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Abstract

We consider an infinite server queue into which customers arrive according to a Cox
process and have independent service times with a general distribution. The model
is motivated by a linear feed-forward gene regulatory network, in which the rate of
protein synthesis is modulated by the number of RNA molecules present in a cell. The
system can be modelled as a nonstandard tandem of infinite server queues, in which the
number of customers present in a queue modulates the arrival rate into the next queue
in the tandem. We first study second order statistics of the equilibrium queue length by
making a simplifying assumption on the service time distribution. We then establish a
Large Deviations Principle for this queueing system in the asymptotic regime in which
the arrival process is sped up, while the service process is not scaled.
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1 Introduction

1.1 Biological Motivation

The central dogma of molecular biology is that DNA makes RNA, which makes protein
[28]. Each RNA molecule synthesises proteins, so the more RNA molecules there are,
the faster the total rate of protein production. Similarly, the rate of RNA transcrip-
tion depends upon the number of active genes. Networks of genes, RNA molecules and
proteins are often called gene regulatory networks. In practice these networks include
feedback mechanisms in addition to the obvious feed-forward network topology sug-
gested by the central dogma. For instance, if there are enough molecules of a certain
species of protein in the cell, a signal is sent to repress the gene responsible for its
production.

The life of a cell is inherently stochastic. Chemical reactions in cells happen ac-
cording to the random collisions of molecules. This means that cellular complexes are
formed at random times. Additionally, organic molecules have both finite and ran-
dom lifespans. The external environment is also constantly changing. Many molecular
species in a cell are present in very low numbers (sometimes with as few as one copy
present); this means that stochastic fluctuations in molecular abundances can have
profound effects on cellular concentration levels - the signal to noise ratio can be very
low. This cellular noise is typically harmful, reducing efficiency and constraining func-
tionality. In principle, if one knew the positions and momenta of all particles, one
could model the system deterministically with Newton’s equations of motion. But it is
clear that measuring all this information is not possible in any practical sense and such
an approach does not scale. So modelling the system stochastically provides a simpler
interpretation and acts as a good approximation.

The goal of a cell, loosely speaking, is to carry out a multitude of different tasks.
This is principally achieved by carefully balancing molecular concentration levels within
the cell. It tries to reach an optimal state for the desired functionality and then main-
tain this state by keeping the chemical composition roughly constant. However keeping
concentration levels within narrow bands is not straightforward due to the destabilis-
ing forces caused by a changing environment and a whole host of sources of stochastic
fluctuations. So it is important that cells are robust in the face of noise. Efficiency
is also essential. It is not enough to produce sufficient numbers of molecules of the
desired types, the cell must also be careful to reduce wastage and not form redundant
molecules as this uses up valuable shared resources. Of course in reality the cell is not
an autonomous agent making decisions. The behaviour we observe is a consequence of
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a large number of feedback loops.

There is a great deal of interest amongst biologists in the statistical fluctuation
properties of gene regulatory networks. They would like to have a better mechanistic
understanding of cellular noise. In particular, they would like to understand how the
correlation structure in molecular count data that have been observed experimentally
actually arises. Indeed, there are sometimes marked correlations between ostensibly
unrelated molecular species [27]. But since there is so much happening within a cell,
with millions of species and reactions, all linked in a hugely complicated web of interde-
pendencies, not to mention the low signal to noise ratio, it becomes nigh on impossible
to extract causal relations from statistical data analysis. The classical scientific ap-
proach to inferring causality from data is to perform a controlled trial. However in this
instance it is hopeless to think one could control the chemical compositions and posi-
tions and momenta of all molecules across multiple cells. Even if one could in principle
do this, the experimental design problem would be combinatorially astronomical, as a
priori it is not clear which species directly or indirectly affect each other. A bottom-up
mathematical model can circumvent some of these problems. With a model one can
perform pseudo-experiments in which one artificially varies just one model parameter
in isolation. Additionally, finding outputs of the model explicitly in terms of the input
parameters can shed light on the mechanistic or causal structure. Of course the model
predictions could be tested against real data. This description motivates the use of a
stochastic model of a gene regulatory network. Our goal is to analyse this model to
shed light on the causal structure. The stochastic nature of the model is particularly
important in capturing behaviour of those species which typically have low copy counts.
Mere averages do not suffice in such cases. For the sake of mathematical tractability
we shall omit the effects of feedback.

1.2 A Motivating Markov Chain Model

We consider a simple model of a gene regulatory network, which is a simplification of
that in [83] in that we do not keep track of the number of active genes present. We let
N1 and N2 represent the number of RNA molecules and proteins in a cell respectively.
An RNA molecule is transcribed by genes after an Exponential time of rate λ1 (we
are essentially assuming that the combined action of genes is given by a constant rate
Poisson process). An individual RNA transcript synthesises protein molecules after an
Exponential time of rate λ2. The time until the next protein synthesis is therefore the
minimum of N1 independent Exponential(λ2) times, that is an Exponential(λ2N1)

time. But since N1 is a random number which changes over time, proteins are formed
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at the increments of a Poisson process with a stochastic intensity - a Cox process (see
section 2.1 for a formal definition). So the rate of protein production is modulated
by the number of transcripts. Additionally, each RNA and protein molecule degrades
after an independent Exponential time of rate µ1 and µ2 respectively. So the number
of RNA and protein molecules decreases by one upon the independent degradation of
any one of the molecules present and so is again linear in the molecular count and so
happens after an Exponential time of rate N1µ1 and N2µ2 respectively. We summarise
this information into a set of four elementary reactions:

N1
λ1
Ð→ N1 + 1, (1)

N1
N1µ1
ÐÐ→ N1 − 1,

N2
λ2N1
ÐÐ→ N2 + 1,

N2
N2µ2
ÐÐ→ N2 − 1.

These reactions can be interpreted as describing the transition rates of a Markov chain
in state (N1,N2). We can use the reaction rates from (1) to write down the Chapman-
Kolmogorov forward equations for this Markov chain:

dPt(N1,N2)

dt
= λ1Pt(N1 − 1,N2) − λ1Pt(N1,N2)

+ (N1 + 1)µ1Pt(N1 + 1,N2) −N1µ1Pt(N1,N2)

+ λ2N1Pt(N1,N2 − 1) − λ2N1Pt(N1,N2)

+ (N2 + 1)µ2Pt(N1,N2 + 1) −N2µ2Pt(N1,N2),

where Pt(N1,N2) is the probability of being in state (N1,N2) at time t. Because of
the linearity inherent in the reaction rates for this system, one can explicitly find exact
analytical expressions for the time-dependent moments of the molecular count pro-
cesses using generating functions [83]. Note it is very easy to generalise this set-up to
a feed-forward network of arbitrary length. Before continuing our study of this model
in section 1.5, we make a brief foray into an area of mathematics known as queueing
theory.

1.3 A Brief Introduction to Queueing Theory

Queueing theory is the formal mathematical study of waiting lines. The original moti-
vation came from the pioneering work of the Danish engineer Erlang [41], who wished to
model the amount of traffic experienced by a telephone exchange. From an engineering
point of view, there is a trade-off to be struck between having enough wires and ma-
chinery so that callers have a good service (in the sense that they do not have to wait a
long time to make a call) whilst not having a large amount of expensive and redundant
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equipment sitting around. In order to reach a sensible compromise, it is important that
one has an understanding of the levels of traffic at the exchange. The time evolution
of the number of people wanting to make a telephone call in Denmark is evidently
stochastic, so mere averages do not adequately capture the behaviour of the system.
What is preferable is a probabilistic analysis that can capture the inherent fluctuations.

The stochastic model Erlang used is called a queueing model (or just a queue for
short). At a high level this typically describes a system into which customers (or jobs)
arrive, queue up in a buffer, then receive service before exiting the system. Mathemat-
ically speaking, a queue is described by an arrival process (a rule governing how work
arrives to the system), a distribution of service times (specifying the amount of work
each job comes bearing), some number of servers working on the jobs, and a policy
that determines how service is allocated. This information is succinctly conveyed by
Kendall’s X/Y /Z −W notation [60]. The X specifies the stochastic process of arrivals,
Y the service time distribution, Z the number of servers, and W the service discipline
which dictates how servers divide their attention amongst customers. For instance, for
the M/G/∞ queue, the M tells us that the arrival process is Markovian - specifically
that customers arrive at the increments of a Poisson process (equivalently that the in-
terarrival times are i.i.d. Exponential random variables), the G that the service times
follow some general (arbitrary) distribution, and there is an infinite number of servers.

Due to the infinite number of servers, whenever a customer arrives to the system
there is always a free server that instantaneously begins servicing it until its comple-
tion, whereupon it exits the system. Hence, its sojourn time in the system is simply
its own service requirement. Calling this system a queue is something of a misnomer
as no customer ever waits in line (by queue length we really just mean the number of
customers in service at a given time). For this reason it was not necessary to specify
a service discipline. Customers do not feel the effects of each other, so there is a great
deal of independence which makes this model particularly tractable. Of course if the
service time distribution changes over time (for instance according to some background
process), then customer sojourn times can be correlated. The assumption of an infinite
number of servers may seem unrealistic, but in some applications (see for instance the
model studied in chapter 4) this makes physical sense. Alternatively, sometimes infinite
server queueing models are used as approximations to systems with a large number of
servers, which arriving customers typically find to be underloaded.

Since the early work of Erlang much has been discovered about a wide range of
queueing models. These models have been successfully employed in a diverse range
of applications including (but not limited to) retail, telecommunications, computing,
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industrial engineering and many more. It is a testament to its versatility that the same
theory can be used to describe customers standing in line in a shop, traffic on a road,
or internet traffic in a fibre optic cable.

1.4 Some Preliminaries on Infinite Server Queues

The simplest infinite server queue is the M/M/∞ queueing model. For this model cus-
tomers arrive according to the increments of a Poisson process of fixed rate λ and their
service times are i.i.d. Exponential(µ) distributed random variables. The stochastic
process (Xt, t ≥ 0) tracking the time evolution of the number of customers in the system
is clearly a continuous time irreducible birth-death Markov chain, and as such it ad-
mits a unique invariant distribution. By considering the infinitesimal generator of the
chain, it is a trivial exercise to solve the detailed balance equations and normalisation
condition to reveal that the equilibrium distribution for the number of customers in
an M/M/∞ queue follows a Poisson distribution with mean ρ ∶= λ

µ (see section 5.5.2 of
[75], for example, for further details).

The M/G/∞ queue is a generalisation of this where job sizes are i.i.d. and gener-
ally distributed according to some distribution F supported on R+ with mean 1

µ . In
particular we are no longer assuming that the service time distribution is Exponential.
This means that the queue length process is no longer a Markov chain. Nevertheless,
it turns out that the M/G/∞ queue exhibits what is known as the insensitivity prop-
erty, meaning that the equilibrium queue length distribution still follows a Poisson(ρ)
distribution. It is insensitive in the sense that the stationary distribution for the num-
ber of customers in the queue only depends upon the job size distribution through its
mean. Note, the insensitivity property is not robust to changes in the arrival process
(for an example see [77]). One could reasonably additionally keep track of all of the
residual service times and obtain a Markov chain representation on a much larger state
space. But the unwieldy size of the state space means that the chain is no longer
especially amenable to analysis by traditional Markov chain methods. Instead, it is
convenient and fruitful to analyse this queueing model by appealing to the theory of
point processes. For a formal description of point processes, see section 2.1.

1.5 An Equivalent Tandem Queueing Model

A natural analogy can be drawn between the number of customers in a queue and the
number of molecules of a certain species in a cell. Each customer represents an indi-
vidual molecule, while its service requirement can be thought of as its lifetime. So the
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arrival or departure of a customer portrays the formation or degradation respectively
of a molecule. It is assumed that all molecules have independent lifespans, in this case
it makes sense to have an infinite server queue. This means that all customers are
served in parallel from the instant they arrive - equivalently, no molecule need wait
after its formation to start ageing.

By virtue of this analogy we can translate the Markov chain model into a nonstan-
dard tandem queueing model whose arrival and service rates are given by the reaction
rates in (1) of section 1.2 and which satisfies exactly the same Chapman-Kolmogorov
equations. It is nonstandard in the sense that there is no routing of customers between
queues as in the normal tandem. The number of RNA transcripts can be thought of as
the occupancy of anM/M/∞ queue and the number of proteins present is given by the
occupancy of a Cox/M/∞ queue. The Cox process allows one to capture the burstiness
experimentally observed in protein production where there are sporadic periods of high
level activity interspersed between long stretches of low level translation (see section
2.1 for a formal definition). Figure 1 shows a schematic of the tandem queueing model.

Cox

Figure 1 – Schematic of the tandem queueing model.

The tandem queueing model is mathematically equivalent to the simple Markov
model described earlier. However the queueing model permits some generalisations. In
particular, we would like to relax the assumption of Exponential lifetimes of molecules.
So we take the service time distributions for both queues to be i.i.d. from arbitrary
distributions. This means that the queueing model now consists of an M/G/∞ and
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Cox/G/∞ queue. The biological motivation for this more general model of decay is
that the degradation pathway of a molecule is typically a multistage and incremental
process; this means that the assumption of a memoryless Exponential lifetime may
not be a justified one. Now that service times are not Exponential, the queue length
process is no longer Markovian since knowledge of the past of the process carries infor-
mation about the elapsed service times and hence the residual service requirements of
customers and is thus informative for the future of the queue length process.

Rather than viewing the Cox/G/∞ queue as a continuous time Markov process on
a very large state space, we instead interpret it using a point process on the upper
half plane. This is depicted for a ●/G/∞ queue in Figure 2. The horizontal axis rep-
resents time and the vertical half axis corresponds to service requirement. A point (a
hollow circle in the figure) (t, x) ∈ R × R+ represents a customer that arrived at time
t, bearing a service requirement of size x. The 45 degree line between a point and the
horizontal axis shows the residual service requirement of a customer over time. Hence
the number of points falling in the orange wedge is exactly the number of customers
in the queue at time 0. The points in the intersection of the green and orange wedges
represents those customers that are in the queue at both times 0 and τ . For a sam-
ple path of the Cox/G/∞ queue, the locations of the points in the upper half plane
are given by a realisation of a Cox point process on R ×R+. We shall study properties
of this spatial point process and the corresponding queue whose arrivals are given by it.

Note, just as we could extend the simple Markov model to a feed-forward network
of arbitrary length, we can do the same with the queueing model. We can simply add
Cox/G/∞ facilities, where the arrival rate into each system is modulated by the occu-
pancy of the previous facility. Note that this is not the usual tandem queueing model
as there is no routing of customers between queues. The effect of the previous facility
on each queue is only felt through its arrival rate. The behaviour of this nonstandard
queueing network model is the basis of study of this thesis. We are yet to think of a
more appropriate name than a nonstandard tandem. Note, rather than working with
point processes, an alternative approach may have been to write down the joint Laplace
transform of the two queues and analyse this.

1.6 Outline

The M/G/∞ queue is a well understood model. The Cox/G/∞ queue conversely has
received very little attention. It is an instance of an infinite server queue in a random
environment. This simply means that the arrival and or service process are modu-
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Service 
Requirement (x)

Time (t)
T1T2T3T4T5

t=0

45⁰

τ

Both still in 
queue at time 0

Still in queue at 
time τ

Figure 2 – Diagram representing a spatial Poisson process model of a ●/G/∞ queue. Hollow
circles represent the arrivals of customers, which happen at random times and with random job
sizes. The black 45 degree lines show the residual service requirement of a customer. The orange
and green cones give the regions where customers would have to arrive (that is, their arrival time
and service requirements) so that they are still present in the queue at times 0 and τ respectively.
The dotted conical region is the overlap between the first two conical regions, and so represents
those customers that are in the queue at both times 0 and τ .

lated by some background process. In the motivating example above, only the arrival
process is modulated and the modulation mechanism is simply that the arrival rate is
proportional to the number of jobs in the previous facility. In principle the Coxian ar-
rival process need not be modulated in this way, one could imagine many other driving
processes.

The outline of this thesis is as follows. First we introduce a number of mathematical
preliminaries formally that are needed for the rest of the thesis. We provide a brief
formal description of point processes and their relevant properties in section 2.1. Then
we introduce Phase-type distributions in section 2.2. We give some background on
large deviations in section 2.3 that is used in chapter 5.

We proceed to give an account of the relevant literature in chapter 3. This starts
by reviewing some classes of deterministic models of biochemical reaction networks in
section 3.1 and discusses their strengths and weaknesses. Then we turn our attention
to stochastic models, first touching on some Markov chain models in section 3.2 and
then models of a queueing theoretic nature in section 3.3. In section 3.4 we report
what is known about infinite server queues in random environment. The discussion
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then changes focus in section 3.5 to large deviations for random point measures induced
by spatial Poisson and Cox point processes. The empirical process approach of section
3.6 provides an alternative viewpoint of empirical measures. Instead of viewing them
as random measures, one thinks of them as random functionals indexed by a class of
functions which one integrates against the measure. Literature on limit theorems and
large deviations for infinite server queues of a similar nature to our own is the subject
of section 3.7. We lastly review, in section 3.8, some asymptotic theory in a field of
geometric probability called stochastic geometry.

Chapter 4 is concerned with second order statistics of the queueing model when
viewed as a stochastic process on the space of càdlàg functions. Specifically, we de-
rive closed form expressions for the autocovariance of the queue length process at
equilibrium. To obtain these results in closed form we have to make the simplifying
assumption that the service time law has a so called Phase-type distribution. These
distributions are a generalisation of mixtures of Exponential and Gamma distributions
- see section 2.2 for a formal definition and further details. There is little loss in making
this assumption since the Phase-type distributions are dense in the class of probability
distributions supported on R+. So in principle one could approximate any service time
distribution arbitrarily well within this framework.

In section 4.1 we provide some biological motivation and interpretation for the
calculations performed in the rest of chapter 4. Essentially we are interested in quan-
tifying the speed of noise suppression and dissipation of fluctuations in RNA and pro-
tein counts. In section 4.2 we calculate the average number of proteins at equilibrium
when molecular lifetimes are generally distributed. We then assume that all molecular
lifetimes follow a Phase-type distribution which enables us to explicitly calculate the
autocovariance function for the M/PHk/∞ queue at stationarity in section 4.3. This
gives a quantification of the noise suppression ability of RNA molecules. Then in sec-
tion 4.4 we do the same for proteins by studying the Cox/PHk/∞ queue. The result in
both cases is essentially that fluctuations dissipate exponentially fast, where the rate of
decay is related to the spectral properties of a parameter of the Phase-type distribution.
We then perform some simulations, calculating the stationary autocorrelation function
for queues with two particularly simple Phase-type distributions in section 4.5. The
results obtained match what the theory predicts very well. The accompanying code
for the simulations can be found in chapter 7. In section 4.6 we calculate the power
spectral densities associated to the autocovariance functions mentioned above. These
tell us about the behaviour of fluctuations at different frequencies. Finally, we discuss
the robustness of the Phase-type approximation scheme in section 4.7.
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In the next chapter we consider the rare event behaviour of the system. A par-
ticular species of protein may typically only have one or two copies present in the
cell at a given time. Due to the randomness inherent in the gene regulatory network,
one may often observe small fluctuations around this average copy count. But very
rarely one may see a substantial excursion away from the typical number and observe
as many as ten proteins, say. Since many resources needed in multiple reactions are
shared and scarce, such a large deviation can be potentially damaging to the cell. For
this reason we wish to estimate the probability of seeing such a large deviation and
ask how quickly this decays with the size of the excursion away from the mean. This
is exactly the subject of chapter 5. It uses the theory of large deviations to make
these statements about rare events precise. We refer the reader to section 2.3 for the
definition of the Large Deviations Principle which formalises the description of rare
events. We prove a Large Deviations Principle for the Cox/G/∞ queue length process
at stationarity. This essentially shows, in a very precise sense, that the probability of
observing a large excursion away from the mean decays exponentially fast in the size
of the deviation, however the rate of this exponential is only given implicitly as the
solution of a particular optimisation problem.

Section 5.1 provides the motivation which inspires the work in this chapter and
outlines the main results, whereas section 2.3 introduces all the relevant definitions
and theorems from the theory of large deviations relevant to our work. The proofs
are split into a few parts. First we prove an LDP for the empirical measure of a Cox
process on a Polish space in the projective limit topology in section 5.2. This is then
strengthened to the weak topology by showing exponential tightness. Finally, an LDP
is proven for the occupancy measure of a Cox/G/∞ queue in section 5.3.
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2 Mathematical Preliminaries

In this chapter we collect a number of definitions and theorems used throughout the
rest of this thesis for the convenience of the reader.

2.1 Point Processes

We briefly introduce a number of definitions and results related to point processes that
will be used throughout the rest of this thesis. Intuitively speaking, a point process is
just a mathematical description of a collection of points scattered according to some
random rule on some space. We now provide a more formal description. The material
in this section relies heavily on the treatment of point processes in [66]. For a much
more detailed account the reader is referred to [29].

Let (X,X ) be a measurable space. Let the space of all measures µ on X with the
property that µ(A) ∈ N0 for any A ∈ X , be denoted by N<∞(X), or just N<∞ for short.
Now write N(X) (or just N for short) for the space of all measures that can be written
as a countable sum of elements of N<∞. We define the σ-algebra N on N by

N ∶= σ ({µ ∈N ∶ µ(A) = k} ∶ A ∈ X , k ∈ N0) .

Definition 2.1. ([66] Definition 2.1) Point Process
Given a probability space (Ω,F ,P), a point process on X is a measurable mapping
η ∶ Ω→N.

So a point process is just a random element of (N,N ), that is a random counting
measure. It counts the number of points that fall in any measurable set. One might
ask what the average number of points is for a given measurable set. The answer is
given by the intensity measure.

Definition 2.2. ([66] Definition 2.5) Intensity Measure
The intensity measure (or first moment measure) of a point process η on X, is the
measure λ defined by λ(A) ∶= E[η(A)], where A ∈ X .

Note that λ(A) is well-defined, though possibly infinite because η(A) is a non-
negative random variable.

Before we introduce the Poisson point process, we first define what it means for a
measure to be s-finite.
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Definition 2.3. ([66] Page 10) s-finite
We say that a measure ν on X is s-finite if it is a countable sum of finite measures.

In this thesis, we work with finite measures, which are trivially s-finite. We can
now define the Poisson point process which is a model of complete spatial randomness
of a collection of points in the sense that they do not interact (there are no repulsive
or attractive forces between points).

Definition 2.4. ([66] Definition 3.1) Poisson Process
Let λ be an s-finite measure on X. A Poisson process with intensity measure λ is a
point process η on X with the following two properties:

1. For every B ∈ X , the distribution of η(B) is Poisson with parameter λ(B).

2. For every m ∈ N and all pairwise disjoint sets B1, ...,Bm ∈ X the random variables
η(B1), ..., η(Bm) are mutually independent.

One of the main objects of study of this thesis is the Cox point process. The rest of
this subsection is devoted to introducing them. A Cox process is a generalisation of a
Poisson point process and is the result of a two-stage construction: first one generates a
random intensity measure, then constructs a Poisson point process with that measure
as its intensity measure. As there are two layers of randomness this is sometimes called
a doubly stochastic process. We first introduce the notion of random measures and
then formally define the Cox process.

As before, let (X,X ) be a measurable space. Denote by M(X) = M, the set
of s-finite measures on X. We denote by M(X) = M the σ-algebra generated by
{µ ∈M ∶ µ(B) ≤ t} ,B ∈ X , t ∈ R+. This σ-algebra is the smallest possible to make the
mappings µ↦ µ(B) measurable for all B in X .

In what follows there is a fixed probability space (Ω,F ,P) on which all random
elements are defined.

Definition 2.5. ([66] Definition 13.1) Random Measure
A random measure on X is a random element ξ of the space (M,M), that is, a mea-
surable mapping ξ ∶ Ω→M.

We use the shorthand ξ(B) to denote the random variable ω ↦ ξ(ω,B) ∶= ξ(ω)(B).
In fact every point process is a random measure, so this is a more general notion.

Now let λ ∈M(X) and write Πλ to denote the distribution of a Poisson point process
with intensity measure λ. Theorem 3.6 of [66] guarantees that such a process exists.
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Definition 2.6. ([66] Definition 13.5) Cox Process
Let ξ be a random measure on X. A point process η on X is called a Cox process
directed by ξ if

P(η ∈ A∣ξ) = Πξ(A), P-a.s., A ∈ N .

Then ξ is called a directing random measure of η.

For a given probability measure Q on (M,M), we always have the that the Cox
process directed by a random measure with distribution Q exists (see [66] section 13.2,
page 130).

2.2 Phase-Type Distributions

Phase-type distributions are a class of probability distributions of non-negative ran-
dom variables. Loosely speaking, they are a generalisation of mixtures of Exponential
and Gamma distributions. They have two main advantages: the first is that they are
dense in the class of probability distributions supported on R+ (see [3] Chapter III.6,
Theorem 6.2). This means they can in principle be used to approximate any such prob-
ability distribution arbitrarily well. Secondly they retain a lot of the tractability of the
Exponential distribution (which in some sense is the trivial Phase-type distribution).
This owes to the fact that they are made up of Exponential distributions.

Before we define the Phase-type distribution in general we introduce two specific
examples that we shall meet again in section 4.5. These are the Hyperexponential
distribution and the (generalised) Erlang distribution. These were motivated by ap-
plications in which there was a need to model non-negative random variables that
exhibited significantly narrower or wider dispersion than an Exponential distribution.
A quantification of this notion is given by the following definition.

Definition 2.7. Squared Coefficient of Variation
The squared coefficient of variation of a random variable X is defined to be

C2
X =

V ar(X)

E(X)2 .

It is a normalised version of the variance and can be viewed as a noise to signal
ratio. If X follows an Exponential distribution, for example, then C2

X = 1, while a
deterministic random variable (almost surely taking some constant value) has squared
coefficient of variation equal to 0. In general having a very low value for C2 (near 0)
implies that the random variable is nearly deterministic and a high value (much greater
than 1) implies that it is highly variable.
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Definition 2.8. Hyperexponential Distribution
We say that the random variable T has the Hyperexponential distribution with k phases
(and write T ∼Hk) if its probability density function is given by

fT (t) =
k

∑
i=1
pifXi(t),

where Xi ∼ Exp(µi) and pi ≥ 0 for all i ∈ {1,2, ..., k} and
k

∑
i=1
pi = 1.

So the Hk distribution is just k Exponential distributions arranged in parallel with
distinct parameters µ1, ..., µk and routing probabilities p1, ..., pk (see Figure 3). The
squared coefficient of variation for this distribution is greater than 1, so it is an appro-
priate model for distributions which are more variable than the Exponential distribu-
tion.

Exp(μ1)

Exp(μ2)

Exp(μk)

p1

p2

pk

Figure 3 – Hyperexponential distribution with k phases.

Definition 2.9. Erlang and Generalised Erlang Distribution
We say that the random variable T has the Erlang distribution with k phases (and write
T ∼ Ek) if T =

k

∑
i=1
Xi, where X1, ...,Xk are i.i.d. Exp(µ) distributed. If X1, ...,Xk are

independent Exponential random variables with different rates µ1, ..., µk respectively,
then we say that T follows a generalised Erlang (or Hypoexponential) distribution (and
write T ∼ genEk).

