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Abstract

Plants are sessile organisms and must adapt their development to the envi-

ronment. Light quality is a primary informational signal that plants sense

and respond to. Specialised photoreceptor proteins perceive changes in light

quality that indicate the presence of neighbouring vegetation and the risk of

shade. Shade avoiding species respond through stem elongation and elevation

of leaves. Many plant environmental responses are regulated by the circadian

clock through a process called circadian gating. This thesis shows that the inhi-

bition of hypocotyl elongation by UV-B appears to be under circadian regulation

in Arabidopsis thaliana. This is likely achieved through a temporal coincidence

of 1) the circadian-gated peak of UV-B-induced GA catabolism genes with 2)

the greatest UV-B-induced reductions in auxin signaling. Shade avoidance can

have detrimental effects on yield in commercial growing environments, so knowl-

edge of circadian regulation of plant responses to light quality provides a toolset

for product quality improvements. This thesis shows that UV-B inhibits shade

avoidance in the commercially important crop, Coriandrum sativum, though

there are only marginal differences when UV-B is delivered at different times

of day. Although shade avoidance can provide plants with a competitive ad-

vantage in fast growing stands, excessive stem elongation can be detrimental to

plant survival. As such, plants have evolved multiple feedback mechanisms to

attenuate photoreceptor-mediated shade avoidance signalling. The combination

of a very low red to far red ratio (R:FR) and low levels of photosynthetically

active radiation (PAR) present in deep canopy shade can, together, trigger phy-

tochrome A (phyA) signalling; inhibiting shade avoidance and promoting plant

survival. This thesis also shows that very low R:FR in a background of low

PAR increases expression of the circadian clock component TIMING OF CAB

EXPRESSION1 (TOC1) in a phyA-dependent manner at dusk and that TOC1

antagonises shade avoidance in these conditions.
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Chapter 1

Introduction

P
lants have evolved a plethora of environmental responses to allow them to

adapt their development and physiology to the conditions around them. A

particularly well-studied environmental adaptation that can occur when plants

are grown in dense stands is a suite of responses termed shade avoidance. Light

quantity and quality are the primary environmental cues that regulate shade

avoidance. Plants are known to perceive and respond physiologically to a range

of wavelengths of electromagnetic radiation, from UV-B (280-315 nm) through

to near infra red (725-735 nm), using specialised photoreceptors. Alongside

responding to external environmental cues, plant physiology is also regulated

by the endogenous circadian clock, which is thought to allow plants to antic-

ipate and prepare for the predictable transitions associated with Earth’s 24 h

light-dark cycle in order to optimise their growth and fitness. This introductory

chapter will firstly discuss the known plant photoreceptors and the shade avoid-

ance syndrome before discussing the plant circadian clock and its interactions

with light signalling.
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CHAPTER 1. INTRODUCTION

1.1 Photoreceptors

An array of photoreceptor molecules that detect discrete wavebands of electro-

magnetic radiation have been identified in plants. In the majority of cases these

photoreceptors rely on a light-absorbing chromophore.

1.1.1 Phytochromes: Red Light Photoreceptors

Early Phytochrome Research

The naissance of phytochrome research can be traced back to work studying

the involvement of light in flowering and germination. The promotion of lettuce

seed germination by red (R) light was immediately reversible by short expo-

sure to far-red (FR) radiation, and this photoreversibility was also found in the

flowering processes (Borthwick et al., 1952a,b). Subsequently, by using a spec-

trophotometric assay, Butler et al. (1959) chemically isolated the photoreversible

pigment by then known as phytochrome.

Phytochrome Structure

Phytochromes exist in two photo-convertible isomers - a biologically inactive

Pr form that absorbs red light and a biologically active Pfr form that absorbs

far-red light. In natural light, phytochromes exist in a dynamic equilibrium of

Pr and Pfr, with the proportions of each isoform largely determined by the ratio

of Red : Far-Red light (R:FR). R:FR has been formally defined as the 660 - 670

nm photon irradiance/the 725 - 735 nm photon irradiance, which corresponds

with the Pfr:Pr ratio (equation 2.4).

The crystal structure of an Arabidopsis thaliana phytochrome photosensory unit

was recently reported by Burgie et al. (2014), with their findings consistent

with previous predicted structures from amino acid sequences. Phytochrome

structure is conserved between multiple taxa and is proposed to consist of an

N-terminal photosensory module (PSM) that cradles the light-absorbing bilin
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CHAPTER 1. INTRODUCTION

chromophore followed by an output module (OPM) that presumably promotes

dimerisation and signalling. Phytochromes in land plants associate into homo-

and hetero-dimers via interaction between the carboxy-terminal ends of two

independently reversible polypeptide subunits (Kim et al., 2006; Sharrock and

Clack, 2004; Clack et al., 2009). The C-terminal histidine kinase-related do-

mains of the OPM are reminiscent of bacterial two-component receptor mech-

anisms, leading to the suggestion that these domains participate in signalling

interactions with downstream effectors (Shin et al., 2016).

Following synthesis in the cytoplasm, the c. 124 kDa phytochrome apoprotein

covalently binds to a plastid-synthesised linear tetrapyrrole phytochromobilin

chromophore via a thioether linkage (Furya and Song, 1994). The resulting

holoprotein folds into the stable red light absorbing Pr form. The proposed

key light-sensing step, which converts the biologically inactive Pr form to the

Pfr state, involves a light-actuated Z to E isomerisation of the C15=C16 dou-

ble bond in phytochromobilin that rotates the D pyrrole ring. This initiates

conformational changes in the bilin binding pocket and subsequently causes a

conformational change to the OPM (Rockwell et al., 2006). Pfr rapidly converts

back to Pr on absorbtion of Far-Red light or slowly by spontaneous thermal

reversion, allowing phytochromes to act as both short and long-lived photo-

switches. The rate of thermal reversion is sensitive to temperature, which has

led to the hypothesis that phytochromes may also act as thermal sensors (Jung

et al., 2016; Legris et al., 2016).

Five Phytochromes

In the model plant species, Arabidopsis thaliana, five phytochromes have been

sequenced and characterised, all of which belong to a small gene family (Sharrock

and Quail, 1989; Clack et al., 1994). Across the angiosperms in general there

are three conserved phytochromes; phyA, phyB and phyC, encoded by the genes

PHYA, PHYB and PHYC (Mathews et al., 1995). Meanwhile, dicotyledonous

plants have two additional phytochromes, phyD and phyE, which likely exist as
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CHAPTER 1. INTRODUCTION

products of relatively recent gene duplication events (Mathews and Sharrock,

1997). PHYB, PHYD & PHYE share sequence homology (up to c. 80% between

PHYB & PHYD) and hence are considered to form a distinct subgroup of “type

II” phytochromes within the arabidopsis PHY gene family (Goosey et al., 1997).

Due to their relative stability in their Pfr form, photoreversible responses are

mediated by this “type II” subgroup and are termed Low Fluence Responses

(LFRs) (Sharrock and Clack, 2002).

phyB mutants resemble the growth of wild-type plants grown in low R:FR (Na-

gatani et al., 1991; Somers et al., 1991). Furthermore, a study using immunoblot

analysis by Sharrock and Clack (2002) found that in light-grown seedlings, phyB

is the most abundant; as such phyB is thought to be the primary mediator of

responses to low R:FR by antagonising shade avoidance responses under high

R:FR. A naturally occuring phyD mutation, which displays a phenotype weakly

reminiscent of the phyB mutant was isolated in the Wassilewskija (Ws) accession

of Arabidopsis (Aukerman et al., 1997). Consistent with the PHYB & PHYD

sequence homology, phyBphyD double mutants displayed longer hypocotyls,

longer petioles and earlier flowering than the monogenic parents, implying that

phyD and phyB act redundantly to suppress shade avoidance (Devlin et al.,

1999). In addition, a mutant screen by Devlin et al. (1998) identified a phyA-

phyBphyE triple mutant that was a phenocopy of the accelerated flowering and

elongation of internodes between rosette leaves characteristic of the response of

phyAphyB double mutants to end-of-day (EOD) FR treatments1. Thus, phyE

was implicated in having a regulatory role in this response; the phyBphyE double

mutant flowered earlier and had longer petioles than phyB mutants, suggest-

ing that phyE acts redundantly with phyB and to a lesser extent, phyD in the

suppression of shade avoidance under high R:FR (Halliday et al., 1994; Devlin

et al., 1998, 1999).

Contrasting with the other phytochromes, phyA accumulates to high levels in

1
EOD FR treatments are an artificial way of mimicing shade avoidance: FR at the end of

the day establishes a greater pool of Pr that will persist during the dark period, which will

result in a strong shade avoidance phenotype.
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etiolated seedlings and can signal during rapid photoconversion between Pr and

Pfr, but on transfer to light that establishes a high proportion of Pfr (e.g. R),

phyA is rapidly degraded to low steady-state levels (Clough and Vierstra, 1997).

The highly sensitive non-reversible responses of phyA to low quantities of light

have been termed Very Low Fluence Responses (VLFRs), this function can also

be interpreted as an “antenna” that promotes germination and photomorpho-

genesis of buried seeds following a brief exposure to light on emergence from

the soil (Franklin and Quail, 2010). Meanwhile, the continuous irradiation of

wavelengths that establish a low proportion of Pfr (e.g. FR) and results in the

photo-cycling of phyA between its Pr and Pfr forms signals via the High Irra-

diance Reponse (HIR) mode (Hennig et al., 2000). Plants deficient in phyA are

unable to de-etiolate in continuous FR, which formed the basis for screens to

identify phyA mutants (Nagatani et al., 1993; Parks and Quail, 1993). Addition-

ally, the observations that phyA mutant seedlings displayed enhanced hypocotyl

elongation when compared to wild type when grown in continuous low R:FR

led to the suggestion that phyA antagonises phyB-mediated shade avoidance

by limiting hypocotyl extension. This was supported by observations that

phyAphyB double mutants display enhanced hypocotyl elongation compared

to monogenic phyB mutants (Johnson and Bradley, 1994) and a report that

phyA antagonism of shade avoidance takes on greater significance in conditions

of low PAR (Martínez-García et al., 2014). A role for phyC in the mediation

of shade-avoidance responses was excluded with the observation that phyBphy-

DphyE triple mutants were blind to reductions in the R:FR ratio and EOD

FR treatments. Isolation of phyC mutants suggested that phyC performs a

small, redundant role in seedling photomorphogenesis (Franklin et al., 2003a,b;

Monte et al., 2003) and is a source of natural variation in flowering and growth

responses (Balasubramanian et al., 2006).
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Mechanism of Phytochrome Signalling

On the basis that phyB contained putative nuclear localisation signals within

its C-terminal region, Sakamoto and Nagatani (1996) investigated the signal

transduction activity of phyB. Using a transgenic phyB-GUS fusion protein and

immunoblot analysis, the authors demonstrated that phyB localised to the nu-

cleus in R, while nuclear levels of phyB were reduced on dark adaptation and FR

irradiation. Additional evidence of the nuclear localisation mechanism for phy-

tochrome signalling came from work by Kircher et al. (1999): Using GREEN

FLUORESCENT PROTEIN (GFP) fusion proteins and R & FR light treat-

ments, they showed that phyA-GFP and phyB-GFP are translocated to the

nucleus under R light. FR light appeared to inhibit phyB-GFP nuclear trans-

port but not that of phyA-GFP, which by contrast translocated to the nucleus

under FR light alone. Further work extended this mechanism to phytochromes

C, D & E and revealed that light quality differentially regulated this mechanism

of translocation between the five phytochromes (Kircher et al., 2002). In gen-

eral, following photoconversion from Pr to the active Pfr form, phytochromes

translocate to the nucleus where they have been shown to bind directly to eight

members in a family of basic Helix-Loop-Helix (bHLH) transcription factors,

termed PHYTOCHROME INTERACTING FACTORS (PIFs1 - 8), which will

be discussed in more detail in section 1.1.4 (Pham et al., 2018). Pfeiffer et al.

(2012) showed that phyB Pfr migration to the nucleus is facilitated by selective

binding to PIF transcription factors. In contrast, phyA migrates to the nucleus

after binding FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-

LIKE (FHL) (Genoud et al., 2008). Once in the nucleus it is released from

FHY1 and FHL by transformation to Pr , it is then back-transformed to Pfr for

its nuclear activity (Rausenberger et al., 2011). PIF1 and PIF3 have been re-

ported to bind phyA (Shen et al., 2005; Bauer et al., 2004), while another study

reported that phyA binds to AUX-IAA repressors to inhibit auxin signalling

(Yang et al., 2018). Chen et al. (2014) have shown that phyA directly asso-
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ciates with numerous promoters to regulate the transcription of target genes.

Taken together, these data result in a complex, and not fully clarified, picture

for how phyA signals in the nucleus.

On import into the nucleus, phyA and phyB localise into “photobodies” (Van

Buskirk et al., 2012): phyB forms two types; early photobodies are formed

within 15 mins of light exposure and co-localise with PIFs, late photobodies

are larger, more stable and are observed after longer 2-3 h R light treatments

once PIFs are degraded (Bauer et al., 2004). phyA co-localizes with CONSTI-

TUTIVE PHOTOMORPHOGENIC 1 (COP1) in early nuclear bodies and the

direct interaction of the phyA PAS-related domain (PRD) and COP1 WD40-

repeat domains mediates rapid ubiquitination and destabilisation of phyA in R

light (Seo and Watanabe, 2004; Saijo et al., 2008). In addition, several pho-

tomorphogenesis promoting factors are targeted for proteasomal degradation

by the COP1/SUPPRESSOR OF PHYA-105 (SPA) E3 ligase complex, but are

stabilised in light by the inactivation of COP1 by phytochromes (Lau and Deng,

2012; de Lucas and Prat, 2014).

1.1.2 Blue Light Sensors

In plants, three flavoprotein classes (cryptochromes, phototropins and Zeitlupe)

sense Blue (B) and UV-A wavelengths (300-500 nm).

Cryptochromes

Cryptochromes (cry) are blue-light and UV-A sensing photoreceptors. They

are bound to a flavin adenine dinucleotide (FAD) light-sensitive subunit and

bear amino acid sequence similarity to DNA photolyases, which catalyse B and

UV-A light-dependent repair of UV-induced DNA lesions (Sancar, 1990). The

Arabidopsis mutant, hy4 was found to have elongated hypocotyls when grown

under B light (Koorneef et al., 1980). HY4 similarity to DNA photolyases (Ah-

mad and Cashmore, 1993), its binding to FAD and the hypersensitivity of trans-
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genic tobacco expressing Arabidopsis HY4 cDNA to B and UV-A light indicated

that HY4 was a cryptochrome and hence was renamed cry1 (Lin et al., 1995).

cry2 was identified through the screening of Arabidopsis cDNA libraries with

cry1 cDNA probes (Hoffman et al., 1996; Ahmad et al., 1996) and subsequent

studies demonstrated that cry2 primarily regulates the photoperiodic promotion

of floral initiation (Guo et al., 1998; El-Assal et al., 2001). In addition, cry2

is thought to enhance light sensitivity due to its promotion of photomorpho-

genesis in low intensities of B light (Lin et al., 1998). A third cryptochrome,

cry3 has also been identified, but it role remains unclear; a T-DNA insertional

cry3 mutant showed no obvious phenotypic alteration, leading to speculation

that cry3 is most likely involved in the protection of organellar genomes in Ara-

bidopsis from DNA damage due to its mitochrondial and plastid localisation and

biochemical activity (Yu et al., 2010). In addition to their respective roles in

B-light-induced de-etiolation and photoperiodic control of flowering-time, cry1

and cry2 have also been shown to regulate several other light responses includ-

ing but not limited to: circadian rhythms, tropic growth, root development,

guard cell development, stomatal opening, pathogen responses, abiotic stress

responses, cell cycles, apoptosis, apical dominance and seed development (re-

viewed by Yu et al. (2010)). Cryptochromes also have an established role in low

B (LBL)-mediated shade avoidance through their perception of B light deple-

tion. Indeed, the mechanism of cryptochrome modulation of plant architecture

has begun to be elucidated by the finding that both cry1 and cry2 interact with

PIF4 and PIF5 (Pedmale et al., 2015; Ma et al., 2015).

Phototropins

Phototropins are B-light and UV-A-activated serine/threonine protein kinases

that have two LOV domains bound to two flavin mononucleotide chromophores.

Phototropins control responses that optimise plant photosynthetic efficiency

through phototropism, stomatal opening and chloroplast movements (Christie,

2007). Prior to the isolation of the first phototropin gene (Huala et al., 1997),
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a plasma-membrane-associated protein was identified by Gallagher et al. (1988)

in dark-grown pea epicotyls that became phosphorylated upon B-light irradi-

ation. The correlation between phosphorylation and phototropism indicated

that this protein was a candidate phototropism photoreceptor that underwent

autophosphorylation in response to B-light treatment (Short and Briggs, 1990;

Hager and Brich, 1993; Palmer et al., 1993; Hager, 1996). The nph mutants of

Arabidopsis thaliana show impaired hypocotyl phototropism. The nph1 mutant

lacks the activity of the plasma membrane-associated phosphoprotein. Initially

designated NPH1, the encoded protein was confirmed to be a phototropic recep-

tor that undergoes autophosphorylation in response to B light and was renamed

phot1 (Liscum and Briggs, 1995; Christie et al., 1999; Briggs et al., 2001).

Genetic analysis of phot-deficient Arabidopsis mutants established the partially

overlapping roles of the two phototropins, phot1 and phot2. Both phot1 and

phot2 regulate hypocotyl phototropism responses to high intensity B light (Sakai

et al., 2001), whereas the phototropic response to low intensity light is solely

mediated by phot1 (Liscum and Briggs, 1995; Sakai et al., 2000, 2001). In addi-

tion, phot1 and phot2 redundantly mediate B-light-induced opening of stomatal

pores equally across the the same light intensities (Kinoshita et al., 2001). Pho-

totropins also mediate the movement of chloroplasts in response to differing

light intensities. Under low light, phot1 and phot2 promote light capture by

inducing chloroplast accumulation at the upper cell surface (Sakai et al., 2001).

