 8 mmHg, p<0.05 and 105 ± 4 mmHg vs 87 ± 4 mmHg, p<0.05, respectively). 

There was no significant change in daytime ABPM amongst RDN non-responders 

(n=7/13) over the course of the study when assessed by repeated-measures ANOVA. 

5.2.3.3 Heart rate  

The was no significant change in mean resting heart rate at 6 months post-RDN (66.5 ± 

2.1 bpm vs 66.5 ± 3.3 bpm, n=18, p=0.99, bpm: beats per minute) Furthermore, there 

was no significant change in HR over the course of the study when analysed by repeated 

measures ANOVA (data carried forward); heart rate 66.5 ± 2.1 bpm, 64.6 ± 2.3 bpm. 63.6 

± 2.2 bpm, 66.5 ± 3.3 bpm, and 63.6 ± 2.2 bpm at 0, 1, 3, 6 and 12 months post-RDN, 

respectively (p=0.47). There was no significant correlation between baseline oSBP and 

baseline resting HR (R=0.35, p=0.15), and no correlation between the change in oSBP at 

6-months post-RDN and the change in mean HR 6 months post-RDN (R=-0.02, p=0.92). 

When analysed by RDN BP-response group, there was no significant change in HR 

amongst either RDN responders (n=11) or non-responders (n=7) either by paired t-test 

at baseline versus 6 months (n=11, p=0.83 and n=7, p=0.52, respectively) or by 



  

143 
   

repeated-measures ANOVA across all time points (data carried forward; p=0.24 and 

p=0.33 for responders and non-responders, respectively). 

5.2.3.4 Total peripheral resistance 

There was no significant difference between estimated TPR at baseline versus 6 months 

post-RDN (20.2 ± 1.3 mmHg/l/min vs 20.1 ± 1.3 mmHg/l/min, n=18, p=0.96). At baseline, 

there was no correlation between oSBP and TPR (R=0.27, p=0.28). There was a strong 

correlation between the change in oSBP at 6-months post RDN and the change in TPR at 

the same timepoint (R=0.73, p=0.0005, see Figure 5-11). RDN responders tended 

towards a reduction in TPR at 6 months, although this was not significant (∆ -2.2 ± 1.7 

mmHg/l/min, n=11, p=0.22), whereas RDN non-responders had a significant increase in 

TPR following RDN (∆ 3.3 ± 0.7 mmHg/l/min, n=7, p=0.004). 

 

 

Figure 5-11. Correlation between the change in office systolic blood pressure (SBP) and 
the change in total peripheral vascular resistance (TPR) at 6 months after renal 
denervation. 
Data for all eighteen study participants. Data shown are for Pearson’s correlation 
coefficient (R), with significance taken as p<0.05; a reduction in SBP following RDN was 
associated with a reduction in TPR. 

5.2.3.5 Medications 

The primary intention of the study was for medications to remain unchanged following 

baseline assessment, until 12-month follow-up was complete. 16/18 patients had 

changes to their prescribed medication over the course of the study, this included 

decreases in medication in patients with symptomatic hypotension, increases in 

medication in participants with ongoing severe hypertension, and one participant who 

discontinued all their medication following the RDN procedure against medical advice. 

The details of the specific medications prescribed, and changes made over the course of 

the study are provided in Appendix 1; these data are summarised in Table 5-5. 
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 Time post RDN (months)   
0 1 3 6 12 P 

No. antihypertensive 
drugs 

5.2 ± 0.4 4.2 ± 0.4 4.4 ± 0.5 4.4 ± 0.5 4.9 ± 0.5 0.02 

No. antihypertensive 
drug classes 

4.8 ± 0.4 3.9 ± 0.4 4.1 ± 0.4 4.2 ± 0.5 4.6 ± 0.4 0.02 

Whole dose 
equivalents 

4.0 ± 0.6 3.1 ± 0.5 3.3 ± 0.5 3.3 ± 0.5 3.7 ± 0.5 0.05 

Table 5-5. Mean prescribed medications by total number of antihypertensive drugs, 
total number of antihypertensive drug classes and whole dose equivalents.  
The whole dose equivalent is the sum of the proportions of the maximum licensed dose 
prescribed of the patient’s medications. The p value is for the repeated measures 1-way 
ANOVA for all 18 patients. 
 

5.2.3.6 Target organ damage 

5.2.3.6.1 Renal function 

Data for renal function as estimated by changes in eGFR over the course of the study 

were reported in Section 5.2.3.1.1. Microalbuminuria is a prognostic marker of 

cardiovascular risk (Viazzi, Cappadona et al. 2016). Baseline albumin: creatinine ratio 

(ACR) was 8.0 ± 3.6 mg/mmol (range 0.5 – 51.6 mg/mmol, n=14). Eleven participants 

had follow-up ACR data at 6 and/or 12 months post-RDN. There was no change in ACR 

between during follow-up in this subset of patients 8.0 ± 4.5 mg/mmol, 9.5 ± 4.3 

mg/mmol and 10.8 ± 4.0 mg/mmol at 0, 6 and 12 months, respectively (repeated 

measures Friedman test p=0.47). There was also no significant change in ACR when 

analysed by response to RDN (responders p=0.96, non-responders p=0.25). 

5.2.3.6.2 Cardiac structure and function 

Cardiac MRI (CMR) data were obtained in all 18 patients before and after RDN. The 

baseline and follow-up CMR data are summarised in Table 5-6.  

 

Parameter Pre-RDN Post-RDN P 

Volumetrics    

LVEF (%) 66 ± 2 66 ± 2 0.79 

LV mass (g) 177 ± 13 159 ± 11 0.01 

Indexed LV mass (g/m2) 90 ± 6 80 ± 5 0.01 

EDV (ml) 162 ± 8 155 ± 8 0.21 

Indexed EDV (ml/m2) 82 ± 3 79 ± 4 0.23 

ESV (ml) 56 ± 5 54 ± 5 0.67 

Indexed ESV (ml/m2) 28 ± 2 27 ± 2 0.62 

SV (ml) 106 ± 5 101 ± 5 0.19 

Indexed SV (ml/m2) 53 ± 2 51 ± 2 0.28 

Strain    

Peak radial strain (%) 32 ± 2 35 ± 2 0.13 
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Peak circumferential strain (%) -18 ± 1 -20 ± 1 0.15 

Peak longitudinal strain (%) -18 ± 1 -19 ± 1 0.14 

Peak systolic radial strain rate (%/sec) 196 ± 17 218 ± 13 0.16 

Peak systolic circumferential strain rate (%/sec) -105 ± 7 -110 ± 4 0.40 

Peak systolic longitudinal strain rate (%/sec) -98 ± 6 -95 ± 4 0.55 

Peak diastolic radial strain rate (%/sec) -201 ± 20 -181 ± 13 0.34 

Peak diastolic circumferential strain rate (%/sec) 110 ± 11 89 ± 5 0.06 

Peak diastolic longitudinal strain rate (%/sec) 115 ± 12 95 ± 4 0.08 

Table 5-6. Left ventricular volumetric and strain parameters as assessed by cardiac 
MRI, before and 6-months after renal denervation (RDN). 
Data for all 18 participants, indexed to body surface area and expressed as mean ± SEM. 
Difference between measures pre- and post-RDN were assessed using a paired Student’s 
T test, significance taken as p<0.05. LVEF; left ventricular ejection fraction, LV, left 
ventricular, EDV; end diastolic volume, ESV; end systolic volume, SV; stroke volume. 
 

Following RDN, there was a significant reduction in LVM and LVM index (see Table 5-6 

and Figure 5-12), whilst other volumetric parameters remained unchanged. The change 

in office SBP at 6-months post-RDN correlated with the changes in LVM (R=0.62, 

p=0.006), indexed LVM (R=0.56, p=0.02), peak radial strain (R=-0.53, p=0.02), and peak 

circumferential strain (R=0.54, p=0.02) (see Figure 5-13).  

At baseline 14/18 (78%) patients had left ventricular hypertrophy (LVH), 0/18 patient 

had left ventricular remodelling and 4/18 patients had normal range LV mass and 

morphology. Following RDN, 11/18 (61%) patients had LVH, 2/18 patients were defined 

as having LV remodelling, and 5/18 patients had normal range LV mass and M/V 

parameters. When assessed via late gadolinium enhancement 2 patients had evidence 

of previous myocardial infarction at baseline, with one of these individuals also having 

evidence of LV fibrosis, after denervation, a separate participant was reported to have 

regression of raised LVM, but increased LV fibrosis.  

When considering LV systolic function, at baseline, 16/18 participants had a LV ejection 

fraction (LVEF) of >55%; 2/18 patients had an LVEF of between 50% and 55%, no 

patients had an LVEF of <50%. Following RDN, LVEF was >55% in all participants, bar one 

individual, who had responded to RDN with a BP reduction, but had a decrease in LVEF 

from 71% to 47% (it should be noted that this individual had discontinued their cardiac 

medication against medical advice). Despite this pattern for a normalisation of LVEF, 

there was no change in mean LVEF following RDN (see Table 5-6). The strain data may 

indicate a pattern for an increase in peak strain in all dimensions after denervation, but 

none of these changes attained significance. There was a borderline decrease in peak 

diastolic circumferential and longitudinal strain rate (see Table 5-6).  

There was no correlation between baseline office SBP and any of the CMR volumetric or 

strain parameters at baseline (all p>0.05).  

When considering the changes in the CMR parameters by response group, RDN 

responders had borderline reductions in LVM and LVM index (n=11, -22 ± 8 g and -11 ± 4 

g/m2 respectively, both p=0.05), but no significant changes in any of the other 

volumetric or strain parameters. Non-responders also had a reduction in indexed LVM 

(n=7, -9 ± 2 g/m2, p=0.03), but no other changes in the CMR parameters were observed. 
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There were no significant differences in any of the CMR indices listed in Table 5-6 at 

baseline, or on repeat imaging after RDN, between BP responders and non-responders 

(all p>0.05). 

 

 

 

Figure 5-12. Left ventricular mass (A) and left ventricular mass index (B), before and 6 
months after renal denervation (RDN). 
Data for all 18 participants. P value refers to paired Student’s T test. 

 

 

Figure 5-13. Correlations between the change in office systolic blood pressure (SBP) 
following renal denervation, and the changes in A. Left ventricular mass, B. Left 
ventricular mass index, C. Peak radial strain and D. Peak circumferential strain, at 6 
months after renal denervation. 
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Data for all eighteen study participants. Data shown are for Pearson’s correlation 
coefficient (R), with significance taken as p<0.05. A reduction in SBP was associated with 
an improvement (reduction) in LV mass and LV mass index, and improvements in peak 
radial (increased thickening) and peak circumferential (increased shortening) strain. 
 

In a subset of 7 participants, T1 mapping was performed to better assess the effect of 

RDN on LV interstitial fibrosis. The T1 mapping data are summarised in Table 5-7; none 

of the T1 parameters listed correlated with office SBP at baseline (all p>0.05). There was 

a significant reduction in indexed interstitial volume, with a trend towards a reduction 

indexed myocardial cell volume, and an overall trend towards a reduction in the ECV 

(see Table 5-7). There were no correlations between changes in any of the T1 mapping 

parameters and the change in office SBP at 6 months post-RDN (all p>0.05) and given 

the small number of participants in this sub study, it is not appropriate to analyse by 

RDN response group. 

 

Parameter Pre-RDN Post-RDN P 

Extracellular volume fraction 0.27 ± 0.01 0.26 ± 0.01 0.06 

Interstitial volume (ml) 49.6 ± 9.3 44.6 ± 8.0 0.08 

Indexed interstitial volume (ml/m2) 25.1 ± 3.9 22.2 ± 3.5 0.04 

Myocardial cell volume (ml) 132.8 ± 21.4 126.1 ± 19.6 0.19 

Indexed myocardial cell volume (ml/m2) 67.6 ± 8.7 63.0 ± 8.2 0.07 

Table 5-7. T1 mapping parameters before and after renal denervation (RDN).  
Data for 7 participants with T1 mapping data. P value refers to paired Student’s T Test. 
 
 
 
5.2.3.6.3 Aortic distensibility 

Data on aortic compliance and distensibility were available for 15/18 patients at 

baseline; all of these patients had follow-up data on aortic function at 6 months post-

RDN. There was no significant correlation between baseline office SBP and either 

baseline aortic compliance or baseline aortic distensibility (R=0.03, p=0.93 and R=0.16, 

p=0.57, respectively). There was no significant change in aortic compliance or 

distensibility following RDN, even once analysed by RDN BP-response subgroup (see 

Table 5-8). In keeping with the latter result, there was no correlation between the 

change in office SBP at 6-months post RDN and the change in either aortic compliance or 

distensibility following the procedure (R=-0.43, p=0.11 and R=-0.36, p=0.18, 

respectively), although the trend in these data may suggest that a reduction in SBP 

following RDN is associated with an increase in aortic distensibility. 

 

Parameter Pre-RDN Post-RDN P 

Aortic compliance (mm2/mmHg) 1.31 ± 0.22 1.63 ± 0.24 0.11 

Responders 1.48 ± 0.27 1.88 ± 0.32 0.18 

Non-responders 1.06 ± 0.40 1.26 ± 0.35 0.46 

Aortic distensibility (mm2/mmHg x103) 1.59 ± 0.28 1.86 ± 0.24 0.31 
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Responders 1.82 ± 0.38 2.13 ± 0.29 0.46 

Non-responders 1.24 ± 0.38 1.45 ± 0.38 0.52 

Table 5-8. Aortic compliance and distensibility before and after renal denervation 
(RDN).  
Data are presented for the 15 patients with suitable aortic imaging available at baseline, 
and also by subgroup analyse according to BP response to RDN (in italics). 9/15 were 
classified as responders (office SBP reduction of ≥10 mmHg at 6 months post RDN) and 
6/15 were non-responders. P value refers to paired Student’s T Test. 
 
 

5.2.4 Discussion 

5.2.4.1 Safety 

Our data are consistent with those from large commercial studies and registry data 

(previously reviewed in Section 2.3.6) in demonstrating an acceptable safety profile for 

RDN (Esler, Krum et al. 2010, Bhatt, Kandzari et al. 2014, Vogel, Kirchberger et al. 2014, 

Sharp, Davies et al. 2016, Townsend, Mahfoud et al. 2017, Kandzari, Bohm et al. 2018). 

In this cohort, there was one complication directly related to the procedure (femoral 

haematoma), but reassuringly, none of the patients developed de novo renal artery 

stenosis following renal endovascular ablation. Two patients had prolonged admissions 

(>24hrs) following RDN due to symptomatic hypotension. The hypotension may well be 

a result of the acute haemodynamic changes following disruption of the renal nerves 

since both patients also responded to RDN at 6 months, however, it also possible that 

inpatient admission for assessment and titration of antihypertensive medications 

unmasked poor medication adherence. All other adverse events were either not 

attributable and/or remote to the intervention or were not unexpected in patients with 

severe resistant hypertension (see Table 5-4).  

The ENCOReD meta-analysis reported no adverse effect of RDN on renal function (Fadl 

Elmula, Jin et al. 2015). Amongst our study cohort, there was a significant reduction in 

eGFR over the course of the study. However, on closer analysis, this decline in renal 

function was limited to those patients with sustained (or worsening) severe 

hypertension who failed to respond to RDN, and was not seen amongst RDN BP -

responders, and thus does not suggest that effective RDN induces a greater rate of renal 

dysfunction. Our data emphasise uncontrolled hypertension as a risk factor for chronic 

kidney disease (CKD) (Ott, Mahfoud et al. 2015), and in keeping with this, renal 

denervation has previously been shown to preserve renal function in patients with CKD 

and resistant hypertension (Ott, Mahfoud et al. 2015). 

5.2.4.2 Blood pressure outcomes 

61% of study participants responded to RDN with a ≥10 mmHg reduction in office SBP at 

6 months post denervation. The study failed to achieve one of its principle outcome 

measures in that there was no significant reduction in office SBP at 6 months after RDN. 

However, there was a significant change in office SBP across the follow-up period 

(ANOVA p=0.005), reaching significance at 12 months (see Figure 5-7).   
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What is clear from Figure 5-6, is that the individual BP responses were highly variable, 

with some patients developing a clinically significant (≥10 mmHg, n=11) reduction in 

office SBP 6 months post-RDN, whilst in others little BP effect (n=4) or an increase in BP 

(n=3) was observed. The mean reduction in office SBP at 6 months in this study was not 

of the magnitude seen in Symplicity HTN-1&2 (-22mmHg and -32 mmHg, respectively), 

although our 12-month data are more comparable, and the response rate of 61% was 

much lower than the 87% and 84% response rates reported in these studies (Krum, 

Schlaich et al. 2009, Esler, Krum et al. 2010). The ALSTER and Heidelberg registries also 

report better response rates of 76% (n=93) and 73% (n=63) respectively (Kaiser, Beister 

et al. 2014, Vogel, Kirchberger et al. 2014). Our data are more reflective of the success 

rates seen in other European studies (Zuern, Eick et al. 2013, Hameed, Pucci et al. 2015, 

Rohla, Nahler et al. 2015), and data from the UK Renal Denervation Affiliation (office BP 

reduction of 22/9 mmHg (p<0.001) in a cohort of 246 patients from 16 centres) (Sharp, 

Hameed et al. 2015). Likewise, Persu et al. report a response rate of 59.6% in their meta-

analysis of 10 European expert RDN centres (Persu, Jin et al. 2014), and the Global 

Symplicity Register of 998 patients gives a response rate of 67% (Bohm, Mahfoud et al. 

2015).  

The SPYRAL HTN-OFF MED study reflects a slightly different patient population (more 

moderate hypertension, off medication) with study investigators reporting a preliminary 

3-month office SBP reduction of -10.0 mmHg (-15.1 to -4.9; p=0·0004) (Townsend, 

Mahfoud et al. 2017). Longer term outcomes are awaited for this study, however, the 

data presented do demonstrate the individual variability in the BP response to RDN 

which must be taken into account when counselling and consenting patients prior to the 

procedure (Townsend, Mahfoud et al. 2017). The reduction in office SBP reported in the 

preliminary results of the SYPRAL HTN-ON MED study was of an even smaller magnitude 

(-6·6 mmHg (-12·4 to -0·9; p=0·03)at 6 months) (Kandzari, Bohm et al. 2018). These 

findings support our clinical impression that whilst renal denervation is effective in some 

patients, it is not a panacea for all patients with poorly controlled hypertension. 

There was no significant change in mean 24hr BP or daytime BP either across the study 

follow-up period, or at any specific time point versus baseline when analysed for 

participants with available data (see Figure 5-8 and Figure 5-10). The subset of 13 

patients with available daytime ABPM data included 6 RDN responders, and 7 RDN non-

responders, and on sub-group analysis, there were significant reductions in daytime 

systolic and diastolic BP amongst RDN-responders, not seen in the non-responder group. 

This may not seem surprising, since the responders, by definition had had a reduction in 

office SBP following RDN, but it is an important observation, since ABPM data represent 

a more robust outcome measure (Mahfoud, Ukena et al. 2013), and may more 

accurately predict mortality and morbidity than office BP measurement (Dolan, Stanton 

et al. 2005, Dolan, Stanton et al. 2009). Incomplete ABPM data is a major limitation of 

this study, which must rely on oBP outcomes as the primary outcome measure. This is 

due, in part, to a lack of dedicated ABPM devices in the early part of the study, however, 

the major factor limiting data was patients’ inability to tolerate the ABPM device. 

Patients with extreme high BP require high cuff inflation pressures, which can be 

uncomfortable for patients. We also experienced problems with multiple error readings 

due to extreme high BP, and for one patient with very severe hypertension (office BP 

often >250 mmHg) accurate ABPM data could not be obtained. 
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5.2.4.3 Heart rate and total peripheral resistance 

It is interesting to note that there was no significant reduction in mean resting heart rate 

or estimated TPR following RDN in this cohort. If RDN is mediated by a reduction in 

sympathetic tone, then a reduction in heart rate (which is in part under sympathetic 

control) might have been anticipated. Interestingly, the effect of RDN on heart rate is 

not reported in Symplicity HTN 1,2 or 3 ((Krum, Schlaich et al. 2009, Esler, Krum et al. 

2010, Bhatt, Kandzari et al. 2014), however, in a cohort of 35 patients in which 

sympathetic nerve activity was assessed following RDN, Herring et al. report no change 

in resting HR (Hering, Marusic et al. 2014). It may be that there are too many 

confounding variables impacting this acutely responsive physiological parameter to see 

an outcome ‘signal’ above the noise. HR will also be confounded by negatively 

chronotropic medications such as β blockers or non-dihydropyridine calcium channel 

blockers, which may blunt the effect of any change in SNA. 

Estimated TPR did not change significantly over the course of the study and was not 

correlated with office SBP at baseline. There was, however, a strong correlation 

between the change in oSBP at 6-months post RDN and the change in TPR at the same 

timepoint (R=0.73, p=0.0005, Figure 5-11), with RDN-responders trending towards a 

reduction in TPR and RDN non-responders showing an increase in TPR. This observation 

may purely reflect the fact that TPR is dependent on SBP as a moderator of MAP, but 

does suggest that the increase in TPR secondary to hypertension may not be fully 

reversible in this time frame. The limitations of this calculated estimate of TPR must be 

emphasised; it is derived from measures of office SBP and CMR cardiac output, which 

were not measured simultaneously, and assumes negligible right atrial pressure. The 

estimate of TPR does provide a useful variable when interpreting other physiological 

changes following RDN presented in subsequent sections of this manuscript. 

5.2.4.4 Medication changes 

The primary intention of the study was for medications to remain unchanged following 

baseline assessment, until 12-month follow-up was complete. Despite this, the majority 

of patients (16/18) had changes to their prescribed medication over the course of the 

study. There were a variety of reasons for this, the most significant of which was the 

reduction in the number of antihypertensive drugs in the initial post-procedural period 

due to symptomatic hypotension. These medications had largely been reintroduced by 

the time these patients reached 6-month follow-up. Medications were also changed in 

response to patient reported side-effects, altered by other medical teams, and in one 

case a participant discontinued all their medication following the RDN procedure against 

medical advice. These changes in prescribed medication are clearly a major limitation for 

this study and present a confounding factor when interpreting outcome and 

physiological data. A more rigorous and formally structured medication regime, such as 

that used in DENERHTN or the SPYRAL-ON MED studies would have helped to address 

these issues (Azizi, Sapoval et al. 2015, Kandzari, Kario et al. 2016).  

A stepped, standardise prescribing regimen goes part way to addressing confounding 

due to changes in medication, and would help in interpreting physiological data since 

the patients would be on the same classes of drugs, however, it does not confirm 

medication adherence, and cannot fully address a Hawthorne effect due to increased 
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medication adherence following study recruitment. Participants need to be on a stable, 

well-tolerated, medication regime, with confirmed adherence (for example with testing 

of urinary drug metabolites over the course of 4 months) prior to RDN, to establish a 

robust baseline. A structured plan must also be in place for a standardised step-down in 

medication in the event of symptomatic hypotension, and effective communication 

between different teams involved in the patients’ care is required to prevent changes in 

medication outside the context of the study, unless clearly clinically mandated.  

5.2.4.5 Target organ damage 

Hypertension is an established risk factor for, and predictor of, cardiovascular mortality 

and morbidity (Dolan, Stanton et al. 2005, Dolan, Stanton et al. 2009). A reduction in 

blood pressure is therefore an established primary outcome measure in studies of novel 

antihypertensive therapies, however, any reduction in BP must ultimately translate into 

a reduction in hypertensive target organ damage, cardiovascular disease, and potentially 

even mortality. A study of this scale is clearly not able to provide data on mortality 

outcomes, but a reduction in target organ damage following RDN would further support 

the use of this invasive treatment in patients with refractory hypertension. From a 

mechanistic perspective it is also interesting to consider whether any improvement in 

target organ damage is correlated with a reduction in hypertension and/or a reduction 

in sympathetic tone. 

There was an increase in eGFR amongst those patients who failed to respond to RDN 

and had sustained hypertension. This decline in eGFR was not seen in the patients who 

responded to RDN, and whilst this does not demonstrate an improvement in renal 

function following denervation, it does support the reno-protective effects of optimising 

BP control in patients with resistant hypertension, or may suggest that the disruption of 

renal sympathetic innervation (particularly in the context of sympathoexcitation as 

observed in hypertension (Yamada, Miyajima et al. 1989, Malpas 2010)) may protect the 

kidney independent of the effect of reduced BP.  

There was a significant reduction in LVM following renal denervation, notably, three 

subjects no longer met the LVM threshold for left ventricular hypertrophy 6 months 

after the procedure. In the sub group of 7 patients with T1 mapping data, there was a 

reduction interstitial fibrosis. The T1 mapping data show a pattern for a decrease in both 

interstitial volume and myocardial cell volume (by indexed parameters), consistent with 

the reduction in LV mass seen in the full cohort. However, overall there was a trend 

towards a reduction in extracellular volume fraction, suggesting that reduced interstitial 

fibrosis predominates over a reduction in the hypertrophy of cardiac myocytes, in the 

remodelling and mass reduction of the LV following RDN. 

Evidence for improvement in LV function following RDN is less robust in this cohort. 

There was no improvement in LVEF, with only a trend in the data for an increase in peak 

strain in each dimension. Conversely, there was a borderline decrease in peak diastolic 

circumferential and longitudinal strain rate (see Table 5-6). Additional data from a larger 

study population are required to clarify the effect of RDN on LV function, but these pilot 

data would support the need for further investigation. 
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A reduction in LVM index and an improvement in LV function have been demonstrated 

previously, but have not been related to reductions in BP, following RDN (Brandt, 

Mahfoud et al. 2012, Doltra, Messroghli et al. 2014, Mahfoud, Urban et al. 2014, 

Schirmer, Sayed et al. 2014, McLellan, Schlaich et al. 2015, Tsioufis, Papademetriou et al. 

2015, Kiuchi, Mion et al. 2016, Tsioufis, Papademetriou et al. 2016). Brandt et al. 

reported a reduction in LVM index as assessed by echocardiography, from 112 ± 34 g/m2 

to 95 ± 30 g/m2 (n=48, p<0.001), as well as improvements in mitral valve lateral E/E’, 

isovolumic relaxation time and ejection fraction (baseline: 63 ± 8% vs. 70 ± 12%, 

p<0.001) at six months post-RDN, these changes were not seen amongst the control 

subjects (n=18), but were not exclusively associated with BP reduction, since 

improvements in LVM index were observed in both responders and non-responders 

(Brandt, Mahfoud et al. 2012). Mahfoud et al. also reported a reduction in LV mass (46 ± 

14 g/m1.7 vs. 43 ± 13 g/m1.7, p=0.001), and improvements in LVEF (43% vs. 50%, p=0.001) 

and LV circumferential strain (reported as a surrogate of diastolic function; 215 vs. 218; 

p= 0.001) as assessed by CMR, in patients treated with RDN (n=55), not seen in controls 

(n=17) (Mahfoud, Urban et al. 2014). LVM index reduced in both RDN BP responders and 

non-responders in this MRI based study (Mahfoud, Urban et al. 2014). Delacroix et al. 

reported improvements in myocardial perfusion and ejection fraction following RDN 

(Delacroix, Chokka et al. 2018). Improvements in atrial dilatation and atrial 

electrophysiology have also been reported following RDN (McLellan, Schlaich et al. 2015, 

Schirmer, Sayed et al. 2015), effects which are not necessarily dependent on BP 

reduction (Schirmer, Sayed et al. 2015). 

T1 mapping techniques have been used to better define the nature of the reduction in 

LVM index reported in earlier studies, demonstrating a reduction in LV interstitial 

fibrosis (Doltra, Messroghli et al. 2014, McLellan, Schlaich et al. 2015). In a study of 23 

patients undergoing RDN, there was a significant reduction in LVM index (42 ± 10 versus 

38 ± 7 g/m1.7, p=0.001) and absolute interstitial volume index (10 ± 2 versus 9 ± 2 

mL/m1.7, p=0.031, with no change in extracellular volume fraction (26 ± 4% versus 26 ± 

5%, p=0.61). (Doltra, Messroghli et al. 2014). As with our cohort, Delacroix et al. report a 

reduction in extracellular volume fraction following RDN (46 ± 4% versus 41 ± 8%, 

p=0.002) (Delacroix, Chokka et al. 2018). These data support our findings that the 

reduction in LV mass seen following RDN is not solely due to a reduction in cardiac 

myocyte hypertrophy, but also due to a reduction in interstitial myocardial fibrosis 

(Doltra, Messroghli et al. 2014). Once again in this latter study, both BP responders and 

non-responders had a significant reduction in LVM index as seen in our cohort. 

Meta-regression analysis of 12 studies using echocardiography or CMR to assess cardiac 

structure and function following RDN, supported improvements in LVM index and left 

atrial volume after the intervention, but failed to demonstrate a significant relationship 

between RDN-induced LVM index reduction and BP lowering at 6 months (Lu, Wang et 

al. 2016). The mechanism for the reduction in LVM reported after renal denervation 

remains to be elucidated, the fact that LVM has been seen to improvement amongst 

patients who have failed to respond to RDN with a BP reduction, as a reproducible 

finding across multiple studies would suggest that RDN has a beneficial effect on cardiac 

remodelling beyond a pure response to BP reduction and decreased afterload. There 

may be independent effects relating to a reduction in cardiac sympathetic nerve activity. 

Potential mechanisms, and the relationship between muscle sympathetic nerve activity 

and changes in LVM index are explored in Section 5.3.3.1.2. 
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There was no change in aortic compliance or distensibility following RDN amongst the 15 

participants with available data, even once analysed by RDN BP-response subgroup (see 

Table 5-8). There was also no correlation between the change in office SBP at 6-months 

post-RDN and the change in either aortic compliance or distensibility following the 

procedure, although the trend in these data may suggest that a reduction in SBP 

following RDN is associated with a reduced vascular stiffness.  

Evaluation of the effect of RDN on vascular stiffness has generated conflicting results. 

Several studies have reported a reduction in PWV following RDN (Brandt, Reda et al. 

2012, Mortensen, Franzen et al. 2012, Baroni, Nava et al. 2015, Palionis, Berukstis et al. 

2016, Delacroix, Chokka et al. 2018, Ott, Franzen et al. 2018), including the improvement 

in PWV seen a cohort of 110 patients reported by Brandt et al. (Brandt, Reda et al. 

2012). Hering et al. also reported an improvement in augmentation index (increased 

with increased vascular stiffness), independent of changes in BP or MSNA, following 

RDN (Hering, Lambert et al. 2013). In the sham-controlled ReSET study, the RDN 

participants (n=26) had significant reductions in office BP and pulse wave velocity (PWV; 

a measure of vascular stiffness), not seen in the control group (n=27), however, overall, 

there was no significant difference between the sham and RDN outcomes for these 

parameters (Peters, Mathiassen et al. 2017). In the DENERVHTA study, patients were 

randomised to treatment with spironolactone versus RDN; there was no change in 

carotid-femoral PWV amongst those patients treated with RDN (Oliveras, Armario et al. 

2018). Furthermore, Verloop et al. actually reported an increase in PWV following RDN 

(n=57) (Verloop, Vink et al. 2015), and in a study investigating the effect of RDN on 

markers of micro- and macro-vascular function in patients with heart failure with 

preserved ejection fraction, Patel et al. reported no change in aortic distensibility or 

PWV following RDN (Patel, Hayward et al. 2017).  

One issue is the variation in the method used to assess vascular stiffness, be it carotid-

femoral or carotid-radial PWV (Brandt, Reda et al. 2012, Mortensen, Franzen et al. 2012, 

Baroni, Nava et al. 2015), measures of augmentation index from applanation tonometry 

(Mortensen, Franzen et al. 2012, Hering, Lambert et al. 2013), or measurement of aortic 

distensibility using cross-sectional imaging (Patel, Hayward et al. 2017). Patient selection 

must also be considered, since data would suggest that patients with isolated systolic 

hypertension, likely secondary to increased vascular stiffness are less likely to respond to 

RDN (Ewen, Ukena et al. 2015, Fengler, Rommel et al. 2017), and it may be that patients 

with longstanding hypertension, and irreversible stiffening of the vasculature are 

unlikely to respond to the procedure; variation in the effect of RDN on vascular stiffness 

may reflect variation in the populations studied (Fengler, Rommel et al. 2017). 

Most recently, in a multicentre study of 65 patients by Stoiber et al., there was a 

significant, 33%, improvement in aortic distensibility 1.52 ± 0.82 to 2.02 ± 0.93 × 10-3 

mmHg-1 (p < 0.001) (Stoiber, Mahfoud et al. 2018). In this study, the increase in aortic 

distensibility was more pronounced in younger patients (p = 0.005) and responders to 

RDN (p = 0.002), although aortic distensibility did improve in all age groups following 

RDN. Interestingly, the improvement in aortic distensibility was not related to changes in 

BP, suggesting that RDN may have direct effects on the central vasculature, independent 

of any antihypertensive effect. 



  

154 
   

5.2.4.6 Limitations 

There are some major limitations and assumptions impacting the interpretation of 

outcome data from this study: there was incomplete ABPM data which would have 

provided a more robust BP end-point, there were multiple medication changes over the 

course of the study which may have confounded the data, and medication adherence 

was not formally confirmed. Hence, we cannot exclude the possibility that the beneficial 

clinical outcomes seen in this study are due to improved medication adherence and a 

Hawthorne effect.  

 

5.2.5 Conclusions 

The safety of renal denervation was supported by this pilot study of 18 patients. The 

reduction in office SBP at 6 months after denervation failed to achieve significance, but 

did attain significance at 12 months after the intervention. Importantly, RDN also 

positively impacted target organ damage, reducing LV mass, and preventing, in those 

with a reduction in BP following RDN, the progressive decline in renal function seen in 

non-responders. 

 It is interesting to note that a significant reduction in office SBP was not attained until 

12 months after the procedure. This observation echoes the sustained and progressive 

reduction in SBP reported in earlier studies including Symplicity HTN-1 (Krum, Schlaich et 

al. 2014). Looking over this timescale, RDN is likely to have an affect beyond an acute 

reduction in sympathetic nerve activity and vascular tone. The mechanism for this 

delayed antihypertensive effect of RDN is not clear but may represent vascular 

remodelling and changes in vascular stiffness, gradual resetting of the baroreflex or the 

sensitivity of sympathovascular transduction, or slow shifts in the balance of the renin-

angiotensin-aldosterone system (Krum, Schlaich et al. 2014). In this cohort, in contrast 

to data from a recent multicentre study (Stoiber, Mahfoud et al. 2018), there was no 

change in aortic distensibility at 6 months post-RDN, and it is possible that assessment 

of vascular stiffness at a greater interval from the procedure would have given more 

time for remodelling to occur, although this is clearly speculation.  

Despite the limitations impacting this study, these pilot data do support the use of RDN 

for the treatment of resistant hypertension on the basis of clinical outcomes, but further 

investigation is required in the context of large-scale studies, with a particular focus on 

the potential to improve target organ damage, and thereby improve cardiovascular 

morbidity and mortality. These data also start to give insight into factors which may help 

to predict a clinical response to RDN, including factors such as established vascular 

stiffness, which will be explored further in Section 5.6 of this manuscript. 
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5.3 Impact of renal denervation on sympathetic nerve activity 

5.3.1 Introduction 

Sympathetic nerve activity (SNA) controls vasomotor tone in peripheral blood vessels 

and has been shown to be elevated in patients with hypertension (Yamada, Miyajima et 

al. 1989).  It has been hypothesised that renal denervation (RDN) can reduce systemic 

blood pressure through disruption of efferent sympathetic input to the kidney, thereby 

reducing renal vasoconstriction, improving renal blood flow and reducing renin release 

and Na+ and water reabsorption (Sobotka, Mahfoud et al. 2011). Alternatively, or as a 

parallel mechanism, removal of endogenous afferent activity in the renal nerves could 

reduce sympathetic tone generally, and thereby blood pressure. This is based on the 

idea that afferent activity provides a major drive to sympathetic tone generation via 

reflex pathways (Koeners, Lewis et al. 2016, Patinha, Pijacka et al. 2017). In conditions of 

hypertension, renal afferents may become activated in response to local ischaemia 

(Nijima 1971, Winternitz, Katholi et al. 1980, Johns, Kopp et al. 2011, Koeners, Lewis et 

al. 2016). In this study we aimed to evaluate the effect of RDN on SNA, and to assess 

whether elevated SNA is a predictor for a blood pressure lowering response to RDN, by 

quantifying multi-unit muscle sympathetic nerve activity (MSNA) using a technique 

called microneurography.  The background to this technique, which was initially 

established by Hagbarth and Vallbo in the mid-1960s (Hagbarth and Vallbo 1968, Vallbo, 

Hagbarth et al. 2004), is discussed in Section 2.1.2.1.   

Microneurography is a specialist technique which can give temporally dynamic and 

reproducible quantification of MSNA (Hart, Joyner et al. 2010, Hart, Head et al. 2017), 

however, the technique is invasive, can be time consuming, and requires an experienced 

operator. Consequently, efforts have been made to find alternative, non-invasive 

markers of SNA. One such measure is heart rate variability (HRV). 

The sinus node and RR interval are under continuous modulation through opposing 

parasympathetic vagal activity and cardiac afferent sympathetic activity. This efferent 

sympathetic and vagal nerve activity can be modulated, in part, by central (vasomotor 

and respiratory centers) and peripheral (oscillation in arterial pressure and respiratory 

movements) oscillators (1996). These oscillators generate rhythmic fluctuations in nerve 

activity that manifest as short- and long-term oscillations in the RR interval, analysis of 

which may facilitate indirect inferences about cardiac sympathetic and vagal efferent 

activity (1996). HRV can be analysed in both time and frequency domains. Spectral 

analysis of the HRV frequency domain distinguishes three main components from short-

term recordings; very low frequency (VLF), low frequency (LF), and high frequency (HF) 

components. Vagal activity is the major contributor to the HF component, and at rest 

the sinus node is predominantly under the control of vagal tone. The LF component is 

reported to be a quantitative marker of sympathetic modulation, and there is a 

predominance of LF oscillations during sympathetic activation (Pagani, Montano et al. 

1997). The clinical implications for measures of HRV rose to the fore after the 

publication of data showing that reduced HRV was associated with increased 

cardiovascular mortality following acute myocardial infarction (Kleiger, Miller et al. 

1987). Data from the Framingham Heart Study have shown reduced HRV in individuals 

with hypertension, and that impaired HRV predicted the development of hypertension 

in normotensive men (Singh, Larson et al. 1998). However, the strength of HRV as a 
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method to assess SNA remains controversial, including data which fail to show a 

consistent correlation between MSNA and LF power (Saul, Rea et al. 1990, DeBeck, 

Petersen et al. 2010). For example, Saul et al. investigated the effect of graded infusions 

of nitroprusside and phenylephrine on MSNA and the power spectral measures of HRV 

(Saul, Rea et al. 1990). At baseline, there was no correlation between any of the HRV 

spectral measures and MSNA. During infusion of nitroprusside there were increases in 

both MSNA and the LF fraction of the power spectral analysis, conversely, during the 

phenylephrine infusion there was a reduction in MSNA, however, no HRV component 

correlated with this change in MSNA. The investigators conclude that LF fluctuations in 

HR results from changing levels in both sympathetic and parasympathetic drive (Saul, 

Rea et al. 1990). Therefore,  it may be that the LF spectral component reflects both 

sympathetic and vagal activity, rather than acting as a pure marker of SNA, and that the 

LF/HF ratio gives a better indication of overall sympathovagal balance (Rimoldi, Pierini et 

al. 1990, Montano, Ruscone et al. 1994, 1996). The physiological interpretation of VLF 

and ultra-low frequency components of the spectral analysis still requires further 

investigation, furthermore, these components are difficult to interpret from short-term 

recording such as those performed in this study (1996). Importantly, HRV measures 

changes in autonomic activity, or sympathovagal balance, rather than the absolute level 

of sympathetic or vagal tone and could be blunted at extremely high (saturating) levels 

of SNA. The question is whether reductions in SNA would produce measurable changes 

in sympathovagal balance, and thus LF or LF/HF ratio, in patients with extremely high 

(saturating) levels of MSNA as seen in some individuals with hypertension? 

Furthermore, it is not clear whether HRV reflects merely a marker of cardiovascular 

disease severity, or whether it measures pathological changes in autonomic function 

(Eckberg 2000). 

 
In this study we aimed to evaluate the effect of RDN on sympathetic nerve activity, as 

assessed by either MSNA or HRV, and whether changes in these parameters correlated 

with the BP response to RDN. We also assessed whether elevated SNA was a predictor 

of response to RDN, and these data are presented in Section 5.6. In addition to these 

previously stated aims, we will consider whether HRV, an indicator of cardiac 

sympathetic nerve activity, correlates with muscle SNA in this context, or whether these 

organ specific measures of SNA are differentially regulated.  

 

5.3.2 Methods 

5.3.2.1 Microneurography 

The methods for performing microneurography and the analysis of MSNA data are 

described in Section 4.3.6. 

5.3.2.2 Heart rate variability 

Heart rate variability (HRV) was analysed from a 5 minute 3-lead ECG recording using 

commercially available software (LabChart, AD Instruments, Dunedin, New Zealand). The 
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automated marking of each ECG recording was visually reviewed to ensure the accurate 

marking of all R waves and identification of any ectopic beats. In a continuous ECG 

record, the normal-to-normal (NN) intervals (all intervals between adjacent QRS 

complexes resulting from sinus node depolarisations) were determined. Time domain 

variables were calculated, including the standard deviation of the NN intervals (SDNN), 

which equates to the square root of variance. SDNN reflects all the cyclic components 

responsible for variability in the period of recording, and is an estimate of overall HRV 

(variance is mathematically equal to the total power from spectral analysis), however, it 

should be noted that with shorter recording lengths such as the 5 min recording used in 

this study, SDNN will represent shorter cycle lengths (Electrophysiology 1996). Other 

measures derived from the RR interval differences included RMSSD, the square root of 

the mean squared differences of successive NN intervals, NN50, the number of interval 

differences of successive NN intervals greater than 50 ms, and pNN50, the NN50 count 

divided by the total number of all NN intervals. All of these measures estimate short-

term, and therefore high-frequency, variations in heart rate and are highly correlated 

(Electrophysiology 1996). 

A range of parameters can be derived from the power spectral analysis, by Fast Fourier 

Transform, of a 5 minute ECG recording; these components are summarised in Table 5-9 

(1996). The measurement of VLF, LF, and HF power components is made in absolute 

values of power (milliseconds squared). LF and HF can also be quantified in normalised 

units (the proportion of the respective power value relative to the total power minus the 

VLF component), which reduced the effect of changes in total power on the values of 

the LF and HF components. The LF/HF ratio may also better reflect the relative balance 

between cardiac sympathetic and vagal activity.  

 

Variable Units Description Frequency range 

Total power ms2 
The variance of NN intervals over the  
temporal segment 

approximately ≤0·4 Hz 

VLF ms2 Power in very low frequency range ≤0·04 Hz 

LF ms2 Power in low frequency range 0·04–0·15 Hz 

nLF n.u. LF power in normalised units  

HF ms2 Power in high frequency range 0·15–0·4 Hz 

nHF n.u. HF power in normalised units  

LF/HF  Ratio LF/HF  

Table 5-9. Selected frequency domain measures of heart rate variability for the 
analysis of short-term (5 min) recordings. 
Adapted from ESC guidelines for Heart rate variability: Standards of measurement, 
physiological interpretation, and clinical use (Electrophysiology 1996). 
 

5.3.2.3 Estimated total peripheral resistance 

The method for the quantification of total peripheral resistance (TPR) is given in Section 

5.2.3.4. 
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5.3.2.4 Target organ damage 

MSNA and HRV data have been correlated against measures of target organ damage as 

assessed by cardiac magnetic resonance imaging. The methods for the CMR imaging and 

analysis are described in Section 4.3.4. 

 

5.3.3 Results 

5.3.3.1 MSNA 

MSNA was successfully recorded in 14/18 participants at baseline (78% of subjects; 

unable to record an adequate quality neurogram in 3/18 patients, microneurography 

not recorded in 1 participant due to time constraints). Baseline MSNA incidence was 60 

± 6 bursts/100 heart beats, and baseline MSNA frequency was 38 ± 3 bursts/min. There 

was an inverse correlation between baseline office SBP and baseline MSNA incidence 

(see Figure 5-14). Baseline heart rate was inversely correlated with baseline MSNA 

incidence (R=-0.63, p=0.02, see Figure 5-14), but did not correlate with baseline MSNA 

frequency (R=-0.14, p=0.63). 

 

 

Figure 5-14. Negative correlations between A. office systolic blood pressure (SBP) and 
B. resting heart rate, and muscle sympathetic nerve activity (MSNA) incidence at 
baseline prior to renal denervation (RDN). 
Male participants shown in blue, premenopausal women in red and postmenopausal 
women in purple. Data from RDN BP-responders (as defined by office SBP reduction ≥10 
mmHg at 6 months post-RDN) are shown as dots and data from RDN non-responders are 
shown as squares. 
 

MSNA data were available at baseline and 6 months post-RDN in 11 participants. 

Amongst this group of patients there was no significant change in any of the MSNA 

parameters assessed at this primary endpoint (see Table 5-10). 

 

Parameter Time post RDN (months) P 
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 0 6  

MSNA incidence (bursts/100 HB) 61 ± 7 66 ± 5 0.47 

MSNA frequency (bursts/min) 38 ± 4 41 ± 3 0.48 

Total MSNA area/100 HB (%/s) 3351 ± 411 3677 ± 355 0.55 

Total MSNA area/min (%/s) 2075 ± 198 2283 ± 198 0.49 

Table 5-10. Muscle sympathetic nerve activity (MSNA) at baseline and 6 months after 
renal denervation (RDN).  
100HB; 100 heart beats. P values are for paired Student’s t-test for the 11 participants 
with MSNA data at baseline and 6 months post-RDN.  
 

There was no change in MSNA following RDN by any of the SNA parameters measured 

over the course of the study as assessed by repeated-measures ANOVA with data 

carried forward (n=14, see  Table 5-11 and Figure 5-15). There was no correlation 

between the change in office SBP at 6 months post-RDN and the change in either MSNA 

incidence or MSNA frequency at 6 months post RDN (R=-0.11, p=0.72 and R=-0.04, 

p=0.89, respectively). Likewise, there was no correlation between the change in resting 

heart rate and the change in either MSNA incidence or frequency, at 6 months post-RDN 

(R=-0.49, p=0.13 and R=-0.12, p=0.72, respectively). Examples of MSNA recordings from 

an individual patient before, and 12 months after RDN, are shown in Figure 5-16.  