So the genEk distribution is simply k Exponential distributions arranged in series
(see Figure 4). The squared coefficient of variation for this distribution is less than 1, so
it is appropriate for modelling distributions that are less variable than the Exponential
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Exp(μ1) Exp(μ2) Exp(μk)

Figure 4 – Generalised Erlang distribution with k phases.

distribution.

By taking a general mixture of Exponential distributions in series and parallel we
obtain a Phase-type distribution. The general definition given below is adapted from
[3] Chapter III.6, page 74.

Consider a continuous time Markov chain on a state space with k + 1 states (where
k ≥ 1). States 1,2, ..., k are transient and state 0 is absorbing. Define a (k + 1)-
dimensional row vector α̂ ∶= (α0,αT ), where αT = (α1, α2, ..., αk), whose entries give the
probabilities of starting in each possible state of the chain. Let Q be the (k+1)×(k+1)
infinitesimal generator matrix of the Markov chain given by

Q =
⎛

⎝

0 0
S0 S

⎞

⎠
,

where 0 is the k-dimensional row vector of zeroes, S is the k × k subgenerator matrix
whose entries give the jump rates between states 1,2, ..., k and S0 = −S1, where 1 is
the k-dimensional column vector of all ones. With this notation we can now define the
Phase-type distribution.

Definition 2.10. Phase-type Distribution
The Phase-type distribution with k phases is the distribution of the time to absorption of
the (k+1)-state continuous time Markov chain with initial distribution α̂ and generator
Q. It is parameterised by the initial probability vector α and the subgenerator matrix
S. If X is a random variable with this distribution we write X ∼ PHk (α, S).
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The distribution function of X ∼ PHk (α, S) can be explicitly calculated from the
definition and is given by FX(t) = 1 −αT eSt1 (where eSt is understood to be the usual
matrix exponential).

The following result makes precise what we mean by the denseness of Phase-type
distributions in the non-negative probability distributions.

Theorem 2.11. ([3] Chapter III.6, Theorem 6.2) Denseness of PH Distributions
The class PH of Phase-type distributions is dense in the set P of probability distribu-
tions on (0,∞). More generally, to any F ∈ P with µ(F ;p) = ∫

∞
0 xpdF (x) <∞ for some

p ≥ 0, there are Fk ∈ PH with Fk converging in distribution to F , and µ(Fk; q)→ µ(F ; q)
for q ≤ p.

The main idea of the proof is to approximate the degenerate distribution at a point
on R+ with a sequence of Erlang distributions. Then taking a linear combination of
point masses, we can construct discrete distributions on R+. These in turn are dense
in the set of probability distributions supported on [0,A] for A ∈ R+. A simple trun-
cation argument completes the proof. For a more detailed discussion of Phase-type
distributions see [3] (part A, chapter III, section 6).

2.3 Large Deviations Theory

The purpose of this section is to formally introduce what we mean by large deviations.
For background on large deviations see the very well known book [38] and references
therein. Indeed, the definitions and theorems of this section are taken almost verbatim
from this reference and the accompanying discussion is heavily influenced by it. Note
that in this section, for the convenience of the reader, we pick out those concepts and
results from [38] that are relevant to this thesis. For large deviations theory applied
to queueing systems see [44] and its bibliography. Now let us begin with a motivating
example from section 1.1 of [38].

Consider a sequence X1,X2, ... of independent Standard Normal random variables.
Let Sn ∶= ∑n

i=1Xi be their nth partial sum. Then

Sn
n

d
= N (0, 1

n
) and Sn

√
n

d
= N (0,1) ,

where d
= denotes equality in distribution. Now fix a δ > 0. By the LLN we know

P(∣
Sn
n

∣ ≥ δ)→ 0 as n→∞.
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Now fixing any interval A ⊂ R, the classical CLT ensures

P(
Sn
√
n
∈ A)→

1
√

2π ∫
A

e−
x2
2 dx as n→∞.

Using the exact distribution of Sn√
n
we have

P(∣
Sn
n

∣ ≥ δ) = 1 − P(∣
Sn
n

∣ < δ) = 1 − P(∣
Sn
√
n
∣ < δ

√
n) = 1 − 1

√
2π

δ
√
n

∫

−δ√n

e−
x2
2 dx.

Hence,

1
n

logP(∣
Sn
n

∣ ≥ δ)→ −
δ2

2 as n→∞.

Thus, Sn
n concentrates around 0, and the probability of being far from 0 decays ex-

ponentially in n. Such a scaling law is much more widely prevalent, e.g., for sums
of random variables with other distributions and which are weakly dependent. Large
deviations theory deals with sequences that satisfy such limiting behaviour. In this
thesis we often concern ourselves with measure-valued random variables, so we need to
describe large deviations in a more abstract setting. The definitions and results given
in [38] are presented in a great deal of generality. All of the random variables we work
with in this thesis are defined on Polish spaces, so we do not always require the full
generality provided.

We are now ready to put this all on a more formal grounding. We say that a topo-
logical space is Hausdorff if for any two distinct points, one can find a neighbourhood
of each point such that the neighbourhoods are disjoint. So let X be a Hausdorff topo-
logical space with Borel σ-algebra B, and let {µε} be a family of probability measures
on (X ,B). We use the notation R∗ = R⋃{+∞}, and for a set B we denote its interior
and closure by B○ and B respectively.

Definition 2.12. ([38] Definition, Page 4) Lower Semicontinuity
A function f ∶ X → R∗ is lower semicontinuous if f−1((−∞ , α]) = {x ∶ f(x) ≤ α} is
closed for all α ∈ R.

Definition 2.13. ([38] Definition, Page 4) Rate Function
A function I ∶ X → R∗ is called a rate function if:

1. I(x) ≥ 0 for all x ∈ X ,

2. I(⋅) is lower semicontinuous.

I(⋅) is called a good rate function if its level sets are compact, i.e. ΨI(α) ∶= {x ∶ I(x) ≤ α}

is a compact set for all α ∈ R. We denote the effective domain of I by DI ∶= {x ∶ I(x) <∞}.
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Definition 2.14. ([38] Definition, Page 5) Large Deviations Principle
We say that the family of probability measures {µε} satisfies the Large Deviations Prin-
ciple (LDP) with rate function I, if for all B ∈ B,

− inf
x∈B○ I(x) ≤ lim inf

ε→0
ε logµε(B) ≤ lim sup

ε→0
ε logµε(B) ≤ − inf

x∈B
I(x).

We adopt the convention that the infimum of a mapping over an empty set is −∞.
Note the topology enters into this statement by dictating what the interior and closure
are as it specifies the open and closed sets. The rightmost and leftmost inequalities are
termed the large deviation upper and lower bound respectively. The large deviation
upper and lower bounds can be stated equivalently as follows:

([38] Page 6) For any closed set F ⊆ X ,

lim sup
ε→0

ε logµε(F ) ≤ − inf
x∈F

I(x). (2)

For any open set G ⊆ X ,

lim inf
ε→0

ε logµε(G) ≥ − inf
x∈G

I(x). (3)

If the upper bound only holds for compact sets, we say the family {µε} satisfies a
weak LDP (WLDP).

If a family of probability measures concentrates all but an exponentially small
amount of probability mass on a compact set we say that the family is exponentially
tight. We now define this formally.

Definition 2.15. ([38] Definition, Page 8) Exponential Tightness
A family of probability measures {µε} on X is exponentially tight if for every α < ∞,
there exists a compact set Kα ⊂ X such that

lim sup
ε→0

ε logµε(Kc
α) < −α.

This concept plays an important role in the theory of large deviations because it
provides a way to upgrade a weak LDP to a full LDP. This is intuitive because if
the large deviations upper bound holds for all compact sets and essentially all of the
probability mass is concentrated on these sets, then there is no obstacle when extending
to all closed sets. This is summarised by the following result.

Lemma 2.16. ([38] Lemma 1.2.18)
Let {µε} be an exponentially tight family.

• If the upper bound (2) holds for all compact sets, then it also holds for all closed
sets.
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• If the lower bound (3) holds for all open sets, then I(⋅) is a good rate function.

In other words, a WLDP plus exponential tightness gives a full LDP with a good
rate function. Exponential tightness also facilitates the strengthening of an LDP from
a coarser to a finer topology.

Lemma 2.17. ([38] Corollary 4.2.6)
Let {µε} be an exponentially tight family of probability measures on X equipped with
the topology τ1. If {µε} satisfies an LDP with respect to a Hausdorff topology τ2 on X
that is coarser than τ1, then the same LDP holds with respect to the topology τ1.

One incredibly useful but easily proved result is the Contraction Principle. This
states that LDPs are preserved under continuous mappings and so too is the goodness
of the rate function.

Theorem 2.18. ([38] Theorem 4.2.1) Contraction Principle
Let X and Y be Hausdorff topological spaces and f ∶ X → Y a continuous function.
Consider a good rate function I ∶ X → R∗

+.

• For each y ∈ Y, define

I ′(y) ∶= inf {I(x) ∶ x ∈ X , y = f(x)} .

Then I ′ is a good rate function on Y.

• If I controls the LDP associated with a family of probability measures {µε} on
X , then I ′ controls the LDP associated with the family of probability measures
{µε ○ f−1} on Y.

Another useful notion is that of exponential equivalence.

Definition 2.19. ([38] Definition 4.2.10) Exponential Equivalence
Let (Y, d) be a metric space. The probability measures {µε} and {µ̃ε} on Y are called
exponentially equivalent if there exist probability spaces {(Ω,Bε, Pε)} and two families
of Y-valued random variables {Zε} and {Z̃ε} with joint laws {Pε} and marginals {µε}

and {µ̃ε}, respectively, such that the following condition is satisfied: For each δ > 0,
the set {ω ∶ (Z̃ε, Zε) ∈ Γδ} is Bε measurable, and

lim sup
ε→0

ε logPε(Γδ) = −∞,

where Γδ ∶= {(ỹ, y) ∶ d (ỹ, y) > δ} ⊂ Y × Y.

Note the measurability condition is satisfied whenever Y is a separable space ([38]
Remark 4.2.10(b)), and in particular, whenever Y is a Polish space, as in this thesis.
Exponential equivalence essentially means that two families of probability measures
are superexponentially close. As a consequence they are indistinguishable on the ex-
ponential scale. So if an LDP holds for one family, then the same LDP holds for the
other.
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Theorem 2.20. ([38] Theorem 4.2.13)
If an LDP with a good rate function I(⋅) holds for the probability measures {µε}, which
are exponentially equivalent to {µ̃ε}, then the same LDP holds for {µ̃ε}.

One of the most fundamental results in the theory of large deviations is that of
Cramér’s Theorem. This describes the LDP for sums of i.i.d. random vectors (or
random variables in the one dimensional case). So let X1,X2, ... be a sequence of i.i.d.
random vectors in Rd, each with law µ ∈M1(Rd), and denote their empirical mean by
Ŝn ∶=

1
n ∑

n
i=1Xi whose law we denote by µn. For vectors λ,x ∈ Rd let ⟨λ,x⟩ ∶= ∑

d
i=1 λixi

be the usual Rd inner product. Denote the logarithmic moment generating function
(or cumulant generating function) of µ by Λ ∶ Rd → R∗,

Λ(λ) ∶=MX1(λ) = E [e⟨λ,X1⟩] .

It is not hard to see that Λ is convex, lower semicontinuous and that Λ(0) = 0. Further
it is differentiable in the interior of its effective domain ([38] Lemma 2.2.5 and Lemma
2.2.31). The rate function in Cramér’s Theorem turns out to be a special type of
transform of the cumulant generating function which we now introduce.

Definition 2.21. ([44] Definition 2.5) Convex Conjugate
Let f ∶ Rd → R∗ be a function which is not identically infinite. The convex conjugate
(or Fenchel-Legendre transform) of f is another function f∗ ∶ Rd → R∗, defined by

f∗(θ) ∶= sup
x∈Rd

(⟨θ, x⟩ − f(x)) .

We now have all the necessary ingredients to state Cramér’s Theorem in Rd.

Theorem 2.22. ([38] Theorem 2.2.30) Cramér’s Theorem
Assume DΛ = Rd. Then {µn} satisfies the LDP on Rd with the good convex rate function
Λ∗(⋅).

In fact the condition on the effective domain can be relaxed to 0 ∈ D○Λ instead
([38] Corollary 6.1.6). It is natural to ask for finiteness in a neighbourhood of the
origin as the moments are found by differentiating the moment generating function
and evaluating at zero. So knowing that limits exist at zero tells you almost everything
about the random variable. Upon meeting Cramér’s Theorem a natural question to ask
is whether the assumption that the random vectors are i.i.d. is necessary in order to
obtain an LDP. This turns out not to be the case and is the content of a more general
result called the Gärtner-Ellis Theorem. We now introduce the relevant definitions to
state a version (by no means the most general) of this result. So let Z1, Z2, ... be a
sequence of random vectors in Rd and denote the law of Zn by µn and its cumulant
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generating function by Λn(λ) ∶= logE [e⟨λ,Zn⟩]. Define the limiting cumulant generating
function by

Λ(λ) ∶= lim
n→∞

1
n

Λn(nλ).

The rate function will be given by Λ∗(⋅), the convex conjugate of Λ(⋅). But before we
state the theorem we need one more definition.

Definition 2.23. ([44] Definition 2.6) Essentially Smooth
Let f ∶ Rd → R∗ be a function. We say that f is essentially smooth if D○f ≠ ∅, f
is differentiable in the interior of its effective domain, and f is steep - namely, for
any sequence θn which converges to a boundary point of the effective domain of f ,
limn→∞ ∣∇f(θn)∣ = +∞.

Theorem 2.24. ([44] Theorem 2.11) Gärtner-Ellis Theorem
Suppose that Λ(λ), the limiting cumulant generating function of Zn, exists as an ex-
tended real number for each λ ∈ Rd and that it is finite in a neighbourhood of the
origin, essentially smooth and lower semicontinuous. Then the sequence {µn} satisfies
the LDP in Rd with good convex rate function Λ∗.

For examples of what types of mild dependence can be tolerated, see the exercises
of section 2.3 of [38]. Another consequence of Cramér’s Theorem is Sanov’s Theorem.
This describes an LDP for the empirical distribution of i.i.d. random variables.

Theorem 2.25. ([44] Theorem 4.13) Sanov’s Theorem
Let (Xi, i ∈ N) be a sequence of i.i.d. random variables taking values in a Polish space
X , with distribution µ. The sequence of empirical measures

µn(A) =
1
n

n

∑
i=1
1[Xi ∈ A] for A ⊂ X

satisfies an LDP in M1(X ) with good convex rate function H(⋅∣µ) given by:

H(ν∣µ) =

⎧⎪⎪
⎨
⎪⎪⎩

∫X log(dν/dµ)dν if ν << µ and ∫ ∣ log(dν/dµ)∣dν <∞
∞ otherwise.

The function H(ν∣µ) is called the relative entropy or Kullback-Leibler divergence of ν
with respect to µ.

The next theorem formalises the idea that if we have an LDP on each of an in-
creasing sequence of spaces, then an LDP holds on the infinite limiting space. The
following definitions, needed to make this rigorous, are taken (almost verbatim) from
[38] section 4.6, page 162. Let (J,≤) be a partially ordered, right-filtering set. The
latter notion means that for any i, j in J , there exists k ∈ J such that both i ≤ k and
j ≤ k. A projective system (Yj, pij)i≤j∈J consists of Hausdorff topological spaces {Yj}j∈J
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and continuous maps pij ∶ Yj → Yi such that pik = pij ○ pjk whenever i ≤ j ≤ k. The
projective limit of this system, denoted by X ∶= limj Yj, is the subset of the topological
product space Y =∏Yj, consisting of all the elements x = (yj)j∈J for which yi = pij(yj)
whenever i ≤ j, equipped with the topology induced by Y . Projective limits of closed
subsets Fj ⊆ Yj are defined analogously and denoted F = limj Fj. The canonical pro-
jections of X , which are the restrictions pj ∶ X → Yj of the coordinate maps from Y to
Yj, are continuous.

Theorem 2.26. ([38] Theorem 4.6.1) Dawson-Gärtner Theorem for Projective
Limits
Let {µε} be a family of probability measures on X , such that for any j ∈ J the Borel
probability measures µε ○ p−1

j on Yj satisfy the LDP with the good rate function Ij(⋅).
Then µε satisfies the LDP with the good rate function

I(x) = sup
j∈J

{Ij(pj(x))} , x ∈ X .
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3 Literature Review

3.1 Deterministic Models of Biochemical Systems

There are a wide variety of mathematical modelling techniques employed to shed light
on biomolecular networks, each possessing its own strengths and weaknesses. A com-
mon approach is to describe the time evolution of the network using systems of dif-
ferential equations (tracking, for example, the evolution of gene expression levels or
molecular counts - see [37, 96] for a list of such works). The rich theory for finding
analytical or approximate solutions to systems of ODEs is the principal advantage of
this approach. There are however two main drawbacks. The first is that this treats
an inherently stochastic system as though it were purely deterministic. This simplifi-
cation is particularly pronounced in cases where there are low molecular copy counts.
This means that stochastic fluctuations are of comparable size to mean values and
so ignoring them may lead to quite different behaviour. If fluctuations are however
small compared to mean copy counts, then deterministic models capturing the aver-
age behaviour of the system will usually do well. The second issue is that differential
equations are continuous, whereas real molecular abundances are discrete. A protein,
for instance, is either present or not. When molecular counts are very high this is not
really an issue, but if they are low then continuous models can be misleading. Further-
more, numerically solving such systems can be computationally demanding, so there
is a de facto limit on the size or complexity that can be handled.

A different approach is taken in [58] which uses Boolean networks to describe the
dynamics of gene regulation. A Boolean network is a directed graph, in which each
node has an associated Boolean function and the state of the network is updated se-
quentially at each discrete time step. In this biological example nodes represent either
the presence or absence of a molecule, or the expression or inactivation of a gene. The
topology of the edge set describes the regulatory relationships. The principal draw-
back of this approach is that every node is either on or off - the relative abundances of
molecules and the range of gene expression levels are overlooked. This can be a very
crude oversimplification, but the flip side is that the resulting computational complex-
ity is extremely low. This allows for the simulation of huge networks - many orders of
magnitude larger than those that can be tackled with other approaches.

3.2 Stochastic Models of Biochemical Systems

A substantial review of Markov chain models of gene regulatory networks is conducted
in [83]. Most of the references therein fit into (at least part of) the central dogma, with
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genes transcribing RNA molecules which translate proteins. The dynamics are gov-
erned by a small number of stochastic elementary reactions describing the feed-forward
network, genes flipping between their active and inactive states and the degradation
pathway of each species. A continuous time Markov chain tracks the stochastic time
evolution of molecular abundances. Time-dependent moments of copy numbers are
then calculated exactly using generating functions, leveraging the linearity of reaction
rates and the different sources of noise in the network are characterised in terms of the
model parameters.

A generalisation of the results in [83] for the three stage model of a gene regulatory
network are given in [43]. The authors calculate the stationary mean and variance
of the number of proteins. However, they relax the assumption of Exponentially dis-
tributed molecular lifetimes. Lifetimes of molecules are assumed to be i.i.d. from a
general distribution supported on R+. Some of the results obtained are similar to those
of chapter 4, as is the approach to find them. They also rely on the analysis of a
marked Poisson point process on the upper half plane. They do not calculate the auto-
covariance function or prove anything about queues, as we do. Their calculation of the
variance proceeds by differentiating the generating function, conditional on the state
of the gene, to obtain the first two factorial moments, and then averaging over this state.

A three stage gene regulatory network model that incorporates feedback is studied
in [39]. Proteins are assumed to have an autoregulatory function, with the gene deacti-
vation rate proportional to the number of proteins. This negative feedback complicates
the analysis, so the stationary variance of the number of proteins is not calculated ex-
plicitly. Instead the authors study a limiting regime in which genes flip state and RNAs
are produced on a timescale much faster than protein evolution. Asymptotically the
number of proteins behaves as a birth-death process whose birth rate is proportional
to 1/k when there are k individuals. The model with and without feedback are com-
pared to examine to what extent the autoregulation mechanism reduces protein count
variability.

A far more general biochemical reaction network is analysed in [70] using Markov
chain methods. Rather than considering genes, RNA and protein molecules as in [83],
the model allows for arbitrary numbers, n and m, of molecular species and elementary
reactions respectively. A vector x(t) ∈ Nn

0 is a continuous time Markov process tracking
the molecular abundance of each species over time. The rate of the elementary reaction
i ∈ {1, ...,m} is given by Wi(x(t)) ≥ 0 and is naturally a function of the chemical
composition of the system at the time of occurrence. The vector ri ∈ Zn describes the
change in molecular composition of the system that results from reaction i. This could
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be a combination of reactants being consumed and new products being formed. The
set of elementary reactions, therefore, can be concisely expressed as

x(t)
Wi(x(t))
ÐÐÐÐ→ x(t) + ri, i = 1,2, ...,m.

Hence, if we denote by P (k, t/k0, t0), the probability that the chain is in some state
x(t) = k given that it started in state x(t0) = k0, the Chapman-Kolmogorov forward
equation for the system is given by

dP (k, t/k0, t0)

dt
=∑

i

Wi(k − ri)P (k − ri, t/k0, t0) −∑
i

Wi(k)P (k, t/k0, t0).

From this one can write down differential equations for transient and stationary first
and second moments for x(t). In general it is not clear how to solve them, but in
the special case where reaction rates are linear (or affine), explicit solutions are read-
ily available. Once again, the assumption of Exponential reactions is essential to the
analysis.

Since Markov chain models can be computationally expensive to simulate, partic-
ularly if they have a large state space, sometimes a diffusion approximation can offer
a less cumbersome alternative [68]. Here a Markov chain model of a chemical reaction
network is approximated by a reflected diffusion. Since concentration levels cannot go
negative, it makes sense to reflect inside the positive orthant. The diffusion is obtained
as the weak limit of a sequence of rescaled jump Markov processes which have been
centered by subtracting their means and then rescaled appropriately.

3.3 Queueing Theoretic Models

Compared with the number of Markov chain models of gene regulatory networks, queue-
ing network models are relatively scarce in the literature and the connection has largely
been made only fairly recently. One instance of this can be found in [2], which leverages
theory on G-networks to model a well known gene regulatory network present in e.coli
known as the lac operon. The lac operon controls the metabolism of lactose in the
absence of the more favourable energy source glucose. To explain what a G-network is
we first describe so called Jackson networks.

A Jackson network is a network of ●/M/1 − FCFS (’first come first served’ ser-
vice discipline) queues in which exogenous traffic arrives to the network according to
independent Poisson streams and routing of customers between queueing facilities is
Markovian. The network is called open if every customers visits just finitely many
queues before exiting the network with probability one. These assumptions ensure
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that the vector of queue lengths is a continuous time Markov process. Under some ad-
ditional assumptions one can show that the invariant distribution of the Markov chain
is of product form. This means that the equilibrium joint queue length distribution is
a product of the marginal equilibrium queue length distributions. For more details on
Jackson networks and product form results see the original paper [55] and [25]. Our
queueing system of interest falls outside the scope of the first reference as we do not
have a single server and outside the second because exogenous arrivals to the system
are not Poissonian (except in the first facility).

A G-network (the G stands for generalised or Gelenbe - their creator) is a generali-
sation of a Jackson network that allows for work deletion and reallocation, yet retains
the favourable property of a product form stationary distribution for the network (see
[46] for more details). The feature of removing or rerouting traffic provides a way of
modelling feedback, such as the inhibition of the expression of a gene. Each queueing
facility in the model of the lac operon of [2] represents the molecular count or expression
level of some biological species. The main contribution of the paper is to compute the
product form stationary distribution for this model. Another instance of a G-network
model of a gene regulatory network is provided by [47]. This time queueing facilities
represent concentration levels of various genes and the main result is again to compute
the product form stationary distribution of the concentration levels. The restriction
of having single server queueing facilities makes this an inappropriate model for our
applications, because under this model ageing would not happen in parallel.

Certain molecular species in cells show marked correlations in their copy counts.
Often this synchronised behaviour is due to a direct interaction between them. Direct
coupling mechanisms include coordinated transcription or protein-protein interactions.
In practice biologists sometimes observe correlations which are seemingly stronger than
could be accounted for solely by direct synchronising mechanisms. Indeed, even seem-
ingly unrelated species can exhibit striking correlations. This has led scientists to
investigate potential indirect coupling mechanisms. Multiple molecular species in cells
often share scarce resources, for instance some substrates are involved in chemical reac-
tions catalysed by the same enzymes. It is believed that an indirect coupling between
species is induced by sharing this common cellular machinery. This is sometimes re-
ferred to as cross talk or correlation resonance. Constructing mathematical models
that exhibit this behaviour is the subject of a series of papers [27, 72, 73, 74]. These
all rely on the theory of multiclass queueing networks. A multiclass queue is simply
one in which customers belong to one of a number of distinguishable classes, each (pos-
sibly) with their own class-dependent arrival rate, service time distribution, routing
rules and so on. It is interesting to note that under certain assumptions the station-
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ary distribution of the network is of product form. See chapter 3 of [59] for more details.

The aim of [74] is to model a phenomenon called translational cross talk. This in-
volves RNA molecules migrating to organelles called ribosomes, whereupon they bind
and catalyse protein production. The process of translating proteins does not consume
the RNA molecules and ribosomes, so they are free to rebind and catalyse multiple
reactions. One hypothesis is that correlations in certain protein concentrations are
the result of different RNA molecules competing for a scarce pool of ribosomes. The
authors analyse a number of variants of stochastic models based on this description
with multiclass queueing methods. The time evolution of a multiclass queue tracks the
abundances of different molecular species. They compute steady state moments and
covariances of two distinct protein species (translated by two distinct RNA species).
Their conclusion is that when mutual translational processing resources are scarce,
strong anticorrelations in protein counts can be induced if RNA molecules of one type
keep rebinding to the same ribosomes.

