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Abstract 

Reconfigurability has become a desirable and essential feature of modern Radio-Frequency 

(RF) systems for wireless communications due to the unprecedented challenge to accommodate 

multiple bands in communication standards. Reconfigurable circuitry makes it possible to 

reduce the size and cost of the system by providing RF tuning instead of duplicating the same 

circuits for every desired band. Optical reconfiguration is distinguished by its elimination of 

an electrical bias system and ElectroMagnetic Interference (EMI), while potentially providing 

fast switching compared with other conventional RF tunable approaches.  

This project is primarily interested in the new designs and characterisations of optically-tunable 

switches which remove the need of a diode junction and thus, inherently demonstrate high 

linearity and power-handling ability. In addition, the recent development of a semiconductor 

laser and Light Emitting Diode (LED)/Infra-Red Emitting Diode (IRED) techniques has 

enabled the achievement of high-intensity and spatial illumination in a pulsed tuning operation. 

These facts are the motivation for a new investigation of optically reconfigurable microwave 

and millimetre wave switches. Initial work focuses on generating an ElectroMagnetic (EM) 

simulation model and investigating the high insertion loss in the photoconductive switches 

presented in previous work. It then involves the use of improved designs for optically-

controlled switches at microwave and millimetre wave frequencies. The RF characterisation of 

these proposed devices is performed in terms of insertion loss, isolation, nonlinearity, power-

handling and switching speed.  

A novel, high-power optically controlled microwave microstrip switch is presented with 

superstrate structure through a low-loss glass substrate which reduces insertion loss to 1.11𝑑𝐵 

and simultaneously maintains good isolation of 20𝑑𝐵 at 2𝐺𝐻𝑧. 3rd-order Input-referenced 

Intercept Point (IIP3) is measured up to +78.5𝑑𝐵𝑚  in a two-tone nonlinearity test with 

maximum power handled at over 60𝑊 , which is reported for the first time. An optically 

reconfigurable Grounded-CoPlanar Waveguide (GCPW) microwave and millimetre-wave 

(mmW) switch has been designed and measured with good results showing an insertion loss of 

less than 3𝑑𝐵 and isolation over 30𝑑𝐵 in millimetre wave frequencies.   
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CHAPTER 1 

1. Introduction 

 

1.1 Introduction 

The coexistence of several wireless communication standards, combined with the use of several 

frequency bands, has become an important challenge in the design of radiofrequency (RF) 

circuits [1.1]. In response to this problem, there has been a growing interest in the design of 

tunable RF switches, which allow multi-task reconfiguring from one single compact circuit. 

Therefore, this chapter will begin with an introduction to RF tuning technologies, a number of 

which will then be compared as motivation to develop a switch using an optical reconfiguring 

method. This will be followed by a review of literature related to optically-controlled switches 

with a focus on state-of-the-art design, while the disadvantages of these switches, which need 

to be improved, will be also discussed. The subsequent chapters will contain more detailed 

reviews and comparisons in order to highlight the aspects of potential improvement that 

correspond with the proposed work in each chapter. A full parametric comparison of 

commercial and designed RF switches will be listed in a table as a preview. Finally, the primary 

contributions of this study and outlines of the following chapters will also be discussed. 
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1.2 RF Switching Technology  

Reconfigurability has become a desired and essential feature of modern RF systems for 

wireless communication and telecommunications due to the unprecedented challenge to 

accommodate multiple frequency bands and communication standards. Reconfigurable 

circuitry provides the possibility of incorporating RF devices that can communicate 

simultaneously in a congested environment. It can also reduce the system size and cost by 

providing frequency tuning instead of duplicating the same circuits for every desired band. 

Early RF switching methods from the 1960s were mainly achieved through mechanical and 

material change. However, there has been a growing demand for more compact, faster tuning 

methods in today’s wireless systems, particularly when frequency bands in microwave region 

are almost fully occupied and some of the existing reconfigurable technologies have begun to 

show their limit of performance in wider bandwidths and higher frequencies. 

Contemporary commercial and mature reconfiguration techniques are mainly based on varactor 

diodes, PIN diodes and Radio-Frequency MicroElectroMechanical Systems (RF MEMS) [2-

10]. A varactor diode, also called varicap diode, is a diode that exploits the voltage to control 

the capacitance across the p-n junction in a reverse-bias condition. Since it is operated in a 

reserve-bias condition, there is only a very small reverse leakage current flowing through the 

junction and the capacitance is inversely proportional to the square root of the applied voltage. 

Varactor diodes have generally demonstrated the advantages of low cost and a wide tuning 

range [1.2, 1.3]. Their main drawback is the existence of a diode junction, which can generate 

nonlinear behaviour. In addition, the breakdown voltage rate of the p-n junction also limits its 

ability to handle power [1.4]. This can be improved by incorporating more varactor diodes in 

stacks, although the system design can be complex. Furthermore, the crosstalk from these 

introduced additional electric paths will result in intermodulation distortion and hence linearity 

deterioration.   

PIN diodes are similarly p-n-junction-based devices. The advance of this technique has been 

demonstrated in its ability to handle high-power signals due to the existence of an additional 

undoped intrinsic semiconductor region with a high-level injection of carriers [1.5, 1.6]. In 

forward-bias conditions, this high-level injection in the intrinsic region makes PIN diodes 
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behave like a perfect resistor and significantly helps to accelerate the transport of charge 

carriers, which makes PIN diodes suitable devices for high-frequency operations. However, 

the inherently nonlinear behaviour of the diodes remains. In addition, the PIN diode’s electrical 

isolation suffers when no bias voltage is applied in the switch-OFF state, especially at high 

frequencies [1.7].  

MEMS switching is realised through electrical bias and a metal cantilever movement. When a 

large bias voltage is applied, it exerts an electrostatic force on the cantilever, which forms a 

mechanical contact between two metals and thus, generates an open or closed circuit. RF 

MEMS switches have demonstrated excellent isolation values and linear behaviour. However, 

in addition to their high cost, there are issues related to reliability and high-power performance, 

particularly with “hot-switching” [1.8, 1.9]. Long relaxation and settling time need to be 

considered when different switching modes are used. Another shortcoming of this mechanical 

switching mechanism is the switching speed, which is limited to the order of microseconds 

[1.10].  

One overriding issue with all these approaches is the requirement for DC bias lines as the 

actuation mechanism for the tuning. This is not a major issue for simple switching/tuning 

networks at low microwave frequencies, but it will demand extremely complex circuits with 

many tens and hundreds of elements and produce electromagnetic interference (EMI), thereby 

deteriorating the quality of the signal during transmission. The requirement of complex DC 

biased networks can severely limit the system’s performance at millimetre wave frequencies 

and beyond. The method proposed here uses optical tuning, which entirely isolates the 

microwave and millimetre wave from optical control terminals. Optically-tunable devices 

remove the need for bias circuits and a very linear performance [1.11] and faster switching 

speed [1.12] can be expected, since no diode junction or Schottky barrier is required within the 

structure. One drawback of this optical reconfiguring method is the loss incurred from the 

optically-induced plasma region. Another aspect to be improved is the additional optical 

control elements in terms of both power supply and optical arrangement. This optical tuning 

will be further discussed in the literature review.   
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1.3 Optically-Controlled Switches 

The mechanism of optical reconfiguration is based on the interaction between light and a 

semiconductor. When an area of the semiconductor is illuminated, it becomes electrically-

conductive, provided that the photon energy is greater than the semiconductor band gap, so that 

pairs of electrons and holes are generated, and a plasma region is formed by the excess carriers 

[1.13]. The reconfigurability of optical illumination simply depends on the intensity and pattern 

or shape of the created plasma region. The drawback of this optical tuning approach was 

previously considered to be insufficient optical power and intensity. However, this problem 

has been resolved with the recent development of high power, micro-scale optical sources. 

Micro Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays [1.14] and Pixelated LEDs 

[1.15] have provided the possibility of high spatial resolution illumination and digital tuning 

from dynamically-pulsed operations. There are strong motivations to study the development of 

a miniaturised, low-loss, fast, optically-reconfigurable RF switch. The following text focuses 

on the reviews of previous investigations related to optically-controlled switches.  

The first known photoconductive switch was demonstrated by Auston et al. [1.12] in 1975. It 

was achieved by powerful laser illumination interleaved at 530𝑛𝑚 and 1060𝑛𝑚 wavelengths 

using picosecond excitation to switch circuit ON and OFF respectively. 530𝑛𝑚 illumination 

was used to create an electron-hole plasma which substantially increased the conductivity and 

allowed the propagation of an RF signal, while 1060𝑛𝑚 illumination was used due to its long 

wavelength and deep diffusion, which resulted in a conductive path to ground, leading to a 

short circuit and switching to the OFF state. This novel technique utilised the different 

properties of optical illuminations at two wavelengths, which opened an era of RF tuning in a 

novel way. A year later, Lee [1.16] repeated Auston’s measurement with a similar setup but 

changed the substrate to GaAs after finding that, although the photoconductive approach 

produced remarkably fast switching, the repetition rate was slow due to the slow recombination 

in silicon. Hence, he employed a GaAs-based substrate in photoconductive high-speed 

switching. Nevertheless, both experiments demanded significant power from bulky lasers, 

which seems not to be a practical solution for modern communication systems.   
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Many studies have been conducted on photoconductive switches since the initial work of 

Auston and Lee. Lee published another research paper in 1980 [1.17] in which he focused on 

the investigation of electron-hole plasma physics and created a theoretical model to evaluate 

permittivity and phase change. This concluded the fundamental control theories and offered 

the potential to precisely determine phase shifting, switching, and modulating mechanisms. 

Later, Platte [1.18] and Gevorgian [1.19] provided a further analysis of plasma diffusion and 

proposed a plan to optimise efficiency, which was based on a semiconductor microstrip gap 

structure. The analysis was also confirmed by experiments. The microstrip gap structure was 

chosen based on its simple optical illumination application and direct alteration from an 

impedance-matched transmission line. Several examples of this gapline structure are discussed 

below. 

A microstrip gapline-based optically-controlled switch, which was originally designed for 

antenna tuning, was demonstrated in [1.20]. As shown in Figure 1.1, a piece of silicon was 

placed over a gap in a transmission line and silver epoxy was used to hold it in place. The 

optical feeding approach was through an optical fibre cable, which illuminated the top of the 

silicon. The performance of the device was only slightly degraded compared with [1.12] when 

the excitation signal was delivered through the optical fibre and the operating wavelength of 

the optical source was at the range of 800 to 1000 nanometres.  

 

Figure 1.1 Example of an optically-controlled microwave switch with silicon die [1.20] (optical 

illumination of 200mW at 980nm on n-type silicon) 
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This switch was applied to create a short path for antenna parts and it demonstrated very good 

transmission under 3𝐺𝐻𝑧, which dynamically changed the characteristics of the microwave 

antenna. However, since the illumination came from the top and the highest conductivity region 

at the bottom of the silicon was not fully utilised, this device could be further improved in terms 

of optical power efficiency with a geometric redesign. Another aspect is the tested frequency 

limit up to 3𝐺𝐻𝑧, while an optically switch is envisaged to have a broadband tuning range. 

Another similar example of this optically-controlled switch used for antenna tuning [1.21] is 

demonstrated in Figure 1.2. 

 

Figure 1.2 Example of a patch antenna based on optically-reconfigurable switch [1.21] 

(optically-induced plasma silicon switches creating conductive path for resonance) 

As can be seen from Figure 1.2, this circular patch antenna uses two silicon switches to create 

dual resonance. A resonance at around 18𝐺𝐻𝑧 is dominated by the outer ring when no optical 

illumination is provided. The silicon switch needs to be illuminated to activate the frequency 

tunability of this antenna; hence, a radiating mode can be created at lower frequency since the 

inner disc is now coupled. Therefore, the extent of frequency shift to around 12𝐺𝐻𝑧 depends 

on which switch has been illuminated.  
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The advantage of these optical tuning methods in microwave antennas is flexibility, since the 

switch can be employed with low illumination power under 200𝑚𝑊  in contrast with 

[1.12][1.16]. However, as [1.21] indicated, the insertion loss directly influences the efficiency 

and gain of the antenna. Material loss has been found in the silicon switch, which reduces the 

radiation efficiency of the antenna.  Hence, the switch performance is considered to be an 

important factor in antenna design.  

It is also interesting to introduce a different photoconductive switch, which is mainly used as 

an attenuator [1.22]. This attenuator switch is shown in Figure 1.3, is based on a slow-wave 

structure. This design has improved the signal attenuation more than other optically-controlled 

attenuators that have been reported. More than 30𝑑𝐵  attenuation has been achieved by 

illumination from underneath by an Infra-Red Emitting Diode (IRED). Although this device 

was fabricated within a coplanar waveguide structure, which normally gives a good 

performance at high frequency, the slow-wave meandered structure limits the frequency 

response beyond 7𝐺𝐻𝑧 so that a sharp increase in insertion loss can be observed. This shows 

that a trade-off has been found between the conflicting aims of a low insertion loss and a high 

attenuation range.  

 

Figure 1.3 Optically-controlled attenuator based on silicon substrate [1.22] (bottom illumination 

by an Infra-Red Emitting Diode (IRED) at 870nm ) 

State-of-the-art RF switching devices implemented through various optical tuning approaches 

and circuit designs have been presented in this review section. Further detailed discussions and 

comparisons with the proposed designs in this research will be continued in the following 

section and Chapters 4 and 5 according to their relevance.  
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1.4 Primary Contributions 

The significant contributions in this dissertation can be summarised as follows; 

⚫ A novel design of superstrate microstrip gapline with bottom illumination has been 

proposed and tested, which has effectively reduced the insertion loss [1.23]. 

 

⚫ A two-tone nonlinearity characterisation measurement on a photoconductive switch with 

the highest third-order Input-referenced Intercept Point (IIP3) achieving +77𝑑𝐵𝑚 [1.23] 

has been reported for the first time.  

 

⚫ The RF power-handling ability has been enhanced beyond 40𝑊 [1.24].  

 

⚫ A Grounded-CPW microwave and millimetre wave switch has been designed and 

measured with good results showing an insertion loss of less than 3𝑑𝐵 and isolation over 

30𝑑𝐵 in millimetre wave frequencies [1.25].  

A full parametric comparison of commercial and designed RF switches has been listed in a 

table shown in the Appendix I.  

1.5 Chapter Summaries 

An overview of the contents of each following chapter is outlined below. 

Chapter 2 contains an explanation of the fundamental physics involved in the interaction 

between optical illumination and semiconductors. This interaction is studied from both a 

classical physics and quantum perspective. The absorption and attenuation of electromagnetic 

waves are elaborated in detail. The band transition theory is employed to explain the 

mechanism of the generation, recombination and diffusion of electron-hole excess carriers. 

Importantly, the recombination mechanism is introduced, and the significant plasma diffusion 

of high concentrations electron-hole plasma is analysed. As a result, the total carrier 
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concentration and photoconductivity are quantified in equations for a subsequent analysis. 

Along with dielectric permittivity studies, critical electrical properties are eventually obtained 

through the derived physics equations and this provides a solution for simulation, which is later 

employed to predict the performance of the circuit. Finally, the comparison and selection of 

the materials are discussed.    

Chapter 3 contains a description of the simulation, measurement and fabrication involved in 

this research work. The distributed element modelling and full-wave electromagnetic analysis 

are firstly compared in the simulation part. A further comparison and selection is made within 

the scope of full-wave modelling methodologies. The Finite-Integration-Technique method 

evolved from Finite-Difference Time-Domain is clearly superior based on its characteristics of 

higher computational efficiency and broadband analysis adaptability. A free-space VCSEL 

laser with solid optics, fibre-coupled laser and LEDs/IREDs are shown in the measurement 

part, which provide a number of optical tuning choices, depending on the circuit 

implementation. Other measurement setups, such as fixtures for silicon and connectors with 

the flexibility for optical and RF engineering to interact with each other are also presented. A 

standard photolithography procedure is described for circuit fabrication in a clean room in the 

fabrication part. An alternative circuit fabrication technique of PCB laser-cutting is also shown 

for different designs to improve integration.    

A superstrate-structure microwave gapline switch is presented in Chapter 4 with a standard 

characterisation test on this novel device. This is followed by optimisation with the aim of 

achieving a better linearity performance and higher power-handling ability. This chapter begins 

with a further detailed review of the features of an optically-controlled microwave switch, 

followed by a list of the possible aspects of improvement targeted in this work. A microstrip 

gap switch from previous work is then analysed with the aid of CST simulation, which helps 

to identify the large transmission loss around the plasma region and substrate. A superstrate 

microstrip gapline switch model is proposed in view of other work on antennae. This circuit is 

fabricated and measured based on a sensitivity analysis in simulation and the simulated and 

measured results show good agreement. A two-tone non-linearity test with power-handling 

ability observation is designed and conducted to present a full characterisation of the designed 

switch. Since the initial results fail to demonstrate significant improvement from other 
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microwave switches, these aspects are optimised and several fixtures are redesigned and tested 

to avoid damaging the device. Finally, a new structure design is proposed and measured with 

improved non-linearity and power-handling ability.  

Chapter 5 is focused on the design of devices at higher frequencies in the millimetre wave 

region. It begins with a literature review of current millimetre wave switches and a proposal of 

several aspects for improvement. The chapter is then divided into two parts. The first part 

contains the design of an optically-controlled Grounded CoPlanar Waveguide (GCPW) switch 

operating in the millimetre wave region, which is based on a transmission line model. A full-

wave analysis with a multi-layer plasma model is employed to find the optimum circuit 

dimension. The circuit fabrication and use of V connectors for high frequency are also 

described in detail. A millimetre-wave GCPW switch illuminated by a single IRED is presented 

in the second part.  This device is designed to better integrate on-board circuits and a compact 

optical source. Insertion loss and surface modes are found to have been reduced compared with 

the device proposed in the first part.  

Chapter 6 is concentrated on two superstrate materials, silicon and GaAs, for switching 

implementation on the superstrate microwave gapline switch developed in Chapter 4. An 

arbitrary programmable signal generation system with laser modification is specifically 

designed for pulsed operations. The excess carrier recombination time in silicon is measured 

and found to be less than ideal for fast switching. Hence, the study of GaAs with a shorter 

carrier lifetime is performed. Due to the insufficient photon energy provided from the laser 

configured in the system designed for silicon, LED/IREDs with more choices of wavelengths 

are selected as new candidates. However, the power requirement is also found to be significant 

in the subsequent investigation. The laboratory measurement with DC bias assistance toward 

photoconductive GaAs later proves the theoretical assumption that large intensity is needed for 

a semi-insulating GaAs (SI-GaAs).  
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CHAPTER 2 

2. Semiconductor Physics and 

Photoconductance 

 

2.1 Introduction 

This chapter contains an introduction to semiconductor physics with a focus on electron-hole 

pair generation by means of optical illumination on semiconductors, which forms the 

photoconductance involved in the research of optically-reconfigurable microwave and 

millimetre wave switches. The diffusion of the excess carriers or the plasma within the silicon 

will be discussed in detail, since this can have a significant influence on microwave and 

millimetre wave electromagnetic propagation. The corresponding theory is used to provide a 

solution for electromagnetic simulation in terms of photoconductivity within the 

semiconductor. This simulation then provides good accuracy for the subsequent circuit design 

and comparison with measurements. 
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2.2 Semiconductor Physics 

Compared to amorphous and polycrystalline solids, single-crystal materials have a high degree 

of ordered regions of regular atomic or molecular geometric distribution over the entire 

material. On the other hand, amorphous material only has order within a very limited area and 

polycrystalline material has various irregular single-crystal regions throughout the material. 

Single-crystal regions are called grains and grain boundaries usually cause the electrical 

characteristics to deteriorate. Single-crystal materials with fewer boundaries and uniform 

geometric periodicity have much more superior electrical properties. [2.1] 

Since semiconductors are generically single-crystal materials with conductivity between that 

of metals and insulators, they are extremely widely used. There are two main semiconductor 

groups, one of which consists of materials from group IV of the periodic table, while the other 

is composed of a combination of compound semiconductor materials from groups III and V. 

Silicon and germanium are the fundamental materials which are composed of single atoms in 

group IV. Silicon is currently the most typical and widely-used material in the semiconductor 

industry [2.2] and this will be discussed in detail in the following text. Gallium Arsenide, a 

binary compound of groups III and V, will also be emphasised due to its superior optical 

properties, which can especially be observed in high speed applications.  

As discussed, the aim of this research is to explore the interaction between semiconductors and 

light which can be considered to be a propagating wave of electromagnetic radiation and due 

to wave-particle duality, also as particles, known as photons at a range of frequencies. It is 

necessary to use both of these definitions of light in the subsequent discussion, especially in 

calculating the external and internal quantum efficiency, which is essential for the quantitative 

analysis and modelling in later parts of the study. 

2.2.1 Reflection 

Reflection, absorption and transmission can occur when light falls on a dielectric boundary. 

Reflection will firstly be discussed from the perspective of light as an electromagnetic wave in 

this section, and the absorption and transmission based on the interaction between light and a 
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semiconductor from both a "wave" and "particle" perspective will be emphasised in the next 

section.  

Maxwell was the first to propose the electromagnetic phenomenon of light in the 1860s and the 

following set of equations are named after him [2.3]; 

 
𝛻 × 𝑬 = −

𝜕𝑩

𝜕𝑡
                              𝛻 ∙ 𝑫 = 𝜌 

  𝛻 ∙ 𝑩 = 0                         𝛻 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
 

 2.1 

where 𝛻 ∙ denotes the divergence operator, the 𝛻 × symbol denotes the curl operator, E is the 

electric field, B is the magnetic field, D is the displacement field, ρ is the electric charge density, 

J is the electric current density, and H is the magnetising field.  

D and B are related as follows; 

 𝑫 = 𝜀𝑬          𝑩 = 𝜇𝑯  2.2 

where 𝜀 denotes the electrical permittivity and μ is the electrical permeability.  

In homogeneous isotropic media, 

where 𝜎 is the conductivity. 

 

 𝑱 = 𝜎𝑬  2.3 
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Using mathematical identity,  

 𝛻 × 𝛻 × 𝐴 = 𝛻(𝛻𝐴) − 𝛻2𝐴  2.4 

to combine, 

 
  𝛻 × 𝑬 = −

𝜕𝑩
𝜕𝑡

        𝛻 × 𝑯 = 𝑱 +
𝜕𝑫
𝜕𝑡

  2.5 

in a lossy semiconductor medium, it yields,  

 𝛻2𝑬 − 𝜎𝜇
𝜕𝑬

𝜕𝑡
− 𝜇𝜀

𝜕2𝑬

𝜕𝑡2
= 0  2.6 

One possible solution to this differential equation could be,  

 
𝑬𝒙 = 𝑬𝟎𝑒𝑥𝑝 [𝑗𝜔 (𝑡 −

𝛾𝑧

𝑐
)] 

 2.7 

where the electromagnetic wave is polarised in x, provided that, 

 𝛾2 = 𝑐2𝜀0𝜇0(𝜀𝑟 −
𝜎

𝜔𝜀0
𝑗)  2.8 
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where 𝛾 is the propagation constant travelling in z-direction, 𝜔 is the angular frequency, 𝑐 is 

the speed of light, 𝜀0 is the permittivity in free space, and 𝜇0 is the permeability in free space, 

and 𝜀𝑟 is the relative permittivity.  

If 𝛾 is written in terms of 𝑛, the refractive index of the medium, and 𝑘, the absorption index, 

 
𝛾 = 𝑛 − 𝑗𝑘 

 2.9 

The possible solution becomes, 

 
𝑬𝒙 = 𝑬𝟎𝑒𝑥𝑝 (−𝜔𝑘𝑧/𝑐)𝑒𝑥𝑝 [𝑗𝜔(𝑡 − 𝑛𝑧/𝑐)] 

 2.10 

which represents a wave of frequency 𝜔/2𝜋, travelling with a velocity of 𝑐/𝑛 and the rate of 

attenuation or absorption is determined by the absorption index, 𝑘.  

As shown above, the absorption and reflection phenomena are closely related. Reflectivity 

describes the ratio of the radiation flux reflected by a different medium surface to the incident 

radiation flux. Further to 2.9, reflectivity, ℛ, can be written as [2.4], 

 ℛ = |
𝑛 − 𝑗𝑘 − 1

𝑛 − 𝑗𝑘 + 1
|

2

=
(𝑛 − 1)2 + 𝑘2

(𝑛 + 1)2 + 𝑘2
  2.11 

where, moreover, the real part 𝑛 indicates the phase velocity and 𝑘 denotes the deterioration of 

the electromagnetic wave propagation. Reflectivity is as low as other dielectric materials with 

a low absorption when k is small, but when k becomes large, the material behaves like a metal 
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and the reflectivity will approach unity. [2.4] The absorption characteristic will be analysed 

further in the next subsections.  

2.2.2 Absorption 

Optical absorption will firstly be discussed in "wave" terms in this section and then quantum 

physics will be used to explain the interaction between light and semiconductors from a 

"particle" perspective.  

Further to the previous subsection, the absorption index, 𝑘, in the complex refractive index 

form, could be used to describe the absorption coefficient, α. The relationship is written as 

follows; 

 𝛼 =
2𝜔𝑘

𝑐
=

4𝜋𝑘

𝜆
  2.12 

where 𝜆 is the wavelength and the absorption coefficient, 𝛼, for the medium is defined by the 

condition that the power in the wave falls to 1/𝑒  at a distance of 1/𝛼 , where 𝑒  is the 

exponential constant. This distance is known as the absorption depth. [2.3] 

Before providing further details of the effect of absorbed energy on semiconductors, some 

fundamental quantum mechanics need to be explained. In 1900, Planck proposed that discrete 

bundles of energy could be emitted from a heated body through thermal radiation [2.5]. Not 

long after, the reverse effect was demonstrated in a photoelectric experiment and, in 1905, 

Einstein suggested that the light radiation absorbed by a medium is also of a discrete nature 

[2.6]. These packets of energy are called quanta and the minimum amount of this discrete 

energy is a quantum, known as a photon for light.  The energy of a quanta or the photon energy 

in case of light is as follows; 
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 𝐸 = ℎ𝑓  2.13 

where ℎ is Planck’s constant, 6.625 × 10−34 𝐽. 𝑠, and 𝑓 is the frequency of the radiation. Later, 

in 1924, de Broglie postulated that electromagnetic waves show particle-like behaviour and 

particles should also be expected to behave as waves. This hypothesis was subsequently proved 

by tests on electrons and it became the wave-particle duality principle, by which the 

wavelength of matter can be determined from its momentum.  This principle can be applied to 

small particles, like electrons, neutrons, and protons, while the equations can be reduced to 

those of classical mechanics for very large ones. It was this approach that enabled the switch 

to the wave perspective to study the motion of electrons in semiconductor crystals. In 1929, 

Schrodinger combined the Heisenberg Uncertainty Principle with the wave equation and 

statistically described the behaviour of the electron, especially predicting its absolute position 

at a particular time. Although this can doubtlessly be considered to have been an improvement 

on the classical mechanics theory, it was mainly based on statistical probability. [2.1] 

 

Figure 2.1 Various types of materials at different energy states with bands shifted [2.7] 

A possible sample solution to the 1-dimensional (1D) Schrodinger equation with electrons’ 

behaviour shown in a thermal equilibrium condition can be seen in Figure 2.1 [2.7]. The 

magnitude in the horizontal direction indicates the density of possible states where electrons 
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can reside at a certain energy, which is indicated in the vertical direction. The shaded areas for 

the listed materials follow the Fermi-Dirac energy distribution whereby the darker the colour 

is, the more electrons or the higher the probability of electrons are at those energy states. 

Therefore, solids can also be categorised as metal, semiconductor or insulator from the 

distribution of electron energy demonstrated in the band structure. Furthermore, an 

understanding of band theory is required for electrical conduction in solids. At a temperature 

of zero degree Kelvin (𝑇 = 0𝐾), a single-crystal semiconductor behaves like an insulator. For 

example, in the case of silicon, its atoms are held in a regular tetrahedral structure by covalent 

bonds, as shown in Figure 2.2. Each silicon atom and its four neighbours share four electrons 

so that each bond can be regarded as having two electrons. This means that all electrons are 

held firmly by covalent bonds. No free electrons can be used to conduct electricity and the 

crystal acts as an insulator at this low temperature.  

 

Figure 2.2 Covalent bonding in a single-crystal silicon lattice [2.8] 

Based on the band theory, these covalent-bonded electrons will fully occupy the valence band, 

𝐸𝑉, at their lowest energy state, while the upper band, the conduction band, 𝐸𝐶, will be empty 

at 𝑇 = 0𝐾. In this condition, semiconductors act like insulators with electron distributions in 
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Figure 2.1. As the temperature gradually increases, both the atoms and the electrons will absorb 

it due to energy being distributed in a random manner. When some energetic electrons have 

obtained sufficient thermal energy, they can escape the bonding forces, thereby breaking the 

covalent bonds. As shown in Figure 2.3, electrons at low energy states in the valence band may 

jump into the conduction band and be free to conduct electricity. These electrons cannot exist 

in any other energy region or state. This forbidden energy band is found where no electrons 

can exist between the conduction band and the valence band. In other words, this forbidden 

bandgap energy, 𝐸𝑔, shown in Figure 2.3, is the minimum energy an electron in the valence 

band must acquire to jump into the conduction band and be free to conduct electricity.   