In high intensity light, phot2 mediates the chloroplast movement away from the

irradiation sites to prevent photosynthetic apparatus photo-damage (Kasahara

et al., 2002). It has also been shown that phot1 is responsible for the B-light-

induced rapid inhibition of hypocotyl elongation in dark grown seedlings (Folta

and Spalding, 2001). Phototropins have also been reported in the promotion of

cotyledon (Ohgishi et al., 2004) and leaf (Sakamoto and Briggs, 2002) expan-

sion. It has also been suggested that phototropism plays a role in light foraging

within dense canopies (Pierik and De Wit, 2014; Goyal et al., 2016).
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Zeitlupe

The light-sensitive LOV domain has also been identified in a new class of B and

UV-A receptors called the ZEITLUPE/ADAGIO (ZTL/ADO) protein family

(see Ito et al. (2012) for review). This class comprises three members; Zeitlupe

(ZTL), Flavin-binding Kelch Repeat F-box 1 (FKF1) and LOV Kelch Pro-

tein 2 (LKP2) (Banerjee and Batschauer, 2005). These proteins share an F-

box motif typically found in E3 ubiquitin ligases and evidence now indicates

that ZTL/ADO members mediate light-dependent proteasome-dependent pro-

tein degradation (Nelson et al., 2000; Somers et al., 2000; Schultz et al., 2001).

Analysis of these proteins have so far demonstrated roles in circadian clock

function and photoperiodic dependent flowering in Arabidopsis by controlling

the accumulation of key regulator proteins in the clock and flowering pathways

(Más et al., 2003; Kiba et al., 2007; Fornara et al., 2009).

1.1.3 UVR8: The UV-B Photoreceptor

UV-B mediates regulatory responses in plants

Ultra-violet (UV) light is split into three wavebands of the electromagnetic spec-

trum, UV-A (315-400 nm), UV-B (280-315 nm) and UV-C (100-280 nm). The

stratospheric ozone layer absorbs UV light below 290 nm, which includes UV-C

and much of the UV-B waveband. Sunlight that has filtered through, therefore,

contains UV-A and a part of UV-B. While UV-B is only a small portion of the

daylight spectrum, it has major impacts on virtually all organisms. UV-B ra-

diation can damage molecules like DNA, which could impair cellular processes

and result in death. Organisms have evolved strategies to avoid and repair

UV-B-induced damage. In plants, UV-B exposure stimulates the synthesis of

flavonoid “sun-screen” compounds and the production of reflective surface waxes

and hairs, while repair is carried out by anti-oxidants and DNA damage repair

enzymes. (Caldwell et al., 1983; Jordan, 2002; Rozema et al., 1997; Frohnmeyer

and Staiger, 2003; Jenkins, 2009). It was discovered that low doses of UV-
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B could stimulate photomorphogenic reponses that were not a consequence of

UV-B-induced damage nor could they be explained by known photoreceptors.

Responses include inhibition of hypocotyl elongation, root growth and promo-

tion of cotyledon opening (Wellmann, 1976; Ballaré et al., 1995; Kim et al.,

1998; Boccalandro et al., 2001; Suesslin and Frohnmeyer, 2003; Tong et al., 2008;

Conte et al., 2010). The finding that plants respond to UV-B independent of

known photoreceptors indicated the existence of a specific UV-B photoreceptor.

UVR8 Discovery

In a genetic screen for plants hyper-sensitive to UV-B, Kliebenstein et al. (2002)

identified the Arabiopsis thaliana mutant uvr8-1 in Landsberg erecta. This

mutant had greatly reduced expression of the flavonoid biosynthesis enzyme,

CHALCONE SYNTHASE (CHS) and increased expression of the stress-related

PATHOGENESIS RELATED1 (PR1) and PR5 proteins. Observations that

uvr8-1 differed from other mutants in the screen, due to altered gene regula-

tion following UV-B exposure, indicated the involvement of ULTRA-VIOLET

RESISTANCE 8 (UVR8) in the UV-B signalling pathway. UVR8 was finally

identified as the UV-B photoreceptor by a study demonstrating that UVR8

dimers monomerise on perception of UV-B and that UVR8 monomers interact

with COP1, which is a central regulator of light signalling (Rizzini et al., 2011).

Structure

Crystallographic and solution structures of the UVR8 protein (Christie et al.,

2012) were consistent with the predicted structure (Rizzini et al., 2011) and

revealed the mechanism for UV-B perception by UVR8. UVR8 encodes a

seven-bladed b-propellor protein with structural, though not functional, homol-

ogy to human REGULATOR OF CHROMATIN CONDENSATION1 (RCC1)

(Brown et al., 2005). Christie et al. (2012) reported a number of aromatic

residues and charged side chains at the dimer interface key to UV-B perception

and signalling. The aromatic tryptophan (Trp/W) residues form a cross-dimer
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excitonically-coupled Trp pyramid, while the off-set arrangement of arginine and

carboxylate side chains form a network of salt bridges across the dimer interface.

The Trp residue absorbs wavelengths in the UV-B range and Arabidopsis UVR8

has 14 Trp residues; one in the C-terminal region, six in the b-propellor core

and seven at the dimer interface. Mutation of the pyramid Trps revealed their

roles in UV-B perception with W285 emerging as the principle UV-B sensor

in the Trp pyramid (Christie et al., 2012). The authors proposed that pho-

toreception of UV-B by the excitonically-coupled Trp pyramid results in the

transfer of an electron from the Trp pyramid to adjacent arginines. This causes

charge neutralisation and disrupts the cross-dimer salt bridges, which results in

monomerisation of the UVR8 homodimer. Dynamic crystallography captured

early UV-B induced structural changes in UVR8. The absorption of UV-B by

Trp233 caused a 10º turn and a 30º tilt in Trp285, which lead to the ejection

of a water molecule that weakens the bonds at the dimer interface (Zeng et al.,

2015). Thus, unlike all other photoreceptors identified to date, UVR8 does not

rely on a light-sensitive chromophore subunit to perceive light.

UVR8 Signaling

Most UVR8 is localised to the cytosol in plants prior to UV-B irradiation (Brown

et al., 2005; Kaiserli and Jenkins, 2007). On UV-B exposure, UVR8 was shown

to accumulate in the nucleus. COP1 also accumulates in the nucleus in plants

after UV-B exposure, and transient expression experiments found that CFP-

UVR8 colocalises with YFP-COP1 in nuclear bodies after UV-B irradiation

(Favory et al., 2009). COP1 interacts with UVR8 in a UV-B-dependent manner

and is thought to be the primary signaling partner of UVR8 (Favory et al., 2009;

Rizzini et al., 2011; Cloix et al., 2012). COP1-regulated genes are largely the

same as those regulated by UV-B, indicating that COP1 and UVR8 act together

to mediate photomorphogenic UV-B responses. It was previously thought that

this positive function of COP1 contrasts with its well-characterised activity as a

repressor of photomorphogenesis in dark-grown seedlings where it targets pos-
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itive regulators of photomorphogenesis e.g. ELONGATED HYPOCOTYL 5

(HY5), for destruction via its role in an E3 ubiquitin ligase complex (Oster-

lund et al., 2000; Lau and Deng, 2012). Recent opinion suggests instead that

UVR8 sequesters COP1, which prevents it from degrading transcription factors

(Podolec and Ulm, 2018).

Huang et al. (2013) showed that UV-B exposure reduced the association of the

CULLIN4 (CUL4)-DAMAGED DNA BINDING PROTEIN1 (DDB1) E3 ubiq-

uitin ligase complex with COP1 and SPA proteins. After UV-B exposure SPA

proteins associate with COP1 and UVR8, with this UVR8-COP1-SPA complex

acting to positively regulate UV-B-induced photomorphogenesis (Heijde et al.,

2013; Huang et al., 2013). Their observations were consistent with a model

whereby the presence of the UVR8-COP1-SPA complex under UV-B resulted

in stabilisation of the HY5 protein; while in the absence of UV-B, COP1-SPA

is recruited to the CUL4-DDB1 complex, which likely promotes degradation of

HY5 (Favory et al., 2009; Huang et al., 2013). Observations that this is not

abolished in the cop1 mutant suggest that an E3 ubiquitin ligase other than

COP1 is also involved in degradation of HY5 . The accumulation of HY5 is,

therefore, promoted by the UVR8-COP1-SPA protein complex through both

post-translational stabilisation and transcriptional stimulation (Jenkins, 2014).

Deletion of a 27-amino acid region of UVR8 towards the protein’s C-terminus

(C27) prevented interaction with COP1 in yeast two-hybrid assays and in planta

Cloix et al. (2012). The WD40 domain of COP1 interacts with UVR8, perhaps

via a motif in the C27 domain (Rizzini et al., 2011; Cloix et al., 2012; Wu

et al., 2013), but this does not preclude interactions between other regions of

UVR8 and COP1 (Jenkins, 2014). Association of COP1 with UVR8 leads to

COP1 stabilisation and accumulation (Favory et al., 2009; Heijde et al., 2013).

COP1 and HY5 form a negative feedback loop: UV-B stimulates the transcrip-

tion of COP1 in a mechanism that requires the HY5 and FAR-RED ELON-

GATED HYPOCOTYL 3 (FHY3) transcription factors, which bind elements in

the COP1 promoter (Huang et al., 2012b).
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HY5 and the closely related HY5 HOMOLOG (HYH) act with partial redun-

dancy downstream of UVR8 and COP1 in UV-B responses although HY5 is the

major effector of UVR8-mediated gene expression (Brown et al., 2005; Brown

and Jenkins, 2008; Favory et al., 2009). The induction of HY5 and HYH ex-

pression in response to UV-B is very rapid and HY5 regulates many UV-B pho-

tomorphogenic gene targets (Brown et al., 2005; Oravecz et al., 2006). Many

HY5-regulated UV-B response genes are involved in growth, as evinced by the

impairment of UVR8-mediated growth suppression in the hy5 mutant (Oravecz

et al., 2006; Cloix et al., 2012). In addition, HY5-regulated UV-B response

genes also include transcription factors like MYB12, which is involved in flavonol

biosynthesis (Stracke et al., 2010a). However, the UV-B induction of the clock

genes, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1 ) and PSEUDO RE-

SPONSE REGULATOR 9 (PRR9 ) is HY5- and HYH- independent, showing

that not all UVR8-regulated genes are controlled by HY5/HYH (Fehér et al.,

2011). Mechanistically, there is much still to discover about how the UVR8 pro-

tein signals. However, a recent study reports that UVR8 directly interacts with

BRI1-EMS-SUPPRESSOR 1 (BES1) and BES1-INTERACTING MYC-LIKE

1 (BIM1), two key transcription factors in the brassinosteroid (BR) signalling

pathway. The authors argue that nuclear-localised UVR8 sequesters BES1 and

BIM1, preventing their DNA-binding and transcriptional activity (Liang et al.,

2018).

UVR8-Mediated Regulation of Transcription

The mechanism of transcriptional regulation by UVR8 and COP1 has yet to be

fully clarified, but there is evidence that UVR8 could associate with chromatin.

Alongside its structural homology to RCC1, UVR8 appears to bind histone-

agarose beads in vitro (Brown et al., 2005), preferentially interacts with histone

H2B, can be detected in plant chromatin preparations and histones are present

in immunoprecipitated (with anti-GFP) GFP-UVR8 material (Cloix and Jenk-

ins, 2008). Taken together, these findings suggested that UVR8 associates with
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chromatin in vivo via histones, but UV-B may or may not stimulate UVR8 chro-

matin association as association was constitutive (Cloix and Jenkins, 2008). The

role of COP1 in UVR8-chromatin binding is unclear as binding occurs in both

the cop1-4 mutant (Favory et al., 2009) as well as the DC27UVR8 truncated

protein (Cloix et al., 2012). There is currently no evidence that COP1 binds

directly to chromatin. Data from Chromatin Immuno Precipitation (ChIP) ex-

periments indicate that UVR8 associates with some but not all of the genes

that it regulates: Chromatin fragments containing the UVR8-regulated HY5,

MYB12 and CRYD genes were immunoprecipitated using anti-GFP antibodies

in GFP-UVR8-expressing plants and similar results were achieved with anti-

UVR8 in wild-type plants (Brown et al., 2005; Cloix and Jenkins, 2008). The

promoter regions of other UVR8-regulated genes, HYH and CHS were, however,

not found in these experiments (Cloix and Jenkins, 2008). It remains unclear

why some target genes and not others associate with UVR8 from these partic-

ular ChIP experiments (Jenkins, 2014). In addition, the knock-down of select

chromatin remodelling genes using RNAi resulted in plants hyper-sensitive to

UV-B and altered the expression of UV-B regulated genes (Casati et al., 2006),

while the acetylation of particular histones in maize (Casati et al., 2008) and

Arabidopsis (Cloix and Jenkins, 2008) correlated with increased transcription of

several genes in response to UV-B exposure. Jenkins (2014) conjectured that the

mechanism by which UVR8 regulates transcription may involve the promotion

or activation of transcription factors and the remodeling of chromatin at target

gene loci. Recently, and in contrast with previous ChIP experiments, Binkert

et al. (2016) found no in vitro association of UVR8 with nucleosomes and noted

a lack of conservation of histone and DNA-interaction residues compared with

Drosophila melanogaster RCC1. Binkert et al. (2016) instead propose that

UVR8-COP1 effects gene expression primarily through HY5 and HYH as HY5

is both stabilised by the UVR8-COP1-SPA complex (Favory et al., 2009; Huang

et al., 2013) and binds to and positively regulates the activity of its own pro-

moter Abbas et al. (2014); Binkert et al. (2014, 2016). There is, therefore,
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no comprehensive answer for how UVR8 regulates transcription beyond the in-

creased stabilisation and expression of the main effectors of UV-B signalling,

HY5 and HYH.

Regulation of UVR8 Signalling

REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1 ) and RUP2

encode two small WD40-repeat proteins, which have sequence similarity to

COP1 and SPA WD40 domains (Gruber et al., 2010). The rup1rup2 dou-

ble mutant was hyper-responsive to UV-B, showing enhanced hypocotyl growth

suppression and increased UVR8-mediated HY5 and CHS gene expression as

well as elevated levels of flavonoids when compared to WT plants under UV-

B. Over-expressing RUP2 suppressed UV-B-induced HY5 and CHS expression.

RUP1 and RUP2 expression was UV-B-induced in a mechanism that required

UVR8, COP1 and HY5, which suggested that RUP1 and RUP2 form a negative

feedback mechanism for UVR8 signaling. Data from bimolecular fluorescence

complementation and yeast two-hybrid assays support a model whereby RUP

proteins negatively regulate UVR8 via physical interaction with the UVR8 C27

region (Gruber et al., 2010; Cloix et al., 2012; Heilmann and Jenkins, 2013).

Consistent with these findings, Heijde and Ulm (2013) have shown that RUP1

and RUP2 proteins mediate the redimerisation of UVR8; rup1rup2 double mu-

tant plants have a slower rate of UVR8 dimer reversion than WT, while RUP2

overexpressing plants have reduced levels of monomeric UVR8 due to enhanced

dimer reversion. The RUP-mediated dimerisation of UVR8 appears to be inde-

pendent of COP1 as mutating RUPs in the cop1 background slowed, but did

not inhibit, dimer formation (Heijde and Ulm, 2013). CULLIN-4 (CUL4) also

appears to be a negative regulator of UVR8 signaling. In plants with reduced

levels of CUL4, the UV-B-induction of UVR8-regulated transcripts (not includ-

ing HY5 ) was increased. Observations that these plants had increased levels of

HY5 protein after UV-B, but without increases in HY5 transcripts suggest that

CUL4 may repress HY5 accumulation through mediating proteolysis (Huang
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et al., 2013).

1.1.4 Phytochrome Interacting Factors (PIFs)

Phytochromes control gene expression through their interaction with different

families of transcription factors, of which the PIFs are the best characterised.

The PIF family comprises of 15 known members (Toledo-Ortiz et al., 2003),

which are mostly found in light signaling. Alongside PILs (PIF3-like), PIFs

are members of the bHLH (basic helix-loop-helix) family of transcription fac-

tors. Early work using yeast two-hybrid screens to isolate phy-interacting pro-

teins yielded the founder member of this gene family, PIF3 (Ni et al., 1998;

Fankhauser et al., 1999; Choi et al., 1999). In vitro assays demonstrated that

complete chromophore-conjugated molecules of phyA and phyB bind to PIF3,

but only after light-induced conversion to the active Pfr form (Ni et al., 1999;

Zhu et al., 2000). PIF3 constitutively localises to the nucleus, and binds to

the G-box DNA sequence, CACGTG, present in various light-regulated pro-

moters. Additionally, Martínez-García et al. (2000) showed that phyB can bind

specifically and photoreversibly to PIF3 already bound to its cognate DNA-

binding site. Taken together, it was initially inferred from these data that

PIFs operate as positive regulators that induce light-regulated genes (Duek and

Fankhauser, 2005). However, recent analyses have led to the conclusion that

PIFs act as negative regulators of phytochrome signaling due to the photo-

morphogenic phenotype of most dark-grown PIF mutants and the exaggerated

skotomorphogenic phenotype of PIF over-expressors. Dark-grown pif mutants

display short hypocotyls, open cotyledons, and the accumulation of chlorophyll

precursors. PIF over-expressors display long hypocotyls, negative hypocotyl

gravitropic growth, unopened cotyledons, sustained apical hook and inhibition

of chlorophyll biosynthesis (de Lucas and Prat, 2014). A small number of bHLH

proteins, e.g. PIF6, which promotes germination (Penfield et al., 2010) and

LONG HYPOCOTYL IN FAR RED 1 (HFR1), which inhibits shade avoidance

by forming non DNA binding heterodimers with PIF4 and PIF5 (Hornitschek
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et al., 2009), have been reported to act as positive regulators of phytochrome

signaling.

phyB has been reported to interact with PIFs 1 through 8 of this gene family

(Pham et al., 2018) whereas phyA has been reported to bind with PIF1 and

PIF3, (Huq et al., 2004; Khanna et al., 2004). Sequestration by phyB inhibits

PIF function as Park et al. (2012) demonstrated that phyB prevented PIFs from

binding to their target promoters. Binding to phytochromes triggers the ulti-

mate degradation of PIF proteins, with 10 minutes of R light sufficient for the

initial phosphorylation step for PIF3 (Bauer et al., 2004). Ni et al. (2013) found

that phosphorylation triggers rapid ubiquitination and degradation of PIF3, yet

the mutation of these residues did not affect phyB interaction or DNA binding

ability. Indeed, phosphorylation state did not affect the formation of PIF3 nu-

clear aggregates either, but was required for negative feedback modulation of

phyB levels. Recently, Sadanandom et al. (2015) revealed an additional layer

of phytochrome light signaling modulation; the small ubiquitin-like modifier

(SUMO) is responsible for the reversible SUMOylation of phyB, which is pro-

posed to block its binding with PIF5.