There was also no change in MSNA burst incidence or burst frequency when data were 

analysed by response group (analysis by repeated-measures ANOVA with data carried 

forward, see Table 5-12), and there was no difference in MSNA burst incidence or MSNA 

burst frequency between responders and non-responders at any study time-point (all 

p>0.05). Plots for the office SBP and MSNA incidence for each participant (with MSNA 

data available) are shown in Figure 5-17; in some individuals the change in SBP over the 

course of the study does seem to have a concordant temporal relationship with the 

change in MSNA, whilst in others there is no clear relationship between these 

physiological variables. 

 

Parameter Time post RDN (months) P 
 0 1 3 6 12  

MSNA incidence 
(bursts/100 HB) 

60 ± 6 61 ± 6 66 ± 6 66 ± 5 69 ± 5 0.23 

MSNA frequency 
(bursts/min) 

38 ± 3 38 ± 3 40 ± 4 41 ± 3 42 ± 3 0.48 

Total MSNA 
area/100 HB 
(%/s) 

3261 ± 
355 

3581 ± 
369 

3871 ± 
311 

3724 ± 
323 

3870 ± 
409 

0.42 

Total MSNA 
area/min (%/s) 

2050 ± 
179 

2211 ± 
218 

2231 ± 
198 

2319 ± 
189 

2379 ± 
258 

0.57 

Table 5-11. Measures of muscle sympathetic nerve activity (MSNA) at baseline, and 
over 12-month follow-up following renal denervation (RDN). 
100HB; 100 heart beats. P values are for repeated measures 1-way ANOVA for the 14 
participants with MSNA data at baseline; for missing values the result from previous 
time-point was carried forward. There were no significant differences on between group 
analysis by Bonferroni’s multiple comparison test. 
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Figure 5-15. Muscle sympathetic nerve activity (MSNA) before (0 months) and 
following renal denervation (RDN). 
100HB; 100 heart beats. P values are for repeated measures 1-way ANOVA for the 14 
participants with MSNA data at baseline; for missing values the result from previous 
time-point was carried forward. There were no significant differences on between group 
analysis by Bonferroni’s multiple comparison test. 
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Figure 5-16. Muscle sympathetic nerve activity recorded before (top figure), and 12 
months after (bottom figure), renal denervation (RDN) in an individual patient. 
Data shown are for participant no. 8; this patient responded to RDN with a change in 
office systolic blood pressure (oSBP) of -30 mmHg at 6 months post-RDN.   
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Figure 5-17. Individual data for office systolic blood pressure (SBP) and muscle 
sympathetic nerve activity (MSNA) over the 12 months following renal denervation 
(RDN). 
Office SBP is shown in red and MSNA is shown in green. The patient numbers for each 
figure are consistent with those used throughout the manuscript. Patient 9 withdrew 
from the study prior to 12-month follow-up. Bursts/100HB; bursts/100 heart beats. 
  

  

 

 

 

Parameter Time post RDN (months) P 
 0 1 3 6 12  
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MSNA incidence 
(bursts/100 HB) 

      

Responders 55 ± 6 52 ± 7 57 ± 8 64 ± 7 65 ± 8 0.17 
Non-responders 67 ± 10 72 ± 8 77 ± 7 70 ± 6 74 ± 5 0.65 

MSNA frequency 
(bursts/min) 

      

Responders 37 ± 5 33 ± 5 37 ± 6 41 ± 4 40 ± 5 0.47 
Non-responders 39 ± 4 43 ± 4 45 ± 3 42 ± 4 45 ± 2 0.35 

Table 5-12. Muscle sympathetic nerve activity (MSNA) following renal denervation 
(RDN) by blood pressure response group. 
100HB; 100 heart beats. P values are for repeated measures 1-way ANOVA for the 14 
participants with MSNA data at baseline (responders, n=8; non-responders, n=6); for 
missing values the result from previous time-point was carried forward. There were no 
significant differences in between group analyses. 
 

 

5.3.3.1.1 Relationship between MSNA and total peripheral resistance 

There was no correlation between MSNA incidence and estimated TPR at baseline 

(n=14, R=0.08, p=0.77, see Figure 5-18). There was no correlation between the change in 

MSNA incidence and the change in estimated TPR at 6 months post-RDN (n=11, R=-0.23, 

p=0.49, see Figure 5-18).  

 

 

Figure 5-18. Relationship between muscle sympathetic nerve activity (MSNA) and total 
peripheral resistance (TPR) at baseline (A.), and the relationship between changes in 
these parameters 6 months post-RDN. 
Data are shown for the 14 participants with available baseline data, and the 11 patients 
with available 6-month follow-up data. MSNA is reported in bursts/100 heart beats (HB). 
5.3.3.1.2 MSNA and target organ damage 

At baseline (n=14), the correlation between MSNA and indexed left ventricular mass 

(LVM) did not achieve significance (R=0.44, p=0.12), however there was a significant 

correlation between both peak radial strain and peak circumferential strain and MSNA 

(R=-0.60, p=0.02 and R=0.58, p=0.03, respectively) and a trend towards a correlation 

between peak longitudinal strain and MSNA (R=0.48, p=0.08, see Figure 5-19). To 

summarise, at baseline, increased MSNA correlated with impaired/reduced peak radial 
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strain (thickening) and reduced peak circumferential (shortening), and participants with 

higher MSNA may have a possible trend towards increased LVM index.  Peak systolic and 

diastolic radial, circumferential and longitudinal strain rates showed a similar pattern of 

correlation with MSNA incidence at baseline: systolic, R=-0.66, p=0.01; R=0.63, p=0.02; 

R=0.49, p=0.07, diastolic, R=0.58, p=0.03; R=-0.60, p=0.02; R=-0.73, p=0.003, 

respectively (note, only trend towards a correlation between baseline MSNA and 

baseline peak systolic longitudinal strain rate). These data would suggest that prior to 

RDN, raised MSNA was associated with impaired LV function. 

MSNA was measured following renal denervation; 11 of the 14 participants with 

baseline MSNA data had MSNA data of sufficient quality recorded 6 months post-RDN. 

There was no correlation between the change in MSNA incidence and the change in 

LVM index at 6 months post-RDN (R=0.08, p=0.81, Figure 5-20). At 6 months, there was 

a significant correlation between the change in stroke volume index and the change in 

MSNA incidence (R=0.66, p=0.03, Figure 5-20); those patients with a decrease in MSNA 

post-RDN had a decrease in stroke volume post-RDN. When comparing the changes in 

MSNA and strain parameters following RDN, the only correlation which approached 

significance was that between the change in MSNA incidence and the change in peak 

systolic longitudinal strain rate (R=0.59, p=0.05, Figure 5-20), with data indicating that a 

decrease in MSNA following RDN may be associated with increased (more negative) 

peak longitudinal strain rate. In summary, whilst LVM did decrease post-RDN (see Table 

5-6), this reduction was not associated with a change in MSNA, there was also no 

definite correlation between any potential improvement in LV function following RDN 

and a change in MSNA, although a decrease in stroke volume following RDN was 

associated with a reduction in MSNA.   

There was no correlation between baseline MSNA and either baseline aortic compliance 

or distensibility (n=11; R=0.22, p=0.53 and R=0.10, p=0.78, respectively). Likewise, there 

was no correlation between the change in MSNA and either the change in aortic 

compliance or distensibility at 6 months post-RDN (n=8; R=0.12, p=0.77 and R=0.17, 

p=0.70, respectively. 
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Figure 5-19. Correlations between baseline muscle sympathetic nerve activity (MSNA) 
and baseline measures of cardiac structure and function. 
Data presented for the 14 participants with baseline MSNA, for baseline MSNA 
incidence versus A. Left ventricular mass index, B. Peak radial strain, C. Peak 
circumferential strain and D. Peak longitudinal strain. P<0.05 was taken to indicate 
significance. 
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Figure 5-20. Relationships between the change in muscle sympathetic nerve activity 
(MSNA) and change in A. indexed left ventricular mass (iLVM), B. indexed stroke 
volume (SV), and C. peak systolic longitudinal strain rate, 6 months after renal 
denervation. 
Results presented for the 11 patients with follow-up MSNA data at 6 months post-RDN. 
Data for RDN BP-responders (reduction in office SBP ≥10 mmHg at 6 months post-RDN) 
shown in green, data for RDN BP non-responders shown in RDN. 
 

5.3.3.2 Heart rate variability 

Baseline HRV data were recorded in 17/18 participants (one participant did not have an 

adequate quality 5 min ECG recording). There were no significant correlations between 

any of the baseline HRV parameters and either baseline office SBP data (n=17), baseline 

resting heart rate (HR; n=17), or baseline MSNA data (n=14, all p>0.05); this may support 

the concept that sympathetic outflow is differentially regulated between organs, with 

differential input to the peripheral vasculature and myocardium (Esler, Jennings et al. 

1984).  

HRV was quantified at 16 participants at both baseline and the primary outcome 

timepoint of 6 months post-RDN. There were no significant changes in any of the HRV 

parameters between baseline and 6 months as assessed by paired Student’s t-test (see 

Table 5-13). The HRV data as assessed by repeated-measures ANOVA with data carried 

forward, are summarised in Table 5-14; there were no significant changes in any of the 

measures of HRV across the study follow-up visits by this statistical method.  

At 6 months post-RDN, there were no correlations between the change in office SBP and 

the changes in any of the HRV parameters (n=16, all p>0.05). There were no correlations 
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between changes in any of the HRV spectral frequency band data and the change in 

MSNA incidence at 6 months after RDN (n=11, all p>0.05), however, there were inverse 

correlations between the changes in NN50 and pNN50 and the change in MSNA 

incidence at this time point (n=11; R=-0.71, p=0.02 and R=-0.68, p=0.02, respectively, 

see Figure 5-21). Given that NN50 and pNN50 results are felt to represent high 

frequency spectral data, this association would suggest that those individuals with an 

increase in cardiac vagal tone following RDN also had a decrease in muscle SNA, and 

thus suggests that any sympathoinhibitory effect of RDN may impact multiple organs. As 

described above, and as can be seen from Figure 5-21, these changes are independent 

of changes in SBP. 

 

Table 5-13. Measures of heart rate variability (HRV) at baseline versus 6 months after 
renal denervation (RDN). 
SDNN; standard deviation of differences between successive NN (normal to normal) 
intervals, RMSSD; square root of the mean squared differences of successive NN 
intervals, NN50; number of interval differences of successive NN intervals measuring 
>50 ms, pNN50; NN50 count as a percentage of the total number of all NN intervals, 

VLF; very low frequency, LF; low frequency, nLF; normalised low frequency, HF; high 
frequency, nHF; normalised high frequency. P values are for a paired Student’s t-test, 

n=16. 
 

 

Parameter Time post RDN (months) P 
 0 1 3 +6 12  

SDNN (ms) 44 ± 4 47 ± 6 58 ± 12 54 ± 7 51 ± 7 0.74 
RMSSD (ms) 38 ± 6 45 ± 10 60 ± 23 55 ± 14 53 ± 13 0.96 
NN50 (n=) 18 ± 6 27 ± 10 24 ± 8 36 ± 11 25 ± 9 0.65 
pNN50 (%) 5 ± 1 9 ± 3 9 ± 3 12 ± 4 9 ± 3 0.73 

Total power 
(ms2) 

2041 ± 
410 

2817 ± 
895 

5079 ± 
2934 

3461 ± 
858 

3307 ± 
1188 

0.43 

VLF (ms2) 830 ± 
213 

903 ± 
258 

1065 ± 
235 

1105 ± 
215 

809 ± 166 0.14 

LF (ms2) 439 ± 
105 

625 ± 
262 

669 ± 255 
694 ± 
298 

419 ± 101 0.95 

nLF (n.u.) 45 ± 7 47 ± 6 52 ± 6 44 ± 8 45 ± 7 0.79 

Parameter Time post RDN (months) P 
 0 6  

SDNN (ms) 43 ± 5 54 ±8 0.15 
RMSSD (ms) 34 ±6 57 ±14 0.14 
NN50 (n=) 19 ±6 38 ±11 0.15 
pNN50 (%) 6 ±2 13 ±4 0.10 

Total power (ms2) 2073 ±435 3573 ±905 0.14 
VLF (ms2) 827 ±226 1087 ±228 0.33 
LF (ms2) 448 ±112 726 ±316 0.37 
nLF (n.u.) 45 ±7 43 ±8 0.77 
HF (ms2) 496 ±148 1024 ±337 0.15 
nHF (n.u.) 40 ±5 43 ±5 0.64 
LF/HF 2.1 ±0.7 1.7 ±0.4 0.61 
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HF (ms2) 480 ± 
140 

986 ± 
532 

2632 ± 
2178 

968 ± 
321 

1583 ± 
921 

0.87 

nHF (n.u.) 39 ± 5 39 ± 4 38 ± 5 42 ± 5 43 ± 5 0.98 
LF/HF 2.0 ± 0.6 1.7 ± 0.3 2.5 ± 0.7 1.7 ± 0.4 1.6 ± 0.3 0.92 

Table 5-14. Measures of heart rate variability (HRV) at baseline, and over 12-month 
follow-up following renal denervation (RDN). 
SDNN; standard deviation of differences between successive NN (normal to normal) 
intervals, RMSSD; square root of the mean squared differences of successive NN 
intervals, NN50; number of interval differences of successive NN intervals measuring 
>50 ms, pNN50; NN50 count as a percentage of the total number of all NN intervals, 
VLF; very low frequency, LF; low frequency, nLF; normalised low frequency, HF; high 
frequency, nHF; normalised high frequency. P values are for a non-parametric, repeated-
measures 1-way ANOVA for the 17 participants with HRV data at baseline; for missing 
values the result from the previous time-point was carried forward. There were no 
significant differences for between group analyses for all timepoints. 
 

 

 

Figure 5-21. Correlations between the change in MSNA incidence and the changes in 
NN50 and pNN50 at 6 months after renal denervation. 
MSNA; muscle sympathetic nerve activity, NN50; number of normal-normal intervals 
measuring >50 ms, pNN50; proportion of normal-normal intervals measuring >50 ms. 
Data for RDN BP-responders (reduction in office SBP ≥10 mmHg at 6 months post-RDN) 
shown in green, data for RDN BP non-responders shown in RDN.  
 
There were no differences in any of the HRV parameters between RDN responders and 

non-responders at baseline (all p>0.05), however, at 6 months post-RDN, there was a 

significant difference in mean nHF between responders (n=10) and non-responders 

(n=6, no 6-month HRV data for one non-responder); nHF was 34 ± 5 n.u. vs 57 ± 7 n.u. 

respectively (p=0.02). Mean nHF at baseline was 39 ± 5 n.u., which would suggest that, if 

anything, non-responders had had a relative increase in nHF, and therefore vagal tone, 

following RDN, however, analysis by 1-way ANOVA, showed no change in nHF over the 

course of the study amongst either responders (p=0.50) or non-responders (p=0.83), 

and therefore any inferences from this finding should be interpreted with caution. The 

difference in the LF/HF ratio between response groups also approached significance (2.2 

± 0.6 vs 0.7 ± 0.3, responders vs non-responders, respectively, p=0.05), when compared 

to the mean baseline LF/HF result for the whole cohort (2.0 ± 0.6) this could indicate and 

increase in vagal tone and/or a decrease in cardiac SNA following RDN primarily 
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amongst the non-responders, but once again, analysis by 1-way ANOVA, showed no 

change in the LF/HF ratio amongst either responders (p=0.82) or non-responders 

(p=0.94), and therefore limited conclusions can be drawn. 

 

5.3.3.2.1 Heart rate variability and target organ damage 

At baseline (n=17), there were significant correlations between peak longitudinal strain 

and both nLF and LF/HF HRV parameters (R=0.61, p=0.01 and R=0.62, p=0.007, 

respectively, see Figure 5-22), indicating that longitudinal cardiac function is impaired in 

patients with raised HRV spectral markers of increased sympathetic tone and 

sympathovagal balance. Similarly, there was also a significant correlation between peak 

systolic longitudinal strain rate and baseline nLF spectral power (R=0.51, p=0.04). 

Baseline VLF spectral power correlated with baseline peak diastolic radial (R=0.53, 

p=0.03) and diastolic circumferential (R=-0.54, p=0.03) strain rate, however, given the 

debate over the factors influencing the VLF spectrum, these data are difficult to 

interpret. There were no other significant correlations between HRV and CMR measures 

of myocardial structure and function at baseline. 

 

 

Figure 5-22. Correlations, at baseline, between peak longitudinal strain as assessed by 
cardiac magnetic resonance imaging, and A. normalised low frequency (nLF) spectral 
power and B. low frequency to high frequency power ratio (LF/HF). 
Data (n=17), indicate that longitudinal cardiac contractility/function is impaired in 
patients with raised HRV spectral markers of increased sympathetic tone and 
sympathovagal balance. 
 
 
 
The data assessing the relationships between changes in HRV parameters versus 

changes in cardiac ejection fraction (EF) and volumetric parameters at 6 months post-

RDN are summarised in Table 5-15. In summary, changes in markers of vagal tone (time 

domain parameters and HF spectral power) are negatively correlated with changes in 

ejection fraction (EF) and indexed stroke volume (iSV), and positively correlated with 

changes in indexed end systolic volume (iESV). The inverse is true for changes in nLF 

spectral power (hypothesised to be a marker of sympathetic nerve activity), with a 

positive correlation versus the changes in EF and iSV and a negative correlation versus 
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the change in iESV. The change in the LF/HF ratio correlated with the change in iSV but 

not with a decrease in EF (see Table 5-15). Thus, a decrease in cardiac SNA and an 

increase in vagal tone were associated with a fall in iSV, and by some measures, a 

reduction in EF. There were no significant correlations between changes in any of the 

HRV parameters and any measures of myocardial strain or strain rate as assessed by 

CMR at 6 months post-RDN.  

 

 

 
  

EF (%) LVM (g) 
iLVM 

(g/m2) 
iEDV 

(ml/m2) 
iESV 

(ml/m2) 
iSV 

(ml/m2) 

SDNN R -0.73 0.23 0.20 0.08 0.60 -0.82  
P 0.001 0.39 0.45 0.76 0.01 0.0001 

RMSSD R -0.76 -0.05 -0.12 -0.15 0.58 -0.86  
P 0.0007 0.86 0.65 0.57 0.02 < 0.0001 

NN50 R -0.49 -0.02 -0.28 -0.16 0.43 -0.70  
P 0.05 0.94 0.29 0.55 0.10 0.002 

pNN50 R -0.53 -0.03 -0.28 -0.17 0.45 -0.74  
P 0.04 0.92 0.29 0.53 0.08 0.001 

Total 
power 

R -0.69 0.03 0.10 0.05 0.59 -0.57 

P 0.003 0.92 0.71 0.85 0.02 0.02 

VLF R -0.29 0.34 0.36 0.28 0.31 -0.10  
P 0.28 0.19 0.17 0.30 0.24 0.72 

LF R -0.31 -0.09 0.09 0.03 0.18 -0.19  
P 0.24 0.74 0.74 0.91 0.50 0.49 

nLF R 0.57 -0.24 -0.22 -0.17 -0.53 0.59  
P 0.020 0.37 0.41 0.54 0.03 0.02 

HF R -0.77 -0.13 -0.16 -0.21 0.53 -0.90  
P 0.0005 0.63 0.54 0.42 0.03 < 0.0001 

nHF R -0.22 0.14 0.11 0.07 0.23 -0.25  
P 0.42 0.61 0.69 0.78 0.40 0.35 

LF/HF R 0.29 0.06 0.18 0.16 -0.25 0.61  
P 0.27 0.83 0.51 0.56 0.35 0.01 

Table 5-15. Relationships between changes in heart rate variability (HRV) parameters 
and changes in left ventricular ejection fraction (EF) and volumetric parameters, 
assessed 6 months after renal denervation. 
Data shown (n=16) for Pearson’s or Spearman’s rank correlations (R) as appropriate 
based on approximation to normal distribution. Level of significant shown (p), with 
p<0.05 taken to indicate significance. SDNN; standard deviation of differences between 
successive NN (normal to normal) intervals, RMSSD; square root of the mean squared 
differences of successive NN intervals, NN50; number of interval differences of 
successive NN intervals measuring >50 ms, pNN50; NN50 count as a percentage of the 
total number of all NN intervals, VLF; very low frequency, LF; low frequency, nLF; 
normalised low frequency, HF; high frequency, nHF; normalised high frequency, LVM; 
left ventricular mass, iEDV; indexed end diastolic volume, iESV; indexed end systolic 
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volume, iSV; indexed stroke volume. All indexed values are indexed to body surface 
area. 
 

 

 

 

Aortic distensibility was not correlated with any of the HRV spectral frequency 

parameters at baseline, however, baseline aortic distensibility did correlate with 

baseline NN50 (n=14, R=0.75, p=0.002) and baseline pNN50 (n=14, R=0.70, p=0.005).  

There were no significant correlations between the change in aortic distensibility at 6 

months post-RDN and the changes in any of the HRV parameters at 6 months after 

denervation. However, when looking at changes in NN50 and pNN50, which correlated 

with aortic distensibility at baseline, there was a trend towards a positive correlation 

(n=13, R=0.47, p=0.11 and R=0.48, p=0.09, respectively), suggesting that aortic 

distensibility may improve with increasing vagal tone. There was also a trend towards a 

correlation between the change aortic distensibility and the change in LF/HF at 6 

months post-RDN (n=13, R=-0.53, p=0.06); this inverse trend may suggest that as 

sympathetic tone decreases (or vagal tone increases), aortic distensibility increases, and 

in thus consistent with the trend in NN50 and pNN50 data above. 
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Figure 5-23. Correlations between changes in selected HRV parameters and changes in 
ejection fraction (EF) and indexed stroke volume (iSV) at 6 months after renal 
denervation. 
Data for RDN BP-responders (reduction in office SBP ≥10 mmHg at 6 months post-RDN) 
shown in green, data for RDN BP non-responders shown in RDN. Changes in markers of 
vagal tone (SDNN and HF spectral power) are negatively correlated with changes in EF 
and iSV, and the inverse is true for changes in nLF spectral power (a marker of 
sympathetic nerve activity (SNA)). Thus, a decrease in cardiac SNA and an increase in 
vagal tone were associated with reductions in iSV and EF. SDNN; standard deviation of 
differences between successive normal to normal intervals, nLF; normalised low 
frequency, HF; high frequency. 
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5.3.4  Discussion 

5.3.4.1 No overall change in MSNA following renal denervation 

In this small study, with microneurography data from 14 patients, there was no 

reduction in MSNA following RDN, furthermore, there was no correlation between the 

change in office SBP and the change in MSNA at 6 months post RDN, and no difference 

in MSNA between RDN BP responders and BP non-responders at any study time-point. 

These findings are contrary to our hypotheses that RDN would result in a reduction in 

SNA and that any BP reduction following RDN would be associated with a reduction in 

MSNA and indicate that changes in BP following RDN are independent of MSNA. 

Review of the individual plots of SBP and MSNA data shown in Figure 5-17 would 

suggest that it is an over simplification to consider these data on a cohort basis. In some 

individuals (e.g. patients 1, 4, 8, 10, 11 and 12) there is a clear temporal relationship 

between the changes in BP and MSNA following RDN, which might indicate a 

mechanistic interaction between these two parameters. In contrast, in other 

participants (e.g. patients 5, 6 and 7) BP and MSNA appear unrelated (or even inversely 

related) after denervation.  

These findings do not support the data published by Esler’s group, who initially 

developed clinical renal denervation (Schlaich, Sobotka et al. 2009). In the first published 

case of endovascular renal denervation, Schlaich at al. described a patient in which BP 

was successfully reduced from 161/107 mm Hg at baseline, to 141/90 mm Hg at 30 days 

and to 127/81 mm Hg at 12 months (Schlaich, Sobotka et al. 2009). In this case, whole-

body noradrenaline (NA) spillover was reduced by 42%, with a reduction in organ 

specific NA spillover of 48% from the left kidney and 75% from the right kidney. 

Furthermore, elevated baseline MSNA returned to normal levels (56 bursts/min at 

baseline, 19 bursts/min at 12 months), cardiac baroreflex sensitivity improved and there 

was a reduction in left ventricular mass following RDN (Schlaich, Sobotka et al. 2009).  

In Symplicity HTN-1, renal NA spillover was assessed in a subgroup of 10 patients and 

was reduced by 47%, with a concomitant BP reduction of 22/12 mmHg, following RDN 

(Krum, Schlaich et al. 2009). The data for a reduction in MSNA following RDN have been 

contradictory. Several studies have reported a reduction in MSNA following RDN 

(Hering, Lambert et al. 2013, Hering, Lambert et al. 2013, Grassi, Seravalle et al. 2015, 

Hering, Marusic et al. 2016, Seravalle, D'Arrigo et al. 2017, Tsioufis, Dimitriadis et al. 

2017), including sustained reductions in MSNA out to 12 months post-RDN (Hering, 

Marusic et al. 2014). In the latter study, baseline MSNA was 51±11 bursts/min (Hering, 

Marusic et al. 2014), which is approximately 2- to 3-fold higher than the level observed 

in age-matched, healthy controls (Narkiewicz, Phillips et al. 2005), reducing by -6 ± 11 

bursts/min (p<0.01) at 12-month follow-up (Hering, Marusic et al. 2014). Seravalle et al. 

reported a related reduction in MSNA and BP using a time-integrated approach 

(Seravalle, D'Arrigo et al. 2017). In contrast, Grassi et al. reported a significant reduction 

in MSNA following RDN, which was independent of the preceding reduction in SBP 

(n=15) (Grassi, Seravalle et al. 2015). Hering et al. described a reduction in both 

multiunit MSNA and single-unit MSNA (including firing rates of individual muscle 

vasoconstrictor fibres, firing probability, and multiple firing incidence of single units 

within a cardiac cycle), interestingly, once again there was no correlation between 
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changes in both multiunit MSNA and single-unit MSNA and BP following RDN (Hering, 

Lambert et al. 2013).  

There are also data reporting no reduction in BP or MSNA following RDN, and the 

outcomes above have not been consistently reproducible (Brinkmann, Heusser et al. 

2012, Hart, McBryde et al. 2013, Vink, Verloop et al. 2014, Tank, Heusser et al. 2015). 

Hart et al. reported autonomic data before and after RDN in 7 patients (4 of which are 

participants in this study); these early data showed no overall change in MSNA at 1 or 6 

months following RDN, but MSNA did fall by >10% in 4/7 patients, although these 

changes in MSNA did not correlate with any change in SBP (Hart, McBryde et al. 2013). 

Brinkmann et al. showed no change in supine blood pressure, resting MSNA (pre-, 34±2 

bursts/min; post-, 32±3 bursts/min, p=0.6) or heart rate variability in a small cohort of 

12 patients following RDN (Brinkmann, Heusser et al. 2012), although this study was 

criticised for the inclusion of patients with moderate hypertension and lower resting 

MSNA than seen in the Symplicity cohorts. In the DREAMS (Denervation of the Renal 

Arteries in Metabolic Syndrome) study, investigators reported a significant 6/5 mmHg 

reduction in mean 24hr BP, but no change in MSNA (n=29); MSNA was recorded in a 

subset of patients and did not differ between baseline and 6 month follow-up (74 ± 48 

vs 75 ± 23 bursts/100HB, respectively, p=0.80) (Verloop, Spiering et al. 2015).  

Baseline MSNA incidence was inversely correlated with baseline heart rate (R=-0.63, 

p=0.02), but did not correlate with baseline MSNA frequency (R=-0.14, p=0.63, see 

Figure 5-14). This may suggest that if a patient has fewer heart beats in a minute, a 

greater proportion of the heart beats seen within that minute is associated with an 

MSNA burst in order to maintain peripheral vascular tone. Having said this, there was no 

correlation between baseline MSNA and baseline estimated TPR. There was no 

correlation between the change in resting heart rate and the change in either MSNA 

incidence or frequency, at 6 months post-RDN, implying that SNA to the peripheral 

vasculature is independently regulated from the sympathovagal balance controlling the 

sinus node. There was also no correlation between the change in MSNA and the change 

in estimated TPR at 6 months post-RDN, however the estimate of TPR used in this 

analysis was based on cardiac output from the CMR data and brachial BP which were 

not measured simultaneously, and therefore should be interpreted with caution. 

5.3.4.2 Relationship between blood pressure and MSNA 

Interestingly, there was an inverse correlation between office SBP and MSNA incidence 

at baseline (Figure 5-14), when it could have been expected that individuals with a 

higher BP would have higher MSNA. This concept is based on evidence showing that 

MSNA is elevated in hypertension (Yamada, Miyajima et al. 1989), and that, in subjects 

aged 40 years and above, MSNA increases with increases mean arterial pressure 

(Narkiewicz, Phillips et al. 2005). However, this conclusion makes some assumptions, 

firstly that high SNA is responsible for high BP, rather than other mechanisms such as 

the renal – body fluid hypothesis or endocrine factors (see Section 2.1.1.1). Secondly, for 

MSNA to be persistently raised in the face of raised BP, there is the implication that the 

baroreflex is not operating effectively, since any increase in arterial pressure should 

activate the sympathoinhibitory baroreflex, and thus reduce MSNA back towards 

baseline levels (Guyton and Hall 1996). The effect of RDN on baroreflex sensitivity is 

discussed further in Section 5.4.1. Finally, not all subjects were aged >40years. 
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Based on categories for normal and raised MSNA as shown in Table 5-16 (Narkiewicz, 

Phillips et al. 2005, Hering, Marusic et al. 2014), at baseline, 4/14 (29%) participants had 

normal range MSNA frequency (3 women), 3/14 (21%) had mildly elevated MSNA 

frequency, 5/14 (36%) had moderately elevated MSNA frequency, and 2/14 (14%) had 

extremely elevated MSNA frequency. This would suggest differences between our 

population and the population in the Hering et al. study in which 33/35 (>90%) of 

patients had MSNA above the normal range for their age and gender (Hering, Marusic et 

al. 2014). At 6 months post-RDN, 3/12 (25%) participants had normal range MSNA 

frequency (3 women), 2/12 (17%) had mildly elevated MSNA frequency, 5/12 (42%) had 

moderately elevated MSNA frequency, and 2/12 (17%) had highly elevated MSNA. 

MSNA frequency did not normalise following RDN in any of the participants with raised 

MSNA at baseline; those with normal MSNA at baseline had normal range MSNA at 6 

months post-RDN. 

 

 

Table 5-16. Novel categories of abnormal resting muscle sympathetic nerve activity 
(MSNA) in men and women according to age. 
Table from Hering et al. (Hering, Marusic et al. 2014). MSNA values are for MSNA 
frequency expressed in burst/min. *Previously demonstrated MSNA values for healthy 
male and female subjects described by Narkiewicz et al. (Narkiewicz, Phillips et al. 2005). 
 

MSNA is not related to BP below the age of 40 years, particularly in pre-menopausal 

women (Narkiewicz, Phillips et al. 2005), and it is relevant to note that the inverse 

correlation between baseline SBP and baseline MSNA seen in this cohort disappears 

when the five premenopausal women are removed from the analysis (R=-0.38, p=0.31); 

several of these individuals had particularly high baseline SBP relative to their lower 

level MSNA (e.g. normal range MSNA in three of these women). The lack of correlation 

between SBP and MSNA at baseline in these younger patients may, in part, explain the 

lack of a correlation between MSNA and BP reduction post-RDN in this study. However, 

the pre-menopausal participants were patients number 2, 4, 10, 11 and 15; qualitative 

review of the data for these individuals as shown in Figure 5-17 again suggests that this 

theory may be an over simplification, since the patterns in SBP and MSNA data for 

patients 4, 10 and 11 would indicate a temporal relationship between BP and SNA 

following RDN in these individuals.  
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Our patients had lower baseline MSNA than those in the Hering et al. study (38 ± 3 

bursts/min or 60 ± 6 bursts/100 heartbeats vs 51 ± 11 bursts/min or 80±16 bursts/100 

heartbeats, respectively (Hering, Marusic et al. 2014)), and this may also contribute to 

the difference in outcome with respect to a change in MSNA post-RDN between these 

studies. Our data are more similar to that of Brinkmann et al. with a study population 

with a similar, lower, level of baseline MSNA (34±2 bursts/min) (Brinkmann, Heusser et 

al. 2012).  

In this study we present data on MSNA, which is a marker of sympathetic drive to the 

peripheral vasculature, and it is possible that this means that we have not been able to 

quantify significant changes in organ specific sympathetic nerve active, as is assessed by 

measures such as renal NA spillover. Our pilot study is also under-powered, and data 

from a broader population treated with RDN is required to establish any clear 

associations between gender, age and MSNA in the context of renal nerve ablation. 

5.3.4.3  No change in heart rate variability following renal denervation 

HRV has the advantage over MSNA of being relatively easily assessed from a resting ECG 

recording, with data obtained at baseline in 17/18 participants in this study. However, 

HRV is only a surrogate marker for changes in autonomic balance, rather than a direct 

measure of SNA or vagal tone (Hedman, Hartikainen et al. 1995). In this study, there 

were no significant correlations between any of the HRV parameters at baseline and 

either office SBP, resting HR or MSNA, prior to RDN. Following treatment, none of the 

HRV parameters changed significantly over the course of the study, and there were no 

correlations between the change in office SBP and the changes in any of the HRV 

parameters at 6 months after the procedure 

Prior to RDN, there were no differences in any of the HRV parameters between RDN 

responders and non-responders. At 6 months post-RDN, there was a significant 

difference in nHF measures between responders and non-responders, (nHF 34 ± 5 n.u. 

vs 57 ± 7 n.u. respectively (p=0.02)). Overall mean nHF at baseline was 39 ± 5 n.u.; this 

would suggest that non-responders had had a relative increase in nHF, and therefore 

vagal tone, following RDN. This is difficult to rationalise if, by definition, these individuals 

have failed to respond to the intervention, furthermore, there was no significant change 

in nHF over the course of the study amongst either responders or non-responders, and 

therefore any inferences from this finding should be interpreted with caution. The LF/HF 

was also borderline higher in responders as compared with non-responders at 6-

months, with data indicating primarily an increase in vagal tone and/or a decrease in 

cardiac SNA following RDN amongst the non-responders, although neither response 

group had a significant change in LF/HF ratio over the course of the study. This pattern 

would go against our hypothesis that response to RDN would be associated with a 

reduction in sympathetic tone. It may be that these data are unclear due to the small 

sample size in this study, or that HRV parameters are a poor marker for SNA in this 

context, focussing on cardiac changes in cardiac sympathovagal balance, rather than 

SNA to the peripheral vasculature or kidney.  

When looking at the effect of RDN on HRV, published data provide little support for a 

reduction in SNA following RDN, and are consistent with our results. Brinkmann et al. 

reported no change in HRV following RDN (Brinkmann, Heusser et al. 2012). In the 
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DREAMS study, there was a significant reduction in BP, but no change in HRV frequency 

parameters (n=26) (Verloop, Spiering et al. 2015). The ReSET trial, a sham-controlled 

trial of RDN, reported a reduction in BP following RDN, but as with Symplicity HTN-3, this 

change did not differ from the sham control group (Peters, Mathiassen et al. 2017). This 

study showed no significant change in HRV parameters in comparison to sham 

participants following RDN, and that HRV parameters were not predictive of the BP 

response to RDN (Peters, Mathiassen et al. 2017). In contrast, Tsioufis et al. reported 

improvements in both time- and frequency-domain indices of HRV out to 6 months post-

RDN (Tsioufis, Papademetriou et al. 2014). Overall, these findings may suggest that RDN 

has little effect on HRV, and therefore cardiac SNA, however, it may be that HRV is a 

poor marker for cardiac SNA, or the modulation of SNA affecting other organs, in this 

context (Peters, Mathiassen et al. 2017).    

A limitation of MSNA as a measure of sympathetic activity is that it records sympathetic 

drive to the vasculature in the muscle bed only. SNA control is organ specific, and 

differentially controlled (Esler, Jennings et al. 1984, Osborn and Fink 2010, May, Howard 

Florey Institute et al. 2017), and therefore there has been interest as to whether RDN 

impacts renal and cardiac SNA. NA spillover can quantify organ specific SNA but is 

invasive and requires specialist resources and operators; the sub-study in Symplicity 

HTN-1 described above, did however, demonstrate a reduction in renal SNA following 

RDN (Krum, Schlaich et al. 2009). Booth et al. assessed the effect of RDN on cardiac SNA 

through direct measurement in an ovine model, and showed no change in cardiac SNA 

post-RDN, although there was a leftward shift in in cardiac baroreflex sensitivity (Booth, 

Schlaich et al. 2015). Donazzan et al. used I-123-metaiodobenzylguanidine (MIBG) 

imaging to assess cardiac sympathetic innervation and cardiac sympathetic activity. 

MIBG is a radiopharmaceutical agent sharing the uptake into sympathetic nerve with 

NA. Analysis of global MIBG uptake, and thus cardiac sympathetic innervation, was 

quantified as the heart-to-mediastinum ratio (upper mediastinal reading taken as null) 

and the difference in tracer uptake/retention between early and late images (washout 

ratio) quantified cardiac sympathetic activity. Cardiac sympathetic innervation remained 

unchanged before and after the procedure, but cardiac sympathetic activity was 

reduced after RDN, independent of the BP outcome (Donazzan, Mahfoud et al. 2016). 

Overall, there is no consistent evidence to support a reduction in cardiac SNA following 

RDN, which is interesting given reproducible reductions in left ventricular hypertrophy 

and improvements in cardiac function (Brandt, Reda et al. 2012, Bruno and Taddei 2014, 

Mahfoud, Urban et al. 2014, Schirmer, Sayed et al. 2014, Di Daniele, Rovella et al. 2015, 

Lu, Wang et al. 2016), including those seen in this cohort (see Table 5-6).   

5.3.4.4 Does sympathomodulation impact target organ damage after renal 

denervation? 

5.3.4.4.1 Sympathetic nerve activity and changes in left ventricular mass and function 

following renal denervation 

At baseline, whilst the correlation between MSNA and indexed LVM did not achieve 

significance (R=0.44, p=0.12), there were significant correlations between MSNA and 

measures of LV strain. Participants with higher MSNA may trend towards increased LVM 

index, but had significant correlations indicating impaired/reduced peak radial strain 

(thickening) and peak circumferential and longitudinal strain (shortening), and similarly 
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reduced peak systolic and diastolic radial, circumferential and longitudinal strain rates at 

higher levels of MSNA (see Figure 5-19). This observation is particularly interesting since 

MSNA was inversely correlated with SBP at baseline (Figure 5-14), and although SBP did 

not correlate with any of the CMR parameters at baseline, the reduction in office SBP 

was associated with an improvement (reduction) in LV mass and LV mass index, and 

improvements in peak radial (increased thickening) and peak circumferential (increased 

shortening) strain (see Figure 5-13). If raised MSNA was associated with impaired 

myocardial strain, and if raised MSNA was also associated with lower SBP, then impaired 

myocardial strain might have been expected to be associated with lower SBP. This final 

statement was not born out by our baseline data, but would seem counterintuitive, and 

is not supported by the concordant improvements in SBP and myocardial strain 

parameters following RDN. This disparity may relate to the fact that the study is 

underpowered, but may also be impacted by the premenopausal women in the study in 

whom no relationship between SNA and BP could have been expected (see Section 

5.3.4.2) (Narkiewicz, Phillips et al. 2005). It may also indicate organ specific changes in 

SNA following RDN. 

Whilst the reduction in LVM index following RDN correlated with a reduction in office 

SBP, there was no correlation between the change in MSNA incidence and the change in 

LVM index at 6 months post-RDN. There was a significant correlation showing those 

patients with a decrease in MSNA had a decrease in stroke volume following RDN 

(R=0.66, p=0.03), but this was not born out amongst other volumetric and strain 

parameters aside from a trend for a decrease in MSNA following RDN to be associated 

with improved (more negative) peak longitudinal strain rate (R=0.59, p=0.05). These 

correlations are difficult to interpret since overall MSNA and stroke volume did not 

change following RDN. If stroke volume decreased in some individuals post RDN, this 

may be due to a reduction in blood volume, because if both renal and muscle SNA are 

reduced following RDN, then there would likely be a reduction in sympathetically 

mediated renin release and Na+ and water retention (Sobotka, Mahfoud et al. 2011).  

As described above, raised baseline MSNA was associated with reduced LV function as 

assessed by strain parameters, and a trend towards an increase in left ventricular 

hypertrophy. Hypertensive left ventricular hypertrophy has previously been shown to be 

associated with increased sympathetic activation (Greenwood, Scott et al. 2001, 

Schlaich, Kaye et al. 2003, Burns, Sivananthan et al. 2007), but this has not been a 

universal finding, any may again relate to gender (Best, USA et al. 2018). Interestingly, as 

described in Section 5.2.4.5, whilst a reduction in LVM index and an improvement in LV 

function have also been demonstrated previously following RDN, these beneficial effects 

were independent of reductions in BP (Brandt, Mahfoud et al. 2012, Bruno and Taddei 

2014, Doltra, Messroghli et al. 2014, Mahfoud, Urban et al. 2014, Schirmer, Sayed et al. 

2014, McLellan, Schlaich et al. 2015, Tsioufis, Papademetriou et al. 2015, Kiuchi, Mion et 

al. 2016, Tsioufis, Papademetriou et al. 2016). In this instance, it could be hypothesised 

that the fall in LVM following RDN may relate to cardiac sympathetic withdrawal, rather 

than reduced BP and cardiac afterload, and therefore contradicts the results of this 

study. However, the impact of RDN on MSNA has been variable between studies, and 

the data on any relationship between any change in LVM and MSNA following RDN is 

limited. More importantly, MSNA is a measure of sympathetic drive to the peripheral 

vasculature, and may be differentially controlled versus cardiac SNA, and therefore, 

whilst changes in MSNA could affect peripheral resistance and thus BP and afterload, it 
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may not be the best measure of sympathetic drive to the myocardium (Esler, Jennings et 

al. 1984).  

HRV parameters may give a better surrogate marker for cardiac sympathovagal balance. 

At baseline, impaired longitudinal cardiac function was associated with markers for 

increased cardiac sympathetic tone and cardiac sympathovagal balance (nLF and LF/HF, 

see Figure 5-22). This pattern is similar to that seen with baseline MSNA which was also 

related to impaired myocardial strain (see Figure 5-19). At 6 months post RDN, markers 

indicating a reduction in cardiac SNA and an increase in vagal tone with were associated 

with a reduction in indexed stroke volume and a reduction in EF, although there were no 

correlations between changes in any of the HRV parameters and changes in myocardial 

strain parameters. Although not all of the correlations between changes in measures of 

HRV and MSNA and changes in cardiac volumetrics and function are in agreement, and 

no correlation was seen between baseline MSNA and HRV or the changes in MSNA and 

HRV at 6 months post-RDN, there are several patterns in the data that are consistent 

between MSNA and HRV parameters, which may suggest similar modulation of cardiac 

and peripheral SNA by RDN.  

Overall, these data would suggest that whilst chronic exposure to raised SNA may 

contribute to raised LVM index and impaired cardiac function, the improvement in LVM 

index seen following RDN is independent of SNA, and, given that the change in LVM 

correlated with a change in SBP in this cohort, the mechanism for this cardiac 

remodelling is likely to relate to a reduction in afterload, rather than reduced 

sympathetic tone. The mechanism underlying any potential improvement in cardiac 

function may be multifactorial. Left ventricular ejection fraction and strain parameters 

did not significantly improve over the course of this study (although measures of 

myocardial strain may show a trend towards improvement, see  Table 5-6). 

Improvements in peak radial (increased thickening) and peak circumferential (increased 

shortening) strain were associated with a reduction in office SBP, but were not 

correlated with a change in MSNA, suggesting a beneficial effect of decreased afterload 

rather than sympathoinhibition. MSNA may not reflect cardiac SNA, although changes in 

some cardiac HRV parameters do appear to demonstrate a similar pattern to changes in 

MSNA, and therefore, whilst SNA can be differentially controlled between organs, there 

may be some similarity in their response after RDN. As with the MSNA data, there was 

no correlation between the change in SBP and the change in HRV parameters, and no 

correlation between the change in any HRV parameter and change in LV strain at 6 

months post-RDN, thus supporting this conclusion.  

Schlaich et al. described reductions in BP, MSNA and LVM in the first clinical case report 

of RDN as a treatment for resistant hypertension (Schlaich, Sobotka et al. 2009), likewise 

Hoye et al. also report reduced BP, MSNA and LV mass following RDN in a cohort of 9 

patients with end-stage kidney disease (Hoye, Wilson et al. 2017). In the latter study, no 

comment is made about whether there was any relationship between the changes in 

these primary outcomes measures, although numbers were likely too small to draw firm 

conclusions. This study presents the largest cohort reporting outcome data for BP, 

MSNA and LVM following RDN, and although still limited, our data would suggest that 

the improvement in LVM index, a form of target organ damage, seen following RDN is 

related to the reduction in SBP (and thus afterload), and is independent of MSNA. These 

results are contradictory to previously reported studies which reported a reduction in 
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LVM independent of BP, but do not support the hypothesis that the cardiac remodelling 

is due to reduced sympathetic activation. 

5.3.4.4.2 Sympathetic nerve activity and aortic distensibility following renal 

denervation 

There was no correlation between baseline aortic distensibility and baseline MSNA or 

any of the baseline HRV spectral frequency parameters. Baseline aortic distensibility did, 

however, correlate with baseline NN50 and pNN50. Previous research has similarly 

demonstrated a correlation between impaired HRV, as assessed by SDNN, and increased 

vascular stiffness as assessed by pulse pressure (Chrysohoou, Skoumas et al. 2013). Data 

from healthy individuals have shown a correlation between MSNA and vascular stiffness 

as assessed by pulse wave velocity, with subjects with increased vascular stiffness having 

higher MSNA (Swierblewska, Hering et al. 2010). Interestingly, young premenopausal 

women have been shown to have an inverse correlation between MSNA and vascular 

resistance (Casey, Curry et al. 2011, Harvey, Barnes et al. 2017), which may again, in part 

explain why our MSNA baseline data do not correlate with baseline aortic distensibility. 