 

Figure 2.3 Representation of the energy bands and band gap in band diagram 

There are several different conditions of energy bands associated with the classification of 

solids shown in Figure 2.1. For semiconductors, as explained above, electrons in the valence 

band need to obtain sufficient energy to be excited into the conduction band and the Fermi 

level, 𝐸𝐹, is inside the band gap in Figure 2.1. The Fermi level defines the energy level below 

which electrons can only exist but cannot acquire sufficient energy to rise above at absolute 

zero. These doped semiconductors, either p-type or n-type, will change the position of the 

Fermi level. Doping could further vary the band gap and the resistance, as will be discussed in 

later sections. When considering the semi-metals and metals shown in Figure 2.1, both the high 
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probability of electrons (indicated by the dark colour) and the large density distribution of 

energy states (indicated by the magnitude in the horizontal direction) indicate that the 

conduction band can be filled with a large number of electrons that can move freely to conduct 

electricity. Another possible energy band diagram for metals could be that 𝐸𝐹 lies within at 

least one band, which indicates the existence of a superposition region between the valence 

band and the conduction band. In this case, many electrons can be excited into higher states as 

they become more active and this will result in a rise in conductivity, but they do not need to 

acquire relatively large bandgap energy for a band transition. As for insulators, as indicated by 

the black semi-circular shade below the conduction band in Figure 2.1, most available energy 

states and electrons are highly likely to be distributed under the region of the conduction band. 

The valence band could be completely filled with electrons, while the conduction band remains 

empty. There will be hardly any charged particles that can contribute to conduct electricity, 

even if an electric field is applied and observed at room temperature, due to the very high 

bandgap energy.  

There are also two types of band gaps associated with semiconductors, namely direct and 

indirect. A semiconductor is characterised as having a direct band gap if the electrons and holes 

in both the conduction band and the valence band are in the same momentum, which is 

represented by a 𝑘-vector. Direct band semiconductors, such as Gallium Arsenide (GaAs), 

Indium Phosphide (InP), etc., can be directly triggered by a photon for the transition of energy 

bands. However, as the name indicates, indirect band semiconductors, such as Silicon (Si), 

Germanium (Ge), etc., cannot directly absorb a photon’s energy to elevate the band due to the 

fact that an electron’s momentum is several orders of magnitude larger than that of a photon in 

a crystal. As clearly shown in Figure 2.4, the lowest energy level of the conduction band is not 

aligned with the highest level of the valence band at the same 𝑘 -vector. By momentum 

conservation, the band transition of an electron in an indirect band semiconductor requires a 

phonon to compensate for the momentum difference where the phonon is the quanta of an 

elementary thermal vibration motion in lattice. This will be discussed further in later sections 

regarding quantum efficiency and other mechanisms. 

When the energy mentioned above that excites electrons to jump into the conduction band is 

provided by a photon, it is possible for several light-semiconductor interaction mechanisms to 
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occur. For example, heat can be converted and defects can be introduced to impure atoms from 

photon energy and its interaction. However, the acquisition of sufficient electron energy for 

band elevation when photons collide with valence bands is of the greatest interest to this study.  

 

Figure 2.4 Phonon assisted transition for indirect bandgap material 

When light falls on a semiconductor surface, the photons can be absorbed or transmitted 

through it in addition to a reflection. The extent of the absorption and transmission largely 

depends on the band gap energy, 𝐸𝑔, and the photon energy, 𝐸 = ℎ𝑓 in 2.13. If 𝐸 = ℎ𝑓 < 𝐸𝑔, 

the light will be reflected and transmitted through the material without the absorption of many 

photons. When ℎ𝑓 > 𝐸𝑔, there is a greater chance of photons interacting with electrons in the 

valence band and providing them with sufficient energy to be elevated to the conduction band. 

As seen from Figure 2.5, these active electrons in the conduction band first escape from the 

covalent bonds and then become free to move, leaving gaps to be filled with neighbouring or 

other electrons. These gaps are called holes and electrons and holes can both conduct electricity, 

but separately and independently. Hence, another explanation for the conduction band could 

be the energy domain within which electric currents can flow where the conduction band is for 

free electrons and the valence band is for the holes.  
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Figure 2.5 Schematic diagram of electron-hole pair generation [2.8] 

The process by which an electron escapes from a covalent bond and leaves a hole behind is 

generally known as electron-hole pair generation. The carriers created from this process are 

called excess carriers, the density of which is denoted by 𝑛𝑒𝑥, in the unit of the number of 

carriers per unit volume generated.  

Having discussed the basic interaction mechanism between light and semiconductors from 

different perspectives, it will now be further explained with a quantitative analysis to obtain a 

good modelling method for simulation purposes and a comparative measurement. 

2.2.3 Quantum Efficiency and Optimum Wavelength 

The general term of quantum efficiency used in the fundamental modelling equations in this 

project will be discussed in this section, along with other associated parameters that need to be 

considered to determine the optimum wavelength of optical illumination for silicon. This 

optimum point occurs when the highest overall quantum efficiency has been achieved while 

maintaining a high level of photoconductivity. The direct answer of the optimum wavelength 
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cannot be derived from a quantitative calculation, but the range of choices may be narrowed 

down. This is because it largely depends on various materials and samples, which suggests that 

all the data used for the analysis should be based on experimental results. 

The general quantum efficiency in this study may be defined as the ratio of the number of 

excess carriers generated by optical absorption to the number of photons of optical energy that 

fall on a silicon surface. If the photons are entirely absorbed and all photon energy is used to 

create excess carriers, a quantum efficiency of one can be achieved at that particular 

wavelength. This general quantum efficiency is a combination of the concepts of external and 

internal quantum efficiency. The external quantum efficiency here refers to the optical losses 

due to reflection and transmission, while the internal quantum efficiency is based on absorbed 

photons. The conversion of these photons to electron-hole pair plasma depends on other factors, 

such as electron-hole recombination and the diffusion of carriers within the silicon, which will 

be discussed in the following sections.  

External quantum efficiency is mainly quoted in the literature, since it does not consider 

electron-hole pair generation and hence, depends less on sample variations. Besides, a standard 

measurement of the reflectivity and transmission ability of silicon can be used to easily 

determine the amount of absorbed energy. Before plotting a reflectivity graph in a range of 

wavelengths, it is necessary to check the cut-off boundary beyond which the photon energy is 

insufficient to excite electrons to elevate energy bands. Since the bandgap of silicon also 

depends on the temperature [2.4], it tends to decrease as the temperature increases. Hence, 

 𝐸𝑔(𝑇) = 𝐸𝑔(0) −
𝐴𝑇2

𝑇 + 𝐵
  2.14 

where 𝐸𝑔(0) , 𝐴  and 𝐵  are material constants, namely 1.166eV, 0.473meV/K and 636K 

respectively for silicon obtained from [2.4]. Under thermal equilibrium conditions at 300K,  
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 𝐸𝐺 = 1.166 − 0.473𝐸 × 10−3 ×
3002

300 + 636
= 1.121𝑒𝑉  2.15 

Therefore, substituting the 𝐸𝐺  in 2.13, the cut-off wavelength is calculated as follows; 

 𝜆 =
ℎ𝑐

𝐸𝐺
=

6.63 × 10−34 × 3 × 108

1.121 × 1.6 × 10−19
= 1110𝑛𝑚  2.16 

 

Figure 2.6 Reflectivity vs. Wavelength for intrinsic silicon (n0=1.45×1010cm-3) [2.9] 

Figure 2.6 contains a graph of reflectivity against wavelength for a polished silicon wafer at 

300K, which is calculated by 2.11 and data from [2.9]. It depicts a declining trend of reflectivity 

from ~0.75 at a wavelength of around 250nm to ~0.31 at 1000nm. Hence, in terms of 

reflectivity, a range of wavelengths greater than 800nm can be good candidates for optical 

illumination.  
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Figure 2.7 Absorption depth vs. Wavelength for intrinsic silicon (n0=1.45×1010cm-3) [2.9]  

In terms of internal quantum efficiency, several parameters need to be considered. When all 

unreflected photons enter the silicon, they are absorbed during their propagation through the 

medium. The absorption coefficient, 𝛼, introduced in the last section, can be used here to 

describe the relative number of photons absorbed per unit distance, in units of 𝜇𝑚−1. The 

absorption depth against wavelengths of light for silicon is shown in Figure 2.7. The absorption 

depth is the reciprocal of the absorption coefficient which describes the length at which the 

absorbed energy significantly drops to its 1/𝑒. As can be seen in Figure 2.7, photons from the 

200nm to 500nm wavelength range show the strongest absorption compared to the absorption 

depth of between 10𝜇𝑚 𝑡𝑜 100𝜇𝑚 in the wavelength range of 800𝑛𝑚 𝑡𝑜 1𝜇𝑚, since more 

than 36.8% of power is absorbed within 100nm beneath the silicon surface. However, since 

this is a very small thickness that can be seen to be close to the surface, another mechanism 

needs to be considered, which is the velocity of the surface recombination. The surface 

recombination is caused by the severe disruption of the single-crystal lattice where there are 

defects and impurities and a gradient of carrier concentrations exists around the surface area. 
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This recombination is generally accelerated when the carrier concentrations between any two 

regions becomes large. For most semiconductors, the maximum velocity can be up to 

1 × 107𝑐𝑚/𝑠. As a result, despite the high absorption of photons within a small depth, little 

contribution can be made to the generation of electron-hole pairs due to the high velocity of 

the surface recombination. Hence, the photoconductance cannot be increased very much and 

the internal quantum efficiency can be low [2.10]. This has also been proven using other 

measurements [2.11-2.13]. Figure 2.8 contains a simulation graph of photonconductance 

against depth for various surface recombination velocities. This simulation also includes the 

diffusion effect for accuracy, which will be explained in detail in the following sections. As 

shown, the surface recombination becomes less significant when the depth is larger than 20μm.  

 

 Figure 2.8 Conductivity vs. Depth below the surface of intrinsic silicon for various surface 

recombination velocities 

It can be concluded that illumination in a wavelength range of 800𝑛𝑚 𝑡𝑜 1𝜇𝑚 is the optimum 

because of its superior external quantum efficiency based on low reflectance and the 

maintenance of a good absorption, which contributes to internal quantum efficiency. Last, but 

not least, as mentioned earlier, phonons are critical in providing the momentum for energy 
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states and band transitions in indirect band semiconductors, where part of the energy for the 

light in this wavelength range can be easily and directly emitted as phonons to thermally 

promote the activity. The results of the study of [2.14, 2.15] also prove the effectiveness of this 

wavelength range and demonstrate that a light-semiconductor interaction at 980nm could be 

the most efficient for an optically-controlled microwave switch. It could be further said that, 

when choosing a wavelength range with an absorption depth of 10𝜇𝑚 𝑡𝑜 100𝜇𝑚, the wafer 

thickness or substrate thickness selected should be a few times larger than the absorption depth. 

A silicon thickness of 500𝜇𝑚 is used in this research as the standard value. Therefore, a higher 

utilisation of the interaction within the material or a larger number of electron-hole pairs are 

expected to be generated from the larger absorption space, but little will be wasted from the 

transmission.  

2.3 Photoconductivity 

The focus of this section will be the mechanisms that take place under the medium interface 

and the process that follows the optical absorption, which was explained above. These mainly 

involve excess carrier generation, recombination, and diffusion. Lastly, the characterisation 

results of semiconductor photoconductivity modelling will be formed, which are crucial to this 

research, especially for comparing simulations and measurements in later chapters. 

2.3.1 Excess Carrier Generation 

According to the above description, a flux of photons with sufficient photon energy that falls 

on a silicon surface will be absorbed and the excess carriers created will contribute to the 

generation of electron-hole pairs. The intensity of the photon flux can be expressed as 𝐼𝑧 in 

units of 𝑊/𝑐𝑚2 and the absorption coefficient, 𝛼, describes how intensity is absorbed and 

attenuated per unit distance in units of 𝑐𝑚−1, while 𝑧 shows the distance beneath the surface. 

Based on the Beer-Lambert law, mainly derived from 2.10, the intensity of the light at a certain 

depth at which the direction is normal to the surface and pointing inwards to the silicon can be 

written as follows;  
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 𝐼𝑧 = 𝐼0𝑒−𝛼𝑧  2.17 

where 𝐼0 is the initial condition of the light intensity on the surface. The light intensity drops 

exponentially as it deepens, as can be seen from Equation 2.17. The significant attenuation of 

the photon flux can occur at very short distance if the absorption coefficient is large. Since 𝐼𝑧 

is in units of 𝑊/𝑐𝑚2, 𝛼𝐼𝑧 would be the rate of absorbed photon energy per unit volume. The 

excess carrier generation rate can be determined if quantum efficiency is combined with this 

equation. As explained in the last section, the general quantum efficiency, 𝜂, consists of internal 

quantum efficiency and external quantum efficiency, mainly due to the reflection. Therefore, 

the electron-hole pair generation rate, 𝐺, will be the total energy available divided by single 

photon energy at an efficiency of 𝜂. 

 𝐺 =
 𝜂𝜆𝑞𝛼𝐼0𝑒−𝛼𝑧

ℎ𝑐
  2.18 

where ℎ is Planck’s constant, 6.625 × 10−34 𝐽. 𝑠, 𝑐 is the speed of light, 3 × 108 𝑚/𝑠, 𝜆 is the 

wavelength of light.  

2.3.2 Carrier Recombination 

Electron-hole pair generation takes place as a result of external force, such as interaction with 

photons or the thermal vibration of the crystal lattice itself. Electrons can also spontaneously 

fall from the conduction band into the valence band in a process called recombination, while 

always maintaining the conservation of energy and momentum, both optically and thermally. 

These two processes of hole-electron pair generation and recombination occur simultaneously 

and competitively. All electrons and holes in a pure semiconductor that contains a negligible 

density of other kinds of atoms are in equilibrium, 𝑛0 = 𝑝0, and their production equals the 

intrinsic carrier density, 𝑛𝑖, namely  𝑛0𝑝0 = 𝑛𝑖
2 [2.8]. When the photon absorption suddenly 

raises the density of carriers, 𝑛𝑝 > 𝑛𝑖
2 , the rate of recombination becomes larger than the 
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generation rate, bringing the system toward an equilibrium and vice versa for 𝑛𝑝 < 𝑛𝑖
2. This 

also suggests that the recombination rate, 𝑅, determines the number of electrons or carriers that 

are available at a steady state so that the conductivity corresponds to the change of the 

equilibrium levels. A high rate of recombination is important for fast switching applications 

and steady state plasma needs to be extinguished in a very short time. In contrast, the 

recombination rate for the application toward steady plasma conductivity should be minimised 

to preserve more excess carriers for a relatively longer period of time to save optical power.  

The conductivity that corresponds to the equilibrium level mentioned above can generally be 

increased by semiconductor doping due to the higher concentration of carriers. An extrinsic 

semiconductor is produced by introducing impurities into an intrinsic semiconductor and can 

be categorised into two types, 𝑛-type and 𝑝-type, based on the dopants. The 𝑛-type refers to a 

semiconductor with a higher concentration of electrons, which are the main carriers. The 

common 𝑛-type dopants are Phosphorus (𝑃) and Arsenic (𝐴𝑠), which have 5 electrons in the 

outer shell of their atomic structure. In the case of silicon, which has 4 electrons in covalent 

bonds, an extra electron will be promoted from the donor to the conduction band to contribute 

to the electrical conduction. Similarly, the p-type refers to a semiconductor with a higher 

concentration of holes that act as positive charges. The common p-type dopants as electron 

acceptors are Boron (B) and Gallium (Ga), which have 3 electrons in their outer cell. Donor 

atoms have more valence electrons, while impure acceptors have more holes. The increase in 

conductivity by doping can also be explained by the band structure in terms of more energy 

states being able to be introduced within the band gap which used to be a forbidden energy 

region. Electron donors may create states close to the conduction band and the gap between 

those created states and the nearest energy band is relatively small, while this energy gap also 

depends on dopant impurities. This means that doping effectively reduces the band gap and 

makes band transitions easier for electrons. Furthermore, the intermediate energy states 

introduced by those impurities play an important role in both the generation of excess carriers 

and recombination, as will be discussed below.  

The process of direct band-to-band recombination is spontaneous and the probability should 

be constant with time. Since the rate of recombination is proportional to the electron and hole 

concentrations, the rate of change in carrier concentration may be written as follows; 
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𝑑𝑛

𝑑𝑡
= 𝑟[𝑛𝑖

2 − 𝑛𝑝]  2.19 

 where 𝑟 is generation constant [2.1], 

 𝑛 = 𝑛0 + 𝛿𝑛                    𝑝 = 𝑝0 + 𝛿𝑝  2.20 

In thermal equilibrium, the product of 𝑟𝑛𝑖
2 describes the generation rate, and the parameters of 

𝑛0 and 𝑝0 are independent of time. Since excess electrons and holes are always generated and 

recombine in pairs, 𝛿𝑛 = 𝛿𝑝, it leads to the following equation; 

 
𝑑(𝛿𝑛)

𝑑𝑡
= −𝑟𝛿𝑛[(𝑛0 + 𝑝0) + 𝛿𝑛]  2.21 

This equation can be solved, for example, with an assumption made under low-level injection 

(𝛿𝑛(𝑡) ≪ (𝑛0 or  𝑝0)) for 𝑛-type material (𝑛0 ≫ 𝑝0), so that the recombination rate, 𝑅, becomes 

 𝑅 =
𝑑(𝛿𝑛)

𝑑𝑡
= 𝑟𝑛0𝛿𝑛 =

𝛿𝑛

𝜏
  2.22 

where 𝜏 is a constant (= 1/(𝑟𝑛0)), which, in this case, is called the excess carrier lifetime. This 

suggests that the recombination rate is inversely proportional to the carrier lifetime. However, 

this may be true for an ideal direct band-to-band recombination where there is no energy state 

within the forbidden region, but the existence of impurities and defects within the crystal can 

make a huge difference because energy states will be allowed to be created within the bandgap, 

especially when the density of impurities is high after doping. Therefore, this requires further 
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consideration; hence, three typical recombination theories and mechanisms are introduced 

below.  

As discussed earlier, the impurities introduced by doping can enable the formation of energy 

states in the bandgap, which may predominantly determine the mean carrier lifetime based on 

the theory of Shockley–Read–Hall (SRH) [2.1]. These introduced energy states are also called 

traps, which act as a recombination centre, which has almost the same probability to capture 

electrons and holes to assist the band transitions. As mentioned earlier, indirect band transition 

may require the support of a phonon to offer and adjust the momentum for band elevation. This 

central state can absorb the difference in momentum and provide it to carriers and this is crucial 

for indirect bandgap materials, especially the generation and recombination of silicon’s excess 

carrier. This SRH recombination can also be important for direct band transition under low-

level injection.  

The second important recombination mechanism is Auger recombination, which is a non-

radiative process, since it may not result in emitting a photon from a direct band transition. 

Auger recombination involves an interaction with a third particle and this particle carrier 

obtains energy that is transferred from the recombination of an electron and hole. This third 

carrier could be either an electron or hole, depending on the concentration of the material. This 

process normally involves two electrons and one hole in a heavily doped n-type material or an 

electron and two holes in a p-type one. The energy obtained can excite the third carrier to a 

higher state of energy, but it may not move to the adjacent energy band. Eventually, the third 

carrier will lose the excess energy through thermal vibrations to the lattice via phonons. This 

recombination process is significant for direct bandgap materials at high concentrations from 

doping or the generation of optically-excited carriers, but it may not be produced easily due to 

the third carrier’s instability at high energy. 

As for a radiative recombination, this mainly occurs in direct bandgap materials, such as GaAs. 

Photons are emitted at a wavelength related to the energy released during a radiative 

recombination, which implies that the recombination can radiate a range of energies in a 

bandwidth, but not necessarily at a single and discrete spectrum. The emitted photons present 

within the material can be further absorbed to generate excess carriers or further stimulate 
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another recombination event that emits a photon with similar properties. Nevertheless, it is 

extremely unlikely that this direct band radiative recombination can occur in an indirect 

bandgap material, such as silicon. It is also worth pointing out that a radiative recombination, 

a form of spontaneous emission, is the basic working mechanism of the Light Emitting Diode 

(LED), and the stimulated emission is responsible for the action of laser diodes, while the word 

“laser” originated as an acronym for Light Amplification by Stimulated Emission of Radiation. 

Both LEDs and laser diodes are the optical sources used in this research. 

2.3.3 Carrier Drift, Diffusion and Photoconduction 

The important parameters of the generation of excess carriers and recombination rates have 

been discussed above, but, with the presence of an electric field and a rise in density due to 

optical excitation, the behaviour and characteristics of excess carriers are equally important. 

Therefore, this section will begin with a brief introduction of other relevant photoconduction 

mechanisms of carrier drift and diffusion, which will then be used in conjunction with excess 

carrier generation and recombination for a derivation of the photoconduction equation, as 

explained above. This will form the fundamental basis of the plasma physics simulation model 

used in this study.  

When an electric field is applied to a semiconductor, the movement of electrons and holes is 

accelerated on condition that they are available in the conduction and valence bands. This 

movement of charge particles is called drift and the current drift velocity increases linearly with 

time if the electric field is constant. However, collisions or scattering may occur when the 

charged particles hit impure or thermally-vibrating lattice atoms in the crystal, when they will 

accelerate again until they are involved in another collision. The average velocity, the drift 

velocity, 𝑣𝑑, can be defined by the following equation [2.1]; 

 𝑣𝑑 = 𝜇𝑐𝐸  2.23 
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where E is the electric field strength and 𝜇𝑐 is the mobility of the carrier. Thus, the total drift 

current density, 𝐽𝑑𝑟𝑖, the sum of all electron and hole drift current densities will be as follows; 

 𝐽𝑑𝑟𝑖 = 𝑞(𝜇𝑛𝑛 + 𝜇𝑝𝑝)𝐸 2.24 

where 𝑞  is the electron charge, 𝜇𝑛  and 𝑛  are the mobility and carrier concentration of the 

electron, respectively, 𝜇𝑝  and 𝑝  are the hole mobility and hole carrier concentration 

respectively.  

In addition to drift, the second mechanism is carrier diffusion, which involves the movement 

of particles from a region of high concentration to that of a low concentration in a random 

manner. Assuming that the carrier concentration varies in one dimension at a uniform 

temperature, the diffusion movement at thermal velocity, 𝑣𝑡ℎ, in average distance of 𝑙 before 

collision can be written as 𝑣𝑡ℎ𝑙
𝑑𝑛

𝑑𝑧
, which is proportional to the density gradient of carrier 

concentration, 
𝛿𝑛

𝛿𝑧
. Hence, the diffusion current density, 𝐽𝑑𝑖𝑓, will be as follows; 

 𝐽𝑑𝑖𝑓 = 𝑞𝑣𝑡ℎ𝑙
𝛿𝑛

𝛿𝑧
= 𝑞𝐷𝑐

𝛿𝑛

𝛿𝑧
 2.25 

where 𝐷𝑐 is the parameter called carrier diffusion coefficient in units of 𝑐𝑚2/𝑠 and by Einstein 

relation in kinetic theory, 

 𝐷𝑐 = 𝜇𝑐𝑘𝑇 2.26 

where 𝑘 is Boltzmann’s constant and 𝑇 is the absolute temperature. Therefore, the total current 

density due to the carrier drift and diffusion will be as follows; 
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 𝐽 = 𝐽𝑑𝑟𝑖 + 𝐽𝑑𝑖𝑓 = 𝑞(𝜇𝑛𝑛 + 𝜇𝑝𝑝)𝐸 + 𝑞𝐷𝑛

𝛿𝑛

𝛿𝑧
− 𝑞𝐷𝑝

𝛿𝑃

𝛿𝑧
  2.27 

As excess electrons and holes drift at the same effective mobility and diffuse with the same 

effective diffusion coefficient [2.1]. This phenomenon is called ambipolar transport and can be 

further quantified by continuity equations. When a one-dimensional flux of photons enters a 

semiconductor medium space, absorption takes place and electron and hole pair excess carriers 

are generated. This flux of particles is then subject to recombination and diffusion, where drift 

can also occur with the application of an external electric field. Once they reach a dynamic 

steady state, a one-dimensional continuity equation can be written, as follows; 

 𝜕𝑛

𝜕𝑡
= 𝐺 −

𝛿𝑛

𝜏
+

𝜕(
𝐽
𝑞

)

𝜕𝑧
 

 2.28 

where 𝐺 is the generation rate in 2.18, 
𝛿𝑛(𝑡)

𝜏
 is the mean recombination rate in 2.22, 

𝜕(
𝐽

𝑞
)

𝜕𝑧
 is the 

drift and diffusion flow of particles. Then, an ambipolar transport equation can be derived from 

the continuity equations in charge neutrality condition, 𝛿𝑛 ≈ 𝛿𝑝, 

 
𝜕(𝛿𝑛)

𝜕𝑡
= 𝐺 −

𝛿𝑛

𝜏
+ 𝐷𝑐

𝜕2(𝛿𝑛)

𝜕𝑧2
+ 𝜇𝑐𝐸

𝜕(𝛿𝑛)

𝜕𝑧
  2.29 

The parameter 𝐿𝑐, the diffusion length, which defines the average distance the carriers diffuse 

before recombination can also be used here for an easier calculation, along with the electron-

hole plasma depth in the 𝑧-direction, 
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 𝐿𝑐
2 = 𝐷𝑐𝜏  2.30 

Now, assuming that there is no external electric field and no change in carrier concentration 

in equilibrium, 
𝜕(𝛿𝑛)

𝜕𝑡
= 0, by substituting 2.18 and 2.22 into 2.29, it becomes, 

 
 𝜂𝜆𝑞𝛼𝐼0𝑒−𝛼𝑧

ℎ𝑐
−

𝛿𝑛

𝜏
+

𝐿𝑐
2

𝜏

𝜕2(𝛿𝑛)

𝜕𝑧2
= 0  2.31 

Two boundary conditions need to be specified to solve this partial differential equation;  

 
𝑑(𝛿𝑛𝑧=0)

𝑑𝑧
= 𝜏𝑆

𝛿𝑛𝑧=0

𝐿𝑐
2   2.32 

 𝛿𝑛𝑧=∞ = 0  2.33 

where the first represents the surface condition expressed with 𝑆, the surface recombination 

velocity, as introduced earlier. The second explains the condition at an infinite distance from 

the surface, which only holds true if the thickness of the substrate is a few times larger than the 

absorption depth and the diffusion length, when a negligible excess carrier concentration needs 

to be considered. Therefore, the solved equation can be written as follows; 

 𝛿𝑛 =
−𝜏𝜂𝜆𝑞𝛼𝐼0

ℎ𝑐(𝛼2𝐿𝑐
2 − 1)

(𝑒−𝛼𝑧 −
𝛼𝐿𝑐 + 𝜏𝑆/𝐿𝑐

1 + 𝜏𝑆/𝐿𝑐
𝑒−𝑧/𝐿𝑐)  2.34 

As can be seen, the distribution of excess carriers is of exponential profile deep into the 

semiconductor and is largely determined by both the absorption depth, 𝛼 , and the carrier 
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diffusion coefficient, 𝐿𝑐. Practical values of these coefficients and constants can be found in 

[2.16]. 

Since both electron and hole carriers contribute to the ambipolar transport, with excess carrier 

concentration now known as a function of the depth, the conductivity of the plasma can be 

calculated as follows;  

 𝜎 = 𝑞(𝛿𝑛 + 𝑛0)(𝜇𝑒 + 𝜇ℎ)  2.35 

where 𝜎  is the conductivity (S/m). Henceforth, the relationship between the illumination 

intensity and electrical conductivity can be derived. Figure 2.9 shows conductivity against 

substrate depth for various illumination intensities. As can be seen, the conductivity of every 

illumination intensity condition follows the exponential decaying profile.  

 

Figure 2.9 Simulated result of Conductivity vs. Substrate depth for intrinsic silicon 

(n0=1.45×1010cm-3) under various illumination intensities (empirical and experimental values 

obtained from [2.16]) 



Semiconductor Physics and Photoconductance 

 

41 

 

2.3.4 Dielectric Permittivity 

Having quantified the photoconductivity change due to excess carrier generation by optical 

illumination in the last section, it is also essential to consider the change in the dielectric 

permittivity of a semiconductor when the concentration of carriers is altered. The electric 

permittivity, which describes the material’s ability to resist an electric field, can be defined in 

a complex form as follows [2.3]; 

 𝜀 = 𝜀′ − 𝑗𝜀′′  2.36 

Then, by substituting 2.36 into the 2.1 of Maxwell equations, it can be written as, 

 𝛻 × 𝑯 = (𝜎 + 𝑗𝜔𝜀)𝑬 = 𝑗𝜔{𝜀′ − 𝑗(𝜀′′ +
𝜎

𝜔
)}𝑬  2.37 

where 𝜀𝑡𝑜𝑡𝑎𝑙 = {𝜀′ − 𝑗(𝜀′′ +
𝜎

𝜔
)} gives the complex form of total permittivity integrated with 

conductivity, 𝜀′  is for the lossless real part of permittivity given by the product of the 

permittivity of free space and the real part of relative permittivity, 𝜀0𝜀𝑟
′ . 𝜀′′ +

𝜎

𝜔
 is the 

imaginary part of permittivity, which gives the energy loss that cannot be distinguished from 

the loss due to the free charge conduction quantified by 𝜎 and 𝜔 is the angular frequency, 𝜔 =

2𝜋𝑓 . Then, the loss tangent is defined as the tangent of angle ratio between the phase 

differences in this complex plane, 

 𝑡𝑎𝑛 𝛿 =
𝜔𝜀′′ + 𝜎

𝜔𝜀′
  2.38 
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The effect of the change in permittivity characterises the propagation of microwaves within the 

semiconductor. Hence, it is necessary to recall the propagation constant, 𝛾, defined in the wave 

equation in 2.7, which can be written in the form of refractive index, 𝑛, and absorption index, 

𝑘, but can also be represented as follows; 

 𝛾 = 𝛼 + 𝑗𝛽  2.39 

where 𝛼 is the attenuation coefficient and 𝛽 is the phase coefficient. If no light falls on the 

silicon, the propagation constant can be calculated based on the real part of permittivity, since 

the dielectric loss is negligible [2.17]. When light is provided, the rise of conductivity due to 

an increase of carrier concentration will result in a decrease in the real part of permittivity, but 

an increase in the imaginary part [2.18]. As shown in Figure 2.9, the exponential decaying 

profile of conductivity suggests a non-uniform distribution of carriers, as well as electric field. 