Phosphorylation, which primes PIF polyubiquitination and degradation, is the

primary phytochrome triggered event (Al-Sady et al., 2006) and recent work

has begun to elucidate some potential kinases and phosphatases responsible for

this phospho-regulation. Bu et al. (2011) showed that CASEIN KINASE II

(CK2) is necessary for the phosphorylation and light-induced degradation of

PIF1. Bernardo-García et al. (2014) found that mutation of a GLYCOGEN

SYNTHASE KINASE3 (GSK3)-like kinase, BRASSINOSTEROID INSENSI-

TIVE 2 (BIN2), phosphorylation consensus sequence stabilised PIF4. Recent

work has shown that BLADE-ON-PETIOLE (BOP1 & 2) proteins physically

interact with PIF4 in a CULLIN3-BOP1-BOP2 E3 ubiquitin ligase complex

(Zhang et al., 2017). Yue et al. (2016) reported the indentification of a type

1 protein phosphatase, TOPP4, which directly interacts with and dephospho-

rylates PIF5 to block its red light induced ubiquitination and degradation in
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photomorphogenesis. Finally, Ni et al. (2014) identified the Light-Response

Bric-a-Brack/Tramtrack/Broad (LRB) E3 ubiquitin ligase that promotes the

polyubiquitination and mutually assured destruction of the signaling partners,

PIF3 and phyB.

Major roles in plant development have been described for PIF1, PIF3, PIF4

and PIF5 (Ni et al., 1998; Huq et al., 2000; Oh et al., 2004). PIF1/PIL5 con-

trolled by phyB has been reported to play a pivotal role in the R/FR reversible

response of germination of imbibed Arabidopsis seeds (Shinomura et al., 1994)

by regulating the expression of Abscisic acid (ABA) and Gibberellic Acid (GA)

related genes (Oh et al., 2007). PIL5 binds to G-box motifs in the promoters of

GA-INSENSITIVE 1 (GAI ) and REPRESSOR OF ga1-3 (RGA) (Oh et al.,

2007), while indirectly promoting ABA biosynthesis and GA catabolic gene ex-

pression through the activation of SOMNUS (SOM ) (Kim et al., 2008) and

ABA-INSENSITIVE (ABI ) 3 & 5 gene targets (Oh et al., 2009). In the light,

phyB destabiliation of PIL5 reduces PIL5 action and hence reduces ABA levels

while increasing GA synthesis, which leads to DELLA destabilisation and the

triggering of seed germination (Oh et al., 2007). Penfield et al. (2005) demon-

strated that cold temperatures and light act synergistically to promote seed

germination via the SPATULA (SPT) bHLH factor. Furthermore, PIF6 was

reported to play a role in dormancy release; pif6 mutants exhibited increased

primary seed dormancy while over-expression of a splice variant lacking the

DNA-binding domain reduced dormancy (Penfield et al., 2010).

PIF1 and PIF3 in darkness have been reported to inhibit photomorphogene-

sis through the negative regulation of chloroplast development and chlorophyll

synthesis. pif1 and pif3 mutants accumulate a phototoxic intermediate from

the chlorophyll biosynthesis pathway, protochlorophyllide, which causes photo-

oxidative damage on illumination: PIF1 directly activates the expression of

protochlorophyllide oxidoreductase (PORC ), while PIF1 and PIF3 repress the

HEMA1 and GUN4 genes involved in tetrapyrrole synthesis (Moon et al., 2008;

Stephenson et al., 2009). Chen et al. (2013) reported that PIF1 and PIF3 can
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inhibit ROS signalling during de-etiolation by forming heterodimers with the

HY5 and HYH bZIP transcription factors. Although PIF1, PIF3, PIF4 and

PIF5 are redundant in their regulation of etiolated dark-grown seedling devel-

opment; PIF1 is thought to have the greatest contribution (Shen et al., 2005;

Leivar et al., 2008). In de-etiolated seedlings, PIF4, PIF5 & most recently

PIF7 are the main regulators of auxin synthesis in shade avoidance, discussed

in section 1.2 (Lorrain et al., 2008; Hornitschek et al., 2012; Li et al., 2012a).

Nozue et al. (2007) showed that PIF4 and PIF5 accumulate to high levels at

the end of the night, which along with PIF3 (Soy et al., 2012), accounted for

rhythmic growth of hypocotyls in short day photoperidos, where the window

of highest elongation rate is at the end of the night. Apical hook formation is

controlled by PIF5’s regulation of ethylene biosynthesis (Khanna et al., 2007),

and, in the light, ethylene induces PIF3-dependent hypocotyl elongation (Zhong

et al., 2012). PIFs have also been implicated in sucrose signaling with PIF1,

PIF3, PIF4 and PIF5 transcript levels shown to be upregulated during sucrose-

induced, GA-dependent hypocotyl elongation in the dark (Liu et al., 2011). To

further underline their ubiquity in plant growth and development; PIF3, PIF4

and PIF6 have also been implicated in light-mediated regulation of stomatal

development and opening (Casson et al., 2009; Wang et al., 2010). The PIFs

have been shown to play a role in blue light induced phototropism (Sun et al.,

2013) and Franklin et al. (2011) identified PIF4 as the primary regulator of

auxin biosynthesis during high temperature-induced hypocotyl elongation. In-

deed, through their G-box and PIF-binding E-box (PBE) variant (CACATG)

preferred binding motifs (Hornitschek et al., 2012; Zhang et al., 2013), PIFs reg-

ulate the expression of many different classes of transcription factor and are thus

thought of as integrators of multiple signaling pathways (Duek and Fankhauser,

2005; Franklin, 2009; de Lucas and Prat, 2014).
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1.2 Shade Avoidance

Plants compete with their neighbours for sunlight. When plants grow in close

proximity to each other, whether in nature or agriculture, they run the risk of

mutual shading, which threatens photosynthesis, productivity and hence fitness.

1.2.1 Early Work

It was not until the second half of the century that phytochromes and their

detection of R:FR were linked to Shade Avoidance. Experiments on the seeds

of Chenopodium rubrum demonstrated that germination was sensitive to R:FR,

which led to speculation that this may optimise germination in the presence

of shade from neighbouring vegetation (Cumming, 1963). Kasperbauer (1971)

subsequently noted that, in the field, Nicotiana tabacum leaves transmitted more

FR light relative to red or blue light and shaded leaves consequently received

more FR light than unshaded leaves. The same study demonstrated that N.

tabacum treated with FR irradiation resembled plants that had been shaded by

other plants.

Smith and Holmes (1977) quantitatively related natural variations in R:FR ra-

diation spectra (x) (Holmes and Smith, 1975, 1977) to phytochrome photoequi-

libria, Pfr/Pr (f). They proposed that R:FR be defined as the ratio of two 10

nm wave bands that centre around the absorption maxima of the two photore-

versible forms of phytochrome, Pr and Pfr (R, 660-670nm : FR, 725-735nm).

These values are now commonly used as the parameters to characterise the R:FR

levels (equation 2.4). Moreover, using the relationship between f and x (Smith

and Holmes, 1977), Morgan and Smith (1976) estimated f from x; and using ar-

tificial light sources (that provided uniform photosynthetically active radiation

(PAR (400-700 nm)) but varied R:FR) reported that there was a linear relation-

ship between stem elongation rate and f, the phytochrome photoequilibrium,

thus establishing phytochrome in the perception of R:FR (Morgan and Smith,

1978, 1981).
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1.2.2 Perception of Shade

Plants can detect their neighbours through physical touching of leaf tips and the

sensing of volatile phyto-chemicals (Pierik and De Wit, 2014). However, changes

in light quality and quantity dominate as neighbour detection cues. The R:FR of

unfiltered natural sunlight ranges from c. 1.15 at midday to c. 0.7-0.8 at dawn

and dusk due to atmospheric absorption, with scattering and refraction at solar

elevations below 10° resulting in the enrichment of longer wavelengths (Linkosalo

and Lechowicz, 2006). Vegetation dramatically alters ambient spectral quality

as photosynthetic pigments absorb light over the PAR (400-700 nm) spectrum,

while radiation in the FR region is poorly absorbed, resulting in an enrichment

of FR radiation in reflected and transmitted light. Indeed, the typical reported

R:FR from underneath vegetational canopies are in the range of 0.09-0.7 (Smith,

1982). This reduction in R:FR is detected by neighbouring vegetation via their

phytochrome photoreceptors, which is subsequently interpreted as a signal that

competitors are nearby. This can also be thought of as an “early warning signal”

for shade, with plants altering their architecture or life cycle as a response to the

threat of anticipated shade (Ballaré et al., 1990). Post canopy closure, in direct

shade conditions, plants can experience a further reduction in R:FR ratio and

PAR alongside a depletion of blue-light and an enrichment of green light to addi-

tionally give a reduced B:G ratio, which is perceived by cryptochromes cry1 and

cry2 (Sellaro et al., 2010). Low blue light, detected by the cry photoreceptor has

also been shown to enhance phytochrome-mediated shade avoidance responses

through PIF interactions (Pedmale et al., 2015; de Wit et al., 2016). Given

that the phototropin blue light sensors phot1 and phot2 mediate re-orientation

of cotyledons and leaves as well as chloroplast re-positioning towards blue light

illuminated surfaces it has been suggested that phototropins may also play a

role in plant competition in very low light conditions (Pierik and De Wit, 2014).

Goyal et al. (2016) showed that phototropism is enhanced in shade, which is due

to PIF promotion of YUCCA-mediated auxin production. They also proposed
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that shade-induced phototropism is inhibited by phyB in open environments.

UV-B is additionally depleted in shade. Due to UV-B suppression of Arabidop-

sis elongation growth this depletion was also suggested to derepress elongation

growth and thus promote shade avoidance (Pierik and De Wit, 2014). However,

recent work has revealed that UV-B sensed by UVR8 regulates PIFs to directly

antagonise shade avoidance (Hayes et al., 2014).

1.2.3 Physiological Responses to Shade

In hindsight, Borthwick et al. (1952b)’s seminal work on R/FR-reversible pro-

motion of lettuce seed germination initially established germination as a shade

avoidance response as it prevents the generation of seedlings that will be imme-

diately exposed to limiting PAR levels at the base of deep canopies. Arabidopsis

seed germination has been shown to be repressed by shade light, but seeds can

subsequently germinate on exposure to sunlight e.g. through canopy distur-

bance. Under dense canopies, however, Arabidopsis seeds can also germinate

after sensitisation by dark incubation, which is a condition experienced by buried

seeds (Shinomura et al., 1996; Botto et al., 1996). Phytochromes mediate the

germination of Arabidopsis seeds; phyB mutants have reduced sensitivity to red

light, while phyA mutants do not germinate in continuous FR (Shinomura et al.,

1994). In addition, action spectra for seed germination performed in WT, phyA

and phyB mutants demonstrated a typical R/FR reversible LFR mediated by

phyB (Shinomura et al., 1996). Seed dormancy and germination is beyond the

scope of this review and readers are therefore directed to Bentsink and Koorn-

neef (2008) for further detail. Exposure to shade light conditions accelerates

time to flowering, which perhaps can be explained as shortening the generation

time so that seeds are produced before the canopy becomes too closed giving

offspring a greater chance of escaping shade (Casal, 2012). Plants grown under

shade light conditions flower after producing fewer leaves than plants grown in

sunlight (Sanchez et al., 2011). phyB mutants, further exacerbated by phyD &

phyE mutations, have earlier flowering than WT (Halliday et al., 1994; Devlin
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et al., 1999, 1998) and the effects of these mutations is caused by increased ex-

pression of FLOWERING LOCUS T (FT) (Cerdán and Chory, 2003; Halliday

et al., 2003).

As seedlings, the major shade avoidance architectural responses in Arabidop-

sis include the promotion of hypocotyl elongation and the upward angling of

cotyledons (hyponasty), which places the cotyledons and first true leaves in an

elevated position in the canopy. Light gradients caused by the difference between

foliar shade and sun flecks in a canopy can also trigger phototropic responses

as seedlings forage for light (Casal, 2012). At the rosette stage, architectural

responses include: reduced branching, internode elongation, leaf hyponasty and

the elongation of petioles, which together efficiently elevate leaves above the

canopy or toward canopy gaps to facilitate light capture (Casal, 2012). Elonga-

tion responses to low R:FR can be rapid, with changes in gene expression within

8 minutes (Salter et al., 2003) and changes in hypocotyl elongation rate within

15 minutes (Morgan et al., 1980). Other physiological responses include: re-

duced chlorophyll content in leaves and increased apical dominance (Smith and

Whitelam, 1997); reductions in leaf area, biomass and harvest yield (Keiller

and Smith, 1989; Robson et al., 1993; Devlin et al., 1999). Together with re-

duced branching, these additional responses are thought to be a result of a

phytochrome-mediated re-allocation of resources (Yang et al., 2016).

1.2.4 Photoreceptors regulate PIFs to antagonise Shade

Avoidance

A low R:FR establishes a higher proportion of inactive phyB Pr in the cyto-

plasm, which therefore releases growth-promoting PIF transcription factors from

their phyB-mediated suppression. It has been shown that PIF4, PIF5 and PIF7

play major roles in shade avoidance (Lorrain et al., 2008; Hornitschek et al.,

2012; Li et al., 2012a). PIF4 and PIF5 are stabilised in low R:FR primarily as a

consequence of a reduction in phyB-triggered phosphorylation and degradation
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(Lorrain et al., 2008). PIF7 stably accumulates in its phosphorylated form in

high R:FR, but is dephosphorylated in low R:FR (Li et al., 2012a).

It was shown that cryptochromes 1 and 2 physically interact with PIF4 and

PIF5 (Pedmale et al., 2015; Ma et al., 2015). The elongated phenotype of cry

mutants in low blue light (LBL) suggest that crys antagonise shade avoidance

(Keuskamp et al., 2011; Pedmale et al., 2015). As Pedmale et al. (2015) report

that PIF5, though not PIF4, abundance increases in LBL together with cry2, it

is a possibility that cry2 may be operating as a negative regulator of PIF activity

to prevent over-elongation. Another study argues that LBL augments low R:FR-

induced shade avoidance through increasing PIF5 abundance, and reducing the

inhibition of COP1, which is then freed to promote the degradation of negative

regulators of PIFs, such as HFR1 (de Wit et al., 2016).

A number of PIF negative regulators are upregulated by the PIFs themselves.

These include the bHLH protein HFR1 and the Helix-Loop-Helix (HLH) pro-

teins PHYTOCHROME RAPIDLY REGULATED 1 (PAR1) and PAR2, all

of which are hypothesised to inhibit elongation through the formation of non-

DNA binding complexes with PIFs (Hornitschek et al., 2009; Galstyan et al.,

2011; Hao et al., 2012). Another PIF negative regulator is HY5, which is nega-

tively regulated by the COP1/SPA1 E3 ubiquitin ligase complex. Active phyB

has been shown to bind SPA proteins and inhibit their interaction with COP1

(Sheerin et al., 2015). Mutant analyses have suggested that COP1/SPA pos-

itively regulate shade avoidance (Rolauffs et al., 2012), it is therefore possible

that reduced phyB Pfr in low R:FR releases suppression of the COP1/SPA com-

plex allowing it to degrade PIF negative regulators (e.g. HY5). The DELLA

family is another class of negative regulator, which forms non DNA-binding

complexes with PIFs (Lucas et al., 2008; Feng et al., 2008). DELLA stabil-

ity appears to be photoreceptor-regulated. Achard et al. (2007) showed that

GFP-RGA stability increased in etiolated hypocotyls transferred to light and

Djakovic-Petrovic et al. (2007) reported that DELLAs inhibit shade avoidance

in hypocotyls through increased GA-dependent DELLA turnover in low R:FR.
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It has also been shown that UV-B, perceived by UVR8, inhibits shade avoidance

through the antagonism of auxin signalling (Hayes et al., 2014). The mechanisms

for the strong antagonism of shade avoidance by UV-B are not fully elucidated,

but appear to involve increased PIF turnover and increased DELLA stability

(Hayes et al., 2014). Other potential mechanisms may include reductions in

PIF relative transcript abundance (Hayes et al., 2017), increased HY5 stabil-

ity, which competes with PIFs at target promoters (Toledo-Ortiz et al., 2014;

Gangappa and Kumar, 2017) and perhaps the downregulation of brassinosteroid

signalling through the UVR8-BES1-BIM1 interaction (Liang et al., 2018).

1.2.5 Hormonal regulation of shade avoidance

Comparison of low R:FR- and LBL-grown seedlings has revealed that despite

sharing similar shade avoidance phenotypes, their hormonal signalling cascades

are only partially shared. In low R:FR, auxin biosynthesis, transport and sig-

nalling plays a dominant role, whereas in LBL, brassinosteroid signalling is

additionally required to achieve full shade avoidance phenotypes (Keller et al.,

2011; Keuskamp et al., 2011; Pedmale et al., 2015).

Auxin

PIFs 4, 5 and 7, in a manner requiring TRYPTOPHAN AMINOTRANSFERASE

OF ARABIDOPSIS1 (TAA1), upregulate auxin biosynthesis through increas-

ing the expression of YUCCA enzymes, which control the rate-limiting step of

the tryptophan-dependent auxin biosynthesis pathway (Tao et al., 2008; Hor-

nitschek et al., 2012; Li et al., 2012a). This low R:FR - induced increase in auxin

biosynthesis is thought to mediate the re-localisation and increased expression

of the auxin efflux carrier PIN-FORMED 3 (PIN3) protein to promote auxin

distribution to the hypocotyl (Keuskamp et al., 2010). At high PAR, in silico

modelling indicates that increased tryptophan-dependent auxin biosynthesis is

primarily responsible for shade avoidance. Hersch et al. (2014) show, however,
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that under low PAR, PIF4 and PIF5 are responsible for up-regulating auxin

sensitivity to counter decreases in auxin production, arguing that increasing

auxin sensitivity is more resource-efficient than increasing auxin biosynthesis.

Intriguingly, Yang et al. (2018) recently demonstrated that phyA, which had ac-

cumulated to high levels in shaded plants, directly interacted with and stabilised

AUX/IAA auxin signalling repressors. The authors argue that by competing

with the TIR1 auxin receptor to bind to AUX/IAA proteins, phyA reduces

auxin sensitivity and, therefore, antagonises shade avoidance in deep shade.