A different indirect coupling mechanism is the focus of [73]. They consider two
species of proteins flipping between their phosphorylated and unphosphorylated states
due to the action of a common pool of enzymes. Phosphorylation refers to the joining
of a phosphate group to the protein. New unphosphorylated proteins of both types
are continually being translated, while existing proteins (regardless of their state) are
degrading over time. The authors model this with the following multiclass queueing
network. There are two queueing facilities keeping track of the number of phosphory-
lated and unphosphorylated proteins respectively. Each queue has two customer classes
representing the two distinct protein species. Both have a fixed number of servers rep-
resenting the number of phosphorylating and dephosphorylating enzymes present. New
unphosphorylated proteins of each species arrive exogenously according to independent
Poisson streams. Service corresponds to the phosphorylation or dephosphorylation pro-
cess, so customers are simply routed around in a cycle. All proteins degrade after some
time. This is captured by customers reneging from both queues and thereby exiting
the system. By reneging we mean that customers depart the queue while waiting for or
receiving service. By studying this multiclass queueing network the authors find that
when the queues are critically loaded there is a spike in correlations between the two
protein species. This corresponds to competition for the shared enzymatic processing
resources.
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3.4 Infinite Server Queues in Random Environment

A queue in a random environment is one in which the arrival and or service rate is
modulated by some background process (often called the environment). For instance
the arrival process may randomly flip between a low activity regime and intermittently
exhibit short periods of high level activity. So this model provides us with a mech-
anism to capture bursty behaviour and means that the arrival and service rates are
themselves stochastic processes. An early study of infinite server queues in random
environment is conducted in [77]. The authors study the M/M/∞ queue in a Marko-
vian environment. By a Markovian environment, we mean that the arrival and service
rates are given by the state of a finite state, irreducible, continuous time Markov chain.
Sometimes this is called a Markov-modulated infinite server queue as the environment
process is a Markov chain. Their contribution is to show that a necessary and sufficient
condition for the queue to have a unique stationary distribution is that at least one of
the possible service rates is strictly positive. They further derive the factorial moments
of the queue length at stationarity and systems of partial differential equations for the
transient moments.

Markov-modulated infinite server systems have been extensively studied recently
(see [20] for a collation of the results summarised concisely into a diagram). For a
queue in a Markovian environment there are two different ways in which the service
rates can be modulated by the background Markov chain. Either the service rate
of a job changes as the environment process jumps [16, 18, 19, 20], or alternatively
a customer has a service rate (which stays fixed throughout its sojourn in the sys-
tem) given by the state of the modulating Markov chain at the instant of its arrival
[14, 15, 17, 19, 20]. These mechanisms are referred to in [20] as model 1 and model
2 respectively. The trivial case in which there is only one possible service rate (where
models 1 and 2 coincide) is called model 0 [1]. Early work on these systems focussed
on the steady state behaviour and transient dynamics of the queue length and the
moments in both cases are derived [17, 77]. An extension to the M/M/∞ queue in
semi-Markovian random environment is made in [31], in which the authors compute
all factorial moments for the steady state queue length. A semi-Markov process is
one whose holding times in each state are not Exponentially distributed, but which is
nevertheless Markov at its jump times.

More recently the focus has shifted to the asymptotic behaviour of these models.
Large deviations results are proven [14, 15, 18, 51, 56], as are Central Limit Theorem
type results for the convergence of the centered, normalised queue length at a fixed
time t to a Gaussian random variable [16, 17, 19]. Furthermore, Functional Central
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Limit Theorem results are shown for the convergence of the queue length process to
an Ornstein-Uhlenbeck process [1, 20, 51]. This matches what was known for the stan-
dard M/M/∞ queue, where Ornstein-Uhlenbeck processes also arise as heavy traffic
diffusion approximations for the queue length process. In the asymptotic regime in
which arrival rates are sped up by a factor of N while the Markov transition rates are
scaled by a factor of Nα with α ∈ R+, a dichotomy of behaviour is observed resulting in
different scaling regimes. When the background process switches rapidly (α > 1), the
queue behaves like a homogeneous M/M/∞ queue which sees only the average state of
the background process, whereas for α < 1 the behaviour depends upon the deviation
matrix of the Markov chain [26]. When α = 1 one gets an effective superposition of
these two behaviours. In the fast changing environment regime the steady state num-
ber of jobs follows a Poisson distribution, just like the ordinaryM/G/∞ queue [17, 52].
A notable absentee from this plethora of results is the establishment of sample path
large deviations for this model.

We elucidate in more detail the contributions of these papers to limit theorems
and large deviations for Markov-modulated infinite server queues. In [18] logarithmic
asymptotics for tail probabilities of both the transient and stationary queue length are
derived in the setting of model 1 in both the slow and fast background regimes. Mean-
while, [14, 15] derive analogous results but in the setting of model 2. The latter deals
with the fast environment case and the former with the slow switching regime. The
Markovian assumption on the environment is relaxed in [56], where the background
process for an M/M/∞ queue is just a general càdlàg stochastic process which modu-
lates both the arrival and service processes. A full LDP is then proven for the transient
queue length for a fixed time in a setting slightly more general than both models 1 and 2.

The Markov-modulated model 2 M/G/∞ queue is considered in [17] and explicit
expressions for the transient mean and variance of the number of jobs in the system
at a fixed time t are derived under the condition that the queue started empty. In
the special case of Exponential service times, a differential equation for the moment
generating function of the number of customers in the system is found, which allows for
the computation of moments at an Exponentially distributed time and at steady state.
Finally, a CLT for the finite-dimensional marginals of the transient queue length pro-
cess is shown in the fast background regime. These results are complemented by [16]
which studies the Markov-modulated model 1 M/M/∞ queue. CLTs for the transient
and stationary scaled queue lengths are proved in both the fast and slow regimes. This
is achieved by first finding differential equations for the probability generating func-
tions of the stationary and transient queue length, then establishing the appropriate
centering by showing weak laws of large numbers for each quantity and finally scaling
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appropriately. Interestingly, in the slow switching regime the CLT scaling is nonstan-
dard, exhibiting smaller typical fluctuations than usual. The Central Limit Theorem
picture in the case of Markovian service is completed by [19] which establishes a unified
approach to tackle models 1 and 2 in the fast and slow regimes as opposed to the ad
hoc approaches of [16] and [17].

A Functional Central Limit Theorem is established for the centered, normalised
queue length process of a Markov-modulated model 0 M/M/∞ queue in [1] in both
the fast and slow regimes. In the fast regime one gets the usual square root CLT scaling,
but in the slow regime the normalising polynomial is of higher degree. In the slow case,
the behaviour of the limiting Ornstein-Uhlenbeck process depends upon the deviation
matrix of the background Markov chain. These results are extended in [20] to models
1 and 2. The proofs in both papers rely heavily on martingale methods. In [51] the
background process is a special type of stationary Cox process. A functional CLT for
the scaled queue length is proved and logarithmic asymptotics of tail probabilities for
the queue length distribution are investigated. A trichotomy in behaviour is observed
depending on how rapidly the environment changes relative to the arrival rate. If the
arrival rate changes faster, then one essentially recovers the familiarM/M/∞ queue. If,
however, it is slower, then the system exhibits overdispersion - fluctuating more wildly
than Poissonian behaviour. More specifically the variance to mean ratio is greater than
unity (which one obtains in the Poisson case), so this is essentially a measure of the
noise to signal ratio. When the same scaling is applied to both, one obtains an effec-
tive superposition of the previous behaviours. There are effectively only two different
causes for the number in the system to become unusually high. Either the background
process takes on an unexpectedly high value and we see a typical number of arrivals
given this state of the environment, or alternatively, although the background process
is not itself especially large, we nevertheless see a rarely high number of arrivals into
the queue. The scaling parameter of the background process dictates which of these
paths to overflow dominates. The slow regime favours the former and the fast regime
the latter behaviour.

The model we study is also an infinite server queue in a random environment.
However, unlike the work described in this section that views the queue length as a
càdlàg stochastic process, in chapter 5 we view it as living on a space of measures.
Additionally, our model does not take the service process to be modulated.
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3.5 Large Deviations for Random Point Measures

A functional LDP is proved in [69] for rescaled Poisson random measures using the
Cramér’s Theorem approach and subadditivity arguments. Essentially the same result
was proven contemporarily in [42], but by a different method. The main goal of [42]
is the following statistical application. Suppose one observes a spatial Poisson point
process over a compact time interval, then just from the realisation of the Poisson ran-
dom measure, one would like to obtain a parametric estimate of its intensity measure.
The main contribution is to prove an LDP for the maximum likelihood estimator and
explicitly identify the corresponding rate function. On the way to achieving this goal
the authors prove an LDP for rescaled Poisson random measures. In more detail, let
E be a Polish space and let N be a Poisson random measure on R+ ×E. The intensity
measure of N is denoted q = E(N) and is given by q(dt, dx) = ν(dx)dt, where ν is a
σ-finite positive measure on E with its Borel σ-field BE. Fix a 0 < T < ∞ and define
the random measure nT on E by

nT (Γ) =
1
T
N([0, T ] × Γ) for any Γ ∈ BE.

The authors then prove an LDP on (E,BE) for nT as T →∞. The proof is based upon
the Laplace-Varadhan Principle (see [101]) and makes use of the Dawson-Gärtner pro-
jective limit approach (for details see [33]). Some key steps are to first find the limiting
cumulant generating function of the empirical measure nT . Then find its Fenchel-
Legendre transform, in other words the Gärtner-Ellis rate function. This is obtained
as the solution to a certain variational problem. They then solve the optimisation
problem to get the rate function explicitly. Finally, they prove the LDP by using the
Dawson-Gärtner Projective Limit Theorem and the abstract Gärtner-Ellis approach
and show that the rate function is both good and convex. The setting of these papers
is similar to our own, but we work with the empirical measure of a spatial Cox point
process.

The contribution of [91] is to prove a functional LDP for the empirical measure gen-
erated by a Cox process on a Polish space in the vague topology. The authors make the
natural assumption that the stochastic intensity measure itself obeys an LDP with a
good rate function. It is also assumed to be locally finite and satisfy a further technical
condition - that the sequence of intensity measures dominate a fixed measure with full
support on the Polish space. Our work in section 5.2 is similar in nature to this, but
replaces the latter two assumptions with the condition that the intensity measure is a
finite measure. Our proof also requires that the underlying Polish space is σ-compact.
Additionally, we show the LDP with respect to a finer topology (this extension turns
out to be nontrivial) and with a different method of proof. Just as is the case for us,
the rate function is only given implicitly as the solution of an optimisation problem.
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However in the special case of a mixed Poisson process an explicit solution to the vari-
ational problem is given. The proof uses Sanov’s Theorem, the Contraction Principle
and a lot of technical estimates.

3.6 Empirical Processes

For a thorough account of this subject see the books [95] and [99] and the many refer-
ences therein. We present just a brief overview of relevant parts of [99]. Much of this
section is therefore inspired by their treatment of empirical processes (see in particular
chapter 2 and section 3.5).

SupposeX1, ...,Xn are a collection of random elements of a measurable space (X ,A)

with some common law P , then their empirical measure is given by

Pn =
1
n

n

∑
i=1
δXi .

Imagine, for instance, that the Xi give the location of points of a point process on
Euclidean space. The empirical measure is a random measure (as the Xi are random),
that when given a measurable set, returns the proportion of points falling into that
set. The empirical process perspective essentially boils down to viewing such random
measures instead as random functionals over some class of functions. By random
functional we mean integrate a function from the set of test functions against the
measure - we use the notation Pf ∶= ∫ fdP for a measure P and measurable function
f . Suppose F is such a set of measurable test functions f ∶ X → R, then

Pnf = ∫ fdPn =
1
n

n

∑
i=1
f(Xi),

a real-valued random variable. Testing against every function in the class yields an F -
indexed process {Pnf ∶ f ∈ F}. The book [99] is principally interested in establishing
the average behaviour and fluctuations about the average of the empirical process.
To capture central limit type behaviour one naturally considers the centered rescaled
version of the empirical measure to obtain the random signed measure

√
n(Pn − P ) =

1
√
n

n

∑
i=1

(δXi − P ),

for which the corresponding process is denoted {Gnf ∶ f ∈ F}, so that

Gnf =
1

√
n

n

∑
i=1

[f(Xi) − Pf].

Fixing a given f , the strong Law of Large Numbers guarantees Pnf → Pf almost
surely, provided we have the usual first moment condition that Pf < ∞. If we also
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have the second moment condition Pf 2 <∞, then the Central Limit Theorem dictates
that Gnf ⇒ Z ∼ N (0, P (f − Pf)2).

For a fixed f , Pnf and Gnf are of course real valued random variables. But if
one views them as processes indexed by a large class of functions F , one might ask
if the processes satisfy a corresponding LLN and CLT respectively, uniformly over F .
For conciseness let ∥Q∥F ∶= sup{∣Qf ∣ ∶ f ∈ F}, where Q is a signed measure. Then the
uniform LLN, known as the Glivenko-Cantelli Theorem, states ∥Pn − P ∥F → 0 outer
almost surely (for a discussion of the mode of convergence see [99] sections 1.2 and
1.9). We call a class F , for which this convergence holds, a Glivenko-Cantelli class or
P -Glivenko-Cantelli - where we have emphasized the dependence on the underlying law
P . For example, for the classical empirical process X = R and F is the set of indicator
functions of left half lines in R.

A uniform version of the CLT requires that for every x

sup
f∈F

∣f(x) − Pf ∣ <∞.

This allows one to regard the empirical process {Gnf ∶ f ∈ F} as a map into `∞(F),
the space of uniformly bounded functions from F to R. So one might then ask when
it is true that Gn ⇒ G, where the limit process G is a Borel measurable element of
`∞(F). Note we have been deliberately vague about the mode of convergence, but
for details we direct the reader to section 1.3 of [99]. We call a class F , for which
this convergence holds, a Donsker class or P -Donsker. By considering the marginals
and the associated covariance structure, the limit process can be determined to be
the P -Brownian Bridge (see Appendix A of [99] for details). Unsurprisingly it turns
out that every Donsker class of functions is necessarily Glivenko-Cantelli almost surely.

A natural question to pose at this point is what determines whether a given col-
lection of functions is a Glivenko-Cantelli or Donsker class. Loosely speaking it is the
’size’ of the class that matters. A notion of size of a class of functions is given by
so called entropy numbers. The ε-entropy is the logarithm of the minimal number of
balls (in the function space) of radius ε that are needed to cover F . So it is intuitively
clear that as the radii get smaller, the entropy will increase. It is the rate of entropy
increase in the small ball limit that provides sufficient conditions for a class to be
Glivenko-Cantelli or Donsker (see chapters 2.4 and 2.5 of [99] for details). Once one
has established certain classes of functions are P-Glivenko-Cantelli or P-Donsker, then
one can construct other classes from them with operations on these sets that preserve
these properties. These closure properties are known as permanence properties.
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So far we have only considered empirical measures of a sample of fixed size n, but
sometimes we are interested in the case of a random sample size. The key results
of section 3.5 of [99] show that CLT type results carry over to the case of random
sums under quite general circumstances. Specifically, if we have a sequence of random
sample sizes Nn, such that Nn/cn converges in probability to an almost surely positive
limit ν, where the deterministic sequence cn → ∞, then GNn ⇒ G in `∞(F). In the
special case that Nn are Poisson random variables, we call the corresponding empirical
process the Poissonized empirical process, and if Nn ∼ Poisson(n) then we call it the
Kac empirical point process. In this case Nn ∶= ∑

Nn
i=1 δXi is a Poisson point process with

intensity measure nP and provided ∥P ∥F < ∞ the Kac process Zn ∶= n−
1
2 (Nn − nP )

converges weakly in `∞(F) to a Brownian motion if and only if F is P -Donsker (see
Theorem 3.5.5 of [99]).

Necessary and sufficient conditions for the empirical process to satisfy an LDP and
MDP in the Banach space `∞(F) are given in [105]. These results are extended to the
setting of Poissonized empirical processes in [107].

3.7 Central Limit Theorems and Large Deviations for Infinite
Server Queues

Providing an extensive review of the work in this area is beyond the scope of this thesis
due to the vast number of papers. Instead, we must content ourselves with a descrip-
tion of the work most similar in spirit to our own. In section 3.4 we already discussed
(amongst other things) limit theorems and large deviations results for infinite server
queues in random environment. These references are of course relevant to this section
too, but we do not repeat the discussion here.

There is a vast literature on limit theorems for infinite server queueing models, start-
ing with the pioneering work of [53] on an FCLT for the M/M/∞ queue. Section 10.3
of [104] and its many references provide a survey of key contributions in this area. If
one considers a queue length jump process of an infinite server queue and rescales space
and time appropriately, then under quite general circumstances the queue length pro-
cess converges to an Ornstein Uhlenbeck process reflected at zero (as the queue length
cannot go negative). The name limit theorem in this context comes from considering a
sequence of queueing facilities, indexed by n, say, where the arrival rate into each grows
with n and the service time distribution remains fixed and then rescaling appropriately.

A common approach to obtaining a Functional Central Limit Theorem is the con-
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tinuous mapping approach. We learn in a first course in analysis that if a sequence of
numbers converges to a limit, then this limit is preserved under a continuous mapping.
The Continuous Mapping Theorem asserts that the same is true of random sequences
with an appropriate stochastic mode of convergence. There are a number of generalisa-
tions that basically allow one to get away with a mapping that is ’almost’ continuous.
The idea underlining the continuous mapping approach essentially entails combining
Donsker’s FCLT (see, for instance Theorem 4.3.2 of [104]) with the Continuous Map-
ping Theorem to establish new FCLTs - viewing queue length processes as random
elements of D, the space of càdlàg functions (see section 3.4 of [104]). The usual ap-
proach is to write the queue length process as a reflection of a net input process to
the queue and then show that the reflection mapping is continuous in the appropriate
topology.

An alternative approach to establishing stochastic process limits for queueing (and
other) models is the compactness approach (see [12] for a full account). This approach
usually consists of showing convergence of the relevant finite dimensional distributions
and that the sequence of probability measures is tight. Prokhorov’s Theorem (The-
orem 11.6.1 of [104]) is key, showing that there is no loss in focussing on tightness
rather than relative compactness directly. Analogues of the Arzela Ascoli Theorem
give a characterisation of compact sets of D, which in turn yield tightness criteria - see
section 11.6 of [104] for a very abridged version of [12]. A further procedure that has
been used to prove limit theorems for queueing models is the martingale method. A
thorough review and survey is given by [78].

The model in [64] is somewhat similar to our own. The authors consider an open
network of ●/G/∞ queues whose exogenous arrival processes are a special type of Cox
process called a shot noise process. There is some baseline arrival rate, but at random
times (at the increments of a homogeneous Poisson process, independent of everything
else) there are sudden spikes in the arrival rate - called shots. Following a shot, the
arrival intensity gradually reverts to its original baseline. In this paper they assume
the shot noise decays exponentially fast to the baseline. This makes the shot noise pro-
cess particularly tractable as it is then a Markov process. Like the Markov modulated
infinite server queue, this model captures burstiness in arrivals and is controlled by a
background exogenous process. Such a shot noise process is used as a model for the ar-
rival of insurance claims [30], where an individual catastrophe (like a natural disaster)
may generate a cluster of incoming claims. They assume that service times are i.i.d.
and generally distributed and that the network has no cycles (all traffic feeds forward,
but not necessarily in a traditional linear tandem). They allow for some dependence
structure between shot noise processes at different facilities. For instance in the case of

35



a major incident in a city, one might expect the police and fire departments to receive
a large number of emergency calls at roughly the same time. Their main contributions
include calculating the joint Laplace transform of the queue lengths and shot noise
processes and proving a Functional Central Limit Theorem for the rescaled number
of jobs in an individual queue in the asymptotic regime in which the shot intensity
is sped up linearly. The limiting process turns out to be a special type of Ornstein
Uhlenbeck process and the proof combines the martingale FCLT with the continuous
mapping approach. A major difference between this work and ours is that they work
in the space D, whereas we work with the empirical measure.

Another work in a similar vein is [45]. The authors consider a ●/G/∞ queue driven
by a Hawkes arrival process. A Hawkes process is a type of self-exciting process. There
is some baseline rate at which increments occur, but each arrival event triggers a spike
in the arrival rate whose effect gradually dissipates. So this is much like the shot noise
process, except the shots now are induced by arrivals themselves rather than being the
result of an exogenous process. The bursty and self-exciting behaviour makes Hawkes
processes a realistic model for (amongst other things) earthquakes - where shocks can
trigger aftershocks, or gang violence - where one crime is met by an exchange of re-
taliatory crimes. Their key contributions are to prove an FCLT for stationary Hawkes
processes in the large baseline intensity limit and then use this to prove an FCLT for
an infinite server queue fed by accelerated Hawkes traffic. The convergence is of a
sequence of scaled random elements of D with respect to Skorohod’s J1 topology. The
proof follows the compactness approach. For results of a different nature on infinite
server queues with Hawkes traffic see [32] and [65].

Heavy traffic limits for the G/GI/∞ queue are established in [90]. By heavy traffic,
we mean that the arrival rate is sent to infinity while the service time distribution is not
scaled. Consequently the number of busy servers tends to infinity. The processes and
their limits live on the space of tempered distributions - the dual of the Schwartz space
(see [57] for further details). Specifically two processes are considered, the age process
and the residual service time process. The former records the age of each job in the
queue, while the latter records their remaining service times and the time elapsed since
former customers departed. The authors prove fluid (FLLN) and diffusion (FCLT) lim-
its for rescaled versions of these processes. The proofs use a version of the martingale
FCLT for tempered distribution valued processes and then use the continuous mapping
approach upon showing the continuity of a certain regulator map. The diffusion lim-
its are tempered distribution valued Ornstein Uhlenbeck processes. The work in this
paper builds upon results in [36], which analyses the residual service time process in
the same setting of tempered distributions of the M/GI/∞ queue. Again a FLLN and
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FCLT are proved for the rescaled residual service time process, using a combination of
compactness and continuous mapping arguments. The age process is not dealt with.

There are a series of papers on various infinite server queueing models that also
prove fluid and diffusion limits for appropriately rescaled age and residual service time
processes living on a two-parameter function space - see [79, 80, 81, 82] and references
therein. This is always done in the asymptotic regime in which arrivals are sped up,
but service times remain unscaled. There is a progression of very similar results for
the Gt/GI/∞ queue (with a general time varying arrival process) [79], the Gt/Gt/∞

queue (with general time varying service times that depend upon the arrival times, but
are conditionally independent given these arrival times) [81], and the Gt/GD/∞ queue
(where the service times are weakly dependent) [80, 82].

The literature on large deviations for queueing models is also sizeable, though not
nearly as extensive. The book [44] and the many references therein gives a fairly broad
survey. An early work in applying large deviations theory to infinite server queue-
ing systems is [48]. This establishes approximations of tail probabilities for the queue
length of a GI/G/∞ queue at a fixed time on the large deviations scale. The author
considers a sequence of systems in which arrivals are sped up (either by having a single
fast source or a large number of sources operating at moderate speed) but the service
times are not scaled.

Sample path large and moderate deviations behaviour of a tandem of M/G/∞

queues with nonhomogeneous arrivals is the subject of [107]. The main results are full
Large Deviations and Moderate Deviations Principles for the joint distribution of all
of the queue length processes and departure process for the network viewed as random
càdlàg functions. These results allow for the study of the most likely path to extreme
queue lengths and abnormally large numbers of departures. Key to the main results
is expressing the queue length and departure processes as Poisson random measures,
which in turn are viewed as Poissonized empirical measures. The author proves a result
concerning LDPs and MDPs for Poissonized empirical processes and this is applied to
obtain the main results for the queueing model. Said result is actually more general
than what is needed for the queueing applications but there is no extra difficulty in
proving it in the more general setting.

In some ways the complementary large deviations counterpart to the diffusion limit
results of [79] and [90] is [13]. It is not a direct large deviations analogue but there
are many similarities. The authors consider sample path large deviations for a two-
parameter process which is akin to the residual service time process. Specifically they
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let Qλ(t, y) represent the number of jobs in the system present at time t with residual
service requirement at least y in an infinite server queue whose arrival rate is λ. The
arrival process is general, assumed to be of nonlattice renewal type and service times
are general following some continuous distribution. Their main contribution is to prove
an LDP with a good rate function for Qλ(⋅,⋅)

λ with respect to the uniform topology on
[0, T ] × R+ in the asymptotic regime in which arrivals are sped up but service times
remain unscaled. As an application they find the most likely path to ruin for a port-
folio of life insurance policies. As the two-parameter process is discrete valued, they
consider a polygonalised version of the process (shown to be exponentially equivalent)
which is more amenable to analysis. They first prove the LDP assuming the service
time distribution has bounded support, but then show via a truncation argument that
this result can be extended to the case of unbounded service times. The process that
one obtains by discounting customers with service times larger than some threshold is
shown to be an exponentially good approximation thanks to a simple Chernoff bound.
The LDP for the truncated family is first proven with respect to the topology of point-
wise convergence owing in part to an application of the Gärtner Ellis Theorem. Then
it is lifted to the finer uniform topology by showing exponential tightness.

3.8 Central Limit Theorems and Large Deviations in Stochas-
tic Geometry

Stochastic Geometry is a branch of probability that deals with random spatial pat-
terns. An extensive account is given, for instance, by [98]. This allows one to study
random phenomena that have a geometric structure. The most common and simplest
models concern random point configurations in some (often Euclidean) space - see [29]
for a thorough exposition. There are a multitude of applications but some examples in-
clude astronomy [71], where point patterns represent celestial bodies in space, ecology
[97], where a point configuration might describe the spatial distribution of organisms
of some species in some habitat, or wireless networks [49], where points in space cor-
respond to the locations of transmitters and receivers. In our case the application in
mind is queueing theory, where we have a point pattern representing the arrival times
and service requirements of customers at a queueing facility.

Complicated stochastic geometric systems may not be amenable to exact analy-
sis, however one may nevertheless be able to study their asymptotic behaviour. These
asymptotic properties are made precise by limit theorems - essentially spatial analogues
of those found in classical probability theory. A thorough survey of such results and
relevant concepts and techniques is provided by [94]. The rest of this section is essen-
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tially a very abridged and incomplete version of this review. These proof techniques
typically use tools from classical probability while leveraging the geometric structure
in the problem.

A common setting involves a geometric functional on a locally finite point pattern
on some space. To be more precise, let χ be a locally finite point configuration on Rd

and x ∈ χ a point. Then let ξ(⋅, ⋅) be a real-valued geometric functional defined on all
pairs (x,χ). For x ∉ χ we slightly abuse notation and write ξ(x,χ) = ξ(x,χ⋃{x}). It
is commonly assumed that ξ is translation invariant, meaning that for v ∈ Rd we have
that ξ(x + v,χ + v) = ξ(x,χ). We define the empirical measure associated to ξ and χ
by

µξ(χ) ∶=∑
x∈χ

ξ(x,χ)δx.

The point pattern χ is typically a realisation of some point process P. If the underlying
point process is clear then notation is often shortened from µξ(P) to µξ. Denote the
cube centered at the origin of volume λ > 0 by

Qλ = [
−λ

1
d

2 ,
λ

1
d

2 ]

d

.

Given an underlying point process P, the rescaled empirical measure on the unit cube
is given by

µξλ ∶= ∑
x∈P ⋂Qλ

ξ(x,P⋂Qλ)δλ−1/dx.

The object of interest is usually the centered scaled empirical measure µξλ ∶= µ
ξ
λ−E [µξλ]

in the large λ asymptotic regime.