There was no correlation between the change in MSNA and either the change in aortic 

compliance or distensibility at 6 months post-RDN. There were also no significant 

correlations between the change in aortic distensibility at 6 months post-RDN and the 

changes in any of the HRV parameters at 6 months after denervation. There was a trend 

towards a correlation between the change aortic distensibility and the change in LF/HF 

at 6 months post-RDN, which may suggest that as sympathetic tone decreases (or vagal 

tone increases), aortic distensibility increases, and would be consistent with the 

relationship between SNA and vascular stiffness described above. 

There is limited available data on the relationship between changes in vascular stiffness 

and SNA following RDN. Hering et al. report a reduction in augmentation index (a 

measure of the augmentation of the central arterial pressure waveform due to the 

reflected wave from the distal vasculature) independent of changes in BP or MSNA, but 

do not present data on HRV, or cardiac SNA as assessed by other means, in relation to 

this marker of vascular stiffness (Hering, Lambert et al. 2013). Further research is 

required to more completely explore this relationship. 

5.3.4.5 Study limitations 

The small numbers of patients in this study with available MSNA (n=14) and HRV data 

(n=17), limits the conclusions that can be drawn from what is fundamentally a pilot 

study, particularly when considering analysis by BP response group.  

Microneurography has the limitation of measuring an isolated sympathetic outflow to 

one vascular bed, and there are many vascular beds, including the renal, cardiac and 

splanchnic circulations, that cannot be accessed using this technique. Mechanistically, 

relevant changes in organ specific SNA cannot be excluded from these data, particularly, 

reductions in cardiac SNA impacting left ventricular hypertrophy, although the 

quantification of HRV may go some way to address this.  

In this study, we have assessed multiunit MSNA. Single unit measurement of 

sympathetic neurons was not performed, and may give additional information about the 
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frequency of post-ganglionic neuron firing, the probability of neuron firing in any 

particular multi-unit burst, and the occurrence of multiple unit firing in a single burst of 

activity to a vascular bed, providing more detailed information about the modulation of 

SNA (Macefield, Wallin et al. 1994, Hering, Lambert et al. 2013). 

The HRV analyses performed in this study are based on a short-term, 5-minute, ECG 

recording, more robust data may be obtained from a full 24hr recording, giving a more 

valid assessment of lower frequency HRV components (1996). Data from eight follow-up 

visits could not be included in the analyses due to an inadequate 5-minute ECG 

recording, either due to an erratic ECG baseline, or excess ectopic activity. HRV is not a 

direct measure of sympathetic nerve activity and as such, HRV parameters can only be 

interpreted as indices of autonomic activity; the lack of correlation between MSNA 

measures and HRV parameters in this study would suggest that this may be the case.  

 

5.3.5 Conclusions 

In this cohort there was no reduction in SNA as measured by either microneurographic 

MSNA or time- and frequency-domain HRV parameters following renal denervation. 

These findings do not support the hypothesis that RDN reduces BP through a reduction 

in systemic SNA by disrupting the central input from excess renal afferent nerve activity. 

Given that BP did fall following RDN, since MSNA remained unchanged, this means that 

baroreflex sensitivity must have reset, because with an intact baroreflex, a fall in BP 

would result in an increase in MSNA, and thus TPR in order to return BP to baseline 

levels (Lohmeier and Iliescu 2015). Furthermore, in this, the largest cohort to date 

reporting outcome data for BP, MSNA and LVM following RDN, our data suggest that the 

improvement in LVM seen following RDN is also independent of any change in MSNA or 

cardiac SNA as assessed by HRV. There was no correlation between baseline MSNA or 

HRV and the BP response to RDN, indicating that RDN is not acting through a reduction 

in renal efferent SNA, although this cannot be excluded by these data since 

microneurography does not provide a measure of renal specific SNA or SNA to other 

muscle or non-muscle vascular beds. The mechanism underlying the antihypertensive 

and positive cardiac remodelling effects of RDN remain unclear, but I will go on to 

explore the effect on baroreflex sensitivity in the next chapter.  

The lack of correlation between MSNA measures and HRV indices supports a differential 

regulation of muscle and cardiac SNA outflows, and suggests that these markers are 

unlikely to provide a robust marker for procedural efficacy, patient selection or 

mechanistic investigations in future studies of RDN.  

Finally, and intriguingly, when the data were reviewed at the level of the individual 

patient, there did seem to be a temporal relationship between MSNA and office SBP 

following RDN in some of the patients studied, and the conclusions drawn on a cohort 

basis may be an oversimplification. These are pilot data and as such should guide future 

research but are not suitable for extrapolation to the wider population. Further research 

is required into the mechanisms underlying RDN and the relationship between RDN and 

MSNA, particularly in light of the positive preliminary data from the SPYRAL HTN studies 

which are likely to reignite interest in the technique (Townsend, Mahfoud et al. 2017, 

Kandzari, Bohm et al. 2018). 
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5.4 Autonomic modulation following renal denervation 

 

The initial hypotheses for the mechanism underlying the antihypertensive effect of RDN 

focussed on a reduction in sympathetic nerve activity, either through reducing the 

efferent renal SNA controlling the kidney, or through a reduction in systemic SNA due to 

decreased central sympathoexcitation through a reduction in feedback from the 

afferent renal nerves (Sobotka, Mahfoud et al. 2011). The autonomic control of blood 

pressure and potential interactions with renal nerve ablation, which are likely to differ 

between individuals, were reviewed in Sections 2.1.2 and 2.3.1 are clearly much more 

complex than this, with inputs from a range of neurohormonal mechanisms, including 

feedback from baroreceptors, peripheral chemoreceptors and interaction with systemic 

inflammation and cerebral perfusion. In this section, I will assess the impact of renal 

denervation on a range of physiological systems known to be involved in the regulation 

of blood pressure. 

 

5.4.1 Baroreflex Sensitivity 

5.4.1.1 Introduction 

Baroreceptors are located in the aorta and carotid sinus. Distention of these vessels due 

to increased intra-arterial pressure activates the baroreceptors which have a 

sympathoinhibitory effect, thereby reducing vascular tone and hence, arterial pressure. 

The gain in this reflex mechanism is known as sympathetic (vasomotor) baroreflex 

sensitivity (sBRS). Sympathetic efferent neurones also innervate the heart, and their 

activation increases myocardial contractility and heart rate (Charkoudian and Rabbitts 

2009). Baroreceptor activation will also, therefore, cause a reflex reduction in heart rate, 

and the sensitivity of this feedback loop is known as cardiac baroreflex sensitivity (cBRS) 

which is affected by alterations in the balance between sympathetic and vagal nerve 

input to the sinus node. sBRS and cBRS have both be shown to be in impaired in 

hypertension with data also suggesting that the impairment in BRS may precede the 

onset of hypertension (Yamada, Miyajima et al. 1988, Minami, Imai et al. 1989, 

Matsukawa, Gotoh et al. 1991, Matsukawa, Gotoh et al. 1991, Hesse, Charkoudian et al. 

2007, Honzikova and Fiser 2009). Reduced BRS is an independent indicator for all-cause 

mortality and of cardiovascular morbidity in hypertensive patients (and in other 

conditions of sympathetic over activity)  (Johansson, Gao et al. 2007, Ormezzano, 

Cracowski et al. 2008), furthermore, positive antihypertensive effects have also been 

reported following the use of baroreceptor activation therapy (see Section 2.3.8.1). In 

light of these factors, it is important to consider the impact of renal denervation on BRS 

as a potential mechanism for BP modulation and/or an improvement in target organ 

damage, including hypertensive heart disease. Importantly, as reported in Section 

5.3.3.1, a reduction in office systolic blood pressure (SBP) following RDN was not 

associated with a change in muscle sympathetic nerve activity (MSNA), and given the 

sympathetic baroreflex pathway described above, if SNA remains unchanged after RDN 

despite a reduction in SBP, then it would be predicted that there has been an alteration 
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in either BRS or the operating point of the baroreflex curve, re-setting to a lower BP 

range. 

In this study, we have primarily assessed spontaneous baroreflex sensitivity through 

evaluation of MSNA and the heart rate response to changes in BP for the measurement 

of spontaneous sBRS and spontaneous cBRS baroreflex gain. In a subset of 10 patients, a 

modified Oxford protocol was used to dynamically assess the sBRS and cBRS over a 

wider BP range through use of pharmacological vasodilation and vasoconstriction.  

Most studies in this field report sBRS as assessed by the threshold method (BRST) which 

looks at the probability of any particular cardiac cycle being associated with a MSNA 

burst; at higher BP, the baroreflex is activated and MSNA is suppressed meaning the 

cycles with a higher diastolic BP (sBRS is more strongly associated with DBP than SBP) 

are less likely to be associated with a burst of MSNA (Kienbaum, Karlssonn et al. 2001, 

Hart, Joyner et al. 2010). A downfall of the BRST method is that it implicitly depends on 

the level of sympathetic nerve activity (Fadel 2011, Hart, Wallin et al. 2011). In 

particular, if MSNA burst incidence is high (e.g. >80 bursts/100 heart beats), baroreflex 

sensitivity is quantified as low, because most DBPs (whether high or low) fail to meet the 

threshold to inhibit the occurrence of a burst (see Figure 5-24). In this instance, changes 

in DBP may still modulate MSNA burst strength (i.e. MSNA burst amplitude or area), 

which are quantities of sympathetic output not captured by the threshold method. 

Consequently, in conditions where MSNA burst incidence is high, such as hypertension, 

the threshold method may indicate poor baroreflex sensitivity since there is little 

variation in the percentage of BPs in a 1mmHg bin associated with a burst, giving a 

flattened sBRS slope (Fadel 2011, Hart, Wallin et al. 2011). Whether this reduction in 

sensitivity is a genuine impairment of the sympathetic baroreflex, or simply due to the 

method’s dependence on MSNA burst incidence, is not clear, but given this observation, 

we have also calculated sBRS using an area method (BRSA) in which mean burst area is 

associated with the average diastolic blood pressure (DBP) across the range of DBP 

recorded. This method is similar to the segregated signal-averaging method designed by 

Halliwill (Halliwill 2000), where the area under the neurogram is averaged for each 

cardiac cycle and then binned in 3 mmHg DBP bins. 
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Figure 5-24. Example of the effect of spontaneous fluctuations in diastolic blood 
pressure (DBP) on muscle sympathetic nerve activity (MSNA) in a patient with high 
MSNA. 
This figure illustrates the potential difficulties in assessing sympathetic baroreflex 
sensitivity (sBRS) using the threshold method in patients with high MSNA. As DBP rises 
there is still an MSNA burst associated with nearly every cardiac cycle which would 
equate to seriously impaired sBRS using the threshold method. However, as DBP rises 
there is a reduction in burst amplitude and area (see example of burst area shaded in 
grey) which suggest preserved sBRS as quantified by an area method. 
 

 

5.4.1.2 Methods 

Continuous, simultaneous recordings of RR interval (3-lead ECG), BP (Finometer) and 

MSNA were made over a 5-10-minute period with subjects laid semi-supine at quite rest 

as previously described in Sections 4.3.5 and 4.3.6.  

 

5.4.1.2.1 Analysis of sympathetic baroreflex sensitivity 

For the analysis of BRST, the DBPs for each cardiac cycle during the recording period 

were grouped into 1mmHg BP bins; the percentage of cardiac cycles associated with an 

MSNA burst in each DBP bin was then calculated and associated with the mean DBP in 

the corresponding bin. The slope of the relationship between the mean DBP and % 

MSNA for each DBP bin was calculated using linear regression (weighted for the number 

of bursts in each bin) and quantifies the sympathetic sBRST (custom written script by Dr 

L. Briant; Matlab, The MathWorks, Natick, MA; for example see Figure 5-25) (Hart, 

Joyner et al. 2010). The slope of this relationship has been previously shown to agree 

with the pharmacological sBRS calculated during a modified Oxford baroreflex test (Hart, 

Joyner et al. 2010).  
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For the analysis of BRSA, the peak, beginning and end of each MSNA burst were marked 

in a data acquisition programme (Spike2, Cambridge Electronic Design Ltd, Cambridge, 

UK); burst peaks were identified using a custom-written script (Dr E. Hart, University of 

Bristol, UK) and confirmed by visual inspection (Dr A. Burchell), the beginning and end of 

each burst were marked manually (Dr A. Burchell). The area of the burst was then 

calculated as the integral of MSNA between the beginning and end of the burst (custom 

script, Dr L. Briant, University of Bristol, UK; MATLAB, The MathWorks, Natick, MA, USA). 

Each MSNA burst area (units were AU·s) was normalised to the largest burst area in that 

recording and represented as a percentage of it. To avoid skewing of area measures by 

signal drift, the area measured was calculated in the region bounded below MSNA by a 

constant line intersecting the beginning/end of the MSNA burst. Each cardiac cycle was 

then associated with an MSNA burst area (=0 AU if no burst occurred in that cycle). For 

each DBP (1mmHg bins), the average MSNA burst area for all cardiac cycles with that 

DBP were then calculated. This average area was plotted as a function of DBP, and a 

weighted (number of MSNA bursts with that DBP) linear regression was fitted to the 

linear part of the data, yielding the measure of sBRSA. 

 
Figure 5-25. Example showing the calculation of sympathetic baroreflex sensitivity 
using the threshold method. 
The graph shows the relationship between the percentage of cycles within a 1 mmHg 
diastolic blood pressure (DBP) bin associated with a burst of muscle sympathetic nerve 
activity (MSNA) versus the mean DBP for that bin. The slope of the weighted linear 
regression gives the sympathetic baroreflex sensitivity by the threshold method (BRST). 
Data shown are baseline data, pre-RDN, for patient number 7 in this study, who had a 
MSNA incidence of 53 bursts/100 heart beats. 
 
 
 
Previous studies have also demonstrated a difference in the MSNA response to rising 

versus falling DBP; Studinger et al. indicate that in young healthy adults, the sympathetic 

baroreflex is more responsive to increasing rather than decreasing pressures (Studinger, 

Goldstein et al. 2007, Dutoit, Hart et al. 2010). In light of this, both BRST and BRSA data 

are presented for total, rising and falling DBP as has been described previously (Hart, 

Wallin et al. 2011, Hart, McBryde et al. 2013). Specifically, DBP were identified that were 
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preceded by a single DBP that was lower (or higher), which were considered to be rising 

(or falling, respectively) DBP.  

 

5.4.1.2.2 Modified Oxford Protocol 

Spontaneous sympathetic (and cardiac) BRS data were assessed in all patients with 

available data. In a subset of 10 patients, pharmacological BRS was quantified using the 

modified Oxford protocol. Vasodilator (sodium nitroprusside) and vasoconstrictor 

(phenylephrine) drugs were used to artificial manipulate BP over a wider range than that 

observed in the measurement of spontaneous, resting BRS. The modified Oxford 

technique is the gold standard measurement of baroreflex function (Rudas, Crossman et 

al. 1999) and has been used to measure baroreflex sensitivity in many different sub-sets 

of patients, from hypertensives (Laterza, de Matos et al. 2007) to diabetic patients 

(Eckberg, Harkins et al. 1986). 

The Modified Oxford technique was performed as previously described (Charkoudian, 

Martin et al. 2004, Hart, Joyner et al. 2010). Specifically, after a 5-10-minute baseline 

period, 100 μg of sodium nitroprusside was given intravenously as a bolus to lower 

arterial pressure, followed 1 minute later by 150 μg of phenylephrine to raise arterial 

pressure to baseline levels. Recovery data were then collected for an additional 2 

minutes. Please note, the aim was to reduce SBP by 10-20 mmHg and then return SBP to 

resting levels, some patients were sensitive to the vasoactive agents and half doses were 

used to avoid profound symptomatic hypo/hypertension in these individuals. Changes in 

muscle sympathetic nerve activity and heart rate were measured in response to the 

increase and decrease in blood pressure. Pharmacological sBRS was calculated by the 

BRSA method described above (see Section 5.4.1.2.1), the method for calculating 

pharmacological cBRS is described below (see Section 5.4.1.2.3.2).  

 

5.4.1.2.3 Measurement of cardiac baroreflex sensitivity 

5.4.1.2.3.1 Spontaneous cardiac baroreflex sensitivity 

Spontaneous cardiac baroreflex sensitivity was assessed using the sequence technique 

(Bertinieri, Di Rienzo et al. 1988, Parati, Di Rienzo et al. 1988). The sequence technique is 

based on the identification of sequences of consecutive beats in which progressive 

increases in SBP are followed with a one-beat delay by a progressive lengthening in RR 

interval, or vice versa (Di Rienzo, Parati et al. 2001). It is possible to calculate cBRS over a 

range of cardiac cycle lags between the paired SBP and RRI, for logistical reasons I have 

calculated spontaneous cBRS for a 1 beat lag only, in keeping with the predominant 

method in the literature (Di Rienzo, Parati et al. 2001). At normal resting heart rate of 

60-80 bpm a 1 beat lag represents the average baroreflex latency of 1.2 seconds, at 

faster heart rates a longer lag should be used (Hart, Joyner et al. 2010). Sequences of 

three or more successive heart beats in which there are simultaneous, concordant 

increases or decreases in SBP and RR interval (RRI) were identified. A linear regression 

was applied to the relationship between SBP and RRI for each of the sequences and an 

average regression slope was calculated for the sequences detected during each 

recording period. This slope represents the overall spontaneous cardiac baroreflex 

sensitivity. Data were also analysed separately to quantify the spontaneous cBRS to both 
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rising and falling SBP. Values of cBRS were accepted when the number of sequences was 

≥3 for both rising and falling sequences (Taylor, Witter et al. 2015).  

When using 5-10-minute recordings we frequently found that our datasets contained <3 

concordant sequences, and therefore we were unable to quantify spontaneous cBRS for 

that recording. In order to address this issue, we also calculated the baroreceptor 

effectiveness index (BEI) for each dataset. In normal individuals, concordant SBP/RRI 

sequences occur at a rate of around 80/24 hours (Di Rienzo, Parati et al. 2001), this 

means that it is not surprising to only obtain 1-2 concordant sequences (ramps) in a 

short recording. Even in healthy volunteers, SBP ramps also occur in the absence of 

concordant RRI ramps, indicating variable coupling of heart rate in response to changes 

in BP (Di Rienzo, Parati et al. 2001). The BEI quantifies this phenomenon and is defined 

by the ratio between the total number of concordant SBP/RRI ramps and the total 

number of SBP ramps (Di Rienzo, Parati et al. 2001). For practical reasons the BEI has 

been calculated using ramps with a 1 beat lag only. 

5.4.1.2.3.2 Pharmacological cardiac baroreflex sensitivity 

Whilst the sequence technique is commonly used to assess spontaneous cBRS, 

published data more frequently uses a ‘binning’ method (similar to sBRS analyses) to 

quantify cBRS in the context of the modified Oxford protocol (Minson, Halliwill et al. 

2000, Halliwill and Minson 2002, Dutoit, Hart et al. 2010, Barnes, Matzek et al. 2012); 

this may in part reflect the small number of sequences available for analysis. Data for 

RRI collected during the modified Oxford protocol (including 2-minute recovery period) 

were pooled into 2 mmHg SBP bins (with 1 beat lag). The mean RRI and SBP for each bin 

was calculated. The slope of the linear relationship between mean RRI and mean SBP 

quantified the pharmacological cBRS (Charkoudian, Martin et al. 2004, Barnes, Matzek 

et al. 2012). 

 

5.4.1.2.3.3 Correlations versus blood pressure, sympathetic nerve activity, and target 

organ damage 

Changes in BRS have been correlated against both baseline measures of and changes in 

office SBP and measures of cardiac volumetrics and function, and aortic distensibility, 

and also versus muscle sympathetic nerve (MSNA) and heart rate variability (HRV) 

parameters, as assessed before, and six months after, RDN. The methods for these 

measures are described in Sections 4.3.4, 4.3.5 and 4.3.6, and the results for the 

correlations are presented in full in Appendices 2 and 3, positive and significant negative 

data are presented in detail in the relevant sections of this chapter. Only correlation 

analyses with a minimum of 5 data pairs are presented. 

 

5.4.1.3 Results 

5.4.1.3.1 Spontaneous sympathetic baroreceptor sensitivity 

Spontaneous sympathetic BRS data were available for 13/18 patients (14 patients with 

MSNA, error with DBP recording in 1 participant therefore unable to calculate sBRS). 

Baseline office SBP correlated with baseline falling spontaneous sBRST and falling 
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spontaneous sBRSA (R=-0.63, p=0.02; R=-0.58, p=0.04, respectively, see Figure 5-26). 

Left ventricular mass (LVM) index was also negatively correlated with overall 

spontaneous sBRST at baseline (R=-0.65, p=0.02). Baseline MSNA incidence did not 

correlate with any of the baseline spontaneous sBRS parameters. Spontaneous sBRST 

and sBRSA were strongly correlated at baseline (see Figure 5-27).  

In the 10 participants with spontaneous sBRS available at baseline and six months post-

RDN, there were no changes in any of the spontaneous sBRS variables at this primary 

endpoint as assessed by paired Student’s t-test (see Table 5-17). Furthermore, there 

were no significant changes in any of the spontaneous sBRS parameters over the full 

course of the study as assessed by repeated-measures ANOVA (n=13, see Table 5-18). 

There was no correlation between the change in office SBP and the change in any of the 

spontaneous sBRS parameters at 6 months post-RDN. Likewise, there were also no 

correlations between the changes in either MSNA incidence, HRV parameters, indexed 

LVM or aortic distensibility, and the change in any of the spontaneous sBRS parameters 

at 6 months.  

 

Figure 5-26. Correlation between baseline office systolic blood pressure (SBP) and 
baseline spontaneous sympathetic baroreflex sensitivity for falling pressures (ssBRS). 
Relationship between office SBP and ssBRS assessed by A. the threshold method, and B. 
the area method. Significance taken as p<0.05. Male participants’ data are depicted in 
blue, pre-menopausal women in red and post-menopausal women in purple. 
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Figure 5-27. Strong correlation between baseline spontaneous sympathetic BRS 
assessed by the threshold versus area method. 
ssBRST; spontaneous sympathetic baroreflex sensitivity – threshold method, ssBRSA; 
spontaneous sympathetic baroreflex sensitivity – area method. Significance taken as 
p<0.05. 
 

 

 

Parameter Time post RDN (months) P 

 0 6  

BRST overall (%/mmHg) -1.55 ± 0.37 -1.20 ± 0.45 0.59 

BRST rising (%/mmHg) -1.11 ± 0.41 -1.29 ± 0.29 0.73 

BRST falling (%/mmHg) -1.07 ± 0.29 -0.87 ± 0.53 0.75 

BRSA overall (AU•s/mmHg) -0.55 ± 0.16 -0.73 ± 0.24 0.49 

BRSA rising (AU•s/mmHg) -0.66 ± 0.26 -0.90 ± 0.22 0.47 

BRSA falling (AU•s/mmHg) -0.50 ± 0.20 -0.70 ± 0.26 0.55 

Table 5-17. No change in spontaneous sympathetic baroreflex as assessed by the 
threshold (BRST) or area (BRSA) methods assessed at baseline and 6 months following 
renal denervation (RDN). 
Data shown for 10 participants with ssBRS available at baseline and 6 months post-RDN. 
Data reported for overall BRS, and then BRS to either rising or falling diastolic blood 
pressure. P value is for paired Student’s t-test and data are reported as mean ± SEM. 
 
 

Parameter Time post RDN (months) P 
 0 1 3 6 12  

BRST overall 
(%/mmHg) 

-1.38 
± 0.29 

-1.74 
± 0.35 

-1.99 
± 0.26 

-1.42 
± 0.39 

-1.16 
± 0.47 

0.53 

BRST rising 
(%/mmHg) 

-1.30 
± 0.41 

-1.64 
± 0.40 

-1.82 
± 0.35 

-1.38 
± 0.29 

-1.60 
± 0.43 

0.90 

BRST falling 
(%/mmHg) 

-1.07 
± 0.22 

-0.72 
± 0.56 

-0.99 
± 0.45 

-1.10 
± 0.47 

-0.82 
± 0.68 

0.97 
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BRSA overall 
(AU•s/mmHg) 

-0.46 
± 0.14 

-0.78 
± 0.18 

-1.00 
± 0.13 

-0.76 
± 0.19 

-0.70 
± 0.24 

0.33 

BRSA rising 
(AU•s/mmHg) 

-0.67 
± 0.21 

-0.78 
± 0.20 

-1.01 
± 0.23 

-0.92 
± 0.19 

-0.96 
± 0.27 

0.80 

BRSA falling 
(AU•s/mmHg) 

-0.57 
± 0.16 

-0.86 
± 0.29 

-0.77 
± 0.27 

-0.84 
± 0.23 

-0.68 
± 0.34 

0.89 

Table 5-18. No change in spontaneous sympathetic baroreflex as assessed by the 
threshold (BRST) or area (BRSA) methods following renal denervation (RDN). 
Data shown for 13 participants for overall BRS, and then BRS to either rising or falling 
diastolic blood pressure. P value is for repeated measures on-way ANOVA, there were 
no significant differences between groups on Bonferroni comparison. Data shown is 
mean ± SEM. 
 

 
In summary, patients with higher baseline oSBP and iLVM had greater baseline 

spontaneous sBRS, but there was no change in spontaneous sBRS following RDN. 

 

 

5.4.1.3.2 Pharmacological sympathetic baroreflex sensitivity 

Five of the ten participants who underwent the Modified Oxford protocol had adequate 

quality MSNA and DBP data at baseline for analysis of pharmacological sBRSA. Each of 

these participants had follow-up data available at either 6 or 12 months post-RDN, and 

therefore data have been analysed from baseline versus a composite endpoint of 6-12 

months follow-up. 

At baseline, there were no significant correlations between overall, rising or falling 

spontaneous sBRSA and overall, rising or falling pharmacological sBRSA (all p>0.05). 

Baseline office SBP was negatively correlated with baseline overall pharmacological 

sBRSA (n=5, R=-0.90, p=0.04, see Figure 5-28) and baseline pharmacological sBRSA (n=5, 

R=-0.91, p=0.03) for falling DBP. Baseline MSNA incidence was positively correlated 

against baseline overall pharmacological sBRSA (n=5, R=0.90, p=0.04, see Figure 5-28) 

and baseline pharmacological sBRSA for falling DBP (n=5, R=0.90, p=0.04). Higher 

baseline office SBP was associated with greater (more negative) BRS, whereas higher 

baseline MSNA was associated with lower BRS (see Figure 5-28). There were no 

significant correlations between baseline overall pharmacological sBRSA and baseline 

heart rate variability parameters, baseline aortic distensibility or any of the baseline 

CMR volumetric or strain parameters (including LVM, all p>0.05). 

There was no significant change in pharmacological sBRSA in response to overall 

changes in DBP or in response to rising or falling DBP specifically, following RDN (see 

Table 5-19). There was no significant correlation between the change in overall 

pharmacological sBRSA at 6-12 months post-RDN and the change oSBP at six months 

after the procedure (n=5, R=0.48, p=0.42). Likewise, there was no significant correlation 

between the change in overall pharmacological sBRSA and the change in MSNA, the 

changes in HRV parameters, the change in aortic distensibility or the changes in any of 

the CMR parameters following RDN.  



  

193 
   

 

 

Figure 5-28. Correlations between baseline pharmacological sympathetic baroreflex 
sensitivity (psBRSA) versus A. baseline office systolic blood pressure (oSBP) and B. 
baseline muscle sympathetic nerve activity (MSNA). 
Baroreflex sensitivity assessed in response to the Modified Oxford protocol with 
assessment of MSNA area. Data are for a Pearson’s correlation. Male participants’ data 
are depicted in blue, pre-menopausal women in red and post-menopausal women in 
purple. 
 

 

Parameter Time post RDN (months) P 

 0 6-12  

psBRSA overall 
(AU•s/mmHg) 

-0.78 ± 0.13 -0.87 ± 0.15 0.30 

psBRSA rising 
(AU•s/mmHg) 

-0.81 ± 0.14 -0.86 ± 0.20 0.83 

psBRSA falling 
(AU•s/mmHg) 

-0.52 ± 0.11 -0.52 ± 0.13 0.98 

Table 5-19. No significant change in baroreflex sensitivity as assessed using the 
modified Oxford protocol. 
There were no significant changes in pharmacologically tested, sympathetic baroreflex 
sensitivity assessed by area method (psBRSA), either for all data, or for data in response 
to rising or falling diastolic blood pressure, with follow-up data assessed at 6-12 months 
after renal denervation (RDN). P value for paired Students t-test, n=5. 
 
 
In summary, higher baseline office SBP was associated with greater (more negative) BRS, 

whereas higher baseline MSNA was associated with lower pharmacological sBRS at 

baseline, but there was no change in pharmacological sBRS following RDN. 

 
 
 
 
 
5.4.1.3.3 Spontaneous cardiac baroreflex sensitivity 
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Baseline spontaneous cardiac baroreflex sensitivity was assessed in 16/18 participants, 

however, when using the sequence method for analysis for overall, rising and falling 

changes in SBP only 13, 13, and 11 participants, respectively, had ≥3 concordant 

sequences from which to calculate an average regression line representing spontaneous 

cBRS. In the analyses below only results for spontaneous cBRS based on ≥3 sequences 

have been included. An example showing the calculation of spontaneous cBRS using the 

sequence method is shown in Figure 5-29. Baroreflex effectiveness index could be 

calculated in all 16 patients with baseline spontaneous cBRS data.  

 

 

Figure 5-29. Example of calculation of spontaneous cardiac baroreflex sensitivity 
(scBRS) using the sequence method.  
Concordant sequences are shown as coloured data points with linear regression. The 
scBRS is the mean of these regression lines and is shown as a black dotted line, giving a 
scBRS of 4.45 ms/mmHg in this example. RRI; R wave to R wave interval, SBP; systolic 
blood pressure. 
 
 
At baseline, there were no significant correlations between office SBP and overall, rising 

and falling spontaneous cBRS and BEI. The correlation between baseline oSBP and 

baseline spontaneous cBRS for falling SBP approached significance (n=11, R=-0.60, 

p=0.05, see Figure 5-30), with participants with higher SBP having lower (impaired) 

spontaneous cBRS. When looking at baseline spontaneous cBRS parameters correlated 

against baseline HRV parameters, there was a significant correlation between baseline 

overall spontaneous cBRS and baseline low frequency (LF) spectral components (n=13, 

R=0.87, p=<0.0001, see Figure 5-30), with patients with higher oSBP having higher LF 

spectral measures, which may be consistent with higher cardiac sympathetic nerve 

activity (SNA). Baseline BEI for all sequences was inversely correlated against baseline 

normalised high frequency (nHF) power (n=16, R=-0.50, p=0.049, see Figure 5-30), with 

individuals with higher BEI (greater cBRS concordance) having lower nHF power, and 

thus lower vagal input to HRV. There were no correlations between baseline MSNA 

incidence and any of the baseline spontaneous cBRS or BEI measures (all p>0.05). 

There were no significant correlations between spontaneous cBRS for all sequences and 

any of the cardiac volumetric or strain parameters. Baseline spontaneous cBRS for falling 

SBP sequences correlated against baseline left ventricular mass (n=11, R=-0.66, p=0.03, 
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see Figure 5-30), approaching significance for indexed LVM (n=11, -0.58, p=0.06), with 

patients with higher (better) spontaneous cBRS having lower LVM. There were no 

correlations between baseline aortic distensibility and any of the measures of baseline 

spontaneous cBRS or BEI (all p>0.05). 

Follow-up spontaneous cardiac BRS data were available at the primary 6-month 

endpoint in 16 participants and was used to calculate a BEI, however, only 9 participants 

had spontaneous cBRS data calculated using ≥3 sequences which could be used for 

outcome analyses. There was a significant increase in spontaneous cBRS for the 

response to combined rising and falling SBP from baseline to 6 months (n=9, 7.0 ± 1.7 

ms/mmHg vs 9.9 ± 2.1 ms/mmHg, respectively, p=0.048, see Table 5-20).  

When data were assessed over the full study time course (using repeated-measures 

ANOVA with data carried forward), there were also no significant changes in any of the 

spontaneous cBRS parameters following RDN (see Table 5-21). However, there were 

possible trends towards an increase in spontaneous cBRS for falling SBP sequences 

(p=0.09) and for a change in overall BEI (p=0.08), with the latter peaking at baseline and 

6 months post-RDN. 

There were no significant correlations between the change in either office SBP or MSNA 

at 6 months after RDN and the changes in any of the spontaneous cBRS parameters 

following RDN (all p>0.05).  

 
Figure 5-30. Correlations versus baseline spontaneous cardiac baroreflex sensitivity 
(scBRS).  
A. Office systolic blood pressure (SBP) versus scBRS for falling SBP, B. low frequency (LF) 
spectral heart rate variability (HRV) versus overall scBRS, C. normalised high frequency 
(nHF) spectral HRV versus baroreflex effectiveness index, and D. scBRS for falling SBP 
versus left ventricular mass (LVM). Patients with higher baseline SBP trended towards 



  

196 
   

lower (impaired) scBRS, those with high LF power (indicating increased sympathetic 
nerve activity) had higher (increased) spontaneous cardiac baroreflex gain whereas 
individuals with high nHF spectral components (indicating increased vagal activity) had 
poor concordance between changes in SBP and RRI. Poor scBRS was associated with 
increased LVM. 
 

At six months post-RDN, there were significant correlations between the change in 

overall spontaneous cBRS and the changes in the HRV parameters nHF spectral power 

(n=7, R=0.76, p=0.49) and LF/HF ratio (n=7, R=-0.86, p=0.02, see Figure 5-31). There 

were also correlations between the change in spontaneous cBRS for rising SBP and the 

changes in nHF and nLF power (n=7, R=0.86, p=0.01, and n=7, R=-0.81. p=0.03), and the 

change in LF/HF ratio (n=7, R-0.79, p=0.048). Furthermore, at six months after the 

procedure, there were significant correlations between the change in overall BEI and the 

changes in nHF power (n=13, R=-0.59, p=0.04), LF power (n=13, R=0.71, p=0.006) and 

LF/HF ratio (n=13, R=0.70, p=0.008, see Figure 5-31). There were also correlations 

between the change in BEI for falling SBP and the changes in nHF power (n=13, R=-0.68, 

p=0.01), nLF power (n=13, R=0.57, p-0.04), LF power (n=13, R=0.60, p=0.03) and LF/HF 

ratio (n=13, R=0.87, p=0.0001).  

 

Parameter  Time post RDN (months)  

 N 0 6 P 

scBRS overall 
(ms/mmHg) 

9 7.0 ± 1.7 9.9 ± 2.1 0.048 

scBRS rising 
(ms/mmHg) 

8 6.7 ± 1.4 8.9 ± 1.7 0.15 

scBRS falling 
(ms/mmHg) 

6 9.7 ± 2.5 14.4 ± 3.6 0.15 

BEI overall 16 0.19 ± 0.02 0.17 ± 0.03 0.67 

BEI rising 16 0.20 ± 0.03 0.16 ± 0.03 0.34 

BEI falling 16 0.19 ± 0.03 0.17 ± 0.04 0.82 

Table 5-20. Spontaneous cardiac baroreflex sensitivity (scBRS) parameters at baseline 
versus 6 months after renal denervation (RDN). 
BEI; baroreflex effectiveness index. P values for paired Student’s t-test. 

 

Parameter Time post RDN (months) P 

 0 1 3 6 12  

scBRS overall 
(ms/mmHg) 

7.7 ± 1.4 10.0 ± 3.2 10.4 ± 3.0 10.0 ± 1.7 10.1 ± 3.9 0.41 

scBRS rising 
(ms/mmHg) 

5.7 ± 1.1 8.6 ± 3.1 8.3 ± 3.1 7.3 ± 1.3 7.2 ± 1.8 0.82 

scBRS falling 
(ms/mmHg) 

8.9 ± 2.1 8.2 ± 1.8 7.8 ± 1.7 12.9 ± 2.9 18.1 ± 7.8 0.09 
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BEI overall 
0.19 ± 
0.02 

0.13 ± 
0.03 

0.14 ± 
0.03 

0.17 ± 
0.03 

0.13 ± 0.02 0.08 

BEI rising 
0.20 ± 
0.03 

0.13 ± 
0.03 

0.14 ± 
0.04 

0.16 ± 
0.03 

0.15 ± 0.03 0.24 

BEI falling 
0.19 ± 
0.03 

0.13 ± 
0.03 

0.14 ± 
0.04 

0.17 ± 
0.04 

0.12 ± 0.03 0.20 

Table 5-21. Change in spontaneous cardiac baroreflex sensitivity (scBRS) following 
renal denervation (RDN). 
For scBRS, qualifying data required ≥3 concordant sequences, giving n= 12, n=12 and 
n=8 for overall, rising and falling scBRS, respectively. Analysis of baroreflex effectiveness 
index (BEI) does not require a minimum number of concordant sequences and was 
therefore quantified in all 16 participants with available scBRS data. Data were assessed 
by repeated-measures ANOVA with data carried forward from the previous study visit to 
fill and data gaps.  
 
Finally, there were no significant correlations between the changes in the spontaneous 

cBRS or BEI parameters and changes in any of the cardiac volumetric or strain 

parameters, or aortic distensibility, at 6 months after renal denervation (all p>0.05). 

 

 

Figure 5-31. Changes in measures of spontaneous cardiac baroreflex sensitivity (A.) 
and effectiveness index (B.) correlate with change in sympathovagal balance at 6 
months after renal denervation, 
A fall in LF/HF, a measure of cardiac sympathovagal balance was associated with an 
improvement in cardiac baroreflex sensitivity, but a reduction in the transduction of 
changes in BP into changes in heart rate. scBRS; spontaneous sympathetic baroreflex 
sensitivity, BEI; baroreflex effectiveness index, LF/HF; low frequency/high frequency 
heart rate variability spectral power ratio.  
 

In summary, there was a trend for participants with higher baseline SBP to have lower 

(impaired) spontaneous cBRS at baseline, and individuals with higher (better) 

spontaneous cBRS had a lower LVM. There was a significant increase in spontaneous 

cBRS following RDN, which was independent of any changes in oSBP or MSNA. To 

summarise the relationship between changes in spontaneous cBRS and changes in the 

HRV parameters post-RDN; as vagal activity increases, and/or cardiac sympathetic nerve 
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activity decreases (decreased LF/HF ratio), spontaneous cardiac BRS improved, but BEI 

decreased (see Figure 5-31). 

 

5.4.1.3.4 Pharmacological cardiac baroreflex sensitivity 

Pharmacological cardiac baroreflex sensitivity was calculated in response to the 

modified Oxford protocol in 10/18 participants at baseline. Mean overall 

pharmacological sBRS at baseline was 3.0 ± 0.7 ms/mmHg. Pharmacological sBRS data 

were then available in 7, 6, 8 and 5 participants at 1, 3, 6 and 12 months respectively.  

At baseline, pharmacological cBRS was strongly correlated against spontaneous cBRS. 

There were no correlations between baseline pharmacological cBRS and baseline office 

SBP (n=10, R=-0.25, p=0.49) and baseline MSNA incidence (n=7, R=-0.29, p=0.56). 

Baseline pharmacological cBRS correlated with baseline LF HRV power (n=10, R=0.82, 

p=0.006), which could indicate that those with higher pharmacological cBRS have higher 

cardiac sympathetic nerve activity (there were no correlations with any of the other 

spectral components).  

Pharmacological cBRS at baseline did not correlate significantly against any of the 

baseline cardiac volumetric or strain MRI data or baseline aortic distensibility.  

When considering the primary study outcome visit, there was no significant change in 

pharmacological cBRS between baseline and 6 months post-RDN amongst the eight 

participants with data available at both timepoints (3.2 ± 0.8 ms/mmHg vs 3.8 ± 0.7 

ms/mmHg, p=0.15 (Wilcoxon matched-pairs signed rank test)). When data were 

analysed across all study time-points there was also no significant change in 

pharmacological sBRS following RDN (see Table 5-22). 

 

Parameter Time post RDN (months) P 

 0 1 3 6 12  

pcBRS overall 
(ms/mmHg) 

3.0 ± 0.7 3.8 ± 1.1 4.7 ± 1.2 3.4 ± 0.6 3.6 ± 0.8 0.80 

Table 5-22. No change in pharmacological cardiac baroreflex sensitivity (pcBRS) over 
12 months following renal denervation (RDN). 
Data for all 10 participants with baseline psBRS data, analysed by Friedman test, with 
data carried forward from previous study visit to cover any missing results (data 
available in 10, 7, 6, 8 and 5 participants at 0, 1, 3, 6 and 12 months, respectively). No 
significant differences on between group analysis. 
 

There were no significant correlations between the change in pharmacological sBRS and 

the changes in spontaneous sBRS (both BRST and BRSA; n=5, R=-0.10, p=0.95) at 6 

months post-RDN. There were also no significant correlations between the change in 

pharmacological cBRS and the changes in office SBP (n=8, R=-0.12, p=0.79), MSNA (n=4, 

R=0.80, p=0.33) and any of the HRV parameters (all n=8, p>0.05) at six months after the 

procedure.  
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When considering target organ damage, there were no correlations between the change 

in pharmacological cBRS and the changes in any of the volumetric or strain CMR 

parameters or versus the change in aortic distensibility at months following RDN (all 

p>0.05). 

In summary, there was no significant changes in pharmacological cBRS following RDN. 

 

5.4.1.4 Discussion 

5.4.1.4.1 Effect of renal denervation on sympathetic baroreflex sensitivity 

These outcome data for each of the measures of spontaneous and pharmacological sBRS 

consistently demonstrate no change in sympathetic baroreflex sensitivity following RDN. 

These results are in conflict with the conclusions drawn in Sections 5.3.4.2 and 5.3.5, 

since there was a reduction (or at least a trend towards a reduction at 6 months) in 

office SBP following RDN, but no change in MSNA, which would suggest that there had 

been a resetting in baroreflex gain (Guyenet 2006, Hart, Joyner et al. 2010). The 

outcomes in the present study differ from existing published data. Our group has 

previously reported an improvement in spontaneous sBRS following RDN, which was 

independent of a change in BP, in a cohort of 8 patients (4 of whom are in the present 

study) (Hart, McBryde et al. 2013). This translational study was further supported by 

improvements in pharmacological sBRS assessed in 7 spontaneously hypertensive rats 

which had received surgical RDN (Hart, McBryde et al. 2013). Grassi et al. reported 

reductions in both MSNA and spontaneous sBRS at 3 and 6 months following RDN in 15 

patients with resistant hypertension treated with RDN, furthermore, the reduction in 

MSNA was associated with an improvement in spontaneous sBRS, although the changes 

in both of these variables were independent of any change in BP (Grassi, Seravalle et al. 

2015). The number of participants studied in any of these studies remains small and the 

findings warrant further investigation. 

At baseline, office SBP was negatively correlated with spontaneous sBRS in response to 

falling DBP (see Figure 5-26), and when considering the baseline pharmacological sBRS 

data, higher baseline office SBP was also associated with greater (more negative) BRS, 

whereas higher baseline MSNA was associated with lower BRS, particularly in response 

to falling BP (see Figure 5-28). At a simplistic level, hypertension is associated with 

impaired BRS (Yamada, Miyajima et al. 1988, Hesse, Charkoudian et al. 2007, Grassi, 

Seravalle et al. 2014), however, it is important to differentiate between sympathetic 

input to cardiac BRS and sympathetic vasomotor baroreflex sensitivity. The majority of 

papers in this field refer to cardiac BRS, which is more readily measured on a population 

basis, with impaired cardiac baroreflex gain established as a poor prognostic marker for 

cardiovascular disease (Ormezzano, Cracowski et al. 2008). In young adults, cardiac BRS 

is not correlated with sympathetic BRS (Dutoit, Hart et al. 2010), and the picture is 

complicated by hysteresis in the sympathetic baroreflex response to rising versus falling 

DBP (Hart, Wallin et al. 2011). The sensitivity of the sympathetic baroreflex depends on 

the level of resting sympathetic tone: individuals with high resting SNA (usually older 

men and women and/or those with hypertension) respond better to rising BP changes, 

whereas those with low MSNA (younger men and women) respond better to falling BP 
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changes (Hart, Wallin et al. 2011). This picture is further complicated in young females in 

whom there is poor correlation between BP and MSNA (Hart, Charkoudian et al. 2009, 

Hart, Charkoudian et al. 2011). Higher baseline SBP was associated with increased sBRS 

in our study, and since raised BP in usually associated with raised MSNA, this may seem 

counterintuitive. However, in this cohort, 5/13 patients with baseline spontaneous sBRS 

and 2/5 patients with baseline pharmacological sBRS were premenopausal females. As 

discussed in Section 5.3.4.2, there was an inverse relationship between baseline SBP and 

baseline MSNA amongst our participants which we hypothesise relates to the significant 

proportional of younger females, some of whom had very high baseline SBP despite 

low/normal range MSNA, and once again the dissociation between MSNA and BP in 

these participants is likely to impact the sBRS findings. 

 

5.4.1.4.2 Effect of renal denervation on cardiac baroreflex sensitivity 

There was a significant increase in overall spontaneous cardiac BRS (in response to 

combined rising and falling SBP) from baseline to 6 months after denervation (see Table 

5-20). In contrast, there was no significant change in pharmacological cardiac BRS this 

primary study endpoint. When data were assessed over the full study time course (using 

repeated-measures ANOVA with data carried forward), there were also no significant 

changes in any of the spontaneous cBRS or pharmacological cBRS parameters following 

RDN. However, there were possible trends towards an increase in spontaneous cBRS for 

falling SBP sequences (p=0.09) and for a change in overall BEI (p=0.08), with the latter 

peaking at baseline and 6 months post-RDN. These data indicate an improvement in 

spontaneous cBRS following RDN, but not consistently so. 

There is little published data on the effect of RDN on cardiac BRS. Translational data 

from our group previously reported improvements in cBRS in both rats and humans 

following RDN (human data 4/8 patients also presented in the current study) (Hart, 

McBryde et al. 2013). In a rat model of cisplatin-induced renal failure, bilateral renal 

denervation was shown to restore impaired cBRS in response to a volume load (Khan, 

Sattar et al. 2014), likewise, there was an improvement in cBRS following RDN in a rat 

Goldblatt hypertension model (Lincevicius, Shimoura et al. 2017). Zuern et. al identified 

cBRS as a potential predictor of response to RDN, but unfortunately did not publish 

follow-up data on the cBRS findings post-denervation (Zuern, Eick et al. 2013). The effect 

of RDN on cBRS therefore remains to be established in larger human studies, but these 

animal and pilot data support other findings of an improvement in spontaneous cardiac 

BRS following RDN. The mechanism for this relationship remains to be established, 

particularly as to whether it is purely due to a reduction in BP or whether there is 

modulation of the cardiac baroreflex through changes in central and/or cardiac 

sympathetic tone.  