This is the region where most of the loss of microwave or millimetre wave signal propagation 

occurs. This loss is mainly due to the charged particles motion and heat dissipation which is 

represented by the imaginary component of the permittivity as a function of frequency. The 

acceleration, deceleration and friction of particles originate from the relaxation and rotation of 

the polarised dipoles. If this lossy region is electrically small, typically smaller than 1/16th of 

the wavelength, it can be modelled by a lumped element circuit. (Some studies and simulated 

models will be shown later in Chapter 4) When this illuminated region is enlarged, LCR circuits 

may not accurately capture the response; therefore, the propagation constant will be employed 

for the analysis. With regard to the design of the phase shift application, the imaginary part of 

the propagation constant needs to be enlarged while reducing the attenuation coefficient, the 

real part of the propagation constant. On the contrary, to design a switch, which is the main 

concern of this project, the aim is to maximise the real part at switch-off condition, while 

minimising it at switch-on condition to provide a large ON/OFF ratio between insertion loss 

and isolation. In-depth investigations and deductions from dielectric permittivity to 

propagation constant were studied in [2.19, 2.20] and the key findings are shown below.  
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 𝜀𝑝 = (𝜀𝑟 −
𝜔𝑝

2

𝜔2𝜏𝑐
2 + 1

) − 𝑗
𝜔𝑝

2

𝜔𝜏𝑐
2(𝜔2𝜏𝑐

2 + 1)
  2.40 

 𝜔𝑝
2 =

(𝛿𝑛 + 𝑛0)𝑞2

𝜀0𝑚∗
  2.41 

 𝜏𝑐 =
𝜇𝑐𝑚∗

𝑞
  2.42 

where 𝜀𝑝 is the relative permittivity of the plasma, 𝜔𝑝 is the angular speed of the plasma, 𝜏𝑐 is 

the carrier collision time, 𝑚∗ is the effective mass of the charge carrier. As shown, the real and 

imaginary parts of the relative permittivity in the plasma region are given as functions of carrier 

concentration. By implementing 2.34 and 2.35, a graph of the real part of the relative 

permittivity in the plasma region against substrate depth along the photon absorbed direction 

can be plotted in Figure 2.10. Figure 2.9 and Figure 2.10 together provide good solutions for 

creating and modelling plasma layers in simulation software with theoretically-calculated 

electrical properties and parameters. 
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Figure 2.10 Relative permittivity (real part) vs. Substrate depth for intrinsic silicon 

(n0=1.45×1010cm-3) under various illumination intensities 

2.3.5 Selection of Material  

The selection of the photoconductive material is extremely important. Elemental 

semiconductors (Silicon and Germanium), III-V compounds (GaAs, InP, etc.), other II or II-

VI compounds, and some other materials (composite polymers) all have various optical and 

microwave properties, but there are many factors that limit their use in practice, such as low 

carrier mobility [2.21], the need of large photon energy [2.22, 2.23], and limited conductivity 

in the ON state [2.24]. It could already have been assumed from the detailed discussion in the 

last section that the best choice could be a direct bandgap semiconductor material, for example 

GaAs. However, silicon has also been proved to be an extremely good photoconductive 

material. A comparison of Silicon and GaAs is shown in Table 2-1 below.  
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Semiconductor 
Silicon GaAs 

Characteristic Unit 

Bandgap 𝑒𝑉 1.12 1.42 

Electron mobility at 𝟑𝟎𝟎𝑲 𝑐𝑚2/𝑉s 1500 8500 

Saturated (peak) electron velocity × 107𝑐𝑚/𝑠 1 1.3 

Critical breakdown field MV/cm 0.3 0.4 

Thermal conductivity 𝑊/𝑐𝑚. 𝐾 1.5 0.5 

Relative dielectric constant 𝜀𝑟 11.9 12.8 

Table 2.1 Comparison of electrical properties of Silicon and GaAs materials [2.25] 

It can be seen from Table 2-1 that GaAs has a wider bandgap than silicon. This means that 

intrinsic GaAs is highly resistive and has a higher dielectric constant, which produces better 

isolation than silicon, which makes it a very good material for the substrate of Integrated 

Circuits (IC). Additionally, it is more resistive to radiation damage than silicon, which makes 

it a good candidate for space applications and high-power fields. The wider bandgap also 

suggests a lower cut-off wavelength. As explained in 2.2.3, high quantum efficiency occurs in 

the wavelength region close to the bandgap boundary so that visible light sources can be used, 

especially in the deep red and near infrared (NIR) regions, which increases the number of 

available sources to produce a photoconductive switch. Higher saturated electron velocity and 

less noise could be the other benefits of GaAs when used at high frequencies in the order of 

hundreds of GHz or THz. With regard to the use of GaAs as a compound direct-band 

semiconductor material, as explained earlier, no additional momentum in 𝑘-space is required 

from, for example, phonon’s assistance for the transition of bands between conduction and 

valence bands. Hence, it could be highly efficient for the absorption and emission of photons. 

The transport of the generated excess carriers in terms of drift and diffusion depends strongly 

on the carriers’ mobility. As shown in Table 2-1, GaAs’s electrons respond much quicker and 

move more actively than those of silicon when an electric field is applied, and this electric field 

could be created by the different concentration of carriers across a region. This high mobility 

may effectively shorten the response time for the generation of electron-hole plasma, which 

will result in a short rise time. More importantly, the effects of SRH, Radiative and Auger 
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discussed previously will be all responsible for the provision of the shorter fall time by GaAs’s 

recombination mechanisms. Therefore, these factors together could contribute to the possibility 

of faster switching than with silicon.  

However, silicon also has many advantages over GaAs. Firstly, it is abundant and very cheap 

to acquire and process, while GaAs is relatively expensive. The current economies and markets 

in the silicon and semiconductor industry hinder the adoption of GaAs. Furthermore, from a 

manufacturing perspective, silicon is more stable and the crystal can be processed to such a 

large scale and volume to make the wafer easy to handle and preserve. Silicon’s longer 

absorption depth of sunlight facilitates a larger planar device, especially in the solar cell 

industry, unlike GaAs’s, which requires a substrate material and hence increases the cost and 

complexity of the system. In addition, the techniques in the silicon industry are more advanced 

in that a passivated layer can be easily engineered on the surface to obtain good electrical 

properties, while GaAs does not have a native oxide. It is also worth noting that toxicity could 

be another inferior factor of GaAs compared to neutral silicon. Significantly, GaAs requires a 

much higher intensity of optical illumination for a photoconductive switch design than silicon 

on account of its faster carrier mobility and response, as explained earlier. A detailed 

comparison for the implementation of a photoconductive switch will be made and analysed in 

the penultimate chapter of this research. 

2.4  Conclusion 

The basic semiconductor and quantum physics involved in this study of light-semiconductor 

interaction have been discussed in this chapter. This interaction with semiconductors mainly 

involved the reflection, absorption and transmission of light. Reflection was firstly discussed 

from the angle of light as an electromagnetic wave. Maxwell’s equations were introduced to 

derive the wave equation and complex refractive index, which inspired the subsequent study 

of absorption and attenuation. Then, particle-wave duality was introduced in the absorption 

section and the chapter continued with a discussion of the band structure. The band transitions 

of the generation of electron-hole excess carriers were then described before defining quantum 

efficiency as a combination of external and internal quantum efficiency. Several examples of 

calculations were provided to reinforce the assumptions and conclude that silicon light at near 
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infrared wavelength region could be an optimum selection. This part of the discussion also 

included absorption depth, surface recombination and basic thermal problems.  

Particle behaviour was explained in detail in the photoconductivity sections with a focus on the 

generation of electron-hole pairs to create absorbed photon energy, the recombination of excess 

carriers and the drift and diffusion of carriers’ transport due to the application of an electric 

field and the gradient of carrier concentrations, respectively. Most importantly, the three 

recombination mechanisms of Shockley-Read-Hall, Radiative and Auger effects were 

introduced. Furthermore, this plasma region of a created high concentration of electron-hole 

pairs was analysed with physics equations so that the total carrier concentration, as well as the 

photoconductivity, could be calculated. Together with dielectric permittivity studies, the 

necessary electrical properties were quantified with physics equations to provide a solution for 

simulating photoconductivity within a semiconductor. Lastly, the choice of material was 

discussed with a comparison of GaAs and silicon.  

In conclusion, the fundamental physics and theoretical part of this research is introduced in this 

chapter. The simulation methodology developed here will ensure the accuracy of the circuit 

design and measurement comparison in the remainder of the study.  
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CHAPTER 3 

3. Simulation, Measurement and Fabrication 

 

3.1 Introduction 

The methods used to simulate, measure and fabricate the switches being studied are introduced 

in this chapter. The simulation part begins with a description of the model of the distributed 

element and this is followed by an overview of the full electromagnetic wave in-structure 

simulation methodology. As explained in the last chapter, lumped circuits may not be suitable 

for use, depending on the working frequency band when the electrical length is considerably 

large. Secondly, the fundamental optical and RF (Radio Frequency) measurement mechanisms 

will be introduced and finally, fabrication techniques, including photo-lithography and PCB 

(Printed Circuit Board) laser cutting, are described in detail. 
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3.2 Simulation Methods 

3.2.1 Distributed Element Model 

The lumped element model mentioned in the last chapter simplifies the circuit by assuming 

that perfect electrical components, namely resistors, capacitors and inductors, are connected by 

lossless wires. However, this is only valid when the electrical length of the circuit is much 

smaller than the operating wavelength. If they are in the same order of magnitude, the time the 

signal is propagated will not be negligible compared to its operating period. This means that 

the actual signal amplitude will vary with time as the signal is propagated in the circuit, but it 

cannot be assumed as a constant value anymore. Since more errors occur when the signal 

propagation time increases, a larger phase difference has an impact on the actual signal 

amplitude. The more generic method discussed here is the distributed element model, which 

corresponds with Maxwell’s equations in dynamic manners. In this modelling method, the 

individual circuit element is assumed to be infinitesimally small and the conducting wires are 

assumed to be somewhat impeded. A transmission line can be employed as a fundamental 

explanation. Transmission lines are composed of two or more conductors and are used to 

transfer power or information from one point to another. Unlike the ordinary electric circuits 

described in lumped elements, transmission lines can radiate power and generate standing 

waves described by distributed parameters. An example of a transmission line equivalent 

circuit in a distributed element model is shown in Figure 3.1. [3.1] 

 

Figure 3.1 Example of transmission line circuit [3.1] represented by distributed elements 
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The instantaneous voltages and currents are denoted by v(z, t) and i(z, t) respectively and the 

distributed parameters are as follows; 

Series resistance per unit length  R(Ω/m) 

Series inductance per unit length  L(H/m) 

Shunt conductance per unit length  G(S/m) 

Shunt capacitance per unit length  C(F/m) 

Since the Δ𝑧 is assumed to be infinitesimally small, the distributed element model can be more 

accurate than the lumped element one. Linear algebra provides an easy solution for a lumped 

element analysis whereas a more complex calculus is needed to analyse a distributed element 

model. The distributed element model is preferred when accuracy is required, since the circuit 

component dimensions are comparable to the wavelengths of the operating signal. A rule of 

thumb is the significance of a distributed element analysis in electrical and electronic 

engineering when a 10th of a signal wavelength is smaller than the circuit’s physical dimension 

[3.1]. Again, this suggests that distributed element modelling will only be valid within a limited 

range of frequency. However, this issue could be resolved by the use of distributed circuits in 

a series or cascaded, particularly at high frequency. Moreover, the distributed model has the 

potential benefit of a reduction in simulation time compared to full electromagnetic wave 

simulation, which will be discussed below. However, the need to repeat the manual work of 

cascaded electric circuit components and simulation software are drawbacks for the wideband 

analysis in electronic component design proposed in this research. Additionally, the full 

electromagnetic wave in-structure simulation facilitates a more comprehensive analysis and 

the fact that the results are based on the direct input of microwave engineering parameters and 

material properties makes it easy to calculate the characteristics of individual components. The 

results will be compared in detail in the following chapters. 
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3.2.2 Full-Wave Simulation 

Full-wave electromagnetic field simulation methodology is based on resolving Maxwell’s 

equations by using one of two classes of methods with discretion within boundaries, both of 

which rely on analytical geometry. Then, these equations are subjected to iterative algorithms 

through convergence to obtain a certain desired accuracy. The difference between these two 

classes of methods is that one of them resolves Maxwell’s equations in an integral form, while 

the other solves them in differential form, which only requires the discretisation of the source 

of the electromagnetic field for a coaxial transmission line, which is usually called an 

electromagnetic port. The Boundary Element Method (BEM) is a typical solution to the source 

of a surface in a three-dimensional problem [3.2]. Only a small region of the port needs to be 

considered in an open boundary condition rather than involving the whole electromagnetic field 

and this has been proved to be a faster and less costly method than those in the second class 

derived from different forms of Maxwell’s equations. However, this is only true when the 

problem region to be analysed is small or open, since this method generates a high density of 

linear system equations, which require a large volume of memory for storage and Gaussian 

elimination. Hence, the analysis of complex interconnecting factors increases the number of 

computations required to resolve problems of growing sizes, especially with increased circuit 

speeds and highly dense components. Therefore, different forms of method solving could be 

more competitive in these scenarios.  

In terms of the second class of full-wave simulation methods, the two most common 

approaches are the Finite Element Method (FEM) and Finite Difference (FD) methods and 

other variations and techniques normally fall into these two subcategories. FEM and FD 

methods can both be used to resolve equations in different forms within a discretised meshing 

system. The FEM method was originally applied to mechanical and civil engineering problems 

based on its advanced ability to deal with different boundary equations related to the 

distribution of static linear stress on bridges [3.3, 3.4]. It was later adopted as a solution to other 

physical problems and became one of the most popular methods for resolving different non-

linear equations to tackle complex boundary problems. As the name suggests, the FEM method 

involves dividing the interested volume into many finite elements in any dimension. Every 

element can be represented by nodes and edges. In a nodal analysis, each element can be 
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expressed in a matrix and element boundary coordinates can be easily stored. In an edge 

analysis, vectors are used to represent nodes and geometric information is saved. Importantly, 

these partitioned spaces can be of any arbitrary finite element, which could be considered as 

an advantage, since higher discretisation density can be applied to certain regions with rapid 

variation. This flexibility to implement a meshing grid reduces the computational demand for 

non-boundary spaces, since it reduces the number of fragments based on the number of nodes 

being determined from an interpolation function. Meanwhile, accuracy can be maintained for 

complex structures with many curved elements. In addition, FEM modelling is also useful for 

resolving problems related to various boundaries and different non-linear equations [3.5]. As 

for its disadvantages, FEM may need a large memory for storing matrix information, which 

suggests that its use will be limited by computer hardware. Furthermore, most simulation 

software packages for FEM are based on frequency domain solvers, which are useful for 

resonant structures, but could be very time-consuming when studying a broadband switch. This 

is because the result of every single move during a frequency band region needs to be calculated 

if it is considered using a frequency domain solver. 

The Finite Difference method discussed here refers to the Finite-Difference Time-Domain 

(FDTD) algorithm. Since the 1960s, when it was first proposed by Yee to resolve Maxwell’s 

equations, the FDTD method has played a leading role as one of the fastest techniques in 

modern full-wave electromagnetic solvers [3.6] [3.7]. The major difference between the FDTD 

method and the FEM method is that FDTD method resolves Maxwell’s equations in a different 

form and time domain. This difference is based on a grid or mesh system with partial 

derivatives, while the time-dependent characteristic facilitates the coverage of wide frequency 

bands, since a single-pulse triggered at the source port can be continuously calculated in a 

leapfrog manner, even for non-linear materials, which can be treated in a natural way. The best 

way to explain the algorithm in detail is to start by introducing Yee’s mesh. 

The Chinese-American applied mathematician, Kane S. Yee, originally proposed the Finite-

Difference Time-Domain method to resolve Maxwell’s equations in a different form and time 

domain. It is also called Yee’s method and it involves the implementation of Yee’s cube, as 

shown in Figure 3.2 in which the standard Cartesian Yee cell employed in the FDTD method 

is illustrated and the distribution of the electric and magnetic field components in 3-



Simulation, Measurement and Fabrication 

 

56 

 

dimensional vectors around the cube is demonstrated. Each element of the cell is given an 

appropriate electric permittivity value and assigned magnetic permeability data. The 

aforementioned leapfrog implementation refers to the process whereby the first electric field 

vector is solved at a time interval and is immediately followed by the next time instance, where 

the magnetic field vector is calculated in the same spatial volume. This process is repeated until 

a desired transient response or steady state condition is obtained. It can be seen that this also 

follows Maxwell’s curl equations in a different form stated in 2.1 where the change in the E-

field is dependent on that in the H-field in time and space. Therefore, in the next time step, an 

updated value in the E-field vector component is recalculated based on the data value stored in 

the adjacent E-field component in the previous step, which also depends on the numerical curl 

of the local H-field distribution. Similarly, the H-field component vector values depend on the 

registered values and the numerical curl of the local E-field distribution in time and space. This 

process is constantly conducted and continuously repeated with memory-stored data updated 

on the E-field and H-field vector components along the wave propagation. As can be imagined, 

calculating the curl of an element of multiple dimensions superimposed with the E-field and 

H-field would be extremely complex and Yee proposed a staggering spatial technique in a 

rectangular unit cell where the grid is set in the middle of an E-field and H-field pair [3.6]. This 

is still regarded as the most robust modern FDTD software solver, since it provides numerical 

solutions to different equations explicitly in a stepwise or leapfrog manner. This explicit 

scheme avoids the need to resolve simultaneous equations by setting the threshold to complete 

a large number of time steps to ensure numerical stability [3.8].   

 

Figure 3.2 Yee Cube [3.9] 
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The greatest benefits of the FDTD method is its simplicity, which enable users to resolve 

difficult practical problems due to its ease of understanding and ability to give them an idea of 

what to expect by its convenient implementation. Another important advantage is that a 

broadband analysis can be obtained based on its time-domain attribute, especially since the port 

source is a Gaussian type, and it also enables previously unknown resonance to be predicted. 

Moreover, the memory requirement is already explicitly registered since the grid or meshing 

system is predefined and the solution matrix will not be increased proportionally during the 

processing. Besides, the FDTD method is able to naturally accommodate a variety of linear or 

nonlinear, homogeneous or heterogeneous materials so that no additional algorithms are 

needed for a complex dispersive lossy anisotropic dielectric material. Lastly, the restrictions of 

the FDTD method as opposed to the previously-discussed advantage of the FEM method 

related to open boundary problems, have now broken by many recent studies [3.10, 3.11], 

which has increased its popularity for antennas and other RF circuits. 

On the other hand, the greatest disadvantage of the FDTD method is the drawback of the 

meshing system. Since the FDTD method requires complete spatial discretisation in grids in 

the form of Yee’s cubes, it is inadequate for calculating complex geometrical structures. This 

is essential for the FDTD method, since the smallest mesh size needs to be 10 times lower than 

the smallest electromagnetic wavelength to maintain the accuracy of the solution and the cells 

of the FDTD method are less flexible than the arbitrary element in the FEM. If there are many 

dielectric layers or numerous variations or curves around the surface of the material, large 

numbers of FDTD meshes will need to be employed to compensate, which means that an 

increased simulation time will be expected to complete the increasing number of steps. 

Although other dynamic meshing and sub-meshing systems [3.12] have been developed, their 

implementation may not be straightforward and they also demand more computational power 

or memory at the beginning. Another disadvantage is that the simulation time of the FDTD 

method could increase considerably for resonant structures or multi-port systems due to the 

slowly deteriorating transient response. Fortunately, this is not the case in this research which 

is based on studying aspects of a broadband switch.  

The Finite Integration Technique (FIT) method, which is a variation and subcategory of the 

FDTD technique, was proposed by Thomas Weiland in 1977 [3.13]. This is an integral form of 
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a spatial discretisation scheme for Maxwell’s equations, which provides computers with 

suitable reformulations and facilitates explicit calculations in the same way as the FDTD 

method. This technique contributes to the enhancement of many commercial simulation 

software programmes since it covers a wide range of electromagnetic analyses, from static to 

high frequency, and even optic implementation. Most simulations were performed in this work 

using the FIT solver in Computer Simulation Technology (CST) Microwave Studio of CST 

Studio Suite. The main reason for this is the requirement of a wide bandwidth simulation and 

analysis and the fact that the frequency solver in CST, which uses the FEM technique, can be 

employed for a complementary analysis in terms of resonance.  

3.3 Measurement Setup 

Some generic measurement techniques that include the setup of optical sources, fibre optics, 

circuit fixtures, RF connector mounting and switching electronics are introduced in this section 

and detailed descriptions for specific individual studies will be provided in each of the 

following chapters.   

3.3.1 Laser and Optical Setups 

The first optical source is a 1W continuous wave (CW) laser manufactured by Roithner Laser 

Technik (RLCO-830-1000-TO3) [3.14]. This is a standard transverse-mode Vertical-Cavity 

Surface-Emitting Laser (VCSEL) diode whose field pattern is perpendicular to its propagation 

beam direction. Its beam follows Gaussian profile and has a facet size of 50𝜇𝑚 × 5𝜇𝑚 at 

a wavelength of 830𝑛𝑚. This laser is mainly used for an initial microstrip gapline test and the 

switching measurement of GaAs, which benefit from its implementation of collimation and 

focus on optic techniques. A standard VCSEL facet laser is shown in Figure 3.3.  

 

Figure 3.3 Image of a standard VCSEL facet laser 
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The large inherent beam profile and rectangular shape of this laser is initially problematic for 

collimation, but it can also be considered as beneficial for illuminating a wide area. The 

photograph in the Figure 3.4 shows an example of the basic setup for the optical illumination 

of a device under test (DUT). Micrometre stages were used to provide good alignment between 

the laser and lenses. The collimating lens used here is the Thorlabs C390TME-B aspheric 

collimating lens [3.15] with low loss. The laser light is emitted from the VCSEL and is then 

passed through the collimating lens and a spherical lens of [3.16] so that it can finally focus on 

the DUT fixed on a brass block where the optical illumination interacts with the semiconductor-

based microwave or millimetre wave circuits. The RF connectors mounted on the brass block 

connect the circuit to the Vector Network Analyser (VNA) on both sides. Parameter results can 

be obtained from the VNA for further analysis.    

 

Figure 3.4 Measurement setup with optical illumination provided by VCSEL and optics 

As mentioned earlier, the chosen illumination wavelength was in the near infra-red (NIR) 

region. An NIR reflective surface coated ring was used to capture the illuminated area to 

calculate the intensity, since these wavelengths are normally invisible to the human eye. The 

magnified images of the ring on an optical power detector are shown in Figure 3.5 and it was 

measured and calculated that an intensity of 13.9𝑊/𝑐𝑚2 could be obtained with an illuminated 

area of about 3𝑚𝑚 × 2𝑚𝑚. The optical power was uniform and the intensity was almost 



Simulation, Measurement and Fabrication 

 

60 

 

constant over the illuminated region due to the relatively large area of emission from the 

VCSEL, as mentioned above.  

   

Figure 3.5 Illuminated beam on NIR reflective surface coated ring and magnified image 

A further experiment was conducted to check the laser beam illuminating profile. A basic 

Gaussian profile was observed as expected. Since the beam profile could be measured directly 

in this experiment, this optical setup could easily be implemented with microwave and 

millimetre wave devices, which eliminates the need of complex optics. However, it can be still 

expensive, regardless of some commercially-established samples. Furthermore, the packaging 

and integration of these bulky optics for base-station applications in telecommunications or 

other small/medium-scale devices are costly.  

Another optical setup solution that benefits from mobility is shown in Figure 3.6. This optical 

source is an optical fibre coupled laser (RLCO-980-2000-F) [3.17]. Since the original optical 

fibre is bare and exposure to it can harm the human eye, it was enclosed within a metal box 

with the addition of a Peltier pad [3.18] for a TEC cooling method [3.19]. A cladded multimode 

fibre (M56L005) [3.20] was then connected by a FC-SMA adapter, which enabled the 

transition and simultaneously extended the reach with the mobility. However, since a full 

optical transition cannot be performed due to the use of adapters, the connection between those 

two fibres is not optimum, which reduces the power efficiency, to be less than 10%, in terms 

of the ratio of the optical source to the DC power consumption. This multimode fibre has a 

diameter of 2.5𝑚𝑚 and its end is inserted into a drilled hole in the brass block with a push fit. 

In contrast, the free-space VCSEL can provide up to 60% efficiency. 
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Figure 3.6 Measurement setup with optical illumination provided by fibre-coupled laser 

In contrast with the previous method that involved the use of a free space laser, this fibre-based 

approach shortens the distance between the optical source and the photoconductive region, 

thereby effectively reducing the loss compared to the light being transmitted in the air. 

However, as the use of an adapter does not perform a collimation and angles are not aligned at 

the fibre edges, there is also a considerable loss between the supplied DC power and the 

radiated optical power.  

3.3.2 LED Sources 

Light Emitting Diodes (LEDs) are distinguished by their ease of operation and integration. 

They are free of optics and affordable. The fundamental theory of the emission of light is based 

on the radiative recombination, as explained in §2.3.2. LEDs have been employed and 

implemented for package mobility and integration purposes. In this study, mainly in pulsed 

modulation measurements. The TSHG8x00 series of VISHAY Semiconductors [3.21] have 

been chosen as basic examples of LEDs because of their high-power operation in the NIR 
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region, small angle of half intensity, good spectral matching and relatively high-modulation 

bandwidth. The TSHG8200 model has been selected and its basic ratings characterised in the 

laboratory have been tested and closely matched to the vendor’s data sheets in Figure 3.7. The 

flat line in Figure 3.7 (Left) suggests that a linear region exists before the forward voltage 

exceeds 1.5V and the gradient drops where nonlinearity occurs when the forward voltage 

increases. The main reason for this has been found to be the nonlinear thermal issue in the 

LED’s resistor.  

 

Figure 3.7 Forward current vs. Forward voltage (Left) and Radiant power vs. Forward voltage 

(Right) from TSHG8200 data sheet [3.21] 

This initial characterisation test provided a general idea of the LED. A further pulsed operation 

with signal generators was conducted on the LED, which will be explained in detail in Chapter 

6 along with the implementation of switching and modulation. 

3.3.3 Switch Fixture 

A switch fixture provides a platform that essentially enables the RF connectors to be mounted 

and a microstrip, as well as a coplanar waveguide, to be grounded. Since brass is a low-cost 

metal, it was selected as the main fixture, which is shown in Figure 3.8 below.  
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Figure 3.8 Photographs of microstrip (Left) and coplanar waveguide (Right) switch fixtures 

In terms of the microstrip circuits, which are mainly discussed in Chapters 4 and 6, female 

SMA connectors [3.22] were employed to facilitate the transition from a coaxial line in the 

VNA cables to the microstrip circuits. The connectors were screw-fixed with bolts onto the 

brass block and attached to the circuit by silver epoxy. For high frequency, as will be discussed 

in Chapter 5, V connectors/1.85mm connectors were used to reduce the higher modes in the 

electromagnetic propagation. Additional drilled and threaded holes by tapers contributed to a 

firmer fixture or sample holding effect. The fixture mounting and connector installation will 

be described in detail in subsequent chapters.  

3.4 Circuit Fabrication  

The fabrication techniques for the microstrip and CPW circuits involved in this study will be 

introduced in this section. There are two main approaches, namely photolithography and PCB 

laser cutting. The former involves using ultra-violet (UV) optical illumination with masks and 

chemicals to ensure a more accurate resolution and a good finish on the circuits. The main 

benefits of the latter may be its low cost, chemical-free and simple procedures. However, the 

accuracy and resolution are degraded by the laser-cutting technique being implemented through 

mechanical precision control. Also, since most thermal solutions, as involved in this technique, 

are extremely sensitive to ambient conditions, it is always difficult to control the depth and 

edges of the cut so that careful preparation and repeated test cuts are required beforehand. The 
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main focus of this section is the photolithography fabrication techniques and an example of 

PCB fabrication by laser cutting for integration purposes will be provided in Chapter 5.  