One important concept in the study of limit theorems in this framework is that
of stabilisation. Loosely speaking we say that a geometric functional is stabilising for
some input point process if its value at a point is determined locally. In other words
there is some finite (and possibly random) radius, outside of which the environment
does not affect the value of the functional at that location. This is known as a radius
of stabilisation. For instance, suppose we sample a point process on R2, and construct
the Voronoi tesselation on this point set. Then the Voronoi cell that contains the origin
is unaffected by changes to the point process that are sufficiently far away (there is a
random radius depending on the original point process, outside of which no effect is
felt). There are a number of different notions of stabilisation of differing strengths - for
precise statements and a detailed comparison see [94]. The concept was first formu-
lated in somewhat different language in [61] and [67] and first considered in its present
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form in [84], [85] and [86]. In the simplest case that the underlying point process is a
spatial Poisson point process, a great deal is known about the behaviour of stabilising
geometric functionals.

Provided a stabilising geometric functional satisfies sensible moment bounds, one
obtains Law of Large Numbers results which describe the typical behaviour of the
associated empirical measure (see [8, 84, 85, 86]). Once one derives variance asymp-
totics of the random measures [8, 89], it is possible to obtain Central Limit Theorem
type results that make precise the convergence of the centered normalised empirical
meaure to a Gaussian random field. See for instance [8, 84, 85, 88] and [89] and refer-
ences therein. There are also Berry-Esseen type results which give the rate at which
Gaussian approximation kicks in by bounding the maximal error of approximation [7].
Proofs of the CLT tend to use martingale techniques [87], comparison of cumulants [8]
or Stein’s method [4, 89]. As well as CLT scale fluctuations of the empirical measures,
there are also results on the moderate [9] and large [92] deviations scales. Further there
are so called de-Poissonisation techniques [84] that allow one to transfer many of these
results to the case of non Poissonian input. This is important for the asymptotic the-
ory of applications in stochastic geometry such as: Voronoi and Delaunay tessellations
[4], germ grain models [76], random sequential packing [93], spatial birth and growth
models [98], nearest neighbour graphs [102] and sphere of influence graphs [84].
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4 Second Order Statistics and a Phase-Type Ap-
proximation

4.1 Motivation

The number of RNA and protein molecules is constantly fluctuating around their typ-
ical copy counts. Biological cells have evolved mechanisms to suppress this noise and
to try to maintain cellular concentration levels within narrow bands. Most noise is
detrimental; the underproduction of relevant proteins can constrain the functionality
of the cell, while overproduction can use up scarce resources common to other reactions
and costs unnecessary energy. In this chapter our aim is to understand how fast such
noise is suppressed. If, for example, there is a fluctuation in the number of proteins
away from the mean, how long does it take for the number to return to typical levels?
One potential application of this is in synthetic biology, where one tries to engineer
artificial biological structures. Understanding their noise suppression capabilities is an
important part of making them efficient. It is hoped that insights into noise suppression
in naturally occurring systems will help shed light on this and provide a benchmark
for performance.

We shall derive closed form expressions for typical molecular counts in section 4.2.
Then we study the fluctuations around them in sections 4.3 and 4.4. The speed at
which these fluctuations dissipate will be quantified by calculating the autocovariance
function of the stationary queue length for both RNA molecules and proteins. This
in turn allows us to calculate the associated power spectral densities in section 4.6
which tell us about the level of fluctuations at different frequencies. To calculate these
quantities explicitly in closed form requires us to relax the assumption of arbitrary
service time distributions (or equivalently molecular lifetime distributions). Instead,
we will assume the service time distribution to be of Phase-type (defined in section
2.2). These are analytically very tractable but can provide arbitrarily good approxi-
mations of any non-negative probability distribution. In [34], these were calculated in
the simpler setting of an Exponential service time distribution (essentially the trivial
Phase-type distribution). The work in this chapter is a generalisation of these results.
We compare the theoretical answers of sections 4.3 and 4.4 with simulated sample
paths of the model in section 4.5. Finally, we discuss the robustness of the Phase-type
approximation scheme in section 4.7.
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4.2 Statistical Properties of the Queueing Model

First we briefly recall the point process description of the queueing model. At a high
level, a point process is just a mathematical description of a collection of points scat-
tered (possibly) randomly on some underlying space. In general, a realisation of a
point process can be thought of as either a random point set {x1, x2, . . . , xk} (assum-
ing the point process is simple - otherwise we may need a multiset), or as a random
counting measure ∑k

i=1 δxi , where δx denotes a Dirac measure at x. We call the latter
the empirical measure corresponding to the realisation of the point set. The arrival
process into an M/G/∞ queue with arrival rate λ and job size distribution F , can be
represented as an inhomogeneous Poisson process on R × R+ with intensity measure
λ⊗F . If a realisation of this Poisson point process has a point at (t, x), it denotes that
a customer arrives at time t bringing a service requirement of x. The queue length at
time t is simply the total number of points of the Poisson process in the set

At ∶= {(s, x) ∶ s ≤ t, x > t − s},

as a customer arriving at time s will still be in the system at time t if and only if
its service requirement is greater than t − s. We follow the convention of defining the
queue length process to be right continuous. Likewise, the queue length process during
a time interval [s, t] can be described in terms of the empirical measure of the above
Poisson process on the wedge-shaped set

A[s,t] = ⋃
u∈[s,t]

Au;

see Figure 5 for a visualisation.

Since we let time run over the interval (−∞,∞), then an infinite amount of time
has already elapsed by the time we reach time zero (or indeed any other finite time),
hence the system has settled down to stationarity, and therefore we can deduce that
the equilibrium distribution for the number of customers in the queue is a Poisson
random variable with mean given by:

∞

∫
t=0

∞

∫
x=t

λdF (x)dt =

∞

∫
x=0

⎡
⎢
⎢
⎢
⎢
⎣

x

∫
t=0

λdt

⎤
⎥
⎥
⎥
⎥
⎦

dF (x) (by Tonelli’s Theorem)

=

∞

∫
x=0

λxdF (x) = λE(X) =
λ

µ
= ρ.

So this matches the claimed invariant distribution from section 1.4.

So for a singleM/G/∞ queue, with customers arriving according to a homogeneous
Poisson process of rate λ1, and mean service time given by 1/µ1, the stationary queue
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A[0,1]

Figure 5 – The set A[0,1] represents the region in time-service requirement space, which affects
the queue length on the interval [0,1].

length follows a Poisson(ρ1) distribution, where ρ1 = λ1/µ1. Therefore, if (N1(t), t ∈ R)

represents the number of customers in the queue at time t, we have E[N1(0)] = ρ1. Con-
sider the tandem queueing model of section 1.5, and append some arbitrary number
of Cox/G/∞ facilities in the same feed-forward structure. Due to the linearity of ex-
pectation it is simple to find an exact analytical expression for the stationary mean
number of customers in any queue in the series.

Proposition 4.1.
Let n ∈ N. Consider a tandem of n ●/G/∞ queues, whose queue length stochastic
processes are denoted by Nk(t) for k ∈ {1, ..., n} respectively. Let the first queue have
Markovian arrivals at rate λ1 ∈ R+ and every subsequent queue have a Cox arrival pro-
cess with stochastic intensity Λk(t) = λkNk−1(t) for the kth facility, where k ∈ {2, ..., n}
and λk ∈ R+. Let the kth facility have i.i.d. service times from an arbitrary distribution
Fk with mean 1

µk
, where µk ∈ R+ for k ∈ {1, ..., n}. Then the steady-state expected queue

length of the `th facility is given by E(N`) =
λ`...λ1
µ`...µ1

for all ` ∈ {1, ..., n}.

Proof. We show this by induction: For the base case ` = 1, we have an M/G/∞ queue
whose invariant distribution is Poisson(ρ1), where ρ1 =

λ1
µ1
; and so E[N1] =

λ1
µ1
. Suppose

the claim is true for some ` = k, i.e. assume E[Nk] =
λk...λ1
µk...µ1

. Then consider the expected
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queue length of the (k + 1)th queue:

E[Nk+1] = E[Nk+1(0)]

= E[E(Nk+1(0)∣Nk(t), t ∈ R)]

= E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
t=0

∞

∫
x=t

λk+1Nk(t)dFk+1(x)dt

⎤
⎥
⎥
⎥
⎥
⎦

= λk+1E[Nk(t)]

∞

∫
x=0

x

∫
t=0

dtdFk+1(x) (by Tonelli’s Theorem)

= λk+1E[Nk]

∞

∫
x=0

xdFk+1(x)

= λk+1 ⋅
λk...λ1

µk...µ1
⋅

1
µk+1

(by the inductive assumption)

=
λk+1...λ1

µk+1...µ1
,

note, we have used the fact that all queues are in stationarity at time t = 0 as the
system has been evolving since t = −∞. So we have shown by induction that the claim
is true.

It was later pointed out that the result follows immediately from Little’s Law (with
a one line proof), without the need to consider point processes at all. We leave the
original proof here as it illustrates how one can use the point process interpretation to
say something about the queueing system. For a statement of Little’s Law see Theorem
6.1 of [50].

One question of biological interest is to understand how quickly noise caused by
fluctuations in molecular counts dissipates. To this end let us now find an expres-
sion for the stationary autocovariance function of the M/G/∞ queue length process,
Cov[N(s),N(t)] (we drop the subscripts for convenience). To do so we define the
complementary cumulative distribution function (henceforth referred to as the c.c.d.f.
for short) as

F (x) ∶= 1 − F (x) =

∞

∫
y=x

dF (y).

We can think about the autocovariance function pictorially; so consider two vertical
half-lines, one at t = 0 and the other at t = u where u > 0. Then drawing on the 45
degree diagonal half-lines from the base of each vertical line creates two conical regions.
The intersection of these regions creates a third conical region, representing those cus-
tomers that are present in the queue at both times 0 and u (see Figure 6). Points in
this region are the only ones which contribute to the covariance (by the independence
of disjoint regions of the spatial Poisson point process). It is clear that the expectation
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of the random number of points in this region only depends upon the distance between
0 and u and not on their position on the line. So when finding Cov[N(s),N(t)] it
suffices to consider Cov[N(0),N(u)] and set u = ∣t − s∣.

Service 
Requirement (x)

Time (t)
u 0

Figure 6 – Common region contributing to autocovariance, representing customers that are
present at times 0 and u.

Let Z be the Poisson random variable for the number of points in the common
region. Then:

Cov[N(0),N(u)] = V ar(Z)

= E(Z) (as Z is a Poisson random variable)

=

∞

∫
t=u

∞

∫
x=t

λdF (x)dt

= λ

∞

∫
t=u

F (t)dt. (4)

Any further simplification requires us to restrict ourselves to a specific service time
distribution.

4.3 Second Order Statistics of the M/PHk/∞ Queue

In section 4.2 we began calculating the autocovariance function of the stationary
M/G/∞ queue length. We got as far as equation (4) saying

Cov[N(0),N(u)] = λ

∞

∫
t=u

F (t)dt. (5)

It is hard to proceed any further in complete generality, so let us now instead suppose
that the service time distribution is of Phase-type (the reader is referred back to Defi-
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nition 2.10 for details). This will allow us to write down the complementary cumulative
distribution function (c.c.d.f.) and hence compute the integral. So we now consider
an M/PHk/∞ queue (where k ∈ N is the number of phases). Note, if we had just one
phase (the case k = 1), we would recover Exponential service times (and therefore have
an M/M/∞ queue). To proceed we need a functional form for the c.c.d.f. of a PHk

distribution; so we first prove a lemma to express this in a convenient form.

We assume that the subgenerator matrix parameterising the Phase-type distribu-
tion is diagonalisable. A sufficient (but not necessary) condition for this is that all
of its eigenvalues are unique. Biologically speaking this means that no two reaction
rates in the degradation process are identical. A necessary and sufficient condition for
an n × n matrix to be diagonalisable is that the sum of dimensions of the eigenspaces
is n. Repeated eigenvalues are one possible obstruction to diagonalisability when this
results in a lack of eigenvectors. Consider, for instance, the matrix

⎛

⎝

−2 1
0 −2

⎞

⎠
,

which is a perfectly acceptable subgenerator matrix. This has −2 as a repeated eigen-
value with algebraic multiplicity two. Its corresponding eigenvector is (1,0)T and its
geometric multiplicity is one. So it is not diagonalisable. So our assumption rules out
genuine cases that can arise.

It is easy to see that the real part of the eigenvalues of the subgenerator matrix are
negative. This is a consequence of the structure of the subgenerator matrix (diagonal
entries negative, all other entries positive and row sums at most zero - indeed at least
one row sum strictly negative) and Gershgorin’s Theorem. Let Ri be the sum of off
diagonal elements in row i of the subgenerator matrix. Then all eigenvalues lie in one
of the closed discs of radius Ri centered at the corresponding diagonal element.

Lemma 4.2.
Let k ∈ N. Let X ∼ PHk (α, S), where S is assumed to be diagonalisable and has
eigenvalues −ηi ∈ C, whose real parts are negative, and which occur in conjugate pairs,
for i = 1,2, ..., k. Then, there exist constants ci ∈ R, i = 1,2, ..., k (that can be calculated
from the eigenvectors of the subgenerator matrix) such that

FX(t) =
k

∑
i=1
cie

−ηit.

Proof. Let 1 denote the all one vector. It is known that for a Phase-type distribution:

FX(t) = αT eSt1 = αT
∞
∑
`=0

S`t`

`! 1.
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Now let us diagonalise S to obtain:

S = P −1ΛP where Λ =

⎛
⎜
⎜
⎜
⎝

−η1

⋱

−ηk

⎞
⎟
⎟
⎟
⎠

,

i.e. Λ is the diagonal matrix of eigenvalues of S and P is the matrix whose columns
are the corresponding eigenvectors. So we have that

FX(t) = αT
∞
∑
`=0

(P −1ΛP )
`
t`

`! 1

= αTP −1
∞
∑
`=0

Λ`t`

`! P1

= αTP −1
∞
∑
`=0

⎛
⎜
⎜
⎜
⎝

(−η1t)`
`!

⋱

(−ηkt)`
`!

⎞
⎟
⎟
⎟
⎠

P1

= αTP −1
⎛
⎜
⎜
⎜
⎝

e−η1t

⋱

e−ηkt

⎞
⎟
⎟
⎟
⎠

P1.

But note that αTP −1 is just a row vector and P1 is just a column vector. So we will
label these vectors as follows with aT ∶= αTP −1 and b ∶= P1. But this yields

FX(t) = aT
⎛
⎜
⎜
⎜
⎝

e−η1t

⋱

e−ηkt

⎞
⎟
⎟
⎟
⎠

b

=
k

∑
i=1
aibie

−ηit

=
k

∑
i=1
cie

−ηit,

letting ci = aibi, as required. Note any complex eigenvalues come in conjugate pairs, so
the c.c.d.f. is indeed real valued.

This allows us to find an analytically exact expression for the autocovariance func-
tion of the number of customers in an M/PHk/∞ queue in its stationary regime.

Theorem 4.3.
Let u > 0 and k ∈ N. Let N(t) denote the number of customers in an M/PHk/∞ queue
at time t, whose Phase-type service time distribution is assumed to have a diagonalisable
subgenerator matrix S with eigenvalues −ηi ∈ C, whose real parts are negative, and which
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occur in conjugate pairs, for i = 1, ..., k. Assume in addition that the c.c.d.f. of the
Phase-type service time distribution is given by

F (t) =
k

∑
i=1
cie

−ηit,

where ci ∈ R for i = 1, ..., k. Then the autocovariance function for the number of
customers in the queue at stationarity is of the form

Cov [N(0),N(u)] =
k

∑
i=1
aie

−ηiu,

where ai ∈ R for i ∈ {1,2, ..., k} are constants that can be calculated from the parameters
of the arrival and service distributions.

Proof. By equation (4) we have that

Cov [N(0),N(u)] = λ

∞

∫
t=u

F (t)dt

= λ
k

∑
i=1
ci

∞

∫
t=u

e−ηitdt

= λ
k

∑
i=1

ci
ηi
e−ηiu

=
k

∑
i=1
aie

−ηiu. (by setting ai ∶= λci
ηi
)

So now it follows immediately that:

Cov[N(t),N(s)] =
k

∑
i=1
aie

−ηi∣s−t∣.

So in summary what we have found is that statistical fluctuations in molecular
counts of RNA molecules dissipate exponentially fast. This happens according to
a mixture of decaying exponentials whose rates are given by the eigenvalues of the
subgenerator matrix parameterising the Phase-type distribution, while the coefficients
a1, ..., ak come from the corresponding eigenvectors. Eyeballing this expression it is
clear that the smallest eigenvalue will predominantly determine the behaviour as the
other terms are exponentially smaller.
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4.4 Second Order Statistics of the Cox/PHk/∞ Queue

Now let us consider the statistical fluctuation properties of the number of proteins. To
this end we find, in the following theorem, the autocovariance function for the num-
ber of customers in the Cox/PHk/∞ queue at stationarity. We shall assume that the
stochastic intensity of the Cox process has autocovariance function of a specific form.
The reason for this form is that it corresponds to the input process being given by the
length of the RNA queue.

Theorem 4.4.
Let u > 0 and k, ` ∈ N. Let κ1, ..., κ` ∈ C, whose real parts are positive, and which
occur in conjugate pairs, and a1, ..., a` ∈ R. Consider a stationary Cox process, whose
stochastic intensity Λ(t) is a stationary and ergodic stochastic process with finite mean
E[Λ(0)] and satisfies

Cov [Λ(0),Λ(u)] =
`

∑
i=1
aie

−κiu.

Let N(t) denote the number of customers in a Cox/PHk/∞ queue at time t, whose
Cox arrival process has stochastic intensity Λ(t) and whose Phase-type service time
distribution is assumed to have a diagonalisable subgenerator matrix S with eigenvalues
−ηi ∈ C, whose real parts are negative, and which occur in conjugate pairs, for i = 1, ..., k.
Assume in addition that the c.c.d.f. of the Phase-type service time distribution is given
by

F (t) =
k

∑
i=1
cie

−ηit,

where ci ∈ R for i = 1, ..., k. Then the autocovariance function for the number of
customers in the queue at stationarity is of the form

Cov [N(0),N(u)] =
r

∑
i=1
γie

−θiu,

where r = k + `, γi ∈ R and θi ∈ C, whose real parts are positive, and which occur
in conjugate pairs, for i ∈ {1,2, ..., r} are constants that can be calculated from the
parameters of the arrival and service distributions.

Proof. First lighten notation by defining Λ = {Λ(t), t ∈ R}. We shall consider N(⋅)∣Λ,
the random variable N(⋅) representing the number of customers in the queue condi-
tional on the entire sample path of the Λ(⋅) process on the interval (−∞,∞). By the
law of total covariance we have

Cov [N(0),N(u)] = E{Cov [N(0),N(u)∣Λ]} +Cov {E[N(0)∣Λ],E[N(u)∣Λ]} .
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For the first term we can consider the random number of points, say Z, in an appropri-
ate overlapping region which accounts for all the conditional covariance (that is, one
representing all those customers that are in the queue at both times 0 and u):

E{Cov [N(0),N(u)∣Λ]} = E[V ar(Z ∣Λ)]

= E[E(Z ∣Λ)] (as Z is conditionally Poisson)

= E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
t=u

∞

∫
x=t

Λ(t)dF (x)dt

⎤
⎥
⎥
⎥
⎥
⎦

=

∞

∫
t=u

E[Λ(t)]F (t)dt (by Tonelli’s Theorem)

= E[Λ(0)]
∞

∫
t=u

F (t)dt (6)

= E[Λ(0)]
k

∑
i=1
ci

∞

∫
t=u

e−ηitdt (by Lemma 4.2)

= E[Λ(0)]
k

∑
i=1

ci
ηi
e−ηiu

=
k

∑
i=1
die

−ηiu. (where di = E[Λ(0)] ⋅ ciηi )

Consider now

E[N(0)∣Λ] =

∞

∫
t=0

∞

∫
x=t

Λ(t)dF (x)dt =

∞

∫
t=0

Λ(t)F (t)dt, (7)

and similarly

E[N(u)∣Λ] =

∞

∫
t=u

∞

∫
x=t−u

Λ(t)dF (x)dt =

∞

∫
t=u

Λ(t)F (t − u)dt. (8)

Then it follows that

Cov {E[N(0)∣Λ],E[N(u)∣Λ]}

=

∞

∫
t=0

∞

∫
s=u

Cov[Λ(t),Λ(s)]F (t)F (s − u)dsdt (9)

=

∞

∫
t=0

∞

∫
s=u

`

∑
i=1
aie

−κi∣s−t∣
k

∑
j=1
cje

−ηjt
k

∑
m=1

cme
−ηm(s−u)dsdt

=
`

∑
i=1

k

∑
j=1

k

∑
m=1

aicjcme
ηmu

∞

∫
t=0

∞

∫
s=u

e−κi∣s−t∣e−ηjte−ηmsdsdt.
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Now considering the double integral separately we obtain:
∞

∫
t=0

∞

∫
s=u

e−κi∣s−t∣e−ηjte−ηmsdsdt (now split to remove the absolute value)

=

u

∫
t=0

∞

∫
s=u

e−κi(s−t)e−ηjte−ηmsdsdt

+

∞

∫
t=u

⎛

⎝

t

∫
s=u

e−κi(t−s)e−ηjte−ηmsds +

∞

∫
s=t

e−κi(s−t)e−ηjte−ηmsds
⎞

⎠
dt

=

u

∫
t=0

et(κi−ηj)
∞

∫
s=u

e−s(κi+ηm)dsdt

+

∞

∫
t=u

⎛

⎝
e−t(κi+ηj)

t

∫
s=u

es(κi−ηm)ds + et(κi−ηj)
∞

∫
s=t

e−s(κi+ηm)ds
⎞

⎠
dt

= e−u(ηj+ηm) [
1

(κi + ηm)(κi − ηj)
+

1
(κi − ηm)(ηj + ηm)

−
1

(κi − ηm)(κi + ηj)

+
1

(κi + ηm)(ηj + ηm)
] −

e−u(κi+ηm)

(κi + ηm)(κi − ηj)

= β1e
−u(ηj+ηm) + β2e

−u(κi+ηm),

where we have used β1 and β2 to simplify the presentation of the unwieldy coefficients
in the penultimate line. Thus, we have that

Cov {E[N(0)∣Λ],E[N(u)∣Λ]} =
`

∑
i=1

k

∑
j=1

k

∑
m=1

aicjcme
ηmu [β1e

−u(ηj+ηm) + β2e
−u(κi+ηm)]

=
`

∑
i=1

k

∑
j=1

k

∑
m=1

aicjcm [β1e
−uηj + β2e

−uκi] .

And therefore

Cov [N(0),N(u)] =
k

∑
i=1
die

−ηiu +
`

∑
i=1

k

∑
j=1

k

∑
m=1

aicjcm [β1e
−uηj + β2e

−uκi]

=
r

∑
i=1
γie

−uθi ,

where γi and θi are placeholders to make the expression less messy.

So what this result says is that if the Cox process has an autocovariance function
which is a mixture of decaying exponentials, then so too is the autocovariance function
of the stationary queue length. So essentially we have a closure property: if the input
is a mixture of decaying exponentials then so too is the output. This also shows that
the result propagates through any number of queues in this nonstandard tandem. So
in biological terms, since RNA molecules suppress noise exponentially fast as a mixture
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of decaying exponentials, protein fluctuations too dissipate as a mixture of decaying
exponentials. Moreover, since r = k + `, the expressions obtained for tandems only
grow linearly in the number of stages. The coefficients are unwieldy, but very tractable
numerically.

Instead of analysing the point process we anticipate one could perform such com-
putations as in the previous proof by studying the joint Laplace transform and in
particular differentiating it to find the moments. The computations would essentially
be equivalent, though possibly slightly less transparent. The big advantage of this
approach would be that in principle all moments could now be found.

4.5 Simulations

We now present some simulations that act as a sanity check to the above theory. We
simulate the feed-forward tandem queueing model in two slightly different settings. In
both cases we have an M/PHk/∞ queue whose occupancy modulates the arrival rate
into a Cox/PHk/∞ facility. In one instance we give the queues non-identical Hyperex-
ponential service time distributions (see Definition 2.8), and in the other, non-identical
generalised Erlang distributions (see Definition 2.9).

We use the two simplest nontrivial Phase-type distributions which fit into the above
framework of a diagonalisable subgenerator matrix parameterising the Phase-type dis-
tribution - namely H2 and genE2 service time distributions. It is vital that all of
the parameters of the component Exponential distributions are distinct, otherwise di-
agonalisability is lost. Using exactly the same methods as in Theorem 4.4, one can
explicitly calculate the autocovariance function of the equilibrium queue length of a
Cox/H2/∞ and Cox/genE2/∞ queue. It is no more complicated to add more phases
in each of these scenarios, the calculations simply become more arduous. In fact even
in the non-diagonalisable case, such as an E2 service time distribution, explicit calcu-
lations can still be performed. These lead to closed form expressions for the autoco-
variance function which are not simply linear combinations of decaying exponentials of
the lag, but have polynomials of the lag as prefactors too.

We simulate a sample path of the stationary Cox/H2/∞ queue length process whose
arrival rate is modulated by a stationary M/H2/∞ queue length, plot the autocorre-
lation function of the simulated process and overlay the theoretical autocorrelation
function predicted by Theorem 4.4. We then do the same with genE2 service time
distributions. The simulations were performed using the statistical software R. The
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results are shown in Figures 7 and 8 and the code is contained in the Appendix.
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Figure 7 – M/H2/∞ queue modulating Cox/H2/∞ queue. For both facilities we plot the
point process representing customer arrival times and corresponding service requirements, the
equilibrium queue length process, and the autocorrelation function of the queue length process.
We overlay the theoretical autocorrelation function in red.
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Figure 8 –M/genE2/∞ queue modulating Cox/genE2/∞ queue. For both facilities we plot the
point process representing customer arrival times and corresponding service requirements, the
equilibrium queue length process, and the autocorrelation function of the queue length process.
We overlay the theoretical autocorrelation function in red.

The simulations match the theory well. Since the total number of customers that
ever enter the system is finite in the simulations, it is necessary to remove edge effects.
We want to consider the queues in equilibrium, so we remove the initial and final part
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of the path. There is a burn-in period at the start as the queue starts empty, and a
burn-out period at the end due to the number of arrivals being finite - meaning the
queue eventually empties out. The correlograms start with a correlation of one at lag
zero, as they should. The decay in autocorrelation as the lag increases matches what
the theory tells us for the first few lags. The rest of the values are small and move
around a bit either side of zero. This is because the queue lengths fluctuate around
their averages with fairly small excursions away. This means the queue length processes
only take on a few different values, so we should expect some small correlations due to
chance. Increasing arrival rates and or decreasing service rates increases the number
of customers in the system, but one still sees essentially the same picture with auto-
correlations decaying exponentially fast. Again, only the first few lags are non-neglible
and the later ones are slightly smaller than in the shorter queues as the outcomes are
less random.

4.6 Power Spectral Densities for the Cox/PHk/∞ Queue

In time series analysis it is common to view a signal in the frequency domain as well as
the time domain. The frequency domain representation offers an alternative (and often
more easily interpretable) view of the signal. The Fourier transform is the tool that
takes us between the time and frequency perspectives. We can further our analysis
of the statistical properties of the queue length process by finding its spectral density.
This will tell us about the behaviour of fluctuations at different frequencies.