While this finding substantially contributes to the mechanistic understanding

of phyA antagonism of shade-induced hypocotyl elongation (Martínez-García

et al., 2014), it is likely that there are further components yet to be established.

Brassinosteroids

Keller et al. (2011) reported that plants impaired in brassinosteroid signalling

or brassinosteroid biosynthesis had an attenuated response or no response re-

spectively to LBL treatment. The XYLOGLUCAN ENDOTRANSGLYCOSY-

LASE/HYDROLASE (XTH) family of cell wall loosening enzymes increase in

abundance in low R:FR and LBL and are regulated by both auxin and BR

(Sasidharan et al., 2010; Keuskamp et al., 2011). Interestingly, Keuskamp et al.

(2011) showed that auxin and brassinosteroid independently regulate different

subsets of the XTH family. Brassinosteroid perception by BRI1 (BRASSI-

NOSTEROID INSENSITIVE 1) leads to the activation of the HLH BES1 and

BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factors which play ma-

jor roles in the regulation of brassinosteroid-regulated expression (Kim and

Wang, 2010). BES1 and BZR1 have also been shown to interact with both

DELLAs and PIFs (Gallego-Bartolome et al., 2012; Li et al., 2012b; Oh et al.,

2012). DELLAs form non DNA binding complexes with BES1 and BZR1 to

inhibit their activity (Gallego-Bartolome et al., 2012) whereas BZR1 and PIF4

have been reported to heterodimerise and co-regulate auxin and cell wall-related

targets (Oh et al., 2012).
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Gibberellin

Observations that GA 20-oxidase expression increases in vegetational shade may

result in an elevation of Gibberellic Acid concentration (Salter et al., 2003; Sessa

et al., 2005). GA increases turnover of DELLAs (Djakovic-Petrovic et al., 2007),

which reduces PIF inhibition. With UV-B irradiation, however, increases in

transcripts of GA catabolism genes have been recorded, with GA2ox1 relative

transcript abundance strongly induced by UV-B (Hayes et al., 2014). It has been

suggested that reduced GA concentrations, through increased GA catabolism,

likely promotes DELLA stabilisation and hence PIF inhibition (Hayes et al.,

2014). The requirements for PIF4, PIF5 and PIF7 for low R:FR and LBL shade

avoidance, together with observations that GA and brassinosteroid signalling

partners directly interact with PIFs has led to the suggestion that PIFs form a

signalling module with DELLAs and BZR1 where hormone signalling pathways

converge to regulate growth (de Lucas and Prat, 2014).

Ethylene

Low R:FR treatment has also been shown to enhance levels of the volatile plant

hormone ethylene (Finlayson et al., 1999). As ethylene application induces

shade avoidance-like responses (Pierik et al., 2004), it has been argued that

ethylene also plays a role in neighbour detection (Kegge and Pierik, 2010). The

extent to which the shade avoidance response depends on ethylene remains

unresolved. While shade-induced petiole elongation is impaired in ethylene-

insensitive mutants (Pierik et al., 2009), hypocotyls retain a full shade avoidance

response (Das et al., 2016).

1.3 The Circadian Clock

The rotation of the planet Earth about its polar axis produces a cycle of day and

night with a period of 24 h. This day - night cycle is characterised by a warmer
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light period followed by a dark period with cooler temperatures. Organisms oc-

curing in all domains of life have evolved internal mechanisms that resonate with

these external day and night rhythms. These endogenous circadian mechanisms

oscillate with self-sustaining rhythmicity, are entrainable to external conditions

and compensate for temperature changes. Through the circadian clock, plants

anticipate and adjust their biology to the predictable environmental changes

associated with dawn and dusk. Studies have shown that correctly entrained

and functioning circadian clocks confer fitness advantages to plants through in-

creased photosynthesis, carbon fixation, biomass and faster growth (Dodd et al.,

2005).

1.3.1 Circadian Clock Architecture

The majority of knowledge about plant circadian clock architecture has been

derived from experiments on Arabidopsis. However, until the development of

the luciferase assay system, observations of circadian behaviour in plants were

limited to analyses of physiological changes such as leaf movements and stomatal

movements; or labour-intensive RNA gel blotting time-courses. Firefly luciferase

(LUC) offers a noninvasive and versatile reporter of circadian rhythms. LUC cat-

alyzes the ATP-dependent oxidative decarboxylation of luciferin, which releases

a 560 nm photon that can be quantified using sensitive electron-multiplying

charge-coupled device (EMCCD) cameras (Welsh et al., 2005). A 320 base pair

fragment of the Arabidopsis CHLOROPHYLL A/B BINDING (CAB2 ) protein

promoter fused to the firefly luciferase, initially transformed into tobacco, was

shown to drive rhythmic expression of LUC mRNA. LUC expression, driven by

the CAB2 promoter could then be detected as rhythmic light emission (Millar

et al., 1992). Extension of this system into Arabidopsis allowed screening for

circadian clock mutants, with the first isolated plant circadian clock mutant

timing of cab2 expression1 (toc1-1 ) (Millar et al., 1995a).

Taking the form of a network of interlocked transcription-translation feedback
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loops (McClung, 2006), the oscillator in Arabidopsis shares concepts with circa-

dian clocks studied in other organisms, but appears to be highly complex. One

transcription-translation feedback loop contains the MYB-like transcription fac-

tors CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED

HYPOCOTYL (LHY), which form a reciprocal regulatory loop with TOC1, also

known as PRR1, (PSEUDO RESPONSE REGULATOR 1). CCA1 and LHY

transcripts peak in the morning and their protein products suppress TOC1

transcription through binding to its promoter (Alabadí et al., 2001). As CCA1

and LHY protein abundance decreases towards the end of the day, TOC1 is

transcribed and TOC1 protein accumulates, which represses CCA1 and LHY

transcription (Gendron et al., 2012; Huang et al., 2012a; Adams et al., 2015).

Another loop is formed by the other members of the PRR gene family: PRR9,

PRR7 and PRR5, which are expressed sequentially during the day (Nakamichi

et al., 2005). PRR9, PRR7 and PRR5 have partial functional redundancy, are

homologs of TOC1 and also inhibit CCA1 and LHY transcription (Nakamichi

et al., 2010). LHY and TOC1 appear to repress the expression of PRR9, PRR7

and PRR5 (Huang et al., 2012a; Adams et al., 2015). PRR9 expression is also

inhibited by the evening complex (EC) (Nagel and Kay, 2012). This is a trimeric

protein complex containing LUX ARRHYTHMO (LUX), EARLY FLOWER-

ING3 (ELF3) and ELF4 that also represses TOC1 transcription, which allevi-

ates the inhibition of CCA1 and LHY transcription to indirectly promote their

expression (Nagel and Kay, 2012; Adams et al., 2015). CCA1 and LHY have

been shown to repress the expression of EC components, and have been further

suggested to auto-regulate their own and each other’s transcription (Adams

et al., 2015). A recently described loop of the plant circadian clock incorpo-

rates the REVEILLE (RVE ) gene family, a set of morning-expressed MYB-like

homologs of CCA1 and LHY. Unlike CCA1 and LHY, RVE8 and its partially

redundant homologs RVE6 and RVE4 induce the transcription of afternoon and

evening-phased genes (Rawat et al., 2011; Hsu et al., 2013). RVE8 associates

with the promoter of evening element (EE) containing genes such as PRR5,
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TOC1, LUX and ELF4 and promotes histone acetylation, an epigenetic mark

that promotes open chromatin, and hence transcriptional activity (Hsu et al.,

2013). RVE8 has also been shown to interact with another family of morning-

expressed genes, NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED

(LNK1, 2, 3 and 4), which are reported to coactivate as well as antagonise

RVE8 (Xie et al., 2014; Pérez-García et al., 2015). GIGANTEA (GI ) is re-

pressed by CCA1, LHY and TOC1 but also promotes the expression of CCA1

and LHY (Park et al., 1999; Huang et al., 2012a; Adams et al., 2015). It is not

considered to be among the core clock components, but has been suggested to

play a role in connecting the oscillator to downstream physiological processes

(Mishra and Panigrahi, 2015).

The architecture of the core plant circadian clock is, therefore, made up of

several interlocking transcription-translation feedback loops. It is conceptually

possible to expand the architecture of the plant circadian clock to include com-

ponents beyond the core oscillator described above. Sanchez and Kay (2016)

highlight that while the central clock regulates metabolic processes including

carbohydrate metabolism, and the homeostasis of nitrogen, calcium, iron and

copper; all the processes involving these nutrients have been documented to

feedback to the central oscillator. Feedback regulation between the circadian

clock and phytohormones has also been described (Sanchez and Kay, 2016).

Furthermore, the circadian clock regulates the transcript abundance of PIF s

(Nusinow et al., 2011), which have in turn been suggested to communicate su-

crose signals to the central oscillator (Shor et al., 2017). It is highly likely that

there are more circadian clock components to be identified, which will add fur-

ther layers to the complexity of the circadian system. In silico modelling found

that changing photoperiods coupled with environmental stochasticity selects for

circadian clocks with a high degree of complexity through multiple feedback

loops (Troein et al., 2009). In agreement with this, Shalit-Kaneh et al. (2018)

recently combined in silico and experimental approaches to suggest that the

complexity of the plant circadian network evolved to provide a mechanism that
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oscillates robustly in the wide range of environmental extremes that could be

experienced in nature.

1.3.2 Circadian Clock Entrainment by Light

At dawn, the transition from dark to light serves as a time-setting cue (Mil-

lar et al., 1995b; Oakenfull and Davis, 2017). Light entrains the circadian clock

through the photoreceptor network (Somers et al., 1998; Wenden et al., 2011; Fe-

hér et al., 2011) and metabolic entrainment (Haydon et al., 2013). The signalling

of photoreceptors to the clock is consistent with Aschoff’s rule, where increases

in light intensity accelerate the pace of the oscillator to cause a shortening of

period (Aschoff, 1979). The phytochrome and cryptochrome photoreceptors me-

diate circadian entrainment to R and B light (Somers et al., 1998). Increasing

fluences of B light, sensed by cry1 at lower fluence rates and additively with

cry2 at higher fluence rates, progressively shortens circadian period (Somers

et al., 1998). Similarly, increasing R light fluence rates shortens circadian pe-

riod. PhyB appears to be the primary high-fluence R light photoreceptor to the

clock, whereas phyA participates in both low fluence R and B light signalling

to the clock (Somers et al., 1998). The UV-B photoreceptor, UVR8 (Rizzini

et al., 2011), also influences the pace of the circadian clock. Higher fluence

rates and pulses of UV-B have been shown to increase the pace and shift the

phase of the circadian oscillator (Fehér et al., 2011). In contrast to most other

UVR8-mediated responses, however, the entrainment of the circadian oscillator

by UV-B does not require HY5 or HYH, (Fehér et al., 2011).

Little is known, however, about the mechanisms by which photoreceptors com-

municate light information to the oscillator. Wenden et al. (2011) used a FR

only system to isolate photoreceptor activity to phyA. Under these conditions,

oscillator gene expression was profoundly altered, with evening genes having el-

evated expression and morning genes having suppressed expression. This study

also identified ELF4 as a candidate for mediating FR light inputs to the oscilla-
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tor, whilst another study identified that phyA signalling partners FHY3, FAR1

& HY5 directly activate ELF4 (Wenden et al., 2011; Li et al., 2011).

Independently of photoreceptors, light can indirectly entrain the circadian os-

cillator. In a mechanism involving PRR7, sugars produced through photosyn-

thesis provide a “metabolic dawn” (Haydon et al., 2013). A recent study has

also suggested that PIFs participate in the metabolic entrainment of the circa-

dian oscillator (Shor et al., 2017). PIF transcript abundance is regulated by

the circadian clock (Nusinow et al., 2011), but may also form a major mecha-

nism of light input to the circadian oscillator. PIFs have been shown to interact

with phytochromes and cryptochromes and may, therefore, input photorecep-

tor signals to the circadian clock through direct associations with G-box motif-

containing clock promoters such as CCA1, LHY, PRR5, PRR7 PRR9 and LUX

(Martínez-García et al., 2000).

Light also influences the circadian oscillator through post-translational mech-

anisms. ZEITLUPE (ZTL) is a LOV domain blue-light sensitive protein that,

alongside its homologs FLAVIN BINDING KELCH REPEAT, F-BOX (FKF1)

and LOV KELCH PROTEIN 2 (LKP2), ubiquitinates TOC1 and PRR5 and

targets them for proteasomal degradation (Baudry et al., 2010). Blue light pro-

motes an interaction between ZTL and GI, preventing it from binding protein

targets. In comparison, the affinity of ZTL for GI is weakened in darkness,

resulting in dissociation of GI-ZTL and the degradation of PRR5 and TOC1

(Kim et al., 2007).

1.3.3 Circadian-regulated processes and gating of environ-

mental responses

A primary mechanism through which the circadian clock regulates physiological

processes is transcriptional control. In Arabidopsis it has been reported that up

to 31% of the transcriptome is circadian-regulated (Harmer et al., 2000; Michael

et al., 2008). Clock transcriptional regulation occurs through specific circadian-
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regulated promoter motifs, which are associated with different phases of the

circadian cycle (Harmer et al., 2000; Michael et al., 2008). For instance, Myb-

like transcription factors such as CCA1, LHY and RVE8 bind to the evening

element promoter motif in genes like TOC1 and PRR5 to suppress (Alabadí

et al., 2001) or, in some cases, promote transcriptional activity (Hsu et al.,

2013). Clock components directly regulate genes outside of the core circadian

oscillator in a similar manner. The two most well-characterised circadian clock

components CCA1 and TOC1 are reported to bind to 449 genomic loci (Kamioka

et al., 2016) and 867 genomic loci (Huang et al., 2012a) respectively. It is

thought that by rhythmically limiting or promoting transcriptional activity (and

therefore cellular processes) to particular times of the day, the circadian clock

provides a fitness advantage to correctly entrained plants (Dodd et al., 2005;

Greenham and Mcclung, 2015). For instance, the clock appears to participate

in the management of the growth and defence trade-off (Huot et al., 2014) by

timing pathogen and environmental defences to the morning (Wang et al., 2011;

Takeuchi et al., 2014) and growth to the night (Nozue et al., 2007; Nusinow et al.,

2011).

Circadian gating is where applying a stimulus of set magnitude at different times

of day to an organism can elicit a different magnitude of response (Hotta et al.,

2007). Limiting transcriptional activity to particular times of day is one way in

which the circadian clock can gate responses and through circadian regulation

of photoreceptor expression and accumulation, it has been suggested that the

clock gates its own sensitivity to entrainment (Tóth et al., 2001). Downstream of

the rhythmic regulation of photoreceptor expression, the circadian clock exerts

control over individual light-responsive pathways. Fehér et al. (2011) showed

that the circadian clock gates the UV-B-induced accumulation of HYH and

CHS transcripts to the morning. Salter et al. (2003) reported that the rapid

shade avoidance response is circadian gated, with transcripts of PIL1 encoding a

TOC1-interacting protein, strongly induced by low R:FR at subjective dawn and

weakly at subjective dusk. The mechanisms of circadian gating of transcription

34



CHAPTER 1. INTRODUCTION

have not yet been fully clarified, but may involve changes in chromatin structure

(Más, 2008; Hsu et al., 2013). Recent work has highlighted a novel mechanism of

circadian gating through interactions between PIFs and PRRs (Soy et al., 2016;

Zhu et al., 2016; Martín et al., 2018). TOC1, PRR5, PRR7 and PRR9 have

been reported to directly interact with PIF3 and PIF4 and co-bind to target

promoters to inhibit their transcriptional activity. The PRRs are hypothesised

to sequentially inhibit PIF activity during the night to gate hypocotyl elongation

to the end of the night in short day conditions (Martín et al., 2018). There is,

however, much still to discover about the mechanisms of circadian gating and

its adaptive significance in natural environments.

1.4 Aims

The aim of this project was to investigate the co-regulation of plant architec-

ture by light quality and the circadian clock. An over-arching objective was to

apply the finding that UV-B inhibits shade avoidance (Hayes et al., 2014) to

a commercial growing environment using the potted herb Coriandrum sativum

(Coriander) as a model. Using the Arabidopsis model, focus was placed upon

the possible circadian regulation of the inhibition of shade avoidance by UV-B,

and the potential for temporally-targeted UV-B treatments at the time-of-day

when plants are most sensitive to UV-B-mediated inhibition of hypocotyl elon-

gation. Giving short dose UV-B may limit the exposure of workers to harmful

radiation and deliver an economical and environmentally-friendly solution that

could lead to improvements in product quality. Through a combination of mor-

phological, genetic and biochemical techniques, this thesis aims to contribute to

the understanding of how the circadian clock regulates light responses in plants

to optimise their growth in shade.
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Materials and Methods

2.1 Plant Material

2.1.1 Arabidopsis thaliana

M
utant and transgenic lines used in this thesis are as follows. In the

Columbia-0 (Col-0) background: uvr8-6 (Favory et al., 2009), toc1-101

(Kaczorowski, 2004) (donated by Prof Peter Quail and Prof Elena Monte), elf3-

1 (Zagotta et al., 1996), rve8-1 (Rawat et al., 2011), TOC1 MINIGENE (TMG)

(Más et al., 2003), tt4 (Winkel-Shirley et al., 1995), tt7 (Winkel-Shirley et al.,

1995), CCA1::LUC and TOC1::LUC were both produced as part of the RO-

BUST project and were donated by Anthony Hall. The prr5-3, prr7-3, prr9-1

mutant alleles were donated by Prof Rob McClung (Michael et al., 2003). In

the Wassilewskija (Ws) background: hy5KS50 (Oyama et al., 1997), hyh (Holm

et al., 2002), hy5KS50hyh (Holm et al., 2002), uvr8-7 (Favory et al., 2009).

In the Landsberg erecta background: phyA-1 (Whitelam et al., 1993), phyB-1

(Koorneef et al., 1980)and uvr8-1 (Kliebenstein et al., 2002).
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2.1.2 Coriandrum sativum

Coriandrum sativum (Coriander) “Slow Bolt” and “Cruiser” cultivars were pro-

vided by Vitacress Herbs Ltd.