At six months post-RDN, amongst other correlations, there were significant associations 

between the changes in overall spontaneous cBRS and spontaneous cBRS for rising SBP, 

and the changes in LF/HF ratio, a marker of sympathovagal balance (see Figure 5-31). 

There were also significant correlations between the changes in overall BEI and BEI for 

falling SBP, and the change in LF/HF ratio (see Figure 5-31). These data would indicate 

that as vagal activity increases, and/or cardiac sympathetic nerve activity decreases 

(decreased LF/HF ratio), spontaneous cardiac BRS improved. An improvement in cBRS 
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following a reduction in SNA after RDN would be consistent with the preliminary data 

from our group and from animal studies (Hart, McBryde et al. 2013, Khan, Sattar et al. 

2014, Lincevicius, Shimoura et al. 2017), but one might have expected an increase in BEI 

post-RDN in association with increased LF/HF balance if BEI were a marker of cardiac 

baroreflex gain. cBRS and BEI are, in fact, quantifying two different aspects of the 

relationship between RRI and BP: cardiac baroreflex sensitivity quantifies the magnitude 

of the baroreflex responses (the mean gradient of the regression line), whereas BEI 

measures how much of the BP stimuli are being transduced into a response (i.e. the 

percentage of change in BP that is effectively transmitted through the neural pathways 

into a reflex HR response) (Di Rienzo, Parati et al. 2001, Silva and Katayama 2017). The 

use of the sequence method to assess cBRS, particularly when applied to shorter 

duration recordings, is intrinsically limited by the number of concordant SBP and RRI 

ramps and is therefore impacted by the efficacy of cardiac baroreflex transduction. In 

healthy humans, the mean BEI was 21% with an average of 363 SBP ramps in 24 hours 

(Di Rienzo, Parati et al. 2001). It is therefore not surprising that over a 5 min recording 

we struggled to identify ≥3 concordant sequences to enable quantification of the mean 

gradient, and thus spontaneous cBRS. Based on the data from Di Rienzo et al. it might be 

expected to measure, on average only 1.3 SBP ramps in a 5-minute recording (Di Rienzo, 

Parati et al. 2001). BEI has the benefit that it takes into account all SBP ramps in a 

recording, rather than only concordant SBP/RRI ramps, and therefore could be 

quantified is a greater proportion of our participants (overall spontaneous cBRS 

reported for 13/18 participants, BEI reported for 16/18 participants). BEI may therefore 

reflect a more readily available measure of the reflex relationship between SBP and RRI, 

but it must not be forgotten that BEI assesses a different aspect of this relationship to 

spontaneous cBRS and further research is required before the prognostic data 

established for cBRS can be extrapolated to the BEI. 

 

5.4.1.4.3 Baroreflex sensitivity and target organ damage following renal denervation 

At baseline, individuals with reduced overall spontaneous sBRST had a lower LVM index. 

One might have expected impaired spontaneous sBRS to be associated with increased 

LVM and left ventricular hypertrophy (Grassi, Seravalle et al. 2009), but as with the 

correlation between baseline oSBP and baseline spontaneous sBRS described above, this 

counterintuitive relationship may reflect the proportion of premenopausal women in 

this small cohort and should be further investigated in a larger population.  

There was, however, a significant correlation between baseline spontaneous cBRS for 

falling SBP sequences versus baseline LVM (approaching significance for indexed LVM), 

with patients with higher (better) spontaneous cBRS having lower LVM, which is more 

consistent with previous data reporting an inverse relationship between cBRS and LVM 

(Milan, Caserta et al. 2007, Grassi, Seravalle et al. 2009, Song, Kim et al. 2012).  

Despite the relationships seen at baseline, there were no correlations between changes 

in any of the CMR parameters and changes in any of the cardiac or sympathetic BRS at 

six months after renal denervation. Given that there was a significant reduction in LVM 

over the course of the study (see Table 5-6), and that impaired BRS, particularly cBRS, 

has been previously associated with hypertensive heart disease and is an independent 

marker of the risk of mortality and major adverse cardiovascular events in hypertensive 
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patients (Ormezzano, Cracowski et al. 2008, Grassi, Seravalle et al. 2009), one might 

have predicted an improvement in cBRS following RDN. Cardiac BRS did indeed improve 

in our cohort at 6 months post-RDN, but this change did not correlate with the reduction 

in LVM. This may reflect the small size of the cohort, insufficient duration of follow-up, 

or a more complex mechanistic relationship between BRS and hypertensive heart 

disease. 

 

5.4.2 Sympathetic neuro-vascular transduction 

5.4.2.1 Introduction 

Thus far, we have focussed on the relationship between RDN and muscle sympathetic 

nerve activity, with measurement of the electrical activity from the sympathetic nerves 

supplying the vasoactive blood vessels in the leg. In order for these action potentials to 

be converted into changes in vascular tone there must be transduction across the 

neuromuscular junction. Sympathetic nerve activity triggers the release of noradrenaline 

from the postganglionic nerve terminals at the neuromuscular junction, which then 

primarily acts upon α1-adrenergic receptors on the vascular smooth muscle cells 

resulting in vasoconstriction (Guyton and Hall 1996). There are lots of factors which can 

impact sympathetic neuro-haemodynamic transduction, including the release of 

vasoactive co-transmitters which can act both pre- and post-synaptically, the relative 

concentration of α1 and α2 (vasoconstrictive) and β2 (vasodilatory) adrenergic receptors 

on the post-synaptic smooth muscle cells, the relative pre-synaptic concentrations of α2 

(inhibit noradrenaline release) and β2 (facilitate noradrenaline release) adrenergic 

receptors, and the presence of other locally acting vasoactive substances such as nitric 

oxide (Brodde 1990, Guyton and Hall 1996, Kneale, Chowienczyk et al. 2000, Pablo 

Huidobro-Toro and Veronica Donoso 2004, Guyenet 2006, Burnstock 2008, Briant, 

Burchell et al. 2016). The efficacy of sympathetic neurovascular transduction must also 

be evaluated in order to fully appreciate the relationship between arterial pressure, 

baroreflex sensitivity, muscle sympathetic nerve activity and vascular tone. 

5.4.2.2 Method 

We aimed to assess the transduction of sympathetic nerve activity into vascular tone by 

quantifying the relationship between MSNA burst area and change in diastolic blood 

pressure (Briant, Burchell et al. 2016). As with the quantification of sympathetic BRS, 

DBP was used as a proxy for the vascular response because: (i) it is easily and reliably 

measured, (ii) it is a target variable regulated by SNA, and (iii) studies show that DBP 

reflects sympathetic vasomotor tone (Barnes, Hart et al. 2014, Briant, Burchell et al. 

2016). Resting beat-to-beat BP, three-lead ECG and MSNA were measured continuously 

over a 5-10-minute period as described in Section 4.3. 

Sympathovascular transduction was quantified as previously described (Briant, Burchell 

et al. 2016). For each recorded DBP (each cardiac cycle), the summed MSNA burst area 

was measured at a fixed cardiac cycle lag of 8–6 cardiac cycles (see Figure 5-32). A fixed 

lag of 8-6 cardiac cycles was used since this has previously been shown to give the peak 
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transduction slope for this relationship (Briant, Burchell et al. 2016). In the Briant et al. 

study, the peak cross-correlation between beat-to-beat MSNA burst area and DBP 

occurred at 7.44 ± 0.42 cardiac cycle, equating to a lag of 5.7–7.6 s at the mean heart 

rate for the cohort of 63 bpm (Briant, Burchell et al. 2016). This is longer than the 

baroreflex latency of ~1.2 s (Hart, Joyner et al. 2010) since mechanical transduction of 

the change in SNA into a change in vascular tone, and thus DBP, is required. 

This gives a plot of DBP for each cardiac cycle versus MSNA burst area measured at the 

8-6 beat lag. MSNA burst area (units of %•s) was binned into 1%•s bins, and the 

associated DBP (mean ± SEM) calculated. The slope of the weighted linear regression of 

the relationship between MSNA burst area and DBP, quantified sympathetic 

neurovascular transduction (units mmHg/%•s). A non-significant slope was not used as 

exclusion criteria for data, as this may reflect poor transduction (rather than a failure of 

the analytical method).  

 

 

Figure 5-32. Method for quantifying the relationship between MSNA burst area and 
diastolic blood pressure (DBP): sympathetic neurovascular transduction. 
For each DBP, MSNA burst are was measured at a lag of 8-6 cardiac cycles. MSNA burst 
are was then binned into 1 %•s bins and plotted against the mean DBP for that bin. The 
weighted slope of the relationship gives sympathovascular transduction. ECG; 
electrocardiogram, MSNA; muscle sympathetic nerve activity. 
 

5.4.2.3 Results 

Sympathovascular transduction was quantified in 13/18 participants at baseline (14 

patients with MSNA, error with DBP recording in 1 participant therefore unable to 

calculate transduction). Baseline transduction ranged from -0.18 mmHg/%•s to 0.26 

mmHg/%•s, with a more marked negative relationship (less transduction efficacy) 

between DBP and MSNA area (but similar maximum value) when compared with data in 

the normotensive population (Briant, Burchell et al. 2016).  
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There were no correlations between baseline sympathovascular transduction and 

baseline oSBP (see Figure 5-33), baseline MSNA incidence (see Figure 5-33), baseline 

total peripheral resistance (TPR; n=13, R=0.25, p=0.21), or any of the baseline cardiac or 

sympathetic BRS parameters, baseline HRV LF/HF ratio, any of the baseline cardiac 

volumetric and strain parameters, or versus baseline aortic distensibility (all p>0.05, see 

Appendix 2). 

 

 

Figure 5-33. No correlations between baseline sympathovascular transduction and A. 
baseline office systolic blood pressure (SBP) and B. baseline muscle sympathetic nerve 
activity (MSNA). 
Data for male participants is shown in blue, with data for premenopausal women in red 
and postmenopausal women in purple. This once again emphasises relatively low 
baseline MSNA, despite grossly elevated SBP, in the pre-menopausal participants. If the 
pre-menopausal participants are removed from the analysis, the relationship between 
baseline MSNA and baseline transduction is borderline significant (n=8, R=0.65, p=0.08), 
although this is not the case for the relationship versus baseline office SBP (n=8, R=0.46, 
p=0.25). 
  

There were 10 participants with sympathovascular transduction data at baseline and the 

primary 6-month study follow-up visit. Amongst these subjects, there was no significant 

change in transduction at 6 months after denervation (0.05 ± 0.04 mmHg (%•s)-1 vs 0.08 

± 0.02 mmHg (%•s)-1, n=10, p=0.53). There was also no significant change in transduction 

following RDN when data were analysed by repeated-measures ANOVA over all study 

visits (see Table 5-23).  

There were no correlations between the change in sympathovascular transduction at six 

months post-RDN versus the change in TPR (n=10, R=-0.13, p=0.73) or versus the 

changes in any of the other autonomic parameters assessed following RDN, including 

oSBP, MSNA and aortic distensibility, as shown in Appendix 3. 
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Figure 5-34. No change in sympathovascular transduction following renal denervation. 
There was no change in sympathovascular transduction amongst the 10 study 
participants with transduction data at baseline and at the 6-month primary study 
endpoint (as assessed by paired Student’s t-test). 
 

 

Parameter Time post RDN (months) P 

 0 1 3 6 12  

Transduction 
(mmHg/%•s) 

0.03 ± 
0.03 

0.02 ± 
0.02 

0.01 ± 
0.04 

0.07 ± 
0.02 

0.07 ± 
0.03 

0.39 

Table 5-23. No change in sympathovascular transduction after renal denervation 
(RDN) over 12 months follow-up. 
When data were analysed by repeated-measures ANOVA (data carried forward if gaps), 
there was no change in transduction over the full course of the study (Friedman test) 
with no significant differences on between group comparisons (Dunn’s multiple 
comparison test). Data shown for the 13 participants with transduction data at baseline 
(raw data for n=13, 11, 8, 10 and 10 participants at 0, 1, 3, 6 and 12 months, 
respectively). 
 

In summary, there was no change in sympathovascular transduction following RDN, and 

there were no correlations between either baseline sympathovascular transduction and 

the other baseline variables, or the change in sympathovascular transduction at 6 

months post-RDN and changes in any of the other autonomic variables. 

5.4.2.4 Discussion 

In this, the first study to investigate the effect of renal denervation on sympathetic 

neurovascular transduction, there was no change in sympathovascular transduction 

following denervation (see Figure 5-34 and Table 5-23). There were also no correlations 

between any possible change in transduction post RDN and the changes in any of the 

other autonomic parameters following RDN. These results would suggest that 

sympathetic neuro-vascular transduction is not impacted by renal denervation, although 

further data are required to confirm these findings in a larger population. 

Sympathovascular transduction is affected by multiple factors, including co-transmitters 

acting pre-and post-synaptically, other local vasoactive agents and the relative 
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expression of α1- (vasoconstrictor) and β2- (vasodilator) adrenergic receptors (Guyton 

and Hall 1996, Burnstock 2008, Briant, Burchell et al. 2016). Furthermore, our 

participants are on a range of vasoactive medications, including α1-blockers, β-blockers 

and peripherally acting vasodilators such as long acting nitrates (see Appendix 1). The 

variable effects of these different agents are hard to quantify on an individual basis, and 

future studies should consider a standardized medication regime, or even an off-

medication approach in subjects with less severe hypertension to enable more definitive 

evaluation of any effect of RDN on sympathetic neuro-vascular transduction. 

It was also interesting to note that there were no correlations between baseline 

transduction and the other autonomic parameters quantified in this study at baseline, 

particularly versus MSNA incidence, TPR and BRS. It might have been expected that 

increased sympathovascular transduction was correlated with higher MSNA, greater BRS 

and particularly, increased TPR. The lack of any significant relationship between 

transduction and any of these variables, even at baseline, may reflect the small numbers 

in this cohort, and also the mix of male, and pre-menopausal and post-menopausal 

female participants. The factors affecting sympathovascular transduction are complex 

but appear to differ by age and gender. In women, sympathetic vascular coupling 

increases with age, being particularly low in pre-menopausal females. In contrast, in 

men, sympathovascular coupling decreases with age, meaning that in older men (>50 

years) for a given level of MSNA there is less vasoconstriction, although the resting level 

of vasoconstriction must be taken into consideration, since further constriction may not 

be possible at high/maximal levels of vascular tone (Briant, Burchell et al. 2016). In 

premenopausal women sympathovascular transduction is low, and one mechanism for 

this is the high level of β2-adrenergic vasodilation in these younger females, this 

competes against the α1-adrenergic vasoconstriction, reducing transduction, as 

evidenced by a significant increase in sympatho-vascular coupling in response to 

systemic β-adrenergic blockade (Hart, Charkoudian et al. 2011, Briant, Burchell et al. 

2016).  

A limitation of these data is the method used to quantify transduction. DBP was used as 

a surrogate marker for the vascular response to MSNA, and whilst sympathetic 

vasomotor tone has been shown to correlate well with other measures, such as total 

peripheral resistance (TPR) (Barnes, Matzek et al. 2012, Briant, Burchell et al. 2016), 

direct measurement of vascular resistance may have been more specific. TPR was 

quantified from a composite of office BP and cardiac output derived from the volumetric 

CMR data. These measurements were not contemporaneous with the MSNA measured 

and were only available at baseline and 6 months post-RDN, and therefore did not 

provide a robust outcome measure for the quantification of sympathovascular 

transduction in this study. Reassuringly, previous data have shown a direct linear 

relationship between transduction into DBP and transduction into TPR (Briant, Burchell 

et al. 2016), and support the extrapolation of our findings. 
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5.4.3 Chemoreflex sensitivity 

5.4.3.1 Introduction 

Peripheral chemoreceptors, predominantly located in the carotid bodies, are activated 

by hypoxia, hypercapnia or increased hydrogen ion concentration, resulting in 

sympathoexcitation (Paton, Sobotka et al. 2013). Raised tonic chemoreceptor activity 

has been demonstrated in hypertensive humans (Sinski, Lewandowski et al. 2012, 

Pijacka, Moraes et al. 2016). Recurrent hypoxic exposures can increase chemosensitivity, 

which helps to explain the pathological relationship seen between the intermittent 

hypoxias of obstructive sleep apnoea and hypertension (Weiss, Liu et al. 2007). 

Increased chemosensitivity is also observed in the early stages of human hypertension, 

supporting a causal relationship (Trzebski, Tafil et al. 1982, Somers, Mark et al. 1988). 

There is now evidence that reducing chemoreflex mediated sympathoexcitation either 

through carotid body denervation or pharmacological inhibition in a rodent model, or 

via carotid body excision in humans, can have an antihypertensive effect (Abdala, 

McBryde et al. 2012, McBryde, Abdala et al. 2013, Narkiewicz, Ratcliffe et al. 2016, 

Pijacka, Moraes et al. 2016). Considering these findings, any intervention that reduces 

chemoreflex sensitivity may have a beneficial role in the management of hypertension, 

and we have therefore assessed the effect of RDN on chemoreflex sensitivity as 

quantified by the hypoxic ventilatory response (HVR).  

5.4.3.2 Methods 

In the initial part of the study peripheral chemoreflex sensitivity, as assessed by hypoxic 

ventilatory response, was assessed using an intermittent hypoxia technique; data for 

10/18 participants were recording at baseline using this method. This method involves 

exposure of the patients to inspired nitrogen (N2) for 5-30 second bursts, resulting in a 

brief lowering of blood oxygen saturations (SpO2) for a few breaths at a time. During the 

course of the study, there were some concerns about this technique. It was possible for 

participants to breath hold during exposure to N2, and whilst the N2 was administered 

without prior warning, it was not imperceptible to the participants. It is also important 

to isolate the peripheral chemoreceptor response to hypoxia by maintaining 

normocapnia to avoid activation of the central chemoreceptors (Ciarka, Cuylits et al. 

2006). In light of this, we switched to a stepped hypoxia method for the latter part of the 

study, which involved more prolonged exposure to two stepped increments of hypoxia. 

Data were collected for HVR using this stepped hypoxia approach in 6/18 participants at 

baseline. HVR data were not collected in 2/18 participants for logistical reasons. HVR 

was quantified at baseline and at 6 months after renal denervation. 

5.4.3.2.1 Intermittent hypoxia method 

As described previously (Chua and Coats 1995, Niewinski, Tubek et al. 2014, Narkiewicz, 

Ratcliffe et al. 2016), in this poikilocapnic hypoxic protocol, participants were switched 

from breathing room air to 100% N2 for increasing intervals of 5-30 seconds, with a 3 

minute recovery period between each episode of hypoxia to allow physiological 

parameters to return to baseline. Each subject was exposed to 5-6 intervals of hypoxia 

to achieve a range of minimum SpO2 from 100% to 75%. Minute ventilation (MV) was 
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calculated from measures of breathing rate and tidal volume which were recorded 

continuously during the protocol using spirometry (AD Instruments, Sydney, Australia). 

For each hypoxic interval, MV for the largest 2 subsequent breaths during/following 

inhalation of 100% N2 was averaged. The HVR was quantified as the slope of the linear 

regression of MV plotted against the minimum SpO2 for each interval (see Figure 5-35). 

 

 

Figure 5-35. Example of the calculation of hypoxic ventilatory response (chemoreflex 
sensitivity) using the intermittent hypoxia protocol. 
Data shown is baseline data for participant number 8. HVR is quantified as the slope of 
the linear regression of minute ventilation versus oxygen saturation plotted for each 
incremental burst of hypoxia. 
 
 
5.4.3.2.2 Stepped hypoxia method 

As similar to previously described methods (Ciarka, Cuylits et al. 2006, Breskovic, Valic et 

al. 2010), in this normocapnic hypoxic protocol, participants were stepped from 

breathing room air through two progressive steps of hypoxia by increasing the inspired 

N2 concentration until the target SpO2 was reached. Following a 1-minute baseline 

recording during exposure to room air, the target SpO2 for the first 2-minute step was 

90-95% and the target SpO2 for the second 2-minute step was 87-90%. End tidal carbon 

dioxide (CO2) was maintained by titrating CO2 into the inspired gas. MV was calculated 

from measures of breathing rate and tidal volume, which were recorded continuously 

during the protocol using spirometry (AD Instruments, Sydney, Australia). For each of 

the three steps (1-minute baseline, 2 x 2-minute hypoxia) mean SpO2 and mean MV 

were calculated, and HRV was quantified as the regression line of the slope for the 

relationship of mean SpO2 versus mean MV from these three data points (see Figure 

5-36). 
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Figure 5-36. Example of the calculation of hypoxic ventilatory response (peripheral 
chemoreflex sensitivity) using the stepped hypoxia protocol. 
Data shown is baseline data for participant number 18. HVR is quantified as the slope of 
the linear regression of minute ventilation versus oxygen saturation plotted for baseline 
oxygenation and each of the two progressive steps of hypoxia. 
 

5.4.3.3 Results 

Chemoreflex sensitivity was available in 16/18 participants, 10 assessed using the 

intermittent hypoxia method and 6 assessed using the stepped hypoxia regime.  

At baseline there were no correlations between chemoreflex sensitivity (either using the 

intermittent hypoxia method the stepped hypoxia method, or for data from both 

methods combined) and office SBP, MSNA incidence or any of the other autonomic 

variables (see Appendix 2). 

When looking at CMR measures of target organ damage, baseline chemoreflex 

sensitivity as assessed by the stepped hypoxia method, was negatively correlated 

against baseline ejection fraction (n=6, R=-0.88, p=0.02), baseline peak circumferential 

strain (n=6, R=-0.82, p=0.0048) and baseline peak diastolic circumferential strain rate 

(n=6, R=0.89, p=0.03). Greater chemoreflex gain was associated with a higher ejection 

fraction, but with lower circumferential strain and lower diastolic circumferential strain 

rate. There was a significant correlation between baseline HVR as assessed by the 

intermittent hypoxia method and baseline aortic distensibility (n=8, R=-0.76, p=0.03); 

individuals with greater chemoreflex sensitivity had greater aortic distensibility. 

Amongst the participants with chemoreflex data available at both baseline and six 

months following RDN, there was no significant change in HVR, either for data for both 

HVR methods combined (n=12, -0.17 ± 0.06 L/min/%vs -0.14 ± 0.04 L/min/%, 0 and 6 

months, respectively, p=0.91), or by the intermittent hypoxia method (n=8, -0.21 ± 0.07 

L/min/% vs -0.18 ± 0.05 L/min/%, 0 and 6 months, respectively, p=0.84) or stepped 

hypoxia methods (n=4, -0.07 ± 0.11 L/min/% and -0.06 ± 0.04 L/min/%, 0 and 6 months, 

respectively, p=1.00, see Figure 5-37). Looking at Figure 5-37, chemoreflex sensitivity as 

assessed by the intermittent hypoxia method may give a greater HVR gain than the 

stepped hypoxia method, however, a direct comparison of these techniques within 

individual participants is required to confirm this observation.  
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Amongst the 12 patients who had chemoreflex HVR data at both baseline and six 

months following RDN, there were no significant correlations between the either the 

changes in office SBP, MSNA or sympathovascular transduction following RDN and the 

changes in HVR (see Appendix 3, note limited n for stepped hypoxia method)). The 

change in HVR post-RDN for patients assessed using the intermittent hypoxia method, 

correlated with the change in LF/HF ratio at 6 months after the procedure (n=7, R=0.78, 

p=0.04); an increase in relative sympathovagal balance was associated with a worsening 

of the HVR.  

There was a correlation between the change in HVR as assessed with the intermittent 

hypoxia method and the change in overall spontaneous sBRST (n=7, R=-0.78, p=0.04). 

For this isolated variable, an increase in chemoreflex sensitivity was associated with a 

decreased in overall spontaneous sBRST, as reported previously there is an inhibitory 

interaction between the baroreflex and chemoreflex, with activation of the 

baroreceptors abolishing the SNA chemoreflex response to hypoxia (Somers, Mark et al. 

1991).  

There were correlations between the change in both overall HVR and HVR as assessed 

by the intermittent hypoxia method and the change in aortic distensibility following RDN 

(n=10, R=-0.72, p=0.02 and n=6, R=-0.95, p=0.004); an improvement in HVR following 

RDN was associated with an improvement in aortic distensibility, but there were also 

individuals with a decrease in HVR gain and a decrease in aortic distensibility, so whilst 

the correlation was strong, the directionality of the effect following RDN was mixed. 

 

 

Figure 5-37. No change in chemoreflex as assessed by hypoxic ventilatory response 
(HVR) following renal denervation. 
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There was no change in chemoreflex for either A. all HVR data (n=12, p=0.91), or either 
B. HVR assessed by the intermittent hypoxia method (n=8, p=0.84) or c. HVR assessed by 
the stepped hypoxia method (n=4, p=1.00). Data assessed by Wilcoxon matched-pairs 
signed rank test. 
 

In summary, there was no change in chemoreflex as assessed by the hypoxic ventilatory 

response following RDN. At baseline greater chemoreflex gain was associated with a 

higher ejection fraction, but with lower circumferential strain and lower diastolic 

circumferential strain rate, and individuals with greater chemoreflex sensitivity had 

greater aortic distensibility. Six months after denervation, an increase in relative 

sympathovagal balance was associated with a worsening of the HVR. An increase in 

chemoreflex sensitivity was associated with a decreased in overall spontaneous sBRST, 

and overall, an improvement in HVR following RDN was associated with an improvement 

in aortic distensibility. 

 

5.4.3.4 Discussion 

Regardless of the method used, there was no change in peripheral chemoreflex 

sensitivity as assessed by HVR following RDN. There were also no correlations between 

the different measures of HVR and any of the baseline autonomic variables. This may be 

surprising as patients with hypertension have been shown to have an increased 

sympathetic and ventilatory response to hypoxia (Somers, Mark et al. 1989, Kara, 

Narkiewicz et al. 2003, Sinski, Lewandowski et al. 2012). The chemoreflex mediates 

sympathoactivation and inhibition of baroreflex function (Paton, Sobotka et al. 2013), 

and conversely the arterial baroreflex also has a strong inhibitory effect on peripheral 

chemoreflex sensitivity, so it may have been expected to have seen a stronger 

relationship between these variables (Kara, Narkiewicz et al. 2003). However, in this 

small cohort of patients with resistant hypertension, the effect of gender on BRS and 

sympathovascular transduction, and extremes of BP and MSNA, may mask this 

relationship.  

Interestingly, in this study a reduction in chemoreflex sensitivity was associated with an 

increase in sympathovagal balance and an increase in overall spontaneous sBRST. These 

results are rather conflicting since a decrease in chemoreflex sensitivity and an increase 

in BRS would be predicted to decrease SNA, with previous findings which established a 

sympathoexcitatory effect for chemoreflex activation (Kara, Narkiewicz et al. 2003, 

McBryde, Abdala et al. 2013, Paton, Sobotka et al. 2013). These findings were not 

consistent across all autonomic outcome measures, changes in which largely failed to 

correlate with changes in HVR following RDN. In a rat model, combined renal 

denervation and carotid sinus denervation (abolishing the afferent signal from the 

carotid body and therefore disrupting the chemoreflex feedback loop) have shown an 

independent and summative effect, suggesting different mechanisms of action for the 

antihypertensive effects of RDN and disruption of the peripheral chemoreflex (McBryde, 

Abdala et al. 2013), and therefore it is not surprising that RDN had no significant impact 

on chemoreflex sensitivity if these findings can be translated into human subject. In this, 

the first study to assess chemoreflex sensitivity following RDN in humans, the 
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interaction between RDN and chemoreflex sensitivity remains unclear, since patients 

had both increases and decreases in HVR following the intervention, and an inconsistent 

association with other autonomic variables.  

It is clearly a limitation of this study that two different methods were used to assess 

HVR, since this makes it difficult to compare data for the full study cohort. The concerns 

over the intermittent hypoxia method are understandable, particularly the issues of 

breath-holding or hyperventilation during the bursts of nitrogen, and the fact that the 

test was poikilocapnic and so may also activate the central chemoreceptors. The 

stepped hypoxia aimed to achieve normocapnia and so more specifically isolated the 

peripheral chemoreflex response, however in most participants a lower level of hypoxia 

was achieved, which may explain the lower values for chemoreflex sensitivity (or HVR) 

when quantified by this method. Further research is required to directly compare these 

different techniques in normotensives and hypertensive subjects. 

Finally, when looking at CMR measures of target organ damage, baseline chemoreflex 

sensitivity was associated with a higher ejection fraction, but with lower circumferential 

strain and lower diastolic circumferential strain rate. There were no correlations 

between any possible change in HVR and changes in cardiac volumetric or strain 

parameters following denervation. In a canine model, chemoreflex stimulation produced 

a positive inotropic response (Vatner and Rutherford 1978), conversely, chemoreflex 

sensitivity has also been shown to be increased in animal models of heart failure 

(Schultz, Marcus et al. 2013), reflecting the conflicting relationships between 

chemoreflex sensitivity and measures of cardiac function in this severely hypertensive 

cohort. Interestingly (given the largely negative outcomes with respect to aortic 

distensibility in the results described to date from this study), at baseline, individuals 

with greater chemoreflex sensitivity had greater aortic distensibility. Furthermore, an 

increase in HVR following RDN was associated with an increase in aortic distensibility, 

although equally, a decrease in HVR was associated with a decrease in aortic 

distensibility. There is no published data relating chemoreflex sensitivity and aortic 

distensibility (PubMed search chemoreflex sensitivity and aortic distensibility, or 

chemoreflex sensitivity and pulse wave velocity), so it is difficult to put these findings 

into context. However, increased sympathoexcitation from chemoreflex hypersensitivity 

would likely result in increased vascular tone and thus decreased aortic distensibility, 

and therefore further research is required to elucidate these findings and the underlying 

mechanisms.  

 

 

5.4.4 Brain blood flow 

5.4.4.1 Introduction 

The peripheral chemoreceptors, located in the carotid bodies, are ideally placed to 

monitor and maintain the supply of oxygenated blood to the brain. Beyond this 

chemoreflex, under the ‘Selfish Brain Hypothesis’, the brain will act to maintain cerebral 

perfusion and oxygenation, even at possible detriment to systemic arterial pressure and 
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at the expense of other organs (see Section 2.1.2.3.1) (Paton, Dickinson et al. 2009, 

Cates, Dickinson et al. 2012, Hart 2016). Vertebral artery hypoplasia (VAH), a congenital 

vascular variant, and increased cerebrovascular resistance (CVR) have been 

demonstrated to have a possible causal effect on hypertension (Warnert, Rodrigues et 

al. 2016). In this study we have assessed cerebrovascular anatomy and quantified 

cerebral blood flow (CBF) using MRI. We have hypothesised that individuals with high 

cerebral artery resistance and hence cerebral hypoperfusion, driving increased 

sympathetic nerve activity would be more likely to respond to the potential 

sympathoinhibitory effect of RDN. This is the first study to investigate the impact of RDN 

on CBF and will provide useful pilot data to guide further research in the field. 

5.4.4.2 Methods 

Cerebral angiography was performed using 3-Dimensional time-of-flight magnetic 

resonance angiography (MRA) at 1.5T (Avanto, Siemens, Erlangen, Germany) with a 

dedicated head coil used to measure arterial anatomy (repetition time=38 ms, echo 

time=5.28 ms, flip angle=25°, voxel size=0.7×0.5×0.8 mm3, field of view=200 mm, 

covering major arteries feeding into the Circle of Willis (CoW)). VAH was defined as a 

diameter <2 mm uniformly throughout the vessel.  

Cerebral blood flow was quantified using through plane phase contrast sequences 

(Siemens, Erlangen, Germany); repetition time=48.65 ms, echo time=2.15 ms, base 

resolution 192, 1.7x1.7x5.5 mm3 matrix, GRAPPA (generalised autocalibrating partially 

parallel acquisition) Acceleration Factor: PE 2, velocity encoding=100 cm/s. The image 

slice was positioned perpendicularly to the carotid and vertebral vessels. Where the 

neck vessels were serpiginous, the sequence was repeated in a different anatomical 

position so that all four vessels were imaged correctly. The region of interest was drawn 

onto each vessel using phase and magnitude images and propagated through all phases 

of the series with manual adjustment to the vessel as required. Flow in each vessel was 

then calculated using specialist software (cvi42; Circle Cardiovascular Imaging Inc., 

Calgary, Canada). Flow in each vessel was also quantified as a percentage of overall 

cerebral vessel, and as a percentage of cardiac output (CO). 

CBF parameters were correlated against other measures of autonomic function as 

baseline and for 6-month post-RDN outcomes.  

5.4.4.3 Results 

Cerebrovascular MRI was performed in 16/18 participants at baseline. Of these 16 

participants 50% had congenital cerebral vascular abnormalities; 4 patients with 

vertebral artery hypoplasia, and 4 participants with an incomplete circle of Willis (see 

example in Figure 5-38).  

At baseline, there were no significant correlations between either office SBP, MSNA 

incidence, LF/HF ratio, sympathovascular transduction, spontaneous sBRST (overall), 

spontaneous sBRSA (overall), BEI, or chemoreflex (overall, intermittent hypoxia HVR and 

stepped hypoxia HVR), and any of the CBF parameters (all p>0.05).  
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CBF data were available in 14 participants at 6 months after renal denervation, amongst 

these individuals there were no significant changes in any of the CBF variables between 

baseline and 6 months after RDN (see Table 5-24). When data were analysed by RDN BP 

response group, there were no significant changes in any of the CBF parameters 

amongst either RDN responders or RDN non-responders, and no significant difference 

between the changes in any of the CBF parameters between response groups. 

There were no significant correlations (n≥5) between the changes in office SBP, overall 

spontaneous sBRST or sBRSA, overall spontaneous cBRS, overall BEI, LF/HF HRV spectral 

power, or measures of HVR and any of the CBF parameters (all p>0.05). The change in 

MSNA incidence 6 months post-RDN correlated with the changes in total cerebral blood 

flow (n=9, R=0.75, p=0.02, see Figure 5-39).  

 

 

 

Parameter Time post-RDN (months)  

 0 6 P 

RCA (ml/min) 436 ± 33 385 ± 28 0.15 

LCA (ml/min) 414 ± 20 396 ± 32 0.48 

RVA (ml/min) 125 ± 11 126 ± 10 0.94 

LVA (ml/min) 160 ± 16 149 ± 14 0.28 

Total cerebral flow (ml/min) 1135 ± 63 1056 ± 73 0.25 

% RCA flow of cerebral flow 38 ± 1.3 37 ± 0.9 0.19 

% LCA flow of cerebral flow 37 ± 1.1 37 ± 0.7 0.79 

% RVA flow of cerebral flow 11 ± 0.8 12 ± 0.9 0.13 

% LVA flow of cerebral flow 46 ± 18 14 ± 0.8 0.43 

% cerebral flow of CO 17 ± 1.6 16 ± 1.1 0.45 

% RCA of CO 6 ± 0.6 6 ± 0.4 0.34 

% LCA of CO 6 ± 0.6 6 ± 0.5 0.63 

% RVA of CO 2 ± 0.2 2 ± 0.2 0.80 

% LVA of CO 2 ± 0.3 2 ± 0.2 0.42 

Table 5-24. No changes in cerebral blood flow following renal denervation (RDN). 
There were no changes in either total cerebral blood flow or blood flow in each of the 
four cerebral arteries, either when expressed as absolute values in ml/min, or when 
expressed as the percentage of total cerebral blood flow measured in each of the 
arteries, or as a percentage of overall cardiac output (CO). RCA; right carotid artery, LCA; 
left carotid artery, RVA; right vertebral artery, LVA; left vertebral artery. 
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Figure 5-38. Example of magnetic resonance cerebral angiogram showing a hypoplastic 
left vertebral artery. 
VA; vertebral artery, CA; carotid artery. 
When considering the relationship between CBF and other cardiovascular parameters, 

there was a correlation between baseline iLVM and baseline total CBF as a percentage of 

cardiac output n=15, R=0.55, p=0.04, see Figure 5-39); higher relative CBF was 

associated with a higher iLVM.  

 

 

Figure 5-39. Correlations between A. baseline left ventricular mass index and baseline 
cerebral blood flow (CBF) as a percentage of cardiac output (CO) and B. the changes in 
muscle sympathetic nerve activity (MSNA) incidence and the changes in total cerebral 
blood flow at six months after renal denervation.  
 

5.4.4.4 Discussion 

There was no change in cerebral flow following RDN, including no change in absolute 

CBF or CBF relative to cardiac output, and no change in the flow in the individual carotid 

or vertebral arteries (see Table 5-24). There was also no difference in the effect of RDN 

on CBF between RDN BP response groups.  
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The change in MSNA incidence at 6 months after RDN correlated with the change in CBF 

following the intervention (see Figure 5-39), with a reduction in SNA being associated 

with a reduction in CBF. This may suggest that CBF is maintained by increased peripheral 

vascular tone, and thus systemic BP in these individuals (Warnert, Rodrigues et al. 2016), 

however, this relationship did not hold true when CBF was quantified as a percentage of 

total cardiac output.  

Strikingly, 50% of the study participants had congenital cerebrovascular abnormalities, 

consisting of vertebral artery hypoplasia and/or an incomplete circle of Willis. The 

prevalence of cerebrovascular abnormalities in this cohort of patients with resistant 

hypertension is significantly greater than the ~30% prevalence seen in the normotensive 

population (Warnert, Rodrigues et al. 2016), but not dissimilar to the higher prevalence 

of these variants in patients with established hypertension (VAH 53% prevalence and 

incomplete posterior circle of Willis 64% prevalence  (Warnert, Rodrigues et al. 2016)). 

Notably, CBF did not correlate with oSBP or MSNA incidence at baseline.  

When considering the relationship between CBF and cardiovascular end organ damage, 

higher relative cerebral blood flow was associated with a higher iLVM in this 

hypertensive cohort prior to RDN (see Figure 5-39). This may be an example of 

hypertension preserving cerebral perfusion at the detriment of cardiac hypertrophy and 

vascular stiffness, but further research is required to confirm these observations in a 

larger population and to establish causality. 

There are limited data available on the impact of RDN on CBF. In a small case-control 

study, Efimova et al. report an improvement in regional CBF following RDN, which was 

also related to improvements in cognitive function (abstract reviewed only, in Russian 

(Efimova, Lichikaki et al. 2017)). This is interesting, since congenital cerebrovascular 

variants and increased cerebrovascular resistance have been associated with the 

development of hypertension, raising the question of whether treating hypertension 

could reduce cerebral perfusion (Warnert, Rodrigues et al. 2016).  

 

5.4.5 Markers of inflammation 

5.4.5.1 Introduction 

Systemic and central inflammation have been increasingly seen to play an important 

role in the development of hypertension. Levels of systemic inflammatory markers such 

as such as tumour necrosis factor alpha (TNFα), interleukin-6, C-reactive protein (CRP) 

and adhesion molecules are increased in hypertension and may have a pro-hypertensive 

role (Fisher and Paton 2012, Marvar, Vinh et al. 2012). Systemic inflammation can 

upregulate microglia, pro-inflammatory cytokines and reactive oxygen species within the 

rostral ventrolateral medulla, with an associated rise in blood pressure and increased 

sympathetic vasomotor tone (Wu, Chan et al. 2012). Treatment with anti-inflammatory 

drugs has been shown to reduced BP in animal models (Zhang, Wei et al. 2003, Wu, 

Chan et al. 2012), and in humans the angiotensin receptor blocker valsartan has been 

shown to reduce both arterial pressure and levels of the pro-inflammatory cytokines 

TNFα and IL-6. The role of inflammation, particularly central inflammation, in driving 
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high blood pressure may therefore represent a novel therapeutic target for the clinical 

management of hypertension. The primary activities of the inflammatory markers 

quantified in this study are summarised in Table 5-25.  

As well as evidence for a pro-hypertensive role for systemic and central inflammation, 

activation of the sympathetic nervous system itself is proinflammatory (Singh, Chapleau 

et al. 2014), we hypothesis that  a reduction in BP following RDN would be associated 

with a reduction in systemic inflammation, and that patients with raised markers of 

inflammation would be more likely to respond to RDN with a reduction in BP. 

5.4.5.2 Methods 

Blood samples were taken from the study participants at each study visit. The samples 

were taken after 5 minutes sitting at rest at room temperature. Samples for standard 

clinical measures, particularly blood to assess the safety of the procedure (e.g. renal 

function), were assessed through standard clinical pathways at University Hospitals 

Bristol NHS Foundation Trust. Samples for analysis of systemic inflammatory markers, 

were processed to obtain anonymised serum samples which were then stored at -70 oC 

in a locked facility for practical reasons, to enable bulk analysis. Unfortunately, systems 

for the processing and storage of these samples took time to put in place, and samples 

for inflammatory marker analysis were not stored for the first eight participants in the 

study.  

CRP was quantified in the Clinical Pathology Department of the Bristol Royal Infirmary 

(University Hospitals Bristol NHS Foundation Trust). From the stored serum samples, we 

quantified levels of IL-6, IL-8, IL-10, IL-17, TNFα and myeloperoxidase (MPO). A Luminex 

system (Luminex Corporation, Austin, Texas, USA) was used for the quantification of 

these cytokines, this flow cytometry-based system uses magnetic microspheres 

(Milliplex, Merck, Darmstadt, Germany). conjugated to specific capture antibodies to 

quantify multiple biomarkers from a single ~1 mL serum sample. All Luminex assays 

were performed by Dr Tanya Smith under the supervision of Dr Saadeh Suleiman, who 

were blinded to the study BP outcome. 

 

Inflammatory 
marker 

Principle source Primary activities 

CRP Secreted by liver in 
response to cytokines 
release by macrophages 
and NK cells (e.g. IL -6) 

Acute phase protein: binds to 
lysophosphatidylcholine expressed on 
the surface of dead or dying cells to 
activate complement system 

IL-6 Activated Th2 cells, APCs, 
macrophages, other 
somatic cells 

Pro-inflammatory: Acute phase 
response/fever, lymphocyte activation 

IL-8 Monocytes, macrophages, 
fibroblasts, keratinocytes 

Chemokine: chemoattractant for 
neutrophils and T cells 

IL-10 Activated Th2 cells, CD8+ T 
and B cells, macrophages 

Anti-inflammatory: inhibits cytokine 
production, promotes B cell 
proliferation and antibody production, 
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suppresses cellular immunity and 
macrophage activity 

IL-17 Th17 cells Pro-inflammatory: activates induction 
of IL-6, IL-8 and G-CSF amongst others 

TNFα Macrophages, mast cells, 
NK cells, sensory neurons 

Pro-inflammatory: cell death, 
inflammation, fever, shock, pain, 
activates vascular endothelium, 
increases vascular permeability 

MPO Activated neutrophils and 
macrophages 

Pro-oxidant enzyme which breaks 
down microorganisms 

Table 5-25. Summary of the principle activities of the inflammatory markers assessed 
in this study. 
CRP; C-reactive protein, NK; natural killer, IL; interleukin, Th; T-helper cells, G-CSF; 
granulocyte colony stimulating factor, TNFα; tumour necrosis factor-alpha, MPO; 
myeloperoxidase  (Lydyard, Whelan et al. 2000, Zhang and An 2007, Gaffen 2008, 
Heslop, Frohlich et al. 2010). 
 

5.4.5.3 Results 

CRP was quantified in 9 subjects at baseline, and 8 subjects had data available at 

baseline and the primary study outcome timepoint of 6 months post-RDN. The other 

inflammatory markers were assessed in a slightly different subset of 9 study 

participants, with data available in all 9 participants at all study timepoints. 

At baseline, there were no correlations between oSBP, MSNA incidence, 

sympathovascular transduction, LF/HF ratio, spontaneous sBRST (overall), spontaneous 

sBRSA (overall) or BEI (overall) and baseline levels of CRP, IL-6, IL-8, IL-10, IL-17, MPO or 

TNFα (all p>0.05). There was a significant correlation between baseline MPO levels and 

baseline spontaneous cBRS (n=9, R=0.86, p=0.003); higher MPO levels were associated 

with higher spontaneous cardiac baroreflex gain. Baseline overall chemoreflex (data 

pooled from both intermittent and stepped hypoxia methods) was correlated versus 

baseline CRP (n=8, R=0.79, p=0.03), and baseline chemoreflex (as assessed by the 

intermittent hypoxia method) was correlated with baseline MPO levels (n=4, R=-0.97, 

p=0.03); increased chemoreflex sensitivity was associated with a lower CRP but with a 

higher MPO level. 

There were no significant changes in any of the inflammatory markers following RDN as 

assessed by paired t-test at baseline versus 6 months post-RDN, although there was a 

trend towards an increase in IL-8 following denervation (see Table 5-26). When data 

were assessed by repeated measures ANOVA across the full study follow-up period the 

rise in IL-8 attained significance, with significant differences in IL-8 at 1 and 12 months 

after the procedure (see  Table 5-27 and Figure 5-40).  

 

Parameter Time post RDN (months) P 

 0 6  

CRP   (mg/mL) 3.1 ± 0.6 3.0 ± 0.7 1.00 
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IL-6   (pg/mL) 3.5 ± 0.9 3.7 ± 0.7 0.55 

IL-8   (pg/mL) 5.9 ± 2.1 7.0 ± 2.6 0.07 

IL-10   (pg/mL) 9.1 ± 1.6 13.5 ± 2.6 0.16 

IL-17   (pg/mL) 10.7 ± 2.3 11.6 ± 1.6 0.36 

MPO   (pg/mL)  42.5 ± 8.1 33.6 ± 4.3 0.42 

TNFα   (pg/mL) 9.1 ± 1.6 13.5 ± 2.6 0.16 

Table 5-26. No change in inflammatory markers following renal denervation (RDN) at 
6-month follow-up. 
Data are for n=9 participants. The subset of patients with CRP data at baseline and 6 
months differs slightly from the subset of patients in which the other inflammatory 
markers were assessed. Data analysed by paired Student’s t-test or by Wilcoxon 
matched-pairs signed rank test (IL-8 data only). The data for IL-8 approaches a significant 
rise at six months after the procedure. CRP: C reactive protein, IL; interleukin, MPO; 
myeloperoxidase, TNFα; tumour necrosis factor alpha. 
 