3.4.1 Wafer Coating 

Before the photolithography, the first process for the fabrication of a standard semiconductor 

circuit is the application of the metal material on the semiconductor. The material used in this 

project was a combination of gold and silicon. Gold was selected because of its high 

conductivity, oxidation resistivity and resistance to other forms of corrosion. A very thin layer 

of titanium was added between the gold and the silicon because this has been found to 

significantly improve the adhesion. The wafer structure of gold, titanium and silicon layers is 

shown in Figure 3.9.  

 

 

Figure 3.9 Wafer Structure 

Sputter coating is a technique used to depose gold on silicon. In this project, it involved using 

ion bombardment physics to coat the sample with gold and titanium. After the clean wafers 

were attached to the coater using an adhesive sticker, the chamber was evacuated in a vacuum 

condition. Then, a neutral gas, argon in this case, was introduced into the chamber so that the 

ions would collide with the metal in a high electric field and bring them onto the surface of the 

wafers.   

3.4.2 Photolithography 

The standard procedure of optical photolithography, which is also called UV lithography, will 

be introduced in this section. This involves using microfabrication to pattern microstrips or a 

CPW line of a substrate. A geometric pattern is formed by a photomask on light sensitive 

chemical photoresist. The photomask is firstly designed and drawn in CST. The exported image 
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file is then uploaded to [3.23] for fabrication. The following process generically involves 

cleaning, photoresist application, UV exposure with a mask, developing and etching. The initial 

cleaning involves removing dust, organic and inorganic contaminations on the wafer surface 

using a wet chemical treatment. Acetone, Methanol and Isopropanol were used in this 

laboratory work. Firstly, all the wafers were put onto a clean plate in a Sonicator with a water 

bath that made ultrasonic waves around the sample and relatively big particles of dust or 

impurities were shaken off by oscillation. Then, Acetone was poured onto the plate and 

Methanol was after 15-20 seconds before the Acetone had dried up. This was left for 20 seconds, 

after which Isopropanol was used following the same procedure. Finally, soft, de-ionised water 

that was free of minerals was used to clean the beaker holder and the wafers were dried by a 

compressed nitrogen gun. The sonicator and chemical solvents are shown in Figure 3.10. 

           

Figure 3.10  Sonicator (Left), and Acetone, Methanol and Isopropanol (Right) 

The second step was to apply photoresist to the surface of the semiconductor. In this project, 

the wafer was covered by photoresist using a spin coater [3.24]. Microposit S1805 [3.25] is a 

chemical photoresist that is resistant to chemical etchant in the later stages. Tweezers were used 

to take a wafer onto the centre of the SPIN150, where it was held by the spinning machine 

using a vacuum. Next, 3 to 5 drops of Microposit S1805 photoresist were applied using an 

injector based on the sizes of the cleaved or diced samples. The spinner was set to 5000 

revolutions per minute (rpm), 30 seconds duration and 10000 rpm per seconds acceleration to 

dispense the photoresist onto the wafer, thereby forming an equally thick photoresist layer. 

After ensuring that the wafer was covered uniformly by the photoresist, samples were moved 

to an oven for stabilisation and baked at 90 degrees Celsius for 30 minutes. If a photoresist 

application failed or was unacceptable, a process called ashing was used to remove the 
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photoresist using a liquid resist stripper. With practice, it was possible to fabricate several 

wafers with similar dimensions in batches at one time for backups and averaging purposes. The 

corresponding devices and instruments involved in this stage are shown in Figure 3.11. 

         

Figure 3.11  Spin Coating Machine (left) and Oven (right) 

After baking, the wafers with the photoresist were exposed to intensive UV light with the 

desired pattern guided by the mask. As a result, unmasked regions that were exposed under the 

UV could be removed later by the developer [3.26] while the photoresist in masked areas did 

not interact with the developer, leaving the circuit pattern. This approach is called positive 

photoresist, since the photoresist is soluble when exposed to the developer, while unexposed 

areas remain stable.  

 

Figure 3.12  Masking and UV Exposure Device 
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The mask aligner, which was the device used to hold the mask and wafer, and provide UV 

illumination, is shown in Figure 3.12. It mainly consisted of three compartments, namely, a 

cooler (the top device at the back), a UV lamp (the box after the Microscope in front of the 

Cooler) and the microscope. The cooler used Argon and compressed vacuum air to cool the 

UV light device. The UV exposure time varied based on the different sizes of the wafers and it 

normally took 100 seconds for 2 to 3 cm2. Care must be taken to ensure that the instrument is 

left to cool for 1 to 2 minutes after each use. After the UV exposure, unwanted photoresist 

needed to be removed by the developer, MF-319 so that the pattern from the mask would be 

transferred through the photoresist. Masked regions that had not interacted with the UV 

illumination would be protected from etchants by the photoresist. A 2-minute soaking is 

normally long enough for a newly-exposed wafer, but a longer time will be expected if the 

developer stays in the air as a result of oxidation.  

           

Figure 3.13  MF319 Developer (Left), Bath Heater (Middle) and Etched Wafers (Right)  

As previously shown in Figure 3.9, from top to bottom, the layers of the wafer had become a 

photoresist layer that only resided in the masked area, gold layer, titanium layer, and silicon 

substrate. The etching process normally aims to remove the unwanted upper layers in which 

the photoresist has been dissolved by the developer in the last process. Highly corrosive 

Trifluoroacetic acid (TFA) was used to remove the gold for typically 5 to 7 minutes, depending 

on the proposed wafer thickness and the etch rate. Next, titanium etching was performed by 

placing the wafers into a preheated 37% hydrochloric acid (HCL) liquid for 3 to 5 minutes with 

a heat of 67℃. Finally, the sample wafers were cleaned by de-ionised water and dried by a 
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nitrogen gun. The developer, bath heater, and some microstrip gaplines on the silicon substrate 

are shown in Figure 3.13.  

3.4.3 Cleaving and Wafer Cutting 

The fabrication process normally starts with a large wafer that needs to be divided into several 

fragments.  A picture of a 4-inch wafer that arrived from the supplier before it was cut is shown 

in Figure 3.14. A basic rough cut can be achieved in the first stage by using a cleaver. The 

cleavage process in crystallographics is based on crystalline planes glass and may produce a 

result similar to the cleaving process employed in this project. The aim of this technique is to 

give the sample a flat edge and it usually causes a break perpendicular to the longitudinal axis 

of the wafer.  

 

Figure 3.14  4" silicon wafer 

Cleaving is used to produce roughly-sized samples. A break line can be generated by firstly 

nicking two edges of a wafer with a diamond pen and then hand-breaking it simply with two 

tweezers inserted underneath it as cushions. A more accurate sizing and dicing tool employed 

in this project was the Microace 3 Dicing Saw [3.27] in a clean room [3.28], which served to 

produce the desired sizes of samples. 
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Figure 3.15 Microace 3 Wafer Cutting Machine 

As can be seen from the above Figure 3.15, this dicer consisted of three main components, 

namely, a programming controller (keyboard on the right side), microscope operation platform 

and high-speed blade (boxed section on the left). Before dicing, the wafers had to be held firmly 

on the central tray. This problem was solved by designing a flat drum surface using a circular 

ring band with replaceable green and blue tapes, 0.07mm and 0.08mm thick respectively. The 

less sticky blue tape was firstly stretched and fastened firmly by a circular rubber band with 

the sticky side facing up and then the green tape was put on top of it. It is worth noting that any 

air bubbles between the green and blue tapes should be squeezed out by fingers to form a flat 

surface. Care should also be taken not to scratch or damage the surface in case the vacuum 

cavity is broken before the drum can be stuck and locked on the dicer tray. The final step is to 

put the wafers on the sticky side of the green tape using tweezers. Air bubbles should be 

squeezed again to ensure a flat surface before mounting the wafers on the dicer tray. Several 

photographs in Figure 3.16 were taken during the process for a more intuitive explanation.  
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Figure 3.16  Microscope Section (Left), Operation Platform (Mid) and Flat Tray (Right) 

The most important thing at this stage is to carefully calculate all the data that needs to be input 

to the Microace 3 dicer machine. The first essential parameter is the depth of the cut. For 

example, here a silicon wafer was measured to be 0.525mm thick, including 10nm titanium 

and 5nm gold layers. The depth of the cut is calculated as 0.660mm which is the sum of the 

0.525mm (wafer thickness), 0.07mm (green tape thickness) and 0.08mm (blue tape thickness). 

The thickness of the blade (0.3mm) also needs to be considered, as shown in Figure 3.17. A 

black cross is marked on the microscope lens for calibration, but it only indicates the central 

position of the blade and this fact needs to be considered when deciding the accurate line of the 

cut. In other words, if a 13.3mm long wafer is targeted, two extra 0.15mm spaces should be 

left on both sides in order to compensate for the thickness of the blade, as shown in Figure 3.17.  
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Figure 3.17  Diagram for accurate cutting calculation, blade thickness of 0.3mm, desired sample 

length is 13.3mm 

Having completed the planning and preparation the operation can proceed as follows; 

Turn on Vacuum; (eliminate air between the tray and operational platform)  

Turn on Water; (for cooling the blade) 

Turn on main switches for the cooler, lamp and dicer; 

Turn Isolator 90 degrees clockwise;  

Fit Sample ring on operational platform; 

Wait for machine’s self-condition check; (machine stand-by) 

Turn on vacuum; (to hold sample in place) 

 

Programme:  

• press and select personalised programme and dicing mode,  

• dimension width: 50mm (total area coverage of wafers to be cut)  

• dimension length: 50mm (total area coverage of wafers to be cut) 

• total thickness: 0.660mm (as calculated above) 

• depth of cut: 0.660mm (as calculated above) 

• feed rate 0.2mm per second (can be faster if no metal coated on surface)  

• spindle speed: 25 (kilo rpm) 

• align in vertical and horizontal axis 

• water on – spindle – single cut (height sense examined) 
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Figure 3.18  Electronic Microscope (Left), View from Digital Microscope (Right) 

After the dicing, each piece of the wafer should be checked for the dimensions and cleaned 

before use. Figure 3.18 (Left) contains a photograph of the electronic microscope in a clean 

room that was used to observe the microscopic view of the microstrip shown in Figure (Right).  

3.5 Conclusion 

The relevant standard process of simulation, measurement and fabrication implemented in this 

research was described in this chapter. The chapter began with a comparison of the distributed 

element model and the full-wave electromagnetic analysis, which mainly served to expose the 

limitation of the former. Therefore, a more detailed explanation and comparison was made of 

the scope of the full-wave analysis, which consists of the FEM, FDTD, FDFD and FIT 

algorithms. The FIT method, which has evolved from the FDTD method, is distinguished by 

its computational efficiency and popularity in modern simulation software. The laboratory 

measurement work was the focus of the final part of the chapter, which included a description 

of the setup, which was flexible and versatile, and the platform on which optical and RF 

engineering interacted. Both lasers and LEDs were listed as optical source candidates for 

different purposes and photolithography-based and laser cutting-based semiconductor circuit 

fabrication approaches were also discussed.   
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CHAPTER 4 

4. Nonlinearity and Power Handling 

Characterisation of a Photoconductive 

Microstrip Switch 

 

4.1 Introduction 

The aim of this chapter is to design and optimise a microstrip switch based on previous work 

[4.1] using the theory of light-semiconductor interaction discussed in previous chapters. Most 

of the materials shown in this chapter have been presented in [4.2] and [4.3]. The chapter begins 

with a review of the current standard industrial switches in order to demonstrate that there is 

room for improvement and illustrate the potential for photoconductive switches. Optimisation 

and characterisation, especially in terms of nonlinearity and power handling, are described and 

analysed. 
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4.2 Reviews and Proposals  

According to the discussion in the literature review section in Chapter 1, there are several 

wireless communication standards that coexist and need to be accommodated by the design 

and implementation of reconfigurable circuitry and there is growing interest in tunable RF 

switching circuits. Primarily, the cost and size of systems can be significantly reduced by 

designing these circuits with tunability, which eliminates the need to duplicate the same circuits 

for every desired band. Some relatively mature techniques are mainly evident in PIN diodes, 

Varactors and RF MEMS [4.4-4.8]. Varactor and PIN diodes can be employed to provide low 

insertion loss and continuous frequency band tuning, but they cannot easily cope with high 

power signals because of their diode non-linear behaviour [4.4-4.6]. While RF MEMS switches 

give excellent isolation value and linear behaviour, there are some issues related to reliability 

and high-power performance, particularly “hot-switching” [4.7-4.8]. One overriding issue with 

all these approaches is the requirement for DC bias lines and, although this is not a major issue 

for simple switching/tuning networks at low microwave frequencies, it can become extremely 

complex with many tens to hundreds of elements. However, the requirement for complex DC 

biased networks can severely limit the system performance at millimetre wave frequencies and 

beyond. Optically tunable devices remove the need for bias circuits and a very linear 

performance should be achievable, since no diode junction or Schottky barrier is required 

within the structure. 

Therefore, despite its relatively lossy behaviour [4.1], photoconductivity-based tuning in a 

semiconductor could be a strong candidate technology due to a number of significant benefits, 

which include very high operating frequencies with up to 266GHz operation having been 

shown in [4.9]. The potential of a very linear performance of a photoconductive switch was 

first studied in 2003 [4.10] based on a heterostructure of a photoconductive switch with 

illumination provided from a flip chip VCSEL at a maximum of 15mW. A single tone harmonic 

nonlinearity test was conducted at 960MHz. The second order intercept point (SOI) was 

measured to be 115dBm and the third order intercept point (TOI) was 65dBm with RF power 

up to 1W. This research demonstrated the huge potential of a photoconductive switch for a very 

linear performance and good power handling ability. Another investigation was undertaken 

later [4.11] when a single material, silicon, was examined at a higher frequency of 2GHz. The 
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characterised SOI and TOI were 70dBm and 63dBm respectively in a single-tone non-linearity 

test with 200mW incident light illumination at 980nm. 

 

Figure 4.1 Fundamental linearity and second order and third order harmonics [4.11] for 

different optical power (fundamental tone at 2GHz with maximum power of 1W) 

Figure 4.1 obtained from this work indicates that the linearity was constant and independent at 

an illumination power of over 10mW. This linearity, which is irrespective of the method and 

power of the controlling terminal, can be considered as an advantage compared to some other 

RF switches. The linearity of other conventional RF switches will deteriorate when they are 

not biased at the right voltage because the resistance often depends on the supplied current. On 

the other hand, since the RF power was limited at up to 30dBm in this experiment, it was also 

interesting to determine the power handling of this type of switch. A follow-up experiment was 

conducted later [4.12] and compression was observed when the RF input power was increased 

to 42dBm (~16W). Meanwhile, the silver epoxy used to fix the silicon began to melt from this 

point onward.   
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Although good results have been obtained from the above-mentioned non-linearity test on a 

photoconductive switch, these results were based on harmonics from a single-tone non-

linearity test in which the nonlinear harmonics occur as noise signals at multiple-integer times 

the frequency of the input tone. This test approach cannot be a good indicator of a circuit used 

in a channel in which the fundamental tones are close to each other and intermodulation 

distortion could mask the wanted signals. Therefore, a two-tone non-linearity test for 

intermodulation distortion observation is firstly proposed in our study, while another study will 

focus on how to increase the circuit’s competitiveness, since its reliability was compromised 

when the silver epoxy melted at 16W input in [4.12].  

  

Figure 4.2 Measurement setup for nonlinearity test [4.11] with bulky laser and fibre optics 

As for the packaging design, [4.10-4.12] a solution of top illumination was chosen, since this 

can make the system or chip integration difficult due to the requirement of a specific suspended 

arm to hold the optical source. Figure 4.2 shows the measurement setup described in [4.11, 

4.12]. Since this bulky packaging is unrealistic in practice, a new proposal is made in this thesis 

and will be discussed later in this chapter.  
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4.3 Superstrate Microstrip Gapline Design 

4.3.1 Insertion Loss Investigation  

A gapline structure based on a microstrip transmission line was studied in our previous work 

[4.1] and a photograph of this microstrip gapline is shown in Figure 4.3. This was based on 

silicon substrate, which was mounted on a brass block and adapted with SMA connectors which 

were then connected to the VNA. The transitions for RF were provided by Anritsu K104M K-

Type coax [4.13] to microstrip connectors.  

 

Figure 4.3 Photography of a microstrip gapline switch [4.1] for top illumination 

Then the DUT was fixed on a Microstage [4.14] where light was focused and incident on the 

gap area of the microstrip line. As explained in §3.3.1, free-space illumination was provided 

by a VCSEL with lenses. Figure 4.4 shows the VNA measured S21 results of a microstrip 

gapline with 0.4mm linewidth and 1mm gap illuminated by varying intensities in [4.1]. S21 is 

the forward transmission coefficient in a two-port network in a scattering parameter system 

[4.15] and used as insertion loss in this scenario. As shown, the insertion loss of un-illuminated 

microstrip gaplines was considerable, which makes it impractical for commercial use, not to 

mention competing with other microwave switches. Therefore, the first target was to find the 

optimised microstrip gapline geometry that had the lowest insertion loss in this structure layout. 
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Figure 4.4 S21 comparison of the VNA measured results of a microstrip gapline with 0.4mm 

linewidth and 1mm gap in varying intensities [4.1] 

CST simulation was used to find the optimal gapline geometry. To begin with, a fundamental 

transmission line model needed to be created as a reference indicator, which could then be 

modified into a gapline structure. Given the thickness of the silicon substrate (500𝜇𝑚) and the 

permittivity of silicon (11.9), the width of a transmission line of 50Ω characteristic impedance 

could be calculated as 400𝜇𝑚, according to [4.16]. The CST simulated and VNA measured S-

parameter result of a 400𝜇𝑚 microstrip line are shown in Figure 4.5, which indicates good 

agreement. In general, the simulated curves accurately predicted the tendencies of the peaks 

and troughs in the measured results. The degradation in S21 after 10𝐺𝐻𝑧  could have been 

caused by a manufacturing limitation of the SMA connectors or the transition loss, as 

mentioned above. This initial test successfully formed a basis and reference for the subsequent 

research of microstrip gaplines. 
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Figure 4.5 S parameter results for a CST simulated and VNA measured microstrip line with 

0.4mm linewidth 

Having obtained good simulated results for the above circuits, CST-based simulation can be 

considered to be a good and reliable technique that saves the cost of fabrication and ensures 

the accuracy of parametric results of a circuit analysis. The height of the silicon substrate in 

this gapline circuit model is fixed at 500𝜇𝑚, relative permittivity is 11.9, and the thickness of 

the gold microstrip is 100𝑛𝑚 to 500𝑛𝑚. Hence, the optimisation focused on manipulating the 

other parameters, namely the surface conductivity, the gap length and the linewidth. A 

sensitivity analysis was conducted using the function of parameter sweep in CST, which can 

determine the impact of the independent variable or parameter values on the overall results, 

especially the S21. Firstly, a relatively high conductivity in the microstrip gap region was set to 

a constant to ensure the independence of conductivity and comparability among different 

insertion losses of circuits of varying dimensions. After a few rounds of comparing the S21 

results for varied microstrip line widths, 0.4𝑚𝑚  was found to be the optimum linewidth 

selection. The S21 results of a 0.4𝑚𝑚 linewidth microstrip line with varying gap lengths in 

ranges of 100𝜇𝑚 , 200𝜇𝑚 , 500𝜇𝑚 , 800𝜇𝑚 , and 1000𝜇𝑚  are shown in Figure 4.6. The 

minimum 100𝜇𝑚 gap length is considered to be the lower bound because the isolation value 
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drops significantly as the gap continues to decrease. Another reason is that the optical 

efficiency will decrease with the gap shrinking under the area of the illuminated spot because 

more energy is unused and wasted. The illumination spot is typically 1𝑚𝑚 in diameter, which 

is similar to those of other optical sources introduced in Chapter 3.  

 

Figure 4.6 S21 of 0.4mm linewidth microstrip line with varying gap lengths (𝛍m) (1)100 (2)200 

(3)500 (4)800 (5)1000 

The insertion losses of varying gap lengths shown in Figure 4.6 demonstrate a gradual tendency 

to increase as the frequency increases. The main reason for this may be the heat dissipation that 

occurs in every thermodynamic motion, as well as radiation loss because signals are less 

confined at higher frequencies. The lowest insertion loss at 10GHz is about 3dB from a 100𝜇𝑚 

gap. This loss is still considerably high before reaching the millimetre wave regime and is not 

ideal in practice. Therefore, the loss mechanism in this structure was analysed [4.1] with the 

aim of inspiring a better improved structure. A snapshot in cross-section view of the CST 

simulated E-field magnitude distribution for an instant of time as it propagates through the 

single-layer-plasma model region at 10GHz is shown in Figure 4.7. The strongest fields exist 

right below the plasma, which is the low-conductivity region. There are two main factors that 

can account for the insertion loss, the first of which is the finite conductivity of the plasma. The 
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order of magnitude of the metal’s conductivity normally ranges from 5 to 6 in S/m, whereas 

the surface conductivity of the plasma only has a few hundreds of S/m. Hence, abruption may 

be considered to occur when the signal is propagated from the gold track of the microstrip to 

the plasma surface, where fringing fields tend to break away from the confinement, which 

causes the loss. The other loss is caused by the superposition of strong E-fields and the low-

conductivity region within or below the plasma. This means that the strong fields distributed 

within the substrate region beneath the plasma are causing the current to drain in a highly 

resistive region.  

 

Figure 4.7 A snapshot in cross-section view of the CST simulated E-field magnitude distribution 

for an instant of time as it propagates through the single-layer-plasma model region at 10GHz 

[4.1] (Strong electric field distributed within the low-conductivity substrate region beneath the 

plasma – this superimposed E-field and plasma region cause energy draining and hence the loss) 

4.3.2 Superstrate Structure  

Since the gapline structure introduces the abruption at microstrip ends, the above-mentioned 

fringing loss can be inherently difficult to eliminate. However, changing this geometric 

superposition would reduce the other loss caused by the overlap of the E-field and highly 

resistive plasma region. It was suggested that this could be achieved by a superstrate structure 

that would split these two regions away; therefore, based on this idea and our successful work 

on antenna [4.17], the superstrate structure was implemented in a microwave and millimetre 

wave switch design. This structure for a superstrate microstrip gapline is shown in Figure 4.8.  
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Figure 4.8 Schematic diagram of superstrate microstrip gapline switch 

As shown in Figure 4.8, the silicon had flipped over to become a superstrate on top of a 

microstrip gapline that had a substrate of fused silica glass. As described in §3.3.1 and depicted 

in Figure 4.8, the optical illumination was firstly delivered by an optical fibre which was push-

fitted inside the brass block fixture. The light later came from the fibre end and was incident 

on the silicon surface through the air and the fused silica. The air represented the space between 

two microstrips and the hole drilled inside the brass block fixture for holding the sample. The 

fused silica was highly optically-transparent with low microwave loss. SMA connectors were 

mounted on the brass block to provide the microstrip-to-coax transitions. This structural design 

has many benefits, as discussed below. 

The first obvious advantage of this superstrate structure is that the above-mentioned high-loss 

region was eliminated due to the geometric alternation. Silicon above the microstrip circuit 

meant that the diffusion tail and high-loss region were away from the high microwave field 

region, which is expected to reduce losses.  

Secondly, fused silica glass was chosen as a substrate material based on its low loss tangent 

(0.00006 at 3GHz) and low relative permittivity (𝜀𝑟 = 3.5) as opposed to silicon’s loss tangent 

(0.005 at 1GHz) and relative permittivity (𝜀𝑟 = 11.9) which will further reduce the insertion 

loss [4.18]. As explained earlier in §2.3.4, the loss tangent is the ratio of the lossy reaction to 

the electric field to the lossless part of it. The lossy part is caused by bound charge and dipole 
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relaxation, which contributes to free charge conduction. Fused silica is a transparent insulator 

that absorbs hardly any light, as well as possessing a very high bandgap. Hence, almost no 

conduction region can exist around this glass, which may lead to the loss.  

In terms of transparency, there is a need to ensure a high percentage ratio, since a high optical 

efficiency needs to be retained, despite the structural change. Fresnel equations [4.19] can be 

used in this case to determine the theoretical reflection and transmission for electromagnetic 

radiation incident on an interface of different media. Assuming normal incidence, the reflection 

𝑅 can be written as follows; 

 𝑅 = (
𝑛0 − 𝑛𝑓𝑠

𝑛0 + 𝑛𝑓𝑠
)

𝟐

= (
1 − 1.87

1 + 1.87
)

2

= 9.2% 4.1 

where 𝑛0 is the refractive index of air and 𝑛𝑓𝑠 is the refractive index of the fused silica. This 

calculated result implies that a maximum of 90.8% transmittance could be achieved. A follow-

up experiment was conducted using the set-up introduced in §3.3.1. An optical power meter 

was used to record the optical power and compare the values. The only variable was whether 

fused silica existed in front of the sensor or not. The attenuation was found to be almost 10% 

and this was considered to correlate with the theoretical answer. Other factors were assumed 

to have little impact, such as the sample variation of the fused silica, measuring system error 

or device calibration error.  

It is also very important to discuss the bottom-side illumination here. Bottom-side illumination 

through drilled conventional substrates has been shown previously [4-20], however the use of 

glass substrates minimises the discontinuity introduced into the microstrip line which will 

become much more important at higher frequencies where optically controlled switching 

becomes a very attractive technology. In addition, this hybrid approach with a silicon 

superstrate provides a good integration possibility that could be easily incorporated into large 

complex circuits. Finally, the use of the brass block ground plane as heat sink has considerable 

potential and suitability for high power applications. 
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4.4 Switch Characterisation  

4.4.1 Simulation 

Before moving to the fabrication and measurement to characterise the switch’s properties, it is 

recommended to use simulation approach to find the optimum circuit dimensions first. 

Computer aided design and simulation always give effective, systematic and low-cost options 

compared with fabrication and manufacture. Detailed discussion has been carried out in §3.2 

and FIT-based CST simulation solver has been selected for its advantage on broadband 

analysis. Figure 4.9 shows the top view of such basic superstrate microstrip gapline model in 

CST. The brass block behaves like the ground plane, fixture and good heat sink for this device 

under test (DUT). For the ground plane, both the simulated connectors with coax excitation 

ports and the fused silica substrate have been ensured to be aligned and sit on the same height 

which is represented in z-direction.  

 

Figure 4.9 Top view of a superstrate microstrip gapline in CST (showing coax connectors, 

substrate, superstrate and microstrip) 

 



Nonlinearity and Power Handling Characterisation of a Photoconductive Microstrip Switch 

 

89 

 

The electron-hole plasma region can be represented by a series of varying conductivity layers 

as quantified in §2.3.3. In the multi-layer model, each differentiated layer of the created plasma 

region was assigned with varying conductivity and permittivity values in terms of the material 

properties. Figure 4.10 shows the conductivity profile used in this work. Figure 4.11 shows the 

ten cascaded conductive layers derived from Figure 4.10.  

 

Figure 4.10 Conductivity vs. Depth below the surface of silicon superstrate 

 

Figure 4.11 Multiple-plasma-layer model within silicon superstrate in CST view 



Nonlinearity and Power Handling Characterisation of a Photoconductive Microstrip Switch 

 

90 

 

A sensitivity analysis was conducted again through the parameter sweep function in CST to 

compare the circuits with various dimensions. Based on the experience of §4.3.1, the linewidth 

was calculated at around 1𝑚𝑚 for a 50𝑂ℎ𝑚 transmission line that now had a substrate of 

fused silica. Therefore, this was the reference linewidth to begin the parameter sweep. After 

checking and fixing the linewidth of 1𝑚𝑚 for other parameter sweeps in a simulation to obtain 

the optimum insertion loss, an investigation of the optimisation of the gap length was initiated. 

The surface conductivity was set to 1000S/m, which is the same as that used in the sensitivity 

analysis for a standard microstrip gapline mentioned above. The S21 of a superstrate microstrip 

gapline of 1𝑚𝑚 linewidth and varying gap lengths in this illuminated condition is shown in 

Figure 4.12 and it can be seen that the insertion loss is now much lower than for the silicon 

substrate case shown in Figure 4.4 as had been expected. Since insertion loss generally rises 

with an increase in the gap length, a 0.1𝑚𝑚 gap length gives the lowest insertion loss in this 

case. In terms of switch performance the dark-state insertion loss, or isolation of the switch is 

also critical parameter and also needs to be assessed. Figure 4.13 shows the S21 of a superstrate 

microstrip gapline of 1𝑚𝑚 linewidth and varying gap lengths in a dark condition without any 

illumination. The isolation values for this switch are given in this graph, which show the degree 

of attenuation of an unwanted signal when the switch is off. A trade-off was found to be 

necessary between the insertion loss and the isolation value. As the frequency of interest is set 

at 2GHz, to achieve a good trade-off between isolation and insertion loss, a gap of 0.4mm was 

chosen eventually.  
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Figure 4.12 Simulated S21 results for a superstrate gapline of 1mm linewidth with varying gap 

lengths (1)0.1mm (2)0.2mm (3)0.3mm (4)0.4mm (5)0.5mm and surface plasma layer 

conductivity 1000S/m 

 

Figure 4.13 Simulated S21 results for a superstrate gapline of 1mm linewidth with varying gap 

lengths (1)0.1mm (2)0.2mm (3)0.3mm (4)0.4mm (5)0.5mm in dark conditions (no plasma 

generated)  



Nonlinearity and Power Handling Characterisation of a Photoconductive Microstrip Switch 

 

92 

 

With regard to the size of the superstrate patch in a sensitivity analysis, almost identical S21 

results were found from the CST simulations, either when the patch length increased along the 

y-direction or the patch width varied along the x-direction, as indicated in Figure 4.9. Hence, 

it seemed that there was no straightforward approach or simple answer. Based on considering 

the practical or experimental handling and fixing, it is necessary for the superstrate patch to 

cover the total area of the gap between two microstrip tracks. This means that the patch width 

should be larger than the microstrip linewidth, 1𝑚𝑚, and the patch length should be larger than 

the microstrip gap, 0.4𝑚𝑚, although a minimum of 2𝑚𝑚 × 2𝑚𝑚 is desirable for ease of 

handling and aligning the wafer. Further details about making a decision on the superstrate 

patch size will be provided in the next section along with the measured results.  