2.2 Growth Conditions

2.2.1 Seed Treatment

Arabidopsis thaliana

Arabidopsis seeds were surface sterilised with a 70% v/v EtOH wash followed by

a 20% v/v Sodium Hypochlorite wash for 20 min. The seeds were then washed

three times with freshly autoclaved water before suspension in freshly autoclaved

0.1% w/v agar. Seeds were individually placed on compost or agar using a

pipette then stratified in darkness at 4 °C for 72 h, then germinated in White

Light (WL) at 20°C and 70% humidity in 12 h light, 12 h dark photocycles.

Coriandrum sativum

Coriandrum sativum seeds were scarified to break dormancy and synchronise

germination. Fruit were manually split into two mericarps through gentle abra-

sion with a mortar and pestle and soaked in H2O for 48 h. Seeds were germinated

on damp tissue in the same conditions as Arabidopsis thaliana. After 3 days

in these conditions, germinated seeds were selected for potting on to compost

media and placed at a depth of 10 mm.

2.2.2 Media

Compost Media

A 3:1 v/v mixture of compost (Levingtons F2) and silver sand was used for all

experiments except for luciferase assays and physiology experiments on Corian-

drum sativum carried out at the Vitacress glasshouses.
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Agar Media

0.5 X Murashige and Skoog medium (Murashige and Skoog, 1962) was pre-

pared by autoclaving 0.215% w/v MS Basal Salts (Melford) and 0.8% w/v agar

(Melford) in distilled H2O at pH 5.7.

2.2.3 Controlled Climate Chambers

Experiments were carried out in controlled climate chambers (Microclima 1600E,

Snijder Scientific). Temperature was maintained at 20°C with 70% humidity.

White light (WL) was provided using fluorescent bulbs (Philips cool white fluo-

rescent tubes 400-700 nm). PAR (400-700 nm) was adjusted in the range of 70

to 5 mmol m−2 s−1 as specified in the experiments using neutral density filters

(Lee Filters). Supplementary Far-Red (+ FR) LEDs (peak at 730 nm) were

used to adjust the Red : Far-Red (R:FR) ratio within a range of 0.05 to 5 as

specified in experiments. R:FR ratio was calculated using equation 2.4. Sup-

plementary UV-B (+ UV-B) filtered to 1.5 mmol m−2 s−1(0.6 W m−2) using

heat-resistant copper tape was provided with Philips TL100W/01 narrow band

UV-B bulbs. Polycarbonate filters (6 mm thickness) were used to attenuate

UV-B for plants grown in control -UV-B conditions. Unless otherwise specified,

plants were germinated and entrained in 12 h light 12 h dark photocycles. For

light spectra used in UV-B experiments, see figure 2.1. For deep shade light

spectra, see figure 2.2.

2.2.4 EM-CCD Camera Chamber

A customised LED chamber (Photek) was utilised for collecting luciferase data.

LEDs were modulated to produce PAR in the range 47 - 5 mmol m−2 s−1 and

R:FR in the range of 1.62 - 0.05. For LED light spectra used in experiments,

see figure 2.3. The chamber itself had no temperature control, but laboratory

air conditioning was set to 19°C. Plants were grown in sealed plates.
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Figure 2.1: Light spectra from high PAR experimental conditions. Measurements
were recorded in controlled cabinets. 70 mmol m−2 s−1 white light supplied with
fluorescent bulbs either (2.1a) without supplemental FR or UV-B, (2.1b) supplemented
with UV-B at an intensity of 1.5 mmol m−2 s−1using narrow band fluorescent bulbs,
(2.1c) supplemented with FR LEDs to achieve a R:FR of 0.05 and (2.1d) supplemented
with FR and UV-B.
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Figure 2.2: Light spectra from natural and low PAR experimental conditions. (2.2a)
Outdoor light spectra recorded in Bristol in September, in direct sunlight (PAR =
1022.32 mmol m−2 s−1, R:FR = 1.27) and canopy shade (PAR = 14.04 mmol m−2 s−1,
R:FR = 0.1). (2.2b) Canopy shade on an expanded scale. (2.2c) Low PAR, high R:FR
light conditions (PAR = 5.01 mmol m−2 s−1, R:FR = 1.62). (2.2d) Low PAR, low
R:FR light conditions (PAR = 5.01 mmol m−2 s−1, R:FR = 0.06).
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Figure 2.3: Light spectra traces in EM-CCD camera chamber. (2.3a) High PAR,
high R:FR (PAR = 47 mmol m−2 s−1, R:FR = 1.2). (2.3b) High PAR, low R:FR (PAR
= 47 mmol m−2 s−1, R:FR = 0.05). (2.3c) High PAR, intermediate R:FR (PAR = 47
mmol m−2 s−1, R:FR = 0.5). (2.3d) Low PAR, high R:FR (PAR = 5 mmol m−2 s−1,
R:FR = 1.62). (2.3e) Low PAR, low R:FR (PAR = 5 mmol m−2 s−1, R:FR = 0.05).
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Figure 2.4: Light spectra from Old Park Hill Glasshouse experiments. In the
Glasshouse, plants were exposed to ambient light levels typical of Spring in Bristol.
(2.4a) Glasshouse light spectra with UV-B bulb attenuated with 6 mm acrylic filter.
(2.4b) Ambient light was supplemented with UV-B at an intensity of 1.5 mmol m−2

s−1 using narrow band fluorescent bulbs.

2.2.5 Glasshouse

In experiments conducted in the Old Park Hill Experimental Glasshouse (Uni-

versity of Bristol, UK), plants were exposed to ambient PAR levels which ranged

from 60 to 800 mmol m−2 s−1 throughout the experiment. A minimum PAR of

165 mmol m−2 s−1 and 16 h photoperiods were maintained using supplementary

fluorescent lamps (Plug and Grow compact 200 W) that switched off when am-

bient light exceeded 230 mmol m−2 s−1and came on when ambient light dropped

below 140 mmol m−2 s−1. UV-B supplementation filtered to 1.5 mmol m−2 s−1

was provided using Philips TL100W/01 narrow band UV-B bulbs (figure 2.4).

Temperature was programmed to 18 °C day and night, but in practice values fell

within a range of 22°C (day) and 16°C (night) due to varying daily and seasonal

temperatures.

2.3 Image Analysis

Morphological data from Arabidopsis thaliana and Coriandrum sativum was

extracted from images using FIJI (Schindelin et al., 2012). Hypocotyls were

measured from the shoot apical meristem to the shoot-root junction. Petiole
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lengths were measured from the shoot apex to the base of the leaf blade. Visible

leaf area was measured by counting pixels from binarized images of flattened

leaf blades.

2.4 Timelapse Imaging

For Time-Lapse Infra Red (IR) photography, a custom built 8 × 8 array of 880

nm IR LEDs were controlled with a 24 h timer. Timelapse images were captured

with a modified Nikon D80 DSLR camera with its IR blocking filter removed, a

SIGMA 105 mm macro lens and an IR pass filter (>850 nm) (Zomei, Jiangsu,

China) operated with digiCamControl v2.0.0 remote camera tethering freeware

(downloaded in 2017)1. Timelapse image capture intervals, start and duration

were as specified in the experiment. Hypocotyl lengths from individual images

and time lapse image stacks were manually measured from images using FIJI.

2.5 Chlorophyll Abundance

Coriandrum sativum leaf chlorophyll content was determined as described by

Witham et al. (1971). 100 mg fresh tissue from leaf 2 of 28-day-old Coriandrum

sativum was snap frozen in liquid nitrogen and stored at −80 °C. Samples were

homogenised using stainless steel beads and a TissueLyser (Qiagen). Chloro-

phyll from homogenised tissue was extracted in 80% (v/v) acetone and loaded

into a quartz crystal cuvette. Absorbances were recorded at 663, 645 and 652

nm with 80% acetone used as a blank. Chlorophyll abundance was given in mg

g-1 by normalising to tissue fresh weight and volume of extract using equations

2.1, 2.2 & 2.3.

ChlA (mg g�1freshweight) = (12.7(A663)� 2.69(A645))⇥ V (ml)

W (mg)
(2.1)

1
digiCamControl software is freely available from http://digicamcontrol.com
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ChlB (mg g�1freshweight) = (22.9(A645)� 4.68(A663))⇥ V (ml)

W (mg)
(2.2)

ChlA+B (mg g�1freshweight) = (20.2(A645) + 8.02(A663))⇥ V (ml)

W (mg)
(2.3)

2.6 Total anti-oxidant capacity

Total antioxidant capacity of Coriandrum sativum was analysed using a Total

Antioxidant Capacity Assay kit, MAK187 (Sigma-Aldrich). 100 mg of leaf tissue

from leaf 3 was snap frozen in liquid nitrogen and stored at −80 °C. Samples were

homogenised using stainless steel beads and a TissueLyser (Qiagen). Samples

were extracted in 1 ml of ice cold 1 X Phosphate Buffered Saline (PBS) and

the supernatant was diluted 1:100 to bring values within range of kit standards.

Samples were assayed according to the manufacturer’s protocol, by comparing

the absorbances of diluted extracts at 570 nm with a standard curve prepared

from Trolox standards. Values were then normalised to tissue fresh weight.

2.7 Flavonol glycoside detection by thin layer chro-

matography

Flavonol glycoside extraction and thin layer chromatography were carried out

as described previously (Stracke et al., 2010b). 100 mg of leaf tissue was ho-

mogenised and extracted in 0.4 ml 80% (v/v) MeOH. Samples were incubated

for 15 min at 70 °C then centrifuged for 10 min. Supernatants were vacuum-

dried at 65 °C and dried pellets dissolved in 1 ml 80% MeOH mg−1 fresh weight.

1 ml of methanolic extracts were spotted onto HPTLC silica gel 60 glass plates

(Millipore). Chromatography was performed in a closed glass tank (with a mo-
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bile phase of ethyl acetate, formic acid, acetic acid and water (100:26:6:12 v/v).

After separation, plates were air dried and flavonols detected by spraying 2 ml

of 1% (w/v) 2,3-dibromopropanal (DPBA) (Sigma-Aldrich) in MeOH 3 times

with 5 min between sprayings. This was followed by 2 ml of 5% (w/v) PEG

4000 (AppliChem) in MeOH 3 times with 5 min between sprayings. After 15

min, the stained HPTLC plate was visualized under UV (365 nm). Flavonol

glycoside-DPBA derivatives fluoresce under UV light. Liquid chromatography-

Mass Spectrometry (LC-MS) has been used in previous studies to profile these

flavonol glycosides and assign them to different colours (Stracke et al., 2010b).

2.8 Quantitative Reverse Transcription Polymerase

Chain Reaction

2.8.1 RNA Extraction

Arabidopsis thaliana RNA was extracted using the Spectrum Plant Total RNA

Kit (STRN250-1KT, Sigma-Aldrich) and eluted into RNAse-free water accord-

ing to manufacturer’s protocols. DNA was removed from the eluted RNA using

the Amplification Grade DNAse I kit (AMPD1, Sigma-Aldrich).

2.8.2 cDNA Synthesis

RNA yield and integrity were checked using a Nanodrop ND 1000 spectropho-

tometer (Thermo Fisher Scientific). 1 mg RNA was used for cDNA synthesis

using the Applied Biosystems High Capacity cDNA Reverse Transcription kit

(4368814, Thermo Fisher Scientific).

2.8.3 Quantitative Polymerase Chain Reaction

Quantitative PCR was carried out using the Brilliant III Ultra-Fast SYBR Green

QPCR Master Mix kit according to manufacturer’s protocols in 10 ml reactions
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(600882, Agilent Technologies). Appropriate cDNA dilutions for qPCR were

determined using standard curve and primer efficiency analysis. Relative quan-

titation was calculated using the 2-DDCt algorithm (Pfaffl, 2001), normalised to

the expression of Actin-2 or PP2A as specified in the figures. For list of qPCR

primers, refer to table.

2.9 Western Blot

2.9.1 UVR8 native polyclonal antibody

Arabidopsis Col-0 and Coriander cv. Slow Bolt plant tissue was extracted in

freshly prepared extraction buffer (20 mM HEPES pH 7.8, 450 mM NaCl, 50

mM NaF, 0.2 mM EDTA, 25% glycerol, 0.5 mM PMSF, 1 mM DTT and 1

tablet/10 ml Protease Inhibitor (Complete Mini, Roche)). Samples were cen-

trifuged at maximum speed for 10 min at 4 °C, with the supernatant transferred

to a fresh sample tube. Total protein concentration was quantified from the su-

pernatants using the Bradford Assay (Biorad) (Bradford, 1976). SDS-PAGE 4x

loading buffer (250 mM Tris-HCL pH6.8, 2% SDS, 20% b-mercaptoethanol, 40%

glycerol, 0.5% bromophenol blue) was added to supernatant to a final dilution

of 1x. 25 mg unboiled protein was loaded into each lane. SDS-PAGE resolving

conditions were: 120 V for 120 min in 8% polyacrylamide gel. Transfer to PVDF

membrane was 400 mA for 45 min. A Ponceau stain for 5 min was followed by

a H2O rinse. The membrane was destained with TBS (Tris Buffered Saline: 25

mM Tris-HCl pH 8, 150 mM NaCl, 2.7 mM KCl) then blocked with 8% milk in

TBS for 60 min at room temperature. Incubation with UVR8 polyclonal anti-

body generously provided by Prof. Gareth Jenkins (Findlay and Jenkins, 2016)

at 1:10000 dilution in 8% milk in TBS was carried out overnight at 4°C. The

following morning the membrane was washed twice with TBS-TT (TBS with

0.1% v/v of 100% Triton X-100 (SIGMA-ALDRICH) and 0.05% v/v of 100%

Tween-20) for 5 min each followed by a 5 min wash in TBS. The blot was then
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Primer Name Sequence

Actin-2 Forward TCAGATGCCCAGAAGTGTTGTTCC

Actin-2 Reverse CCGTACAGATCCTTCCTGATATCC

PP2A Forward GTTCTCCACAACCGCTTGGT

PP2A Reverse TAACGTGGCCAAAATGATGC

CCA1 Forward GCACTTTCCGCGAGTTCTTG

CCA1 Reverse TGACTCCTTTCTTACCCTGTTATTCTG

TOC1 Forward TCTTCGCAGAATCCCTGTGAT

TOC1 Reverse GCTGCACCTAGCTTCAAGCA

RVE8 Forward GGGAAGCTCAAGCCGAACAGTATC

RVE8 Reverse GGCCTCTCGTTTCAGGATCAAAGA

ELF3 Forward GGAAAGCCATTGCCAATCAA

ELF3 Reverse ATCCGGTGATGCAATAAGT

ELF4 Forward CGACAATCACCAATCGAGAATG

ELF4 Reverse AATGTTTCCGTTGAGTTCTTGAATC

LUX Forward CGGATTCGAAGAAGCAAAAG

LUX Reverse TCATCTCCATCACCCTTTGA

PIF4 Forward GCCGATGGAGATGTTGAGAT

PIF4 Reverse CCAACCTAGTGGTCCAAACG

PIF5 Forward CAGATGGCTATGCAAAGTCAGATGC

PIF5 Reverse AGATTTGGTTCTGTGCTTGGAGCTG

HY5 Forward CGGAGAAAGTCAAAGGAAG

HY5 Reverse CCAACTCGCTCAAGTAAG

HYH Forward GGAAGAAACCCTGTTGATAAAGA

HYH Reverse GCATTGTGTTCTCGTTCGT

GA2ox1 Forward CCTTCGGATACGGGAACAGTAAGATTG

GA2ox1 Reverse GTGTACTCTTCCAATGCGTTTCTGAAAG

IAA29 Forward ATCACCATCATTGCC CGTAT

IAA29 Reverse ATTGCCACACCATCCATCTT

YUCCA8 Forward ATCAACCCTAAGTTCAACGAGTG

YUCCA8 Reverse CTCCCGTAGCCACCACAAG

Table 2.1: List of qPCR primers
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incubated with the secondary antibody (anti-rabbit conjugated to horseradish

peroxidase) at 1:20000 dilution in 8% milk in TBS for 60 min at room temper-

ature. The membrane was finally washed 5 times with TBS-TT for 5 min each

time, followed by 5 min in TBS. Blot visualisation is described below (2.9.2).

2.9.2 Chemiluminescence

Blots were visualised using chemiluminescence. The SuperSignal West Femto

Maximum Sensitivity Substrate (Thermo Fisher Scientific) was used according

to manufacturer’s protocols, with 200 ml of mixed substrate sufficient for a 80 x

55 mm blot.

2.10 Luciferase Imaging

Images of Luciferase bioluminescence were captured using a Lumintek EM-CCD

imaging system (Photek Ltd, St Leonards on Sea, UK) controlled by Image32

software (Photek) and custom control scripts (45 sec integrations, EM gain

setting 2700). Monochromatic blue, red and far-red LEDs were modulated

to deliver PAR at 47 or 5 mmol m-2 s-1 and R:FR ratios of 1.2, 0.9, 0.5 or

0.05 as indicated in the experiments. 7-day-old plants were moved to specified

experimental conditions 72 h before image acquisition to entrain for three cycles

of 12 h light : 12 h dark cycles. 100 ml sterile 5 mM luciferin (potassium salt of

D-luciferin; Melford Laboratories Ltd, Ipswich, UK) was added 24 h before data

acquisition. Images were captured at 60 min intervals, preceded by a dark delay

of 2 min to eliminate chlorophyll autofluorescence from the bioluminescence

signal. For time courses in PAR = 47 mmol m-2 s-1, 48 h of images were captured

in driven conditions before transfer to continuous light. For time courses in PAR

= 5 mmol m-2 s-1, images were captured in driven conditions.

Imaging data were analysed using Image32 software (Photek), with time courses

in continuous light further analysed using the fast Fourier transform-nonlinear
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least-squares (FFT-NLLS) algorithm within Brass (Southern and Millar, 2005)

downloaded in 2015 from http://millar.bio.ed.ac.uk.

2.11 Light Measurements

Data were recorded using FLAME and USB2000 spectrophotometers (Ocean

Optics) and analysed using Oceanview software (Ocean Optics) and SigmaPlot

v13 (Systat Software Inc.). Light spectra were measured at the soil surface

unless otherwise specified. PAR, R:FR ratio and UV-B intensity ratio were cal-

culated from full collected spectra. R:FR was calculated according to equation

2.4.