 
At 6 months after renal denervation, there was a correlation between the change in IL-8 

and the change in oSBP (n=9, R=-0.73, p=0.03, see Figure 5-41), with a reduction in SBP 

associated with an increase in IL-8, but there were no other correlations between 

changes in oSBP and changes in other inflammatory markers (all p>0.05). There was a 

correlation between the change in IL-17 and the change in MSNA incidence at 6 months 

post-RDN (n=4, R=0.99, p=0.04, see Figure 5-41); a decrease in IL-17 was associated with 

a decrease in MSNA, but these data were only from a small subset of patients.  

 

Parameter Time post RDN (months) P 

 0 1 3 6 12  

CRP (mg/mL) 3.1 ± 0.6 3.1 ± 0.8 3.3 ± 0.7 3.1 ± 0.6 3.2 ± 0.7 0.99 

IL-6 (pg/mL) 3.5 ± 0.9 4.6 ± 1.0 3.9 ± 0.7 3.7 ± 0.7 3.8 ± 0.7 0.51 

IL-8 (pg/mL) 5.9 ± 2.1 7.1 ± 2.0* 7.2 ± 2.5 7.0 ± 2.6 10.0 ± 4.2* 0.03 

IL-10 (pg/mL) 9.1 ± 1.6 11.5 ± 1.5 13.8 ± 1.8 13.5 ± 2.6 9.9 ± 1.4 0.09 

IL-17 (pg/mL) 10.7 ± 2.3 14.6 ± 2.6 11.4 ± 1.5 11.6 ± 1.6 10.9 ± 1.6 0.11 

MPO (pg/mL) 42.5 ± 8.1 31.7 ± 5.2 30.9 ± 4.4 33.6 ± 4.3 34.1 ± 8.7 0.59 

TNFα (pg/mL) 9.1 ± 1.6 11.5 ± 1.5 13.7 ± 1.8 13.5 ± 2.6 9.9 ± 1.4 0.10 

Table 5-27. Changes in inflammatory markers following renal denervation over the 12-
month study duration. 
Data are for n=9 participants. Data analysed by repeated measures ANOVA, data carried 
forward from previous visit to address gaps in CRP data, but data available at all time 
points for all other inflammatory markers. There was a significant increase in IL-8 over 
the course of the study. *Significant difference versus baseline data by Dunn’s multiple 
comparison test (p<0.05). CRP: C reactive protein, IL; interleukin, MPO; 
myeloperoxidase, TNFα; tumour necrosis factor alpha. 
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At baseline, there were no correlations between either iLVM or total CBF (either 

absolute values or as percentage of CO) and the inflammatory markers (all p>0.05), 

however, baseline aortic distensibility was correlated against baseline IL-8 levels (n=9, 

R=0.73, p=0.03), with higher distensibility associated with higher IL-8 levels. 

There was a significant correlation between the change in IL-17 and the change in iLVM 

at 6 months after denervation (n=9, R=0.73, p=0.02, see Figure 5-41); a decrease in IL-17 

was associated with a decrease in iLVM. There was a significant correlation between the 

change in MPO and the change in aortic distensibility after the procedure (n=9, R=0.71, 

p=0.03, see Figure 5-41); a decrease in MPO was associated with a decrease in aortic 

distensibility. There were no significant correlations between changes in iLVM and aortic 

distensibility and any other changes in inflammatory markers (all p>0.05). 

 

 

Figure 5-40. Changes in A. CRP, B. IL-6, C. IL-8 and D. TNFα following renal denervation 
(RDN). 
Data are for n=9 participants. Data analysed by repeated measures ANOVA, data carried 
forward from previous visit to address gaps in CRP data, but data available at all time 
points for all other inflammatory markers. There was a significant increase in IL-8 over 
the course of the study. *Significant difference versus baseline data by Dunn’s multiple 
comparison test (p<0.05). CRP: C reactive protein, IL; interleukin, MPO; 
myeloperoxidase, TNFα; tumour necrosis factor alpha. 
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Figure 5-41. Correlations between changes in measures of cardiovascular parameters 
and inflammatory markers 6 months after renal denervation. 
There were significant correlations between A. the change in office systolic blood 
pressure (SBP) and the change in IL-8 (interleukin-8), B, the change in muscle 
sympathetic nerve activity (MSNA) and the change in IL-17, C. the change in aortic 
distensibility and the change in myeloperoxidase (MPO), and D. the change in left 
ventricular mass index (iLVM) and the change in IL-17 after renal denervation. 
 

5.4.5.4 Discussion 

When considering all aspects of the data, whilst there were no changes in the majority 

of inflammatory markers over the course of this study, there was an increase in IL-8 

following renal denervation. This goes against our hypothesis that pro-inflammatory 

cytokines would fall due to a reduction in pro-inflammatory sympathetic nerve activity 

following the procedure. There was no reduction in MSNA following RDN in this cohort, 

but this rise in IL-8 was associated with a reduction in office SBP (see Figure 5-41). 

Interestingly, there was a correlation between the change in MSNA incidence and the 

change in pro-inflammatory IL-17 following RDN, with a decrease in IL-17 was associated 

with a decrease in MSNA, but these data was only from a small subset of 4 patients. 

Baseline CRP levels were largely within the normal range (<5 mg/mL, local reference 

range). Baseline IL-6, IL-8, IL-17, MPO and TNFα levels were lower than previously 

published normal range data, where-as IL-10 levels were within the normal range 

(Heslop, Frohlich et al. 2010, Biancotto, Wank et al. 2013, Kleiner, Marcuzzi et al. 2013). 

It is also notable that at baseline, there were no correlations between oSBP, MSNA 
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incidence, or spontaneous sympathetic baroreflex sensitivity, sympathovagal balance as 

assessed by LF/HF HRV ratio and sympathovascular transduction, and baseline levels of 

the inflammatory markers assessed in this study. Baseline MPO levels were correlated 

both with baseline spontaneous cardiac BRS and baseline chemoreflex (intermittent 

hypoxia method), with a higher level of MPO associated with higher spontaneous cBRS 

and higher chemoreflex sensitivity, which are conflicting findings for these inhibitory and 

excitatory reflexes, respectively. Baseline overall chemoreflex (data pooled from both 

intermittent and stepped hypoxia methods) was correlated versus baseline CRP, with a 

lower CRP associated with higher chemoreflex gain, which once again is counter to our 

hypothesis, and there are no published data on the relationship between MPO and 

either chemoreflex or cardiac baroreflex sensitivity it is difficult to further rationalise 

these findings.  

At baseline aortic distensibility was correlated against baseline IL-8 levels, with higher 

distensibility associated with higher IL-8 levels, but there was no correlation between 

the change in aortic distensibility and the change in IL-8. There was a significant 

correlation between the change in aortic distensibility and the change in MPO after the 

procedure (Figure 5-41), with a decrease in MPO was associated with a decrease in 

aortic distensibility, again countering our hypothesis. A decrease in IL-17 was associated 

with a decrease in iLVM (see Figure 5-41), which would be more in keeping with 

cardiovascular benefits from a reduction in inflammation, and previous findings that IL-

17A levels are higher in patients with target organ damage, including increased iLVM 

(Ates, Ozkayar et al. 2014). 

These results are obviously difficult to interpret give the conflicting pro- and anti-

inflammatory changes seen, and the lack of a consistent pattern of results in relation to 

baseline and 6-month changes in autonomic and target organ damage parameters. 

Numbers are small, but the increase in IL-8 over the course of the study is an interesting 

observation. Hypertensive patients have been shown to have increased levels of IL-8 

(Marek-Trzonkowska, Kwieczynska et al. 2015), so it is notable that a reduction in BP 

was associated with a rise in IL-8 following RDN. It is also difficult to explain the 

association between higher levels of IL-8 and increased aortic distensibility. IL-8 has 

been shown to participate in the pathogenesis of hypertension; spontaneously 

hypertensive rats have increased levels of this chemokine, and angiotensin II has been 

shown to induce the expression of IL-8, an effect that is inhibited by the angiotensin 

receptor blocker losartan (Martynowicz, Janus et al. 2014). Furthermore, IL-8 plays an 

important role in the migration of leukocytes into the sub-endothelial vascular wall in 

the early stages of atherosclerosis, and is associated with a higher risk of coronary heart 

disease (Boekholdt, Peters et al. 2004), making it particularly surprising that higher IL-8 

levels are associated with reduced vascular stiffness in this cohort. One explanation 

could be that a reduction in systemic BP following RDN may lead to relative hypoxia in 

some tissues which then stimulates IL-8 production. Any potential relationship between 

MPO levels and aortic distensibility also warrants further investigate as there are no 

published data on this topic.   

Investigators have previously considered the effect of RDN on inflammatory markers. 

Some studies have shown no effect of RDN on inflammatory markers (Alexander, 

Johannes Kepler University - Linz General Hospital et al. 2015), whereas Dorr et al. 

reported reductions in SBP, IL-6 and CRP following RDN in a cohort of 60 patients with 
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resistant hypertension (Dorr, Liebetrau et al. 2015). Esler’s group in Melbourne 

demonstrated no change in CRP, TNF-α, IL-6 or sICAM-1 (soluble intracellular adhesion 

molecule-1), although there was a small increase in the inflammatory marker sVCAM-1 

levels (soluble vascular cell adhesion molecule-1), but comment on the fact that their 

patients have levels of inflammatory markers within the normal published range  

(Eikelis, Hering et al. 2015). In a further publication, Eikelis et al. also reported increases 

in sVCAM-1, and VGEF-A (vascular endothelial growth factor A), and a reduction in 

sVEGFR-1 (soluble vascular endothelial growth factor-1) following RDN4, however these 

changes were observed in both RDN BP responders and non-responders (Eikelis, Hering 

et al. 2017). Zaldivia et al. reported a reduction in BP following RDN, as well as a 

reduction in monocyte activation, plasma monocyte chemoattractant protein-1 levels, 

IL-1β, TNFα, and IL-12 following RDN; in this study there was a positive correlation 

between MSNA and monocyte activation before and after the procedure (Zaldivia, 

Rivera et al. 2017). 

Animal studies have also investigated the levels of renal cytokines before and after RDN. 

In a murine model, there were no changes in renal levels of the proinflammatory 

cytokines IL-1β, IL-2, IL-6, IL-17, TNFα, and interferon-γ, or the anti-inflammatory 

cytokine IL-10 following RDN (Asirvatham-Jeyaraj, Fiege et al. 2016), likewise there were 

no changes in renal inflammatory markers after RDN, despite a decrease in BP, in a 

deoxycorticosterone acetate (DOCA)-salt hypertension model in rats (Banek, Gauthier et 

al. 2018). In contrast, in a murine model of angiotensin-II-induced hypertension, renal 

denervation reduced the accumulation of both CD4+ and CD8+ T cells in the kidney as 

well as the production of IL-1α, IL-1β ad IL-6 from splenic dendritic cells (Osborn, Hana 

et al. 2015).   

Baseline levels of the inflammatory markers were relatively low in this study, which may 

explain the absence of a consistent anti-inflammatory effect of RDN. The data in this 

field remain highly variable, and any anti-inflammatory effect of RDN remains to be 

established, along with any potential mechanism (including a reduction in SNA) which 

may underlie a reduction in inflammation. There are also logistical questions about the 

timing and duration of follow-up for any inflammatory changes and the selection of 

cytokines to be investigated from the vast array of available markers. In this cohort 

there were financial limitations impacting the number of cytokines which could be 

investigated, as well as technical issues regarding the markers that were compatible 

within a single Multiplex array. Antihypertensive medications, including angiotensin 

receptor blockers and spironolactone, have been shown to reduce inflammatory 

markers in hypertension (Singh, Chapleau et al. 2014), and the varying medication 

regimes within this cohort may also confound outcome data. All of these factors should 

be taken into consideration when considering further research in this field. 

                                                           
4 sVEGFR-1 binds VEGF reducing its circulating levels. VEGF may have a vascular protective role through its 
actions on nitric oxide (NO); changes in the sVEGFR-1/VEGF ratio may increase NO bioavailability, increasing 
vasodilatation and reducing BP. 
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5.4.6 Conclusions 

In this chapter I have reported the results of a wide range of physiological measures in 

subjects with resistant hypertension, following treatment with renal nerve ablation. 

These data illustrate both the positive aspects and challenges seen in this pilot study. 

I have demonstrated that it is safe and feasible to measure a broad profile of autonomic 

parameters over the course of a longitudinal study in a severely hypertension 

population. I have been able to develop an armoury of research tools that can be 

applied to future projects. In some instances, further research is required to establish 

directly comparable, normal range data for these variables, and a case-control design 

would help to clarify outcomes. We have also seen inconsistent, and in some cases 

contradictory, outcomes across different autonomic variables. The measurement of 

multiple outputs from the assessments of HRV, BRS, CBF and their relationship to a 

range of measures target organ damage, makes it difficult to place great emphasis on an 

isolated finding in a single ‘sub-variable’ which may be influenced by the small size of 

the study cohort. 

The more robust findings from these data can be summarised as follows: 

1. There were no changes in sympathetic BRS, sympathovascular transduction, 

chemoreflex sensitivity, cerebral blood flow and the majority of the markers of 

inflammation measured in this study, following RDN. 

2. There were no correlations between the either the change in office SBP or the 

change in MSNA, and the changes in BRS and chemoreflex sensitivity, at 6 

months post-RDN. 

3. At baseline, there were no correlations between either sympathovascular 

transduction or chemoreflex sensitivity measures and any of the other 

autonomic parameters quantified in this study. 

4. At baseline, there were no correlations between levels of inflammatory markers 

and oSBP, MSNA incidence, spontaneous sympathetic baroreflex sensitivity, 

sympathovagal balance and sympathovascular transduction.  

5. At baseline, individuals with higher baseline office SBP and iLVM had greater 

sBRS gain, however, patients with higher LVM had impaired cBRS. 

6. 50% of the study participants had congenital cerebrovascular abnormalities, 

consisting of vertebral artery hypoplasia and/or an incomplete circle of Willis, 

which is higher than the prevalence of these abnormalities in the normotensive 

population. 

7. At baseline, higher relative cerebral blood flow was associated with a higher 

iLVM in this cohort.  

8. There were no correlations between changes in the CBF parameters assessed in 

this study and changes in office SBP, BRS or sympathovagal balance, 6 months 

post-RDN. 

There was a significant reduction in SBP and LVM in this cohort following RDN, but the 

mechanism for these effects remain unclear. Since BP reduced and MSNA remained 

unchanged, a leftward shift in the BRS curve or a reduction in BRS, or increased 

sympathovascular transduction would have been predicted, but these changes were not 

observed. This may be due to the small numbers of participants in this pilot study, or 

confounding effects of variable antihypertensive medication regimes, or the significant 
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proportion of pre-menopausal women in this study. Even at baseline, there were no 

correlations between resting levels of the autonomic parameters reported above and 

baseline office SBP, other than the observation that increased baseline oSBP was 

associated with increased sBRS, a finding that contradicts established data (Grassi, 

Seravalle et al. 2014, de Leeuw, Bisognano et al. 2017). Rather confusingly, at baseline, 

individuals with higher iLVM had greater sBRS gain but impaired cBRS. 

The cerebral angiographic findings from this hypertensive cohort were interesting, there 

was a high prevalence of congenital cerebrovascular abnormalities, which has been 

previously reported in the hypertensive population, suggesting a potential mechanism 

driving systemic hypertension to maintain cerebral perfusion (Warnert, Rodrigues et al. 

2016). However, at baseline, higher CBF was associated with higher LVM, but not with 

any increase in MSNA. If higher SBP or MSNA were driving increased CBF, with an 

adverse effect on left ventricular hypertrophy, we might have hoped to see this 

relationship in our dataset. Equally, if CBF is preserved, then centrally driven MSNA, and 

thus SBP, would be expected to reduce and effect positive changes on hypertensive 

heart disease. Data from larger cohorts, with control subjects, should help to clarify 

these hypotheses. 

Autonomic profiling is feasible in the hypertensive population, but the autonomic 

mechanisms underpinning any antihypertensive effect of RDN remain to be established. 
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5.5 Measures of procedural efficacy 

5.5.1 Background 

5.5.1.1 The need to assess procedural efficacy 

Renal denervation remains to be established as a treatment for hypertension. One of 

the primary concerns following the failure of Symplicity HTN-3 to show a reduction in 

blood pressure post denervation (Bhatt, Kandzari et al. 2014), has been a method to 

demonstrate the efficacy of ablation of renal nerves. In Symplicity HTN-3, only 19/364 

patients received per-protocol RDN covering all four quadrants of the main renal artery 

(Bhatt, Kandzari et al. 2014, Kandzari, Bhatt et al. 2015). However, even if ‘full coverage’ 

had been achieved, the operator could not have known for certain whether a sufficient 

proportion of renal nerves had been disrupted, since the procedure is guided by 

surrogate anatomical markers; a physiological measure would be more robust. 

In Symplicity HTN-1 a subset of patients underwent assessment with noradrenaline (NA) 

spillover, a validated technique for assessing regional sympathetic tone (Meredith, Esler 

et al. 1991). There was a 47% reduction in NA spillover amongst this cohort, with a BP 

reduction of 22/12 mmHg, however the authors do not comment on the presence of a 

correlation between BP response and any reduction in NA spillover (Krum, Schlaich et al. 

2009, Esler 2014). Whilst this 47% reduction in renal SNA appeared sufficient to achieve 

a reduction in BP, this change in SNA is markedly lower than the 70-99% reductions in 

NA spillover measured across several preclinical studies using surgical and endovascular 

denervation techniques (Raman, Tsioufis et al. 2017). Further analyses by Esler et al. 

have shown that denervation following renal nerve ablation is highly variable between 

individuals and the procedure is clearly far more technically challenging than previously 

considered (Esler 2014, Tzafriri, Keating et al. 2015).  

When the Symplicity catheter was originally launched, operators were advised to 

prioritise ablation of the proximal superior aspect of the renal artery to target what was 

believed to be the highest density of renal nerves.  However, review of novel anatomical 

human data indicates that the renal nerves accessible to intraluminal radiofrequency 

(RF) energy lie more distally in the renal artery adventitia (Sakakura, Ladich et al. 2014); 

therefore operators following the earlier guidance may have been targeting the wrong 

part of the artery, resulting in inadequate denervation (Mahfoud, Edelman et al. 2014). 

More recent guidance therefore advocates ablation in the distal segment of the main 

renal artery and in larger branch arteries (≥3mm, Symplicity Spyral catheter) where the 

renal nerves lie closest to the lumen, aiming to reduce the variability in response 

(Mahfoud, Tunev et al. 2015, Esler and Guo 2017). This approach was employed in the 

SPYRAL HTN studies (Townsend, Mahfoud et al. 2017, Kandzari, Bohm et al. 2018). 

Despite advances in catheter technology, complete distal ablation may not always be 

achievable due to small diameter (<3mm) accessory and branch renal arteries. The 

Symplicity catheter system monitors tip temperature and impedance during ablation, 

altering the RF energy delivery in response to a predetermined algorithm. This provides 

feedback to the operator as to whether a successful ablation has been administered 

(Krum, Schlaich et al. 2009), but remains a surrogate marker, rather than a measure of 



  

227 
   

disrupted renal nerve function. The use of alternative denervation modalities, such as 

targeting high intensity ultrasound or peri-vascular injection of ethanol, may enable 

disruption of nerves lying further from the vessel lumen, but further validation of these 

techniques is required, and the issue for confirming successful denervation remains 

(Fischell, Fischell et al. 2015, Chernin, Szwarcfiter et al. 2017, Raman, Tsioufis et al. 

2017). 

If the ‘completeness’ of denervation relates to procedural success, then a method for 

assessing the degree of renal nerve disruption achieved would be of significant clinical 

benefit to guide therapy, and additionally guide the development and efficacy of 

evolving catheter technologies.  

5.5.1.2 Existing measures for the peri-procedural quantification of renal denervation 

To date, a variety of techniques have been trialled to assess the success of RDN at the 

time of the procedure. These range from the measurement of biomarkers such as BDNP 

(brain derived neurotropic factor) (Dörr, Liebetrau et al. 2016) and norepinephrine 

(Tiroch, Sause et al. 2015), through physiological parameters including renal blood flow 

(RBF) (Tsioufis, Papademetriou et al. 2013), and direct electrical stimulation of the renal 

nerves (Chinushi, Izumi et al. 2013, Gal, de Jong et al. 2015, Chinushi, Suzuki et al. 2016, 

de Jong, Adiyaman et al. 2016, Hoogerwaard, Adiyaman et al. 2018). 

Dorr et al. reported a reduction in BDNF measured two hours post RDN, the magnitude 

of which correlated with the reduction in SBP at 6 months post RDN (Dörr, Liebetrau et 

al. 2016). A reduction in this sympathetic neuromodulator may provide useful insight 

into the mechanisms underlying blood pressure reduction following renal nerve 

ablation, but a sample taken two hours after the procedure, requiring laboratory 

analysis, does not provide an on-table readout as to whether the operator has 

administered sufficient ablation therapy to achieve adequate denervation. 

Tiroch et al. reported a reduction in the veno-arterial norepinephrine gradient post-RDN 

in humans (Tiroch, Sause et al. 2015). This reduction was associated with BP responder 

status three and six months after the procedure, and only those patients with a 

decrease in veno-arterial NA gradient in both kidneys had a significant reduction in 

systolic BP. The venous and arterial samples were obtained at the time of the procedure 

from the renal vessels, but analysed post-hoc, and therefore this method would need to 

be accelerated in order to provide real-time feedback for the operator to guide 

denervation. 

Tsioufis et al. aimed to address this question by directly assessing renal haemodynamics 

in swine immediately pre- and post- RDN (Tsioufis, Papademetriou et al. 2013). The 

group hypothesised that since sympathetic nerve activity causes a reduction in RBF 

(DiBona 2005), increases in flow would be appreciable after successful denervation. An 

intra-arterial Doppler flow wire was used to measure the average peak velocity (APV) of 

blood in the renal artery and additional measures of RBF, renal flow reserve (RFR; the 

ratio of hyperaemic (dopamine) to basal peak velocity), and renal resistive index (RRI; 

(peak systolic velocity−end-diastolic velocity)/peak systolic velocity) were calculated. 

Acutely post-RDN, APV and RBF were increased, and RVR and RRI were reduced, with 
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changes in these haemodynamic parameters persisting out to 1-month post-RDN. The 

authors did not state whether the reduction in RBF correlated with a reduction in BP. 

An alternative approach has been to focus on the responses of the afferent sensory 

renal nerves to determine successful ablation. Activation of the renal afferent nerves by 

ischaemia, hypoxia and intrinsic renal diseases, drives via reflex pathways elevated 

central sympathetic tone (Biaggioni 1992). Adenosine is released in renal ischaemia and 

has been shown to activate the afferent renal nerves located in the renal pelvis (Katholi 

1983, Katholi, Hageman et al. 1983). In a one kidney, one-clip rat model of hypertension, 

urinary adenosine concentration was lowered by infusion of adenosine deaminase into 

the renal artery. When urinary adenosine levels fell, sympathetic nerve activity and 

hypertension were blunted; this effect was abolished by RDN (Katholi, McCann et al. 

1985). In chronically instrumented, uni-nephrectomised sodium-replete conscious dogs, 

an increase in systemic arterial BP seen in response to intra-renal arterial adenosine 

infusion (0.6-3 mcg/kg/min) was abolished by renal artery denervation due to the 

interruption of the renal afferent nerve fibres (Katholi, Whitlow et al. 1984).  

Electrical stimulation of the renal nerves is another technique which has been trialled to 

assess the efficacy of renal denervation. Chinushi et al. demonstrated an increase in 

systemic blood pressure in response to direct intra-luminal, electrical renal nerve 

stimulation (RNS) in a canine model, an affect that was substantially attenuated by RDN 

(Chinushi, Izumi et al. 2013). In contrast, Tsiachris (Tsiachris, Tsioufis et al. 2014) et al. 

were unable to reproduce these findings in a porcine model. Similar techniques have 

been used to assess the efficacy of RDN in humans. Pokushalov et al. combined renal 

denervation with a pulmonary vein isolation ablation procedure for the treatment of 

atrial fibrillation (Pokushalov, Romanov et al. 2012). They used the same navigation 

system and catheter as used for the AF ablation to administer high-frequency 

stimulation to the renal nerves, causing a reflex increase in BP, which was suppressed by 

renal denervation. Renal denervation was considered to have been achieved when the 

increase of BP (~15 mmHg from invasive arterial monitoring) was eliminated in the 

presence of high frequency stimulation. Gal et al. also demonstrated a blunting of the 

rise in BP in response to electrical RNS following RDN (Gal, de Jong et al. 2015). They 

used a quadripolar catheter, and following titration of the intensity and duration of the 

stimulus, renal nerve stimulation (20Hz, 20mA, pulse duration 2ms) was performed at 

four sites (distal–cranial, distal–caudal, proximal–cranial and proximal–caudal) in both 

arteries for 1 min. The group also demonstrated a correlation between blunting of the 

hypertensive response to renal nerve stimulation and the reduction in 24-hour ABPM 

measures 3-6 months post denervation (de Jong, Adiyaman et al. 2016). The same group 

now report the ability to differentiate between sympathetic and vagal responses to 

renal nerve stimulation to guide RDN therapy (de Jong, Hoogerwaard et al. 2018), and 

the complete blunting of RNS induced temporary rises in augmentation index, pulse 

pressure, time to maximum systolic pressure and time to reflected wave when 

considering changes in arterial pressure haemodynamics following RDN (Hoogerwaard, 

Adiyaman et al. 2018). A major consideration for this approach is the requirement for 

propofol sedation (Pokushalov, Romanov et al. 2012) or general anaesthesia (Gal, de 

Jong et al. 2015, de Jong, Adiyaman et al. 2016, de Jong, Hoogerwaard et al. 2018, 

Hoogerwaard, Adiyaman et al. 2018), to facilitate renal nerve stimulation, which is 

nociceptive. General anaesthesia has significant safety and logistical implications for a 

procedure which can otherwise be performed under conscious sedation. 
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The ideal investigations for assessing the procedural efficacy of RDN would be simple, 

reproducible, with a clear cut-off to denote adequate ablation, and could be 

implemented in the setting of the standard catheter laboratory under conscious 

sedation. The ability to differentiate between afferent and efferent renal nerve 

denervation would provide additional insight into the mechanisms underpinning RDN as 

a therapeutic approach for the treatment of resistant hypertension. This study therefore 

aimed to translate the measures of renal haemodynamic parameters to the acute peri-

procedural setting, and differentially assess the function of sympathetic efferent and 

sensory afferent renal nerves through the quantification of dynamic reflex responses to 

sympathetic handgrip stress and intra-renal artery adenosine infusion, respectively. We 

hypothesised that measures which assessed the function of the efferent sympathetic 

pathway by measuring reflex evoked changes in renal blood flow and renal vascular 

resistance, and the afferent pathway by looking at reflex changes in blood pressure 

following activation of the renal chemoreflex by intra-renal artery adenosine infusion, 

would confirm the procedural success of RDN (see Figure 5-42).  

 

5.5.2 Methods 

5.5.2.1 Study participants 

Ten patients from the Renal Denervation for Resistant Hypertension pilot study were 

recruited into this sub-study. Enrolment criteria were the same as for the main study 

(see Section 5.1.2.2). 
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Figure 5-42. Pathways for the assessment of afferent and efferent renal nerve 
function. 
 

5.5.2.2 Study overview 

Physiological monitoring, asepsis and vascular access were obtained according to the 

standard RDN protocol (Section 4.3.7). The patients received mild intravenous sedation 

and analgesia (midazolam and fentanyl) prior to ablation and reflex testing, with a view 

to obtaining a similar level of sedation during physiological testing post denervation (see 

Figure 5-43 for dosages). The first renal artery (RA) was then cannulated under 

fluoroscopic guidance and a 0.36 mm Doppler flow wire (ComboMap, Phillips Volcano, 

USA) was sited in the mid-portion of the main RA lumen and positioned to obtain an 

optimal signal of flow velocity. Continuous, simultaneous measurements of beat-to-beat 

non-invasive BP monitoring (Finapres, Finapres Medical Systems, The Netherlands), 

aortic pressure (Pa), distal pressure at the flow wire tip (Pd), instantaneous peak velocity 

(IPV) and average peak velocity (APV) were acquired for offline analysis (PowerLab, AD 

Instruments, Dunedin, New Zealand). BP and APV data were analysed using LabChart 

(AD Instruments, Dunedin, New Zealand), and IPV data were processed using Spike 

(Spike 2 v7, Cambridge Electronic Design, Cambridge, UK). For each data acquisition, 

readings were averaged over 10 seconds and paired with concurrent fluoroscopic 

images, with measurement of the RA diameter at the tip of the flow wire, to enable 

calculation of RBF. Volumetric RBF was determined from the relation: RBF (ml/min) = 

cross-sectional area × (APV (cm/s) × 0.5) x 60, where 0.5 x APV estimates the mean 

blood flow velocity assuming a time-average parabolic velocity profile across the RA 

(Doucette, Corl et al. 1992, Savader, Lund et al. 1997). RVR calculated as RVR 

(mmHg/ml/min) = Pd/RBF. RRI was calculated from the IPV in the renal arteries during 

the cardiac cycle using the following formula: RI = (peak systolic blood flow velocity− 
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end-diastolic velocity)/peak systolic blood flow velocity (Savader, Lund et al. 1997, 

Tsioufis, Papademetriou et al. 2013). Resting haemodynamic parameters, and efferent 

and afferent nerve reflex responses, were recorded pre-and post-RDN for the first renal 

artery, and then for the second, contralateral artery. RDN was performed according to 

the standard study protocol (Section 4.3.7), the protocol for this sub-study is 

summarised in Box 5.2 below.  

5.5.2.3 Assessment of efferent sympathetic renal nerve function 

Disruption of efferent renal nerve activity was assessed both by measuring the change in 

resting renal artery vascular tone following RDN, and by recording the change in RBF, 

RVR and RRI in response to a sympathetic excitatory stimulus, isometric handgrip 

(Delaney, Greaney et al. 2010, Jarvis, VanGundy et al. 2011). Prior to arrival in the 

catheter laboratory, the patient’s maximal voluntary contraction (MVC) of the dominant 

hand was established using 3-5 maximal effort squeezes of the handgrip device. During 

the procedure, under mild sedation, 2-minute baseline period was recorded followed by 

handgrip exercise at 40% of the patient’s MVC for 90 seconds (Delaney, Greaney et al. 

2010). BP, IPV and APV were measured for calculation of RBF, RVR and RRI, at the end of 

rest and during the last 30 seconds of the handgrip exercise. The test was followed by a 

3-minute period of recovery. Patients were encouraged to avoid breath holding and to 

stay as relaxed as possible during the test even though they were under sedation. 

5.5.2.4 Assessment of afferent sensory renal nerve function 

The afferent sensory nerves were assessed by recording the systemic BP response to an 

intra- renal arterial adenosine infusion. Firstly, the dose of adenosine required to 

achieve a 10-20 mmHg rise in systemic SBP was titrated. A catheter was sited at the 

ostium of the renal artery and adenosine infused into the artery starting at a rate of 

1mcg/kg/min. If a target BP rise of 10-20 mmHg was not seen within 3 minutes, the 

infusion rate was increased incrementally, in 3-minute stages, to a maximum rate of 140 

mcg/kg/min. The initial infusion rate reflects those used in animal studies (Katholi, 

Hageman et al. 1983, Katholi, Whitlow et al. 1984), and the maximum rate did not 

exceed 140mcg/kg/min, which is used routinely in the clinical setting for myocardial 

perfusion studies (Iskandrian 1994). A rise in MAP was reported within 1 minute of 

commencing intra-renal adenosine infusion in a canine model (Katholi, Hageman et al. 

1983). Following a 3-minute washout period, adenosine was then infused at the 

effective dose identified during the titration for 3 minutes, at the end of which, changes 

in systemic SBP, along with renal flow haemodynamic parameters, were averaged over a 

10 second recording. These measurements were made with the patient in a state of mild 

conscious sedation. 
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Box 5.2. Catheter laboratory protocol for afferent and efferent renal nerve testing.  
*Part way through the study, Medtronic introduced the Symplicity Spyral catheter which 
has four RF electrodes which can operate simultaneously with a 90 second ablation 
time. 
 

Catheter Laboratory Protocol 

1. Transfer to Catheter Laboratory 

2. Mild IV sedation and analgesia 

3. Asepsis, femoral arterial puncture, insertion of arterial sheath and 

anticoagulation with intra-arterial heparin. 

4. Cannulation of renal arteries under fluoroscopy guidance including injection 

of radio-opaque contrast to confirm renal artery anatomy suitable for 

denervation and to identify anatomical landmarks required for the 

procedure. 

5. Assessment of baseline renal nerve function: 

a. Measurement of change in renal blood flow using intra-arterial flow 

wire in response to sympathetic stimulus (handgrip exercise). 

b. Adenosine dose titration (first renal artery only). 

c. Localised infusion of adenosine into renal artery and measurement 

of reflex change in beat-to-beat BP 

6. Introduction of ablation catheter via femoral artery under fluoroscopy 

guidance to distal renal artery, plus further analgesia/sedation. 

7. Generator activated; 2 minutes of radiofrequency energy at pre-set level. 

8. Repetition of ablation at total of 4-8 discrete sites along renal artery*. 

9. Assessment of acute procedural success of denervation: 

a. Measurement of change in renal blood flow using intra-arterial flow 

wire in response to sympathetic stimulus (handgrip exercise). 

b. Localised infusion of adenosine into renal artery and measurement 

of reflex change in beat-to-beat BP 

10. Contralateral renal artery treated by same method (i.e. repeat steps 5-9) 

11. Patient transferred to recovery area and observed closely as sedation wears 

off. Further analgesia administered if required. 
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5.5.3 Results 

5.5.3.1 Patient characteristics 

Ten patients were recruited to this sub-study. In the first case of the cohort, 

haemodynamic data were collected using the custom ComboMap software. 

Unfortunately, it proved difficult to calculate the derived flow and resistance parameters 

using this software due to limited off-line analysis capabilities. Furthermore, this patient 

had very tortuous renal artery anatomy and a stable catheter position could not be 

obtained for the right (second) renal artery. It was not possible to obtain any 

haemodynamic data from this artery and only one ablation point was administered, 

making it unlikely that adequate denervation was achieved. For these reasons, the 

limited data from this patient has not been included in subsequent analyses. The case 

did highlight data analysis issues, and for all subsequent cases haemodynamic data was 

recorded via a PowerLab for subsequent off-line analysis.  

In another participant, there were technical problems with the flow wire (and a 

replacement wire) in transducing a Doppler signal, and therefore it was not possible to 

collect Doppler velocity data for this individual, but BP parameters were recorded per-

protocol. I therefore present data for nine patients, with renal artery haemodynamic 

data present where available (please seen n stated throughout). 

Baseline demographic data for the sub-study are shown in Table 5-28. During the RDN 

procedure itself, the participants received an average of 12 ± 3 ablations in total (six 

patients treated with the Symplicity Flex catheter, 3 patients treated with the Symplicity 

Spyral catheter). Over the course of the procedure the patients received, on average, 

absolute doses of 2.4 ± 0.7 mg of midazolam and 175 ± 30 mcg of fentanyl in 

analgosedation. The distribution of the drugs at baseline, and then during the first and 

second renal artery ablations is shown in Figure 5-43. The office and ambulatory BP 

outcomes are shown in Table 5-29; five of the nine patients responded to RDN with a 

reduction in office SBP of ≥10 mmHg, however, overall there was no significant 

reduction in office or 24hr ambulatory BP at either one or six-months post-RDN. The 

marked variability in the BP response to RDN between individuals is clearly illustrated in 

Figure 5-44 and consistent with other real-world studies (Kaltenbach, Franke et al. 2013, 

Bhatt, Kandzari et al. 2014, Persu, Jin et al. 2014).  

 BASELINE DATA (N=9) 

Age (yrs) 56 ± 12 

Male gender 3/9 

Antihypertensive medications 5.0 ± 1.9 

Office SBP (mmHg) 187 ± 25 

Office DBP (mmHg) 101 ± 22 

24hr SBP (mmHg) 169 ± 10 

24hr DBP (mmHg) 94 ± 13 
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Table 5-28. Patient demographics for afferent and efferent renal nerve testing sub-
study.  
SBP; systolic blood pressure, DBP; diastolic blood pressure. Mean ± SD. 
 

 

 
Figure 5-43. Doses of midazolam and fentanyl given at baseline (BL) and during the 1st 
and 2nd, contralateral, renal denervation. 
 

 

CHANGE IN BP 
1 MONTH 6 MONTHS 

 N P  N P 

Office SBP (mmHg) -5.3 ± 12.5 9 0.68 2.1 ± 12.4 8 0.87 

Office DBP (mmHg) -0.4 ± 5.6 9 0.95 2.9 ± 6.0 8 0.64 

24hr SBP (mmHg) -2.3 ± 4.4 6 0.62 -4.4 ± 6.7 5 0.55 

24hr DBP (mmHg) 0.0 ± 2.8 6 1.0 1.0 ± 4.5 5 0.84 

Table 5-29. Change in blood pressure following renal denervation for afferent and 
efferent renal nerve testing sub-study. 
SBP; systolic blood pressure, DBP; diastolic blood pressure. 
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Figure 5-44. Change in office systolic blood pressure (SBP) following renal denervation 
(RDN) for afferent and efferent renal nerve testing sub-study. 
 

There was a significant correlation between the number of ablations received by a 

patient (total number of ablations for both renal arteries, R=0.77, p=0.01). Interestingly, 

in this cohort the correlation is the inverse of patterns previously reported, with those 

with the fewest ablations responding to RDN (Figure 5-45). 

 

 

Figure 5-45. Correlation between number of ablation points and the change in SBP at 
1-month post denervation. 
SBP; systolic blood pressure. Responders in green, non-responders in red. 

 

5.5.3.2 Resting haemodynamic parameters 

The resting haemodynamic data pre- and post-RDN are summarised in Table 5-30. There 

was a significant increase in APV in the first renal artery treated with RDN (p=0.047), but 

this was not seen in the second vessel and was not associated with an increase in RBF in 

either artery. There was a significant difference between the change in APV post-RDN 

between the first and second renal arteries (18.7 ± 7.8 vs 0.7 ±2.6 cm/s, p=0.045), 

primarily reflecting the difference between the change in diastolic velocities, but this 

was the only difference in the outcomes measured between the first and second 

arteries. There was no difference in any parameter between the first measures taken 

prior to RDN in the first renal artery, and the final measurements taken post RDN in the 

second renal artery (although please note the statistics presented are for a paired t-test, 

and therefore only include those patients with data available at both specified 

timepoints). When the data from both renal arteries were pooled, they showed a 

borderline increase in APV post RDN (9.7 ± 5.6 cm/s, p=0.05), however no change in 

resting RBF or RVR was seen for either artery (Figure 5-46).  

The RBF data in Figure 5-46 show an outlier with a very high blood flow. This patient had 

ectatic renal arteries, and in this artery the proximal vessel was narrow, dilating up in 

the more distal portion. The tip of the flow wire (point at which RA diameter measured) 

was sited just into the wider portion of the artery, and the larger CSA at this point, along 
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with the high velocity persisting from the narrow portion of the vessel, may well explain 

the extremely high RBF calculated. 

Five of the nine patients had responded to RDN with a reduction in office SBP of ≥10 

mmHg at 1-month post RDN. Amongst these responders there was no significant change 

in any of the resting renal artery haemodynamic parameters pre- versus post-RDN. 

Interestingly, when looking at the pooled data for both renal arteries, the non-

responders showed a borderline increase in APV post RDN (16 ± 8 cm/s, n=8, p=0.08), 

however there was no significant difference in the change in any haemodynamic 

parameter between responders and non-responders following RDN. 

 

 
Figure 5-46. Resting haemodynamic parameters before and after RDN. 
The changes in resting average peak velocity (APV), renal resistive index (RRI), renal 
blood flow (RBF) and renal vascular resistance (RVR) before versus after renal 
denervation (RDN) for the individual study participants.
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1st Renal Artery 2nd Renal Artery Bilateral Renal Arteries 
Start vs 

end  
Pre-RDN Post- RDN N P Pre-RDN Post- RDN N P Pre-RDN Post- RDN N P N p 

SBP (mmHg) 188 ± 8.1 184 ± 10 9 0.48 181 ± 9 181 ± 10 9 0.97 184 ± 6 182 ± 7 18 0.50 9 0.30 

DBP (mmHg) 88 ± 6.6 87 ± 7 9 0.65 86 ± 7 87 ± 6.9 9 0.56 87 ± 5 87 ± 5 18 0.90 9 0.64 

MAP (mmHg) 125 ± 6.6 123 ± 7 9 0.66 122 ± 7 122 ± 7 9 0.78 123 ± 5 123 ± 5 18 0.76 9 0.51 

HR (bpm) 65 ± 2.6 65 ± 3 9 0.97 66 ± 3 65 ± 3 8 0.42 66 ± 2 65 ± 2 17 0.63 8 0.90 

APV (cm/s) 53 ± 11 72 ± 17 8 0.047 62 ± 18 63 ± 20 8 0.81 58 ± 10 67 ± 13 16 0.05 8 0.41 

RA diam (cm) 
0.51 ± 
0.03 

0.49 ± 
0.04 

6 0.35 
0.48 ± 
0.05 

0.47 ± 
0.03 

7 0.51 
0.50 ± 
0.03 

0.48 ± 
0.02 

13 0.24 5 0.40 

RBF (ml/min) 330 ± 30 405 ± 65 6 0.27 397 ± 153 373 ± 152 7 0.43 366 ± 81 388 ± 84 13 0.53 5 0.51 

RVR (mmHg/ml/min) 
0.43 ± 
0.04 

0.37 ± 
0.06 

6 0.49 
0.64 ± 
0.23 

0.59 ± 
0.17 

7 0.57 
0.54 ± 
0.13 

0.49 ± 
0.10 

13 0.35 5 0.81 

Peak systolic velocity 
(cm/s) 

114 ± 19 137 ± 26 8 0.14 133 ± 33 142 ± 37 7 0.12 123 ± 18 139 ± 21 15 0.0496 7 0.53 

End diastolic velocity 
(cm/s) 

27 ± 6 38 ± 11 8 0.11 36 ± 11 37 ± 11 7 0.51 31 ± 6 38 ± 7 15 0.09 7 0.26 

RRI 
0.75 ± 
0.03 

0.72 ± 
0.03 

8 0.20 
0.73 ± 
0.03 

0.73 ± 
0.04 

7 0.85 
0.74 ± 
0.02 

0.72 ± 
0.02 

15 0.32 7 0.25 

Table 5-30. Resting haemodynamic data. Data reported before and after RDN for the first and second renal arteries treated, the pooled data for both renal 
arteries, and the comparison between the measurements taken before RDN in the first renal artery and after RDN in the second renal artery at the end of 
the procedure. SBP; systolic blood pressure, DBP; diastolic blood pressure, MAP; mean arterial pressure, HR; heart rate, APV; average peak velocity, RA 
diam; renal artery diameter, RBF; real blood flow, RVR; renal vascular resistance, RRI; renal resistive index. 
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PRE RDN POST RDN ΔΔ 

Handgrip Rest Stress N P Rest Stress N p N p 

SBP (mmHg) 185 ± 6 217 ± 9 16 0.0002 181 ± 8 212 ± 8 15 0.001 15 0.77 
DBP (mmHg) 87 ± 5 106 ± 5 16 0.0006 85 ± 6 104 ± 5 15 0.003 15 0.86 
MAP (mmHg) 123 ± 5 150 ± 6 16 0.0004 121 ± 6 147 ± 5 15 0.001 15 0.87 
HR (bpm) 66 ± 2 75 ± 2 16 0.004 63 ± 2 73 ± 2 15 0.002 15 0.97 
APV (cm/s) 58 ± 10 56 ± 8 16 0.70 69 ± 14 73 ± 13 15 0.29 15 0.25 
RA diam (cm) 0.50 ± 0.03 0.51 ± 0.03 15 0.46 0.47 ± 0.02 0.49 ± 0.03 13 0.17 12 0.78 
RBF (ml/min) 346 ± 72 345 ± 51 15 0.96 380 ± 85 449 ± 90 13 0.11 12 0.12 
RVR (mmHg/ml/min) 0.59 ± 0.13 0.60 ± 0.10 15 0.60 0.52 ± 0.10 0.56 ± 0.15 13 0.43 12 0.90 
Peak systolic velocity (cm/s) 123 ± 18 117 ± 16 15 0.18 141 ± 24 145 ± 24 13 0.46 13 0.22 
End diastolic velocity (cm/s) 31 ± 6 27 ± 4 15 0.13 38 ± 9 41 ± 8 13 0.48 13 0.41 
RRI 0.74 ± 0.02 0.75 ± 0.02 15 0.48 0.73 ± 0.03 0.72 ± 0.03 13 0.51 13 0.29 

Table 5-31. Isometric hand grip data. 
Bilateral data showing the change in renal haemodynamic parameters with isometric handgrip. The final column shows the level of significance for the 
difference between each parameter pre- and post-RDN. SBP; systolic blood pressure, DBP; diastolic blood pressure, MAP; mean arterial pressure, HR; heart 
rate, APV; average peak velocity, RA diam; renal artery diameter, RBF; real blood flow, RVR; renal vascular resistance, RRI; renal resistive index. Mean ± 
SEM. 
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5.5.3.3 Dynamic efferent renal nerve testing 

5.5.3.3.1 Isometric handgrip 

Participants were able to perform isometric handgrip exercise as a sympathetic stimulus 

at all stages of the procedure; MAP was significantly increased from rest by handgrip 

both before and after RDN, with no difference between the change in MAP before and 

after RDN (see Table 5-31). This was also the case when the data were analysed for both 

the first and second renal arteries (∆: pre-RDN 22 ± 6 mmHg (p=0.02) and post-RDN 23 ± 

11 mmHg (p=0.04); pre-RDN 31 ± 10 mmHg (p=0.01) and post-RDN 30 ± 5 mmHg 

(p=0.01), respectively).  There was no significant difference on handgrip testing between 

the first and second renal artery for any of the haemodynamic parameters; the following 

analysis therefore describes the pooled data for both arteries. 