4.4.2 Fabrication and Measurement  

The fused silica was 500𝜇𝑚 thick and polished on both sides. The silica wafer was initially 

cleaned using solvents to remove any dust and impurities on the surface, immediately after 

which it was sputter-coated with 5nm titanium and 350nm gold in an ambient argon 

atmosphere. This 5nm titanium middle layer was used to improve the adhesion between the 

gold and the fused silica. Photoresist was then spin-coated on the wafer, which was exposed 

through a mask to define the circuit. The photoresist was then developed and trifluoroacetic 

acid (TFA) and hydrochloric acid (HCL) etches were used to remove the gold and titanium 

respectively. Figure 4.14 contains a microscope magnified view of a microstrip gapline 

immediately after fabrication with a linewidth of 1mm and a gap of 0.4mm. The fused silica 

glass substrate (𝜀𝑟 = 3.5) was mounted on a machined brass block and a piece of silicon (𝜀𝑟 =

11.9), which was held in place using sellotape. Sellotape was initially chosen based on its low-

loss electromagnetic property, but there are more discussions and experiments to decide on the 

fixing material later. The superstrate silicon was a lightly doped n-type wafer with <100> 

orientation and resistivity>10KΩ.cm and optical illumination was provided by a 980nm 

wavelength fibre coupled laser diode (Roithner Lasertechnik). This was chosen due to the high 

carrier generation efficiency at this wavelength. The fibre laser was coupled through a hole in 

the block that was designed to have the minimal effect on the microwave response. An electron-

hole plasma region was generated in the silicon with the high conductivity region close to the 

microstrip gap. The lossy, lower conductivity tail was contained within the silicon, far from the 
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high microwave field region in the gap and the fused silica substrate, which substantially 

reduced the loss compared to previous configurations [4.1].  

 

 Figure 4.14 Microscope view of a 0.4mm gap in a 1mm wide microstrip line on fused silica glass 

 

Figure 4.15 Top view of a test circuit mounted on a brass block and connected with coax to VNA 

The last section contained a rough estimate of the superstrate patch sizes from simulation and 

practical consideration. Several tests were undertaken of various superstrate patch sizes to 

continue to determine the optimum dimensions for this circuit. Firstly, patch lengths were 

found to have a negligible impact on the results. A 5𝑚𝑚 length was selected based on its ease 
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of handling. The S21 results for a superstrate switch with various superstrate patch widths are 

shown in Figure 4.16.  

 

Figure 4.16 Measured S21 results for superstrate gapline of 0.4mm gap and 1mm linewidth with 

superstrate length of 5mm and varying widths in dark (_OFF) and illuminated (_ON) 

conditions 

As can be seen from Figure 4.16, a combination of 5mm long and 2mm wide superstrate 

patches caused the least insertion loss while still maintaining a good isolation value. The VNA 

measured and CST simulated results of a superstrate microstrip gapline switch in illumination 

ON and OFF conditions are compared and illustrated in Figure 4.17. The microstrip gapline 

had a linewidth of 1𝑚𝑚 , a gap length of 0.4𝑚𝑚  and a substrate of 0.5𝑚𝑚  thick. The 

dimension of the superstrate patch was 5𝑚𝑚 × 2𝑚𝑚 × 0.5𝑚𝑚. In the case of illumination 

ON, there was almost 400𝑚𝑊 of optical power concentrated on a 1𝑚𝑚2 circular spot. Hence, 

the intensity of this illumination was calculated as 51𝑊/𝑐𝑚2. In the CST simulation, the 

surface plasma conductivity was calculated as 941𝑆/𝑚 based on the quantified analysis in 

§2.3.  
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Figure 4.17 S21 Comparison of VNA measured and CST simulated results of a superstrate 

switch in illumination ON and OFF conditions 

According to this graph, there is reasonable agreement between the measurement and the 

simulation. The simulated and measured curves closely matched one another after 1𝐺𝐻𝑧 , 

whereas the standard CST approach failed to accurately simulate this trend before 1𝐺𝐻𝑧 . 

Therefore, distributed element modelling was then implemented with aid of AWR Microwave 

Office [4.21] to compensate for this disagreement.  

4.4.3 Distributed Element Modelling  

The derivation of a distributed element modelled equivalent circuit will be described in this 

section and then compared with the CST simulated and VNA measured results. The plasma 

models have been derived at the end of microstrip line stubs in previous work [4.22, 4.23], 

while this work provides the extension of modelling a gap region inserted between two 

equivalent transmission lines. It will firstly aim for a superstrate microstrip gapline model at 

dark state. Then, the parameter values attained in the model at dark state will be tested in 
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condition with illumination so as to prove the assumption and verify the accuracy of such 

models. Measured results of S21 are used for the value acquirement for the equivalent circuit 

component.  

The distributed element for a standard microstrip gapline modelling has been proposed in 

[4.24]. It consists of a model of three capacitors and a pair of symmetrical microstrip 

transmission lines that are discussed in §3.2.1. This equivalent circuit modelling has since been 

widely accepted and used in many researches [4.25]. Figure 4.18 shows the equivalent circuit 

representation of the gap region in a standard microstrip gapline by discrete element 

components, 

 

Figure 4.18 Distributed element modelling of microstrip gap region 

where 𝐶𝑔  is the gap capacitor between symmetrical microstrip lines while 𝐶𝑝  is the shunt 

parallel capacitor between the microstrip track and the ground on each side of the gap. 

In the superstrate gapline case, the contact between the superstrate patch and the microstrip 

tracks are expected to have the same capacitive effect, represented by 𝐶𝑐, but with different 

values compared with that in the circuit in Figure 4.18. It can be difficult to start the process of 

comparing the measured and simulated results to directly obtain the values of each individual 

component. However, at low frequencies, the capacitors can be considered as open circuits, 

and thus resistors will primarily determine the S21 values. Henceforth, the plasma region can 
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be a breakthrough point. Combining the physics models derived in Chapter 2, the plasma region 

has been assumed to be represented by a series-thru element [4.25] quantified in impedance 

values. It can be expressed analytically as, 

 
𝑆21 =

2

𝑍
𝑍0

+ 2
 

4.2 

where 𝑍0 is the characteristic impedance of the system and thus is 50Ω in this case. 𝑍 is the 

series-thru impedance which includes the inductive and resistive effect across the plasma 

region. The value of 𝑍 in complex form can be derived from the measured S21 in magnitude 

and phase data results. To simplify this model, lossless environment in low frequency region 

has been made and hence resistor component is used with the magnitude to represent the plasma 

region. Data from the S21 result in Figure 4.16 has been extracted and used to work out the 

plasma resistance, 𝑅𝑝. After the resistance derived, capacitance values can be determined by 

comparing with the measured data plot in Figure 4.17. Figure 4.19 shows the proposed circuit 

diagram with discrete element components in representation of a superstrate microstrip gapline 

in the simulation software, AWR Microwave Office (MWO) [4.21].  

⚫ Ports (𝑃 = 1 and 𝑃 = 2) are the simulated coax ports connected to the VNA. 50𝑂ℎ𝑚 

source and load impedances have been set for the whole system.  

⚫ 𝑀𝑆𝑈𝐵s (𝑆𝑈𝐵1 and 𝑆𝑈𝐵2) are microstrip line element models in each side of the gap. 

Detailed parameters in these models have been set with values in reference to the fabricated 

superstrate switch, which primarily includes the (Nominal) relative permittivity 

(𝐸𝑟𝑁𝑜𝑚) 𝐸𝑟, substrate height 𝐻, and microstrip thickness 𝑇.  

⚫ As explained above, 𝐶1  is the gap capacitor, 𝐶𝑔 , 𝐶2  and 𝐶3  are the shunt parallel 

capacitors, 𝐶𝑝, 𝐶4 and 𝐶5 are the contact capacitors, 𝐶𝑐, 𝑅1 is the plasma resistor, 𝑅𝑝 
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Figure 4.19 discrete element model of superstrate microstrip gapline in AWR Microwave Office 

It has been found that 𝑅𝑝 and the pair of 𝐶4 and 𝐶5 predominately determine the slope of the 

S21 curve below 1.5𝐺𝐻𝑧. As capacitances have been evaluated by comparing the simulated and 

measured results, the only variable now is the plasma resistor. To further simplify the model 

and predictively simulate the circuit instead of comparing results to find the resistance after 

measurement, a fundamental physics formula has been implemented for use below by linking 

the electrical resistivity, 

 𝑅𝑝 = 𝜌
𝑙

𝐴
=

𝑙

𝜎𝑤𝑡
 4.43 

where 𝜌 is the resistivity, 𝜎 is the conductivity, 𝑙 is the plasma length along the microstrip line, 

𝐴 is the cross section of the plasma which can be decomposed with the plasma width 𝑤 and the 

plasma thickness 𝑡. By using this formula, the plasma region has been modelled as a single-

layer resistor. The resistance value in dark state derived by 4.3 is then assigned into the MWO 

model. Figure 4.20 shows the S21 comparison among the VNA measured, CST simulated and 

MWO simulated results in both illumination ON and OFF conditions. For the case of switch 

with illumination ON, plasma resistor has been recalculated by 4.3 with adapting the new 

resistivity from an optical intensity change. Modelled capacitors remain unchanged as they 

were with illumination OFF. 
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Figure 4.20 S21 comparison of VNA measured, CST simulated and MWO simulated results for a 

superstrate switch in illumination ON and OFF conditions 

Figure 4.20 shows good agreement between the MWO simulated and VNA measured results 

for both cases of illumination ON and OFF. This means that the above derived simplified 

discrete element modelling has been verified for generalised use. Although MWO simulated 

result shows good agreement with measured result, especially in the low frequency region 

below 1.5𝐺𝐻𝑧, this approach has been implemented based on a single layer plasma model and 

several ideal assumptions which mainly disregard the phase change. The adaptability has been 

theoretically limited to certain frequency range by discrete element modelling. It can be 

improved with more discrete element involved, but a number of pre-calculations are always 

required, especially when phase and plasma resistor are varied. In contrast, the full-wave 

simulation tool, CST, still shows an overall strength with electromagnetic field analysis. More 

detailed discussion and improvement on CST modelling will be followed in §4.6.3. 
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4.5 Non-linearity Characterisation 

After successfully and accurately characterising the insertion loss and isolation of a superstrate 

microstrip gapline switch, the nonlinearity characterisation that has equally important 

parameters for high-power RF switch design will be examined in this section. A nonlinear 

system is a system in which the relationship between the output and the input signals is not 

proportional. This may cause unpredictable and counterintuitive changes, which can be 

detrimental to the signal recovery and a noise analysis after a distance of transmission in 

telecommunication. Moreover, output power efficiency is crucial, since the performance 

ratings are affected by power consumption and heat dissipation. This work was undertaken 

based on the proposal of a full two-tone linearity test.  

4.5.1 1dB Compression and Third-Order Intercept Point 

If communication systems devices such as switches, amplifiers and mixers are nonlinear, 

harmonic signals will be produced at the output terminal. Normally, the second, third and 

higher harmonics can be easily filtered out since they are usually outside the bandwidth of the 

device. Hence, a single-tone nonlinearity analysis may not be sufficiently robust to characterise 

the device. 

In real systems multiple input signals can occur simultaneously and harmonics from these 

signals can mix with fundamental tones to produce interference signals close to the original 

signal frequencies. These signals are called intermodulation distortion (IMD) products and they 

are not easy to eliminate, since they are within the bandwidth of the device. Thus, a third-order 

intercept point (IP3), which is based on a two-tone nonlinearity test, is proposed to be a good 

indicator of a nonlinear system and device. A low-order polynomial modelling can be used to 

quantify the nonlinearity of a device by means of Taylor series expansion.  
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Figure 4.21 Example of two fundamental tones, the harmonics and their higher-order 

intermodulation distortion products in frequency domain 

Two fundamental signal tones, 𝑓1 and 𝑓2, the harmonics and their higher-order IMD products 

are depicted in Figure 4.21. IMDs, 𝑓1 + 𝑓2 and𝑓2 − 𝑓1, are produced from the second-order 

distortion, but they can be very easily filtered out, since their frequency spacing away from the 

fundamental tones is relatively wide. However, 2𝑓1 − 𝑓2 and 2𝑓2 − 𝑓1 are the most problematic 

third-order IMD products, which are those adjacent to the two fundamental input signals in the 

frequency regime, as illustrated in Figure 4.21. This is the basic knowledge to derive IP3 in a 

two-tone nonlinearity test. The next important step is to plot a curve of output power vs. input 

power for this DUT. For a linear device, a straight line can be drawn as shown in Figure 4.22. 

However, the device will not respond like this in practice because, as the input power continues 

to increase, the curve will flatten, which means that the gradient of the line will begin to 

decrease at some point. This means that saturation can be reached eventually at some high 

signal levels, which tends to result in a nonlinear response and distortion, such as harmonics 

and intermodulations. Hence, it is interesting to determine the point at which the compression 

starts to occur. This point is defined as 1-dB compression point (P1dB) [4.15] when the input 
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power incurs a 1dB decrease from the expected linear growth in the output power. This is noted 

in Figure 4.22 as the 1dB drop from the theoretical response to the actual response.  

 

Figure 4.22 Illustration of 1dB compression point (P1dB) and third-order intercept point 

In Figure 4.22, the fundamental signal power curve used to derive the P1dB gives a 1:1 gradient 

within the linear region and this is considered to be the first-order signal plot. The third-order 

signal power is also plotted in this logarithmic scale with a 3:1 slope. In other words, from a 

mathematic perspective, an interception can be observed with the slope rate difference between 

these two lines. This is only based on the assumption that sufficient power can be supplied and 

compression will not occur before reaching the intercept point, but this is often not the case. 

However, it is very useful for determining the nonlinearity characteristics of the DUT by 

extending the linear portions of those two curves to find the intercept point. This point is called 

the third-order intercept point (IP3). With different reference to the different power axes, it can 

be read as IIP3 for input power, or as OIP3 for output power. The larger the intercept values, 

the higher the linearity of the DUT is and the lower the IMD.  
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4.5.2 Measurement Setup 

Large signal characterisation in the presence of a two-tone signal was performed to investigate 

the non-linear behaviour of the switch in terms of intermodulation products, as well as its ability 

to handle high power. The frequencies of these two tones were chosen as 2.000𝐺𝐻𝑧  and 

2.001𝐺𝐻𝑧 based on its usage in current wireless communication standard bands where they 

vary from 1.4MHz to 20MHz. In the first stage, the frequency spacing was not expected to 

have a huge impact on the non-linear behaviour, as it does for active devices. More two-tone 

measurements with different frequency spacing have been planned to confirm this in the next 

section. The set-up of the two-tone non-linearity measurement is shown in Figure 4.23. The 

two-tone sinusoidal signals were generated by two signal generators [4.26] and they were 

synchronised in the same clock cycle by a BNC cable to generate in-phase signals. Two 

separate generators were used because the use of a single driver with a two-tone generator at 

its input may result in the observation of the driver’s non-linear behaviour rather than that of 

the microwave switch.  

 

Figure 4.23 Schematic diagram of two-tone nonlinearity measurement setup 
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Two low-noise linear amplifiers [4.27] were then connected to amplify the signal, since it was 

limited by the output of the generators. Directional isolators were used after the amplifiers to 

prevent large-signal reflection and these two amplified signals were later joined by a power 

combiner [4.28] and delivered to a directional coupler [4.29]. Most of the power was 

propagated through the DUT, which was subject to IR illumination. A small portion of the 

signal was split into another path in the coupler, observed by a power sensor and terminated by 

a 50Ω load. The power sensor [4.30] was employed to monitor the input signal to the DUT and 

the dummy load was to ensure that no signal was reflected back. A similar approach was also 

taken to monitor the signal power of the output from the DUT. Care was taken to add 

appropriate attenuators to protect this sensor from large signals and the sensor meter readings 

were displayed in real time in R&S power viewer [4.31]. Attenuators must be hired to protect 

this kind of sensor, since it is very sensitive and has relatively weak power-handling ability; 

hence, the directly measured results are no longer the actual power. This can be resolved by 

calibrating the device beforehand and compensating for the difference made by the attenuators. 

Offset values can be easily set in the sensor interface software. Caution should be employed 

when implementing a calibration by always starting with a small input of power. In this 

calibration method, the DUT in Figure 4.23 was firstly replaced by a straight-thru connection 

to the power sensor for Pout directly. Hence, the offset value should be the difference between 

these two power sensors, for Pin and Pout, after accounting for the attenuation from the 

directional coupler. The calibration of a power sensor for Pin can be completed by calculating 

this offset. Next, to calibrate the power sensor for Pout, the second directional coupler needs to 

be added between the straight-thru and the sensor for Pout. Since the straight-thru power is now 

being measured by the calibrated sensor for Pin, the offset for the Pout sensor can be calculated, 

thereby calibrating both sensors. Finally, a spectrum analyser was connected, as shown in 

Figure 4.23, in order to capture the spectrum data for a post-measurement analysis.   

Figure 4.24 shows the measured S21 results for a superstrate microstrip gapline switch of 

0.4𝑚𝑚 gap and 1𝑚𝑚 linewidth under varying conditions of illumination. As can be seen, the 

insertion losses tended to be saturated as the illumination intensity increased. The insertion loss 

under 25𝑊/𝑐𝑚2 was 2.6𝑑𝐵 at 2GHz and the isolation was 19.3𝑑𝐵 in dark conditions. The 

plot of output power against input power in a two-tone nonlinearity measurement for the switch 

can be seen in Figure 4.25. As shown, the third-order intermodulation distortion product started 
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to occur when the input power increased beyond  40𝑑𝐵𝑚 , equivalent to 10𝑊 . IIP3 was 

extrapolated as 65𝑑𝐵𝑚 using the above mathematical approach. 

 

Figure 4.24 Measured S21 results for a superstrate microstrip gapline switch of 0.4mm gap and 

1mm linewidth with superstrate fixed by sellotape under varying illumination intensities 

The results of insertion loss, isolation and IIP3 all indicate a considerably good performance. 

Although it may not be sufficient to compete with the switches [4.5-4.8] mentioned at the 

beginning of this chapter regarding to insertion loss and isolation, this initial test has 

demonstrated that this switch has significant potential, especially in terms of nonlinearity. In 

addition, as shown in Figure 4.26 the sellotape used to fix the superstrate melted and left burn 

stains when the input power was increased to 43𝑑𝐵𝑚. Therefore, the power handling ability 

of the switch also needs to be improved, which will be discussed in detail in the next section.  
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Figure 4.25 Pout vs. Pin in two-tone nonlinearity test for a superstrate microstrip gapline switch 

of 0.4mm gap and 1mm linewidth with superstrate fixed by sellotape 

 

             

Figure 4.26 Photographs of melted sellotape during nonlinearity measurement 
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4.6 Nonlinearity and Power Handling Optimisation 

4.6.1 Superstrate Fixture  

This section contains the details of a further study of the superstrate fixture to improve the 

switch’s power-handling ability. As discussed above, sellotape was initially selected based on 

its electromagnetic characteristic of low loss. However, it was proved not to survive the heat 

when the input power increased. Several other materials chosen as superstrate holders were 

also considered and subjected to an experiment. A photo of the switch with superstrate fixed 

by a Duroid material [4.32], which has low relative permittivity (𝜀𝑟 = 2.20), is shown in Figure 

4.27. This material is ductile and this property is utilised when bending is needed with the 

holder being fixed by two screws.  

 

Figure 4.27 Photograph of a superstrate microstrip gapline with superstrate fixed by Duroid 

The measured S21 results of the superstrate microstrip gapline switch with superstrate fixed by 

Duroid under varying illumination intensities are shown in Figure 4.28. This result is very 

similar to that of the switch with superstrate fixed by sellotape, but the rising curve in S21 in 

the frequency region from 5kHz to 500kHz is steeper in this S21 graph. This is believed to be 

due to better contact and a firmer fixing between the superstrate and the microstrip gapline, 

which leads to lower insertion loss.  



Nonlinearity and Power Handling Characterisation of a Photoconductive Microstrip Switch 

 

108 

 

 

Figure 4.28 Measured S21 results for a superstrate microstrip gapline switch of 0.4mm gap and 

1mm linewidth with superstrate fixed by Duroid [4.32] under varying illumination intensities 

 

Figure 4.29 Pout vs. Pin in two-tone nonlinearity test for a superstrate microstrip gapline switch 

of 0.4mm gap and 1mm linewidth with superstrate fixed by Duroid 
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The IIP3 of 60𝑑𝐵𝑚 with the superstrate fixed by Duroid is shown in Figure 4.29.  This number 

has dropped by 5𝑑𝐵 compared with the IIP3 in the sellotape fixture test. The reason for this 

drop is believed to be associated with the firmer contact, as mentioned above, and also with the 

Duroid’s material property.  

As for power handling, it was found that the Duroid started to soften and bend after the input 

power increased above 40𝑑𝐵𝑚. Also, the Duroid fixture holder cannot be used repeatedly 

since the damage tends to be permanent. Another approach using a Perspex holder to clamp 

the superstrate firmly together with screws is illustrated in Figure 4.30.  

 

Figure 4.30 Photograph of a superstrate microstrip gapline with superstrate fixed by Perspex 

As shown in Figure 4.31, when the insertion loss at 2𝐺𝐻𝑧 was decreased to 1.8𝑑𝐵 and the 

isolation maintained at around 20𝑑𝐵, the rising curve in S21 in the low frequency region from 

5𝑘𝐻𝑧 to 500𝑘𝐻𝑧 became even steeper. This again proved that a firmer contact results in a 

smaller impedance and thus a smaller insertion loss at low frequency. This impedance in 

superstrate part is composed of a series RC connection as previously discussed in §4.4.3 and 

shown in Figure 4.19. As the contact between the silicon and the gold tracks is not ideal, 

pressure will change the surface contact conditions. When more pressure is exerted on the 

superstrate, a larger surface contact area will decrease the resistance while the resultant reduced 

distance tends to increase the capacitance. Therefore, this change incurs a lower impedance 

and a smaller insertion loss at low frequency.  
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Figure 4.31 Measured S21 results for a superstrate microstrip gapline switch of 0.4mm gap and 

1mm linewidth with superstrate fixed by Perspex under varying illumination intensities 

 

Figure 4.32 Pout vs. Pin in two-tone nonlinearity test for a superstrate microstrip gapline switch 

of 0.4mm gap and 1mm linewidth with superstrate fixed by Perspex 



Nonlinearity and Power Handling Characterisation of a Photoconductive Microstrip Switch 

 

111 

 

However, in terms of the nonlinearity characterisation, IIP3 had decreased to 59𝑑𝐵 which was 

1𝑑𝐵 lower than that in the Duroid fixture test. This suggests that a firmer contact may affect 

the switch’s linearity. With regard to power handling, a similar problem occurred when the 

input power was raised above 43𝑑𝐵𝑚. The heated silicon was gradually squeezed into the 

melted space from the Perspex fixture bar from this power level onwards.    

So far, the fixture material had been changed from sellotape to Duroid and Perspex. Although 

this led to a better insertion loss, the performance of the power handling was a trade-off and 

this was not ideal. It has been suggested that it is possible to use another low-loss material with 

a relatively higher melting point or without conducting much heat from the silicon, while 

simultaneously maintaining a firm contact between the superstrate and the microstrip gapline 

for a good insertion loss. A more in-depth analysis and discussion will be provided in the next 

section.  

4.6.2 Passivated Layer and Quartz Insulation 

The design of superstrate material and fixture selection is further studied in this section. As 

discussed above, it can be concluded that a firmer contact between the semiconductor silicon 

superstrate and the metal gold microstrip gaplines may lead to a better S21 performance, but it 

increases the nonlinearity effect. It is suspected that this silicon-gold junction causes a diode 

effect and forms a high Schottky barrier. Hence, it is necessary to employ the band diagram 

again to explain the Schottky barrier and a qualitative discussion will be required, since 

quantitative calculations need rich knowledge of quantum physics and a massive amount of 

experimentation. The following text will focus on n-type semiconductors, since this type of 

material is used to rectify contacts [4.33] in most cases. The band diagrams of a metal and n-

type semiconductor before contact are shown in Figure 4.33. At a first glance, there appear to 

be different Fermi levels (𝐸𝐹), which can be considered as the key reason for the formation of  
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Figure 4.33 Energy-band diagram of a metal and a semiconductor 

a Schottky barrier. 𝜒 is the electron affinity which is the energy needed to form a negative ion 

by adding an electron to a neutral molecule, 𝜙𝑚 and  𝜙𝑠 denote the work functions of metal 

and semiconductor, respectively, measured in volt. The work function energy measured in 

electron volt is the minimum energy an electron requires to escape from a solid to a vacuum 

level immediately above its surface, namely 𝑞𝜙 or 𝑞𝜒 . This level of vacuum is also denoted 

in Figure 4.33. Therefore, it can be seen that 𝜙𝑚 >  𝜙𝑠 and the Fermi level in the metal is below 

that in the semiconductor before contact. When these two materials are combined, electrons 

from the semiconductor will flow into the metal which has relatively lower energy states to 

achieve a thermal equilibrium. In this process, a depletion region will be formed through the 

system which shares a same constant in the Fermi level. The Schottky barrier can now be 

defined as the potential barrier height, 𝜙𝑏.  

 𝜙𝑏 = 𝜙𝑚 − 𝜒 4.2  

This potential height is seen by electrons as the barrier they must overcome in order to move 

back to the semiconductor from the metal. The potential barrier can vary from forward bias or 

reverse bias conditions. The band diagrams are also similar to those of a pn junction [4.33]. 

The current-voltage characteristics are expected to show exponential behaviour; therefore, the 
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silicon-gold contact is believed to be a Schottky contact, which can be the major cause of the 

nonlinearity in the superstrate switch.  

Several approaches have been considered to remove or reduce the Schottky effect. The first is 

to provide an annealed and alloyed contact. This kind of fabrication method normally entails 

depositing alloy metals on the semiconductor followed by high-temperature annealing to 

reduce the unintentional barrier at the interface. For example, a typical alloy aluminium can be 

used with silicon; however, this can be difficult to handle and align in practical fabrication from 

a circuit design in a micrometre or millimetre scale. In addition, the subsequent annealing at 

around 500℃ will further improve the contact resistivity, which may lead to an unwanted drop 

in the switch’s insertion loss. The second method is the tunnelling contact. This phenomenon 

can be described as particles, such as electrons, tunnelling through a barrier that typically 

cannot be surmounted. However, it requires a dense carrier concentration, which may need 

high-level doping and it only occurs where the interface or contact is in the order of few 

nanometres. Although this is not a realistic approach, the idea of doping is of much interest. 

Hence, the third method is the semiconductor doping that was introduced earlier in §2.3.2. All 

three of these methods generically aim to reduce the potential barrier height and are effective 

with an ohmic contact formation when a low-resistance junction provides the bidirectional 

conduct between the metal and the semiconductor. Hence, the relationship between the current 

and the applied voltage can be characterised by a linear function. Both n-type and p-type 

dopings were considered as a third approach. As suggested, the difference between Fermi levels 

needs to be reduced before contact in order to reduce the difference between 𝜙𝑚 and 𝜙𝑠 and 

thus, the barrier. Both less n-type doping and a high level of p-type doping can lower the Fermi 

level in a semiconductor to achieve this effect. Nevertheless, since a lightly n-doped silicon 

(resistivity > 10𝑘Ω. 𝑐𝑚) has already been employed, even less n-type doping will demand more 

optical power to prevent more insertion loss. On the other hand, p-type doping can also provide 

a solution by lowering the Fermi level on the side of the semiconductor and hence reduce the 

potential barrier. The results of further measurements are shown below.  
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Figure 4.34 Measured S21 results for a superstrate microstrip gapline switch with p-type 

superstrate silicon (resistivity < 5kΩ.cm) under varying illumination intensities 

The measured S21 results for an identical microstrip gapline switch in terms of dimensions and 

optical illumination conditions as investigated above are shown in Figure 4.34. The only 

change was the doping of the superstrate silicon and its resistivity had been reduced to below 

5𝑘Ω. 𝑐𝑚 compared to the previous 10𝑘Ω. 𝑐𝑚 . The isolation remained lower than 10dB at 

2𝐺𝐻𝑧 . Although the isolation value met the basic requirement for an RF switch design, the 

lowest insertion loss under the strongest illumination had already dropped below 7𝑑𝐵 at 2𝐺𝐻𝑧. 