R : FR ratio =
photon irradiance at 660� 670nm

photon irradiance at 725� 735nm
(2.4)

2.12 Statistical Analyses

SigmaPlot v13 was used to plot & analyse quantitative data (Systat Software

Inc.). Where used, boxplots represent 1st quartile, median and 3rd quartile,

whiskers represent the 10th and 90th percentiles with outliers plotted individu-

ally.
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Chapter 3

Circadian Gating of UV-B

Signalling and Shade

Avoidance Antagonism

3.1 Introduction

P
lants compete with their neighbours for sunlight; when plants grow in

close proximity to each other, whether in nature or agriculture, they run

the risk of mutual shading, which threatens photosynthesis and hence produc-

tivity. In these conditions, plants try to overtop each other e.g. by elongation

of hypocotyls and petioles, or raising of leaves (hyponasty). These architec-

tural alterations are part of a suite of responses collectively termed the “shade

avoidance syndrome” (SAS) (Casal, 2012), which has evolved as a counter to

the perceived threat of shade. Plants perceive the quantitative and qualita-

tive changes in light related to over-crowding through a complex photoreceptor

network that modulates growth largely through the regulation of the PHY-

TOCHROME INTERACTING FACTOR (PIF) family of basic helix-loop-helix
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transcription factors (reviewed in Fraser et al. (2016)).

Vegetation absorbs light in the visible 400-700 nm waveband, but reflects and

transmits light of longer wavelengths in the FR waveband, thus light in dense

vegetation is both depleted in R and B light as well as enriched in Far-Red

radiation. Plants monitor the R:FR ratio through the phytochrome photore-

ceptors, which exhibit photoreversibility between their inactive Pr and active

Pfr forms on absorbtion of R and FR light respectively (Casal, 2012). Of the

phytochromes, phyB, which shares sequence homology and functional redun-

dancy with phyD & phyE in dicots (Mathews and Sharrock, 1997; Franklin

et al., 2003a), has long been regarded as the dominant phytochrome in SAS reg-

ulation. High R:FR establishes a high proportion of active phyB Pfr (Holmes

and Smith, 1975; Morgan and Smith, 1976; Smith and Holmes, 1977), which is

translocated to the nucleus (Sakamoto and Nagatani, 1996; Yamaguchi et al.,

1999; Kircher et al., 1999) where it triggers the phosphorylation, ubiquitination

and degradation of PIFs by the 26s proteasome (Lorrain et al., 2008; Ni et al.,

2014). Conversely, in dense vegetation, a low R:FR ratio reverses the Pr/Pfr

photoequilibrium to establish a high proportion of inactivated phyB Pr, which

releases PIF suppression to allow their stabilisation, accumulation and promo-

tion of growth by binding to CACGTG G-box motifs in a broad range of target

genes e.g. PIL1 (Salter et al., 2003) & ATHB2 (Steindler et al., 1999), which

are often used as SAS marker genes (Leivar and Monte, 2014).

Major roles in SAS have been described for PIFs 4, 5 & 7 alongside relatively

minor roles for PIFs 1 & 3 (Lorrain et al., 2008; Li et al., 2012a; Leivar et al.,

2012a,b). PIFs control hypocotyl cell elongation via the transcriptional regula-

tion of the TAA & YUCCA family enzymes that are involved in auxin synthesis

(Lorrain et al., 2008; Hornitschek et al., 2012; Li et al., 2012a). Low R:FR-

induced auxin signalling drives the expression and re-localisation of the auxin

efflux regulator PIN-FORMED 3 (PIN3) to direct an increase of auxin levels

in the hypocotyl (Keuskamp et al., 2010). Following low R:FR exposure, auxin

accumulates in the first hour, but not in pif7 mutants, suggesting a role for PIF7
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in this process. Uniquely among the PIFs, PIF7 is poised for early SAS growth

as it accumulates in a stable phosphorylated form that on inactivation of phy

signalling is rapidly dephosphorylated (Li et al., 2012a). PIFs also promote the

transcription of bHLH TFs: HFR1, PAR1, PAR2 and the DELLA protein GAI,

which complex with PIFs and negatively regulate their activity either through

sequestration of their DNA-recognition domains or targetting them for degra-

dation via the ubiquitin-proteasome system, to form a negative feedback loop

(Hornitschek et al., 2009; Galstyan et al., 2011; Hao et al., 2012; Leivar et al.,

2012b; Li et al., 2016). The stability of DELLA proteins, however, is reduced

in canopy shade and neighbour detection conditions, likely through increased

gibberellic acid (GA) levels (Djakovic-Petrovic et al., 2007).

Most of the sun’s ultra-violet (UV) light is absorbed by the stratospheric ozone

layer such that only UV of wavelengths above 295 nm reach the Earth’s surface.

Of this, 95% is the longer wavelength, lower energy UV-A (315-400 nm) while

the rest is UV-B (280-315 nm) radiation. In spite of UV-B making up only a

very small proportion of the light plants receive, it has major effects on their life

history (reviewed in Jenkins (2009). In Arabidopsis, UV-B is detected by the

seven-bladed b-propellor UV RESISTANCE LOCUS 8 (UVR8) protein, which

in its ground state is a dimer that monomerises in response to UV-B photons

(Rizzini et al., 2011). Monomeric UVR8 binds to its primary signalling part-

ner, the E3 Ubiquitin Ligase COP1 and promotes the expression of HY5 and

HYH, which are required for the regulation of a substantial proportion of known

UVR8-regulated genes (Brown et al., 2005; Oravecz et al., 2006; Brown and

Jenkins, 2008). Following UV-B irradiation, UVR8 regulates the transcription

of a set of genes involved in photoprotection including flavonoid biosynthesis,

anti-oxidant production and DNA damage repair enzymes (Caldwell et al., 1983;

Jordan, 2002; Rozema et al., 1997; Frohnmeyer and Staiger, 2003; Jenkins, 2009,

2014). At the same time, low dose UV-B detected by UVR8 can stimulate pho-

tomorphogenic responses including the inhibition of hypocotyl elongation and

root growth while also promoting cotyledon opening (Wellmann, 1976; Ballaré
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et al., 1995; Kim et al., 1998; Boccalandro et al., 2001; Suesslin and Frohnmeyer,

2003; Tong et al., 2008; Conte et al., 2010; Hayes et al., 2014). UV-B is also fil-

tered by plant canopies so may provide environmental cues to a plant on the level

of competition it faces. Recent data indicate that non-stressful low dose UV-B

perceived by UVR8 is a potent inhibitior of low R:FR- and LBL-induced shade

avoidance through the suppression of the activity of plant hormones auxin and

GA (Hayes et al., 2014; Mazza and Ballaré, 2015). The UVR8-mediated mecha-

nism by which UV-B inhibits shade avoidance has not yet been fully elucidated,

but while UVR8 antagonises auxin signalling, it does not appear to directly

interact with PIFs (Hayes et al., 2014). UV-B increases DELLA stabilisation,

likely through UVR8-mediated increases in expression of GA catabolism genes

like GA2ox1 (Hayes et al., 2014). Increased DELLA stabilisation could lead

to the formation of inactive DELLA:PIF complexes (Lucas et al., 2008; Feng

et al., 2008). Similar hypothesised mechanisms include the increased stabilisa-

tion of HFR1 through UVR8 sequestration of COP1 (Huang et al., 2013), or the

direct inhibition of PIFs by HY5 (Toledo-Ortiz et al., 2014). Other potential

mechanisms seem to involve reductions in PIF abundance either through protein

degradation (Hayes et al., 2014), which could occur through DELLA interac-

tions (Li et al., 2016), or the suppression of PIF transcript abundance by UV-B

(Hayes et al., 2017). Recent data has shown that UVR8 directly interacts with

BRI1-EMS-SUPPRESSOR1 (BES1) and BES1-INTERACTING MYC-LIKE 1

(BIM1) to mediate the UVR8-dependent inhibition of brassinosteroid (BR)-

promoted hypocotyl elongation (Liang et al., 2018). Brassinosteroid signaling

has been shown to dominate in LBL-mediated shade avoidance (Keller et al.,

2011; Keuskamp et al., 2011; Pedmale et al., 2015), but UVR8-BR signaling

interactions in shade avoidance remain to be elucidated.

Plants also respond to internal regulators such as the circadian clock. The

circadian clock is an endogenous biological timer and, in plants, consists of a

network of interlocking transcription-translation feedback loops in a mechanism

that oscillates with a period of c. 24 h (Sanchez and Kay, 2016). The clock
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is entrained by external stimuli, e.g. light/dark cycles or temperature cycles

such that it is synchronised to match the 24 h environmental cycle. It has been

shown that plants that correctly match their circadian period to the external

light/dark cycle are at a competitive advantage over plants with a period dif-

fering from their environment (Dodd et al., 2005). Thus, the circadian clock

allows plants to anticipate predictable changes in their environment and hence

synchronize their metabolism to allow for the optimal phasing of molecular and

physiological responses with the time of day. To achieve this, the circadian

clock adjusts the outcome of signalling pathways in a process called circadian

gating. One consequence of circadian gating is where stimuli of the same magni-

tude applied at different times during a 24 h cycle elicit differing magnitudes of

response (Hotta et al., 2007; Greenham and Mcclung, 2015). Recent data sug-

gest that response to UV-B stress is gated by the circadian clock (Fehér et al.,

2011; Takeuchi et al., 2014), but notably, a central circadian gating mecha-

nism for UV-B-induced gene induction has not been identified: While UVR8 is

transcribed rhythmically, neither protein abundance nor dimer/monomer status

showed daily oscillations and the circadian gating of UV-B induced genes likely

occurs on a gene-by-gene basis (Fehér et al., 2011; Findlay and Jenkins, 2016).

In this chapter, the circadian gating of UV-B-induced shade avoidance inhibition

is experimentally investigated in Arabidopsis. These experiments aimed to iden-

tify what times of day plants are most responsive to UV-B-induced inhibition

of shade avoidance and whether or not this is subject to circadian regulation.

Circadian gating may yield the opportunity to design a light regime for use in

glasshouses for the precise timing of the application of supplemental low dose

UV-B at periods of maximum plant sensitivity. Such a light regime may pro-

vide an economical and environmentally friendly solution for the manipulation

of plant architecture without the pleiotropic effects associated with long-term

exposure. If successful, targeted UV-B supplementation may also have appli-

cations in the ornamental plant industry to replace the use of chemical growth

inhibitors.
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3.2 Diurnal regulation of UV-B-mediated inhibi-

tion of shade avoidance

End-point hypocotyl assays were employed to assess the time of day when UV-B

is most effective at inhibiting shade avoidance. Plants were grown- and treat-

ments given- in 12 h light 12 h dark photocycles (12L:12D) under simulated

high (R:FR = 5) and low (R:FR = 0.05) R:FR ratios. Equal UV-B doses of 4 h

at 1.5 mmol m-2 s-1 were given at three sequential times of day corresponding to

morning (0 - 4 h), midday (4 - 8 h) and afternoon (8 - 12 h) to three different

groups of plants for 4 d in each R:FR ratio.

3.2.1 The greatest UVR8 -dependent and -independent

inhibition of hypocotyl elongation by UV-B occurs

towards the middle of the day

Consistent with previous reports (Hayes et al., 2014), in wild type plants, UV-

B treatment for the duration of the photoperiod (12 h) significantly inhibited

hypocotyl elongation in high (figure 3.1a,3.3a) and low (figure 3.2a,3.4a) R:FR.

Mutants deficient in the UVR8 protein had an attenuated response to UV-B;

the uvr8-1 mutant exhibited a small but significant UV-B-induced inhibition of

hypocotyl elongation in a background of low R:FR (figure 3.2b) while the uvr8-6

mutant had no significant difference between control and 12 h UV-B treatment

at high and low R:FR (figure 3.3b,3.4b).

The efficacy of UV-B treatments for the inhibition of hypocotyl elongation varied

to a small degree depending on the time of day of the dose. In L. er, the

midday and evening doses were equally more effective than the morning dose

in a background of high R:FR (figure 3.1a), while in low R:FR, the middle

of the day dose was significantly more effective than the morning or evening

doses (figure 3.2a). The same experiment in Col-0 gave slightly different results.

In high R:FR there was no significant difference between treatments, with all
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being equally as effective as UV-B given for 12 h (figure 3.3a). In low R:FR the

midday dose was only marginally more effective than the morning or evening

doses (figure 3.4a). The uvr8-1 mutant exhibited similar time of day effects to

the L. er controls in low R:FR, with the middle of the day dose being the most

effective compared to morning and evening doses (figure 3.2b). In the uvr8-6

mutant (Col-0), differences in effectiveness of UV-B doses at different times was

less pronounced, with no significant differences between the 4 h treatments in

either high (figure 3.3b) or low (figure 3.4b) R:FR.

In general, the short dose (4 h) UV-B treatments were less effective than the

12 h UV-B treatment for inhibition of hypocotyl elongation, which suggests

that the magnitude of UV-B-induced inhibition of hypocotyl elongation is dose-

dependent. Additionally, there was overall a small trend for the middle of the

day treatment to be the most effective of the short dose treatments in both

the L. er and Col-0 ecotypes. While the uvr8-6 mutation largely removed the

UV-B-mediated inhibition of hypocotyl elongation, the uvr8-1 mutation only

partially attenuated the magnitude of the response. These plants still showed

a similar time of day response to wild type controls, which may reflect UVR8-

independent effects (Biever et al., 2014) that could also be subject to time of

day differences.

3.2.2 The period of maximal hypocotyl growth inhibition

by UV-B is dependent on a functioning circadian

clock

Fehér et al. (2011) previously demonstrated that UV-B signalling is circadian

gated, with photo-protective responses, such as the upregulation of CHS expres-

sion in the flavonoid biosynthesis pathway, having their UV-B induction gated

to the start of the day. The trend described in section 3.2.1 where a 4 h UV-B

dose during the middle of the day gave the greatest inhibition of hypocotyl elon-

gation may, therefore, be due to circadian regulation. To test this hypothesis,
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Figure 3.1: In high R:FR, UVR8-mediated inhibition of hypocotyl elongation is time-
of-day dependent. L. er and uvr8-1 plants were grown under 12L:12D cycles, with
R:FR = 5. Groups of 3-day-old seedlings were treated with UV-B at 1.5 mmol m-2 s-1
at 0 - 4 h, 4 - 8 h, 8 - 12 h and 0 - 12 h after dawn for 4 d. 7-day-old seedlings were
sampled for hypocotyl elongation analysis. Data are shown as box plots representing
the 1st, 2nd and 3rd quartiles with whiskers representing the 10th and 90th percentile.
Different red letters indicate statistically significant differences by Tukey’s post hoc at
p < 0.05, n = 25.
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Figure 3.2: In low R:FR, UVR8-mediated inhibition of hypocotyl elongation is time-
of-day dependent. L. er and uvr8-1 plants were grown under 12L:12D cycles, with
R:FR = 0.05. Groups of 3-day-old seedlings were treated with UV-B at 1.5 mmol m-2

s-1 at 0 - 4 h, 4 - 8 h, 8 - 12 h and 0 - 12 h after dawn for 4 d. 7-day-old seedlings were
sampled for hypocotyl elongation analysis. Data are shown as box plots representing
the 1st, 2nd and 3rd quartiles with whiskers representing the 10th and 90th percentile.
Different red letters indicate statistically significant differences by Tukey’s post hoc at
p < 0.05, n = 25.
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Figure 3.3: In the Col-0 background in high R:FR, UVR8-mediated inhibition of
hypocotyl elongation is not time-of-day dependent. Col-0 and uvr8-6 plants were
grown under 12L:12D cycles, with R:FR = 5. Groups of 3-day-old seedlings were
treated with UV-B at 1.5 mmol m-2 s-1 at 0 - 4 h, 4 - 8 h, 8 - 12 h and 0 - 12 h after
dawn for 4 d. 7-day-old seedlings were sampled for hypocotyl elongation analysis.
Data are shown as box plots representing the 1st, 2nd and 3rd quartiles with whiskers
representing the 10th and 90th percentile. Different red letters indicate statistically
significant differences by Tukey’s post hoc at p < 0.05, n = 25.
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Figure 3.4: In the Col-0 background in low R:FR, UVR8-mediated inhibition of
hypocotyl elongation is not time-of-day dependent. Col-0 and uvr8-6 plants were
grown under 12L:12D cycles, with R:FR = 0.05. Groups of 3-day-old seedlings were
treated with UV-B at 1.5 mmol m-2 s-1 at 0 - 4 h, 4 - 8 h, 8 - 12 h and 0 - 12 h after
dawn for 4 d. 7-day-old seedlings were sampled for hypocotyl elongation analysis.
Data are shown as box plots representing the 1st, 2nd and 3rd quartiles with whiskers
representing the 10th and 90th percentile. Different red letters indicate statistically
significant differences by Tukey’s post hoc at p < 0.05, n = 25.
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plants with disrupted circadian clocks were tested in the same conditions as in

section 3.2.1. CCA1 is a morning-phased central repressor of the plant circa-

dian clock and its over-expression results in arrhythmia in LL (Wang and Tobin,

1998). ELF3 is a component of the evening complex, which is responsible for

transcriptional repression in early night, elf3-1 mutants are also arrhythmic in

LL (Hicks et al., 1996).

In both high and low R:FR, the elf3-1 mutant and a transgenic line constitu-

tively expressing CCA1 displayed elongated hypocotyls when compared to Col-0

controls. Furthermore, UV-B treatment for the duration of the light period sig-

nificantly inhibited hypocotyl elongation of elf3-1 and CCA1-OX in both high

and low R:FR (figure 3.5,3.6). In high R:FR, the elf3-1 mutant exhibited a

similar pattern of effectiveness of UV-B treatment to Col-0, with no significant

differences between UV-B for the duration of the photoperiod and 4 h doses

given at different times of day (figure 3.5b). In CCA1-OX, the evening dose

was as effective as giving UV-B for the duration of the photoperiod and resulted

in significantly shorter hypocotyls than plants given the morning and midday

doses (figure 3.5c). In low R:FR, the elf3-1 mutant exhibited a similar pat-

tern of time-of-day differences to Col-0 but with significant differences between

treatment times, with the midday UV-B dose as effective as UV-B for the du-

ration of the photoperiod, and significantly shorter hypocotyls than the other

short-dose UV-B treatments (figure 3.6b). In CCA1-OX, plants treated with

the evening UV-B dose were significantly shorter than plants given the morn-

ing UV-B dose while the hypocotyl lengths of plants given the midday dose

showed an intermediate phenotype (figure 3.6c). Additionally, CCA1-OX dis-

played shorter hypocotyls in low R:FR than high R:FR, which is the opposite

phenotype to wild type controls (figure 3.5,3.6).