 

5.5.3.3.2 Full cohort data 

When considering the whole cohort, there were no significant changes in the absolute 

values of any of the flow or resistance parameters, before or after RDN, despite the 

increased BP with handgrip stress (see Table 5-31). Furthermore, the changes in these 

parameters did not differ pre- versus post-RDN (see Table 5-31). Given the wide range in 

the resting levels of RBF (59 - 1269 ml/min), data were analysed using percent change in 

the haemodynamic parameters, and results compared for RDN responders (≥10 mmHg 

reduction in office SBP at 1-month post RDN) and non-responders. 

Over the whole cohort, pooling data from both renal arteries, there was a significant 

percentage increase in RVR in response to handgrip pre-RDN, not seen post procedure, 

although the difference between these changes was not significant (18 ± 7%, p=0.02; 5 ± 

7%, p=0.49, respectively; ∆p=0.20, see Table 5-32). Percentage changes in the other 

haemodynamic parameters did not differ before and after RDN (see Table 5-32). 

 

 

 

 

 PRE-RDN POST-RDN ∆ 

Handgrip 
% 
Change 

N P 
% 
Change 

N P N P 

SBP (mmHg) 17 ± 4 16 0.0002 18 ± 5 15 0.002 15 0.93 

DBP (mmHg) 28 ± 9 16 0.005 28 ± 9 15 0.007 15 0.93 

MAP (mmHg) 24 ± 6 16 0.0009 25 ± 7 15 0.002 15 0.94 

HR (bpm) 16 ± 5 16 0.006 16 ± 4 15 0.002 15 0.96 

APV (cm/s) 3 ± 5 16 0.53 13 ± 11 15 0.26 15 0.45 

RA diam (cm) 3 ± 3 15 0.30 4 ± 3 13 0.18 12 0.95 

RBF (ml/min) 11 ± 7 15 0.17 24 ± 14 13 0.12 12 0.24 
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RVR (mmHg/ml/min) 18 ± 7 15 0.02 5 ± 7 13 0.49 12 0.17 

Peak systolic velocity 
(cm/s) 

-4 ± 3 15 0.20 6 ± 6 13 0.38 13 0.25 

End diastolic velocity 
(cm/s) 

-2 ± 11 15 0.57 14 ± 15 13 0.36 13 0.43 

RRI 2 ± 2 15 0.49 -1 ± 2 13 0.55 13 0.28 

Table 5-32. Percentage change in haemodynamic parameters measured in response to 
a sympathetic stressor - handgrip. 
The percentage change in systemic BP and renal haemodynamics in response to 
handgrip stress, and the level of significance for the difference in these percentage 
changes pre- versus post-RDN (final column). SBP; systolic blood pressure, DBP; diastolic 
blood pressure, MAP; mean arterial pressure, HR; heart rate, APV; average peak 
velocity, RA diam; renal artery diameter, RBF; real blood flow, RVR; renal vascular 
resistance, RRI; renal resistive index. Mean ± SEM. 
 
 
 
 
5.5.3.3.3 Correlations between response to handgrip and blood pressure outcomes 

There was a significant correlation between the percentage change in RVR with handgrip 

post-RDN and the change in office SBP at 1 month (R=0.6, p=0.03), and a trend towards 

a correlation between the percentage change in RBF with handgrip post-RDN and the 

change in SBP at 1 month (see Figure 5-47). Patients responding to RDN tended to have 

an increase in RBF and a decrease in RVR in response to sympathetic stress following 

renal nerve ablation. 

 

 
Figure 5-47. Correlations between the BP response to RDN at 1 month, and the 
changes in renal haemodynamics with sympathetic stress post-RDN. 
Correlations between the percentage change in A. renal blood flow (RBF) and B. renal 
vascular resistance (RVR) in response to handgrip stress following renal denervation 
(RDN). Responders shown in green and non-responders in red. 
 
 
 
5.5.3.3.4 Responders versus non-responders 
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The data were analysed by BP outcome. Prior to denervation, there was no difference in 

the percentage change in renal haemodynamic response to handgrip between 

responders (n=5) and non-responders (n=4); RBF: 21 ± 11% vs -1 ± 8% (p=0.38), RVR: 8 ± 

9% vs 29 ± 11% (p=0.20), respectively. Following RDN, the differences in haemodynamic 

parameters between responders and non-responders were borderline significant; RBF: 

54 ± 26% vs -1 ± 7%, RVR: -9 ± 12% vs 17 ± 5%, respectively (both p=0.05, see Figure 

5-48).  

Post-RDN, the responders had a trend towards a percentage increase in RBF with 

handgrip (54 ± 26%, p=0.09), although this did not differ significantly from the pre-RDN 

level (21 ± 11%, p=0.1; ∆ p=0.22). In comparison, the non-responders had absolutely no 

difference in the percentage change in RBF pre- versus post-RDN, with no change in RBF 

with handgrip either before or after the procedure (∆ p=0.96; pre: -1 ± 8%, p=0.88; post: 

-1 ± 7%, p=0.88). The non-responders, who may have intact renal nerves, maintained 

stable RBF before and after RDN despite an increase in perfusion pressure (increased 

MAP with handgrip) with a significant increase in RVR (change in RVR; pre: 29 ± 11%, 

p=0.03; post: 17 ± 5%, p=0.01; ∆ p=0.30). For the RDN-responders, the pattern of data 

shows a reduction, rather than increase, in RVR with handgrip post-RDN, albeit non-

significant (-9 ± 12%, p=0.49). Of note, the rise in RVR with handgrip pre-RDN in the 

responder group fails to reach significance (8 ± 9%, p=0.39) and does not differ from the 

fall in RVR seen post ablation (∆ p=0.26). There were no significant differences in RRI, 

within or between outcome groups, before or after RDN. 

 

 
Figure 5-48. Percentage change in renal blood flow and renal vascular resistance in 
response to handgrip stress, in RDN responders and non-responders. 
Pooled data from both arteries, presented for responders (R, green) and non-responders 
(NR, red) both pre-and post-RDN. RBF; renal blood flow, RVR; renal vascular resistance. 
*p<0.05. 
 
 

5.5.3.4 Dynamic afferent renal nerve testing 

5.5.3.4.1 Adenosine dose titration 

Afferent renal nerve integrity was assessed using an infusion of adenosine directly into 

the main renal artery, with measurement of the reflex change in systemic blood 

pressure. This technique has not been trialled in humans, and therefore the first stage 
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was to complete an adenosine dose titration. The results of the titration are shown in 

Figure 5-49. The dose range required to achieve a ≥10 mmHg rise in systemic SBP was 

10-50 mcg/kg/min (median 30 mcg/kg/min), although three participants reached the 

maximum dose of 140 mcg/kg/min without a rise in SBP, with BP falling in these 

individuals at higher doses. There was no significant correlation between the peak dose 

of the adenosine titration and the change in SBP at 1-month post RDN (R=0.40, p=0.28). 

 

 
Figure 5-49. Adenosine dose titration. 
Change in systemic systolic blood pressure (SBP) in response to three-minute increments 
in adenosine dose, up to a target SBP rise of ≥10 mmHg. RDN BP responders are shown 
in green, and non-responders in red. 
 

The study was designed to look for reproducibility in the response to adenosine to 

ensure that there was no tolerance to the stimulus. Therefore, after the initial dose 

titration there was a 3-minute washout period and then the titrated dose of adenosine 

was infused again, for a further 3 minutes, to confirm the SBP response. The average 

change in systemic SBP at the peak adenosine dose during titration was -5 ± 7 mmHg, 

despite the titration targeting a ≥10 mmHg rise in SBP due to the variable BP response to 

adenosine, including a reduction in SBP in some cases (see Figure 5-49). The change in 

SBP at the peak titration dose was significantly different to the SBP response to 

adenosine measured prior to RDN in the first renal artery, with a rise in SBP on repeat 

infusion of adenosine after the washout period (8 ± 6 mmHg, p=0.04).  

 

5.5.3.4.2 Full cohort data 

The absolute values for the BP and renal haemodynamic parameters, pooled for both 

first and second renal arteries, pre- and post-RDN, are shown in Table 5-33.   

5.5.3.4.2.1 Blood pressure response to adenosine infusion: 

There was no significant change in systemic BP with infusion of adenosine prior to RDN 

for the bilateral data. Post-RDN, there was a significant reduction in SBP (-9 ± 3 mmHg, 
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p=0.01) in response to adenosine infusion, which was significantly different from the 

baseline response (p=0.03, Table 5-33).  

To address the variation baseline blood pressure levels, the pooled data from both 

arteries were analysed as percent change in each of the parameters in response to a 3-

minute adenosine infusion into the renal artery immediately pre-, versus immediately 

post-RDN (see Table 5-34). As with the absolute numerical data, there was a reduction in 

BP response to adenosine post-RDN, not seen prior to the procedure.  

5.5.3.4.2.2 Renal haemodynamic response to adenosine infusion: 

Looking at the absolute numerical data pooled for both renal arteries, there were no 

significant changes in any renal haemodynamic parameter with infusion of adenosine 

prior to RDN (Table 5-33). Post-RDN, there was a trend towards a difference in the 

change in RBF pre- versus post-RDN (p=0.09). RBF did not change in response to 

adenosine infusion pre-RDN (-3 ± 32 ml/min, n=12, p=0.93), therefore this difference is 

likely attributable to a possible increase in RBF post-RDN (+68 ± 57 ml/min, n=10, 

p=0.27). Although the signal is weak, the data suggest the converse relationship for RVR; 

there was a potential increase in RVR with adenosine pre-RDN (+0.08 ± 0.07 

mmHg/ml/min, n=12, p=0.28), but no change in RVR in response to adenosine post RDN 

(-0.01 ± 0.04 mmHg/ml/min, n=10, p=0.81; ∆ pre vs ∆ post p=0.12 (Table 5-33)). 

Considering the percent change data, there was a trend towards a difference between 

the percentage change in RBF in response to adenosine pre- versus post-RDN (p=0.06), 

with a minimal fall in RBF with adenosine pre-RDN and an increase in RBF with this 

afferent stimulus post RDN (see Table 5-34). There was a significant difference between 

the percentage change in RVR in response to adenosine before and after RDN (p=0.02); 

RVR increased in response to adenosine pre-RDN but had an opposite response after 

ablation, however, these changes did not attain significance (see Table 5-34).  
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 PRE-RDN POST-RDN ΔΔ  
Rest Adenosine N P Rest Adenosine N P N p 

SBP (mmHg) 187 ± 6 188 ± 7 18 0.78 185 ± 7 177 ± 7 18 0.01 18 0.03 
DBP (mmHg) 87 ± 5 88 ± 6 18 0.69 87 ± 4 82 ± 6 18 0.01 18 0.009 
MAP (mmHg) 123 ± 5 126 ± 5 18 0.43 124 ± 4 118 ± 6 18 0.02 18 0.02 
HR (bpm) 67 ± 1 69 ± 3 18 0.22 66 ± 2 71 ± 3 18 0.06 18 0.12 
APV (cm/s) 70 ± 14 75 ± 18 15 0.52 67 ± 13 76 ± 19 15 0.20 15 0.58 
RA diam (cm) 0.52 ± 0.03 0.53 ± 0.03 13 0.75 0.51 ± 0.03 0.51 ± 0.03 10 0.91 9 0.36 
RBF (ml/min) 439 ± 70 436 ± 79 12 0.93 498 ± 111 565 ± 160 10 0.27 9 0.09 
RVR (mmHg/ml/min) 0.39 ± 0.07 0.47 ± 0.13 12 0.28 0.38 ± 0.08 0.37 ± 0.09 10 0.81 9 0.12 
Peak systolic velocity (cm/s) 147 ± 25 162 ± 28 13 0.23 142 ± 24 161 ± 36 14 0.20 12 0.59 
End diastolic velocity (cm/s) 42 ± 13 60 ± 19 13 0.23 36 ± 9 48 ± 18 14 0.29 12 0.70 
RRI 0.73 ± 0.03 0.68 ± 0.07 13 0.46 0.74 ± 0.02 0.76 ± 0.03 14 0.60 12 0.26 

Table 5-33. Haemodynamic response to adenosine infusion at the peak titrated dose. 
Bilateral data showing the absolute data for systemic blood pressure and renal haemodynamic parameters before and after renal denervation in response 
to a 3-minute adenosine infusion at the peak titrated dose. The final column shows the level of significance for the difference between each parameter pre- 
and post-RDN. SBP; systolic blood pressure, DBP; diastolic blood pressure, MAP; mean arterial pressure, HR; heart rate, APV; average peak velocity, RA 
diam; renal artery diameter, RBF; real blood flow, RVR; renal vascular resistance, RRI; renal resistive index. Mean ± SEM.
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 PRE-RDN POST-RDN ∆ 

Adenosine % Change N P % Change N P N P 

SBP (mmHg) 0.6 ± 1.9 18 0.75 -4.5 ± 1.7 18 0.02 18 0.03 

DBP (mmHg) 0.04 ± 2.2 18 0.99 -7.0 ± 2.5 18 0.01 18 0.008 

MAP (mmHg) 2.9 ± 3.5 18 0.41 -5.3 ± 2.0 18 0.02 18 0.04 

HR (bpm) 3.5 ± 2.9 18 0.24 8.2 ± 4.1 18 0.06 18 0.11 

APV (cm/s) 3.6 ± 8.3 15 0.67 3.3 ± 6.5 15 0.63 14 0.94 

RA diam (cm) 1.0 ± 3.2 13 0.77 -0.03 ± 1.8 10 0.99 9 0.42 

RBF (ml/min) -1.5 ± 9.0 12 0.87 6.5 ± 8.0 10 0.44 9 0.06 

RVR (mmHg/ml/min) 11.8 ± 10.9 12 0.30 -8.5 ± 7.5 10 0.29 9 0.02 

Peak systolic velocity 
(cm/s) 

11.5 ± 9.0 13 0.23 6.2 ± 6.8 14 0.39 12 0.75 

End diastolic velocity 
(cm/s) 

40.4 ± 33.0 13 0.24 8.3 ± 15.6 14 0.60 12 0.30 

RRI -5.9 ± 8.5 13 0.50 2.9 ± 4.4 14 0.52 12 0.25 

Table 5-34. Percentage change in systemic blood pressure and renal haemodynamics 
in response to renal arterial adenosine infusion as an afferent stimulus. 
SBP; systolic blood pressure, DBP; diastolic blood pressure, MAP; mean arterial pressure, 
HR; heart rate, APV; average peak velocity, RA diam; renal artery diameter, RBF; real 
blood flow, RVR; renal vascular resistance, RRI; renal resistive index. Mean ± SEM. 
 
 
 
 

5.5.3.4.3 Correlations between adenosine response and blood pressure outcomes 

The bilateral pooled-data for percentage change in response to adenosine summarised 

in Table 5-34 have been correlated against the blood pressure response to RDN at 1 

month. Pre-RDN, the only parameter that correlated with blood pressure response to 

RDN was the percentage change in renal artery diameter in response to adenosine 

infusion; RDN responders tended to increase RA diameter (R=-0.6, p=0.03, see Figure 

5-50). Post-RDN, there was a significant negative correlation between percentage 

change in DBP in response to adenosine and the medium term SBP response, with 

trends seen for the changes in SBP, RBF and RVR (see Figure 5-51).  
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Figure 5-50. Correlation between the percentage change in renal artery diameter in 
response to adenosine infusion pre-RDN, and the office systolic blood pressure 
outcome at 1 month. 
Responders shown in green and non-responders in red. 

 

Figure 5-51. Correlations between the change in office SBP at 1-month post-RDN, and 
the percentage changes in A. systolic blood pressure, B. diastolic blood pressure, C. 
renal blood flow and D. renal vascular resistance in response to renal arterial 
adenosine at time of procedure, post-RDN. 
SBP; systolic blood pressure, DBP: diastolic blood pressure, RBF; renal blood flow, RVR; 
renal vascular resistance. Responders shown in green and non-responders in red.  
5.5.3.4.4 First versus second renal artery ablated 
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The systemic SBP response to adenosine did differ between ablation of the first and 

second renal arteries. In the first renal artery treated (left in seven patients, right in two 

patients), there was a non-significant rise in SBP with adenosine observed pre- RDN (8 ± 

6 mmHg, p=0.19). This was significantly different (p<0.05) from the fall in SBP post-RDN 

in the first renal artery (-16 ± 6 mmHg, p=0.02, see Figure 5-52), and could be consistent 

with ablation of the afferent nerves and disruption of the reflex increase in systemic BP 

in response to intra-renal arterial adenosine. However, there was a fall in SBP in 

response to adenosine seen pre-RDN in the second renal artery (-6 ± 2 mmHg, p=0.02), 

with no change in SBP with adenosine post-RDN in this artery (-3 ± 5 mmHg, p=0.51).  

There were no differences between any of the renal blood flow or resistance 

parameters between the first and second renal arteries at any stage of the afferent 

nerve testing study. There was no evidence of sidedness, with no difference between 

the blood pressure or renal haemodynamic parameters in response to adenosine 

between the right and left renal arteries.  

 

 

Figure 5-52. Reflex change in systolic blood pressure in response to renal arterial 
adenosine infusion, pre- and post-RDN, for the first and second renal arteries (RA) 
ablated. 
All groups n=9. *One sample T-test vs zero change, p=0.02  
 
 
 
5.5.3.4.5 Responders versus non-responders 

The data for percentage change in the haemodynamic parameters recorded in response 

to adenosine infusion have been further analysed by RDN BP outcome (see Figure 5-53). 

Amongst RDN responders, there were no significant percentage changes in any variable 

in response to adenosine either pre- or post-ablation, and no difference in the 

percentage change in the haemodynamic parameters before versus after RDN.  

Amongst the non-responders, there were no significant percentage changes in any 

parameter pre-RDN, but there was a significant percentage reduction in SBP post-RDN (-

7 ± 3 %, p=0.048). Comparing the data pre- versus post-RDN, there was a significant 

difference between the percentage changes pre-and post-RDN in non-responders with 

data available at both time-points (note low n), for SBP (n=8, p=0.01) and RBF (p=0.048, 

n=5), with a borderline difference for RVR (p=0.07, n=5) (see Figure 5-53). However, 
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there was no difference between the percentage changes in any parameter, either pre- 

or post-RDN, between responders and non-responders to adenosine.  

 

 
Figure 5-53. Percentage change in systemic systolic blood pressure, renal blood flow 
and renal vascular resistance in response to renal arterial adenosine infusion, by SBP 
response to renal denervation. 
Pooled data from both arteries, presented for responders (R) and non-responders (NR) 
both pre-and post-RDN. SBP; systolic blood pressure, RBF; renal blood flow, RVR; renal 
vascular resistance. *p<0.05. Responders shown in green and non-responders in red.
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5.5.4 Discussion 

This sub-study aimed to find an effective test to establish adequate renal nerve ablation 

at the time of an RDN procedure. This strategy hoped to give a real-time measure that 

could guide the operator and be used in the standard catheter laboratory setting, under 

conscious sedation. The use of a dynamic sympathetic stressor in this study shows 

promise as an investigative tool, with an inability to increase RVR with handgrip post-

RDN indicating disruption of the sympathetic vascular reflex, but this technique may lack 

sensitivity to guide ablation in the individual patient.  

In this study cohort a greater number of ablation points was associated with a failure to 

respond to denervation, and whilst this contradicts some (Kandzari, Bhatt et al. 2015, 

Burchell, Chan et al. 2016), but not all (Vogel, Kirchberger et al. 2014, Sharp, Davies et al. 

2016), published data, it does emphasise the importance of a physiological, rather than 

anatomical, measure of procedural efficacy. 

In humans, changes in renal haemodynamics have been assessed non-invasively during 

long-term follow-up after RDN. Mahfoud et al. report a reduction in RRI measured using 

transcutaneous duplex ultrasound at 3 and 6 months post RDN, however, the reduction 

in RRI did not correlate with the reduction in BP reported (Mahfoud, Cremers et al. 

2012). RRI is a marker of intraparenchymal resistance and may provide information 

about subclinical atherosclerosis, as well as correlating with target organ damage in 

hypertension (Pontremoli, Viazzi et al. 1999, Viazzi, Leoncini et al. 2014). An 

improvement in RRI may therefore have clinical relevance. Data from Ott et al. using 

magnetic resonance perfusion imaging provide further insight; RVR was reduced at 3 

months post-RDN, but renal perfusion remained unchanged despite a reduction in the 

perfusing pressure (SBP), indicating preserved autoregulation (Ott, Janka et al. 2013). 

Similarly, using MRI, Doltra et al. reported an increase in renal artery cross-sectional 

area, peak velocity and blood flow at 6 months post-RDN, which did not differ between 

BP responders and non-responders (Doltra, Hartmann et al. 2016). These data support 

the concept that RDN can increase RBF and reduce RVR through disruption of the 

efferent sympathetic nerves, but do not support the use of renal haemodynamic 

parameters as markers for either patient selection, or procedural efficacy in the context 

of RDN, and do not provide peri-procedural feedback for the operator since they are 

based on data from long-term follow-up. 

This study investigated the acute changes in resting renal haemodynamic parameters 

measured at the time of the procedure but was unable to replicate the increase in 

resting RBF post RDN reported in swine by Tsioufis et al. (Tsioufis, Papademetriou et al. 

2013). This is interesting, as one would expect a reduction in RVR following renal artery 

denervation if the vessel was subject to resting sympathetic tone (Dibona 2000). The 

lack of change in resting parameters in this cohort may be due to inadequate 

denervation, although this would require the blood pressure reductions in our 

responder group to be attributed to vascular resistance reduction in other beds. It is 

possible that when the renal nerves are disrupted, local autoregulatory pathways can 

maintain steady-state renal blood flow under resting conditions. Given the kidney’s 

ability to autoregulate effectively, the addition of dynamic physiological stressors to 
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challenge the integrity of the efferent and afferent renal nerves may prove more robust 

and enable the ‘signal’ to rise above the noise. 

5.5.4.1 Efferent renal nerve responses to handgrip stress 

Our data demonstrate that handgrip stress was both physically possible, and 

physiologically able, to act as a sympathetic stressor (significantly increasing systemic BP 

and heart rate, see Table 5-31) throughout the RDN procedure, in patients under 

conscious sedation. Looking at the bilateral renal artery data for all patients, there was 

an increase in RVR in response to handgrip stress prior to RDN; renal blood flow was 

maintained in the face of a higher perfusion pressure. This response was not seen when 

averaging the cohort data after denervation. Looking at the results by BP outcome, both 

RDN responders and non-responders increased RVR and maintained RBF in response to 

handgrip stress pre-RDN (although the rise in RVR did not reach significance for the 

responder group, Figure 5-48). This reflex remained unchanged following the procedure 

amongst the non-responders, which would be consistent with intact renal sympathetic 

efferent nerves and inadequate ablation. In contrast, following denervation, the 

responders demonstrated a trend towards an increase in RBF with handgrip, and 

although the change in RVR was not significant, the data move towards a fall (rather 

than an increase) in vascular resistance. These changes would be consistent with 

disruption of the sympathetic nerves. In contrast to Mahfoud’s data (Mahfoud, Cremers 

et al. 2012), RRI remained unchanged throughout the procedure. 

DiBona’s group investigated the responses to tail compression and heat stress in rats in 

the context of RDN (Dibona 2000). In intact animals, these stressors generated an 

increase in renal vascular resistance, with a fall in RBF. In animals with renal denervation 

there was no change in RVR or RBF in response to either stressor. Baseline RVR was at a 

similar level in both intact and denervated animals consistent with our findings in 

humans. The changes in RBF in this study differ from our data, but the principle that 

renal denervation can impact the sympathetic control of renal artery tone holds true.  

The practical question is whether handgrip stress can be used in the individual patient, 

at the time of the procedure, to determine adequate renal nerve disruption? Across the 

full cohort, there was a significant correlation between the percentage change in RVR 

with handgrip post-RDN and the change in SBP at 1 month (see Figure 5-47); patients 

responding to RDN, and therefore likely to have received sufficient denervation, tended 

to have a decrease in RVR in response to sympathetic stress measured immediately after 

renal nerve ablation. Nominally, if you consider a BP reduction of ≥10 mmHg at one 

month as a successful denervation, the linear regression of our data would suggest that 

individuals with at least a 7.5% reduction in RVR in response to handgrip when stressed 

are likely to have received sufficient denervation. The difficultly in applying this to 

clinical practice is that there was no clear cut-off point to indicate adequate 

denervation, indeed there was a reduction in RVR with handgrip in one of the renal 

arteries from a patient who failed to respond to RDN.   

It is pertinent to consider the potential impact of increased RBF on the kidney. Data 

from large trials and registries show no adverse effect on renal function post-RDN 

(Bhatt, Kandzari et al. 2014, Bohm, Mahfoud et al. 2015). Further research is required to 

establish whether any changes in renal haemodynamics persist in the long term, in the 
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face of possible reinnervation. Previous studies would indicate that the decrease in RVR 

lasts out to at least six months (Mahfoud, Cremers et al. 2012, Ott, Janka et al. 2013, 

Doltra, Hartmann et al. 2016), furthermore, Ott et al. reported that renal perfusion was 

maintained despite increased RVR, supporting a protective role for local autoregulatory 

mechanisms (Ott, Janka et al. 2013). The fact that RRI was unchanged across our 

dataset, despite changes in perfusion pressure, also supports autoregulation. 

5.5.4.2 Response of the afferent renal nerves to intra-renal arterial adenosine infusion 

Reflexes transmitted following stimulation of afferent renal nerves represent an 

alternative approach for assessing the integrity of renal nerves. In this study, adenosine 

was used as an afferent renal nerve stimulus. Adenosine is released in the kidney in 

response to hypoxia and has a variety of actions (Katholi and Woods 1987, Biaggioni 

1992). Data from an in vivo rabbit preparation have shown that the adenosine sensitive 

neurons lie predominantly in the renal pelvis and are activated within 1-3 minutes of 

renal arterial adenosine injection, with a response lasting 2-6 minutes, and transmitted 

in part via A1 receptors (although an alternative/parallel mechanism would be via 

activation of renal mechanoreceptors due to increased hydrostatic pressure as a result 

of a local action of adenosine inducing renal vasoconstriction) (Ma, Liu et al. 2004).  

In previous animal studies, Katholi demonstrated a rise in systemic blood pressure 

within 1 minute in response to intra-renal artery adenosine in conscious dogs, and this 

affect was blunted following renal denervation (Katholi, Hageman et al. 1983, Katholi, 

McCann et al. 1985). We looked to replicate this finding in humans. The first stage of the 

afferent nerve testing study was an adenosine dose titration which aimed to find the 

‘target’ dose to achieve a 10-20 mmHg rise in SBP. As can be seen from Figure 5-49, the 

response to the adenosine titration was highly variable. The median target dose was 30 

mcg/kg/min, however a third of patients did not increase systemic SBP in response to 

any dose of adenosine and reached a maximum titration dose of 140 mcg/kg/min; as the 

dosage reached higher levels, blood pressure fell even further. The effective adenosine 

dose reached during titration did not correlate with RDN outcome.  

There was poor reproducibility in the response to adenosine, with a significant 

difference in the average change in SBP in response to adenosine at the peak titration 

dose, versus the test dose administered in ipsilateral renal artery after a 3-minute 

washout. Tolerance to adenosine due to receptor saturation or down-regulation seems 

unlikely since the receptors would have been aggressively stimulated during the 

continuous adenosine titration and an SBP rise was observed in the first renal artery 

during the adenosine infusion administered after the washout period. The cumulative 

systemic vasodilatory effect of sustained adenosine infusion during the dose titration 

may have blunted the reflex increase in SBP in response to intra-renal adenosine during 

the titration, potentially explaining the poor reproducibility, but ultimately the response 

to adenosine both within, and between, subjects was highly variable.  

Intra-renal adenosine has both systemic effects on blood pressure (Katholi, Hageman et 

al. 1983), and local autoregulatory effects (Wierema, Houben et al. 2005), making 

evaluation of our renal haemodynamic data in response to adenosine infusion complex. 

In vitro studies using a blood-perfused rat juxtamedullary nephron preparation, 

demonstrated afferent and efferent renal arteriolar A1 receptor mediated 
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vasoconstriction in response to superfusion of 1, 10 and 100 μmol/l adenosine, which 

was partly buffered by A2a receptor mediated vasodilatation (Nishiyama, Inscho et al. 

2001). A1 receptor agonists induce vasoconstriction and activation of the 

tubuloglomerular feedback system, through which information about sodium ion 

concentration is transmitted from the downstream renal tubules, to the upstream renal 

glomeruli (adenosine is released from the macula densa cells located near the distal 

tubules in response to increased sodium ion concentration, resulting in constriction of 

the afferent renal arteriole and a decrease in glomerular filtration rate) (Spielman and 

Arend 1991). Vasodilatation is mediated via the A2a receptors which also inhibit tubular 

sodium reabsorption (Smits, de Leeuw et al. 1991, Wierema, Houben et al. 2005). In 

man, intra-renal arterial adenosine administration has been shown to cause both renal 

vasoconstriction (e.g. in response to 1ml boluses of 10-5-1 mg/ml adenosine (Marraccini, 

Fedele et al. 1996)) and vasodilatation (at concentrations in the range of 1-10 

mcg/kg/min as used in this study (Smits, de Leeuw et al. 1991, Wierema, Houben et al. 

2005)). Studies of intrarenal adenosine infusion in man have predominantly focussed on 

this vasomotor effect, and data on changes in systemic arterial BP in response to 

adenosine infusion of 1-10 mcg/kg/min have either not been reported (Wierema, 

Houben et al. 2005), or shown no effect (n=8 (Smits, de Leeuw et al. 1991)). 

The pooled data for both renal arteries showed no change in SBP in response to 

adenosine pre-RDN, but a fall in SBP post-RDN which was contrary to our hypothesis. 

There are several potential explanations for this: 

i. The dose of adenosine used was too high because the titration was too rapid, 

and vasodilatory effects are seen from over-spill of adenosine into the systemic 

circulation. This may have occurred if insufficient time was allowed for the 

adenosine to transit into the renal pelvis (although the 3-minute infusion used 

in this study should have been sufficient based on previous research (Ma, Liu et 

al. 2004)), or because modest changes in systemic blood pressure were difficult 

to confirm over the blood pressure fluctuates in patients under mild conscious 

sedation in a stressful catheter laboratory situation. 

ii. Prior to RDN, the reflex increase in SBP due to activation of the afferent renal 

nerves balanced the systemic vasodilation from the effect of adenosine on the 

systemic vasculature, resulting in no net change in SBP. Post-RDN, the reflex 

increase in SBP was abolished and therefore the hypotensive effect of systemic 

vasodilation predominated. 

iii. Adenosine is a complex stimulus with a variety of local and reflex responses 

including opposing vasoactive responses in arterioles; A1 receptor-mediated 

afferent nerve activation, local vasoconstriction and inhibition of renin release, 

and A2 receptor-mediated vasodilatation (Biaggioni 1992). 

iv. Variable circulating levels of midazolam and fentanyl over the course of the 

procedure could have acted to lower systemic pressure and suppress renal 

afferent mediated reflex responses in SBP (see Figure 5-43). 

The data were also analysed independently for the first and second renal arteries 

denervated. The BP response to the adenosine stimulus was evaluated in the first renal 

artery, before and after denervation, and then the operator moved on to assess the 

response to adenosine in, and denervation of, the second renal artery. In the first renal 

artery, prior to RDN, there was a (non-significant) rise in SBP, with a significant reduction 



    

254 
    

in SBP in response to adenosine after denervation (see Figure 5-52). This would be 

consistent with the second explanation above; the rise in SBP in response to adenosine 

is blunted by systemic vasodilatation prior to denervation when the afferent arm of the 

reflex in intact, but there is a hypotensive response to adenosine post-RDN due to 

unopposed systemic vasodilation resulting from disruption of the afferent renal nerves. 

This would support our hypothesis; however, the explanation is contradicted by the 

significant reduction in SBP in response to adenosine in the second renal artery prior to 

RDN when the renal afferent mediated hypertensive response to adenosine should 

remain intact (see Figure 5-52).  

The interaction between the two kidneys is complex, the afferent nerves are not 

disrupted in isolation, with denervation also affecting the efferent nerves, as well the 

potential for spill-over of adenosine into the contralateral renal artery at higher infusion 

rates. Afferent renal nerve activation generally has an inhibitory effect on the 

contralateral kidney via reno-renal reflexes, reducing efferent sympathetic nerve activity 

in the contralateral kidney to minimise sodium retention and reduce RVR (Kopp 2015). 

Activation of the reno-renal reflex in the contralateral kidney in response to adenosine 

may have an antihypertensive effect which nulls the rise in systemic BP caused by 

adenosine stimulation of the ipsilateral afferent nerves, however, given that the reno-

renal reflex is also disrupted during denervation, this does not explain the fall the SBP 

post-RDN. Furthermore, in hypertension, there is evidence for a shift from inhibitory to 

excitatory reno-renal reflexes, potentially activated by adenosine, which could 

contribute to an increase in arterial pressure (Kopp 2015). Unfortunately, in this study, 

the changes in RBF were not recording in the contralateral renal artery during adenosine 

infusion and so it is difficult to evaluate this interaction.  

Exploring the data by RDN BP outcome group, neither responders nor non-responders 

had a change in BP in response to adenosine before denervation when the afferent 

nerves were intact, potentially reflecting the balance between the reflex increase in SBP 

due to activation of the afferent renal nerves and systemic vasodilation from the effect 

of adenosine on the peripheral vasculature. However, following denervation, there was 

no BP response to adenosine amongst responders, and it was the non-responders who 

showed a decrease in SBP with adenosine post-RDN when we would have predicted 

there their response to the stimulus would remain unchanged if the nerves were not 

adequately ablated. The trends towards an increase in RBF and decrease in RVR in 

response to adenosine post-RDN were also localized to the non-responder group, and 

difficult to explain as no change would be expected if their renal nerves remained intact. 

These contradictory findings may represent the small sample size in our cohort, with 

only a few individuals having complete adenosine testing data for comparison before 

and after the procedure or raise the possibility that the BP outcomes recorded in the 

study are not related to renal nerve ablation.  

Prior to RDN the bilateral pooled data showed a percentage increase in RVR in response 

to adenosine (see Table 5-34), potentially due to a direct vasoconstrictor effect 

mediated via stimulation of the A1 receptors, and/or via reflex mediated activation of 

the sympathetic efferent nerves. After denervation this pattern was reversed, with a 

tendency towards a decrease RVR and increase in RBF, potentially due to unmasking of 

A2 receptor stimulation in the efferent arteriole in the absence of renal afferent reflex 

mediated sympathoexcitation and concurrent efferent denervation (Spielman and Arend 
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1991). These findings may also reflect autoregulation within the kidney to maintain 

perfusion in the face of the systemic hypotensive response to adenosine seen post-RDN.  

When looking at the haemodynamic responses to adenosine infusion, the only 

parameter measured prior to RDN which correlated with the 1-month BP outcome was 

the change in renal artery diameter in response to this stimulus; those who 

vasoconstricted in response to adenosine were unlikely to respond to RDN. It may be 

that these individuals have physiology based on stronger local autoregulation, with renal 

afferent nerves that were not functional or not producing a pressor response, hence 

they were not responsible for the hypertension in these patients. A fall in renal artery 

diameter of >5% pre-RDN, would indicate that the patient would not respond to 

denervation based on this cohort, however, numbers are small, and measurement of 

vessel diameter using 2-dimensional fluoroscopic imaging may be prone to error. 

Furthermore, this technique is invasive and any test to predict a patient’s response to 

RDN should ideally be performed non-invasively to avoid an unnecessary procedure. The 

use of any parameter to predict an individual’s response after denervation may be of 

academic interest, but would not prevent unnecessary ablation, and the aim of this 

study was to develop a test to guide the operator as to whether adequate denervation 

has been achieved at the time of the procedure (or whether further ablation should be 

administered) rather than to predict an individual’s likelihood of response. 

5.5.4.3 Limitations 

There were multiple acknowledged limitations to this study. First, the small sample size 

makes it difficult to draw any firm conclusions. More research is required, particularly 

into the potential for handgrip stress as a tool for assessing procedural efficacy. Second, 

the end-point for RDN response was based on a 1-month office SBP; the patients did all 

have ABPM at baseline and follow-up, but in two patients the high cuff inflation 

pressures could not be tolerated for the full 24hr measurement period, and in one 

patient, BP was so high that the automated device was unable to record data. Third, a 

positive aspect of the study was that the investigations and denervation procedure were 

performed under mild conscious sedation, as is standard practice for clinical RDN. The 

patients were indeed alert enough to perform isometric handgrip. However, the 

different levels of sedation through the procedure introduced a confound into the data 

not seen in the animal work by Tsioufis et al., which took place under general 

anaesthesia (Tsioufis, Papademetriou et al. 2013). Finally, in the analysis of our data we 

have made the assumption that those patients who have ‘responded’ to denervation 

have had an anti-hypertensive effect secondary to the disruption of their renal nerves. If 

their BP reduction is due to other factors (e.g. increased medication adherence and a 

Hawthorne effect), then any relationships inferred from the correlation between our 

data and the blood pressure outcome would be inaccurate. 

5.5.4.4 Future Directions 

Handgrip stress as an efferent nerve stimulus show promise as a tool for assessing the 

efficacy of renal denervation and warrants investigation in a larger study to confirm the 

reproducibility of our findings and establish a cut-off to be used to guide ablation 

therapy. 



    

256 
    

The use of an electrical renal nerve stimulus has generally mandated the use of general 

anaesthesia (although the new custom designed ConfidenHT RNS system has been used 

under conscious analgosedation (Tsioufis, Dimitriadis et al. 2018)), and thus the search 

for alternative modalities and chemical agents to act as afferent renal nerve stimuli 

continues. Adenosine has diverse effects of the kidney and renal vasculature which 

makes interpretation of our data a challenge. In rats, infusion of bradykinin into the 

ipsilateral renal artery induced an immediate increase in MAP, heart rate and both ipsi- 

and contralateral renal resistance; this effect was abolished by ipsilateral renal 

denervation (Smits and Brody 1984). Intra-renal bradykinin also stimulates an excitatory 

reno-renal reflex which can be disrupted by afferent denervation in rats (Barry and 

Johns 2015).  It may therefore be of benefit to trial bradykinin, or a cocktail of renal 

afferent stimuli, as an alternative afferent stimulus.  

A pragmatic approach to inadequate renal denervation is to increase the number of 

ablation points applied to the renal arteries, and, in the light of recent evidence, to 

direct therapy to the distal main and branch renal arteries (Sakakura, Ladich et al. 2014, 

Mahfoud, Tunev et al. 2015, Townsend, Mahfoud et al. 2017, Kandzari, Bohm et al. 

2018). Review of novel anatomical human data indicates that the renal nerves accessible 

to intraluminal RF energy lie more distally in the renal artery adventitia (Sakakura, 

Ladich et al. 2014). The current RDN catheters have a depth of ablation of 2-4 mm, 

however, whilst the density of renal nerves is highest in the proximal segment of the 

renal artery, the nerves in the distal segment are closer to the lumen, with 75% of 

nerves lying within the first 3mm in the distal region compared with only ~50% lying 

inside this range in the proximal and middle segments; therefore operators following 

earlier guidance to focus ablation on the proximal-superior aspect of the renal artery, 

may have been targeting the wrong part of the vessel (Mahfoud, Edelman et al. 2014).  

Preliminary data from the SPYRAL HTN studies may suggest that more intensive ablation 

of the main and branch renal arteries achieves a clinically significant reduction in SBP, 

and support a pragmatic, aggressive ablation approach to RDN (Townsend, Mahfoud et 

al. 2017, Kandzari, Bohm et al. 2018). In this study there was an inverse correlation 

between then number of ablation points and the SBP reduction following RDN, and 

interestingly, Fudim et al. argue that with the positive outcomes using electrical RNS, it 

is a targeted approach to RDN that is required to try to eliminate the heterogeneous BP 

response to RDN (Fudim, Sobotka et al. 2018). 

 

5.5.5 Conclusions 

The clinical effectiveness of RDN in the control of hypertension awaits confirmation 

from ongoing large-scale clinical trials. However, a simple test to measure afferent 

and/or efferent renal nerve integrity at the time of the procedure would provide an 

invaluable tool to establish whether treatment failure is due to inadequate denervation, 

or other patient or physiological factors. The measurement of changes in renal blood 

flow and renal vascular resistance in response to dynamic handgrip stress shows 

potential for this application. An inability to increase RVR with handgrip after 

denervation may indicate disruption of the renal sympathetic nerves, although the 

technique may lack sensitivity to guide ablation in the individual patient. Tests to 

differentiate between afferent and efferent renal nerve function would provide useful 
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additional information about the mechanisms underlying any successful anti-

hypertensive effect of RDN. Unfortunately, adenosine as trialled in this sub-study, is not 

an adequate afferent stimulus. We were unable to reliably replicate in all patients the 

reflex increase in systemic blood pressure in response to intra-renal artery adenosine 

infusion seen in animal models(Katholi, Hageman et al. 1983), and the heterogeneric 

local and systemic effects of adenosine introduce stimulus confounds that prevented a 

clear measure of afferent nerve integrity. A pragmatic approach is likely to be the best 

way forward, with more aggressive ablation in the distal and branch renal arteries. 
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5.6 Predictors of blood pressure response to renal denervation 

5.6.1 Introduction 

As demonstrated by the blood pressure outcomes in this study (see Section 5.2.3.2), 

along with previously published data, the antihypertensive effect of renal denervation 

can differ significantly between individuals (Esler, Krum et al. 2010, Bhatt, Kandzari et al. 

2014, Townsend, Mahfoud et al. 2017). RDN is an invasive procedure, and it would be 

clinically useful to be able to identify those individuals most likely to benefit from this 

intervention with a reduction in blood pressure. Physiologically, is a subject likely to 

respond to a treatment targeting a reduction in afferent and/or efferent renal nerve 

activity and ultimately a reduction in systemic sympathetic nerve activity (SNA)? If 

hypertension in a particular patient is not driven by raised SNA, then they may be 

unlikely to respond to RDN.  

Conventionally a BP response to RDN has been arbitrarily defined as a reduction in oSBP 

of ≥10mmHg (Krum, Schlaich et al. 2009), and studies have looked to identify predictors 

of response to RDN. The strongest positive predictor for a reduction in office systolic BP 

(oSBP) in the Symplicity HTN-3 study was a baseline oSBP of ≥180 mmHg (Bhatt, 

Kandzari et al. 2014, Kandzari, Bhatt et al. 2015), a criterion which has previously been 

shown to correlate with BP reduction post RDN, as highlighted in the Global Symplicity 

and Heidelberg registry data (Vogel, Kirchberger et al. 2014, Bohm, Mahfoud et al. 

2015). Further to this, Persu et al. looked at the outcome measure used to determine a 

response to RDN: when office BP was used to define response, responders were more 

likely to have white coat hypertension, with no effect on ABPM measures, but when 

ABPM was used to define response to RDN, baseline ABPM did predict a reduction in 

ABPM following the procedure (Persu, Azizi et al. 2014). Through further interrogation 

of ABPM data, the same group also demonstrated a reduction in BP variability following 

RDN (independent of absolute BP level), and that baseline DBP variability correlated 

with the reduction in mean DBP following RDN (Persu, Gordin et al. 2018).  

Arterial stiffness has also been reported as a clinical predictor of response to RDN. Ewen 

et al. reported that patients with isolated systolic hypertension (ISH) and therefore 

lower DBP, have a restricted response to RDN (Ewen, Ukena et al. 2015), and these 

findings were supported by preliminary data from our Bristol CardioNomics cohort 

combined with data from St Bartholomew’s Hospital in London (Burchell, Chan et al. 

2016) and by data pooled from the Symplicity HTN-3 cohort and the Global Symplicity 

registry (Mahfoud, Bakris et al. 2017), thus indicating that ISH with potentially stiffer 

arteries, may be less likely to respond to RDN. Fengler et al. further expanded on this 

concept by quantifying pulse wave velocity (PWV) as a measure of vascular stiffness in 

patients with ISH undergoing RDN, and reported that ISH patients with the lowest tertile 

of PWV had a comparable response to RDN as those with combined systolic and diastolic 

hypertension (Fengler, Rommel et al. 2017). A lower invasive aortic PWV, lower non-

invasively measured central pulse pressure and a lower ambulatory aortic stiffness index 

were all predictors of a BP reduction following RDN (Ott, Schmid et al. 2015, Okon, 

Rohnert et al. 2016, Sata, Hering et al. 2018). Conversely, individuals with higher 

baseline aortic distensibility have been reported to be more likely to respond to RDN 

(Fengler, Rommel et al. 2018). Baseline LV wall thickness, another marker of target 

organ damage, has been reported to predict the reduction in myocardial mass post-RDN 
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(Ripp, Mordovin et al. 2015). Thus, whilst the initial report from Symplicity HTN-3 that 

younger age may predict response to RDN, which has not been substantiated in wider 

studies, it may be that neuro-haemodynamic factors play a greater role in the regulation 

of blood pressure in patients with lower vascular resistance, making them more 

susceptible to RDN and autonomic modulation, as opposed to individuals with stiff 

arteries and more significant target organ damage in whom biomechanical factors may 

have a greater role to role in driving hypertension (Barber-Chamoux and Esler 2017).  

Investigators have also looked at vascular and inflammatory markers to predict response 

to RDN, with preliminary data supporting the predictive value of the profibrotic marker 

Galectin-3 (Schwerg, Eilers et al. 2016), angiogenic factors including soluble fms-like 

tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular 

cell adhesion molecule-1 (VCAM-1) (Dorr, Liebetrau et al. 2014), and the cardiovascular 

prognostic marker MR-proadrenomedullin (Neumann, Schwerg et al. 2016). Steinmetz 

et al. have reported that assessment of endothelial function through flow-/nitro-

glycerine-mediated dilation measurements demonstrates that patients with more 

endothelial dysfunction and a higher vasomotor tone are also more likely to respond to 

RDN (Steinmetz, Nelles et al. 2018). Low vitamin D levels have also been associated with 

a poor response to RDN (Poss, Mahfoud et al. 2014). All of the factors reflect small-scale 

data and require further substantiation. 