With regard to the nonlinearity, the rise in IIP3 of 66𝑑𝐵𝑚 shown in Figure 4.35 was a good 

sign of the p-type doping.   
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Figure 4.35 Pout vs. Pin in two-tone nonlinearity test for a superstrate microstrip gapline switch 

with p-type superstrate silicon (resistivity < 5kΩ.cm) 

 The next measurement was based on superstrate silicon with higher p-type doping and hence, 

it had lower resistivity (< 1𝑘Ω. 𝑐𝑚). Figure 4.36 shows the best IIP3 value so far of 68𝑑𝐵𝑚, 

which is competitive with the other above-mentioned switches. However, the isolation value 

was sacrificed to be less than 10𝑑𝐵 as shown in Figure 4.37 in spite of a good insertion loss 

with maximum optical illumination below 2𝑑𝐵, due to the implementation of higher doping. 
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Figure 4.36 Pout vs. Pin in two-tone nonlinearity test for a superstrate microstrip gapline switch 

with p-type superstrate silicon (resistivity < 1kΩ.cm)  

 

Figure 4.37 Measured S21 results for a superstrate microstrip gapline switch with p-type 

superstrate silicon (resistivity < 1kΩ.cm) under varying illumination intensities 
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In summary, it has been suggested that these three methods to reduce Schottky barriers cannot 

be used to design an RF switch without sacrificing either the isolation or the insertion loss. The 

fourth method proposed in this study was to add a passivated layer that would inherently 

replace the metal-semiconductor-contact. Passivation is a very popular technology that is 

mainly used to coat surfaces and generally make them passive to unwanted interaction with 

chemicals or simply for anti-corrosion purposes. Researchers of [4.34-4.37] have studied the 

effect of passivation technology applied to silicon and confirmed the promising outcome. An 

oxidation layer (silicon dioxide) 100𝑛𝑚-300𝑛𝑚 thick was finally chosen for several reasons. 

In terms of the material selection, the recommended passivation for silicon is oxide or nitride. 

The most important reason for selecting oxidation is the expectation of less electromagnetic 

loss, since the dielectric constants for silicon dioxide and silicon nitride are 3.5 and 7.5 

respectively. In addition, oxidation is less costly in terms of fabrication and the transmission of 

silicon dioxide is also higher than that of silicon nitride in the IR region. As for the thickness 

of the silicon dioxide (silica) layer, a value lower than 100𝑛𝑚 may bring about a leakage in 

that part of the current that can be tunnelled through. Hence, this portion of the metal-

semiconductor-contact will revive the Schottky effect and the nonlinearity. On the contrary, 

with an increase in the thickness of the silicon dioxide layer, more low frequency signals will 

be blocked by this insulating layer and the insertion loss will be increased.  

Furthermore, this low-loss and electrically insulating material are also reminiscent of the use 

of an allotropy, quartz, for thermal insulating. The schematic and photographic top view of the 

new design of a superstrate microstrip gapline switch with passivated superstrate silicon and 

quartz insulator are shown in Figure 4.38 and Figure 4.39. In fact, the original idea was to use 

quartz to entirely replace the Perspex bar, but quartz is fragile and insufficiently ductile to be 

bent and fixed by screws. It was broken several times in the tests. However, its characteristic 

of heat insulation with a melting point of over 1650℃ makes quartz an irreplaceable and 

outstanding candidate. The new idea of putting and clamping the quartz in the middle of the 

superstrate silicon and the Perspex holder, as used earlier, is shown in Figure 4.39. It was used 

to insulate and prevent the collected heat from melting the Perspex and further loosening the 

fixture and the contact. A detailed discussion of the measured results will be provided in the 

next section. 
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Figure 4.38 Schematic side view of a microstrip line on fused silica with bottom illumination 

 

Figure 4.39 Photographic top view of a fabricated superstrate microstrip gapline switch 

4.6.3 Measurement Results 

A schematic diagram of the structure is shown in Figure 4.38. The silicon was held in place by 

a Perspex bar with heat insulation provided by a quartz bar. The original silicon superstrate is 

lightly n-type doped with <100> orientation and resistivity >10kΩ.cm. It was passivated with 

300nm thick silicon dioxide to prevent a Schottky contact from forming between the gold and 

silicon surface.  
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Two samples were used in the subsequent measurement for a parametric comparison and a 

generalised analysis and deduction. Sample 1 had a 0.4mm gap, 1.0mm linewidth and a 1mm 

diameter hole and Sample 2 had a 0.1mm gap, 1.6mm linewidth and a 2mm diameter hole. The 

measured S21 for the two samples of different geometries with varying illumination intensities 

is shown in Figure 4.40. 

 

Figure 4.40 Measured S21 magnitude for Sample 1 (0.4mm gap and 1.0mm linewidth) and 

Sample 2 (0.1mm gap and 1.6mm linewidth) at varying laser power levels 

In the no-light case (OFF), 20𝑑𝐵 isolation was observed for Sample 1 and a rapid rise in S21 

could be observed at 3𝑊/𝑐𝑚2 illumination intensity with saturation occurring around 10𝑊/

𝑐𝑚2 . The insertion loss at 2𝐺𝐻𝑧  was 1.11𝑑𝐵  for Sample 1 and 2.35𝑑𝐵  for Sample 2 at 

25𝑊/𝑐𝑚2 illumination intensity. It is believed that the increased insertion loss for Sample 2 

was caused by the 2mm diameter hole reducing the light focus and thus, reducing the intensity. 

The rapid roll-off in S21 at a low frequency below 0.5𝐺𝐻𝑧 was caused by the silica passivation 

layer acting as a series capacitor.   
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In terms of the switch’s characterisation of non-linear behaviour and its high-power handling 

ability, the frequencies of the two tones varied from (i) 1.999𝐺𝐻𝑧  and 2.001𝐺𝐻𝑧 , (ii) 

2.000𝐺𝐻𝑧 and 2.001𝐺𝐻𝑧 and (iii) 2.0005𝐺𝐻𝑧 and 2.001𝐺𝐻𝑧 to give spacings of 200𝑀𝐻𝑧, 

100𝑀𝐻𝑧  and 50𝑀𝐻𝑧  respectively. The illumination intensities varied from 0𝑊/𝑐𝑚2 , 

10𝑊/𝑐𝑚2 and 25𝑊/𝑐𝑚2 for Samples 1 and 2. The spectra data was measured using a Rohde 

& Schwarz spectrum analyser and the result is shown in Figure 4.41, 4.42 and 4.43. This is raw 

data prior to the use of the offsets needed to compensate for the presence of attenuators in the 

setup. An initial test was carried out on a 1.0mm wide through line with 50Ohm characteristic 

impedance to examine the inherent nonlinearity of the setup and the results are shown in Figure 

4.41. Pspec annotated in vertical axis is the output power observed in spectrum analyser. It can 

be seen that no third-order IMD products were observed at a Pin of +47.85 dBm (~61W).   

 

Figure 4.41 Measured output power spectra Pin = +47.85 dBm in a 1.0mm microstrip linewidth 

(No illumination in passive intermodulation (PIM) measurement) 
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Figure 4.42 Measured output power spectra Pin = +42.77 dBm in Sample 1 (0.4mm gap and 

1.0mm linewidth) with 200MHz tone spacing at 25W/cm2 illumination intensity 

 

Figure 4.43 Measured output power spectra Pin = +46.22 dBm in Sample 1 with 200MHz tone 

spacing at 25W/cm2 illumination intensity 
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The case of the Sample 1 (0.4mm gap and 1.0mm linewidth) with 200MHz tone spacing at 

25𝑊/𝑐𝑚2 illumination intensity is shown in Figure 4.42 and no obvious IM3 was determined, 

since the input power increased up to +42.77 dBm (~10W per tone). In Figure 4.43, an 

asymmetric IM3 pair can be observed at 1.997GHz and 2.003GHz when it was powered up to 

+46.22 dBm (~21W per tone). The reason for this is that the minor difference between 

fundamental tones signals causes an imbalanced IM3 output. No material melting or insertion 

loss deterioration was observed at this power level, which suggests a very robust clamp fixture. 

The data for each sample was then plotted as shown in Figure 4.44 with Pout v Pin in order to 

determine the Third Order Intercept Point referred to Input Power (IIP3) and this was estimated 

to be +77dBm for Sample 1 with a tone spacing of 200MHz at 25𝑊/𝑐𝑚2  illumination 

intensity. 

 

Figure 4.44 Extrapolated IIP3 value for Sample 1 with tone spacing of 200MHz at 25W/cm2 

illumination intensity (IIP3 77dBm) 
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 All the IIP3 data was then collated and is shown in Figure 4.45. Some interesting trends can 

be observed, particularly the fact that the IIP3 did not improve significantly beyond the 

10𝑊/𝑐𝑚2  illumination intensity point and, in some cases, it decreased. The best-case 

frequency spacing was 100MHz for both Sample 1 and 2 at 10𝑊/𝑐𝑚2 illumination intensity 

with a best-case IIP3 of +78.5dBm. 

 

Figure 4.45 IIP3 for different tone spacings and illumination intensities for Sample 1 (0.4mm 

gap and 1.0mm linewidth) and Sample 2 (0.1mm gap and 1.6mm linewidth) 

Finally, a thermal imaging camera was utilised to observe the sample temperature at different 

RF power levels. Three images taken during the measurement using an NIR sensor camera 

from FLIR are shown in Figure 4.46. As expected, the whole brass fixture became hot and the 

central quartz bar acted to thermally isolate the central region. Heat was seen to conduct around 

the quartz, giving rise to two hot spots on either side.  
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Figure 4.46 Thermal images of Sample 1 at 200MHz tone spacing and 25W/cm2 illumination 

intensity with RF input power at (a) 18.53dBm, (b) 36.69 dBm, (c) 43.86 dBm, (d) 46.89 dBm. 

Inset optical image of the device 

4.7 Conclusion  

A superstrate-structure microstrip gapline switch was designed and implemented in this chapter 

based on an analysis of a microstrip gapline switch in previous work. The chapter included a 

detailed and step-by-step discussion and explanation, which began with a review of popular 

microwave switches and a comparison of current optically-controlled microwave switches. 

Several aspects were improved, especially nonlinearity characterisation, power-handling 

ability and packaging design for integration purposes. Insertion loss has been found to be 

considerable with existing switches; therefore, the first task was to resolve this problem. To 

begin with, a physics modelling was created using the simulation software, CST and good 

agreement was found between the measured and simulated results. Hence, after ensuring the 

reliability of the simulation, the cause of the large insertion loss was identified with the aid of 

CST. A new structural design was then proposed to reduce this loss. Meanwhile, further design 

work was undertaken to characterise and reduce the nonlinearity of the switch. A bottom-

illuminated photoconductive reconfigurable microwave switch was finally produced with a 

minimum insertion loss of 1.11 dB at 2GHz and an isolation of 20dB. There was no observable 

IM3 in the spectrum when the input power was raised to nearly 20W in a two-tone 

measurement. However, third order distortion appeared with a further power increase and the 

best-case IIP3 was +78.5dBm.  
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CHAPTER 5 

5. Optically Controlled Co-Planar Waveguide 

Millimetre Wave Switches 

 

5.1 Introduction 

The interest of this study moves to higher frequencies in this chapter based on the growing 

attention to millimetre wave technologies. The chapter will be divided into two parts and most 

of the materials shown here were presented in [5.1, 5.2]. The first part will contain a proposal 

for an optically controlled Co-Planar Waveguide millimetre wave switch based on the 

superstrate design on a fused silica glass substrate and bottom illumination as discussed in the 

last chapter. The focus of the second part will be an optically controlled millimetre wave 

attenuator based on the switch proposed in the first part and the ability to easily integrate this 

with a standard PCB design will be further explored. Studies on the improvement of optical 

power efficiency will also be discussed. Both designs involve models developed using FIT-

based CST simulation, which has helped to choose the optimal dimensions for the components. 

It is also important to note that measurements based on V and K connectors are compared with 

the modelled results and show good agreement. 
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5.2 Reviews and Proposals 

As discussed previously, reconfigurable Radio Frequency (RF) microwave and millimetre 

wave (mmW) switches are important aspects of modern communication systems [5.3]. The 

increasing demand for faster data rates and more bandwidth has motivated research for next 

generation wireless communication systems. The millimeter wave bands promise a massive 

amount of unlicensed spectrum at 28 GHz and 38 GHz and are potential frequency bands for 

5G cellular systems [5.4]. Reconfigurable circuitry stands out for its solution to the 

unprecedented challenge of accommodating multiple wireless standards that reduces the 

system size and removes the requirement of duplicating the same circuits for every desired 

band. Mature RF switching technologies are mainly based on varactors, PIN diodes, transistors 

or RF MEMS [5.5-5.9]. The requirement for DC bias lines is a major issue for all these 

approaches and this can lead to complex bias circuits and parasitic effects which can degrade 

their performance at millimetre-wave frequencies and above. Therefore, there is a need for 

alternative technologies that work well at these very high frequencies.  

One such approach is based on Optically-Induced Plasmas (OIPs) [5.10-5.14]. The basic 

physics of a microstrip gap-based optical switch was described in our previous work [5.15].  

Here a microstrip gap is defined on a silicon substrate and the gap is illuminated by light with 

energy above the band gap of the semiconductor. In this case a plasma region made up of 

electron and hole pairs is created and this area becomes electrically conductive. Several such 

switches and switchable antennas have been developed based on microstrip lines and patch 

antennas [5.15-5.17]; however, microstrips tend not to perform well at millimetre-wave 

frequencies. CPW particularly reduces surface wave modes and hence reduces dispersion and 

radiative loss [5.18]. Therefore, the use of a Co-Planar Waveguide (CPW) as a transmission 

line is explored in this research.  Not only does this give a good high-frequency performance, 

but also the switch topology becomes more flexible since the centre conductor can now be 

grounded easily, which results in a normally-ON type switch. A silicon substrate CPW switch 

was previously demonstrated in [5.13] to have good insertion loss and isolation values up to 

25GHz. However, its top illumination approach limits the integration with other circuits since 

a handling fixture may always be required to hold the optical source, whether optical fibre or 

LEDs. Furthermore, as explained in Chapter 2, the plasma diffusion follows an exponential 



Optically Controlled Co-Planar Waveguide Millimetre Wave Switches 

 

133 

 

decaying profile from the surface incident with illumination. Hence, the highest 

photoconductivity of the plasma region is not utilised in the aspect of energy efficiency in this 

top illumination approach. A bottom illumination approach was proposed and discussed in 

[5.12] and in the last chapter. This hybrid integrated approach with a silicon superstrate makes 

it likely that this circuit can be easily incorporated into large complex circuits. In addition, 

[5.12, 5.13] have only reported a switch performance up to 7𝐺𝐻𝑧 and 25𝐺𝐻𝑧 respectively, 

whereas this proposed study will lift this boundary into the millimetre wave regime up to 

50𝐺𝐻𝑧 with V connectors. Detailed 3D electromagnetic modelling will also be studied.  

The fabrication procedure of the high-resistivity-silicon optically controlled CPW RF switch 

with a surface area of 400𝜇𝑚 ×  400𝜇𝑚 is shown in Figure 5.1. This is much smaller than the 

proposed circuit scale in the last chapter. 

 

Figure 5.1 Process steps for a trap-rich HR-Si optically controlled CPW RF switch [5.13] 

OIP-based switches have been shown to have very good linearity at high power levels, such as 

an input power of 30dBm in [5.10] and 46dBm in the results of the last chapter. The hybrid 

integration approach is considered to be more suitable for high power applications, since it 

involves the use of bottom illumination, which enables simple integration and heat sinking of 
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the light source. A smaller size of circuit shown in Figure 5.1 will inevitably degrade the heat 

sinking and power handling ability.  

As introduced above, an optically controlled CPW millimetre transmission line switch based 

on a superstrate structure, bottom illumination and a considerable size for power handling will 

be studied first. After the successful development of this newly-proposed millimetre switch, 

the further improvement of the isolation, optical source efficiency and low-cost fabrication will 

be discussed. The requirement of DC power for the light source is generally the main 

shortcoming of optically controlled switches. However, applications like Radar and wireless 

communication basestations, which already consume a large amount of power, may not be 

affected by an additional 1-2W in the power budget. The second part of this chapter will be 

devoted to the employment of affordable LEDs in the proposed device and the improvement 

of optical efficiency. There are also new light source technologies, such as microLEDs, which 

have high optical intensity and can be easily integrated with our approach in the future [5.19].  

With regard to improving the isolation, many microwave switches have reached an isolation of 

more than 10 dB with either LEDs or fibre-coupled lasers. The first exploration of the OIP 

along CPW gaps found a 1.3 dB attenuation up to 20 GHz on a silicon substrate [5.20]. Later, 

over 20 dB attenuation with LED illumination was reported in [5.21] based on a meandered 

CPW attenuator. However, the performance deteriorated when the frequency was raised over 

7 GHz due to the effect of a low pass filter (LPF) from the meandered structure. Although good 

attenuation was achieved in [5.13], this complex fabrication process can be difficult and time-

consuming, as shown in Figure 5.1. In addition, since the small area of illumination is not easily 

achieved using low cost LEDs, it is also useful to explore the fabrication of a standard PCB 

circuit without photo-lithography fabrication and flip-chip integration techniques [5.22]. 

Therefore, a LED-controlled CPW millimetre-wave attenuator will be proposed in the second 

part of this chapter to provide a low-cost and flexible approach integrated with an on-board 

millimetre circuit.  
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5.3 Optically Controlled CPW Millimetre Wave Switch 

5.3.1 GCPW Line Introduction and Modelling 

As mentioned in the last section, microstrips tend not to perform well at millimetre-wave 

frequencies and CPW reduces the surface wave modes, thereby reducing dispersion and 

radiation loss [5.18]. It is important to firstly introduce the CPW and compare it to a microstrip. 

The CoPlanar Waveguide (CPW) was invented by Cheng P. Wen in 1969 [5.23] and a classic 

CPW consists of a central conductor that is separated from a pair of ground planes. These metal 

tracks sit on a dielectric medium and the thickness of this dielectric material is assumed to be 

infinite, while, in practice, it should be sufficiently thick for the electromagnetic fields to die 

out before leaking from the dielectric medium. Hence, a variation of the standard CPW was 

created, which adds another ground plane on the opposite side of the dielectric material. This 

is called a Grounded coplanar waveguide (GCPW). A Grounded CPW approach was adopted 

in this study for several reasons, the first of which is that the GCPW provides mechanical 

convenience for the alignment of the optical circuit and better integration with a brass block 

fixture with V-connectors. Since one of the disadvantages of the CPW is poor heat dissipation, 

a brass block as part of the ground plane is a good heat sink metal for the optical source, 

especially when an LED is mounted as a replacement.  

The electromagnetic field line diagrams of a microstrip line and a GCPW line are shown in 

Figure 5.2. Both GCPW and microstrip propagate electromagnetic waves in quasi-TEM mode. 

This “quasi” here means that the waves propagate through different media, namely, air on one 

side and dielectric on the other. Hence, there can be different speeds in these regions. While 

they both have relatively low radiation losses in a microwave frequency regime, high loss can 

be seen in the microstrip lines in millimetre-wave frequencies. At these high frequencies, these 

transmission lines also support higher modes and surface modes that deteriorate the 

performance. Mode suppression means to suppress the unwanted modes from a quasi-TEM. 

Microstrips find it difficult to suppress higher order modes at millimetre-wave frequencies, 

which can create more radiation loss. The unwanted modes can rise and disturb the quasi-TEM 

from propagating correctly, thereby causing dispersion. For the microstrip design, only 
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substrate thickness and conductor width can be varied to provide higher mode suppression. In 

contrast with the GCPW, both the width of the central conductor and the spacing between the 

ground planes and the conductor can be altered, as shown in Figure 5.2. In addition, vertical 

interconnect access (via) can also be introduced to reduce CPW’s surface modes. 

 

Figure 5.2 Cross-sectional diagrams of electric field lines for a microstrip line and a GCPW line 

In Figure 5.2, most electric field lines are concentrated between the signal line and the ground 

plane. However, there is also another portion of field lines at the edges that forms a fringing 

field with high current density that cannot be easily returned to the ground and thus produces 

losses. With regard to the GCPW, in addition to the strong field that exists between the signal 

line and the bottom ground plane, it is further constrained to ground planes on both sides. The 

benefit of these additional coupling areas distinguishes the GCPW from microstrips in higher 

frequencies. The tight spacings between the ground planes and the signal line effectively reduce 

the number of spurious modes. Furthermore, the variables of the central conductor linewidth 

of the GCPW and the spacing between the conductor and ground planes allow many possible 

combinations, even for a single characteristic impedance value. Therefore, sensitivity analysis 
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was conducted in a CST simulation to select the optimum dimension for an optically controlled 

GCPW switch based on a transmission line model. An important aspect of GCPW design is the 

interface between the transmission line and the connector. Geometric misalignment at the 

interface normally brings discontinuities and impedance mismatch. This mismatch with system 

and load impedance will cause more reflection and less power transfer. Hence, more return loss 

will be created and less wanted signal can be transmitted through the microstrip or CPW.  

An SMA connector was firstly examined due to its low cost and ease of mounting. A 

mechanical drawing of a SMA connector from [5.24] is shown in Figure 5.3. 

  

Figure 5.3 Mechanical drawing of a SMA connector [5.24]: Side view (Left), End view (Right) 

As can be seen, the diameter of the inner central conductor is 1.262mm and that of the coax 

outer boundary at the filing material is 6.45mm, which gives nearly 50Ohm impedance. To 

ensure good geometric alignment and thus impedance match, the recommended dimensions 

should be taken as close to the coax connector size as possible; the signal linewidth and the 

spacing between the signal line and the ground of the GCPW are chosen close to the inner and 

outer coax diameter values respectively. Figure 5.4 shows a perspective view of the connector-

GCPW interface in CST. The diameter of the inner central conductor is 1.3mm and that of the 

coax outer boundary at the filing material is 6.5mm. The central conductor of the GCPW has a 

linewidth (𝑤) of 1.1mm and the spacing (𝑠) between the central conductor and the ground is 

0.62mm.  
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Figure 5.4 Perspective view of the connector-GCPW interface in CST modelling 

SMA connector was introduced and employed as pilot, but this type of connector is not suitable 

for millimetre wave designs. K and V connectors were chosen later for their use at higher 

frequencies, since they can work up to 35𝐺𝐻𝑧 and 65𝐺𝐻𝑧 respectively. A mechanical drawing 

of a V connector is shown in Figure 5.5. Since different coax lines have different filling material, 

PTFE was used for the SMA connector, while the filling for the V connector was air, which 

reduces the dielectric constant and loss for use at higher frequencies. Since the outer shield has 

a diameter of 1.85𝑚𝑚 (denoted by 𝐶 in Figure 5.5), the V connector is also called a 1.85𝑚𝑚 

connector. The inner conductor pin has a diameter of 0.5𝑚𝑚 (denoted by G) and this value 

was used as the initial central conductor linewidth in parameter sweep in CST simulation for 

the V connector GCPW switch design. 

 

Figure 5.5 Mechanical drawing of a V connector [5.25] 
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A parameter sweep was conducted of various combinations of central conductor linewidth (𝑤) 

and spacing (𝑠) between the central conductor and ground planes in CST. These combinations 

are listed in Table 5.1 for comparison and they all produced a 50Ω characteristic impedance 

for good impedance match with the whole system.  

Index number Linewidth (w) (𝝁𝒎) Spacing (s) (𝝁𝒎) 

(1) 1000 345 

(2) 1100 620 

(3) 1200 800 

(4) 500 60 

(5) 600 80 

(6) 700 110 

 

Table 5.1 Geometric dimension combinations of linewidth and spacing for 50𝛀 GCPW line 

The top view of the GCPW model on which the parameter sweep has been based is shown in 

Figure 5.6. The extended arms around the simulated connector are always in contact with the 

ground planes on each side. This provides the GCPW with an ideal grounding and connection 

between these two planes and the bottom ground plane for a better performance.  
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Figure 5.6 Top view in CST of a GCPW transmission line model with grounded arms shown 

The simulated S11 and S21 results are shown in Figure 5.7. The number in the legend of the 

Figure 5.7 corresponds to the index number of dimension combinations in Table 5.1. As can 

be seen from Figure 5.7, the trend of increasing S11 and decreasing S21 suggests that 

electromagnetic waves more easily lose energy as radiation loss with a raised frequency and 

this corresponds with the statement explained above. For S11, the results of GCPWs in various 

dimensions are very similar to each other. Taking each peak of these several ripples in S11, the 

general trend shows a gradual rise. With regard to the S21 results, the values gradually decrease, 

with the highest insertion loss reaching 12𝑑𝐵 at 50𝐺𝐻𝑧. The reference dimension combined 

with an 0.5𝑚𝑚 linewidth shows the lowest insertion loss at 4𝑑𝐵, and this value is shared with 

several other cases with narrower linewidths. Therefore, this can be considered to be the 

saturation and optimum point achieved after circuit-connector geometric matching. A 

comparison of the best case and another similar case is always recommended in practice. Based 

on this simulated result in Figure 5.7 and the above discussion of the geometric continuity as 

well as impedance matching, GCPW line with 1.1𝑚𝑚 central linewidth and 0.62𝑚𝑚 spacing 

to ground has been chosen to work with SMA connector while GCPW line with 0.6𝑚𝑚 central 

linewidth and 0.08𝑚𝑚 spacing to work with V connector.   
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Figure 5.7 Parameter sweep S11 (Top) and S21 (Bottom) results of different GCPW dimension 

combinations in linewidth and spacing 
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5.3.2 SMA GCPW Switch  

After the GCPW transmission line was modelled in CST, a good foundation had been built for 

a GCPW switch design. The initial idea for constructing an optically-reconfigurable switch was 

to use the same mechanism for the microstrip gapline utilised in the last chapter; however, there 

were concerns about the plasma diffusion characteristic. Due to the relatively small spacing 

between the central conductor and the pair of ground planes, plasma can diffuse spontaneously 

further away and this is likely to create a resistive path from the central conductor to the ground. 

The resistance of the path largely depends on the intensity of the optical illumination. 

Manipulating the optical source can be controversial because, although higher intensity is 

expected to reduce the loss of insertion in the central gapline, increased diffusion will also 

effectively create resistive paths to the grounds, possibly causing even more loss in this region. 

Although this plan was rejected, a new idea was formed using these resistive paths to the 

grounds. As shown in Figure 5.8, the proposed switch topology involves reversing the working 

scheme for a normal optically-controlled switch. In fact, illumination-ON gives a switch-OFF 

condition by shorting the central signal line to the ground planes, whereas illumination-OFF 

yields a switch-ON with the GCPW working as a normal transmission line.  

 

Figure 5.8 Schematic top view of optically controlled GCPW switch layout 

The first test was conducted on a transmission line without superstrate as a reference line with 

50Ω  characteristic impedance. The linewidth and spacing were chosen to be 1.1𝑚𝑚  and 

0.62𝑚𝑚 respectively from the previous simulated results. An important feature of this work 

was the continued use of optically-transparent fused silica glass (𝜀𝑟 = 3.5) as a low loss 
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microwave substrate. This allows bottom side illumination which produces a highly-integrated 

device. The fused silica substrate was 500𝜇𝑚 thick and lithographically processed to create 

gold CPW transmission lines, as outlined in the following text. Piranha Solution was used for 

the initial cleaning to remove the organic impurities and dust on the surface. It was then sputter 

coated with 5𝑛𝑚 titanium and 500𝑛𝑚 gold in an ambient argon atmosphere. The circuit was 

defined by spin coating, thereby exposing and developing negative photoresist on the wafer. 

Finally, the exposed gold and titanium were removed with wet etching. A photograph of a 

GCPW line with 1.1𝑚𝑚 central linewidth and 0.62𝑚𝑚 spacing to ground is shown in Figure 

5.9. As can be seen, a large amount of silver epoxy was used to ensure the connection of the 

ground planes.  

 

Figure 5.9 Photograph of a GCPW line with 1.1mm central linewidth and 0.62mm spacing to 

ground with SMA connectors 

The measured results are shown in Figure 5.10 from which it can be seen that a good 

performance was obtained up to 15GHz in spite of some small ringings in S21 that occurred at 

around 5.6𝐺𝐻𝑧, 8.5𝐺𝐻𝑧, 11𝐺𝐻𝑧 and 13.5𝐺𝐻𝑧. These minor losses are due to circuit defects 

and scratches.  
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Figure 5.10 Measured S11 and S21 for 50 Ω GCPW line with 1.1mm central linewidth and 

0.62mm spacing to ground with SMA connectors 

The schematic end view and top view images of the test fixture of the optically-controlled CPW 

microwave switch are shown in Figure 5.11 and Figure 5.12 respectively. A piece of silicon, 

3mm x 3mm x 0.5mm (𝜀𝑟 = 11.9), was used as a superstrate, which was held in place using a 

thick Perspex bar, and covered the CPW gaps to the ground. The silicon superstrate was a 

lightly doped n-type wafer with <100> orientation and resistivity> 10 𝑘Ω. cm. A 300𝑛m thick 

silicon dioxide layer was deposited on the silicon surface to remove the Schottky contact 

between the metal and the semiconductor interface. Optical illumination was provided by a 

980nm wavelength fibre-coupled laser diode (Roithner Lasertechnik) [5.26]. The fibre laser 

was coupled through a hole in the block, which was designed to have a minimal effect on the 

microwave response. Two electron-hole plasma regions were generated in the silicon with the 

high conductivity region close to the CPW gaps.  
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Figure 5.11 Schematic end view of superstrate optically controlled GCPW switch with bottom 

illumination (1.1mm central linewidth, 0.62mm spacing to ground and 3mm x 3mm x 0.5mm 

superstrate silicon) 

 

Figure 5.12 Photographic top picture of superstrate optically controlled GCPW switch with 

bottom illumination (1.1mm central linewidth, 0.62mm spacing to ground and 3mm x 3mm x 

0.5mm superstrate silicon) 
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CST was used as a full wave 3D Electromagnetic modelling tool with the implementation of 

cascaded layers of varying conductivity to represent the plasma region, as described in Chapter 

4. A detailed description of the simulation is included in the next section. The VNA measured 

and CST simulated S21 of the CPW in the ON and OFF conditions is shown in Figure 5.13. 