Corollary 4.5.
Let N(t) be the queue length process in stationarity of a Cox/PHk/∞ queue satisfying
the assumptions of Theorem 4.4. Then the power spectral density of N(t) is given by

f(ω) =
2
π

r

∑
j=1

θjγj
θ2
j + ω

2 ,

where θi and γi, i=1,...,r are as in the statement of Theorem 4.4.
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Proof. A straightforward calculation yields

f(ω) =
1
π

∞

∫
−∞

Cov [N(0),N(τ)] e−iωτdτ

=
1
π

r

∑
j=1
γj

∞

∫
−∞

e−θj ∣τ ∣e−iωτdτ

=
1
π

r

∑
j=1
γj

⎡
⎢
⎢
⎢
⎢
⎣

0

∫
−∞

eθjτe−iωτdτ +

∞

∫
0

e−θjτe−iωτdτ

⎤
⎥
⎥
⎥
⎥
⎦

=
1
π

r

∑
j=1
γj [

1
θj − iω

+
1

θj + iω
]

=
2
π

r

∑
j=1

θjγj
θ2
j + ω

2 .

4.7 Robustness of the Phase-type Approximation

The use of Phase-type distributions for service times not only gives us tractable results,
but also a hypothetical route to approximate arbitrary service time distributions. The
reason is that Phase-type distributions are dense in the space of probability distri-
butions on R+ equipped with the weak topology (see Theorem 2.11). However, this
property is only useful if approximating the input to a queue yields approximations to
the quantities of interest, such as means and covariances of queue lengths. In other
words, we need these quantities to be continuous functions of the service time distri-
bution. This is a question of robustness and is discussed further in chapter VIII.5 of
[3]. We show now that this robustness does indeed hold in this case.

Theorem 4.6.
Let k ∈ N and A,L,M ∈ R+. Consider a sequence of stationary Cox processes, indexed
by n, whose stochastic intensities Λn(t), n ∈ N are stationary and ergodic stochastic
processes with finite means E[Λn(0)] respectively. Let Nn(t), n ∈ N denote the number
of customers in a sequence of stationary Cox/PHk/∞ queues at time t, whose Cox
arrival processes have stochastic intensities Λn(t) and whose Phase-type service time
distributions Sn have means E(Sn) < L which are uniformly bounded over n ∈ N+ and
distribution functions Fn. Assume additionally that there exists an ε > 0 and A < ∞

such that E [S1+ε
n ] ≤ A for all n ∈ N. Let N(t) denote the number of customers in

a stationary Cox/G/∞ queue at time t, whose Cox arrival process Λ(t) is a station-
ary and ergodic stochastic process with finite mean E[Λ(0)], and whose service time
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distribution S has finite mean E(S) and distribution function F . Assume

E[Λn(0)]→ E[Λ(0)],

E[Λn(0)] <M and V ar[Λn(0)] <M for all n ∈ N+,

Cov[Λn(0),Λn(t)]→ Cov[Λ(0),Λ(t)] pointwise ∀t ∈ R.

Then

E[Nn(0)]→ E[N(0)],

E[Nn(0)] and V ar[Nn(0)] are bounded uniformly over n ∈ N+,

Cov[Nn(0),Nn(t)]→ Cov[N(0),N(t)] pointwise ∀t ∈ R.

Proof. By the denseness of the Phase-type distributions in the non-negative probability
distributions (Theorem 2.11), we can find Phase-type service time distributions Sn
with distribution functions Fn, such that Fn converges to F , both in distribution and
expectation. We then use Tonelli’s Theorem (which we can do due to the integrand
being non-negative) to conclude

E[Nn(0)] = E
⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
t=0

Λn(t)F n(t)dt

⎤
⎥
⎥
⎥
⎥
⎦

=

∞

∫
t=0

E[Λn(t)]F n(t)dt = E[Λn(0)]E[Sn].

Hence

E[Nn(0)] = E[Λn(0)]E[Sn]→ E[Λ(0)]E[S] = E[N(0)].

We have just seen that

E[Nn(0)] = E[Λn(0)]E[Sn] <ML

and so is clearly bounded uniformly. Now we will show V ar[Nn(0)] is uniformly
bounded too. By equation (6)

E[V ar(Nn(0)∣Λn(s), s ∈ R)] = E[Λn(0)]
∞

∫
0

F n(t)dt = E[Λn(0)]E[Sn] <ML.

And by equation (9)

V ar[E(Nn(0)∣Λn(s), s ∈ R)] =

∞

∫
0

F n(t)

∞

∫
0

Cov(Λn(t),Λn(s))F n(s)dsdt

≤

∞

∫
0

F n(t)

∞

∫
0

V ar[Λn(0)]F n(s)dsdt <ML2.

The uniform boundedness of V ar[Nn(0)] is now just a consequence of the law of total
variance.
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Now we compute the stationary autocovariance function of a single Cox/G/∞ queue
in the series using the law of total covariance. First, by equation (6)

E[Cov(Nn(0),Nn(u)∣Λn(s), s ∈ R)]

= E[Λn(0)]
∞

∫
t=u

F n(t)dt

= E[Λn(0)]
⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
t=0

F n(t)dt −

u

∫
t=0

F n(t)dt

⎤
⎥
⎥
⎥
⎥
⎦

= E[Λn(0)]
⎡
⎢
⎢
⎢
⎢
⎣

E[Sn] −

u

∫
t=0

∞

∫
x=t

dFn(x)dt

⎤
⎥
⎥
⎥
⎥
⎦

= E[Λn(0)]
⎡
⎢
⎢
⎢
⎢
⎣

E[Sn] −

∞

∫
x=0

u∧x

∫
t=0

dtdFn(x)

⎤
⎥
⎥
⎥
⎥
⎦

(by Tonelli’s Theorem)

= E[Λn(0)]
⎡
⎢
⎢
⎢
⎢
⎣

E[Sn] −

∞

∫
x=0

(u ∧ x)dFn(x)

⎤
⎥
⎥
⎥
⎥
⎦

= E[Λn(0)] [E[Sn] −E[Sn ∧ u]]

= E[Λn(0)]E[(Sn − u)
+],

The notation x+ ∶= max {0, x} means the positive part of x and x ∧ y ∶= min {x, y}.
Therefore,

E[Cov(Nn(0),Nn(u)∣Λn(s), s ∈ R)] = E[Λn(0)]E[(Sn − u)
+]→ E[Λ(0)]E[(S − u)+]

because

E[Sn] = E[(Sn − u)
+] +E[Sn ∧ u].

But E[Sn] converges to E[S]; and since (Sn∧u) is a bounded and continuous function,
we have that by weak convergence of Fn to F , that E[Sn ∧u]→ E[S ∧u]. This implies
that we must also have E[(Sn −u)+]→ E[(S −u)+]. Finally, use the fact that the limit
of a product of sequences is the product of the limits.

By equations (7) and (8), we have

E(Nn(0)∣Λn(s), s ∈ R) =

∞

∫
t=0

Λn(t)F n(t)dt,

and

E(Nn(u)∣Λn(s), s ∈ R) =

∞

∫
t=u

Λn(t)F n(t − u)dt.
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So it follows by equation (9) that

gn(u) ∶= Cov[E(Nn(0)∣Λn(s), s ∈ R),E(Nn(u)∣Λn(s), s ∈ R)]

=

∞

∫
t=0

∞

∫
s=u

Cov[Λn(t),Λn(s)]F n(t)F n(s − u)dsdt

=

∞

∫
t=0

∞

∫
v=0

Cov[Λn(t),Λn(v + u)]F n(t)F n(v)dvdt (via the substitution v = s − u)

=

∞

∫
t=0

F n(t)

∞

∫
v=0

Cov[Λn(t),Λn(v + u)]F n(v)dvdt.

Observe that by Markov’s inequality

F n(t) = P (Sn ≥ t) = P (S1+ε
n ≥ t1+ε) ≤

E [S1+ε
n ]

t1+ε
≤
A

t1+ε
,

and further that

F n(t) ≤ h(t) ∶= min{1, A
t1+ε

} ,

while it is easy to see that
∞

∫
0

h(t)dt <∞.

So now note that for all t

F n(t)

⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
v=0

∣Cov[Λn(t),Λn(v + u)]∣F n(v)dv

⎤
⎥
⎥
⎥
⎥
⎦

≤ h(t)

∞

∫
v=0

V ar[Λn(t)]F n(v)dv

≤ h(t)M

∞

∫
v=0

F n(v)dv ≤ h(t)ML.

But,
∞

∫
t=0

h(t)MLdt <∞.

So by the Dominated Convergence Theorem

lim
n→∞

gn(u) =

∞

∫
t=0

lim
n→∞

F n(t)

⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
v=0

Cov[Λn(t),Λn(v + u)]F n(v)dv

⎤
⎥
⎥
⎥
⎥
⎦

dt

=

∞

∫
t=0

F (t)

⎡
⎢
⎢
⎢
⎢
⎣

lim
n→∞

∞

∫
v=0

Cov[Λn(t),Λn(v + u)]F n(v)dv

⎤
⎥
⎥
⎥
⎥
⎦

dt,

as the limit of a product is the product of the limits. But also

Cov[Λn(t),Λn(v + u)]F n(v) ≤ V ar[Λn(t)]h(v) ≤Mh(v),
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and
∞

∫
v=0

Mh(v)dv <∞.

So by the Dominated Convergence Theorem

lim
n→∞

gn(u) =

∞

∫
t=0

F (t)

⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
v=0

lim
n→∞

Cov[Λn(t),Λn(v + u)]F n(v)dv

⎤
⎥
⎥
⎥
⎥
⎦

dt

=

∞

∫
t=0

F (t)

⎡
⎢
⎢
⎢
⎢
⎣

∞

∫
v=0

Cov[Λ(t),Λ(v + u)]F (v)dv

⎤
⎥
⎥
⎥
⎥
⎦

dt,

using again the fact that the limit of a product is the product of the limits. So in
summary

Cov[Nn(0),Nn(t)]→ Cov[N(0),N(t)].

Note that we have not shown convergence in distribution of Nn to N , that is we have
not shown that the equilibrium queue length distribution converges to the equilibrium
queue length distribution of the limiting system. We have made the weaker assumption
that the mean and covariance of the input process converge, and this is enough to get
analogous results for the output. We anticipate that something similar can be shown
for higher moments too, the calculations will however become more arduous. This is
enough to propagate the result through the tandem queueing system, where the arrival
process into a queue is given by a constant multiplied by the occupancy of the previous
queue. It remains an open question exactly what assumptions are needed for distribu-
tional convergence. One way to approach this may be to compute the characteristic
function of the stationary number of customers in the queue and then use Lévy’s Conti-
nuity Theorem. To get the desired convergence in distribution then reduces to showing
pointwise convergence of the corresponding sequence of characteristic functions.
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5 LDP for Cox Processes and Cox/G/∞ queues

Bar a few small (mostly typographical) changes, the work in this chapter has been
submitted as an article that is available as a preprint [35] and is joint work with
my supervisor Ayalvadi Ganesh and Edward Crane. A less general version of the
weakly compact set of Proposition 5.9 used to show exponential tightness was originally
suggested by Edward Crane.

5.1 Motivation and Outline

The work in this chapter is motivated by the problem of modelling fluctuations in
the number of protein molecules in a cell. The synthesis of proteins is catalysed by
RNA molecules, which in turn are transcribed from DNA molecules. Both RNA and
protein molecules degrade spontaneously after some random time. It is important for
proper functioning of the cell that protein numbers are maintained within certain lim-
its, and biologists are interested in understanding the regulatory mechanisms involved
in controlling their fluctuations. Consequently, the problem of modelling stochastic
fluctuations has attracted interest, and there has been considerable work on Marko-
vian models of such systems; see, e.g., [70, 83]. These models assume that each
copy of a gene creates RNA molecules according to a Poisson process (while active),
that each RNA molecule generates protein molecules according to a Poisson process,
and that the lifetimes of RNA and protein molecules are Exponentially distributed.
The assumption of Exponential lifetimes is biologically unrealistic; for example, inho-
mogeneities in the cellular environment could result in lifetimes that are mixtures of
Exponential distributions, or the denaturing of molecules could be a multistage process.

Our approach relies on modelling the chemical kinetics using ●/G/∞ queues rather
than Markov processes, which correspond to ●/M/∞ queues. Customer arrivals into
the queue correspond to the synthesis of molecules of a specified type; after indepen-
dent lifetimes with a general distribution, the molecules decay which equates to service
(and departure) of the corresponding customers. For the problem described above, we
have two such queues in series, one for RNA molecules and one for proteins. However,
unlike in a tandem queueing network, where departures from one queue enter the next
queue in series, here departures just leave the system; the way influence propagates
is that the arrival rate into the protein queue is modulated by the occupancy of the
preceding queue (here, RNA) in the series. We consider a very simple form of modu-
lation, in which the arrival rate into a queue is proportional to the occupancy of the
preceding queue, and the arrival process is conditionally Poisson given the occupancy.
Thus, this results in a Cox process model for the arrivals into a queue, and the system
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is modelled as a series of Cox/G/∞ queues interacting as described.

We briefly recall the description of the queue length process in an M/G/∞ queue
with arrival rate λ and service distribution F . The arrival process into this queue can
be represented as an inhomogeneous Poisson process on R×R+ with intensity measure
λ ⊗ F . If a realisation of this point process has a point at (t, y), it denotes that a
customer arrives at time t bringing a service requirement of y. The queue length at
time t is simply the total number of points of the Poisson process in the set

At = {(s, y) ∶ s ≤ t, y > t − s},

as a customer arriving at time s will still be in the system at time t if and only if
its service requirement is greater than t − s. (We follow the convention of defining
the queue length process to be right continuous.) Likewise, the queue length process
during a time interval [s, t] can be described in terms of the empirical measure of the
above Poisson process on the wedge-shaped set

A[s,t] = ⋃
u∈[s,t]

Au.

In the problem we want to study, the intensity of the arrival process is modulated
by the number of customers present in the previous queue. Hence, we need to model it
as a Cox process and study the corresponding Cox/G/∞ queue. As described above,
this requires us to study the empirical measure of a Cox process on a subset of R2. We
shall in fact study them in a more general setting of σ-compact Polish spaces, namely
Polish spaces that can be covered by countably many compact subsets. Our goal is
to obtain functional large deviation principles (FLDPs) for the corresponding queue
length processes; we shall obtain these by contraction from LDPs for the empirical
measure of the Cox process. We have not been able to drop the technical assumption
of σ-compactness from the proof, but do not know if it is essential for the stated results.

We now set out our Cox process model. Let (E,d) be a σ-compact Polish space,
and let Λ be a random finite Borel measure on E; in other words, Λ is a random vari-
able taking values in Mf

+(E), the space of finite non-negative Borel measures on E.
A Cox process Φ with stochastic intensity Λ is a point process which is conditionally
Poisson, with intensity measure λ on the event that Λ = λ. Note that the point process
Φ is almost surely finite. A realisation of Φ can be thought of as either a point set
{x1, x2, . . . , xk}, or as a counting measure ∑k

i=1 δxi , where k ∈ N is the total number of
points of the process (in general this is random, but once we have sampled a realisation
of the process it is fixed). We call the latter the empirical measure corresponding to
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the realisation of the point set, and note that it is also an element of Mf
+(E). There

are two topologies onMf
+(E) which will be of interest to us. We say that a sequence

of measures µn ∈Mf
+(E) converges to µ ∈M

f
+(E) in the weak topology if ∫E fdµn con-

verges to ∫E fdµ for all bounded continuous functions f ∶ E → R; we say the measures
converge in the vague topology if the integrals converge only for continuous functions
with compact support (which are necessarily bounded).

We now consider a sequence of Cox point processes Φn, with corresponding stochas-
tic intensities Λn. Our first major result in this chapter is a large deviations principle
(see Definition 2.14) for their scaled empirical measures:

Theorem 5.1.
Suppose that (Λn, n ∈ N) is a sequence of random finite Borel measures on a σ-compact
Polish space (E,d), and that the sequence Λn/n satisfies an LDP in Mf

+(E) equipped
with the weak topology, with good rate function I1(⋅). Let Φn be a Cox process with
stochastic intensity Λn, i.e., a random counting measure on E equipped with its Borel
σ-algebra. Then the sequence of measures Φn/n satisfies an LDP in Mf

+(E) equipped
with the weak topology, with good rate function

I2(µ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

infλ {I1(λ) + λ(E)} , if µ ≡ 0,

infλ {I1(λ) + IPoi(µ(E), λ(E)) + µ(E)H(
µ

µ(E) ∣ λ
λ(E))} , if µ /≡ 0,

where H is defined in the statement of Theorem 5.5 and IPoi in the statement of
Lemma 5.6.

A slightly different version of this theorem, with only local finiteness of the measures
Λn assumed, has been established by Schreiber [91], albeit in the vague rather than the
weak topology; his result also requires a technical assumption about the measures Λn/n

dominating a fixed measure with full support on E, which we do not need. However,
his result does not require that the space be σ-compact. The extension of the result to
the weak topology is nontrivial, and relies on the finiteness assumption on the intensity
measures. In addition, our proof techniques are very different. A functional LDP for
rescaled Poisson random measures is proved in [42] using projective limits, and in [69]
using Cramér’s Theorem and subadditivity arguments.

The claim of Theorem 5.1 appears intuitive from the assumed LDP for the intensity
measures Λn/n, the LDP for a Poisson random variable, and Sanov’s Theorem for the
empirical distribution. However, a number of technical conditions need to be checked.
Moreover, while these imply an LDP, goodness of the rate function is not immediate.
We show this indirectly by establishing exponential tightness (see Definition 2.15); this
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is the step where finiteness of the measures is crucial.

Next, we consider a sequence of stationary Cox/G/∞ queues where the arrival pro-
cesses are sped up by the index n ∈ N, while the service process remains unchanged.
More precisely, the service times are i.i.d. with some fixed distribution F that does
not depend on n, while the arrival process into the nth queue is a Cox process with
stochastic intensity (directing measure) Λn on R. We make the following assumptions.

Assumptions

A1 (Λn, n ∈ N) is a sequence of random σ-finite measures on R, whose laws are
translation invariant, such that E[Λn([a, b])] = nλ(b − a), for some fixed λ > 0,
and any compact interval [a, b] ⊂ R.

A2 For any interval [a, b], the sequence (Λn/n)∣[a,b] obeys an LDP on Mf
+([a, b])

equipped with the weak topology, with good rate function I[a,b].

A3 Define

ψn(θ) = logE [e
θΛn([0,1])

n ] .

There is a neighbourhood of 0 on which ψn(nθ)/n is bounded, uniformly in n.

A4 The mean service time, given by ∫
∞

0 xdF (x) = ∫
∞

0 F (x)dx, is finite; here F = 1−F
denotes the complementary cumulative distribution function of the service time.

Let Qn(t) denote the number of customers at time t in the infinite-server queue
with Cox process arrivals with intensity Λn and i.i.d. service times with distribution
F . Let Ln denote the measure on R which is absolutely continuous with respect to
Lebesgue measure, with density Qn(⋅). Our second main result in this chapter is the
following:

Theorem 5.2.
Consider a sequence of Cox/G/∞ queues indexed by n ∈ N, where the arrival process
into the nth queue is a Cox process with directing measure Λn, and service times are
i.i.d. with common distribution F . Suppose the arrival and service processes satisfy
Assumptions [A1]-[A4]. Let Qn(t) denote the number of customers in the nth queue at
time t, and let Ln denote the random measure on R which is absolutely continuous with
respect to Lebesgue measure and has density Qn(⋅). Then the sequence of measures Ln
satisfies Assumptions [A1]-[A3]. In particular, for any compact interval [a, b] ⊂ R, the
measures (Ln/n)∣[a,b] satisfy an LDP on Mf

+([a, b]) equipped with the weak topology,
with good rate function J[a,b].
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A fuller description of the rate function J[a,b] is provided in the proof of this theorem,
in section 5.3. The theorem shows that the sequence of queue occupancy measures Ln
also satisfies the above assumptions and, in particular, that they satisfy an LDP. This
implies that our analysis extends easily to an arbitrary number of Cox/G/∞ queues
in tandem, where the arrivals into each queue constitute a Cox process with directing
measure given by the number in the previous queue. This is the set-up that motivated
this work. The theorem yields an LDP for the occupancy measure of each of these
queues.

The Cox/G/∞ model studied is an instance of a queue in a random environment.
The first study of infinite-server queues in random environment was in [77]: factorial
moments in stationarity are derived for the M/M/∞ queue in a Markovian environ-
ment, namely one in which the arrival and service rates are modulated by a finite state,
irreducible, continuous time Markov chain. There has recently been extensive further
study of this model, including moments for steady state and transient distributions,
and large deviation and central limit asymptotics for the marginal distribution of the
queue length; see [20] for a collation of the results.

The Markovian assumption on the environment is relaxed in [56], where the back-
ground process modulating arrivals and services in an M/M/∞ queue is just a general
càdlàg stochastic process. An LDP is proved for the queue length at an arbitrary fixed
time, t, whereas we establish a process level LDP, without assuming (conditionally)
Exponential service times. A special type of Cox background process is considered in
[51], which proves a functional CLT for the scaled queue length process. In all of these
cases the queue length is viewed as a random càdlàg function, whereas we view it as
living on a space of measures.

5.2 Proof of Empirical Measure LDP

Our proof of Theorem 5.1 relies on a theorem of Chaganty [24], which essentially states
that a sequence of probability measures on a product space satisfies an LDP if the cor-
responding sequences of marginal and conditional probability distributions do so, and
certain additional technical conditions are satisfied. For completeness, we include be-
low a statement of this theorem, together with an extension of Sanov’s Theorem by
Baxter and Jain [11] which is needed to check its conditions, and relevant definitions.

Definition 5.3. ([24] Page 2)
Let (Ω1,B1) and (Ω2,B2) be two Polish spaces with their associated Borel σ−fields.
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Let {νn(⋅, ⋅)} be a sequence of transition functions on Ω1 × B2, i.e., νn(x1, ⋅) is a prob-
ability measure on (Ω2,B2) for each x1 ∈ Ω1 and νn(⋅,B2) is a measurable function
on Ω1 for each B2 ∈ B2. We say that the sequence of probability transition functions
{νn(x1, ⋅), x1 ∈ Ω1} satisfies the LDP continuously in x1 with rate function J(x1, x2),
or simply the LDP continuity condition holds, if:

1. For each x1 ∈ Ω1, J(x1, ⋅) is a good rate function on Ω2, i.e., it is non-negative,
lower semicontinuous, and has compact level sets.

2. For any sequence {x1n} in Ω1 such that x1n → x1, the sequence of measures
{νn(x1n, ⋅)} on Ω2 obeys the LDP with rate function J(x1, ⋅).

3. J(x1, x2) is lower semicontinuous as a function of (x1, x2).

Theorem 5.4. ([24] Theorem 2.3)
Let (Ω1,B1), (Ω2,B2) be two Polish spaces with their associated Borel σ−fields. Let
{µ1n} be a sequence of probability measures on (Ω1,B1). Let {νn(x1,B2)} be a sequence
of probability transition functions defined on Ω1 × B2. We define the joint distribution
µn on the product space Ω1 ×Ω2, and the marginal distribution µ2n on Ω2 by

µn(B1 ×B2) = ∫
B1

νn(x1,B2)dµ1n(x1), µ2n(B2) = µn(Ω1 ×B2).

Suppose that the following two conditions are satisfied:

1. {µ1n} satisfies an LDP with good rate function I1(x1).

2. {νn(⋅, ⋅)} satisfies the LDP continuity condition with a rate function J(x1, x2).

Then the sequence of joint distributions {µn} satisfies a weak LDP on the product space
Ω1 ×Ω2, with rate function

I(x1, x2) = I1(x1) + J(x1, x2).

The sequence of marginal distributions µ2n satisfies an LDP with rate function

I2(x2) = inf
x1∈Ω1

[I1(x1) + J(x1, x2)] .

Finally, {µn} satisfies the LDP if I(x1, x2) is a good rate function.

Remark.
Recall that a sequence of probability measures (or random variables) is said to satisfy
a weak LDP if the large deviations upper bound holds for all compact sets, and to
satisfy a (full) LDP if it holds for all closed sets. For both, the large deviations lower
bound holds for all open sets (see Definition 2.14).
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Theorem 5.5. ([11] Theorem 5)
Let (S, d) be a Polish space. Let {αn} be a sequence of probability measures on (S, d)

converging weakly to a probability measure α. For each n, let Xn
i , i ∈ N be i.i.d.

S−valued random variables with common distribution αn. LetM1(S) denote the space
of probability measures on S and let µn ∈ M1(S) denote the empirical distribution,
(δXn

1
+ ... + δXn

n
) /n. Then {µn} satisfies the LDP with good rate function H(⋅∣α) given

by:

H(β∣α) =

⎧⎪⎪
⎨
⎪⎪⎩

∫ log(dβ/dα)dβ if β << α and ∫ ∣ log(dβ/dα)∣dβ <∞

∞ otherwise.

The function H(β∣α) is called the relative entropy or Kullback-Leibler divergence of β
with respect to α.

The proof of Theorem 5.1 proceeds through a sequence of lemmas. We begin with
an elementary LDP for a sequence of Poisson random variables.

Lemma 5.6.
Let Nn, n ∈ N be a sequence of Poisson random variables with parameter nαn, and
suppose that αn tends to α ≥ 0. Then the sequence Nn/n obeys an LDP in R+ with good
rate function IPoi(⋅, α) given by

IPoi(x,α) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x log x
α − x + α, if α > 0,

0, if α = 0, x = 0,

+∞, if α = 0, x > 0.

Proof. We apply the Gärtner-Ellis Theorem [38, Theorem 2.3.6] to the sequence Nn/n.
By direct calculation,

1
n

logE [enθ
Nn
n ] = αn(e

θ − 1).

This sequence of scaled log-moment generating functions converges pointwise to the
limit α(eθ−1), which is finite and differentiable everywhere (hence also continuous, so in
particular lower semicontinuous) and essentially smooth. Hence, by the Gärtner-Ellis
Theorem, the sequence of random variables Nn/n obeys an LDP with a rate function
which is the convex conjugate of α(eθ − 1). A straightforward calculation confirms
that this is the function IPoi(⋅, λ) in the statement of the lemma, and that it is lower
semicontinuous with compact level sets for each α.

The next two lemmas establish conditional LDPs for the scaled empirical measures
of Poisson processes whose scaled intensities converge to a limit.
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Lemma 5.7.
Let Φn, n ∈ N be a sequence of Poisson point processes with intensity measures nλn, and
suppose that λn converge weakly in Mf

+(E) to the zero measure. Then, Φn/n,n ∈ N
satisfy the LDP in Mf

+(E) equipped with the weak topology, with good rate function

I0(µ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, if µ ≡ 0,

+∞, otherwise.