Collectively, the results in figures 3.5 and 3.6 indicate that disrupting the cir-

cadian clock alters the timing of the responsiveness of hypocotyl elongation to

UV-B inhibition, which may suggest that the inhibition of hypocotyl elongation

by UV-B is gated by the circadian clock. Whereas the elf3-1 mutation did not
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alter the timing of the response from that of wild type, over-expression of CCA1

shifted the timing of maximum response to later in the day. The difference in

behaviour of the two arrhythmic lines may reflect the pleiotropic effects of over-

expressing a central repressor of the circadian clock versus a mutation whose

effects may be diminished through functional redundancies.

3.2.3 Mutation of HY5 and HYH alters the timing of

the responsiveness of hypocotyl elongation to UV-B

inhibition in high but not low R:FR.

The photomorphogenic transcription factor, HY5 and the closely related HYH

are rapidly upregulated after UV-B irradiation and are the major effectors of

UVR8 signalling, regulating the transcription of numerous downstream target

genes (Brown et al., 2005; Brown and Jenkins, 2008; Favory et al., 2009). Re-

ports that the UV-B induced expression of HYH, but not HY5 is gated by the

circadian clock (Fehér et al., 2011), and the involvement of HY5 and HYH in

UV-B mediated inhibition of shade avoidance inhibition (Hayes et al., 2014),

raises the possibility that HYH and/or HY5 could be involved in regulating the

timing of responsiveness of hypocotyl elongation to UV-B inhibition.

Consistent with previously reported data (Hayes et al., 2014); in high and low

R:FR, the hy5 mutant had an elongated phenotype when compared to Ws,

though UV-B still inhibited hypocotyl elongation when given for the full length

of the photoperiod. The hyh mutant was also still responsive to UV-B treatment,

but with shorter hypocotyls than the hy5 mutant. The hy5/hyh double mutant

was partially responsive to UV-B treatment and had long hypocotyls (figure

3.7,3.8).

In high R:FR, the midday UV-B treatment resulted in significantly shorter

hypocotyls than the morning and evening treatments in Ws. In the hy5 mutant,

midday treatment resulted in significantly shorter hypocotyls than the evening

treatment, with the morning treatment showing an intermediate response (fig-
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ure 3.7b). In the hyh mutant, the morning and midday UV-B doses resulted

in significantly shorter hypocotyls than the evening dose (figure 3.7c). In the

hy5/hyh double mutant there were no significant differences between the treat-

ment times (figure 3.7d), which suggests that HY5 and HYH may redundantly

mediate the timing of the maximum sensitivity of hypocotyl elongation to UV-B

inhibition. However, in low R:FR, neither Ws nor the mutants demonstrated

significant differences between short dose UV-B treatment times (figure 3.8).

Contrary to the results in high R:FR, this observation suggests that neither

HY5 nor HYH play a major role in mediating the timing of the responsiveness

of elongating hypocotyls to UV-B inhibition in low R:FR.

3.3 UV-B-regulation of transcripts involved in shade

avoidance is rhythmic in circadian and nyc-

themeral conditions

It was previously shown that UV-B induces the expression of genes involved in

the inhibition of shade avoidance (Hayes et al., 2014). According to proposed

models, one signalling pathway by which UV-B antagonises shade avoidance

is through the upregulaton of GA2ox1, a GA catabolism gene. This happens

in a HY5/HYH -dependent manner and promotes the stabilisation of DELLAs

that form non DNA-binding heterodimers with PIFs (Hayes et al., 2014). An-

other signalling pathway by which UV-B inhibits hypocotyl elongation is likely

through the suppression of PIF4 expression (Hayes et al., 2017). The relative

transcript abundance of these genes and their auxin-related downstream tar-

gets were therefore assayed for rhythmicity and circadian gating of induction by

UV-B.
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Figure 3.7: In high R:FR, the time-of-day dependence of UV-B-mediated inhibition
of hypocotyl elongation is dependent on the presence of HY5 and HYH. Ws (3.7a),
hy5ks50 (3.7b), hyh (3.7c) and hy5ks50/hyh (3.7d) plants were grown under 12L:12D
cycles, with R:FR = 5. Groups of 3-day-old seedlings were treated with UV-B at 1.5
mmol m-2 s-1 at 0 - 4 h, 4 - 8 h, 8 - 12 h and 0 - 12 h after dawn for 4 d. 7-day-old
seedlings were sampled for hypocotyl elongation analysis. Data are shown as box plots
representing the 1st, 2nd and 3rd quartiles with whiskers representing the 10th and
90th percentile. Different red letters indicate statistically significant differences by
Tukey’s post hoc at p < 0.05, n = 25.
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Figure 3.8: In low R:FR, the time-of-day dependence of UV-B-mediated inhibition of
hypocotyl elongation is independent of HY5 and HYH. Ws (3.8a), hy5ks50 (3.8b), hyh
(3.8c) and hy5ks50/hyh (3.8d) plants were grown under 12L:12D cycles, with R:FR =
0.05. Groups of 3-day-old seedlings were treated with UV-B at 1.5 mmol m-2 s-1 at
0 - 4 h, 4 - 8 h, 8 - 12 h and 0 - 12 h after dawn for 4 d. 7-day-old seedlings were
sampled for hypocotyl elongation analysis. Data are shown as box plots representing
the 1st, 2nd and 3rd quartiles with whiskers representing the 10th and 90th percentile.
Different red letters indicate statistically significant differences by Tukey’s post hoc at
p < 0.05, n = 25.
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3.3.1 Circadian gating of UV-B-induced gene expression

is R:FR-dependent in continuous light

Landsberg erecta plants were entrained in either high (5) or low (0.05) R:FR

in 12L:12D for 4 days. On day 5, plants were placed into LL high and low

R:FR conditions for a further 24 h before treatments. At 4 h intervals over a

48 h period, treated plants were subjected to a single 2 h UV-B treatment at

1.5 mmol m-2 s-1 and were harvested alongside untreated controls immediately

afterwards.

In LL high R:FR, maximum induction of GA2ox1, HY5 and HYH by UV-B

was rhythmic (figure 3.9a,3.10a,3.11a) suggesting gating by the circadian clock.

These data both agree and contrast with the findings of Fehér et al. (2011) who

reported that only the UV-B induction of HYH was circadian gated. In LL low

R:FR, however, the maximum induction of GA2ox1, HY5 and HYH by UV-B

lost its rhythmicity (figure 3.9b,3.10b,3.11b), suggesting that the gating of these

genes is lost when the R:FR ratio is lowered in LL.

Together these data suggest that the circadian clock gates the UV-B-induction

of GA2ox1, HY5 and HYH. Unexpectedly, the circadian gating of these genes

was lost in LL low R:FR. A possible explanation for this loss of circadian gat-

ing is examined in chapter 5. While assays carried out in LL are informative

for investigations of circadian regulation, they are not representative of natu-

ral conditions characterised by day/night cycles. The following section (3.3.2),

therefore, analyses the effect of UV-B treatment on gene expression in LD con-

ditions that more closely reflect real world conditions.

3.3.2 In nycthemeral conditions regulation of gene expres-

sion by UV-B is time-of-day-dependent

For experiments in LD, Landsberg erecta plants were grown in 5 cycles of

12L:12D at high (5) or low (0.05) R:FR. On day 6, plants were treated at 2

h intervals with a single 2 h UV-B dose at 1.5 mmol m-2 s-1 and were sampled
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Figure 3.9: In LL, the circadian gating of the UV-B induction of GA2ox1 is R:FR-
dependent. L. er plants were entrained in 4 cycles of 12L:12D in either high (3.9a) or
low (3.9b) R:FR before transfer to LL. After 24 h in LL, UV-B treatments of 1.5 mmol
m-2 s-1 for 2 h were carried out on 6-, 7- and 8-day-old plants. Treated plants (unfilled
circles) were given a single 2 h UV-B dose at 4 h intervals and were sampled at the
plotted time points alongside untreated controls (filled circles). Plotted are means +/-
1 S.E.M. of two independent experiments carried out on different occasions (n = 2).

alongside untreated controls at the plotted time points.

The UV-B induction of GA2ox1 peaked at 6 h after dawn in high R:FR and 8

h after dawn in low R:FR (figure 3.12, which was a few hours earlier than the

peak of circadian gating expression in LL (figure 3.9a). In LD, HY5 did not

have a clear peak of UV-B-induced transcript abundance in high or low R:FR

(figure 3.13a,3.13b), which contrasts with the data reported in figure 3.10a, but

is consistent with Fehér et al. (2011). UV-B-induced HYH relative transcript

abundance peaked at the start of the day in both high and low R:FR (figure

3.14a,3.14b), which is consistent with Fehér et al. (2011) and the data collected

in LL (figure 3.11a).

PIF4 expression has daily rhythms and is regulated by the circadian clock (Nusi-

now et al., 2011). It was recently shown that PIF4 transcript is strongly reduced

by UV-B (Hayes et al., 2017). Consistent with previous reports, PIF4 transcript

abundance peaked 6 h after dawn and its expression was reduced by UV-B at
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Figure 3.10: In LL, the circadian gating of the UV-B induction of HY5 is R:FR-
dependent. L. er plants were entrained in 4 cycles of 12L:12D in either high (3.10a) or
low (3.10b) R:FR before transfer to LL. After 24 h in LL, UV-B treatments of 1.5 mmol
m-2 s-1 for 2 h were carried out on 6-, 7- and 8-day-old plants. Treated plants (unfilled
circles) were given a single 2 h UV-B dose at 4 h intervals and were sampled at the
plotted time points alongside untreated controls (filled circles). Plotted are means +/-
1 S.E.M. of two independent experiments carried out on different occasions (n = 2).

71



CHAPTER 3. CIRCADIAN GATING OF UV-B SIGNALLING AND
SHADE AVOIDANCE ANTAGONISM

R:FR = 5 

Time in LL (h)

24 36 48 60 72

G
A

2o
x1

 R
el

at
iv

e 
Tr

an
sc

rip
t 

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

100

200

300

400

R:FR = 5
R:FR = 5 + UV-B

R:FR = 0.05

Time in LL (h)

24 36 48 60 72

G
A

2o
x1

 R
el

at
iv

e 
Tr

an
sc

rip
t 

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

200

400

600

800

R:FR = 0.05
R:FR = 0.05 + UV-B

R:FR = 5

Time in LL (h)

24 36 48 60 72

H
Y5

 R
el

at
iv

e 
Tr

an
sc

rip
t

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

1

2

3

4

5

6 R:FR = 0.05

Time in LL (h)

24 36 48 60 72

H
Y5

 R
el

at
iv

e 
Tr

an
sc

rip
t

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

1

2

3

4

5

6

R:FR = 5

Time in LL (h)

24 36 48 60 72

H
YH

 R
el

at
iv

e 
Tr

an
sc

rip
t

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

2

4

6

8

10 R:FR = 0.05

Time in LL (h)

24 36 48 60 72

H
YH

 R
el

at
iv

e 
Tr

an
sc

rip
t

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

2

4

6

8

10

(a)

R:FR = 5 

Time in LL (h)

24 36 48 60 72

G
A

2o
x1

 R
el

at
iv

e 
Tr

an
sc

rip
t 

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

100

200

300

400

R:FR = 5
R:FR = 5 + UV-B

R:FR = 0.05

Time in LL (h)

24 36 48 60 72

G
A

2o
x1

 R
el

at
iv

e 
Tr

an
sc

rip
t 

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

200

400

600

800

R:FR = 0.05
R:FR = 0.05 + UV-B

R:FR = 5

Time in LL (h)

24 36 48 60 72

H
Y5

 R
el

at
iv

e 
Tr

an
sc

rip
t

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

1

2

3

4

5

6 R:FR = 0.05

Time in LL (h)

24 36 48 60 72

H
Y5

 R
el

at
iv

e 
Tr

an
sc

rip
t

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

1

2

3

4

5

6

R:FR = 5

Time in LL (h)

24 36 48 60 72

H
YH

 R
el

at
iv

e 
Tr

an
sc

rip
t

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

2

4

6

8

10 R:FR = 0.05

Time in LL (h)

24 36 48 60 72

H
YH

 R
el

at
iv

e 
Tr

an
sc

rip
t

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

2

4

6

8

10

(b)

Acquisition Time (h)

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
C
C
A
1:
:L
U
C

 b
io

lu
m

in
es

ce
nc

e 
(c

ou
nt

s 
in

 4
5s

)

0.0

2.0e+6

4.0e+6

6.0e+6

8.0e+6

1.0e+7

1.2e+7

1.4e+7

R:FR = 1.2
R:FR = 0.5
R:FR = 0.05

Acquisition Time (h)

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

TO
C
1:
:L
U
C

 b
io

lu
m

in
es

ce
nc

e 
(c

ou
nt

s 
in

 4
5s

)

0.0

5.0e+5

1.0e+6

1.5e+6

2.0e+6

2.5e+6

3.0e+6

day
night
subjective night

Time in LL (h)

0 6 12 18 24

H
Y5

 R
el

at
iv

e 
Tr

an
sc

rip
t 

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

2

4

6

8

10

12

14

Col-0 
Col0 + UV-B
prr5-3
prr5-3 + UV-B
prr7-3 
prr7-3 + UV-B

Time in LL (h)

0 6 12 18 24

H
YH

 R
el

at
iv

e 
Tr

an
sc

rip
t 

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

1

2

3

4

5

Time in LL (h)

0 6 12 18 24

G
A

2o
x1

 R
el

at
iv

e 
Tr

an
sc

rip
t 

Ab
un

da
nc

e 
N

or
m

al
is

ed
 to

 A
C

TI
N

-2

0

20

40

60

80

100

120

+ UV-B
Control

Figure 3.11: In LL, the circadian gating of the UV-B induction of HYH is R:FR-
dependent. L. er plants were entrained in 4 cycles of 12L:12D in either high (3.11a) or
low (3.11b) R:FR before transfer to LL. After 24 h in LL, UV-B treatments of 1.5 mmol
m-2 s-1 for 2 h were carried out on 6-, 7- and 8-day-old plants. Treated plants (unfilled
circles) were given a single 2 h UV-B dose at 4 h intervals and were sampled at the
plotted time points alongside untreated controls (filled circles). Plotted are means +/-
1 S.E.M. of two independent experiments carried out on different occasions (n = 2).
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all tested time points (figure 3.15a,3.15b).

Low R:FR promotes hypocotyl elongation, in part, through increases in auxin

biosynthesis. This is achieved by the upregulation of the expression of YUCCA

enzymes, which control the rate-limiting step of a major auxin biosynthesis

pathway (Hornitschek et al., 2012; Li et al., 2012a). In LD, YUCCA8 relative

transcript abundance peaked at 6 h after dawn, accumulated to a higher abun-

dance in low R:FR and was strongly suppressed by UV-B at all tested time

points (figure 3.16a,3.16b). In a similar fasion, the expression of IAA29, an

auxin-responsive gene, peaked at 6 - 8 h after dawn in high and low R:FR and

was also strongly suppressed by UV-B treatment at all tested time points (figure

3.17a,3.17a).

The transcript abundance data in this section report that unlike in LL, the

patterns and relative transcript abundances of GA2ox1, HY5 and HYH in re-

sponse to UV-B did not dramatically differ between high and low R:FR in LD,

suggesting that the unexpected loss of circadian gating observed in section 3.3.1

may be an artefact of carrying out experiments in LL low R:FR. Observations

that the UV-B-induced relative transcript abundance of GA2ox1 showed a clear

peak around 6 - 8 h after dawn whereas HYH peaked at the start of the day

and HY5 did not show a clear peak suggest that the time-of-day regulation of

GA2ox1 is unlikely to be fully dependent on the time-of-day regulation of HY5

and HYH. Observations that PIF4, YUCCA8 and IAA29 transcripts all peak

at or around the middle of the day in both high and low R:FR (6 - 8 h after

dawn), and are strongly suppressed by UV-B irradiation at all points, taken

alongside the midday peak of UV-B-induced GA2ox1 transcript, may explain

the trend in hypocotyl assays for middle of the day UV-B treatments to elicit

the greatest inhibition of hypocotyl elongation (section 3.2.1).
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Figure 3.12: In LD, UV-B induction of GA2ox1 is time-of-day-dependent and peaks
6 - 8 h after dawn. L. er plants were grown in 5 cycles of 12L:12D in either high (3.12a)
or low (3.12b) R:FR. UV-B treatments of 1.5 mmol m-2 s-1 for 2 h were carried out on 6-
day-old plants. Treated plants (unfilled markers) were given a single 2 h UV-B dose at
2 h intervals and were sampled at the plotted time points alongside untreated controls
(filled markers). Plotted are means +/- 1 S.E.M. of three independent experiments
carried out on different occasions (n = 3).
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Figure 3.13: In LD, UV-B induction of HY5 is not time-of-day dependent. L.
er plants were grown in 5 cycles of 12L:12D in either high (3.13a) or low (3.13b)
R:FR. UV-B treatments of 1.5 mmol m-2 s-1 for 2 h were carried out on 6-day-old
plants. Treated plants (unfilled markers) were given a single 2 h UV-B dose at 2 h
intervals and were sampled at the plotted time points alongside untreated controls
(filled markers). Plotted are means +/- 1 S.E.M. of three independent experiments
carried out on different occasions (n = 3).
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Figure 3.14: In LD, UV-B induction of HYH is time-of-day-dependent and peaks 2 -
4 h after dawn. L. er plants were grown in 5 cycles of 12L:12D in either high (3.14a) or
low (3.14b) R:FR. UV-B treatments of 1.5 mmol m-2 s-1 for 2 h were carried out on 6-
day-old plants. Treated plants (unfilled markers) were given a single 2 h UV-B dose at
2 h intervals and were sampled at the plotted time points alongside untreated controls
(filled markers). Plotted are means +/- 1 S.E.M. of three independent experiments
carried out on different occasions (n = 3).R:FR = 5
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Figure 3.15: In LD, PIF4 transcript abundance peaks 6 h after dawn and is sup-
pressed by UV-B. L. er plants were grown in 5 cycles of 12L:12D in either high (3.15a)
or low (3.15b) R:FR. UV-B treatments of 1.5 mmol m-2 s-1 for 2 h were carried out on 6-
day-old plants. Treated plants (unfilled markers) were given a single 2 h UV-B dose at
2 h intervals and were sampled at the plotted time points alongside untreated controls
(filled markers). Plotted are means +/- 1 S.E.M. of three independent experiments
carried out on different occasions (n = 3).
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Figure 3.16: In LD, YUCCA8 transcript abundance peaks 6 h after dawn, is elevated
in low R:FR and is suppressed by UV-B. L. er plants were grown in 5 cycles of 12L:12D
in either high (3.16a) or low (3.16b) R:FR. UV-B treatments of 1.5 mmol m-2 s-1 for 2
h were carried out on 6-day-old plants. Treated plants (unfilled markers) were given
a single 2 h UV-B dose at 2 h intervals and were sampled at the plotted time points
alongside untreated controls (filled markers). Plotted are means +/- 1 S.E.M. of three
independent experiments carried out on different occasions (n = 3).
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Figure 3.17: In LD, IAA29 transcript abundance peaks 6 - 8 h after dawn and is
suppressed by UV-B. L. er plants were grown in 5 cycles of 12L:12D in either high
(3.17a) or low (3.17b) R:FR. UV-B treatments of 1.5 mmol m-2 s-1 for 2 h were carried
out on 6-day-old plants. Treated plants (unfilled markers) were given a single 2 h
UV-B dose at 2 h intervals and were sampled at the plotted time points alongside un-
treated controls (filled markers). Plotted are means +/- 1 S.E.M. of three independent
experiments carried out on different occasions (n = 3).
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3.3.3 PSEUDO-RESPONSE-REGULATORS may medi-

ate the circadian gating of UV-B-induced target gene

expression

Recent ChIP-seq studies on the clock’s PRR transcriptional repressors (Liu

et al., 2016) raise the possibility that PRRs regulate the circadian gating of

HY5, HYH and GA2ox1 through the association with G-box-like motifs within

promoters. Preliminary relative transcript abundance data from mutants is

consistent with this notion. Col-0, prr5-3 and prr7-3 plants were entrained

in 12L:12D at high R:FR (5) for 6 cycles and then placed into LL for UV-B

treatments and sampling. While data for HY5 and HYH is inconclusive (figure

3.18b,3.18c), GA2ox1 relative transcript abundance after UV-B treatment was

clearly increased in the prr5-3 and prr7-3 mutants at the start and middle of the

day compared to Col-0 (figure 3.18a). As the results of a single experimental

repeat are reported, these preliminary data require repetition to confirm the

findings. In addition, reported ChIP-seq data suggests that PRR5, PRR7 and

PRR9 may act redundantly in transcriptional regulation (Liu et al., 2016), it

may therefore be informative to test the prr579 mutant for circadian gating of

UV-B responses.