Measurement of renal SNA would be an ideal variable to test the mechanism of action 

of RDN, and potentially to predict the likelihood of response to an intervention targeting 

this pathway. It is not feasible to assess renal SNA on a clinical basis since organ specific 

measurement of noradrenaline spillover is not widely available. Muscle SNA (MSNA) 

gives a relatively more accessible measure of SNA, but it must be remembered that 

MSNA is only a surrogate for efferent RSNA or for the impact of changes in afferent 

renal nerve activity on systemic SNA. MSNA has not yet been formally assessed as a 

predictor of response to RDN (Barber-Chamoux and Esler 2017), however, the studies 

investigating the effect of RDN on MSNA that have reported the association between 

baseline MSNA and BP outcomes have not identified a significant relationship between 

these variables (Hering, Marusic et al. 2014, Grassi, Seravalle et al. 2015). Initial data on 

an association between baseline baroreflex sensitivity and the BP response to RDN have 

been conflicting, with Zuern et al. reporting that impaired baseline cardiac baroreflex 

sensitivity identified RDN-responders (Zuern, Eick et al. 2013), whilst Grassi et al. 

showed no association between baseline sympathetic BRS and the change in ABPM 

post-RDN (Grassi, Seravalle et al. 2015) 

In this pilot study, we aimed to build on possible clinical cardiovascular predictors of 

response and to use our comprehensive autonomic profiling protocol to identify 

potential predictors of a BP response to RDN. 

 

5.6.2 Methods 

Baseline measures and office BP outcomes measures were quantified as described in 

preceding sections. 
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5.6.2.1 Univariate analyses 

Datasets were assessed for normality using a Shapiro-Wilk normality test. Based on this, 

baseline data were correlated against 6-month office systolic blood pressure (oSBP) 

outcome data using either a Pearson’s correlation coefficient for normally distributed 

data, or a Spearman’s correlation coefficient for all other continuous data. Where there 

was a significant correlation (p<0.05), a linear regression of the data was performed to 

further describe the relationship (GraphPad Prism, GraphPad Software Inc. La Jolla, CA, 

USA). 

The differences in baseline variables between RDN BP responders and non-responders 

were assessed for significance using a Student’s T-test. A BP response to RDN was 

defined as a reduction in oSBP of ≥10 mmHg at 6 months post-RDN. A Fisher’s exact test 

was used to quantify any difference in categorical baseline variables between response 

groups (GraphPad Prism, GraphPad Software Inc. La Jolla, CA, USA). A reduction in office 

SBP was used at the primary outcome measure for this study data for this variable was 

available in all 18 study participants at both baseline and 6 months post-RDN. 

Baseline variables of interest were identified from the above analyses and further 

assessed using a binary logistic regression to quantify the likelihood of each variable 

affecting the response to RDN (SPSS Statistics, Version 24 IBM Corp., Armonk, NY, USA). 

The dependent variable was renal denervation BP response or non-response at 6 

months post-procedure. Data were analysed using a binary logistic regression model 

using an enter method. These data are reported in Appendix 4. 

5.6.2.2 Multivariate analyses 

Multivariate analyses were considered, but due to the small numbers of patients in this 

pilot study the analyses were felt to be underpowered and not statistically robust. 

 

5.6.3 Results 

5.6.3.1 Univariate analyses 

5.6.3.1.1 Baseline clinical outcome measures 

There was a significant correlation between the change in oSBP at 6 months post-RDN 

and both baseline oSBP (see Figure 5-54) and office mean arterial pressure (oMAP), but 

not versus baseline office pulse pressure (oPP) (see Table 5-35). This was also seen as a 

significant difference between baseline oSBP and oMAP between RDN responders and 

non-responders (see Table 5-35). There were no correlations between baseline ABPM 

parameters and the change in oSBP at six months post-RDN, and no difference in 

baseline ABPM parameters between responders and non-responders (see Table 5-36). 
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Figure 5-54. Correlation between baseline office systolic blood pressure (oSBP) and the 
change in oSBP six-months after renal denervation. 
Patients with a higher baseline oSBP had a greater reduction in oSBP following RDN. 
Significant linear regression and Pearson’s correlation coefficient shown. Data for 
premenopausal females are shown in red, postmenopausal females are shown in purple 
and males are shown in blue. 
 
 

Baseline 
parameter 

Correlation RDN response group 

R P Responders Non-responders P 

Age (years) 0.07 0.78 53 ± 3 57 ± 5 0.47 

Gender (%male) - - 55 (6/11) 43 (3/7) 1.00 

BMI (kg/m2) 0.06 0.81 28.4 ± 0.6 29.1 ± 1.5 0.64 

oSBP (mmHg) -0.61 0.01 203 ± 5 173 ± 6 0.002 

oDBP (mmHg) -0.35 0.16 113 ± 5 94 ± 10 0.11 

oMAP (mmHg) -0.48 0.04 143 ± 4 120 ± 8 0.03 

oPP (mmHg) -0.24 0.33 90 ± 7 79 ± 6 0.28 

HR (beats/min) -0.09 0.71 69 ± 2 62 ± 4 0.15 

TPR -0.09 0.71 20 ± 1 20 ± 2 0.92 

Table 5-35. Correlations between the office systolic blood pressure (oSBP) response to 
renal denervation (RDN) 6 months after renal denervation (RDN) and baseline clinical 
parameters. 
The correlation data is for the whole cohort of 18 patients with the data given for the 
Pearson/Spearman coefficient R value and level of significance (p). Data are also given 
by RDN BP response group, with data shown for responders (n=11) and non-responders 
(n=7; mean ± SEM) and the p value from a Student’s t-test between the baseline data 
shown for the two response groups. Fisher’s exact test was used to quantify any 
difference between categorical data. BMI; body mass index, oDBP; office diastolic blood 
pressure, oMAP; office mean arterial pressure, oPP; office pulse pressure, HR; heart 
rate, TPR; total peripheral resistance. 
 

Correlation RDN response group 
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Baseline 
parameter 

n R P N Responders N 
Non-

responders 
P 

Day SBP 
(mmHg) 

13 -0.25 0.41 6 173 ± 7 7 169 ± 4 0.66 

Day DBP 
(mmHg) 

13 -0.36 0.23 6 105 ± 4 7 94 ± 6 0.13 

Day MAP 
(mmHg) 

10 0.12 0.74 5 122 ± 4 5 120 ± 4 0.80 

Day PP (mmHg) 10 0.17 0.63 5 67 ± 8 5 79 ± 6 0.25 

Day HR 
(beats/min) 

10 0.12 0.75 5 76 ± 6 5 72 ± 6 0.66 

Night SBP 
(mmHg) 

12 -0.16 0.61 6 154 ± 8 6 158 ± 7 0.68 

Night DBP 
(mmHg) 

12 -0.21 0.51 6 88 ± 4 6 84 ± 6 0.64 

Night MAP 
(mmHg) 

10 0.01 0.98 5 111 ± 8 5 109 ± 3 0.82 

Night PP 
(mmHg) 

10 -0.04 0.91 5 66 ± 7 5 77 ± 12 0.45 

Night HR 
(beats/min) 

10 0.21 0.57 5 65 ± 1 5 65 ± 5 0.92 

24hr SBP 
(mmHg) 

10 0.04 0.92 5 164 ± 8 5 168 ± 3 0.68 

24hr DBP 
(mmHg) 

10 -0.35 0.32 5 97 ± 2 5 90 ± 7 0.35 

24hr MAP 
(mmHg) 

10 0.16 0.65 5 119 ± 4 5 118 ± 3 0.90 

24hr PP  
(mmHg) 

10 0.12 0.75 5 67 ± 7 5 78 ± 7 0.29 

24hr HR 
(beats/min) 

10 0.15 0.67 5 73 ± 4 5 70 ± 6 0.75 

Table 5-36. No correlations between the change in office systolic blood pressure 6 
months after renal denervation (RDN) and baseline ambulatory blood pressure 
monitoring (ABPM) parameters. 
The n number for each analysis is specified with the data given for the 
Pearson/Spearman coefficient R value and level of significance (p). Data are also given 
by RDN BP response group, with data shown for responders and non-responders (mean 
± SEM) and the p value from a Student’s t-test between the baseline data shown for the 
two response groups. SBP; systolic blood pressure, DBP; diastolic blood pressure, MAP; 
mean arterial pressure, PP; pulse pressure, HR; heart rate. 
 
 
 
 
 
 
 
 
 
There were no correlations between either the number of baseline antihypertensive 

medications, drug classes or medication whole dose equivalents (WDE) and the change 
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in oSBP at 6 months post-RDN. These parameters, and the proportions of patients taking 

each class of antihypertensive medication at baseline did not differ between RDN 

responders and non-responders (see Table 5-37). 

 

Baseline parameter 
Correlation RDN response group 

R P Responders Non-responders P 

No. drugs (n) -0.12 0.64 5.5 ± 0.6 4.7 ± 0.6 0.39 

No. classes (n) -0.03 0.90 4.8 ± 0.6 4.7 ± 0.6 0.90 

WDE (n) -0.21 0.41 4.6 ± 0.8 3.1 ± 0.7 0.14 

ACEi/ARB/RI (%) - - 100 (11/11) 100 (7/7) 1.00 

CCB (%) - - 64 (7/11) 71 (5/7) 1.00 

Diuretic (%) - - 82 (9/11) 57 (4/7) 0.33 

MRA (%) - - 55 (6/11) 57 (4/7) 1.00 

β-Blocker (%) - - 64 (7/11) 57 (4/7) 1.00 

α-Blocker (%) - - 64 (7/11) 57 (4/7) 1.00 

Centrally Acting (%) - - 36 (4/11) 43 (3/7) 1.00 

Vasodilator (%) - - 18 (2/11) 29 (2/7) 1.00 

Table 5-37. No difference in baseline medication profile between renal denervation 
(RDN) responders and non-responders. 
The correlation data is for the whole cohort of 18 patients with the data given for the 
Pearson coefficient R value and level of significance (p). Data are also given by RDN BP 
response group, with data shown for responders (n=11) and non-responders (n=7; mean 
± SEM) and the p value from a Student’s t-test between the baseline data shown for the 
two response groups. Fisher’s exact test was used to quantify any difference between 
categorical data. WDE; whole dose equivalent, ACEi; angiotensin converting enzyme 
inhibitor, ARB; angiotensin receptor blocker, RI; renin inhibitor, CCB; calcium channel 
blocker, MRA; mineralocorticoid receptor antagonist. 
 
 

5.6.3.1.2 Baseline target organ damage 

There were no significant differences between baseline measures of target organ 

damage, including markers of renal injury, aortic distensibility and cardiac volumetrics, 

function and fibrosis, between RDN BP responders and non-responders (see Table 5-38). 

However, when looking at correlations between the changes in oSBP at 6 months post-

RDN and these baseline parameters, there were correlations between baseline ejection 

fraction (EF), baseline end systolic volume (ESV, borderline correlation for indexed ESV)), 

and borderline correlations for baseline peak circumferential strain and peak systolic 

circumferential strain rate, versus the change in oSBP at 6 months (see Table 5-38). To 

summarise, a lower baseline EF but a higher baseline ESV, and a lower peak 

circumferential strain or peak systolic circumferential strain rate, were associated with a 

greater reduction in oSBP following RDN (see Figure 5-55). 
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Figure 5-55. Correlations between baseline cardiac volumetric and strain parameters 
and the change in office systolic blood pressure (oSBP) six-months after renal 
denervation. 
Patients with a higher baseline ejection fraction (A.) and lower end systolic volume (B.) 
were less likely to response to renal denervation with a reduction in oSBP at 6 months. 
There were also trends towards individuals with lower (less negative) peak 
circumferential strain (C.) and peak systolic circumferential strain rate (D.)  having a 
greater reduction in oSBP following RDN.  
 
 
 
 
 
 

Baseline 
parameter 

Correlation RDN response group 

n R P N Responders N 
Non-

responders 
P 

eGFR 
(ml/min/1.73m2) 

18 0.07 0.79 11 74 ± 4 7 72 ± 3 0.70 

Albumin:creatinine 
ratio 

15 -0.18 0.53 8 5.7 ± 2.3 7 10.6 ± 7.1 0.53 

Aortic 
distensibility  
(mm2/mmHg x103) 

15 -0.12 0.67 9 1.8 ± 0.4 6 1.2 ± 0.4 0.30 

EF (%) 18 0.47 0.046 11 65 ± 2 7 6 ± 3 0.52 
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LV mass (g) 18 -0.12 0.62 11 176 ± 11 7 180 ± 31 0.90 

Indexed LV mass 
(g/ml) 

18 -0.10 0.69 11 87 ± 5 7 94 ± 13 0.62 

EDV (ml) 18 -0.36 0.14 11 166 ± 7 7 154 ± 17 0.55 

Indexed EDV 
(ml/m2) 

18 -0.32 0.19 11 83 ± 3 7 80 ± 7 0.78 

ESV (ml) 18 -0.56 0.02 11 59 ± 5 7 51 ± 8 0.46 

Indexed ESV 
(ml/m2) 

18 -0.42 0.08 11 29 ± 3 7 27 ± 4 0.62 

SV (ml) 18 -0.06 0.82 11 107 ± 5 7 103 ± 11 0.76 

Indexed SV 
(ml/m2) 

18 0.01 0.96 11 53 ± 2 7 53 ± 4 0.96 

Peak radial strain 
(%) 

18 0.40 0.10 11 31 ± 3 7 33 ± 3 0.67 

Peak 
circumferential 
strain (%) 

18 -0.45 0.06 11 -18 ± 1 7 -19 ± 1 0.75 

Peak longitudinal 
strain (%) 

18 -0.26 0.29 11 -18 ± 1 7 -18 ± 1 0.72 

Peak systolic radial  
strain rate (%/sec) 

18 0.38 0.12 11 192 ± 23 7 202 ± 23 0.75 

Peak systolic 
circumferential  
strain rate (%/sec) 

18 -0.46 0.05 11 -104 ± 9 7 -105 ± 11 0.93 

Peak systolic 
longitudinal  
strain rate (%/sec) 

18 -0.38 0.12 11 -95 ± 5 7 -102 ± 12 0.66 

Peak diastolic 
radial  
strain rate (%/sec) 

18 -0.31 0.21 11 -200 ± 26 7 -202 ± 34 0.96 

Peak diastolic 
circumferential  
strain rate (%/sec) 

18 0.27 0.28 11 111 ± 13 7 109 ± 20 0.94 

Peak diastolic 
longitudinal  
strain rate (%/sec) 

18 0.36 0.15 11 121 ± 15 7 105 ± 19 0.51 

Extracellular 
volume fraction 

7 -0.14 0.77 3 0.27 ± 0.01 4 0.26 ± 0.01 0.59 

Interstitial volume  
(ml) 

7 0.15 0.75 3 44 ± 8 4 54 ± 16 0.61 

Index interstitial 
volume 
(ml/m2) 

7 0.08 0.87 3 22 ± 2 4 27 ± 7 0.49 

Myocardial cell 
volume (ml) 

7 0.20 0.66 3 116 ± 13 4 145 ± 37 0.51 

Index myocardial 
cell volume 
(ml/m2) 

7 0.13 0.78 3 58 ± 3 4 75 ± 15 0.35 
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Table 5-38. No difference in baseline marker of target organ damage between renal 
denervation (RDN) responders and non-responders. 
Baseline data for renal impairment, aorta distensibility/vascular stiffness and 
hypertensive heart disease as assessed by cardiac MRI did not correlate with the change 
in oSBP 6-month post-RDN. The n number for each analysis is specified with the data 
given for the Pearson/Spearman coefficient R value and level of significance (p). Data are 
also given by RDN BP response group, with data shown for responders and non-
responders (mean ± SEM) and the p value from a Student’s t-test between the baseline 
data shown for the two response groups. eGFR; estimated glomerular filtration rate, EF; 
ejection fraction, LV; left ventricle, EDV; end diastolic volume, ESV; end systolic volume, 
SV; stroke volume. 
 
 

 

5.6.3.1.3 Baseline sympathetic nerve activity 

There were no correlations between either baseline muscle sympathetic nerve activity 

(MSNA) or markers of baseline cardiac sympathetic nerve activity (as assessed by heart 

rate variability) and the change in oSBP 6-months post-RDN. There were also no 

differences in these parameters between RDN responders and non-responders at 

baseline (see Table 5-39). 

 

 

 

 

 

 

Baseline 
parameters 

Correlations RDN response group 

n R P n Responders n 
Non-

responders 
P 

MSNA incidence 
(bursts/100 HB) 

14 0.05 0.87 8 55 ± 6 6 67 ± 10 0.34 

MSNA frequency 
(bursts/min) 

14 0.01 0.98 8 37 ± 5 6 39 ± 4 0.72 

Total MSNA 
area/100 HB (%/s) 

14 0.17 0.57 8 2790 ± 350 6 3886 ± 631 0.17 

Total MSNA 
area/min (%/s) 

14 0.17 0.56 8 1880 ± 243 6 2273 ± 259 0.29 

Transduction 
(mmHg/%.s) 

13 -0.14 0.64 8 0.01 ± 0.04 5 0.06 ± 0.08 0.60 

SDNN (ms) 17 -0.11 0.68 10 42 ± 7 7 46 ± 6 0.69 

RMSSD (ms) 17 0.26 0.32 10 31 ± 6 7 48 ± 12 0.23 

NN50 (n=) 17 0.13 0.63 10 13 ± 5 7 26 ± 12 0.33 
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pNN50 (%) 17 0.15 0.55 10 4 ± 1 7 8 ± 3 0.27 

Total power (ms2) 17 0.12 0.64 10 1987 ± 599 7 2119 ± 563 0.87 

VLF (ms2) 17 0.13 0.63 10 988 ± 355 7 605 ± 90 0.32 

LF (ms2) 17 0.25 0.34 10 325 ± 85 7 602 ± 221 0.27 

nLF (n.u.) 17 0.04 0.88 10 47 ± 9 7 42 ± 10 0.69 

HF (ms2) 17 0.17 0.51 10 377 ± 138 7 627 ± 281 0.44 

nHF (n.u.) 17 0.17 0.52 10 34 ± 5 7 47 ± 9 0.25 

LF/HF 17 -0.01 0.98 10 1.9 ± 0.6 7 2.1 ± 1.3 0.92 

Table 5-39. No differences between baseline muscle sympathetic nerve activity 
(MSNA) and heart rate variability (HRV) parameters between renal denervation (RDN) 
responders and non-responders. 
Baseline data for MSNA, sympathovascular transduction and HRV did not correlate with 
the change in oSBP 6-month post-RDN. The n number for each analysis is specified with 
the data given for the Pearson/Spearman coefficient R value and level of significance (p). 
Data are also given by RDN BP response group, with data shown for responders and 
non-responders (mean ± SEM) and the p value from a Student’s t-test between the 
baseline data shown for the two response groups. SDNN; standard deviation of 
differences between successive NN (normal to normal) intervals, RMSSD; square root of 
the mean squared differences of successive NN intervals, NN50; number of interval 
differences of successive NN intervals measuring >50 ms, pNN50; NN50 count as a 
percentage of the total number of all NN intervals, VLF; very low frequency, LF; low 
frequency, nLF; normalised low frequency, HF; high frequency, nHF; normalised high 
frequency. 
 
 
 
 
 
 
5.6.3.1.4 Baseline baroreflex sensitivity 

There was a significant correlation between baseline spontaneous sympathetic 

baroreflex sensitivity (BRS) as assessed by the area method (ssBRSA) and the change in 

oSBP 6 months post-RDN, with responders trending towards having greater baseline 

spontaneous sympathetic baroreflex gain by this technique than non-responders (see 

Figure 5-56 and Table 5-40). There was a trend towards a correlation between baseline 

spontaneous sympathetic baroreflex sensitivity to falling diastolic BP (assessed by the 

threshold method) and the change in oSBP post-RDN, following a similar pattern (see 

Table 5-40). There were also trends towards a difference in baseline sympathetic BRS for 

both rising and falling DBP, assessed in response to a Modified Oxford protocol, 

between RDN responders and non-responders, however patient numbers are too small 

to place significant emphasis on these latter findings (see Table 5-40). There were no 

associations between baseline cardiac BRS parameters and the change in oSBP 6-months 

post-RDN, and no differences between the baseline measures of these parameters 

between RDN responders and non-responders. 
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Figure 5-56. Greater baseline spontaneous sympathetic baroreflex sensitivity is 
associated with a greater blood pressure reduction six-months following renal 
denervation. 
Data is for linear regression and Pearson’s correlation coefficient. ssBRSA; spontaneous 
sympathetic baroreflex sensitivity as assessed by the area method. Data for 
premenopausal females are shown in red, postmenopausal females are shown in purple 
and males are shown in blue. 

Baseline 
parameters 

Correlations RDN response group 

N R P n Responders N 
Non-

responders 
P 

ssBRST overall 
(%/mmHg) 

13 0.30 0.33 8 -1.52 ± 0.38 5 -1.16 ± 0.5 0.58 

ssBRST rising  
(%/mmHg) 

13 0.03 0.91 8 -1.23 ± 0.44 5 -1.41 ± 0.9 0.86 

ssBRST falling  
(%/mmHg) 

13 0.52 0.07 8 -1.29 ± 0.33 5 -0.72 ± 0.2 0.16 

ssBRSA overall 
(AU•s/mmHg) 

13 0.56 0.045 8 -0.61 ± 0.18 5 -0.22 ± 0.2 0.14 

ssBRSA rising 
(AU•s/mmHg) 

13 0.10 0.74 8 -0.68 ± 0.27 5 -0.66 ± 0.4 0.96 

ssBRSA falling 
(AU•s/mmHg) 

13 0.46 0.11 8 -0.73 ± 0.20 5 -0.32 ± 0.2 0.22 

scBRS overall 
(ms/mmHg) 

13 0.04 0.90 9 7.0 ± 1.6 4 11.3 ± 2.7 0.22 

scBRS rising 
(ms/mmHg) 

13 -0.08 0.80 9 6.2 ± 1.4 4 8.7 ± 4.7 0.64 

scBRS falling  
(ms/mmHg) 

11 0.29 0.38 8 7.8 ± 2.2 3 17.6 ± 5.9 0.23 

BEI overall 12 -0.16 0.62 9 0.21 ± 0.03 3 0.23 ± 0.05 0.73 

BEI rising 16 -0.25 0.34 10 0.22 ± 0.04 6 0.17 ± 0.04 0.37 

BEI falling 16 -0.23 0.39 10 0.19 ± 0.03 6 0.19 ± 0.07 1.00 

psBRSA overall 
(AU•s/mmHg) 

5 0.73 0.16 3 -0.95 ± 0.16 2 -0.54 ± 0.04 0.11 
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psBRSA rising 
(AU•s/mmHg) 

5 0.74 0.16 3 -0.99 ± 0.15 2 -0.54 ± 0.04 0.09 

psBRSA falling 
(AU•s/mmHg) 

5 0.78 0.12 3 -0.66 ± 0.12 2 -0.31 ± 0.03 0.08 

pcBRS overall 
(ms/mmHg) 

10 -0.03 0.95 5 3.6 ± 1.3 5 2.4 ± 0.4 0.40 

Table 5-40. Correlations between measures of baseline sympathetic and cardiac 
baroreflex sensitivity versus the change in oSBP 6months post-RDN. 
The n number for each analysis is specified with the data given for the 
Pearson/Spearman coefficient R value and level of significance (p). Data are also given 
by RDN BP response group, with data shown for responders and non-responders (mean 
± SEM) and the p value from a Student’s t-test between the baseline data shown for the 
two response groups. ssBRST; spontaneous sympathetic baroreflex sensitivity-threshold 
method, ssBRSA; spontaneous sympathetic baroreflex sensitivity-area method, scBRS; 
spontaneous cardiac baroreflex sensitivity, BEI; baroreflex effectiveness index, psBRSA; 
pharmacological sympathetic baroreflex sensitivity, pcBRS; pharmacological cardiac 
baroreflex sensitivity. 
 

 

 

5.6.3.1.5 Baseline chemoreflex sensitivity and brain blood flow 

When considering parameters which may influence and measure cerebral blood flow 

(CBF), there were no correlations between baseline measures of hypoxic ventilatory 

response (HVR; a measure of chemoreflex sensitivity) and the change in oSBP at 6 

months post-RDN, and whilst there was a significant difference between baseline HVR as 

assessed by the intermittent hypoxia method between RDN responders and non-

responders, this analysis only included n=3 non-responders and may therefore not be 

representative of findings in a wider population (see Table 5-41).  

There were significant correlations between both the percentage of CBF in the right 

vertebral artery and the percentage of total cardiac output (CO) flow in the left vertebral 

artery at baseline versus the change in oSBP at 6-months post-RDN (see Table 5-42). 

These findings were not mirrored by any significant differences in these, or any of the 

other baseline CBF parameters, between RDN responders and non-responders, and 

these findings in different arteries are difficult to rationalise into a mechanism related to 

RDN. There were also no significant differences between the proportion of responders 

and non-responders who had either vertebral artery hypoplasia or an incomplete circle 

of Willis (4/11 responders and 4/7 non-responders, p=0.63). 

 

Baseline 
parameters 

Correlation RDN response group 

N R P n Responders N 
Non-

responders 
P 

Pooled HVR data 
(L/min/%) 

16 0.17 0.54 9 -0.26 ± 0.08 7 -0.13 ± 0.05 0.20 
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HVR – intermittent 
hypoxia method 
(L/min/%) 

10 0.32 0.37 7 -0.34 ± 0.08 3 -0.08 ± 0.03 0.02 

HVR – stepped 
hypoxia method 
(L/min/%) 

6 -0.65 0.17 2 0.02 ± 0.15 4 -0.16 ± 0.08 0.42 

Table 5-41. Correlations between baseline measures of chemoreflex sensitivity as 
assessed by hypoxic ventilatory response (HVR) and the BP response to renal 
denervation (HVR) at 6 months post-procedure. 
The n number for each analysis is specified with the data given for the 
Pearson/Spearman coefficient R value and level of significance (p). Data are also given 
by RDN BP response group, with data shown for responders and non-responders (mean 
± SEM) and the p value from a Student’s t-test between the baseline data shown for the 
two response groups. 
 

Baseline 
parameters 

Correlations RDN response group 

N R P n Responders N 
Non-

responders 
P 

RCA (ml/min) 16 -0.37 0.16 10 456 ± 42 6 395 ± 34 0.28 

LCA (ml/min) 16 -0.23 0.39 10 409 ± 26 6 396 ± 28 0.75 

RVA (ml/min) 16 0.23 0.39 10 121 ± 15 6 128 ± 6 0.67 

LVA (ml/min) 16 -0.18 0.50 10 173 ± 19 6 143 ± 19 0.28 

Total CBF (ml/min) 16 -0.28 0.29 10 1159 ± 78 6 1062 ± 72 0.38 

% RCA flow of CBF 16 -0.39 0.13 10 39 ± 2 6 37 ± 2 0.35 

% LCA flow of CBF 16 0.06 0.83 10 36 ± 2 6 37 ± 1 0.36 

% RVA flow of CBF 16 0.59 0.02 10 10 ± 1 6 12 ± 1 0.15 

% LVA flow of CBF 16 0.44 0.09 10 48 ± 23 6 83 ± 33 0.41 

% Total CBF of CO 16 -0.20 0.44 10 16.1 ± 1.6 6 18.4 ± 2.5 0.46 

% RCA of CO 16 0.38 0.15 10 6.3 ± 0.7 6 6.8 ± 0.9 0.66 

% LCA of CO 16 0.19 0.49 10 5.7 ± 0.6 6 6.8 ± 0.9 0.34 

% RVA of CO 16 0.38 0.15 10 1.7 ± 0.2 6 2.3 ± 0.4 0.25 

% LVA of CO 16 0.59 0.02 10 2.4 ± 0.3 6 2.6 ± 0.6 0.79 

Table 5-42. No difference in baseline cerebral blood flow (CBF) parameters between 
responders and non-responders to renal denervation (RDN). 
The n number for each analysis is specified with the data given for the 
Pearson/Spearman coefficient R value and level of significance (p). Data are also given 
by RDN BP response group, with data shown for responders and non-responders (mean 
± SEM) and the p value from a Student’s t-test between the baseline data shown for the 
two response groups. RCA; right carotid artery, LCA; left carotid artery, RVA; right 
vertebral artery, LVA; left vertebral artery, CO; cardiac output. 
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5.6.3.1.6 Baseline markers of inflammation 

There were no significant correlations between baseline markers of inflammation and 

the change in oSBP at 6 months following RDN. There were also no significant 

differences between the baseline levels of markers of inflammation between RDN 

responders and non-responders (see Table 5-43). 

 

 

Baseline 
parameters 

Correlations RDN response group 

n R P N Responders n Non-responders P 

CRP   (mg/mL) 9 -0.24 0.53 6 3.3 ± 0.8 3 2.7 ± 1.2 0.67 

IL-6   (pg/mL) 9 -0.31 0.42 5 3.4 ± 1.4 4 3.6 ± 1.3 0.94 

IL-8   (pg/mL) 9 -0.20 0.61 5 7.8 ± 3.6 4 3.5 ± 0.6 0.30 

IL-10   (pg/mL) 9 -0.47 0.20 5 10.2 ± 2.4 4 7.6 ± 2.0 0.42 

IL-17   (pg/mL) 9 -0.18 0.64 5 9.2 ± 2.9 4 12.5 ± 3.8 0.52 

MPO   (pg/mL) 9 0.21 0.59 5 38.2 ± 8.8 4 47.8 ± 15.7 0.62 

TNFα   (pg/mL) 9 -0.47 0.20 5 10.2 ± 2.4 4 7.6 ± 2.0 0.42 

Table 5-43. No correlation between baseline inflammatory markers and the change in 
office SBP at 6 months post-RDN. 
The n number for each analysis is specified with the data given for the 
Pearson/Spearman coefficient R value and level of significance (p). Data are also given 
by RDN BP response group, with data shown for responders and non-responders (mean 
± SEM) and the p value from a Student’s t-test between the baseline data shown for the 
two response groups. CRP: C reactive protein, IL; interleukin, MPO; myeloperoxidase, 
TNFα; tumour necrosis factor alpha. 
 

5.6.3.1.7 Binomial regression analyses 

Binomial univariate regression analyses were performed for the prediction of response 

to RDN by baseline age, gender, oSBP, oPP, eGFR, indexed LV mass, aortic distensibility, 

spontaneous sBRSA, spontaneous cBRS and sympathovascular transduction. These 

results are summarised in Appendix 4. 

 

5.6.4  Discussion 

This study aimed to identify physiological parameters that would predict a blood 

pressure reduction following RDN, and which could then be used to screen individuals 

for suitability for this invasive and expensive procedure. The univariate analyses 

reported above described significant correlations between baseline oSBP, oMAP and 

spontaneous sympathetic BRS (area method) and the change in oSBP 6 months post-

RDN. A greater reduction in BP was associated with a higher baseline oSBP, oMAP and 
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spontaneous sympathetic BRS (see Figure 5-54 and Figure 5-56). Baseline MSNA did not 

correlate with change in office SBP following RDN on univariate analysis.  

Higher office SBP has previously been reported as a predictor of response to RDN (Bhatt, 

Kandzari et al. 2014, Vogel, Kirchberger et al. 2014, Bohm, Mahfoud et al. 2015, 

Kandzari, Bhatt et al. 2015). It has been hypothesised that higher SBP may indicate a 

greater severity or longer duration of hypertension and thus increased target organ 

damage and/or vascular stiffness (Barber-Chamoux and Esler 2017). This theory is 

refuted by the fact there were no correlations between baseline oSBP and either 

baseline eGFR, baseline aortic distensibility or any of the baseline cardiac volumetric and 

functional parameters in this cohort. Also contrary to our hypothesis (and data from 

other groups reported above (Ewen, Ukena et al. 2015, Ott, Schmid et al. 2015, Burchell, 

Chan et al. 2016, Fengler, Rommel et al. 2017, Mahfoud, Bakris et al. 2017)), was the 

lack of relationship between either baseline office pulse pressure (increased with 

increasing vascular stiffness) or baseline aortic distensibility and oSBP outcomes. 

Symplicity HTN-3 investigators reported that younger participants were more likely to 

respond to RDN (Bhatt, Kandzari et al. 2014, Kandzari, Bhatt et al. 2015), and it may be 

that vascular adaptions to hypertension are still reversible in these younger individuals 

with a greater neuro-haemodynamic component driving up BP (Barber-Chamoux and 

Esler 2017), however, there was no relationship between age and RDN response in our 

cohort. These results may reflect our smaller study cohort, but importantly, would not 

suggest that age, pulse pressure or aortic distensibility could be used as measures to 

select patients for treatment with RDN on an individual basis. 

Our data did not demonstrate an independent correlation between baseline MSNA and 

the BP response to RDN. MSNA has not previously been formally investigated as a tool 

to identify patients who are likely to respond to RDN, and whilst in some individuals 

changes in MSNA did appear to qualitatively track changes in oSBP following RDN (see 

Figure 5-17), given the significant variability between individuals, our data would not 

support the use of MSNA to screen for likely responders to RDN. Baseline data and 

outcome data for the wider cohort are consistent with existing published data showing 

no direct correlation between changes in BP and MSNA after RDN (Grassi, Seravalle et 

al. 2014, Hering, Marusic et al. 2014, Vink, Verloop et al. 2014).  

Interestingly, subjects with greater baroreflex gain were more likely to respond to RDN 

(Figure 5-56). Greater baseline spontaneous sympathetic baroreflex sensitivity was 

associated with higher baseline oSBP and left ventricular mass (LVM) in this cohort, 

however there were no correlations between changes in oSBP or LVM and changes in 

BRS following RDN (in fact BRS did not change following RDN, see Section 5.4.1.3). It is 

possible that these individuals were better able to respond to a change in cardiac 

afterload driven by mechanisms other than a reduction in MSNA (e.g. local modulation 

of sodium and water handling in the kidney or renal neurohormonal effects) or were 

better able to respond to small changes in central sympathetic modulation of BRS not 

detected in this small pilot study. Further research is required to confirm the 

reproducibility of this finding in a larger patient population, particularly given the 

conflicting data from other groups (Zuern, Eick et al. 2013, Grassi, Seravalle et al. 2015).  

Patients with a higher baseline ejection fraction and lower end systolic volume were less 

likely to response to renal denervation with a reduction in oSBP at 6 months, and there 

were also trends towards individuals with lower (less negative) peak circumferential 
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strain and peak systolic circumferential strain rate to have a greater reduction in oSBP 

following RDN. There was no correlation between baseline left ventricular mass and the 

change in oSBP post-RDN despite reports from Ripp et al. that baseline LV wall thickness 

predicted the reduction in myocardial mass post-RDN (Ripp, Mordovin et al. 2015). If 

more advanced target organ damage were to predict failure to respond to RDN then 

these findings are difficult to rationalise, since our data suggest that those individuals 

who have started to develop an impairment in (circumferential) cardiac function actually 

responded to RDN with a greater reduction in BP. Conversely, those individuals with a 

supra-normal ejection fraction and a lower end-systolic volume (which may indicate a 

stiffened ventricle with impaired filling a diastolic dysfunction in the context of 

hypertensive heart disease) were indeed less likely to respond to RDN. Cardiac 

remodelling in the context of hypertension is complex, and the mechanical interaction 

between the myocardium and aorta (ventriculo-vascular coupling) further impacts 

cardiac remodelling and diastolic dysfunction in hypertensive heart disease (Fox and 

Maurer 2005, Rodrigues, Amadu et al. 2016). These complex interactions will make it 

unlikely that a single marker of cardiac function or structural remodelling will predict the 

response to RDN in the individual. 

Fengler et al. have looked at predictors of response in profound RDN responders (with a 

reduction in daytime ABPM of >20 mmHg), and identified younger age, use of 

ultrasound RDN, combined diuretic therapy and baseline BP (and pulse wave velocity in 

a subset of patients) as predictors of BP reduction pronounced BP reduction (Fengler, 

Rommel et al. 2018). Younger age and lower vascular stiffness may indicate reversibility 

in the vascular changes associated with hypertension, and may represent the opposite 

end of the spectrum of pathology to those individuals with isolated systolic hypertension 

and irreversible vascular remodeling in whom RDN has proved to be less successful 

(Ewen, Ukena et al. 2015, Mahfoud, Bakris et al. 2017). Thiazide and loop diuretics have 

a sympathoexcitatory effect and RDN may act to counterbalance this adverse 

physiological effect, whilst patients continue to receive the beneficial effects of 

sequential nephron blockade (Vink and Blankestijn 2013, Fengler, Rommel et al. 2018, 

Schlaich, Carnagarin et al. 2018). 

5.6.4.1 Limitations 

As raised on multiple previous occasions in this manuscript, the lack of complete ABPM 

outcome data is a major limitation of this study. The use of office SBP as the primary 

outcome measure has been critiqued within the field, particularly since office BP is likely 

to be more vulnerable to regression to the mean. If this is indeed the case, then this may 

explain the finding that those with higher baseline oSBP are more likely to have a 

reduction in SBP following intervention. Importantly, amongst the patients with 

available data, there was no change in ambulatory BP following RDN in this study, and 

no correlation between baseline ABPM parameters and the change in oSBP following 

the procedure (see Table 5-36). The blood pressure endpoint used matters; Persu et al. 

demonstrated that when office BP was used as the primary outcome measure following 

RDN, responders were more likely to have white coat hypertension with no reduction in 

ABPM following the intervention, however, when response was defined by ABPM 

outcomes, then baseline ABPM was a predictor of response to treatment (Persu, Azizi et 

al. 2014). 
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Once again, our inability to confirm medication adherence and the lack of a standardised 

medication regime impact data interpretation in this cohort. It would not be surprising 

to expect that medications, particularly those targeting the sympathovascular axis such 

as beta-blockers or centrally acting sympatholytic agents, would affect the BP response 

to RDN (Barber-Chamoux and Esler 2017), and both sympathoinhibitory (e.g. renin-

angiotensin-aldosterone system inhibitors and centrally acting sympatholytic drugs such 

as moxonidine and clonidine) and sympathoexcitatory (e.g. diuretics, vasodilators and 

calcium channel blockers) medications were prescribed in this study (Vink and 

Blankestijn 2013).  

It might have been expected that patients prescribed sympathoinhibitory drugs would 

have lower baseline SNA and therefore be less likely to respond the RDN which is 

hypothesised to work via a sympatholytic effect (Fink and Phelps 2017). However, it 

appears that antihypertensive drugs which act to reduce SNA may have an additive 

hypotensive effect with RDN. In Symplicity HTN-3, greater reductions in office BP were 

seen in participants taking beta-blockers and aldosterone receptors antagonists 

(Kandzari, Bhatt et al. 2015), and when data from Symplicity HTN-3 were pooled with 

data from the Global Symplicity Registry the strongest predictors of response to RDN 

after combined systolic and diastolic hypertension (as opposed to ISH), were the use of 

an aldosterone antagonist and the non-use of a vasodilator (Mahfoud, Bakris et al. 

2017). The use of a centrally acting sympatholytic agent has also been reported to 

enhance the BP response to RDN (2011, Barber-Chamoux and Esler 2017). We did not 

observe an interaction between baseline medications and oSBP outcomes in this small 

cohort, however our subjects were on diverse medications regimes, reflecting prolonged 

attempts at pharmacological BP management in most of these patients, and adherence 

could not be formally confirmed. Aldosterone antagonists and vasodilators are known to 

have a low persistence and compliance (Barber-Chamoux and Esler 2017), and total 

adherence decreases as the number of prescribed antihypertensive medications 

increases (Jung, Gechter et al. 2013, Barber-Chamoux and Esler 2017). The indication for 

different agents must be considered, and the greater BP reduction with RDN amongst 

patients prescribed aldosterone antagonists may relate to a higher baseline SBP in 

patients requiring a fourth line agent, as well as the association between aldosterone 

antagonist prescribing and younger age and a history of significantly more hypertensive 

crises observed in the Symplicity HTN-3 study cohort (Kandzari, Bhatt et al. 2015). 

Ultimately, this was a pilot study to assess the feasibility of assessing a broad autonomic 

profile in patients with resistant hypertension undergoing RDN and sought to identify 

signals for predictors of BP response, but the study was not adequately powered to 

validate these findings. 

 

5.6.5 Conclusions 

A higher baseline office SBP and greater baseline spontaneous sympathetic baroreflex 

gain may be useful markers for identifying patients who would be likely to benefit from 

RDN. Limitations in these findings, particularly the use of office rather than ambulatory 

BP measures, must be taken into account and further research is required to confirm 

these observations in a larger population. Contrary to our hypotheses, markers of 
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sympathetic nerve activity, arterial stiffness, chemoreflex sensitivity and systemic 

inflammation were not associated with a BP reduction following RDN in this small 

cohort. Antihypertensive medications are likely to interact with renal nerve ablation and 

the use of certain agents prior to RDN may enhance or inhibit any BP response. The 

interaction between variable medication regimes and medication adherence may well 

impact BP outcomes and data interpretation and we await the full outcomes of the 

Spyral ON and OFF-MED studies with great interest (Kandzari, Kario et al. 2016). 
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6 General discussion 

 

6.1 Study outcomes 

This study aimed to initiate the development of indices to predict response to, and aid 

patient selection for, renal denervation, and to investigate physiological measures which 

could be used to assess the efficacy of renal denervation for use at the time of the 

procedure. 

6.1.1 Primary study outcomes 

6.1.1.1 Predictors of response to renal denervation 

The primary aim was to generate data to accurately predict whether a patient with 

resistant hypertension would respond to renal denervation therapy with a reduction in 

blood pressure. From univariate analyses, a higher baseline office SBP, higher baseline 

office MAP and a greater baseline spontaneous sympathetic baroreflex gain were all 

identified as potentially useful markers for identifying patients who would be likely to 

benefit from RDN.  

Higher office SBP has been reported as a predictor of response to RDN (Bhatt, Kandzari 

et al. 2014, Vogel, Kirchberger et al. 2014, Bohm, Mahfoud et al. 2015, Kandzari, Bhatt et 

al. 2015). It has been hypothesised that higher SBP may indicate a greater severity or 

longer duration of hypertension and thus increased target organ damage and/or 

vascular stiffness (Barber-Chamoux and Esler 2017). In this study baseline measures of 

sympathetic nerve activity, aortic distensibility, left ventricular mass and renal function 

did not predict a response to RDN, and notably there was no correlation between either 

baseline office pulse pressure or baseline office DBP and the blood pressure reduction 

following RDN. These results were therefore not in keeping with the previous reports of 

a poor response to RDN in patients with isolated systolic hypertension (Ewen, Ukena et 

al. 2015, Mahfoud, Bakris et al. 2017). A concern is that the association between a 

higher baseline SBP and a greater reduction in SBP following RDN may represent 

regression to the mean, and the consensus in the field is that ABPM should be used as 

the primary outcome measure in all future studies of the efficacy of RDN in part to 

minimise this effect (Persu, Azizi et al. 2014, Barber-Chamoux and Esler 2017). 

The evidence for the role of MSNA as a predictor of response to RDN is unclear. In this, 

and other studies, there was no correlation between the change in MSNA and the 

change in oSBP following RDN (Hering, Lambert et al. 2013, Grassi, Seravalle et al. 2015). 

This is the first study to have specifically investigated the use of MSNA in predicting 

response to RDN; there was no direct correlation between baseline MSNA and the 

change in office SBP following RDN. However, looking at the individual BP and MSNA 

responses following RDN (see Figure 5-17), the pattern of response did correlate over 

the follow-up period in some of the participants, although this was not consistent. Our 

data have also suggested that the impact of gender on MSNA and sympathovascular 

transduction must be taken into account in future study paradigms (Hart, Charkoudian 

et al. 2011, Briant, Burchell et al. 2016).  
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6.1.1.2 Measures of procedural efficacy 

The secondary aim of the study was to develop methods for quantifying the procedural 

success of renal denervation that could be applied at the time of the procedure to 

enable accurate interpretation of outcome data, and potentially to guide the delivery of 

adequate radiofrequency ablation or to aid the development of improved catheter 

technologies. 

Resting renal blood flow, changes in renal blood flow in response to handgrip stress, and 

the changes in systemic BP in response to intra-renal arterial infusion of adenosine were 

investigated as potential measures of the procedural effectiveness of RDN. The 

advantage of all these approaches was that the studies were performed under conscious 

analgosedation, as opposed to general anaesthesia, making them more amenable to use 

in the general catheter laboratory. This is in comparison to the assessment of responses 

to direct electrical stimulation of the renal nerves which constitutes the other major 

approach to these issues reported in the literature and has been performed under 

general anaesthesia (Gal, de Jong et al. 2015, Chinushi, Suzuki et al. 2016, de Jong, 

Adiyaman et al. 2016, de Jong, Hoogerwaard et al. 2018, Hoogerwaard, de Jong et al. 

2018). 

The measurement of changes in renal blood flow and renal vascular resistance in 

response to dynamic handgrip stress show potential for this application. From the group 

data, an inability to increase renal vascular resistance with handgrip after denervation 

indicated disruption of the renal sympathetic nerves, although the technique may lack 

sensitivity to guide ablation in every individual patient. Tests to differentiate between 

afferent and efferent renal nerve function would provide useful mechanistic information 

underlying any successful anti-hypertensive effect of RDN. Unfortunately, adenosine as 

trialled in this sub-study, is not an adequate afferent stimulus, and a cocktail of afferent 

renal nerve stimuli, including agents such as adenosine, low pH and bradykinin, may 

prove more effective (Katholi, Whitlow et al. 1984, Barry and Johns 2015). 

 

6.1.2 Secondary study outcomes 

6.1.2.1 Clinical outcomes 

One of the major outstanding questions in the field, particularly in the aftermath of 

Symplicity HTN-3, has been whether renal denervation is truly effective in lowering BP, 

and perhaps more importantly, in reducing target organ damage and/or improving 

mortality and morbidity. The recent publication of the SPYRAL HTN-ON and -OFF MED 

studies and the RADIANCE HTN-SOLO study (Townsend, Mahfoud et al. 2017, Azizi, 

Schmieder et al. 2018, Kandzari, Bohm et al. 2018), which reported significant 

improvements in ABPM outcomes in sham-controlled studies with structured 

medication regimes (including off medication),  has gone some way to reignite 

enthusiasm for the technique. 