Proof. As the map µ ↦ µ(E) is weakly continuous (the indicator of E is one every-
where, in particular it is a bounded, continuous function), it is limit preserving and
so it follows that λn(E) tends to λ(E) = 0. Let Nn = Φn(E) denote the total number
of points in the Poisson process Φn. Then, Nn is a Poisson random variable with pa-
rameter nλn(E), and it follows from Lemma 5.6 that (Nn/n,n ∈ N) obey an LDP with
good rate function

IPoi(x,0) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, if x = 0,

+∞, if x > 0.

Let F ⊂M
f
+(E) be closed in the weak topology (so it contains its weak limits), and

suppose that it does not contain the zero measure. Define

xF = inf{µ(E) ∶ µ ∈ F}.

We claim that xF > 0. Indeed, if xF = 0, then we can find a sequence of measures µn ∈ F
such that µn(E) tends to zero, i.e., ∫E 1dµn tends to zero. It follows that ∫E fdµn tends
to zero for all bounded functions f , and so in particular for all bounded, continuous
functions. Hence, the sequence µn converges weakly to the zero measure, contradicting
the assumption that 0 ∉ F and F is closed.

Using the inequality

Nn = Φn(E) ≥ inf
µ∈F

{µ(E)} = xF

we now have the large deviations upper bound for F :

lim sup
n→∞

1
n

logP(Φn

n
∈ F) ≤ lim sup

n→∞

1
n

logP(Φn(E)

n
≥ xF)

= lim sup
n→∞

1
n

logP(Nn

n
≥ xF) = −∞,

where we have used the LDP for Nn/n with rate function IPoi(⋅,0) and the fact that
xF > 0 to obtain the last equality.

The large deviations lower bound is trivial for open sets G not containing the zero
measure, as the infimum of the rate function is infinite on such sets. Now, for G
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containing the zero measure, we have

lim inf
n→∞

1
n

logP(Φn

n
∈ G) ≥ lim inf

n→∞
1
n

logP(Φn

n
≡ 0) = lim inf

n→∞
1
n

logP(Nn = 0)

= lim inf
n→∞

(−λn(E)) = −λ(E) = 0,

as Nn ∼ Poi(nλn(E)). This completes the proof of the lemma.

Lemma 5.8.
Let Φn, n ∈ N be a sequence of Poisson point processes with intensity measures nλn,
and suppose that the sequence λn converges in the weak topology on Mf

+(E) to λ /≡ 0.
Then, Φn/n,n ∈ N satisfy the LDP in Mf

+(E) equipped with the weak topology, with
good rate function

I1(µ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

IPoi(µ(E), λ(E)) + µ(E)H(
µ

µ(E) ∣ λ
λ(E)), if µ /≡ 0,

IPoi(0, λ(E)), if µ ≡ 0.

Here, IPoi(⋅, ⋅) and H(⋅∣⋅) are as defined in Lemma 5.6 and Theorem 5.5 respectively.

Proof. We will prove the lemma by first establishing an LDP for the sequence Nn/n,
then verifying that conditional on this, Φn/n satisfies the LDP continuously, and in-
voking Theorem 5.4.

The LDP for Nn/n, with rate function IPoi(⋅, λ(E)), is immediate from Lemma 5.6
since λn(E) tends to λ(E). We now prove an LDP for Φn/n, conditional on Nn/n. Fix
a sequence Nn such that Nn/n → x ≥ 0. If x = 0, then the proof of the LDP follows
that of Lemma 5.7, and yields I0 as the rate function.

It remains to consider x > 0. We can write

Φn = δXn
1
+ δXn

2
+ . . . + δXn

Nn
,

where the Xn
i are i.i.d., with law λn

λn(E) . Note that the probability law of Xn
i is well-

defined for all n sufficiently large, as λn(E) tends to λ(E) > 0. Define

Φ̂n = δXn
1
+ δXn

2
+ . . . + δXn

⌊nx⌋ ,

where the dependence of Φ̂n on x has been suppressed in the notation. We claim that
the sequences Φn/n and Φ̂n/n are exponentially equivalent (see Definition 2.19). To see
this, we use the fact that the weak topology onMf

+(E) can be metrised, for instance
by the Kantorovich-Rubinstein metric,

dKR(µ, ν) = sup
f∈Lip(1),∥f∥∞≤1

∫
E
fdµ − ∫

E
fdν.
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It is easy to see that

dKR (
Φn

n
,
Φ̂n

n
) ≤

1
n

sup
f∈Lip(1),∥f∥∞≤1

∣ ∫
E
fdΦn − ∫

E
fdΦ̂n ∣≤

∥f∥∞
n

∣ Nn − ⌊nx⌋ ∣,

and so, dKR(Φn/n, Φ̂n/n) tends to zero deterministically, because Nn/n tends to x de-
terministically. This establishes the exponential equivalence of the two sequences.

Now, we have from Theorem 5.5 and the observation that λn(⋅)/λn(E) converges
weakly to λ(⋅)/λ(E) (by continuous mapping), that (Φ̂n/⌊nx⌋, ⌊nx⌋ ∈ N) obey an LDP
in M1(E) with good rate function H(⋅ ∣ λ

λ(E)), and hence also in Mf
+(E) with rate

function which is the same onM1(E), and infinite outside it. It follows that (Φ̂n/n,n ∈

N) obey an LDP inMf
+(E) with rate function

Hx(µ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xH(
µ
x ∣ λ

λ(E)), if µ
x ∈M1(E),

+∞, otherwise.
(10)

Finally, by Theorem 2.20, (Φn/n,n ∈ N) obey an LDP in Mf
+(E) with the same rate

function Hx, as they are exponentially equivalent to Φ̂n/n.

Having established conditional LDPs for Φn/n, conditional on Nn/n tending to x,
we now need to check the LDP continuity conditions in Definition 5.3 with Ω1 = R+

and Ω2 =M
f
+(E), and transition function νn(x, ⋅) defined as the law of Φn conditional

on Nn = ⌊nx⌋. We defne the function

J(x,µ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

I0(µ), if x = 0,

Hx(µ) if x > 0,

where I0 is defined in Lemma 5.7 and Hx in (10). Note that J is non-negative as I0

and {Hx, x ≥ 0} are all non-negative.

The first condition in Definition 5.3 holds trivially if x = 0, as all level sets are
singletons comprised of the zero measure; if x > 0, the condition follows from the
goodness of the relative entropy function, which is well known from Sanov’s Theorem
(see, e.g., [38, Theorem 6.2.10]). In a bit more detail, given α > 0, the level set

Lα = {µ ∈M1(E) ∶H (µ ∣
λ

λ(E)
) ≤

α

x
}

is compact in M1(E) equipped with the weak topology; hence, so is its image under
the continuous map µ↦ xµ fromM1(E) toMf

+(E).

The second condition in Definition 5.3 is precisely the content of the conditional
LDPs that we just obtained. That leaves us to check the third condition, which is
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that J(x,µ) is lower semicontinuous in (x,µ). As R+ ×M
f
+(E) is a metric space, we

can check this along sequences. Consider a sequence (xn, µn) converging to (x,µ). If
(x,µ) = (0,0), then J(x,µ) = 0, which is no bigger than lim inf J(xn, µn). If x = 0 and
µ /≡ 0, then µ(E) > 0 and so, for all n sufficiently large, xn < µn(E); consequently, µn/xn
is not a probability measure, and J(xn, µn) = +∞. The same reasoning applies if x > 0
and µ/x ∉M1(E). Finally, suppose x > 0 and µ/x ∈M1(E), so that µn/xn converges
weakly to µ/x inMf

+(E). We may restrict attention to the subsequence of N for which
µn/xn are probability measures, as J(xn, µn) = +∞ otherwise. Along this subsequence,
the desired inequality lim infHxn(µn) ≥ Hx(µ) follows from the lower semicontinuity
of H, the relative entropy function.

We are now in a position to invoke Theorem 5.4, with Ω1 = R+ and Ω2 =M
f
+(E).

The second condition in the theorem is a conditional LDP for Φn/n given that Nn/n

tends to x, which we have just verified. The first condition is an LDP for Nn/n, which
was proved in Lemma 5.6. Hence, the conclusion of Theorem 5.4 holds, i.e., we have
an LDP for Φn/n with rate function

I2(µ) = inf
x∈R+

{IPoi(x,λ(E)) + J(x,µ)} .

As J(x,µ) = +∞ unless x = µ(E), it is clear that the infimum is attained at x = µ(E),
and we have

I2(µ) = IPoi(µ(E), λ(E)) + J(µ(E), µ).

This coincides with the rate function in the statement of the lemma, and concludes its
proof.

We now have all the ingredients required to complete the proof of Theorem 5.1.

Proof of Theorem 5.1.
We invoke Theorem 5.4 with Ω1 and Ω2 both being the space of finite non-negative mea-
sures on E, equipped with the weak topology and the corresponding Borel σ-algebra.
The sequence µ1n will denote the laws of the directing (intensity) measures Λn, and
the probability transition functions νn(λ, ⋅) will denote the law of the scaled Poisson
random measures Φn/n, where Φn has intensity nλ. We now check the assumptions of
the theorem.

The first condition in Theorem 5.4 is an LDP for (Λn/n,n ∈ N) with a good rate
function, which holds by assumption. To check the second condition in Theorem 5.4,
define

J(λ,µ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

I0(µ), if λ ≡ 0,

I1(µ), otherwise,
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where I0 and I1 are as defined in Lemmas 5.7 and 5.8. We need to check that the
conditions in Definition 5.3 are satisfed. The first condition is satisfied as I0 and I1

are both good rate functions, as shown in Lemmas 5.7 and 5.8. The second condition
is the content of the conditional LDPs established in these lemmas. That leaves us to
check the third condition, that J(⋅, ⋅) is lower semicontinuous. As the weak topology
onMf

+(E) is metrisable, so is the product topology onMf
+(E) ×M

f
+(E), and we can

check lower semicontinuity along sequences. Consider a sequence (λn, µn) converging
to (λ,µ), i.e., λn converges weakly to λ, and µn to µ. We distinguish four cases:

1. If λ ≡ 0 and µ ≡ 0, then J(λ,µ) = I0(µ) = 0, which is no bigger than the limit
infimum of a non-negative sequence.

2. If λ ≡ 0 and µ /≡ 0, then J(λ,µ) = I0(µ) = +∞. But note that λn(E) → λ(E) = 0
and µn(E)→ µ(E) > 0, and so IPoi(µn(E), λn(E))→ +∞. As

J(λn, µn) = I1(µn) ≥ IPoi(µn(E), λn(E)),

we see that J(λn, µn) also tends to infinity.

3. If λ /≡ 0 and µ ≡ 0, then J(λ,µ) = I1(µ) = IPoi(0, λ(E)). On the other hand,
J(λn, µn) ≥ IPoi(µn(E), λn(E)), which tends to IPoi(0, λ(E)) as n tends to infin-
ity (as IPoi is continuous and hence limit preserving).

4. Finally, suppose that λ /≡ 0 and µ /≡ 0. In this case, for all n sufficiently large,
both λn and µn are non-zero measures, and we have J(λn, µn) = I1(µn). As
λn(E) and µn(E) converge to λ(E) and µ(E) respectively, it is easy to see that
IPoi(µn(E), λn(E)) tends to IPoi(µ(E), λ(E)). Hence, to verify lower semicon-
tinuity, it suffices to show that H(β∣α) is jointly lower semicontinuous in its
arguments. Recall the Donsker-Varadhan variational formula for the relative
entropy (see, e.g., [40, Sec. C.2]):

H(β∣α) = sup
g∈Cb(E)

⎧⎪⎪
⎨
⎪⎪⎩
∫
E

gdβ − log∫
E

egdα

⎫⎪⎪
⎬
⎪⎪⎭

,

where Cb(E) denotes the set of bounded continuous functions on E. But if
g ∈ Cb(E), so is eg, and the map

(α,β)z→ ∫
E

gdβ − log∫
E

egdα

is continuous. Consequently, H(β∣α), being the supremum of continuous func-
tions of (α,β), is lower semicontinuous.

Thus, we have checked all the conditions of Theorem 5.4. Hence, the conclusion of
the theorem holds, and yields that (Φn/n,n ∈ N) obey an LDP on Mf

+(E), with rate

71



function
I2(µ) = inf

λ∈Mf
+(E)

{I1(λ) + J(λ,µ)} ,

where J(λ,µ) equals I0(µ) if λ ≡ 0 and I1(µ) otherwise, and I0 and I1 are defined
in Lemmas 5.7 and 5.8 respectively. Using those definitions, we can write the rate
function more explicitly as follows:

I2(µ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

infλ {I1(λ) + λ(E)} , if µ ≡ 0,

infλ {I1(λ) + IPoi(µ(E), λ(E)) + µ(E)H(
µ

µ(E) ∣ λ
λ(E))} , if µ /≡ 0,

where the infimum is taken over all finite Borel measures λ on E. The expression above
coincides with that in the statement of the theorem.

It remains only to check that the rate function I2 is good. This is a consequence of
Lemma 5.10 below, which establishes the exponential tightness of the scaled empirical
measures Φn/n, and Lemma 2.16. This completes the proof of Theorem 5.1. ◻

We first state a proposition which provides an explicit construction of compact sub-
sets of Mf

+(E), and which we will need for the proof of Lemma 5.10. This is where
σ-compactness is key. The proof of the proposition is deferred until after the lemma.

Proposition 5.9.
Let K1 ⊆ K2 ⊆ . . . be a nested sequence of compact subsets of E, whose union is equal
to E; such a sequence exists by the assumption that E is σ-compact. Let ε0 ≥ ε1 ≥ . . .

be a sequence of real numbers decreasing to zero. Define K0 to be the empty set. Then,
the set

L(Kn,εn) = {µ ∈M
f
+(E) ∶ µ(Kc

n) ≤ εn ∀ n ∈ N},

is compact in the weak topology on Mf
+(E). Moreover, if K is any compact subset

of Mf
+(E), and εn, n ∈ N+ any sequence decreasing to 0, then there exist ε0 > 0 and

compact K1 ⊆K2 ⊆ . . . ⊆ E such that K ⊆ L(Kn,εn).

Lemma 5.10.
Suppose that (Λn, n ∈ N) is a sequence of random finite Borel measures on a Polish space
(E,d), which satisfy the assumptions of Theorem 5.1. Let (Φn, n ∈ N) be a sequence of
Cox point processes on E, with stochastic intensities Λn. Then, the sequence of random
measures Φn/n is exponentially tight in Mf

+(E) equipped with the weak topology.

Proof. We have to show that for every α < ∞, there is a compact Kα ⊆M
f
+(E) such

that
lim sup
n→∞

1
n

log P(Φn

n
∈ Kcα) < −α. (11)
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By the assumptions of Theorem 5.1, the sequence Λn/n satisfies an LDP inMf
+(E),

with good rate function I1, therefore the sequence is exponentially tight. Hence, there
is a compact set K̂α ⊆Mf

+(E) such that

lim sup
n→∞

1
n

logP(Λn

n
∉ K̂α) < −α. (12)

By Proposition 5.9, K̂α is contained in a compact set of the form L(Kn,εn), where
εn, n ≥ 1 can be chosen to decrease to zero arbitrarily. We will show that, for a suitably
chosen sequence δn ↓ 0, the set L(Kn,δn) satisfies the upper bound in (11).

Observe that

P(Φn

n
∉ L(Ki,δi)) ≤ P(Φn

n
∉ L(Ki,δi) ∣

Λn

n
∈ L(Ki,εi)) + P(Λn

n
∉ L(Ki,εi))

≤ P(Φn

n
∉ L(Ki,δi) ∣

Λn

n
∈ L(Ki,εi)) + P(Λn

n
∉ K̂α). (13)

Now, conditional on Λn, Φn is a Poisson point process, and Φn(Kc
i ) is a Poisson

random variable with mean Λn(Kc
i ). Thus, conditional on Λn/n ∈ L(Ki,εi), the random

variable Φn(Kc
i ) is stochastically dominated by a Poisson random variable with mean

nεi, for each i ∈ N. Also, the event {Φn/n ∉ L(Ki,δi)} is the union of the events {Φn(Kc
i ) >

nδi} over i ∈ N. Define mn = sup{i ∶ nδi > 1}. Since Φn is a counting measure, the event
{Φn(Kc

i ) > nδi} coincides with {Φn(Kc
i ) ≥ 1} for i > mn (as then 0 < nδi ≤ 1). Hence,

we obtain using the union bound that

P(Φn

n
∉ L(Ki,δi) ∣

Λn

n
∈ L(Ki,εi)) ≤

∞
∑
i=0

P(Poi(nεi) > nδi)

=
mn

∑
i=0

P(Poi(nεi) > nδi) +
∞
∑

i=mn+1
P(Poi(nεi) ≥ 1). (14)

Without loss of generality, we can take ε0 ≥ 1. Take εi = e−i and δi = κ/i for i ≥ 1,
for a constant κ to be determined, depending on α. Take δ0 = κε0. Then mn = ⌊κn⌋,
and we obtain using Markov’s inequality that

∞
∑

i=mn+1
P(Poi(nεi) ≥ 1) ≤

∞
∑

i=⌈κn⌉
ne−i ≤

ne−κn

1 − e−1 . (15)

We also have the large deviations (Chernoff) bound for a Poisson random variable that,
for µ > λ,

P(Poi(λ) > µ) ≤ exp(−µ log µ
λ
+ µ − λ),

from which it follows that

P(Poi(nεi) > nδi) ≤
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

exp(−nε0(κ logκ − κ + 1)), i = 0,

exp(−nκ logκ+i−1−log i
i

), i ≥ 1.

Now, ε0 ≥ 1 by assumption and, if κ is chosen sufficiently large, then it is easy to verify
that (logκ + i − 1 − log i)/i is bigger than 1/2 for all i ≥ 1. Hence, we obtain that

mn

∑
i=0

P(Poi(nεi) > nδi) ≤ e−n(κ logκ−κ+1) + κne−κn/2, (16)
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as mn = ⌊κn⌋. Substituting (15) and (16) in (14), we get

P(Φn

n
∉ L(Ki,δi) ∣

Λn

n
∈ L(Ki,εi)) ≤

ne−κn

1 − e−1 + e
−n(κ logκ−κ+1) + κne−κn/2.

It is clear from this that we can choose κ sufficiently large to ensure that

lim sup
n→∞

1
n

logP(Φn

n
∉ L(Ki,δi) ∣

Λn

n
∈ L(Ki,εi)) ≤ −α. (17)

Finally, combining (12), (13) and (17), we conclude that

lim sup
n→∞

1
n

logP(Φn

n
∉ L(Ki,δi)) ≤ −α.

This concludes the proof of the lemma.

Proof of Proposition 5.9.
The weak topology on the space of finite measures on a Polish space is metrisable [100]),
and so it suffices to check sequential compactness. Let (µn, n ∈ N) be a sequence of
finite measures on E satisfying the assumptions of the proposition with respect to a
nested sequence of compact sets Kn whose union is equal to E, and a sequence εn
decreasing to zero. In particular, the measures are bounded; µn(E) ≤ ε0 for all n ∈ N.
We want to show that (µn, n ∈ N) contains a convergent subsequence.

We show that the space of subprobability measures on a compact set K is compact
in the weak topology; recall the Banach-Alaoglu Theorem which states that if X is a
Banach space, then the closed unit ball of the dual space X∗ is compact with respect to
the weak star topology. Of course on a compact set, the weak and weak star topologies
coincide. Consider the Banach space C(K) of continuous functions on K equipped
with the supremum norm. Then by the Riesz Representation Theorem its dual is the
space of finite signed measures on K. The closed unit ball in this space gives all finite
signed measures of mass at most unity. The non-negative elements of this set (the
subprobability measures) are a closed subset of this weakly compact set - so they too
form a weakly compact set. Hence, by Tychonoff’s Theorem applied to the product
space M≤1(K) × [0, ε0], the space of finite measures on K bounded by an arbitrary
constant ε0 is also compact.

Thus, the measures µn restricted to K1 all lie within a compact set; hence, there
is a subsequence µ11, µ12, . . ., whose restriction to K1 converges weakly to some µ̃1 ∈

M
f
+(K1). Similarly, the restriction of this subsequence to K2 all lie within a compact

set, and contain a convergent subsubsequence µ21, µ22, . . .. We can extend this reason-
ing to K3, K4 and so on.
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Formally, denote by pn the projection from Mf
+(E) to Mf

+(Kn) and by pmn the
projection fromMf

+(Km) toMf
+(Kn) for m ≥ n. Then, we can rewrite the above as:

p1µ1n → µ̃1 ∈M
f
+(K1), p2µ2n → µ̃2 ∈M

f
+(K2), , . . . ,

where the convergence is with respect to the weak topology on the corresponding
spaces. Now consider the diagonal sequence µkk. It is clear from the above that

pnµkk
k→∞
→ µ̃n ∈M

f
+(Kn),

for each n. A natural question to ask is whether there is a measure µ̃ ∈M
f
+(E) such

that µ̃n = pnµ̃ for all n. The answer follows from a generalisation of Kolmogorov’s Ex-
tension Theorem (to consistent finite measures) by Yamasaki [106, Proposition 2.1];
it is affirmative if the measures µ̃n satisfy the consistency conditions pmnµ̃m = µ̃n for
all m > n. It is straightforward to verify these.

We now show that the diagonal subsequence µkk converges weakly to the measure µ̃
(whose existence we have just shown) in the weak topology onMf

+(E), and moreover
that the limit µ̃ is in L(Kn,εn). We start with the latter. As µ̃ is a finite measure on
the Polish space E, it is regular (any measurable set can be approximated from within
by compacts); therefore, as Kn are compact sets increasing to E, µ̃(Kn) increases to
µ̃(E). Hence, for any m ∈ N,

µ̃(Kc
m) = lim

n→∞
µ̃(Kn) − µ̃(Km).

Now, for any fixed i > n > m, µ̃i is the restriction (or projection) of µ̃ to the set Ki,
and so

µ̃(Kn) − µ̃(Km) = µ̃i(Kn) − µ̃i(Km) ≤ µ̃i(K
c
m) ≤ εm.

The last inequality holds because µ̃i is the weak limit of measures whose mass on Kc
m

is bounded by εm, and Kc
m is an open set. As this holds for each n, we conclude on

taking limits that µ̃(Kc
m) ≤ εm. But m was arbitrary, so µ̃ ∈ L(Kn,εn).

Next, given δ > 0 and a bounded continuous function g ∶ E → R, choose ` large
enough that ε`∥g∥∞ < δ. Next, pick m ≥ ` large enough that

∣ ∫
K`
gdµ`n − ∫

K`
gdµ̃` ∣≤ δ ∀ n ≥m,

which is possible since µ`n converges weakly to µ̃` as n tends to infinity. Now, µn⋅ is a
subsequence of µ`⋅ for n ≥ `, so the above inequality also holds for ∫K` g(dµnn −dµ̃`) for
all n ≥m. Thus, we can write

∣ ∫
E
gdµnn − ∫

E
gdµ̃ ∣≤∣ ∫

K`
g(dµnn − dµ̃`) ∣ + ∣ ∫

K`
g(dµ̃` − dµ̃) ∣ +2∥g∥∞ε`,
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as µnn(Kc
` ) and µ̃(Kc

` ) are both bounded above by ε`. We have just shown that the first
integral above is smaller than δ in absolute value, for all n ≥m. The second integral is
zero as µ̃` is the restriction or projection of µ̃ to K`. The last term is bounded by 2δ
by the choice of `. Thus, we have shown that we can choose m in such a way that

∣∫
E
gdµnn − ∫

E
gdµ̃∣ ≤ 3δ

for all n ≥m. As g was an arbitrary bounded continuous function, this proves that µnn
converges to µ̃. This completes the proof that L(Kn,εn) is compact.

For the converse, let K be compact in Mf
+(E) equipped with the weak topology.

As the map µ↦ µ(E) is continuous (the indicator of E is a bounded continuous func-
tion E → R), its supremum over K is attained. Denote the supremum by ε0. Then
µ(E) = µ(Kc

0) ≤ ε0 for all µ ∈ K. Next, we invoke a generalisation of Prokhorov’s The-
orem by Bogachev [22, Theorem 8.6.2]), which states that the measures in a compact
set are uniformly tight. In other words, given ε1 > 0, we can find a compact subset K1

of E such that µ(Kc
1) ≤ ε1 for all µ ∈ K. Similarly, we can find compact K2 such that

µ(Kc
2) ≤ ε2 for all µ ∈ K. Without loss of generality, we can assume that K1 ⊆K2; oth-

erwise, re-define K2 as their union. Continuing in the same vein, we obtain a sequence
Kn of nested compact sets such that µ(Kc

n) ≤ εn for all n ∈ N, for all µ ∈ K. If their
union is not equal to E, it can be extended countably to have this property, by the
assumption that E is σ-compact. Now, K ⊆ L(Kn,εn). ◻

5.3 Proof of LDP for the Queue Occupancy Measure

The proof of Theorem 5.2 is presented in this section. We begin by recalling how the
queue occupancy measure is related to the input to the queue. First, we represent
the input to the nth queue as a Cox process on R × R+ by marking each arrival with
its service time; the resulting marked point process is a Cox process on R × R+ with
stochastic intensity Λn ⊗ F . Now, Qn(t) is equal to the number of points of this Cox
process lying in the triangle

At = {(s, x) ∈ R ×R+ ∶ s ≤ t, x ≥ t − s} .

Furthermore, the queue length process {Qn(t), t ∈ [a, b]}, is determined by the restric-
tion of the above Cox process to the wedge

A[a,b] ∶= ⋃
t∈[a,b]

At,
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as illustrated in Figure 9. Next, for u ≤ s ≤ t, we will also need to define the truncated
sets

Aut = {(s, x) ∈ R ×R+ ∶ u ≤ s ≤ t, x ≥ t − s} , Au[s,t] ∶= ⋃
x∈[s,t]

Aux.

Finally, recall that we are interested in the occupancy measure Ln, which is defined as
the random measure that is absolutely continuous with respect to Lebesgue measure,
and has density Qn(⋅).

tsu

Figure 9 – The wedge A[s,t] and the truncated wedge Au
[s,t].

Our goal is to prove an LDP for Ln, restricted to an arbitrary interval [a, b]. We
start by establishing an LDP for the scaled directing measures Λn

n ⊗ F , restricted to a
truncated wedge Au[a,b], for arbitrary u < a; this LDP is in the topology of weak conver-
gence of measures restricted to the truncated wedge. Then, using the projective limit
approach described below, we extend this family of LDPs to an LDP on the full wedge
A[a,b], in the projective limit topology. However, the queueing map is not continuous
in this topology, so we need to strengthen the LDP to the weak topology on the full
wedge. We do this by establishing exponential tightness of the measures Λn

n ⊗F in the
weak topology on A[a,b]. Next, we invoke Theorem 5.1 to deduce an LDP for the Cox
process on A[a,b] with this intensity. Finally, we use weak continuity of the queueing
map, and the Contraction Principle (Theorem 2.18), to obtain the LDP for Ln. Check-
ing that Ln also satisfies Assumptions [A1]-[A3] is fairly straightforward. The details
of all these steps are presented below.
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Lemma 5.11.
Fix u ≤ a < b ∈ R and consider the truncated wedge Au[a,b]. The sequence of random
measures Λn

n ⊗ F ∣
Au[a,b]

, n ∈ N, satisfy an LDP on Mf
+(A

u
[a,b]) equipped with the weak

topology, with good rate function

Iu[a,b](µ) = inf {I[a,b](λ) ∶ λ ∈Mf
+([a, b]), µ = (λ⊗ F ) ∣

Au[a,b]
} .