This switch has a reasonably good insertion loss up to 20GHz with no laser illumination. When 

illumination is provided, the central track in the CPW will be shorted to ground and insertion 

loss will increase to more than 10𝑑𝐵 above 15𝐺𝐻𝑧. An illumination intensity of 18W/cm2 was 

used in the measurement and 800S/m conductivity at the plasma surface layer were used in the 

CST simulation. Reasonably good agreement between the simulated and measured results was 

achieved up to 20GHz, which was mainly limited by the connector transitions. 

 

Figure 5.13 Measured S21 magnitude for optically controlled CPW microwave switch with 1.10 

mm central linewidth and 0.62 mm spacing to ground 

The predicted performance in CST of a similar switch with a 0.62 mm central linewidth and 

0.1 mm spacing to ground with a 2 mm x 2 mm x 0.5 mm silicon superstrate up to 60GHz is 

shown in Figure 5.14. Increasingly good isolation values up to 25 dB at 50 GHz can be 

observed here, which is very promising for the experiments with V connectors.  



Optically Controlled Co-Planar Waveguide Millimetre Wave Switches 

 

147 

 

 

Figure 5.14 CST Simulated S21 magnitude for optically controlled CPW microwave switch of 

0.62 mm central linewidth and 0.10 mm spacing to ground (optical intensity at 25W/cm2) 

This section contains a report on a bottom-illuminated optically controlled microwave CPW 

switch with a low insertion loss up to 20 GHz and an off-state isolation over 10 dB from 15 

GHz to 20 GHz. Good agreement with electromagnetic modelling has been shown and a very 

good isolation behaviour up to 50 GHz can be predicted using a similar switch. It is believed 

that the implementation of a V connector and the optimisation in GCPW will further improve 

the performance of the switch. Since the optically induced plasma used here is inherently 

frequency independent in nature, it is envisaged that the millimetre wave performance of such 

devices will be equally good. This is particularly encouraging since conventional switching 

approaches become much more difficult to implement in those frequency ranges. 

5.3.3 Millimetre Wave Design with V Connector   

A GCPW switch based on a V connector is discussed in this section. Since electromagnetic 

waves can be less constrained in high frequency and tend to escape from the strip or waveguide 
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structures, the fundamental geometric matching of the coax connector and the circuit is 

considered to be extremely important. Therefore, much effort was made in this research to find 

a good alignment technique. A picture of the V connector used in this study is shown in Figure 

5.15. This is a VF116 screw-in and hermetic model from Anritsu [5.27].  

 

Figure 5.15 V116F connector from Anritsu [5.27] 

There are several good reasons for this choice. Firstly, as can be seen from Figure 5.15, this 

connector has two parts of threads, which is convenient for mechanically mounting fixtures 

and it also leaves room to extend the reach of the pin. The next is the glass beads. As mentioned 

earlier, the filling material for a V connector is air. Transition issues can occur when this coax 

connector is transferred to another strip or waveguide circuit, which can result in a serious 

return loss. Glass beads can facilitate the transition from the main connector, through a housing 

wall, to a microcircuit. Fortunately, these tiny beads are already installed in the connectors of 

this model. Another important benefit of this V116F is the purposely designed supplementary 

sliding contact. When mechanical tolerance causes uncertainty, these sliding contact sleeves 

can enable a further extension of the connector pin. The sliding contact and its installation 

schematic diagram are shown in Figure 5.16.  
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Figure 5.16 V110 Anritsu sliding contact (Left) and Schematic diagram of sliding contact 

installation (Right) [5.28] 

In terms of this installation diagram, Anritsu recommends the machining dimensions for the 

mounting hole shown in Figure 5.16. As can be seen, the thickness can be as little as around 

3.5𝑚𝑚 from the outer surface and the inner hall. Such a thin metal plate can risk being broken 

in milling machine work.   

 

Figure 5.16 Machining dimensions for V116F mounting hole [5.28] 

However, this thin metal hall can make more room for an alignment between the connector pin 

and the GCPW circuit. Hence, it is expected that a sliding contact can be a helpful and essential 

tool in this respect. A brass block was redesigned for this V connector based on the original 
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microstrip fixture. The side cross-section view of the proposed machining dimensions of the 

brass block fixture for the V connector is shown in Figure 5.17. Multi-level threaded holes 

were drilled on both sides for a firmer fastening.   

 

Figure 5.17 Side view cross section of machining diagram for V connector brass block fixture 

As mentioned earlier, the conductor pin diameter of the V connector can be as small as 0.5𝑚𝑚. 

The sliding contact needs to be mounted under a microscope. The photographic microscope 

view of the mounted V connector and sliding contact is shown in Figure 5.18 and Figure 5.19. 

This illustrates how difficult it is to handle a sliding contact with hands or even tweezers. It 

normally takes a few hours to install the standard packaging of a GCPW switch with a V 

connector and sliding contact, and the following process is recommended; 

⚫ File brass block to remove metal burrs and surface defects; this provides a good contact 

for the bottom ground plane  

⚫ Place circuit wafer in the approximately right place and use plastic screws and washers to 

hold the sample 

⚫ Use tweezers and a microscope to mount the sliding contact sleeves on the V connectors 

at this stage instead of mounting them after they are screwed into the brass block 

⚫ Screw the V connectors into the brass block and adjust the orientation of the sleeves to 

make contact with the GCPW line  

⚫ Use Loctite [5.29] to glue the V connectors onto the fixture   

⚫ Very carefully put silver epoxy [5.30] between the sliding contact and the central line 

⚫ Carefully put more silver epoxy on every contact area between the brass block and the 

ground planes   
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Figure 5.18 Photographic microscope view of a mounted V connector and a sliding contact 

 

Figure 5.19 Photographic perspective view of a mounted V connector and a sliding contact 
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5.3.4 V GCPW Switch 

A V connector GCPW switch is fabricated following the same procedure as that introduced in 

§5.3.2. The schematic end view of the GCPW circuit sample covered by a silicon superstrate 

and mounted on a brass block fixture is shown in Figure 5.20. The central line width (𝑤) is 

0.6mm and the spacing (𝑠) between the central line and the grounding planes is 0.08mm.  

 

Figure 5.20 Schematic end view of optically controlled GCPW switch with bottom illumination 

 

Figure 5.21 Photographic top view of GCPW circuit sample with line width (w) 0.6mm and 

spacing (s) 0.08mm 
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The photographic top view of the switch with two illuminated regions in the spacing of the 

CPW are shown in Figure 5.21. The low resistance of the plasma regions short circuit the CPW 

line when illuminated from below. A piece of silicon, 8mm x 5mm x 0.5mm (𝜀𝑟=11.9) was 

used as a superstrate which was placed over the GCPW. Figure 5.21 also demonstrates how the 

light source was integrated into the system. The majority of the laser power was not being used 

to illuminate the silicon in this case due to the nature of the CPW gaps. This low optical 

efficiency will be discussed and improved in the second part of this chapter.  The plasma region 

can be represented by a series of varying conductivity layers, as described in [5.15] and the 

conductivity profile used in this work is shown earlier in Figure 4.10. The corresponding 

parameters used were absorption depth = 96μm [5.31], bulk recombination time = 10μs, 

diffusion length = 120μm [5.15]. Illumination power of 175 mW was used in the measurement 

which corresponds to 1100 S/m conductivity at the plasma surface layer for the CST simulation. 

The ten cascaded conductive layers are shown in Figure 5.22. There were two plasma regions, 

each of which was 1200m x 480m in area and 480m high. The size of these regions was 

chosen to represent (i) the illumination spot size, (ii) the effect of the sideways carrier diffusion, 

and (iii) the vertical exponential decay in conductivity. In addition, a gap was left between the 

gold layer and the bottom conductive layer of 20μm to simulate the metal-insulator-plasma 

contact transition and obtain good agreement at low frequencies. 

 

Figure 5.22 Plasma layers within silicon superstrate in CST view 
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The simulated CST and VNA measured S21 of the GCPW in the ON and OFF conditions are 

shown in Figure 5.23, which indicates good overall agreement. With no laser illumination, this 

switch was found to have reasonably good insertion loss with less than 4dB through a frequency 

band of DC to 50GHz. When illumination was provided, a conductive path was created 

between the central track and the ground planes of the GCPW. This low resistance increased 

the insertion loss to more than 15dB above 32GHz and there was a large dip of 28.7dB at 

46.5GHz. It is believed that the resonant dips around 33GHz and 39GHz were associated with 

spurious higher order modes on the surface. As mentioned earlier, vias can be used to suppress 

these modes and hence the ringings of S21 in the switch OFF condition can be expected to be 

smoothed. However, drilling holes through silica glass and installing metal vias are practically 

difficult. This will be discussed further in the next section. Additionally, an important aspect 

of these results is that the CPW spacing defines the plasma illumination area and hence, the 

resistance to ground. Since there was a thin insulating layer between the silicon and the gold, 

these effects in DC and the low frequency region were masked in this case.  

 

Figure 5.23 Measured and Simulated S21 of GCPW with linewidth, w=0.6mm and spacing, 

s=0.08mm at Switch ON/OFF conditions (optical intensity at 25W/cm2) 
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The CST simulated results for three different CPW spacings are shown in Figure 5.24. It can 

be seen that only very small differences occurred in these cases. Similarly, other simulations 

in a sensitivity analysis of the length, width and thickness of the superstrate dimensions have 

not shown considerable differences. Therefore, the results are expected to largely depend on 

the practical measurement. 

 

Figure 5.24 Simulated S21 of GCPW with linewidth, w=0.6mm and varying spacing values at 

Switch ON condition (optical intensity at 25W/cm2) 

This section contains a report of a bottom illuminated optically-controlled millimetre wave 

GCPW switch with a low insertion loss up to 50 GHz and an off-state isolation greater than 

15dB from 32GHz to 50GHz. Good agreement with electromagnetic modelling was shown. It 

is believed that the optimisation of the GCPW geometry, more efficient use of the available 

optical power and the modification of the circuit grounding and laser coupling will further 

improve the switch performance. The next part of this chapter will focus on the discussion of 

work to achieve this improvement. 
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5.4 Optically Controlled PCB GCPW Millimetre Wave Switch 

As discussed earlier, firstly, spurious modes can be found in S21 for a fused silica substrate 

switch, since vias cannot be easily fabricated through the glass substrate and hence, cannot 

largely reduce the surface current. Secondly, significantly low optical efficiency has been noted 

based on the small spacing between signal line and ground planes so that only a small 

proportion of the illumination can pass through it. Thirdly, fibre couple laser can be replaced 

by LED as a more portable and low-cost optical source. Finally, to further improve the 

integration with other microwave and millimetre wave circuits, a standard PCB material can 

be used, which also provides an opportunity to implement vias. All of these factors have been 

taken into consideration when designing a PCB-based GCPW switch. The proposed substrate 

fabrication is based on the double-side laminated Rogers RO4003C [5.32]. This low-loss 

material has a relative permittivity of 3.38 and is 0.508mm thick. It has similar values with the 

fused silica used above that relative permittivity is 3.5 and thickness is 0.500mm.  

5.4.1 PCB GCPW Slot Switch  

As the substrate has been changed to ceramics in RO4003C, the previous optically transparent 

property of a fused silica cannot be relied on. To implement the bottom illumination, it is 

important to vacate the spacing area between signal line and ground planes in a GCPW to allow 

optical illumination to go through. The first idea was to use the same laser-cutting machine to 

burn off the spacing material to form a slot for illumination passing. SMA connector was used 

as a pilot due to its low cost. Figure 5.25 shows the first test circuit as a GCPW switch which 

was based on a transmission line of 50Ω characteristic impedance.  
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Figure 5.25 Schematic top view of PCB GCPW switch with slot illumination 

The linewidth and spacing were chosen to be 1.1𝑚𝑚 and 0.62𝑚𝑚 respectively on account of 

its good impedance matching as discussed earlier. Optical illumination was provided by the 

fibre-coupled laser, as introduced before. Vacated slot pair has dimensions of 1.0𝑚𝑚 ×

0.5𝑚𝑚. Due to the limitations of the thermal control in hardware, 0.5𝑚𝑚 × 0.5𝑚𝑚 is the 

minimum resolution of the laser-cutting machine that was introduced in Chapter 3. This means 

that the alignment of laser cutting only allowed 0.12𝑚𝑚 for tolerance. Two rows of holes of 

diameter 0.3𝑚𝑚 were drilled through the RO4003C and electrically conductive silver epoxy 

was then flown through the holes to form the vertical-interconnect vias.  
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Figure 5.26 S11 and S21 results comparison of PCB GCPW switch with slot illumination ON/OFF  

Figure 5.26 shows the S11 and S21 results comparison of this test circuit in illumination ON and 

OFF conditions. The insertion loss obtained in illumination OFF condition maintains a 

similarly good performance compared with the result in Figure 5.23. From this comparison, a 

smoother curve and less ringings can be observed here and it is believed to be associated with 

the introduction of the vias, which has effectively suppressed higher order modes. However, 

the isolation value obtained in illumination-ON condition is not ideal. It is suspected that less 

excess carriers can be generated when substrate material hindered the transmission of optical 

illumination. On the other hand, Figure 5.26 also suggests that signal reflection increases when 

illumination is provided on the superstrate as a general rise in S11 values can be observed from 

switch OFF to switch ON conditions. 
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5.4.2 PCB GCPW Switch Improvement 

As discussed in the last section, the slot illumination provided by the fibre-coupled laser failed 

to excite a large number of electron-hole pairs which can meet the isolation requirement, 

namely over 10𝑑𝐵 , for a good RF switch. Therefore, improvement has been carried out 

towards increasing the optical illumination regions which subsequently create more short 

circuits to ground and thus enhance the isolation. LED/IRED optical sources have been 

employed to provide a larger illumination coverage and a better integration with PCB circuits 

as described earlier. Figure 5.27 shows the schematic top view of a proposed GCPW PCB 

switch.  

 

Figure 5.27 Schematic top view of a PCB GCPW switch with dotted holes 

As this PCB GCPW switch is designed to work in the millimetre wave frequencies, smaller 

geometric circuit size is expected to minimise the GCPW spacing between the central signal 

line and the ground planes for better isolation value in the switch-OFF condition. As introduced 

in the last section, the minimum size of the holes that can be created are of 0.3mm diameter by 

drilling. The central signal linewidth and the spacing to the ground planes were chosen to be 
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0.6 mm and 0.08mm respectively to give a characteristic impedance close to 50Ω for good 

impedance matching with connectors. A high-powered IRED [5.33] at 940nm wavelength was 

selected due to its compact and highly-focus characteristics. This IRED has a lens of 3.3𝑚𝑚 

diameter and was inserted into a hole drilled underneath a brass block that was used to provide 

bottom ground planes for the GCPW and heat sinking for the PCB. The drilled hole of the brass 

block had the same diameter as the LED lens in order to maintain a relatively high optical 

intensity without losing much optical power. The non-conductive through-holes created more 

light paths as indicated in Figure 5.27. Compared to the above GCPW switch design, this 

approach effectively increased the spacing length for higher attenuation in the illumination ON 

(switch-OFF) condition, while causing a small insertion loss in the illumination OFF (switch-

ON) condition. The conductive vias holes at outer rows are designed to suppress spurious 

modes.  

 

Figure 5.28 Photographic top view of PCB GCPW switch with linewidth w=0.6mm, spacing 

s=0.08mm, superstrate of 5mm x 5mm x 0.5mm fixed by brass block and Perspex bar 

Figure 5.28 shows the photographic top view of this PCB GCPW switch which was mounted 

onto a brass block and then soldered with two K connectors [5.34]. This K connector can work 

up to 35𝐺𝐻𝑧 and it was selected due to its compromise between cost and performance. A 

Perspex bar holder was screwed onto the brass block to hold the silicon superstrate. S-

parameters were measured by a network analyser (Agilent E8364A [5.35]). The side length of 

the square silicon superstrate was set to 5mm, which was sufficiently large to cover the holes 
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and diffusion area. The selected high-power IRED [5.33] provided a maximum 1.2𝑊 radiant 

power at wavelength of 940𝑛𝑚 at a DC power consumption of 2.5𝑊 . An initial test was 

conducted that the 86% of the IRED nominal radiant flux was transmitted through the brass 

block hole. The maximum intensity obtained with the IRED in measurement was 14𝑊/𝑐𝑚2.  

 

Figure 5.29 Measured S21 result of PCB GCPW switch with various optical intensities by a 1.2W 

IRED [5.33] at 940nm  

Figure 5.29 shows S21 results of this PCB GCPW switch with various optical intensities. In 

dark state, good transmission can be observed and the insertion loss is less than 4𝑑𝐵 through 

the frequency region of DC to 30𝐺𝐻𝑧.  However, a rapid increase in insertion loss can be seen 

when frequency is higher than 30𝐺𝐻𝑧. This means the RO4003C substrate may not be able to 

constrain the electromagnetic signal within the GCPW and radiative loss is largely increased. 

The good effect of higher-order mode suppression by vias has been proved again when 

compared with GCPW with fused silica substrate. In terms of isolation, a general increasing 

trend can be found with frequency rising up in all cases for different optical intensities. The 

maximum optical intensity gives 24.5𝑑𝐵 isolation at close to 25𝐺𝐻𝑧. Isolation values higher 
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than 20𝑑𝐵 can be obtained when frequency is increased over 18𝐺𝐻𝑧. This reached a similar 

attenuation level as the glass-substrate GCPW has achieved. Nevertheless, due to the low 

optical efficiency of an IRED, radiant power has been raised to be as high as 1.2𝑊 which is 

compared with the optical power of 175𝑚𝑊 used in the glass-substrate GCPW.  

A single IRED-controlled PCB GCPW millimetre wave switch with RO4003C PCB substrate 

was presented in this section. It is important to conduct a further comparison with the GCPW 

switch with fused silica substrate introduced in the first part of this chapter. PCB GCPW has 

shown its advantage of higher-order modes suppressions and thus produced a smooth S21 result. 

Although glass GCPW suffered from the spurious surface modes, the loss in transmission is 

under 4𝑑𝐵 with frequency less than 50𝐺𝐻𝑧. As for isolation, both circuits have demonstrated 

considerably good attenuation. With regards to the optical illumination, both need DC supply 

to the optical sources, namely laser and LED/IRED. The latter can be more attractive as the 

integratable optical source, LED/IRED, can be easily mounted onto the brass block fixture, but 

very high power is required due to its dispersive nature and low optical efficiency. With respect 

to the fabrication, the PCB GCPW is possible to be made with rapid and low-cost laser-cutting 

by employing through-holes to illuminate a silicon superstrate that can be easily integrated with 

other microwave and millimetre-wave circuits. However, as discussed above, either the 

difficulty in control of thermal cutting or the incompatible minimum drilling size (0.3𝑚𝑚 

diameter) and GCPW spacing (0.06- 0.08𝑚𝑚) can be the limiting factor in PCB GCPW 

fabrication. The circuit patterning can be easily controlled through optical aperture and this 

photolithographically defined glass GCPW is more accurate which also provides the flexibility.  

To further increase the optical efficiency for PCB GCPW, a follow-up study has been carried 

out by another colleague [5.2]. It has converted a straight GCPW transmission line into a 

stepped-impedance structure and effectively extends the CPW spacing area, thereby achieving 

higher attenuation. The problem is the band limiting due to the nature of the slow wave 

structure design.  
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5.5 Conclusion 

The focus of this chapter was the design of devices at higher frequencies in a millimetre wave 

region. The chapter began with a review of the literature and a proposal of several aspects for 

improvement. An optically controlled PCB GCPW switch operating in the millimetre wave 

region was demonstrated in the first part of this chapter. A full wave electromagnetic analysis 

was used as a multi-layer model to simulate photoinduced plasmas and good agreement was 

achieved between the measured and simulated results. The insertion loss was less than 4dB and 

the isolation was greater than 15dB from 32GHz-50GHz. This approach required the use of 

175mW of optical power at a wavelength of 980nm, but it removed the need for bandwidth 

limiting electrical bias networks.  

A millimetre-wave PCB GCPW switch controlled by a single IRED was designed and 

presented in the second part of the chapter. Less than 4𝑑𝐵 insertion loss has been obtained in 

the frequency region of DC-30𝐺𝐻𝑧, while a big drop in transmission over 30𝐺𝐻𝑧 can be found 

due to the PCB material loss. From 18𝐺𝐻𝑧 onwards, good isolation values higher than 20𝑑𝐵 

can be expected. The drawback is such ratings require large optical power of 1.2𝑊 to reach 

the same attenuation level as the first-part approach does. Finally, comparison between these 

two approaches has been conducted and new structure layout has been proposed to further 

increase the optical efficiency. 
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CHAPTER 6 

6. Microwave Switch Mixing and Modulation 

 

6.1 Introduction 

Based on an interest in developing and characterising the electrical response of the designed 

optically-controlled microwave switch to pulsed optical excitation, this chapter contains an 

investigation of this device in an environment with a pulsed optical signal in modulated 

microwave communication signals. Various optical sources were tested and compared with a 

list of pros and cons. The chapter is divided into two parts, the first of which will contain a 

description of the test on silicon. Numerous results, analyses and recommendations will be 

provided. Tests with GaAs will be the focus of the second part. Feasible and practical 

experiments and simulations were undertaken based on the properties of this material. Some 

proposals and recommendations for improvement will also be made at the end of the chapter.  
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6.2 Silicon-based Switching Test  

Having successfully designed and characterised several optically controlled RF switches under 

a CW optical illumination, the next step was to determine how these devices would perform 

under pulsed optical excitations. Compared with the GCPW millimetre wave switch proposed 

in Chapter 5, the superstrate microstrip gapline switch designed in Chapter 4 was taken as a 

sample circuit for the test due to its good overall properties and superior optical efficiency in 

terms of illumination region. Both lasers and LED/IREDs are used as optical sources in pulsed 

mode in order to study the switching characteristics.    

The switch testing was designed based on a standard amplitude modulation (AM) of the optical 

signal. As is known, modulation in telecommunications changes some property of a periodic 

waveform called a carrier signal. This change is made by varying the amplitude, frequency 

and/or phase that contains information to be carried and sent. As discussed in Chapter 2, both 

conductivity and permittivity can be effectively varied in the illuminated plasma region 

Amplitude modulation was chosen because it is the most simple and straightforward solution 

for an initial test. A schematic diagram of amplitude modulation is shown in Figure 6.1. The 

information signal conveys a stream of messages at binary or digital bit levels. The carrier 

signal in this case is free of any change in frequency or difference in phase. A modulated signal 

is formed after mixing these two signals in that a carrier signal has been modulated and changed 

in amplitude according to the information coding. In the case of this study the mixer will be 

the superstrate switch proposed in Chapter 4. Pulsed optical excitation will control the ON and 

OFF switches and produce a stream of bits in the information signal. The carrier wave will be 

the periodic microwave signal that propagates through the coax cable and microstrip line.  
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Figure 6.1 Schematic diagram of amplitude modulation (AM) 

On the other hand, this test also aimed to obtain data about its switching speed. As explained 

in Chapter 2, this switching speed mainly depends on the lifetime of the excess carriers and 

how fast the optical source can be operated. A typical value of the lifetime for silicon is tens of 

microseconds. A package of pulsed laser diode and laser driver was used to determine the 

lifetime in the first experiment. This laser diode (905D1S3J09UA from [6.1]) is a portable 

hermetic device with very good temperature stability. The working wavelength is at 905𝑛𝑚, 

which is within the recommended optimum wavelength region concluded in §2.2.3. To prevent 

from overheating, the maximum pulse duration and duty factor are set to 1𝜇𝑠  and 0.1% 

respectively. The duty factor is the ratio of the pulse duration that the laser diode is active to a 

period that a signal completes an on-and-off cycle. Figure 6.2 depicts the pulse width and a full 

cycle of the signal operation.  
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Figure 6.2 Signal level conditions required by laser and laser driver 

The supporting laser driver is a compact chip (LDP-V 10-70) from PicoLAS [6.2] which shares 

the same ratings of maximum pulse duration and duty factor, while the minimum pulse duration 

is  10𝑛𝑠 . A photography of this device and the schematic diagram of the suggested pin 

connections are shown in Figure 6.3 and Figure 6.4 respectively. The names and descriptions 

of each connection with pinheader are illustrated in Table 6.1.  

 

Figure 6.3 Photography of laser driver 
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Figure 6.4 Schematic diagram of pin connection [6.2] 

 

Table 6.1 Pin number, Name and Description of each connection with pinheader [6.2] 

This laser driver uses the current monitor as feedback from which the waveform can be 

observed through an oscilloscope. The current monitor output has a scale of 2𝐴/𝑉  with a 

negative signal output. It has a source of 50Ω and must be terminated with 50Ω to achieve the 

correct scale. With regard to the trigger input, the minimum signal voltage level to be 

acknowledged is 2.4𝑉 when signal low moves to high, whereas the maximum is 0.8𝑉 when 

signal high moves to low. The specific trigger input signal requirement is summarised in Figure 

6.2 for clarification.  

Since a very fast switching device needs to be utilised to provide the required signal, a 

R&S®SMU200A Vector Signal Generator [6.3] was used based on its high sampling rate of 

up to 80𝑀𝑆𝑎/𝑠. However, since the maximum duty factor used to protect the chip and laser 

from overheating is as low as 0.1%, it cannot be achieved under normal operation and settings. 

Fortunately, this signal generator was supported by remote control and the Matlab [6.4] code 
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created for connection was open-sourced. The drawback was having to sacrifice the output 

amplitude. Based on remote control, this signal generator can only be used as a baseband 

generator which produces a maximum 1𝑉 voltage output; hence, it becomes a programmable 

source. The only bridge to build between the signal generator and the laser driver at this stage 

may be an amplifier that can increase the 1𝑉  baseband voltage beyond 2.4𝑉  but does not 

increase the signal low voltage to over  0.8𝑉 . A non-inverting current feedback amplifier 

(TH3201 from Texas Instruments [6.5]) on a printed circuit base board (DEM-OPA68xU from 

Burr-Brown [6.6]) was selected and is shown in Figure 6.5.   

 

Figure 6.5 Non-inverting current feedback amplifier (TH3201 from Texas Instruments [6.5]) on 

a printed circuit base board (DEM-OPA68xU from Burr-Brown [6.6]) 

According to the user manual for the amplifier [6.5], feedback resistor 𝑅𝑓 and ground resistor 

𝑅𝑔 were chosen to be 576Ω and 144Ω respectively, which gave a gain of 5 calculated from the 

following standard non-inverting feedback gain equation; 

 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑅𝑓

𝑅𝑔
+ 1 6.1 

The block diagram and a photo of the system design are shown in Figure 6.6 and Figure 6.7 

respectively. 
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Figure 6.6 Block diagram of signal generation system 

 

 

 

Figure 6.7 Photography of signal generation system 
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The next test was to use a photodiode detector and oscilloscope to capture this pulsed response 

as the optical meter used in Chapter 4 was unable to. The photodiode detector used was an 

InGaAs amplified detector from Thorlabs (PDA10CF [6.7]), which can capture light at 

wavelengths from 800 𝑡𝑜 1700𝑛𝑚 and a bandwidth at 150𝑀𝐻𝑧, which is equivalent to about 

6.67𝑛𝑠. It converts light into an electrical current which can be then observed through an 

oscilloscope. This conversion can be implemented using responsivity, which is expressed in 

units of amperes per watt of incident radiant power. This responsivity can be found in the 

technical data sheet from [6.7]. The radiant power can then be calculated by using the voltage 

values captured by the oscilloscope [6.8] divided by the coupling impedance. The oscilloscope 

has a 1𝐺𝐻𝑧 bandwidth which can detect an electrical signal as short as 1𝑛𝑠. Three waveforms 

superimposed with the output from the signal generator, laser driver current monitor and 

photodiode detector are shown in Figure 6.8. As can be seen, the outputs of the photodiode 

detector and the current monitor are in phase, while they both have a trigger delay of 60𝑛𝑠 

from the output of the signal generator as indicated from laser driver’s data sheet [6.2].  

 

Figure 6.8 Oscilloscope view of three output signals superimposed 
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After adding a 2𝐺𝐻𝑧 carrier signal, the modulated waveform is shown in Figure 6.9. The cursor 

function has been used to measure the excess carrier lifetime and the value is about 80𝜇𝑠. By 

zooming in on the timescale, the rise time can be found to be around 600𝑛𝑠 and the fall time 

around 77𝜇𝑠. 