This was a pilot study, and as such, was not powered to demonstrate a significant 

improvement in BP following RDN. Despite this, 61% of study participants responded to 

RDN with a ≥10 mmHg reduction in office SBP at 6 months post denervation, and whilst 
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the study failed to achieve a significant reduction in office SBP at 6 months after RDN, 

there was a significant change in office SBP across the full follow-up period, reaching 

significance at 12 months post-RDN. Notably, a reduction in SBP was associated with an 

improvement (reduction) in LV mass, and improvements in peak radial and peak 

circumferential strain following RDN. The use of office SBP as the primary outcome 

measure in RDN studies has been heavily criticised, but the reduction in left ventricular 

mass post-RDN seen in this cohort is a more robust indication of a genuine clinical 

benefit for study participants. In a recent metanalysis, Kordalis et al. reported positive 

effects of RDN on left ventricular mass, augmentation index and pulse wave velocity 

(Kordalis, Tsiachris et al. 2018), and as RDN looks to the future, data evidencing an 

improvement in cardiovascular mortality and morbidity following the intervention will 

be required if RDN is to justify a place in mainstream clinical practice. 

6.1.2.2 Mechanisms for the antihypertensive effect of renal denervation 

Whilst the evidence supporting a clinically relevant antihypertensive effect for RDN is 

strengthening (Townsend, Mahfoud et al. 2017, Kandzari, Bohm et al. 2018), the 

mechanisms underlying a reduction in BP following RDN are still to be fully defined. 

There were reductions in office SBP and LV mass (and LV interstitial fibrosis) over the 

course of this study, but these changes were independent of any change in MSNA, total 

peripheral resistance or aortic distensibility. It is notable that MSNA did not correlate 

with TPR, however, whilst there was no change in MSNA following RDN, RDN responders 

tended towards a reduction in TPR at 6 months, whereas RDN non-responders had a 

significant increase in TPR following RDN. The method used to calculate TPR in this study 

used several assumptions and future projects should employ a more robust technique to 

quantify changes in vascular tone following RDN. 

It is interesting to note that a significant reduction in office SBP was not attained until 12 

months after the procedure. This observation is similar to the sustained and progressive 

reduction in SBP reported in earlier studies including Symplicity HTN-1 (Krum, Schlaich et 

al. 2014). Considering this timescale, RDN is likely to have an affect beyond an acute 

reduction in sympathetic nerve activity and vascular tone, and may act through vascular 

remodelling and changes in vascular stiffness, gradual resetting of the baroreflex or the 

sensitivity of sympathovascular transduction, or slow shifts in the balance of the renin-

angiotensin-aldosterone system (Krum, Schlaich et al. 2014). Data from this study do not 

back any one of these mechanisms, which may relate to the small cohort size, 

differences in SNA and sympathovascular transduction between subjects of varying age 

and gender, a lack of sensitivity and specificity in the use of MSNA as a surrogate for 

renal SNA, or factors such as a change in the operating point (rather than the sensitivity) 

of the baroreflex to act over a lower BP range which we have not quantified, and where 

further research is required. We had hoped to be able to shed some light on the relative 

impact of afferent or efferent renal nerve disruption by looking at the relative changes 

in the afferent and efferent physiological procedural measures of efficacy, but these 

data were not sufficiently well defined to draw any further conclusions. It is also unlikely 

that the afferent and efferent nerves can be differentially ablated because they are 

anatomically juxtaposed (Sakakura, Ladich et al. 2014, Kopp 2015), despite attempts at 

this using renal nerve stimulation guided ablation (Fudim, Sobotka et al. 2018).  
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6.2 Project critique 

6.2.1 Pilot study 

This pilot study successfully demonstrated the feasibility of assessing a broad autonomic 

profile in patients with treatment resistant hypertension. Each study visit lasted 3-4 

hours and participants were happy to attend for repeated physiological testing, 

including microneurography, baroreflex assessment using the modified Oxford 

technique and spirometry for chemoreflex analyses. We were able to demonstrate good 

inter- and intra-individual variability for measurement of MSNA (see Section 4.3.6.4) and 

as a group have established a substantial dataset, including participants from this study, 

quantifying target organ damage including hypertensive heart disease using magnetic 

resonance imaging (Burchell, Rodrigues et al. 2017). As such, we are well placed to apply 

these techniques to further studies in the field. We have also been able to confirm the 

excellent safety profile for endovascular, radiofrequency, renal nerve ablation, as 

reported in the wider literature (Bhatt, Kandzari et al. 2014, Bohm, Mahfoud et al. 2015, 

Burchell, Chan et al. 2016). 

6.2.2 Limitations 

As a pilot study, this project was not powered to demonstrate a significant reduction in 

BP following RDN, but this issue was further compounded by difficulties in recruitment. 

We had ethical approval to recruit up to thirty participants but were only able to enrol 

19 subjects (with one early withdrawal). Thorough assessment in the Bristol Heart 

Institute specialist Hypertension Clinic identified patients meeting exclusion criteria due 

to white coat effect, poor medication adherence or multiple intolerances, and ineligible 

renal anatomy. Specialist review of patients’ antihypertensive regimes, including the 

increased use of aldosterone receptor antagonists, also optimised BP control resulting in 

a good outcome for the patients, but rendering many potential participants ineligible for 

the study. 

The study protocol was devised to build on the findings of Symplicity HTN-2 (Esler, Krum 

et al. 2010), and prior to the critique of Symplicity HTN-3 (Bhatt, Kandzari et al. 2014), 

and will therefore be subject to similar criticisms to these earlier studies, including 

incomplete ABPM data and no objective confirmation of medication adherence (Esler 

2014, Kandzari, Bhatt et al. 2015). Since completion of the study follow-up visits we have 

be able to obtain ethical approval and retrospective consent to measure 

antihypertensive drug metabolites in frozen urine samples from five participants. These 

data are shown in Appendix 5, but to summarise, whilst there was no change in the 

percentage of prescribed medications detected over the course of the study, adherence 

levels ranged from 0-100%. Adherence (or non-adherence) was reasonable stable within 

the individual, but the huge variability in inter-individual adherence and the differing 

medication regimes prescribed limit our ability to interpret outcome data. 

 

6.3 Future directions 

As we face a resurgence in interest in the field of renal denervation, the full results of 

largescale, sham-controlled clinical trials including the SPYRAL HTN studies, will 
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hopefully provide definitive evidence of the antihypertensive effect of RDN and the level 

of blood pressure reduction that may be expected. Industry will also continue to drive 

forward the development of second and third generation catheter technologies and 

ablation modalities, and anatomical (or stimulation led) targeting of the renal nerve 

ablations will be optimised. Once the technical aspects of the procedure have been 

refined the physiological questions regarding the mechanisms underlying RDN, 

predictors of response and measures of procedural efficacy should be revisited. Future 

studies must use robust endpoints based on ambulatory BP monitoring and reversal of 

target organ damage in a clearly defined study population on a standardized and 

objectively assessed medication regime. If RDN can be proven to have a positive 

sympathomodulatory effect, then future research should investigate a role for the 

intervention in other sympathetically mediated conditions such as refractory 

arrhythmias, sleep apnoea and heart failure.  

Renal denervation must walk before it can run and has been a lesson in the importance 

of careful study design and caution before the larger scale roll-out of a novel technology. 

The clinical challenge that RDN aims to address remains a valid problem in the face of a 

global epidemic of cardiovascular disease and increasing evidence demonstrating poor 

patient adherence with conventional pharmacological approach to managing 

hypertension (2017). It remains to establish which individuals will benefit from this 

invasive and evolving interventional approach to hypertension. 
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8 Appendices 

 

8.1 Appendix 1. Prescribed medications 

 

Table shows individual patient medications at each study time point. Whole dose 

equivalents (WDE) have be calculated to aid comparison between different drugs and 

drugs classes.  ACE; angiotensin converting enzyme inhibitor, ARB; angiotensin receptor 

blocker, RI; renin inhibitor, CCB; calcium channel blocker, MRA; mineralocorticoid 

antagonist.



     

 
     

3
1

7
 

 

   Baseline 1 month 3 months 6 months 12 Months 

    Drug Dose WDE Drug Dose WDE Drug Dose WDE Drug Dose WDE Drug Dose WDE 

1 ACE/ARB/RI Lisinopril 20 0.25 Lisinopril 20 0.25 Lisinopril 20 0.25 Lisinopril 20 0.25 Lisinopril 80 1 

  CCB Tildiem 300 0.75 Tildiem 300 0.75 Tildiem 300 0.75 Tildiem 300 0.75 Tildiem 300 0.75 

  Diuretic   0 0   0 0   0 0   0 0  0 0 

  MRA   0 0   0 0   0 0   0 0 Spironolactone 25 0.25 

  β-Blocker   0 0   0 0   0 0   0 0  0 0 

  α-Blocker Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 16 1 

  Centrally Acting   0 0   0 0   0 0   0 0  0 0 

  Vasodilator ISMN 20 0.17 ISMN 20 0.17 ISMN 20 0.17 ISMN 20 0.17 ISMN 25 0.21 

  Other   0 0   0 0   0 0   0 0  0 0 

  No Drugs     4     4     4     4     5 

  No classes    4    4   4    4   5 

  WDE     1.7     1.7     1.7     1.7     3.2 

                           

2 ACE/ARB/RI Losartan 25 0.25 Losartan 25 0.25 Losartan 25 0.25 Losartan 25 0.25 Losartan 25 0.25 

  CCB  0 0   0 0   0 0   0 0   0 0 

  Diuretic Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 

  MRA  0 0   0 0   0 0   0 0   0 0 

  β-Blocker  0 0   0 0   0 0   0 0   0 0 

  α-Blocker  0 0   0 0   0 0   0 0   0 0 

  Centrally Acting Moxonidine 400 0.67 Moxonidine 600 1 Moxonidine 600 1 Moxonidine 600 1 Moxonidine 600 1 

  Vasodilator  0 0   0 0   0 0   0 0   0 0 

  Other  0 0   0 0   0 0   0 0   0 0 

  No Drugs     3     3     3     3     3 

  No classes    3    3   3    3   3 

  WDE     1.9     2.3     2.3     2.3     2.3 

                           

3 ACE/ARB/RI Lisinopril 20 0.25 Lisinopril 20 0.25 Lisinopril 20 0.25 Lisinopril 20 0.25 Lisinopril 20 0.25 

  CCB Felodipine 10 1 Felodipine 10 1 Felodipine 10 1 Felodipine 10 1 Felodipine 10 1 



     

 
     

3
1

8
 

  Diuretic Furosemide 40 0.5 Furosemide 40 0.5 Furosemide 40 0.5 Furosemide 40 0.5 Furosemide 40 0.5 

  MRA Spironolactone 200 2 Spironolactone 200 2 Spironolactone 200 2 Spironolactone 200 2 Spironolactone 200 2 

  β-Blocker Bisoprolol 20 2 Bisoprolol 20 2 Bisoprolol 20 2   0   0 

  α-Blocker Doxazosin 16 1 Doxazosin 16 1 Doxazosin 16 1 Doxazosin 16 1 Doxazosin 16 1 

  Centrally Acting  0 0  0 0  0 0  0 0  0 0 

  Vasodilator  0 0  0 0  0 0  0 0  0 0 

  Other Candesartan 32 1 Candesartan 32 1 Candesartan 32 1 Candesartan 32 1 Candesartan 32 1 

  Other Aliskiren 150 0.5 Aliskiren 150 0.5 Aliskiren 150 0.5 Aliskiren 150 0.5 Aliskiren 150 0.5 

  No Drugs     8     8     8     7     7 

  No classes    6    6   6    5   5 

  WDE     8.3     8.3     8.3     6.3     6.3 

                           

4 ACE/ARB/RI Perinodpril 4 0.5 Perinodpril 4 0.5       Perinodpril 4 0.5   0 0 

  CCB   0 0   0 0        0 0  0 0 

  Diuretic BFZ 2.5 1 BFZ 2.5 1      BFZ 2.5 1  0 0 

  MRA   0 0   0 0        0 0  0 0 

  β-Blocker Labetolol 800 1    0     Labetolol 200 0.25 Labetolol 200 0.25 

  α-Blocker   0 0    0       0 0  0 0 

  Centrally Acting Moxonidine 200 0.33    0       0 0  0 0 

  Vasodilator   0 0    0       0 0  0 0 

  Other Aliskiren 150 0.5    0       0 0  0 0 

  No Drugs     5     2           3     1 

  No classes    4    2        3   1 

  WDE     3.3     1.5           1.8     0.3 

                           

5 ACE/ARB/RI Candesartan 32 1 Candesartan 32 1 Candesartan 32 1 Candesartan 32 1 Candesartan 32 1 

  CCB Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 

  Diuretic BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 

  MRA Spironolactone 25 0.25   0 0   0 0   0 0   0 0 

  β-Blocker Atenolol 100 1   0 0   0 0   0 0   0 0 

  α-Blocker Doxazosin 8 0.5   0 0   0 0   0 0   0 0 

  Centrally Acting   0 0   0 0   0 0   0 0   0 0 
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  Vasodilator ISMN 80 0.67   0 0   0 0   0 0   0 0 

  Other   0 0   0 0   0 0   0 0   0 0 

  No Drugs     7     3     3     3     3 

  No classes    7    3   3    3   3 

  WDE     5.4     3.0     3.0     3.0     3.0 

                           

6 ACE/ARB/RI Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 

  CCB Felodipine 10 1 Felodipine 10 1 Felodipine 10 1 Felodipine 10 1 Felodipine 10 1 

  Diuretic Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 

  MRA Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 

  β-Blocker Bisoprolol 10 0.5 Bisoprolol 10 0.5 Bisoprolol 10 0.5 Bisoprolol 10 0.5 Bisoprolol 10 0.5 

  α-Blocker   0 0   0 0   0 0   0 0   0 0 

  Centrally Acting   0 0   0 0   0 0   0 0   0 0 

  Vasodilator   0 0   0 0   0 0   0 0   0 0 

  Other   0 0   0 0   0 0   0 0   0 0 

  No Drugs     5     5     5     5     5 

  No classes    5    5   5    5   5 

  WDE     3.8     3.8     3.8     3.8     3.8 

                           

7 ACE/ARB/RI Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 

  CCB Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 

  Diuretic Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 

  MRA Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25    0 Spironolactone 25 0.25 

  β-Blocker   0 0   0 0   0 0   0 0   0 0 

  α-Blocker Doxazosin 4 0.25 Doxazosin 4 0.25 Doxazosin 4 0.25 Doxazosin 4 0.25 Doxazosin 2 0.13 

  Centrally Acting   0 0   0 0   0 0   0 0   0 0 

  Vasodilator   0 0   0 0   0 0   0 0   0 0 

  Other   0 0   0 0   0 0   0 0   0 0 

  No Drugs     5     5     5     4     5 

  No classes    5    5   5    4   5 

  WDE     3.5     3.5     3.5     3.3     3.4 

                            



     

 
     

3
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8 ACE/ARB/RI Perindopril 8 1 Perindopril 8 1 Perindopril 8 1 Candesartan 32 1 Candesartan 32 1 

  CCB Lacidipine 10 1.67 Lacidipine 10 1.67 Lacidipine 10 1.67 Lacidipine 10 1.67 Lacidipine 10 1.67 

  Diuretic   0 0   0 0   0 0   0 0  0   

  MRA Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 

  β-Blocker Celiprolol 400 1 Celiprolol 400 1 Celiprolol 400 1 Celiprolol 400 1 Celiprolol 400 1 

  α-Blocker Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 12 0.75 

  Centrally Acting   0 0   0 0   0 0   0 0  0   

  Vasodilator   0 0   0 0   0 0          

  Other Aliskiren 150 0.5 Aliskiren 150 0.5 Aliskiren 150 0.5      Aliskiren 150 0.5 

  Other Candesartan 32 1 Candesartan 32 1 Candesartan 32 1       0   

  No Drugs     7     7     7     5     6 

  No classes    5    5   5    5   5 

  WDE     5.9     5.9     5.9     4.4     5.2 

                           

9 ACE/ARB/RI Lisinopril 5 0.06   0 0   0 0   0 0       

  CCB   0 0   0 0  0 0   0 0     

  Diuretic   0 0   0 0  0 0   0 0     

  MRA   0 0   0 0  0 0   0 0     

  β-Blocker   0 0 Bisoprolol 2.5 0.25  0 0   0 0     

  α-Blocker Indoramin 25 
0.12

5   0 0  0 0   0 0     

  Centrally Acting   0 0   0 0  0 0   0 0     

  Vasodilator   0 0   0 0  0 0   0 0     

  Other Aliskiren 300 1   0 0  0 0   0 0     

  No Drugs     3     1     0     0       

  No classes    2    1   0    0     

  WDE     1.2     0.3     0.0     0.0       

                           

10 ACE/ARB/RI Losartan 100 1 Losartan 50 0.5 Losartan 100 1 Losartan 100 1 Losartan 50 0.5 

  CCB Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 

  Diuretic BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 

  MRA Spironolactone 50 0.5 Spironolactone 75 0.75 Spironolactone 75 0.75 Spironolactone 75 0.75 Spironolactone 75 0.75 

  β-Blocker Atenolol 100 1 Bisoprolol 1.25 0.13 Bisoprolol 2.5 0.25 Bisoprolol 10 1 Bisoprolol 15 1.5 
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1
 

  α-Blocker Doxazosin 16 1   0 0  0 0   0 0  0 0 

  Centrally Acting   0 0   0 0  0 0   0 0  0 0 

  Vasodilator   0 0   0 0  0 0   0 0 ISMN 30 0.25 

  Other   0 0   0 0  0 0 Aliskiren 150 0.5 Aliskiren 150 0.5 

  No Drugs     6     5     5     6     7 

  No classes    6    5   5    5   6 

  WDE     5.5     3.4     4.0     5.3     5.5 

                           

11 ACE/ARB/RI Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 

  CCB 
Adalat LA 
(nifedipine) 60 0.67 

Adalat LA 
(nifedipine) 60 0.67  0 0 

Adalat LA 
(nifedipine) 60 0.67 

Adalat LA 
(nifedipine) 60 0.67 

  Diuretic BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 

  MRA Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 

  β-Blocker Bisoprolol 10 1 Bisoprolol 10 1 Bisoprolol 10 1 Bisoprolol 10 1 Bisoprolol 10 1 

  α-Blocker   0 0   0 0 Doxazosin 4 0.25 Doxazosin 4 0.25 Doxazosin 16 1 

  Centrally Acting Moxonidine 200 0.33 Moxonidine 200 0.33 Moxonidine 200 0.33 Moxonidine 200 0.33 Moxonidine 600 1 

  Vasodilator   0 0   0 0  0 0  0 0  0 0 

  Other   0 0   0 0  0 0  0 0  0 0 

  No Drugs     6     6     6     7     7 

  No classes    6    6   6    7   7 

  WDE     4.3     4.3     3.8     4.5     5.9 

                           

12 ACE/ARB/RI Enalapril 40 1 Enalapril 40 1 Enalapril 40 1 Enalapril 40 1 Enalapril 40 1 

  CCB   0 0   0 0   0 0   0 0   0 0 

  Diuretic BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 

  MRA   0 0   0 0   0 0   0 0   0 0 

  β-Blocker   0 0   0 0   0 0   0 0   0 0 

  α-Blocker   0 0   0 0   0 0   0 0   0 0 

  Centrally Acting   0 0   0 0   0 0   0 0   0 0 

  Vasodilator   0 0   0 0   0 0   0 0   0 0 

  Other Irbesartan 150 0.5 Irbesartan 150 0.5 Irbesartan 150 0.5 Irbesartan 150 0.5 Irbesartan 150 0.5 

  No Drugs     3     3     3     3     3 

  No classes    2    2   2    2   2 
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2
 

  WDE     2.5     2.5     2.5     2.5     2.5 

                           

13 ACE/ARB/RI Candesartan 4 0.13   0 0         0 0 Losartan 50 0.5 

  CCB Amlodipine 20 2 Amlodipine 20 2     Amlodipine 10 1 Amlodipine 10 1 

  Diuretic Furosemide 20 0.25 Furosemide 20 0.25     Furosemide 20 0.25 Furosemide 20 0.25 

  MRA Spironolactone 50 0.5 Spironolactone 50 0.5     Spironolactone 50 0.5 Spironolactone 50 0.5 

  β-Blocker Labetolol 600 0.75 Labetolol 600 0.75     Labetolol 600 0.75 Labetalol 600 0.75 

  α-Blocker Doxazosin 16 1 Doxazosin 12 0.75     Doxazosin 8 0.5  0 0 

  Centrally Acting   0 0   0 0       0 0  0 0 

  Vasodilator Tadalafil 2.5 0.06 Tadalafil 2.5 0.06     Tadalafil 2.5 0.06 Tadalafil 2.5 0.06 

  Other   0 0   0 0       0 0  0 0 

  No Drugs     7     6           6     6 

  No classes    7    6        6   6 

  WDE     4.7     4.3           3.1     3.1 

                           

14 ACE/ARB/RI Perinodpril 8 1 Perinodpril 8 1 Perinodpril 8 1 Perinodpril 8 1 Perinodpril 8 1 

  CCB Nifedipine 30 0.33 Nifedipine 30 0.33 Nifedipine 30 0.33 Nifedipine 30 0.33 Nifedipine 30 0.33 

  Diuretic   0 0   0 0   0 0   0 0   0 0 

  MRA   0 0   0 0   0 0   0 0   0 0 

  β-Blocker Bisoprolol 1.25 0.13 Bisoprolol 1.25 0.13 Bisoprolol 1.25 0.13   0 0 Carvedilol 6.25 0.13 

  α-Blocker   0 0   0 0   0 0   0 0   0 0 

  Centrally Acting Moxonidine 600 1 Moxonidine 600 1 Moxonidine 600 1 Moxonidine 600 1 Moxonidine 600 1 

  Vasodilator   0 0   0 0   0 0   0 0   0 0 

  Other   0 0   0 0   0 0   0 0   0 0 

  No Drugs     4     4     4     3     4 

  No classes    4    4   4    3   4 

  WDE     2.5     2.5     2.5     2.3     2.5 

                           

15 ACE/ARB/RI Ramipril 10 1       Ramipril 10 1 Ramipril 10 1 Ramipril 10 1 

  CCB Amlodipine 10 1      Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 

  Diuretic BFZ 2.5 1      BFZ 2.5 1 BFZ 2.5 1 BFZ 2.5 1 

  MRA   0 0        0 0   0 0   0 0 
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  β-Blocker Atenolol 100 1      Atenolol 100 1 Atenolol 100 1 Atenolol 100 1 

  α-Blocker Doxazosin 8 0.5      Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 8 0.5 

  Centrally Acting Moxonidine 800 1.33        0 0 Moxonidine 400 0.67 Moxonidine 400 0.67 

  Vasodilator   0 0        0 0   0 0   0 0 

  Other   0 0        0 0   0 0   0 0 

  No Drugs     6           5     6     6 

  No classes    6        5    6   6 

  WDE     5.8           4.5     5.2     5.2 

                           

16 ACE/ARB/RI Candesartan 2 0.06 Candesartan 2 0.06 Candesartan 2 0.06 Candesartan 2 0.06 Candesartan 2 0.06 

  CCB   0 0   0 0   0 0   0 0  0   

  Diuretic   0 0   0 0   0 0   0 0  0   

  MRA   0 0   0 0   0 0   0 0  0   

  β-Blocker   0 0   0 0   0 0   0 0  0   

  α-Blocker Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 8 0.5 Doxazosin 4 0.25 

  Centrally Acting Moxonidine 100 0.17 Moxonidine 100 0.17 Moxonidine 100 0.17 Moxonidine 100 0.17 Monoxidine 200 0.33 

  Vasodilator   0 0   0 0   0 0 Tadalafil 2.5 0.06  0   

  Other   0 0   0 0   0 0   0 0 Ranolazine 750 0.5 

  No Drugs     3     3     3     4     4 

  No classes    3    3   3    4   4 

  WDE     0.7     0.7     0.7     0.8     1.1 

                           

17 ACE/ARB/RI Perindopril 8 1 Perindopril 4 0.5 Perindopril 8 1 Perindopril 8 1 Perindopril 8 1 

  CCB Amlodipine 10 1 Amlodipine 5 0.5 Amlodipine 10 1 Amlodipine 10 1 Amlodipine 10 1 

  Diuretic Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 

  MRA Epleronone 100 2   0 0  0 0   0 0  0 0 

  β-Blocker Atenolol 100 1 Atenolol 50 0.5 Labetolol 800 1 Labetolol 800 1 Labetalol 480 0.6 

  α-Blocker Doxazosin 16 1   0 0 Doxazosin 8 0.5 Doxazosin 16 1 Doxazosin 16 1 

  Centrally Acting Moxonidine 600 1   0 0  0 0 Tadalafil 2.5 1 Clonidine 200 0.17 

  Vasodilator Hydralazine 150 1.5   0 0  0 0 Hydralazine 150 1.5 Hydralazine 150 1.5 

  Other   0 0   0 0 Amiloride 5 0.25 Amiloride 10 0.5  0   

  No Drugs     8     4     6     8     7 
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  No classes    8    4   6    8   7 

  WDE     9.5     2.5     4.75     8     6.3 

                           

18 ACE/ARB/RI Losartan 100 1 Losartan 100 1 Losartan 100 1 Losartan 100 1 Losartan 100 1 

  CCB   0     0    0     0     0   

  Diuretic Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 2.5 1 Indapamide 1.5 1 Indapamide 1.5 1 

  MRA Spironolactone 12.5 0.13 Spironolactone 12.5 0.13 Spironolactone 25 0.25 Spironolactone 25 0.25 Spironolactone 25 0.25 

  β-Blocker   0     0    0     0     0   

  α-Blocker   0     0    0     0     0   

  Centrally Acting        0    0     0     0   

  Vasodilator   0     0    0     0     0   

  Other   0     0    0     0     0   

  No Drugs     3     3     3     3     3 

  No classes    3    3   3    3    3 

  WDE     2.1     2.1     2.3     2.3     2.3 
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8.2 Appendix 2. Correlations between autonomic parameters at 

baseline 

 

For each correlation data for shown for the number of patients (n), the Pearson’s or 

Spearman’s correlation coefficient (R), and the p valve, with p<0.05 taken as significant. 

Abbreviations: oSBP; office systolic blood pressure, iLVM; left ventricular mass indexed 

to body surface area, MSNA; muscle sympathetic nerve activity, LF/HF; ratio between 

heart rate variability low frequency and high frequency spectral power, ssBRST; 

spontaneous sympathetic vascular baroreflex sensitivity assessed by the threshold 

method, ssBRSA; spontaneous sympathetic vascular baroreflex sensitivity assessed by 

the area method, scBRS; spontaneous cardiac baroreflex sensitivity, BEI: baroreflex 

effectiveness index,  HVR; hypoxic ventilatory response  overall data for both 

intermittent and stepped hypoxia methods, HVR int; hypoxic ventilatory response as 

assessed by the intermittent hypoxia method, HVR step; hypoxic ventilatory response as 

assessed by the stepped hypoxia method, total CBF; total cerebral blood flow, total CBF 

%of CO; total cerebral blood flow as a percentage of cardiac output, CRP; C-reactive 

protein, IL; interleukin, MPO; myeloperoxidase, TNFα; tumour necrosis factor alpha.
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Baseline parameter oSBP iLVM Aortic distensibility MSNA incidence LF/HF Transduction 

 n R p n R p n R P n R p n R P n R P 

ssBRST overall  13 -0.23 0.44 13 -0.65 0.02 10 0.49 0.15 13 0.01 0.96 13 0.05 0.86    
ssBRST rising 13 0.10 0.75 13 0.02 0.96 10 0.20 0.58 13 -0.09 0.77 13 0.03 0.92    
ssBRST falling  13 -0.63 0.02 13 -0.02 0.95 10 -0.03 0.92 13 0.36 0.23 13 -0.10 0.74    
ssBRSA overall  13 -0.53 0.06 13 -0.38 0.20 10 0.52 0.12 13 0.21 0.50 13 0.05 0.88    
ssBRSA rising 13 0.08 0.80 13 -0.31 0.31 10 0.42 0.22 13 -0.11 0.71 13 0.28 0.35    
ssBRSA falling  13 -0.58 0.04 13 0.15 0.63 10 -0.11 0.77 13 0.48 0.09 13 -0.02 0.95    

psBRSAoverall 5 -0.90 0.04 5 0.39 0.52 5 0.32 0.60 5 0.90 0.04 5 0.05 0.94    
psBRSA rising 5 -0.48 0.41 - - - - - - 5 0.18 0.77 - - -    
psBRSAfalling 5 -0.91 0.03 - - - - - - 5 0.90 0.04 - - -    

scBRS overall 13 -0.46 0.11 13 -0.39 0.19 11 -0.14 0.68 10 0.42 0.22 13 0.24 0.43    
scBRS rising 13 -0.11 0.71 13 -0.07 0.83 11 0.17 0.61 10 0.21 0.56 13 0.42 0.16    
scBRS falling 11 -0.60 0.05 11 -0.58 0.06 9 -0.39 0.30 8 0.23 0.59 11 0.18 0.60    
BEI overall 16 0.28 0.30 16 0.30 0.27 14 -0.18 0.54 13 -0.06 0.84 16 0.19 0.49    
BEI rising 16 0.41 0.12 16 0.39 0.14 14 -0.20 0.48 13 -0.39 0.19 16 -0.17 0.53    
BEI falling 16 -0.05 0.86 16 0.06 0.82 14 -0.16 0.59 13 0.37 0.22 16 0.24 0.37    
pcBRS overall 10 -0.25 0.49 10 -0.20 0.58 10 0.50 0.14 7 -0.29 0.56 10 0.60 0.07    

Transduction 13 0.31 0.31 13 -0.13 0.65 10 0.09 0.81 13 0.09 0.77 13 -0.13 0.67    

HVR 16 0.02 0.94 16 -0.45 0.08 14 -0.51 0.06 13 0.21 0.49 16 -0.07 0.80 12 0.23 0.48 
HVR int 10 -0.29 0.41 10 -0.32 0.37 8 -0.76 0.03 9 0.12 0.75 10 0.23 0.51 9 0.36 0.34 
HVR step 6 0.59 0.22 6 -0.62 0.19 6 0.54 0.30 4 - - 6 -0.31 0.56 3 - - 

Total CBF 16 0.16 0.56 16 0.36 0.17 15 0.17 0.55 12 -0.17 0.59 15 -0.16 0.57 11 0.24 0.48 
CBF % of CO 15 -0.25 0.36 15 0.54 0.04 14 0.07 0.81 14 -0.23 0.43 14 -0.07 0.81 11 -0.01 0.97 

CRP 9 0.35 0.36 9 -0.62 0.07 9 0.12 0.76 6 0.39 0.45 8 0.06 0.88 5 0.75 0.15 
IL-6 9 -0.46 0.22 9 -0.04 0.92 9 0.30 0.43 7 0.27 0.56 9 0.33 0.38 6 0.03 0.96 
IL-8 9 -0.20 0.61 9 0.03 0.95 9 0.73 0.03 7 0.21 0.66 9 0.27 0.49 6 -0.09 0.92 
IL-10 9 -0.17 0.66 9 0.02 0.95 9 0.30 0.43 7 0.12 0.79 9 0.26 0.49 6 -0.51 0.31 
IL-17 9 -0.55 0.13 9 -0.10 0.80 9 -0.02 0.96 7 0.36 0.42 9 0.13 0.74 6 0.00 1.00 
MPO 9 -0.49 0.18 9 -0.42 0.26 9 0.58 0.10 7 0.57 0.18 9 0.38 0.31 6 -0.01 0.99 
TNF-α 9 -0.17 0.66 9 0.02 0.95 9 0.30 0.43 7 0.12 0.79 9 0.26 0.49 6 -0.51 0.31 
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Baseline parameter ssBRST overall ssBRSA overall scBRS overall BEI overall HVR HVR int HVR step 

 n R p n R P n R P n R p n R p n R p n R P 

ssBRST overall     13 0.84 0.0003                

psBRSA 
overall 

5 -0.52 0.37 5 -0.17 0.78                

scBRS overall 10 0.16 0.66 10 -0.06 0.88                
scBRS rising 10 0.16 <0.05 10 0.30 <0.05                
scBRS falling 8 -0.03 0.94 8 0.08 0.85                

BEI overall 12 -0.47 0.12 12 -0.38 0.22                
BEI rising 12 0.08 0.80 12 -0.07 0.82                
BEI falling 12 -0.07 0.82 12 0.12 0.71                

pcBRS overall 6 -0.03 1.00 6 -0.03 1.00 7 0.89 0.01             

Transduction 13 0.12 0.69 13 0.008 0.98 12 0.007 0.98 12 0.31 0.32          

HVR 12 0.19 0.56 12 0.10 0.76 15 0.22 0.42 15 0.05 0.86          
HVR int 9 -0.02 0.97 9 -0.11 0.78 9 0.13 0.75 9 0.24 0.54          
HVR step 3 - - 3 - - 6 -0.09 0.92 6 0.12 0.80          

Total CBF 11 0.38 0.25 11 0.08 0.80 15 -0.48 0.07 15 0.008 0.98 15 -0.07 0.80 9 0.01 0.97 6 0.25 0.63 
CBF % of CO 11 0.14 0.67 11 0.24 0.47 14 -0.38 0.18 14 -0.15 0.60 14 -0.27 0.34 9 -0.14 0.72 5 -0.58 0.31 

CRP 5 0.24 0.70 5 0.30 0.63 8 0.30 0.47 8 0.20 0.63 8 0.74 0.04 3 - - 5 0.66 0.22 
IL-6 6 0.19 0.72 6 -0.03 0.95 9 0.15 0.70 9 0.01 0.98 9 -0.21 0.58 4 - - 5 0.21 0.74 
IL-8 6 -0.20 0.71 6 0.14 0.80 9 0.30 0.44 9 0.22 0.57 9 -0.45 0.23 4 - - 5 0.10 0.95 
IL-10 6 0.25 0.64 6 0.08 0.89 9 0.19 0.63 9 0.37 0.33 9 -0.02 0.97 4 - - 5 0.52 0.37 
IL-17 6 0.12 0.82 6 -0.04 0.93 9 0.26 0.49 9 -0.05 0.89 9 0.10 0.80 4 - - 5 0.22 0.72 
MPO 6 0.37 0.47 6 0.55 0.26 9 0.86 0.003 9 -0.55 0.12 9 -0.29 0.44 4 - - 5 0.04 0.95 
TNF-α 6 0.25 0.64 6 0.08 0.89 9 0.19 0.63 9 0.37 0.33 9 -0.02 0.97 4 - - 5 0.52 0.37 
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8.3 Appendix 3. Correlations between the changes in autonomic 

parameters at 6 months after renal denervation 

 

For each correlation data for shown for the number of patients (n), the Pearson’s or 

Spearman’s correlation coefficient (R), and the p valve, with p<0.05 taken as significant. 

Abbreviations: oSBP; office systolic blood pressure, iLVM; left ventricular mass indexed 

to body surface area, MSNA; muscle sympathetic nerve activity, LF/HF; ratio between 

heart rate variability low frequency and high frequency spectral power, ssBRST; 

spontaneous sympathetic vascular baroreflex sensitivity assessed by the threshold 

method, ssBRSA; spontaneous sympathetic vascular baroreflex sensitivity assessed by 

the area method, scBRS; spontaneous cardiac baroreflex sensitivity, BEI: baroreflex 

effectiveness index,  HVR; hypoxic ventilatory response  overall data for both 

intermittent and stepped hypoxia methods, HVR int; hypoxic ventilatory response as 

assessed by the intermittent hypoxia method, HVR step; hypoxic ventilatory response as 

assessed by the stepped hypoxia method, total CBF; total cerebral blood flow, total CBF 

%of CO; total cerebral blood flow as a percentage of cardiac output, CRP; C-reactive 

protein, IL; interleukin, MPO; myeloperoxidase, TNFα; tumour necrosis factor alpha
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Baseline parameter oSBP iLVM Aortic distensibility MSNA incidence LF/HF Transduction 

 n R P n R P n R P n R p N R P n R P 

ssBRST overall  13 0.03 0.93 13 -0.31 0.30 10 0.24 0.51 10 -0.06 0.87 12 -0.29 0.37    
ssBRST rising 13 0.18 0.55 13 -0.08 0.78 10 -0.10 0.77 10 0.13 0.72 12 -0.06 0.87    
ssBRST falling  13 -0.22 0.47 13 -0.21 0.49 10 0.00 0.99 10 0.19 0.60 12 0.00 >0.9999    
ssBRSA overall  13 0.22 0.47 13 -0.08 0.81 10 0.11 0.76 10 -0.13 0.72 12 0.04 0.90    
ssBRSA rising 13 0.39 0.19 13 0.08 0.79 10 -0.02 0.97 10 -0.20 0.58 12 -0.15 0.64    
ssBRSA falling  13 -0.13 0.68 13 -0.11 0.72 10 -0.24 0.50 10 0.41 0.24 12 0.24 0.44    

psBRSAoverall 5 0.1 0.95 5 0.1 0.95 5 0.3 0.68 5 0.1 0.95 5 0.4 0.52    

scBRS overall 7 -0.20 0.67 11 0.008 0.99 5 -0.32 0.60 5 -0.05 0.93 7 -0.88 0.02    
scBRS rising 7 0.22 0.64 7 0.47 0.28 5 -0.36 0.55 5 -0.27 0.66 7 -0.79 0.048    
scBRS falling 4 -0.26 0.74 4 - - 4 - - 4 - - 4 - -    

BEI overall 14 -0.08 0.79 14 0.29 0.31 12 -0.43 0.16 9 0.19 0.62 13 0.70 0.008    
BEI rising 14 -0.18 0.54 14 0.29 0.31 12 -0.32 0.31 9 0.21 0.58 13 0.32 0.29    
BEI falling 14 -0.01 0.98 14 0.21 0.46 12 -0.45 0.14 9 0.15 0.70 13 0.87 0.0001    

pcBRS overall 8 -0.12 0.79 8 0.24 0.58 8 0.02 0.98 4 - - 8 -0.05 0.93    

Transduction 10 0.33 0.35 10 0.17 0.64 8 0.02 0.98 10 -0.14 0.70 10 0.10 0.78    

HVR overall 12 0.24 0.45 12 0.39 0.21 10 -0.72 0.02 8 0.12 0.77 12 0.52 0.08 7 0.40 0.37 
HVR intermittent 8 0.04 0.91 8 0.47 0.23 6 -0.95 0.004 5 0.30 0.62 7 0.78 0.04 5 0.65 0.23 
HVR stepped 4 - - 4 - - 4 - - 3 - - 5 -0.55 0.34 2 - - 

Total CBF 14 0.26 0.37 14 0.40 0.16 13 -0.0004 1.00 9 0.75 0.02 12 0.08 0.81 8 0.09 0.83 
CBF % of CO 14 -0.20 0.49 14 0.22 0.45 13 0.20 0.52 9 0.17 0.65 12 -0.21 0.52 8 -0.55 0.16 

CRP 8 0.06 0.90 8 -0.35 0.39 8 -0.38 0.36 3 - - 6 -0.72 0.11 - - - 
IL-6 9 0.08 0.85 9 0.29 0.45 9 0.62 0.07 4 - - 8 -0.14 0.75 3 - - 
IL-8 9 -0.73 0.03 9 -0.42 0.27 9 0.62 0.09 4 - - 8 0.02 0.98 3 - - 
IL-10 9 -0.33 0.39 9 0.57 0.12 9 0.57 0.12 4 - - 8 0.05 0.93 3 - - 
IL-17 9 -0.15 0.71 9 0.73 0.02 9 0.25 0.52 4 - - 8 0.32 0.44 3 - - 
MPO 9 -0.33 0.38 9 0.07 0.86 9 0.71 0.03 4 - - 8 -0.27 0.52 3 - - 
TNF-a 9 -0.33 0.39 9 0.57 0.12 9 0.57 0.12 4 - - 8 0.05 0.93 3 - - 
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Baseline parameter ssBRST overall ssBRSA overall scBRS overall BEI overall HVR HVR int HVR step 

 n R P n R p n R p N R p n R p n R p n R p 

scBRS overall 6 0.36 0.48 6 0.25 0.63                
scBRS rising 6 0.26 0.62 6 0.30 0.57                
scBRS falling 3 - - 3 - -                

BEI overall 11 -0.28 0.40 11 -0.15 0.65                
BEI rising 11 0.08 0.82 11 -0.11 0.75                
BEI falling 11 0.08 0.81 11 -0.20 0.16                

pcBRS overall 5 -0.10 0.95 5 -0.10 0.95 3 - -             

Transduction 10 -0.06 0.87 10 -0.05 0.89 6 -0.61 0.20 9 0.20 0.61          

HVR overall 9 -0.12 0.76 9 -0.09 0.82 6 -0.09 0.92 11 0.33 0.33          
HVR intermittent 7 -0.78 0.04 7 -0.45 0.31 3 - - 6 0.62 0.19          
HVR stepped 2 - - 2 - - 3 - - 5 -0.43 0.48          

Total CBF 11 -0.09 0.79 11 0.001 1.00 7 -0.22 0.64 13 0.26 0.38 10 -0.04 0.92 7 -0.07 0.87 3 - - 
CBF % of CO 11 -0.23 0.49 11 -0.13 0.70 7 0.15 0.75 13 0.30 0.32 10 -0.36 0.31 7 -0.22 0.64 3 - - 

CRP 4 - - 4 - - 4 - - 7 -0.51 0.25 6 0.75 0.10 - - - 4 - - 
IL-6 6 -0.02 0.97 6 -0.16 0.77 4 - - 9 -0.10 0.80 8 -0.13 0.76 4 - - 4 - - 
IL-8 6 0.20 0.71 6 0.20 0.71 4 - - 9 -0.02 0.98 8 -0.26 0.54 4 - - 4 - - 
IL-10 6 -0.14 0.80 6 -0.14 0.80 4 - - 9 -0.48 0.19 8 0.00 1.00 4 - - 4 - - 
IL-17 6 -0.51 0.30 6 -0.64 0.17 4 - - 9 0.04 0.92 8 -0.17 0.69 4 - - 4 - - 
MPO 6 0.06 0.92 6 0.09 0.86 4 - - 9 -0.45 0.23 8 -0.52 0.19 4 - - 4 - - 
TNF-a 6 -0.14 0.80 6 -0.14 0.80 4 - - 9 -0.48 0.19 8 0.00 1.00 4 - - 4 - - 
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8.4 Appendix 4. Univariate binomial logistic regression data 

 

Binomial logistic regression performed using the BP response to RDN as the dependent 

variable (response defined as ≥10 mmHg reduction in office systolic blood pressure at 6 

months post-RDN). oSBP; office systolic blood pressure, oPP; office pulse pressure, 

eGFR; estimated glomerular filtration rate, iLVM; left ventricular mass indexed to body 

surface area, MSNA; muscle sympathetic nerve activity, ssBRSA; spontaneous 

sympathetic vascular baroreflex sensitivity quantified using the area method, scBRS; 

spontaneous cardiac baroreflex sensitivity. The Nagelkerke R2 quantifies the variance 

attributed to each variable. The correct classification describes the percentage of 

patients correctly classified as responders or non-responders by the model. The B value 

indicates the size of the effect of an independent variable on the dependent variable 

(RDN response), and for categorical data would represent the odds ratio, the 95% 

confidence interval is shown in parentheses. 
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Baseline variable 
 Chi-squared Nagelkerke Correct classification Prediction of effect/odds ratio 

N Χ2 p R2 % Exp(B) p 

Age 18 0.781 0.377 0.058 72 
0.960 

(0.876 – 1.053) 
0.387 

Gender 18 0.234 0.628 0.018 61 
0.625 

(0.093 – 4.222) 
0.630 

oSBP 18 11.688 0.001 0.648 83 
1.148 

(1.012 – 1.303) 
0.031 

oPP 18 1.206 0.272 0.088 67 
1.029 

(0.975 – 1.087) 
0.298 

eGFR 18 0.139 0.709 0.010 61 
1.017 

(0.931 – 1.111) 
0.710 

iLVM 18 0.122 0.727 0.009 61 
1.007 

(0.966 – 1.050) 
0.730 

Aortic distensibility 15 1.227 0.268 0.106 67 
1.864 

(0.568 – 6.120) 
0.304 

MSNA 14 1.239 0.266 0.114 64 
0.969 

(0.915 – 1.027) 
0.288 

ssBRSA 13 2.421 0.120 0.231 62 
0.111 

(0.005 – 2.663) 
0.175 

scBRS 13 2.119 0.145 0.212 69 
0.832 

(0.638 – 1.085) 
0.175 

Transduction 13 0.475 0.491 0.049 69 
0.034 

(0.000 – 684.475) 
0.503 
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8.5 Appendix 5. Drugs present on retrospective analysis of urinary 

anthypertensive drug metabolites 

 

Stored urine sampes were sent for analysis of antihypertensive drug metabolites. The 

metabolities screened for were: Amlodipine, Diltiazem, Felodipine, Lisinopril, 

Perindopril, Ramipril, Losartan, Irbesartan, Candesartan, Indapamide, Furosemide, 

Bendroflumethiazide, Hydrochlorothiazide, Atenolol, Labetolol, Bisoprolol, Doxazosin, 

Enalapril, Metoprolol, Nifidepine, Verapamil, Spironolactone metabolite and 

Moxonidine. Aliskiren, Carvedilol and Tadalafil were not screened for. On previous 

analyses Nifedipine and Felodipine appear to be unstable, and therefore the analyses 

below do not take into account the prescription of these latter agents. 

 

There were no significant changes in the average number of medications prescribed (Px) 

or detected in the urine over the course of the study (ANOVA p=0.72 and p=0.59, 

respectively). There was no change in the percentage of prescribed medications that 

were detected over the course of the study (ANOVA p=0.41). Data shown as mean ± 

SEM (standard error of the mean).
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Patient No. 

Time post RDN (months) 

0 1 6 12 

Px Detected % Detected Px Detected % Detected Px Detected % Detected Px Detected % Detected 

4 4 0 0 2 2 100 3 0 0 1 0 0 

6 4 0 0 4 0 0 4 0 0 4 3 75 

12 3 3 100 3 3 100 3 2 67 3 3 100 

13 6 4 67 5 5 100 5 3 50 5 5 100 

14 3 3 100 3 3 100 2 2 100 2 2 100 

18 3 3 100 3 3 100 3 3 100 3 3 100 

Mean 3.8 2.2 61.1 3.3 2.7 83.3 3.3 1.7 54.4 3.0 2.7 79.2 

SEM 0.5 0.7 20.0 0.4 0.7 16.7 0.4 0.6 18.5 0.6 0.7 16.4 

 