Proof. Define the map

T ∶M
f
+([u, b])→M

f
+([u, b] ×R+)

by T (µ) = µ⊗F . We first show that this map is continuous in the weak topology. We
will then use the Contraction Principle and the LDP for Λn

n
∣[u,b] to get the LDP on

a rectangle of infinite height, and the Contraction Principle applied to the restriction
map to get the LDP on the wedge. As the weak topology is metrisable, we can check
continuity along sequences. To this end, consider a sequence of finite measures µn on
[u, b] converging weakly to a finite measure µ, and let g ∶ [u, b] ×R+ → R be bounded
and continuous. Define h ∶ [u, b]↦ R by h(x) = ∫

∞
0 g(x, y)dF (y). We have

∫
[u,b]×R+

gd(T (µn)) = ∫
b

u
(∫

∞

0
g(x, y)dF (y))dµn(x) = ∫

b

u
h(x)dµn(x),

where the first equality follows from Fubini’s Theorem, which we can use because

∫
[u,b]×R+

∣g∣d (µn ⊗ F ) ≤ ∥g∥∞ µn([u, b])F (R+) <∞.

If we can show that h is continuous, then it will follow that ∫ gd(T (µn)) converges
to ∫ gd(T (µ)), and, as g was an arbitrary bounded continuous function, that T (µn)

converges weakly to T (µ), thus proving that T is continuous.

Now, to show that h is continuous, fix ε > 0 and x0 ∈ R such that 1 − F (x0) ≤ ε.
Now g is uniformly continuous on the compact set [u, b]× [0, x0] (as g is continuous on
a compact), so we can find δ > 0 such that ∣g(x, z) − g(y, z)∣ < ε provided ∣x − y∣ < δ. It
follows that

∣h(x) − h(y)∣

≤ ∫

x0

0
∣g(x, z) − g(y, z)∣dF (z) + ∫

∞

x0
∣g(x, z)∣dF (z) + ∫

∞

x0
∣g(y, z)∣dF (z)

≤ (1 + 2∥g∥∞)ε.

This proves the continuity of h, and consequently of T .

Next, the map S that restricts finite measures on [u, b] ×R+ to the wedge Au[a,b] is
trivially continuous, and hence so is the composition S○T . The claim of the lemma now
follows from the assumed LDP for Λn

n
∣[u,b] and the Contraction Principle (Theorem

2.18).
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The family of LDPs on the truncated wedges {Au[a,b], u < a} can be extended to an
LDP on the full wedge A[a,b] using the Dawson-Gärtner Theorem for projective limits
(Theorem 2.26). This yields an LDP in the projective limit topology, which is generated
by bounded continuous functions supported on the truncated wedges, Au[a,b]. In order
to strengthen this LDP to the weak topology on A[a,b], we need to show exponential
tightness of the measures Λn

n ⊗ F in the weak topology. The following lemma is a key
ingredient in establishing this. This result is probably already known, but we could
not find a reference for it, so we include a proof.

Lemma 5.12.
Suppose X,X1,X2, ... are identically distributed random variables with arbitrary joint
distribution, and suppose αi, i ∈ N are non-negative coefficients whose sum is finite,
and which we denote by α. Then,

W ∶=
∞
∑
i=1
αiXi ≤cx αX,

where we write Y ≤cx Z to denote that Y is dominated by Z in the convex stochastic
order, i.e., E[φ(Y )] ≤ E[φ(Z)] for all convex functions φ for which the expectations
are defined, possibly infinite.

Proof. By scaling the random variables, we assume α = 1 without loss of generality.
By Jensen’s inequality, the inequality

φ(W (ω)) = φ(
∞
∑
i=1
αiXi(ω)) ≤

∞
∑
i=1
αiφ(Xi(ω)) = φ(Xi(ω)),

holds pointwise on the probability space Ω. Taking expectations on both sides yields
the result if we can interchange expectation and summation on the right. We can
certainly do so (by Tonelli’s Theorem) if the functions φ are non-negative, obtaining

E [φ(W )] ≤ E [φ(Xi)] = E [φ(X)]

as X and Xi are identically distributed. Hence the same is true if the functions φ are
bounded below. To see this, suppose φ ≥ −k, where k ∈ R+. Then u(x) ∶= φ(x) + k is
non-negative and convex, so

E [φ (W )] + k = E [u (W )] ≤ E [u(X)] = E [φ (X)] + k.

Now, for any c ∈ R, the function φc defined by φc(x) = max{c, φ(x)} is convex and
bounded below, so we get

E[φc(W)] ≤
∞
∑
i=1
αiE[φc(Xi)] = (

∞
∑
i=1
αi)E[φc(X)],
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as the Xi are identically distributed with the same law as X. Since φ ≤ φc, it follows
that

E[φ(
∞
∑
i=1
αiXi)] ≤ (

∞
∑
i=1
αi)E[φc(X)],

for all c ∈ R. Letting c decrease to −∞ on the right now yields the claim of the lemma.
This can be justified by splitting φ into its positive and negative parts and using the
Monotone Convergence Theorem.

We are now ready to show that the directing measures restricted to a wedge are
exponentially tight in the weak topology.

Proposition 5.13.
The sequence of random measures

((
Λn

n
⊗ F)∣

A[a,b]
)

n∈N

is exponentially tight in the weak topology.

Proof. We have to show that for every 0 < α < ∞, there is a compact set Kα ⊆

M
f
+(A[a,b]) such that

lim sup
n→∞

1
n

log P((
Λn

n
⊗ F)∣

A[a,b]
∈ Kcα) < −α. (18)

We will use the explicit construction of a weakly compact set of measures given in
Proposition 5.9. We seek a nested sequence of compact sets K1 ⊆ K2 ⊆ . . . ⊆ A[a,b],
whose union is the wedge A[a,b], and a sequence of positive constants ε0 ≥ ε1 ≥ . . .

decreasing to zero, such that

P((
Λn

n
⊗ F)(Kc

i ) > εi) ≤ e
−n(i+1)α ∀ i ≥ 0, (19)

where we define K0 to be the empty set. If we can find such Ki and εi, then the weakly
compact set of measures

Kα = {µ ∈M
f
+(A[a,b]) ∶ µ(K

c
i ) ≤ εi∀ i ∈ N},

satisfies the inequality in (18), thus proving the proposition.

Each of the compact sets Ki, i ≥ 1, will be specified by two real numbers ui and hi
as shown in Figure 10:

Ki = {[ui, b] × [0, hi]}⋂A[a,b].
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baui

1

hi

Ki

Ri

Ti

Figure 10 – The wedge A[a,b] split into a compact set Ki, infinite rectangle Ri and infinite
triangle Ti. The triangle is split into strips of unit width.

We shall write Kc
i to denote the complement of Ki in A[a,b], and we decompose this

set into a triangle

Ti = {(s, x) ∈ R ×R+ ∶ s ≤ ui, x ≥ a − s} ,

and a rectangle

Ri = {(s, x) ∈ R ×R+ ∶ ui ≤ s ≤ b, x ≥ hi} ;

see Figure 10. Thus, we have
1
n
(Λn ⊗ F )(Kc

i ) =
1
n
(Λn ⊗ F )(Ti) +

1
n
(Λn ⊗ F )(Ri). (20)

Now, by the translation invariance of Λn changing the horizontal coordinate makes no
difference (though is slightly more convenient to work with and puts us in the setting
of Lemma 5.14), so we have

(Λn ⊗ F )(Ti)
d
= (Λn ⊗ F )(T a−ui) and (Λn ⊗ F )(Ri)

d
= (Λn ⊗ F )(Rhi

b−ui),

where d
= denotes equality in distribution, and the sets T ` and Rh

z are defined as

T ` = {(t, x) ∈ R ×R+ ∶ t ≤ 0, t + x ≥ `}

Rh
z = {(t, x) ∈ R ×R+ ∶ t ∈ [0, z], x ≥ h}.

(21)

Thus, we obtain from (20) that

P((
Λn

n
⊗ F)(Kc

i ) > εi) ≤ P((Λn ⊗ F )(T a−ui) >
nεi
2 )

+P((Λn ⊗ F )(Rhi
b−ui) >

nεi
2 ) . (22)
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We show in Lemma 5.14 that, given i ∈ N, εi > 0 and α > 0, we can choose ui to
make a − ui sufficiently large that

P((Λn ⊗ F )(T a−ui) >
nεi
2 ) ≤ e−n(i+1)α, ∀n ∈ N;

to see this, take ε = εi/2 and β = (i + 1)α in the statement of the lemma. Next, by the
same lemma, given ui, and hence b − ui, we can choose hi sufficiently large to ensure
that

P((Λn ⊗ F )(Rhi
b−ui) >

nεi
2 ) ≤ e−n(i+1)α, ∀n ∈ N.

Combining these two inequalities with (22), we conclude that for all i ≥ 1,

P((Λn ⊗ F )(Kc
i ) > nεi) ≤ 2e−n(i+1)α, ∀n ∈ N, (23)

which is essentially the same as (19). That leaves the case i = 0.

The same argument does not work for K0 as we cannot choose this set (that is,
we cannot choose a triangle and rectangle arbitrarily high); K0 is the empty set and
Kc

0 = A[a,b]. Instead, we need to show that we can choose ε0 sufficiently large that

P((Λn ⊗ F )(A[a,b]) > nε0) ≤ e
−nα, ∀n ∈ N. (24)

We first note that A[a,b] ⊂ T0 ∪ {[a − `, b] ×R+}, where 0 < ` < a and

T0 = {(t, x) ∈ R ×R+ ∶ t ≤ a − `, t + x ≥ a}.

Hence

(Λn ⊗ F )(A[a,b]) ≤ (Λn ⊗ F )(T0) +Λn([a − `, b]).

Moreover, by translation invariance of Λn, we have

(Λn ⊗ F )(T0)
d
= (Λn ⊗ F )(T `),

where T ` is defined in (21). Using Lemma 5.14 below, we conclude that we can choose
` sufficiently large that

P((Λn ⊗ F )(T0) > n) ≤ e
−nα, ∀n ∈ N. (25)

We also see from the proof of Lemma 5.14 that Λn([a − `, b]) is dominated, in the
increasing convex order, by ⌈` + b − a⌉Λn([0,1]); in particular,

E [eθΛn([a−`,b])] ≤ E [eθ(`+1+b−a)Λn([0,1])] = exp(ψn(nθ(` + 1 + b − a))),

where ψn is defined in Assumption [A3]. By [A3], for given a, b, `, ψn(nθ(`+1+b−a))/n
is bounded, for θ in a neighbourhood of the origin, uniformly in n, i.e, there exist
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constants θ, δ > 0 such that ψn(nθ) ≤ nδ for all n ∈ N. Consequently, by Markov’s
inequality,

P (Λn([a − `, b]) ≥ n(ε0 − 1)) ≤ e−nθ(ε0−1)+nδ, ∀n ∈ N.

Clearly, we can choose ε0 large enough to ensure that

P (Λn([a − `, b]) ≥ n(ε0 − 1)) ≤ e−nα, ∀n ∈ N.

Combining the above equation with (25), we see that the inequality in (24) holds, up
to a factor of two. This completes the proof that the inequality in (19) holds for all
i ≥ 0, up to a factor of two on the RHS. Now, using the union bound over i, we get

P(∃ i ≥ 0 ∶ (Λn

n
⊗ F)(Kc

i ) > εi) ≤
∞
∑
i=0
e−n(i+1)α =

e−nα

1 − e−nα ≤ 2e−nα,

from which (18) is immediate, given the definition of Kα. This completes the proof of
the proposition.

Lemma 5.14.
Let β > 0 be a given constant. For `, h, z > 0, let the triangle T` and the rectangle Rh

z

be defined as in (21). Then, we have the following:

1. Given ε > 0, we can choose ` sufficiently large that

P((Λn ⊗ F )(T `) > nε) ≤ e−nβ, ∀n ∈ N.

2. Given z > 0 and ε > 0, we can choose h sufficiently large that

P((Λn ⊗ F )(Rh
z) > nε) ≤ e

−nβ, ∀n ∈ N.

Proof. Fix an ` ∈ R. By splitting the triangle T ` into vertical strips of unit width, we
see that

(Λn ⊗ F )(T `) ≤
∞
∑
k=0

Λn([−k − 1,−k])F (` + k).

Now, by translation invariance of Λn, the random variables Λn([−k − 1,−k]) are iden-
tically distributed for all k. Moreover, the sum of the coefficients F (` + k) can be
bounded as follows:

∞
∑
k=0

F (` + k) ≤ c` ∶= ∫
∞

`−1
F (x)dx = E[S1(S ≥ ` − 1)],

where S denotes a random variable with the distribution F of the service time, and
1(E) denotes the indicator of the event E. This last expectation is finite by the
assumption that the service time has finite mean. Hence, invoking Lemma 5.12, we
obtain that

(Λn ⊗ F )(T `) ≤icx c`Λn([0,1]),
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where, for random variables X and Y , we say that X is dominated by Y in the increas-
ing convex order, written X ≤icx Y , if E[φ(X)] ≤ E[φ(Y )] for all increasing convex
functions φ. Applying this bound to the increasing convex function φ(x) = eθx for
arbitrary θ > 0, and using Markov’s inequality, we get, for any ε > 0,

P((Λn ⊗ F )(T `) ≥
nε

2 ) ≤ e−nθε/2E [eθc`Λn([0,1])] = exp(−nθε2 + ψn(nθc`)),

where the function ψn was defined in Assumption [A3]. As θ > 0 is arbitrary, it is
convenient to rewrite the above inequality (replacing θ by θ/c`) as

logP((Λn ⊗ F )(T `) ≥
nε

2 ) ≤ −
nθε

2c`
+ ψn(nθ), where c` = E[S1(S ≥ ` − 1)]. (26)

Now, by Assumption [A3], there exist positive constants δ and θ such that ψn(nθ) ≤ nδ,
uniformly in n. Morever, as E[S] is finite by Assumption [A4], it follows that c` tends
to zero as ` tends to infinity. Hence, we see from (26) that, given i ∈ N and β, ε > 0, we
can choose ` sufficiently large, and consequently c` sufficiently small, to ensure that

P ((Λn ⊗ F )(T `) ≥ nε) ≤ e−nβ ∀ n ∈ N. (27)

This completes the proof of the first claim of the lemma.

The proof of the second claim is very similar. We show that

(Λn ⊗ F )(Rh
b−a) ≤icx ⌈b − a⌉F (h)Λn([0,1]),

and apply Markov’s inequality to the exponential of the random variable on the RHS.
The details are omitted.

Note there was nothing particularly special about triangles and rectangles (though
they are relevant to the queueing applications) and the results would certainly extend
to other similar sets. We now have all the ingredients required to establish an LDP for
the scaled intensity measures (Λn ⊗ F )/n, on the wedge A[a,b].

Proposition 5.15.
Suppose that Λn, n ∈ N is a sequence of random measures satisfying Assumptions [A1]-
[A3] and F satisfies [A4]. Fix an interval [a, b] ⊂ R. The sequence of random measures
(Λn
n ⊗ F )∣

A[a,b]
, n ∈ N, satisfy an LDP on Mf

+(A[a,b]) equipped with the weak topology,
with good rate function

I[a,b](ν) = sup
u≤a

Iu[a,b](ν ∣
Au[a,b]

), ν ∈Mf
+([a, b]).
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Proof. We will use the Dawson-Gärtner Theorem for projective limits (Theorem 2.26).
Letting

J ∶= {Au[a,b] ∶ u ∈ (−∞, a)} ,

it is clear that the collection (J,⊆) of truncated wedges Au[a,b] equipped with set inclu-
sion is totally ordered, and hence also right-filtering. The set is indexed by u, and we
will use u to denote the element Au[a,b], to simplify notation. Denote by Yu the space
M

f
+(A

u
[a,b]) of finite measures on Au[a,b], equipped with the weak topology.

If t ≤ u, i.e., Au[a,b] ⊆ At[a,b] (note that the order in the projective system reverses
inequalities from the order on the real line), define the projection put ∶ Yt → Yu by
the restriction of a measure on At[a,b] to the subset Au[a,b]. It is clear that this map is
continuous, and also that the projections satisfy the consistency condition pus = put○pts
for s ≤ t ≤ u. Thus, (Yu, put)t≤u constitute a projective system. We can identify
M

f
+(A[a,b]) with the projective limit, with canonical projections

pu ∶M
f
+(A[a,b])→M

f
+(A

u
[a,b])

defined as the restriction of a measure from the full wedge A[a,b] to its truncation Au[a,b].
These are clearly continuous in the weak topology.

Now, by Lemma 5.11, the projections

(
Λn

n
⊗ F)∣

Au[a,b]

= pu ((
Λn

n
⊗ F)∣

A[a,b]
) , n ∈ N,

satisfy an LDP for each u ∈ (∞, a), with rate function Iu[a,b]. Hence, by the Dawson-
Gärtner Theorem, the sequence of measures (Λn

n ⊗ F )∣
A[a,b]

, n ∈ N, satisfies an LDP in
the projective limit topology, with good rate function

I[a,b](ν) = sup
u≤a

Iu[a,b](ν ∣
Au[a,b]

), ν ∈Mf
+([a, b]).

Moreover, by Proposition 5.13, the measures (Λn
n ⊗ F )∣

A[a,b]
are exponentially tight in

the weak topology on Mf
+(A[a,b]). Hence, by Lemma 2.17, we obtain that the LDP

holds in the weak topology. Exponential tightness also implies goodness of the rate
function in the weak topology by Lemma 2.16.

Next, we show the weak continuity of the queueing map, which is the prelude to
obtaining the LDP for the queue occupancy measure. For a measure ν ∈M

f
+(A[a,b]),

and t ∈ [a, b], we define Qν(t) = ν(At), where we recall that At = A[t,t] is the set

{(s, x) ∈ R ×R+ ∶ s ≤ t, s + x ≥ t}.
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The interpretation is that, if ν is a counting measure representing the marked arrival
process into an infinite-server queue, where each arrival is marked with its service time,
then Qν(t) denotes the number of customers in the queue at time t. Let L(ν) denote
the measure on [a, b] which is absolutely continuous with respect to Lebesgue measure,
and has density Qν(⋅); let L denote the map fromMf

+(A[a,b]) toMf
+([a, b]) which takes

ν to L(ν).

We want an explicit characterisation of the map L. We will describe L(ν) through
its action on the dual space Cb([a, b]) of bounded, continuous functions on [a, b], i.e., by
specifying ∫

b

a g(t)dL(ν)(t) for all g ∈ Cb([a, b]). By the Riesz Representation Theorem,
L(ν) is uniquely determined by these integrals. From the description above, we have

∫

b

a
g(t)dL(ν)(t) = ∫

b

a
g(t)Qν(t)dt = ∫

b

t=a
g(t)ν(At)dt

= ∫
A[a,b]

(∫

min{s+x,b}

max{a,s}
g(t)dt)ν(ds × dx). (28)

The last equality is obtained by interchanging the order of integration (which can be
done by Fubini’s Theorem), noting that an area element at ds×dx contributes to ν(At)
for each t between max{a, s} and min{s + x, b}.

Lemma 5.16.
The map L ∶ M

f
+(A[a,b]) → M

f
+([a, b]), defined by (28) via the Riesz Representation

Theorem, is continuous with respect to the weak topology on each of these sets.

Proof. The weak topology on the space of finite measures on a Polish space is metris-
able [100], so we can check continuity of L along sequences. Suppose νn, n ∈ N converge
to ν in the weak topology onMf

+(A[a,b]). Let g ∶ [a, b] → R be a bounded, continuous
function. We have by (28) that

∫

b

a
g(t)dL(νn)(t) = ∫

A[a,b]
h(s, x)νn(ds × dx),

where h(s, x) = ∫
min{s+x,b}

max{a,s}
g(t)dt. (29)

It is clear that the the function h ∶ A[a,b] → R is bounded and continuous, and so the
RHS above converges to

∫
A[a,b]

h(s, x)ν(ds × dx).

This completes the proof of the lemma.

We are now ready to prove the main result.
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Proof of Theorem 5.2.
Let Φn denote the Cox process of arrivals into the nth queue, marked with their service
times. Fix [a, b] ⊂ R. By Proposition 5.15, the sequence of measures (Λn

n ⊗ F )∣
A[a,b]

,
satisfy an LDP onMf

+(A[a,b]) equipped with the weak topology, with good rate function
I[a,b] given therein. Hence, by Theorem 5.1, the sequence of Cox point measures Φn

n
∣
A[a,b]

also satisfies an LDP onMf
+(A[a,b]) equipped with the weak topology, with good rate

function I[a,b] given by

I[a,b](0) = inf
λ

{I[a,b](λ) + λ (A[a,b])} , (30)

where 0 denotes the zero measure, whereas, for µ /≡ 0,

I[a,b](µ) = inf
λ

{I[a,b](λ) + IPoi (µ(A[a,b]), λ(A[a,b]))

+µ(A[a,b])H(
µ

µ(A[a,b])
∣

λ

λ(A[a,b])
)} , (31)

where H and IPoi are defined in the statements of Theorem 5.5 and Lemma 5.6 respec-
tively.

Now, the queue occupancy measures Ln are given by Ln/n = L(Φn/n), where the
map L is defined by (28), and is linear and weakly continuous by Lemma 5.16. Hence,
by the Contraction Principle (Theorem 2.18), the sequence of measures Ln/n satisfies
an LDP onMf

+([a, b]) equipped with the weak topology, with good rate function

J[a,b](ν) = inf {I[a,b](µ) ∶ L(µ) = ν} , (32)

where the infimum of an empty set is defined to be +∞. Thus, the sequence Ln satisfies
Assumption [A2]. The measures Ln inherit translation invariance from Λn via Λn ⊗ F

and Φn, while finiteness of the mean follows easily from that of λ (the mean arrival
intensity) and of the service time distribution. Thus, [A1] is verified. It remains to
check [A3].

Observe that, analogous to (29), we have

Ln([0,1]) = (L(Φn))([0,1])

= ∫
(s,x)∈A[0,1]

(min{s + x,1} −max{s,0})Φn(ds × dx)

≤ Φn(A[0,1]).

But, conditional on Λn ≡ λ, Φn([0,1]) is a Poisson random variable with mean (λ ⊗

F )(A[0,1]). Hence, we have for θ ≥ 0 that

E [eθLn([0,1])] ≤ E [exp((eθ − 1)(Λn ⊗ F )(A[0,1]))] .
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Moreover, it can be shown by splitting A[0,1] into vertical strips of unit width and
invoking Lemma 5.12, as in the proof of Lemma 5.14, that

(Λn ⊗ F )(A[0,1]) ≤icx (1 +E[S])Λn([0,1]),

where E[S] denotes the mean service time, and is finite by Assumption [A4]. Hence,
we obtain for θ ≥ 0 that

E [eθLn([0,1])] ≤ E [exp((eθ − 1)(1 +E[S])(Λn([0,1])))] .

By Assumption [A3], there is a neighbourhood of 0 on which

ψn(nη)

n
=

1
n

logE [eηΛn(0,1)]

is bounded, uniformly in n. Setting η = (eθ − 1)(1 + E[S]), we obtain uniform bound-
edness of

1
n

logE [eθLn([0,1])]

for θ ≥ 0 sufficiently small, uniformly in n. Boundedness is automatic for θ < 0 as
the random variables Ln([0,1]) are non-negative. Thus, the sequence of measures Ln
satisfy [A3] as well. This completes the proof of the theorem. ◻
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6 Concluding Remarks

In this final section we make some brief remarks on the models and results of this thesis
and discuss some possible extensions. There are a number of obvious extensions that
one could make to the gene regulatory network model that would make it more real-
istic. Firstly, rather than assuming that RNA molecules are transcribed at a constant
rate, one could model the number of active genes explicitly (as is done in [83]). Rather
than having Markovian arrivals, the RNA queue could have a Coxian arrival process
too. But this still falls within the scope of chapter 5, so we have implicitly already
handled this case.

Throughout this thesis we have ignored the role of feedback in the system. In prac-
tice proteins can be autocatalytic or autoregulatory, reacting to the concentration levels
in the cell. If there are too few proteins of a certain type a signal is sent to increase the
expression levels of the relevant genes upstream in the gene regulatory network. Con-
versely if there are too many or sufficiently many, then feedback in the system curtails
the action of the responsible genes. In practice there are time lag effects in both cases.
Introducing feedback into the model makes the mathematical analysis substantially
more complicated. Incorporating feedback would involve working with networks that
are more complicated than the feedforward tandem considered in this thesis in which
influence only propagates forwards. For an example of a three stage model of a gene
regulatory network that incorporates negative feedback, see [39]. Understanding the
role of feedback is of great biological interest and to the best of our knowledge there
are very few mathematical results in this direction. So this remains a big open problem.

One could study different biochemical reaction networks which might admit other
network topologies. For instance if there were two types of molecules and the first
underwent a reaction in which it was consumed and transformed into a copy of the
second, then one could use a traditional tandem. Upon completing service at the first
queue a customer could be routed to the second. Other biological motifs would require
different network structures. Another possible extension is keep track of multiple types
of proteins by using a queue with multiple distinguishable customer classes. The mul-
ticlass queueing framework has been used before as a model in biological settings, see
for instance [73, 74]. The different job size distributions could be used to capture the
distinct degradation pathways.

The main results of chapter 4 relied upon the assumption that the subgenerator ma-
trix parameterising the Phase-type service time distribution be diagonalisable. This
may seem like an inconvenience. But in any practical sense this is not a restrictive

89



assumption. Matrices with repeated eigenvalues are atypical (both in a topological
sense and in terms of having zero Lebesgue measure). In the application considered
this would correspond to certain reaction or degradation rates being identical - which
of course they are not. Although we do not have any general results relating to the
non-diagonalisable case, for a given Phase-type distribution with such a subgenera-
tor matrix, the same calculations can still be performed. Instead of diagonalising,
it may help to decompose the matrix into its Jordan normal form. The resulting
autocovariance functions are not simply mixtures of decaying exponentials, but also
have polynomial prefactors of the lag and model parameters. The dominant behaviour,
however, is still that the stationary autocovariance decays exponentially fast in the lag.

An alternative way to view an infinite server queue with a Phase-type service time
distribution is to consider it as a network rather than a single facility. Each queue in
the network would correspond to a phase of the Phase-type distribution - so that the
ith subsystem counts the number of customers in phase i of service for i ∈ {1,2, ..., `}.
The total number of customers in the system is then just the sum of the number of cus-
tomers in each subsystem. Each subsystem is simpler than the original system, in that
service times are Exponential. Analysing this network is still not entirely straight-
forward due to the Coxian arrival process - in particular assumptions on exogenous
arrivals means that this falls outside the framework of BCMP networks [10].