 

 

Figure 6.9 Excess carrier lifetime measured by the oscilloscope as 80μs 

A high recombination rate is important for the fast switching of applications and steady state 

plasma needs to be extinguished in a very short time. This lifetime was found to be considerably 

long, which led to a switching frequency of only 1/80μs = 12.5𝑘𝐻𝑧. According to [6.9, 6.10], 

the lifetime can be shortened by reducing the passivation layer or introducing surface defects, 

such as radiation damage, but these approaches may impair the insertion loss, isolation or cost-

efficiency of the switch. Essentially, a huge reduction in the order of magnitude in the lifetime 

cannot be expected. Therefore, GaAs superstrate will be proposed in the next section based on 

the advantages of its properties, as discussed earlier in §2.3.5.  
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6.3 GaAs-based Switching Test  

The lifetime in the photoconductive region can be reduced to a nanosecond or even a 

picosecond scale by switching the superstrate material to GaAs [6.11]. As discussed in §2.3.5, 

this direct-band semiconductor GaAs has a higher band gap than silicon and is expected to have 

a good isolation value in low frequencies, but, in turn, it requires higher photon energy and 

thus, a lower wavelength optical source for photo-excitation. As mentioned in Chapter 1, a 

picosecond optoelectronic switching based on silicon was first demonstrated in 1975 at Bell 

Laboratories in Austin, Texas [6.12]. This switching was implemented by providing 530𝑛𝑚 

and 1060𝑛𝑚 picosecond excitation to achieve switch ON and OFF conditions respectively. A 

year later, Lee pointed out that the switching time was fast, but the repetition rate was rather 

slow due to the slow recombination in silicon. In addition, the power handling capability was 

limited when silicon was used as an insulator, which may have been because of the lower 

electric breakdown voltage. Hence, the first photoconductive GaAs high-speed switching has 

been proposed and tested [6.13]. However, both of these experiments required a great deal of 

power and bulky lasers, which is not practical in modern communication systems.  The use of 

GaAs has been increasingly developed since 1975 and many THz switches have been designed, 

but most of these were used for antennas [6.14]. The GaAs was low temperature-grown GaAs 

(LT-GaAs), which created surface defects and aimed to reduce the lifetime for faster operation. 

Another reason for using LT-GaAs was to lower the power demand to achieve a considerable 

insertion loss, but this also significantly reduced the isolation value. Semi-Insulating GaAs (SI-

GaAs) was employed for the subsequent tests, which meant sacrificing some extents of the 

lifetime in exchange for better isolation.  

The S21 of a microstrip gapline switch with GaAs superstrate at dark state is shown in Figure 

6.10. This measured switch had the same dimensions as the proposed switch in Chapter 4. The 

microstrip gapline was of 0.4𝑚𝑚  gap and 1𝑚𝑚  linewidth. The superstrate dimension 

was 5𝑚𝑚 × 2𝑚𝑚 × 0.5𝑚𝑚. The obtained S21 curve profile was quite similar to that of silicon 

superstrate switches at dark state, as discussed in Chapter 4. A minimum 10𝑑𝐵 isolation value 

could be guaranteed in this frequency region.  
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Figure 6.10 VNA measured S21 result of a microstrip gapline switch with GaAs superstrate at 

dark state 

To start the pulsed optical excitation, the GaAs was repeatedly tested using the measurement 

setup shown in Figure 6.7 for silicon switching with the pulsed high-power laser. However, 

there was no observable change when 3𝑊 optical illumination was provided. It was suspected 

that the wavelength of 905𝑛𝑚 illuminated from this laser had already been in the cut-off 

region, since it could not provide sufficient photon energy for GaAs with a 1.42𝑒𝑉 energy gap. 

The next proposed optical sources were LEDs and IREDs on account of their compact use and 

for integration purposes. After a comprehensive screening of various low-cost commercial 

LEDs and IREDs, a powerful IRED TSHG8200 from manufacturer VISHAY Semiconductor 

[5.15] was chosen, mainly due to its working wavelength of 830𝑛𝑚 which is below the cut-

off wavelength (~875𝑛𝑚). It also has a high modulation bandwidth of 18𝑀𝐻𝑧. This is suitable 

for high pulse current operation and spectral matching with CMOS cameras [5.15]. The angle 

of half intensity is ±10° and the maximum radiant power can reach nearly 1𝑊. A TSHG8200 

was carefully removed from an anti-electrostatic discharge package for a characterisation test, 

which was conducted with the optical meter used in §3.3 with a DC power supply. The results 

shown in Figure 6.11 and Figure 6.12 of forward current vs. forward voltage and radiant power 

vs. forward current respectively have been found to be fairly close to the technical data shown 

earlier in Figure 3.7 in §3.3.2.  
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Figure 6.11 Forward current vs. Forward voltage 

 

Figure 6.12 Radiant power vs. Forward current 
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With regard to the pulsed operation on this IRED, the first signal source used was a standard 

signal generator [6.16] with a maximum bandwidth up to 15MHz. A brass block was drilled 

with a 6𝑚𝑚 diameter hole to better mount and fix this IRED at the bottom to deliver the optical 

illumination. This IRED connected by DC wires and a brass block with a 6𝑚𝑚 diameter hole 

for mounting is shown in Figure 6.13.  

 

 

 

Figure 6.13 IRED connected by DC wires and brass block with a 6mm diameter hole for 

mounting 

The signal generator was set to generate a standard square wave with 50% duty cycle for easy 

observation through an oscilloscope. The signal level from the signal generator was set to 

provide an 8𝑉 peak-peak voltage (𝑉𝑝𝑝) on a 4𝑉 DC offset level. These numbers were chosen 

because considerable optical power can be produced for use when 8𝑉 𝑉𝑝𝑝  is close to the 

maximum supported voltage rating of the signal generator, 10𝑉 𝑉𝑝𝑝. The derivation of the 

optical power value can be calculated as follows. As can be seen from Figure 6.11, a linear 

relationship between the forward current and forward voltage was demonstrated before the 

forward voltage reached 1.5𝑉. Then, the curved I-V plot emerged after this forward voltage 

level, which is assumed to have been associated with the thermal nonlinearity of the IRED 

resistor. As a compromise and average between the linear and nonlinear region, this IRED 

internal resistance value can be calculated as 15Ω by reading the forward current value, 0.1A, 

at 1.5𝑉 in Figure 6.11. By knowing the system-coupled internal resistor as 50Ω, the forward 

current value can be determined as 0.125A from an 8𝑉 voltage excitation divided by (50 +

15)Ω. Hence, nominal radiant power can be read off as 35𝑚𝑊 from Figure 6.12. 



Microwave Switch Mixing and Modulation 

 

182 

 

 

Figure 6.14 Photodiode waveform observed through oscilloscope at 1kHz 

 

Figure 6.15 Photodiode waveform observed through oscilloscope at 100kHz 
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Figure 6.14 and Figure 6.15 show the measured waveform from the photodiode detector output. 

This waveform was repeated at 1𝑘𝐻𝑧  and had a 112.65𝑚𝑉  amplitude at signal high. As 

discussed in the last section, the optical power could be calculated by knowing the responsivity 

from the user manual [6.7], and it was 11.27𝑚𝑊. The discrepancy between this value and the 

nominal power calculated above, 35𝑚𝑊, could have been caused by several possible factors, 

but the primary factor is optical loss. As shown in Figure 6.13, there were two drilled holes 

with different diameters and depths. The outer circle was drilled for IRED mounting, as 

explained above. The inner through hole at the bottom was used to provide a light path to 

illuminate the superstrate. The transition area between these two holes was designed with an 

inclining and tapered angle, which was used to confine the light from the outer circle. Since 

this IRED had relatively dispersive radiation angles compared with the optical fibre used 

previously, the confinement failed to focus a considerable portion of light into the inner hole. 

Therefore, a wider through hole had been proposed, but the simulation does not suggest it since 

the existence of a bigger hole beneath the substrate would cause great discontinuity and thus, 

more insertion loss. The second factor could be the impedance mismatch between the 50Ω coax 

cable and the IRED. As shown in Figure 6.13, the IRED did not produce an impedance-matched 

PCB circuit, and its anode and cathode were directly connected with the wires inside by a coax 

cable connected to the signal generator on the other side. This inevitably deteriorates the power 

transfer. When frequency was raised higher at 100𝑘𝐻𝑧 as shown in Figure 6.15, the optical 

power dropped to 8.70𝑚𝑊 and the phenomenon of an impedance mismatch became more 

obvious. The significant increase in the rise time and fall time represented by the curves 

highlighted the inductive and capacitive characteristics. As for other factors that could have 

caused the discrepancy, system errors and device defects could be considered, but these would 

not make such a huge difference. Impedance matching techniques could be employed with an 

L-C circuit to improve the performance of this IRED in pulsed operation, but it may only work 

with narrowband use due to the limited electrical length from the distributed components, as 

discussed in Chapter 3.  

The microstrip switch with GaAs superstrate was tested based on the current measurement 

established for this IRED before proceeding further with impedance matching and electronics 

design. However, no observable difference in S21 was found between the switch ON and OFF 

conditions with IRED used in both DC and pulsed operations. 
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6.4 GaAs Bias Test 

Since the above-discussed GaAs switching test failed to produce satisfactory results, the SI-

GaAs (intrinsic GaAs) will be investigated in this section. To begin with, it was assumed that 

the optical intensity was insufficiently high for an intrinsic GaAs to create sufficient excess 

electron-hole carriers and this was why negligible conductivity variation could be observed 

through S21. Therefore, the first amendment involved changing the optical source back to the 

CW laser, as introduced in §3.3.1. Meanwhile, a current meter can be used to monitor the small 

photocurrent for a very low electrical conductivity change. This photocurrent refers to the 

current through the photoexcited region created by optical illumination incident on GaAs. Last, 

but not least, a dual-port DC supply was prepared to provide a DC bias voltage up to 30𝑉 

across the DUT. This DC bias voltage can theoretically provide an electrical field that exerts a 

pulling force on electrons and holes and this can effectively hinder their recombination 

mechanics. A schematic diagram is shown in Figure 6.16. 

 

Figure 6.16 Schematic diagram of DC bias test 
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As a result, the lifetime can be significantly increased if a sufficiently large voltage is used. A 

photo of the set-up of this proposed GaAs bias test is shown in Figure 6.17. A maximum of 

1.5𝑊  optical illumination at 830𝑛𝑚  was provided by the VCSEL laser, collimated and 

focused by lenses and delivered to the DUT. The superstrate microstrip switch was fixed on a 

microstage and connected to the VNA. This microstage was used for a full dimensional 

alignment between the illumination spot and the superstrate by fine-tuning with the knobs. A 

DC power supply was connected in the series with the VNA and the current meter which had 

a minimum scale of 𝜇𝐴.  

In addition to the intrinsic GaAs mentioned above, Epilayer GaAs were added for comparison 

and the properties of these three kinds of samples are shown in Table 6.2. The first one was a 

double-side-polished (DSP) intrinsic GaAs which was used in the above IRED test. The second 

had 𝐴𝑙𝐴𝑠 sandwiched between the GaAs to increase the conductivity at dark state. The third 

sample was an unpolished GaAs. A bias test was conducted on these three superstrate samples. 

Yet another microstrip gapline was also added for comparison. This one had a smaller gap of 

0.1𝑚𝑚, in contrast with the above proposed 0.4𝑚𝑚 gap, for which the DC resistance was 

expected to be reduced proportionally by a factor of approximately 4. 

 

 

Table 6.2 Properties of Double-Sided-Polished GaAs, GaAs with Epilayer and Unpolished GaAs 

 

Sample Type Thickness (um) Carrier concentration 

(cm-3) 

Resistivity 

(Ohm.cm) 

DSP GaAs 350±25 6.67E6 to 7.69E6 1.43E8 to 1.62E8 

Epilayer GaAs 550+3.925(Epi) 9.76E6 to 1.16E7 1.05E8 to 8.9E7 

Unpolished GaAs 550±25 9.76E6 to 1.16E7 1.05E8 to 8.9E7 
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Figure 6.17 Photography of GaAs bias test set-up (with 830nm CW VCSEL, VNA, DUT and 

Current meter) 

The result of the bias current against optical power of the three different superstrate samples 

on a microstrip gapline of 0.1mm gap and 1mm linewidth under a constant bias voltage 

(15.13𝑉) can be seen in Figure 6.18. The bias current vs. bias voltage of these three superstrate 

switches under 1240mW optical illumination is shown in Figure 6.19. It can be seen that the 

unpolished GaAs demonstrated the best performance of highest bias current in both situations. 

It is believed that the surface defects reduced the optical reflection where light could be more 

easily trapped into the surface structure and thus, increased the absorption to excite more excess 

carriers.  
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Figure 6.18 Bias current vs. optical power on DSP GaAs, GaAs with Epilayer and Unpolished 

GaAs on a microstrip gapline of 0.1mm gap and 1mm linewidth under 15.13V bias voltage 

 

Figure 6.19 Bias current vs. Bias voltage on DSP GaAs, Epi-GaAs and Unpolished GaAs on a 

microstrip gapline of 0.1mm gap and 1mm linewidth under 1240mW optical illumination 



Microwave Switch Mixing and Modulation 

 

188 

 

The plasma region was considered as an equivalent photoresistor for a further analysis. This 

resistance was quantified by the ratio of the bias voltage to the bias current. Taking the highest 

bias current of 1171𝜇𝐴 and the corresponding bias voltage of 30𝑉 in unpolished GaAs case, 

the photoresistor could be calculated as 25.6𝑘Ω. By linking this assumption with the simplified 

distributed element modelling in §4.4.3, this photoresistor is depicted in Figure 6.18. By 

considering a microstrip gap of 0.4mm, plasma width 1mm, plasma thickness 10um, and 

substituting photoresistance into 4.3, the conductivity can be calculated as follows; 

𝜌 =
𝑅𝐴

𝑙
=

25.6𝐸3 × 10𝐸 − 6 × 1𝐸 − 3

0.1𝐸 − 3
= 0.256 Ω. 𝑚  

∴ 𝜎 = 3.90625 𝑆/𝑚 

 

Figure 6.20 Equivalent photoresistor model (gap length L = 0.4mm, plasma width w = 1mm, 

plasma thickness d = 10um)  

Compared to the derived plasma simulation model in Chapter 2, intensity can be calculated 

with 1240mW optical power incident on the circular illumination area, (0.15)2πcm2, in this 

experiment, 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ~ =
1240𝐸 − 3

0.1252π
= 25.26𝑊/𝑐𝑚2 
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Other parameters for simulations were obtained such as the recombination time 1𝑛𝑚, the 

quantum efficiency0.654, the surface recombination velocity 5.4 × 105𝑐𝑚/𝑠, the diffusion 

length 10𝜇𝑚, the absorption coefficient at 830𝑛𝑚, the electron mobility of intrinsic GaAs at 

room temperature 8500𝑐𝑚2/(𝑉. 𝑠) , the hole mobility of the GaAs at room temperature 

400𝑐𝑚2/(𝑉. 𝑠) , and the intrinsic carrier concentration 2.1 × 106𝑐𝑚3 . The conductivity 

against depth in substrate was plotted by substituting these numbers into the plasma modelling 

created in Chapter 2 and the result is shown in Figure 6.19. As can be seen, the two 

conductivities derived from different modelling and measurements showed considerably good 

agreement in the same order of magnitude. As for the 0.4𝑚𝑚 gapline case, the resistance 

derived by the bias voltage and bias current was 108.6𝑘Ω which was expected to be about four 

times the other one. The conductivity calculated from the bias test with the photoresistor model 

and the simulated conductivity from the plasma model in Chapter 2 are 3.9S/m and 5.7S/m 

respectively. These two numbers closely matched in the same order of magnitude, which can 

be considered to be an accurate simulation. Therefore, based on this accuracy, a CST simulation 

was undertaken to determine the required conductivity that can achieve an S21 performance 

similar to that of the silicon superstrate switch.  

 

Figure 6.21 Simulated conductivity vs. Depth in substrate for unpolished intrinsic GaAs 
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The CST-simulated S21 results of different plasma surface layer conductivity under various 

illumination intensties are shown in Figure 6.20. These results illustrate that a 500𝑆/𝑚 was 

found to be saturated so that the insertion loss could not be reduced by increasing the 

conductivity at this order of magnitude. After 4𝐺𝐻𝑧, the insertion loss and isolation were within 

the ranges of 2~3dB and 9~11dB respectively.  

 

Figure 6.22 CST simulated S21 results for varying conductivity 

Therefore, it would be interesting to know the intensity at which this good combination of 

insertion loss less than 2𝑑𝐵  and isolation larger than 10𝑑𝐵  could be found in a SI-GaAs 

superstrate microstrip gapline switch. Therefore, the reverse calculation was conducted, and it 

was found that the minimum intensity required would be at 𝑀𝑊/𝑐𝑚2. This huge number 

suggests that the approach of a LED or IRED optical excitation is unrealistic, but a highly 

focused laser may be able to deliver the desired results. On the other hand, a change of material 

and the development of new structure could be considered. Other recommendations and future 

work will be presented in the next chapter. 
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6.5 Conclusion 

This chapter firstly contained a proposal to use a silicon superstrate microstrip gapline switch 

as a mixer in an AM modulation communication system. Pulsed laser and a laser driver were 

successfully operated after building an ad-hoc signal generation system with a programmable 

baseband signal generator. This system was designed for a recombination time measurement 

of excess electron-hole carriers in silicon, which were created by optical illumination. Since 

this excess carrier lifetime was found to limit the switching speed, GaAs was proposed as a 

superstrate due to its much shorter lifetime. A plan of LED/IRED switching toward a pulsed 

optical illumination was implemented. The optical loss and impedance mismatch of the IRED 

that prevented it from being a good candidate were discussed in detail. Next, an investigation 

of the measurement and simulation modelling were encouraged due to the significantly low 

carrier concentration and photoconductance from an SI-GaAs. Lastly, the power requirement 

for GaAs switching was raised and future work will be discussed in the next chapter.  
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CHAPTER 7 

7. Conclusion and Future Work 

 

7.1 Conclusion 

This research involved working toward the design, characterisation and optimisation of 

reconfigurable RF circuits based on the interaction of optical illumination and semiconductor. 

Several simulations and measurement methods were developed for optically-reconfigurable 

microwave and millimetre wave circuits. The standard implementation process followed was 

design-simulation-fabrication-measurement-comparison-optimisation. These circuits were 

mainly designed based on the transmission line, which provides good transmission 

performance, as well as impedance matching. Much of the previous work on this project has 

laid the foundations for studying microstrip gaps and the illumination was provided by a laser 

that required fixed optics. The investigations presented here proposed fibre-coupled laser and 

LED/IRED optical sources for ease of integration, while still maintaining the optical power 

requirement. Multiple simulation methodologies and tools were studied and techniques for 

optimising accuracy were also proposed. Several switching components were fabricated and 

optimised with good performances achieved in both microwave and millimetre wave regimes.  
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Chapter 2 contained an explanation of the fundamental physics of semiconductors and the 

quantum basis that are involved in the interaction between optical illumination and the 

semiconductor. This interaction was studied from both a classical physics perspective based on 

Maxwell equations and the modern quantum perspective of wave-particle duality. In more 

detail, reflection was firstly discussed from the angle of an electromagnetic wave with the 

introduction of a wave equation and complex refractive index. A section of the electromagnetic 

wave’s absorption and attenuation was followed by an explanation in quantum physics. In this 

section, the concept of band structure was described as a possible solution to scientists’ recent 

quantum postulation. It was then employed to explain the band transitions in the generation 

recombination and diffusion of electron-hole excess carriers.  

The photoconductivity section contained a detailed explanation and equation derivation of 

particle behaviour in the generation, recombination, drift and diffusion of excess carriers. 

Importantly, three recombination mechanisms were introduced, namely, Shockley-Read-Hall, 

Radiative and the Auger effect. Furthermore, the significant plasma diffusion of high 

concentrations of electron-hole plasma was analysed with physics equations. Finally, the total 

carrier concentration, as well as photoconductivity, was quantified for a subsequent analysis. 

Critical electrical properties were eventually obtained through the derived physics equations 

along with dielectric permittivity studies, and a solution for simulation was found and later 

employed to predict the performance of the circuit. Lastly, the comparison and choice of the 

materials on which the study of GaAs was based in Chapter 6 were discussed.   

Chapter 3 mainly consisted of a description of the simulation, measurement and fabrication 

involved in this research. In terms of simulation, the distributed element model and the full-

wave electromagnetic analysis were firstly compared, which highlighted the limitations of the 

former method. An in-depth comparison was made within the scope of full-wave modelling 

methodologies, including the FEM, FDTD, FDFD and FIT algorithms, for a detailed 

explanation. The FDTD-evolved FIT method was finally distinguished as the best method 

based on its broad band design and computational efficiency, as well as for its time-saving 

benefit and popularity in modern simulation technologies. With regard to the measurement, a 

fibre-coupled laser and LED/IRED provided more possibilities and maintained the same 

required optical power as the free-space VCSEL laser with solid optics. More importantly, the 
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huge potential of circuit incorporation and integration can be anticipated based on these 

techniques. These measurement setups also essentially demonstrated flexibility and versatility 

in the interaction between optical and RF engineering interact. Finally, a detailed fabrication 

procedure was shared. A standard photolithography process was followed for circuit 

fabrication and an alternative laser-cutting PCB circuit fabrication, which was hired to improve 

integration in Chapter 5, was also shown.   

Chapter 4 contained a proposal of a superstrate-structure microwave gapline switch and the 

implementation of a standard characterisation test on this novel device. Optimisation was 

conducted for a better linearity performance and higher power-handling ability. Chapter 4 

began with a review of state-of-the-art optically-controlled microwave switches and this was 

followed by a list of the improvements targeted in this work. A microstrip gap switch in 

previous work was selected as the fundamental model and its large transmission loss was 

analysed with the aid of CST simulation and the modelling created in Chapter 2 in order to 

identify the reason for this loss. A superstrate microstrip gapline switch model was proposed 

based on other work on antenna. Simulation software was again employed to implement a 

sensitivity analysis. A corresponding CST parameter sweep overtook this task and the optimum 

circuit dimensions were theoretically proposed. Then, the circuit of interest was fabricated and 

measured and good agreement was achieved between the CST simulated and VNA measured 

results. An appropriate two-tone non-linearity test with power handling observation was 

designed and conducted for a full characterisation of the designed switch. The initial results 

did not demonstrate much competitiveness to other microwave switches, since the superstrate 

fixture holder had melted during the test and the insertion loss had deteriorated. Several 

proposed fixtures were fabricated and tested to solve this problem. On the other hand, the 

contact issue with the suspected reason of non-linearity generation by the Schottky barrier was 

analysed and confirmed. Several experiments were conducted and better results were found by 

changing the superstrate materials to reduce the Schottky barrier; however, this caused 

insertion loss and worse isolation. Finally, a new structure design free of Schottky contact was 

proposed with a passivation layer included in the superstrate and quartz inserted in the 

superstrate fixture. This was found to improve both the non-linearity and power-handling 

ability.  
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Chapter 5 was concentrated on designing devices at higher frequencies in the millimetre wave 

region. It began with a literature review of the current millimetre wave switches and a proposal 

of several aspects that needed to be improved. The chapter was divided into two parts, the first 

of which contained a proposal for an optically-controlled GCPW switch operating in the 

millimetre wave region based on a transmission line model. This switch was designed to follow 

an inverse controlling correlation between the illumination condition and the switch condition; 

the switch OFF state occurred when optical illumination was provided because the GCPW 

central conductor was grounded, which significantly reduced the transmission of the device. A 

full-wave analysis with a multi-layer plasma model was utilised to find the optimum circuit 

dimension. Detailed circuit fabrication and V connector installation for high frequency were 

also described and a good agreement was achieved between the measured and simulated results. 

The results showed considerably good isolation and transmission performances in the 

millimetre regime.   

A millimetre-wave GCPW attenuator controlled by a single IRED was presented in the second 

part of this chapter. This device was designed on PCB material, Roger 4003C, with compact 

optical source for better integration with on-board circuits. The proposed device added drilled 

through-holes on the spacing between the signal and the ground of a straight GCPW 

transmission line. This effectively increased the interactive region which allowed more 

utilisation of the optical illumination provided by a high power IRED. Very good attenuation 

was achieved across the boundary of the microwave and millimetre wave. Furthermore, 

insertion loss was reduced compared with the device designed in the first part by laser-drilling 

more vias holes that effectively compressed the spurious surface modes. The employed laser-

cutting fabrication technique also demonstrated superiority at a shorter lead time and the benefit 

of low cost.  

Chapter 6 was focused on two superstrate materials, silicon and GaAs, for implementing the 

switching on the superstrate microwave gapline switch developed in Chapter 4. This switch 

was used as a mixer in an AM modulation communication system. A pulsed laser system was 

successfully designed and operated. Importantly, an ad-hoc programmable signal generation 

system was converted from a baseband signal generator and a modified non-inverting current 

feedback amplifier. The time taken for the recombination of excess carriers in silicon was 
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measured using this system and it was found to be relatively long for the requirement of fast 

switching. Hence, a study of GaAs as superstrate material was proposed. Due to the insufficient 

photon energy provided from the laser configured in the system designed for silicon, 

LED/IREDs were selected as new candidates based on more choices of wavelengths and its 

outstanding promising potential in circuit integration, as discussed earlier in Chapters 3 and 5. 

Work was done on driving a selected IRED for its high power and high bandwidth. However, 

it was found that the photoexcitation on a SI-GaAs needed significantly large optical power, 

not to mention the recognition of a dispersive angle and impedance mismatch in this IRED. 

Therefore, an investigation was begun of its power requirement with a DC bias test. Theoretical 

calculations and simulations were conducted and agreed with the measured results from a DC 

bias test and finally, recommendations were made for the implementation of this designed 

switching and mixing.  

7.2 Future Work 

It is considered that several aspects of this project could be improved by further research. 

Firstly, non-linearity can be a sophisticated problem to analyse, especially when it depends on 

various parameters. Chapter 4 contained a discussion and characterisation of non-linearity 

which was mainly indicated by IP3. Ambient heat condition and structural contacts could be 

further studied to continue this discussion. Complex problems could be fragmented and 

addressed in several sub-sections based on the multi-physics modelling tool of COMSOL, 

which is recommended to deal with such difficult questions. The resistivity across contacts of 

different layers could be used to identify the source of the non-linearity. The Passive 

Intermodulation (PIM) measurement could also be hired for a better understanding. Secondly, 

since the current stepped-impedance GCPW attenuator limits the operating frequency to 

about 30𝐺𝐻𝑧, it is proposed that a smaller slow-wave structure in GCPW would work better 

in millimetre wave frequencies, but it is believed that with a reduced area of illumination, the 

isolation/attenuation value will be sacrificed from a trade-off between them. Thirdly, to 

implement a fast switching with GaAs, a rapidly pulsed and powerful laser with a precisely 

focused optical lens will be needed to provide significant intensity on the photo-conductive 

region of interest. Alternatively, a two-photon absorption (TPA) method from quantum 
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technology could be implemented. This second-order process may provide more possibilities, 

since many powerful pulsed lasers could be considered at longer wavelengths outside the cut-

off wavelength boundary.  

The work in this research has laid the foundation for the design of optically-reconfigurable 

microwave and millimetre wave switches by mainly focusing on a circuit for integration and 

the incorporation of on-board components. Although a significant amount of work is still 

needed for commercial application, the proposed techniques and designed circuit components 

are believed to make a certain contribution to future research and implementation. 
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APPENDIX I 

Comparison of Different Switch Technologies 

 

Type of 

switch 
Bandwidth 

Insertion 

loss (dB) 

Isolation 

(dB) 

Return 

loss (dB) 

@ON 

Return 

loss (dB) 

@OFF 

Switch 

Time 

DC source 

power/bias 
IM3 

1dB 

Compressio

n 

Power 

Handling 

Unit 

Price 

PIN 1 

[1] 
27-46GHz 1~2.6 12~26 5~10 Unknown <4ns 100mW Low 

31~36dBm 

@7.5V 

~33dBm 

(2W) 

£30 

PIN 2 

[2] 

DC-

50GHz 
0.2~0.3 22~46  16~30 Reflective 10ns 50mW Low Unknown 23dBm £5.12 



 

II 

 

(~0.2W) 

PIN3 

[3] 

DC-

50GHz 
1.2 >30 >20 >10dB 10ns 50mW Low Unknown 

23dBm 

(~0.2W) 

£9.59 

MEMS 

[4] 

DC-

26GHz 
<1.6 30 2 Reflective 3-5ms 768mW 

-110dBc 

@1.7GHz 

(2 carriers 

20W) 

Unknown 

1W when 

hot 

switching 

£223.5 

PCS 1 

[5] 

6.7~30GH

z  
<2.3 >15  >10 

>6.2dB 

 

 

~10us 
mW~ 

2.9W 
Unknown Unknown Unknown  
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PCS 2 

[6] 

DC-

65GHz 
<2.5 

>10  

>>20GH

z 

>7.5 >12.5dB ~10us mW~2W Unknown Unknown Unknown  

PCS 3 

[7] 

DC-

18GHz 
<1.3 

>10dB 

>>6-

18GHz 

>12 
Highly 

Reflective 
~10us mW~2W +77dBm Not Found 

>46dBm 

(40W) 
 