One of the advantages of Phase-type distributions is that they are dense in the set
of non-negative probability distributions. This means that an arbitrarily exotic service
time distribution can in principle be arbitrarily well approximated by some Phase-type
distribution. Finding a close Phase-type distribution in practice may not be straight-
forward and may require an impractically large number of phases. A common approach
is to match the first few moments while trying to keep the number of phases low. This
may not work well in practice, for instance if one wants to fit a Pareto distribution,
where most moments do not exist. In particular, it may be hard to capture the tail
behaviour. In that context it may make more sense to (roughly) minimise a metric
on probability measures, or something similar like the relative entropy. One would try
to optimise (over a class of approximating distributions with some constraint on the
number of phases) the distance to a fixed target distribution. For more about various
methods related to the fitting problem see [63] and references therein.

The proof of the main results of chapter 5 rely crucially on the assumption that the
underlying Polish space on which the point process is defined is σ-compact. It is not
clear to us whether the theorems still hold without this requirement, but it seems that
one would require a substantially different proof. Of course for the queueing applica-
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tion, where the point process lives on a subset of R2, this condition is trivially satisfied.
An LDP for the empirical measure of a Cox process on a Polish space is proved in [91],
but with respect to a coarser topology and under different assumptions. In particular,
it is neither assumed that the space is σ-compact, nor that the intensity measure is
finite. So perhaps one can dispense with these assumptions in exchange for others.

The LDP for the biological application provides an approximation of the probabil-
ity of rare events. But it is an asymptotic result, so will only begin to be an accurate
approximation when n becomes sufficiently large. If copy counts are very small, say
just a handful of proteins of some type, then this approximation will be poor. If the
number of copies is very large, say thousands or millions, then one might as well model
the system deterministically by an ODE or PDE as the Law of Large Numbers will
kick in. So the approximation is most useful on a mesoscopic scale. In practice, solving
the variational problem to explicitly compute the rate function is hard. In particular
this would involve optimising over spaces of measures, which are very large. If one
could show that the rate function is convex, then numerical methods stand a better
chance of approximately solving the optimisation problem. In some sense the results
of this chapter are not that practical in terms of the biological applications, but we
considered them worth pursuing because the mathematics is interesting in its own right.

It is worth noting that the large deviations asymptotics for the empirical measure
of a Cox point process may be of independent interest. There are for instance many
models in stochastic geometry that are based on an underlying Poisson point process,
whose fluctuations and rare event behaviour have been studied (see section 3.8 for de-
tails). Many applications are given in [5] and references therein, and [6] touches on
many examples in the field of wireless networks. It may be interesting to study similar
models based on an underlying Cox point process.

In chapter 5 we investigated rare event behaviour of gene regulatory networks. This
tells us about the probability of seeing highly atypical molecular count data. One could
also ask about the much more commonly observed finer fluctuations about the typical
behaviour of the system. The inherent stochasticity of biochemical reaction networks
means that copy numbers will be constantly fluctuating around their mean values. But
this begs two pertinent questions. How big are typically observed fluctuations (relative
to the average copy counts)? And what distribution do these fluctuations follow? We
suspect the fluctuations turn out to be Gaussian, with the usual

√
n magnitude (where

the number of proteins, say, is of order n).

Like in the large deviations case, we would begin by considering the fluctuations
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of a spatial Cox point process, before proceeding to describe the fluctuations of the
associated Cox/G/∞ queue. More precisely we would consider the empirical measure
of the Cox process, appropriately centered and scaled. The centering isolates the fluc-
tuations and the normalisation makes sure that we work on the appropriate scale to
observe them.

The centered CLT scaled empirical measure lives on the space of finite signed mea-
sures. We would like to show that this sequence of measures converges weakly to a
Gaussian random field (in a sense we hope to make precise in future work) given that
the sequence of directing measures do so too. There are a couple of technical obstruc-
tions that make this difficult. Firstly, the space of finite signed measures equipped with
the total variation norm is not a separable Banach space. Futher, the weak topology
on the space of signed measures on a topological space is not metrisable. Rather than
proving a bona fide Central Limit Theorem for spatial Cox point processes on a Polish
space, it may be easier to show that the fluctuations are Gaussian in nature. Specifi-
cally, that the empirical measure evaluated on a broad class of test functions converges
weakly to a family of real valued Gaussian random variables (a different one for each
function), given that the intensity measure does so. Formally we would need to assume
the following.

Assumption 6.1.
Let E be a Polish space, and let Λn ∈M

f
+(E), n ∈ N be a sequence of random finite

Borel measures. Suppose that there exists λ ∈Mf
+(E) such that, for all f ∈ Cb(E), we

have

Un(f) ∶=
Λn(f) − nλ(f)

√
n

⇒ Uf ∼ N (0, σ2
f) (33)

where σ2
f ∈ R+.

Let Φn denote the Cox point process on E directed by Λn and denote the centered,
CLT scaled empirical measure integrated against f ∈ Cb(E) by

Yn(f) ∶=
Φn(f) − nλ(f)

√
n

. (34)

We would like to show that Yn(f), n ∈ N converges weakly to a real valued Gaussian
distribution (a different one for each f).

Further work will involve trying to find the right language (space, topology, etc.) to
state and prove a genuine functional CLT. For instance one could view the CLT-scaled
empirical measure as a random element of the space of tempered distributions (the dual
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of the Schwartz space) as in [57], or take the empirical process perspective (described
in section 3.6) and try to find a Donsker class of test functions. An earlier version
of this thesis contained a chapter with partial progress towards an FCLT in each of
these settings. This removed chapter was the main reason for including a discussion of
empirical processes and random tempered distributions in the literature review.
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7 Appendix: Code for Simulations

This is the code used to generate the plots in section 4.5.

1 ##queue 1 − M/H2/ I n f t y
2
3 n1 <− 1e3 #number o f customers in 1 s t queue
4 m <− 1e3 #number o f time po in t s
5 lam1 <− 0 .9 #a r r i v a l ra t e in t o 1 s t queue
6 mu11 <− 3 #s e r v i c e ra t e o f f i r s t phase in p a r a l l e l o f 1 s t queue
7 mu12 <− 1 .5 #s e r v i c e ra t e o f second phase in p a r a l l e l o f 1 s t queue
8 alpha11 <− 0 .7 #rou t ing p r o b a b i l i t y
9 alpha12 <− 1−alpha11 #rou t ing p r o b a b i l i t y

10
11 par ( mfcol=c ( 3 , 2 ) ) #gr i d o f p l o t s
12
13 ar r . t1 <− rep (NA, n1 )
14 for ( j in 1 : n1 ) {
15 i f ( j==1){
16 ar r . t1 [ j ] <− rexp (1 , r a t e=lam1 )
17 next
18 }
19 ar r . t1 [ j ] <− ar r . t1 [ j −1] + rexp (1 , r a t e=lam1 )
20 } #a r r i v a l t imes f o r queue 1
21
22 U <− runif ( n1 ,min=0,max=1) #f l i p to dec ide which p a r a l l e l Exponent ia l

branch i s s e r v i c e time
23 ra t e1 s <− U<alpha11 #a l l f l i p s l e s s than alpha11
24 ra t e2 s <− ! r a t e 1 s #a l l o ther f l i p s
25
26 srv . t1 <− rep (NA, n1 ) #s e r v i c e t imes H2 fo r queue 1
27 srv . t1 [ r a t e 1 s ] <− rexp (sum( r a t e 1 s ) , r a t e=mu11)
28 srv . t1 [ r a t e 2 s ] <− rexp (sum( r a t e 2 s ) , r a t e=mu12)
29
30 dep . t1 <− s rv . t1 + ar r . t1 #depar ture t imes f o r queue 1
31
32 plot ( a r r . t1 , s rv . t1 , pch=4, cex =0.5 , xlab=" " , ylab=" " )
33 t i t l e ( " Graphical ␣Point ␣Process ␣ o f ␣Queue␣1 " , xlab="Time " , ylab=" Se rv i c e ␣

Requirement " , cex . main=3, cex . lab =1.7)
34
35 T <− 1000 #end time
36 l a t t 1 <− seq ( from=0, to=T, length . out=m) #d i s c r e t i s e d t imes
37
38 cum . arr1 <− sapply ( 1 :m, function ( j ) sum( a r r . t1 <= l a t t 1 [ j ] ) ) #cumulat ive

a r r i v a l s up to t in queue 1
39 cum . dep1 <− sapply ( 1 :m, function ( j ) sum( dep . t1 <= l a t t 1 [ j ] ) ) #cumulat ive

depar tures up to t in queue 1
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40
41 q . l ength1 <− sapply ( 1 :m, function ( j ) sum( a r r . t1 <= l a t t 1 [ j ] ) − sum( dep . t1

<= l a t t 1 [ j ] ) ) #l e n g t h o f queue 1 at time t
42 q . length . eq1 <− q . l ength1 [ f loor (m/5) : (m− f loor (m/5) ) ] #l e n g t h o f queue 1

wi th burn in and burn out removed ( e q u i l i b r i u m )
43
44 la t t1chop <− l a t t 1 [ f loor (m/5) : (m− f loor (m/5) ) ] #l a t t i c e wi thout f i r s t

and l a s t f i f t h
45
46 plot ( latt1chop ,q . length . eq1 , typ=" l " , x lab=" " , ylab=" " )
47 t i t l e ( "Queue␣1␣Length␣without ␣Edge␣ E f f e c t s ␣ ( Sta t i onary ) " , x lab="Time " , ylab

="Queue␣Length " , cex . main=3, cex . lab =1.7)
48 ac f (q . length . eq1 , c i =0,main=" " , xlab=" " , ylab=" " , type=" c o r r e l a t i o n " , typ="b" )
49 t i t l e ( " Autoco r r e l a t i on ␣Function␣ o f ␣Queue␣1␣Length " , xlab="Lag " , ylab="ACF" ,

cex . main=3, cex . lab =1.7)
50
51 ##queue 2 − Cox/H2/ I n f t y
52
53 n2 <− 300 #number o f customers ever through queue 2 ( s i g n i f i c a n t l y l e s s

than t h a t o f queue 1 as o therw i s e a r r i v a l ra t e drops to 0 e v e n t u a l l y )
54 lam2 <− 0 .9 #a r r i v a l ra t e cons tant in t o queue 2
55 mu21 <− 4 #s e r v i c e ra t e o f f i r s t phase in p a r a l l e l o f 2nd queue
56 mu22 <− 4/3 #s e r v i c e ra t e o f second phase in p a r a l l e l o f 2nd queue
57 alpha21 <− 0 .4 #rou t ing p r o b a b i l i t y
58 alpha22 <− 1−alpha21 #rou t ing p r o b a b i l i t y
59
60 ar r . t2 <− rep (NA, n2 ) #a r r i v a l t imes in to queue 2
61 non_zero_q <− which( ! (q . l ength1==0))
62 for ( j in 1 : n2 ) {
63 i f ( j==1){
64 ar r . t2 [ j ] <− rexp (1 , r a t e=lam2 )
65 next
66 }
67 above <− which( l a t t 1 >= arr . t2 [ j −1 ] )
68 next . ind <− intersect ( above , non_zero_q) [ 1 ]
69 ar r . t2 [ j ] <− ar r . t2 [ j −1] + l a t t 1 [ next . ind ]− l a t t 1 [ above [ 1 ] ] + rexp

(1 , r a t e=lam2∗q . l ength1 [ next . ind ] )
70 }
71 #1 s t a r r i v a l time doesn ’ t matter as we ’ l l e xc lude burn in
72 #look at t imes when 1 s t queue i s non−empty ( o the rw i s e a r r i v a l ra t e 0)
73 #f i n d next time queue 1 i s empty , then sample Exp( lam2∗N1( t ) ) f o r next

a r r i v a l p l u s time spent wa i t ing f o r a r r i v a l ra t e to re turn above 0
74
75 U <− runif ( n2 ,min=0,max=1) #dec ide H2 s e r v i c e t imes again
76 ra t e1 s <− U<alpha21
77 ra t e2 s <− ! r a t e 1 s
78
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79 srv . t2 <− rep (NA, n2 ) #s e r v i c e t imes H2 fo r queue 2
80 srv . t2 [ r a t e 1 s ] <− rexp (sum( r a t e 1 s ) , r a t e=mu21)
81 srv . t2 [ r a t e 2 s ] <− rexp (sum( r a t e 2 s ) , r a t e=mu22)
82
83 dep . t2 <− s rv . t2 + ar r . t2 #depar ture t imes f o r queue 2
84
85 plot ( a r r . t2 , s rv . t2 , pch=4, cex =0.5 , xlab=" " , ylab=" " )
86 t i t l e ( " Graphical ␣Point ␣Process ␣ o f ␣Queue␣2 " , xlab="Time " , ylab=" Se rv i c e ␣

Requirement " , cex . main=3, cex . lab =1.7)
87
88 m2 <− f loor (m∗ ( n2/n1 ) )
89 T2 <− n2
90
91 l a t t 2 <− seq ( from=0, to=T2 , length . out=m2) #d i s c r e t i s e d t imes
92
93 cum . arr2 <− sapply ( 1 :m2, function ( j ) sum( a r r . t2 <= l a t t 2 [ j ] ) ) #cumulat ive

a r r i v a l s up to t in queue 2
94 cum . dep2 <− sapply ( 1 :m2, function ( j ) sum( dep . t2 <= l a t t 2 [ j ] ) ) #cumulat ive

depar tures up to t in queue 2
95
96 q . l ength2 <− sapply ( 1 :m2, function ( j ) sum( a r r . t2 <= l a t t 2 [ j ] ) − sum( dep .

t2 <= l a t t 2 [ j ] ) ) #l e n g t h o f queue 2 at time t
97 q . length . eq2 <− q . l ength2 [ f loor (m2/5) : (m2− f loor (m2/5) ) ] #l e n g t h o f

queue 2 wi th burn in and burn out removed ( e q u i l i b r i u m )
98
99 la t t2chop <− l a t t 2 [ f loor (m2/5) : (m2− f loor (m2/5) ) ] #remove edge e f f e c t s
100
101 plot ( latt2chop ,q . length . eq2 , typ=" l " , x lab=" " , ylab=" " )
102 t i t l e ( "Queue␣2␣Length␣without ␣Edge␣ E f f e c t s ␣ ( Sta t i onary ) " , x lab="Time " , ylab

="Queue␣Length " , cex . main=3, cex . lab =1.7)
103
104 ## ACF p l o t s
105 a <− mu11
106 b <− mu12
107 c <− mu21
108 d <− mu22
109 e <− lam1
110 f <− lam2
111 g <− alpha11
112 h <− alpha12
113 i <− alpha21
114 j <− alpha22
115
116 #t h e o r e t i c a l acv f
117 theory_acv f <− function ( x )
118 {
119 f ^2∗e∗ ( g/a∗ ( i ^2∗ (c∗exp(−a∗x )−a∗exp(−c∗x ) )/c/ (c+a )/ (c−a )+j ^2∗ (d∗exp(−a∗x )−
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a∗exp(−d∗x ) )/d/ (d+a )/ (d−a )+
120 i ∗ j∗ ( (2∗a+c+d)∗ (exp(−c∗x )+exp(−d∗x ) )/ (c+a )/ (d+a )/ (c+d)+(exp(−a∗x )+exp(−c∗

x ) )/ (d+a )/ (c−a )+(exp(−a∗x )+
121 exp(−d∗x ) )/ (c+a )/ (d−a ) ) )+h/b∗ ( i ^2∗ (c∗exp(−b∗x )−b∗exp(−c∗x ) )/c/ (c+b)/ (c−b)

+j ^2∗ (d∗exp(−b∗x )−
122 b∗exp(−d∗x ) )/d/ (d+b)/ (d−b)+i ∗ j∗ ( (2∗b+c+d)∗ (exp(−c∗x )+exp(−d∗x ) )/ (c+b)/ (d+

b)/ (c+d)+(exp(−b∗x )+
123 exp(−c∗x ) )/ (d+b)/ (c−b)+(exp(−b∗x )+exp(−d∗x ) )/ (c+b)/ (d−b) ) ) )+f∗e∗ ( g/a+h/b)

∗ ( i /c∗exp(−c∗x )+j/d∗exp(−d∗x ) )
124 }
125
126 theory_ac f <− function ( x )
127 {
128 theory_acv f ( x )/ theory_acv f (0 )
129 } #t h e o r e t i c a l ac f
130
131 seq1 <− seq ( from=0, to=40, length . out=1e3 )
132 theo_ac f <− theory_ac f ( seq1 )
133 ac f (q . length . eq2 , c i =0, type=" c o r r e l a t i o n " , typ="b" ,main=" " , xlab=" " , ylab=" " )
134 t i t l e ( " Autoco r r e l a t i on ␣Function␣ o f ␣Queue␣2␣Length " , xlab="Lag " , ylab="ACF" ,

cex . main=3, cex . lab =1.7)
135 l ines ( seq1 , theo_acf ,add=T, col=" red " , lwd=2) #over l ay t h e o r e t i c a l l i n e

1
2 ##queue 1 − M/genE2/ I n f t y
3
4 n1 <− 1e3 #number o f customers in 1 s t queue
5 m <− 1e3 #number o f time po in t s
6 lam1 <− 0 .9 #a r r i v a l ra t e in t o 1 s t queue
7 mu11 <− 3 #s e r v i c e ra t e o f f i r s t phase in s e r i e s o f 1 s t queue
8 mu12 <− 1 .5 #s e r v i c e ra t e o f second phase in s e r i e s o f 1 s t queue
9
10 par ( mfcol=c ( 3 , 2 ) ) #gr i d o f p l o t s
11
12 ar r . t1 <− rep (NA, n1 )
13 for ( j in 1 : n1 ) {
14 i f ( j==1){
15 ar r . t1 [ j ] <− rexp (1 , r a t e=lam1 )
16 next
17 }
18 ar r . t1 [ j ] <− ar r . t1 [ j −1] + rexp (1 , r a t e=lam1 )
19 } #a r r i v a l t imes f o r queue 1
20
21 srv . t1 <− rexp ( n1 , r a t e=mu11)+rexp ( n1 , r a t e=mu12) #s e r v i c e t imes genE2 fo r

queue 1
22
23 dep . t1 <− s rv . t1 + arr . t1 #depar ture t imes f o r queue 1
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24
25 plot ( a r r . t1 , s rv . t1 , pch=4, cex =0.5 , xlab=" " , ylab=" " )
26 t i t l e ( " Graphical ␣Point ␣Process ␣ o f ␣Queue␣1 " , xlab="Time " , ylab=" Se rv i c e ␣

Requirement " , cex . main=3, cex . lab =1.7)
27
28 T <− 1000 #end time
29
30 l a t t 1 <− seq ( from=0, to=T, length . out=m) #d i s c r e t i s e d t imes
31
32 cum . arr1 <− sapply ( 1 :m, function ( j ) sum( a r r . t1 <= l a t t 1 [ j ] ) ) #cumulat ive

a r r i v a l s up to t in queue 1
33 cum . dep1 <− sapply ( 1 :m, function ( j ) sum( dep . t1 <= l a t t 1 [ j ] ) ) #cumulat ive

depar tures up to t in queue 1
34
35 q . l ength1 <− sapply ( 1 :m, function ( j ) sum( a r r . t1 <= l a t t 1 [ j ] ) − sum( dep . t1

<= l a t t 1 [ j ] ) ) #l e n g t h o f queue 1 at time t
36 q . length . eq1 <− q . l ength1 [ f loor (m/5) : (m− f loor (m/5) ) ] #l e n g t h o f queue 1

wi th burn in and burn out removed ( e q u i l i b r i u m )
37
38 la t t1chop <− l a t t 1 [ f loor (m/5) : (m− f loor (m/5) ) ] #l a t t i c e wi thout f i r s t

and l a s t f i f t h
39
40 plot ( latt1chop ,q . length . eq1 , typ=" l " , x lab=" " , ylab=" " )
41 t i t l e ( "Queue␣1␣Length␣without ␣Edge␣ E f f e c t s ␣ ( Sta t i onary ) " , x lab="Time " , ylab

="Queue␣Length " , cex . main=3, cex . lab =1.7)
42 ac f (q . length . eq1 , c i =0,main=" " , xlab=" " , ylab=" " , type=" c o r r e l a t i o n " , typ="b" )
43 t i t l e ( " Autoco r r e l a t i on ␣Function␣ o f ␣Queue␣1␣Length " , xlab="Lag " , ylab="ACF" ,

cex . main=3, cex . lab =1.7)
44
45 ##queue 2 − Cox/genE2/ I n f t y
46
47 n2 <− 200 #number o f customers ever through queue 2 ( s i g n i f i c a n t l y l e s s

than t h a t o f queue 1 as o therw i s e a r r i v a l ra t e drops to 0 e v e n t u a l l y )
48 lam2 <− 0 .9 #a r r i v a l ra t e cons tant in t o queue 2
49 mu21 <− 4 #s e r v i c e ra t e o f f i r s t phase in s e r i e s o f 2nd queue
50 mu22 <− 4/3 #s e r v i c e ra t e o f second phase in s e r i e s o f 2nd queue
51
52 ar r . t2 <− rep (NA, n2 )
53 non_zero_q <− which( ! (q . l ength1==0))
54 for ( j in 1 : n2 ) {
55 i f ( j==1){
56 ar r . t2 [ j ] <− rexp (1 , r a t e=lam2 )
57 next
58 }
59 above <− which( l a t t 1 >= arr . t2 [ j −1 ] )
60 next . ind <− intersect ( above , non_zero_q) [ 1 ]
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61 ar r . t2 [ j ] <− ar r . t2 [ j −1] + l a t t 1 [ next . ind ]− l a t t 1 [ above [ 1 ] ] + rexp
(1 , r a t e=lam2∗q . l ength1 [ next . ind ] )

62 } #a r r i v a l t imes in to queue 2
63 #1 s t a r r i v a l time doesn ’ t matter as we ’ l l e xc lude burn in
64 #look at t imes when 1 s t queue i s non−empty ( o the rw i s e a r r i v a l ra t e 0)
65 #f i n d next time queue 1 i s empty , then sample Exp( lam2∗N1( t ) ) f o r next

a r r i v a l p l u s time spent wa i t ing f o r a r r i v a l ra t e to re turn above 0
66
67 srv . t2 <− rexp ( n2 , r a t e=mu21)+rexp ( n2 , r a t e=mu22) #s e r v i c e t imes genE2 o f

queue 2
68
69 dep . t2 <− s rv . t2 + arr . t2 #depar ture t imes o f queue 2
70
71 plot ( a r r . t2 , s rv . t2 , pch=4, cex =0.5 , xlab=" " , ylab=" " )
72 t i t l e ( " Graphical ␣Point ␣Process ␣ o f ␣Queue␣2 " , xlab="Time " , ylab=" Se rv i c e ␣

Requirement " , cex . main=3, cex . lab =1.7)
73
74 m2 <− f loor (m∗ ( n2/n1 ) )
75 T2 <− n2
76
77 l a t t 2 <− seq ( from=0, to=T2 , length . out=m2) #d i s c r e t i s e d t imes
78
79 cum . arr2 <− sapply ( 1 :m2, function ( j ) sum( a r r . t2 <= l a t t 2 [ j ] ) ) #cumulat ive

a r r i v a l s up to t in queue 2
80 cum . dep2 <− sapply ( 1 :m2, function ( j ) sum( dep . t2 <= l a t t 2 [ j ] ) ) #cumulat ive

depar tures up to t in queue 2
81
82 q . l ength2 <− sapply ( 1 :m2, function ( j ) sum( a r r . t2 <= l a t t 2 [ j ] ) − sum( dep .

t2 <= l a t t 2 [ j ] ) ) #l e n g t h o f queue 2 at time t
83 q . length . eq2 <− q . l ength2 [ f loor (m2/5) : (m2− f loor (m2/5) ) ] #l e n g t h o f

queue 2 wi th burn in and burn out removed ( e q u i l i b r i u m )
84
85 la t t2chop <− l a t t 2 [ f loor (m2/5) : (m2− f loor (m2/5) ) ] #remove edge e f f e c t s
86
87 plot ( latt2chop ,q . length . eq2 , typ=" l " , x lab=" " , ylab=" " )
88 t i t l e ( "Queue␣2␣Length␣without ␣Edge␣ E f f e c t s ␣ ( Sta t i onary ) " , x lab="Time " , ylab

="Queue␣Length " , cex . main=3, cex . lab =1.7)
89
90 ## ACF p l o t s
91 a <− mu11
92 b <− mu12
93 c <− mu21
94 d <− mu22
95 e <− lam1
96 f <− lam2
97
98 #t h e o r e t i c a l acv f
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99 theory_acv f <− function ( x )
100 {
101 e∗ f ^2/ ( a−b)/ (c−d)^2∗ ( a/b∗ (c^2∗ (d∗exp(−b∗x )−b∗exp(−d∗x ) )/d/ (d+b)/ (d−b)+d^2

∗ (c∗exp(−b∗x )−b∗exp(−c∗x ) )/c/ (c+b)/ (c−b)−
102 c∗d∗ ( (exp(−b∗x )−exp(−d∗x ) )/ (d+b)/ (d−b)+exp(−d∗x )∗(2∗b+c+d)/ (d+b)/ (c+b)/ (c

+d)+(exp(−b∗x )−exp(−c∗x ) )/ (c+b)/ (c−b)+
103 exp(−c∗x )∗(2∗b+c+d)/ (d+b)/ (c+b)/ (c+d) ) )−b/a∗ (c^2∗ (d∗exp(−a∗x )−a∗exp(−d∗x )

)/d/ (d+a )/ (d−a )+d^2∗ (c∗exp(−a∗x )−
104 a∗exp(−c∗x ) )/c/ (c+a )/ (c−a )−c∗d∗ ( (exp(−a∗x )−exp(−d∗x ) )/ (d+a )/ (d−a )+exp(−d∗

x )∗(2∗a+c+d)/ (d+a )/ (c+a )/ (c+d)+(exp(−a∗x )−
105 exp(−c∗x ) )/ (c+a )/ (c−a )+exp(−c∗x )∗(2∗a+c+d)/ (d+a )/ (c+a )/ (c+d) ) ) )+f∗e∗(1/a

+1/b)/ (c−d)∗ (c/d∗exp(−d∗x )−d/c∗exp(−c∗x ) )
106 }
107
108 theory_ac f <− function ( x )
109 {
110 theory_acv f ( x )/ theory_acv f (0 )
111 } #t h e o r e t i c a l ac f
112
113 seq1 <− seq ( from=0, to=40, length . out=1e3 )
114 theo_ac f <− theory_ac f ( seq1 )
115 ac f (q . length . eq2 , c i =0, type=" c o r r e l a t i o n " , typ="b" ,main=" " , xlab=" " , ylab=" " )
116 t i t l e ( " Autoco r r e l a t i on ␣Function␣ o f ␣Queue␣2␣Length " , xlab="Lag " , ylab="ACF" ,

cex . main=3, cex . lab =1.7)
117 l ines ( seq1 , theo_acf ,add=T, col=" red " , lwd=2) #over l ay t h e o r e t i c a l l i n e
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