3.4 Discussion

The results reported in this chapter show that UV-B treatments applied at

different times of a day have different magnitudes of shade avoidance inhibition.

The data also suggest that the differences in effect size at different times-of-day

are due to both circadian regulation through modulation of the transcriptional

response to UV-B and the underlying rhythmicity of hypocotyl elongation.

Section 3.2.1 provides evidence that UV-B, both detected by- and independent

of- UVR8, when given at the middle of the day, gave the greatest inhibition of

hypocotyl elongation compared to UV-B in the morning or at the end of the
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Figure 3.18: PRRs may mediate the circadian gating of UV-B responsive genes.
Col-0, prr5-3 and prr7-3 plants were entrained in 12L:12D at R:FR = 5 for 6 cycles
then placed into LL for treatments and sampling. Treated plants were given 2 h UV-B
at 1.5 mmol m-2 s-1 and sampled for (3.18a) GA2ox1, (3.18b) HY5 and (3.18c) HYH
RNA abundance at the plotted times. Plotted is the relative transcript abundance of
one experimental replicate (n = 1).
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day. This effect is most prominent in L. er (figure 3.1a,3.2a) and Ws (figure

3.7a,3.8a) but is diminished in Col-0 (figure 3.3a,3.4a), which may result from

natural genetic variation between ecotypes (van Zanten et al., 2009; Aukerman

et al., 1997). The uvr8-1 mutant still exhibited an inhibition of shade avoid-

ance after UV-B treatment, which is consistent with the suggestion that there

are UVR8-independent UV-B-induced hypocotyl inhibition responses, perhaps

through photo-dimer accumulation (Biever et al., 2014) or the accumulation of

ROS (Jenkins, 2014). The uvr8-6 mutant, however, completely abolished the

inhibition of hypocotyl elongation by UV-B and removed temporal differences

in both high and low R:FR (figure 3.3b,3.4b). The observation that absence of

UVR8 removed the temporal differences in effectiveness of the UV-B treatment

in some, but not all cases, raises the possibility that another factor mediating

the time-of-day differences in UV-B inhibition of hypocotyl elongation could be

the rhythmic regulation of hypocotyl elongation rather than the UV-B signaling

pathway itself.

In the CCA1-OX line, which has a disrupted circadian clock (Wang and Tobin,

1998), the time-of-day when UV-B most inhibited hypocotyl elongation was

shifted to the final third of the day (8 - 12 h after dawn) (figure 3.6). This

observation suggests that the UV-B-induced inhibition of hypocotyl elongation

is subject to some form of circadian regulation. A later treatment of UV-B

in CCA1-OX could establish an augmented level of transcriptional and post-

translational inhibition of PIF4 and 5 that persists throughout the night. Plants

receiving an earlier UV-B treatment, however, may have more time for PIF

inhibition to return to background levels before dark, meaning that PIFs are

freer to accumulate and function during night-time elongation. To investigate

this hypothesis, PIF4 and PIF5 protein abundance analysis could be performed

to analyse PIF stability in the hours after the three UV-B treatments at different

time points. Similarly, the stability of growth-repressing DELLA proteins, which

inhibit PIF activity through sequestration of PIF DNA-recognition domains

(Lucas et al., 2008; Feng et al., 2008) as well as degradation (Li et al., 2016),
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could be affected by the time of day that the UV-B treatment is given. In

addition, CCA1-OX plants exhibited long hypocotyls when grown under high

R:FR, yet under low R:FR, hypocotyls were shorter than under high R:FR. This

may be due to altered phyA activity or stability in CCA1-OX plants. phyA

signals in low R:FR and is thought to antagonise the phyB-mediated shade

avoidance response (Martínez-García et al., 2014). Salter et al. (2003) reported

a small transient inhibition of hypocotyl elongation at subjective dawn by a

low R:FR pulse, which they hypothesised was a phyA-mediated effect, citing

circadian cycling of phyA levels to peak at dawn. Supposing that CCA1-OX

plants have their circadian clocks paused at the morning part of the cycle, it

is possible that increases in PHYA transcript, protein abundance and activity

might be observed.

Time-course transcript abundance assays in LL confirmed that the UV-B-induction

of genes involved in the inhibition of shade avoidance (Hayes et al., 2014) is gated

by the circadian clock (section 3.3.1). Observations that the peaks of UV-B-

induced transcript abundance differ in position (GA2ox1 peaks at the end of

the day, HY5 at midday and HYH at the start of the day) between the three

genes suggests that their expression may be gated to different times of day by

different clock components. Additionally, in LL low R:FR, rhythms of GA2ox1

induction by UV-B damp high (figure 3.9b), whereas rhythms of HY5 and HYH

induction by UV-B damp low (figure 3.10b,3.11b). Were it the same mechanism

that gates the UV-B induction of GA2ox1, HY5 and HYH transcript, then the

rhythms of UV-B induction of these genes in LL low R:FR should all damp

either high or low. These observations agree with the suggestion that there may

be no central system for the circadian gating of UV-B responses, rather, the

clock gates the expression of these genes on a gene-by-gene basis (Fehér et al.,

2011; Takeuchi et al., 2014). There is also the possibility that the gating of

HY5, HYH & GA2ox1 transcription is modulated by direct protein interaction

of HY5/HYH and a clock component (e.g. CCA1 has been shown to interact

with HY5 in yeast (Andronis et al., 2008)), similar to the co-binding of PRRs
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and PIF3 to promoters to constrain its growth-promoting activity to pre-dawn

(Soy et al., 2016; Martín et al., 2018). Taken together with the evidence that

HY5 binds to its own promoter (Abbas et al., 2014) and in response to UV-B

to drive HY5 transcription (Binkert et al., 2014, 2016), this conjecture could

provide an explanation for the gating of the UV-B response.

Surprisingly, under LL low R:FR, the circadian gating of HY5, HYH and

GA2ox1 was lost. An explanation for this observation is examined in the fol-

lowing chapter (5), but it was reasoned that the loss of gating may be countered

by carrying out experiments in LD. Experiments in LD may also be more in-

formative for explaining the physiology results in section 3.2 as growth in LD

will also reduce any effects of phase delays and period differences that become

exacerbated in LL.

In section 3.3.2, therefore, experiments were carried out in LD conditions. As

predicted, rhythms of UV-B-induction for HY5, HYH and GA2ox1 were similar

in both high and low R:FR. Interestingly, the peak of UV-B-induction of GA2ox1

occurred around the middle of the light period (6 - 8 h after dawn) (figure

3.12), which correlates with the observation that 4 h UV-B delivered around the

middle of the day was most effective at inhibiting hypocotyl elongation (section

3.2). Peak HYH transcript abundance occurred at 2 h after dawn and declined

over the course of the day, whereas HY5 transcript did not have a clear peak,

which is consistent with previous reports (Fehér et al., 2011). This result, taken

together with the observation that hy5, hyh and hy5/hyh mutants did not have

their optimal time of day for UV-B-mediated hypocotyl inhibition shifted in low

R:FR (section 3.2.3), suggests that the timing of UV-B induction of HY5 and

HYH does not play a major role in the timing of peak GA2ox1 induction nor

the timing of the maximum sensitivity of shade avoidance hypocotyl elongation

to UV-B inhibition.

PIF4 is transcribed rhythmically due to circadian regulation (Nusinow et al.,

2011). In figure 3.15, PIF4 relative transcript abundance peaked around 6 -

8 h after dawn in high R:FR and to a lower abundance in low R:FR. Lower
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PIF4 expression in low R:FR compared to high R:FR may be a result of nega-

tive feedback regulation or perhaps augmented evening complex transcriptional

control in low R:FR (Nusinow et al., 2011). UV-B treatment strongly reduced

PIF4 relative transcript abundance, with the greatest UV-B-induced reduction

in PIF4 transcript occurring around 6 - 8 h after dawn in high R:FR and 6

h after dawn in low R:FR. Similarly, the relative transcript abundances of a

flavin mono-oxygenase gene, YUCCA8, which catalyses a rate-limiting step of

auxin biosynthesis (Tao et al., 2008) and the auxin-response gene IAA29 peaked

at 6 h after dawn and 6 - 8 h after dawn respectively. Again, UV-B treatment

strongly reduced the relative transcript abundances of these auxin-related genes.

The coincidence of peak timings of UV-B induction of GA2ox1 with maximum

UV-B-induced repression of genes that promote hypocotyl elongation in section

3.3.2, may therefore explain the result that a middle-of-day (4 - 8 h) UV-B treat-

ment gave the greatest inhibition of hypocotyl elongation in 12L:12D (section

3.2). It is intuitive that as UV-B has been shown to be such a strong inhibitor of

hypocotyl elongation (Hayes et al., 2014, 2017), application at the time-of-day

when elongation rate is at its greatest gives the greatest effect. It would, there-

fore, be informative to analyse hypocotyl elongation and its response to UV-B

using time-lapse imagery to derive elongation rate. As the experiments in this

chapter have been carried out under a 12L:12D regime, it would be interesting

to see if the time-of-day when hypocotyl elongation is most sensitive to inhi-

bition by UV-B shifts under different day lengths: It is well-documented that

short day photoperiods (8L:16D) promote hypocotyl elongation (Niwa et al.,

2009), shifting peak hypocotyl elongation rate to the end of night as the timing

of peak PIF abundance is moved into the night when PIFs are not targeted by

active photoreceptors (Nozue et al., 2007).

In conclusion, the data reported in this chapter present evidence that the inhibi-

tion of hypocotyl elongation by UV-B is gated by the circadian clock such that

UV-B applied at different times-of-day elicit different magnitudes of response.

It appears that both UV-B up-regulated genes and the pathways that promote
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elongation, which UV-B signaling antagonises, are subject to rhythmic regula-

tion by the circadian clock as well as R:FR. It is, therefore, possible that the

underlying rhythmic regulation of hypocotyl elongation is the main influence for

time-of-day sensitivity of the hypocotyl to UV-B inhibition. While the data pre-

sented here are broadly consistent with the findings that genes up-regulated by

UV-B are circadian gated (Fehér et al., 2011; Takeuchi et al., 2014), preliminary

data are also presented which suggests the involvement of the PRR family of

transcriptional repressors in the circadian regulation of the previously identified

UV-B-induced shade avoidance antagonist, GA2ox1 (Hayes et al., 2014). Future

study of the circadian gating of UV-B responses should, therefore, examine the

transcriptional (Liu et al., 2016) and possibly post-translational (Martín et al.,

2018) role that the PRRs may have in the modulation of responses to UV-B.
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Chapter 4

The Effect of UV-B

Supplementation on

Shade-Avoiding Coriandrum

sativum

4.1 Introduction

C
oriander (Coriandrum sativum) is one of the United Kingdom’s best-

selling culinary herbs, and for Vitacress Herbs Ltd (the UK’s largest

fresh herb supplier) it is the top selling herb, with sales exceeding £18 million

in 20151. Maintaining high standards of product quality is expensive and can

lead to the rejection of many plants before they get to retail. The production

of aesthetically pleasing, compact and dark green plants is a key objective for

the potted herb industry.

In commercial glasshouses, Coriander is often planted densely with around 60
1
http://www.vitacress.com/news-centre/herb-sales-boost;-Coriander-remains-top-seller/
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seedlings per pot (Simon Budge (Vitacress), pers. comm.). Crowded conditions

can promote shade-avoidance, which may contribute to Coriander’s elongated

phenotype. In natural conditions, plants are exposed to UV-B radiation from

sunlight. UV-B has previously been shown to limit the elongation of hypocotyls

and petioles in both shade avoidance and thermomorphogenesis (Hayes et al.,

2014, 2017). However, many materials used in glasshouse construction such as

glass or clear acrylic attenuate or completely filter out UV-B radiation. Thus,

plants growing in glasshouses may not be receiving this natural brake on elon-

gation that they would be receiving outdoors and such a situation could further

exacerbate stem elongation driven by shade avoidance.

An emerging area of research is the manipulation of light quality in commercial

growth environments (Wargent, 2016; Thomas T.T. and Puthur, 2017). Red,

blue, green and yellow LEDs have been used to control the architecture and an-

tioxidant content of sweet basil (Carvalho et al., 2016) and Coriander (Naznin

et al., 2016). Manivannan et al. (2015) showed that red and blue LED lights

could enhance the antioxidant capacity of Chinese floxglove while another study

found that blue LEDs enhanced proline accumulation and the activity of an-

tioxidant enzymes such as super oxide dismutase (SOD) in tomato (Kim et al.,

2013). Reactive oxygen species (ROS) such as superoxide anion radicals and

hydrogen peroxide are produced by the human body as products of normal cel-

lular functions (Orient et al., 2007). The effects of ROS on human health are

mixed, in some instances, low-level oxidative stress can be beneficial (Pizzino

et al., 2017). However, a large body of evidence has linked ROS imbalances to

neuro-degenerative diseases such as Alzheimer’s and Parkinson’s (Uttara et al.,

2009) as well as numerous forms of cancer (Liou and Storz, 2010). Consump-

tion of antioxidants can protect the human body from the effects of destructive

ROS free radicals and as most dietary antioxidants are derived from plants, it

follows that increasing the antioxidant capacity of crops could have apprecia-

ble health benefits (Dou et al., 2017). There have also been a number studies

that have manipulated UV-B levels. Mazza et al. (2013) showed that in the
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Figure 4.1: Simplified schematic of a section of the Arabidopsis flavonoid biosynthesis
pathway. Enzymes are highlighted in green, with encoding genes included for CHS
and F3’H. Figure adapted from Winkel-Shirley (2001).

field, solar UV-B irradiation increased soybean crop yield through reduced in-

sect herbivory. Another study found that post transplantation to field, UV-B

pre-treated lettuce produced greater harvestable yield than lettuce grown in a

UV-B-excluding environment (Wargent et al., 2011). UV-B supplementation

has been shown to increase leaf area, biomass, antioxidant capacity and chloro-

phyll content of sweet basil (Sakalauskaite et al., 2012). The most extensively

studied response to UV-B in plants is flavonoid biosynthesis (Caldwell et al.,

1983; Lois, 1994). Flavonols are among the most abundant plant flavonoids, they

absorb UV light in the 280-320 nm waveband and thus act as a sunscreening

filter for UV-B . In Arabidopsis, it has been shown that low dose UV-B strongly

upregulates the expression of key enzymes in the flavonoid biosynthesis pathway

(figure 4.1) such as CHALCONE SYNTHASE (CHS) (Fuglevand et al., 1996;
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Jenkins et al., 2001). The accumulation of flavonols has both potential health

benefits (Yao et al., 2004) and impacts on plant flavour (Roland et al., 2013). In

Coriander, high dose narrowband UV-B has been shown to induce chomosomal

abnormalities while decreasing pigment and carbohydrate content (Kumar and

Pandey, 2017). However, the impact of low dose, non-stressful levels of UV-B

on Coriander development remains relatively unstudied.

This chapter describes experiments carried out in collaboration with Vitacress

Herbs Ltd. The main aim was to investigate if UV-B supplementation could

improve Coriander product quality by promoting a more compact growth habit

and the accumulation of desirable metabolites. Another objective was to test

if there were an optimal time of day to deliver a UV-B dose to Coriander to

achieve improvements in plant architecture. Temporally targetting a short UV-

B dose (rather than continuous UV-B irradiation) to a time of day when the

crop is most sensitive in a commercial glasshouse could reduce costs related to

energy consumption, as well as limiting the exposure of glasshouse workers to

potentially harmful UV-B radiation. What follows is an analysis of the effects of

low dose, non-stressful levels of UV-B on Coriander architecture, pigment and

antioxidant content in controlled climate chambers and glasshouse trials.

Most of the data in this chapter are published in a peer reviewed journal:

Fraser, D.P., Sharma, A., Fletcher, T., Budge, S., Moncrieff C., Dodd, A.N.,

Franklin, K., 2017. UV-B antagonises shade avoidance and increases levels of

the flavonoid quercetin in coriander (Coriandrum sativum). Scientific Reports,

7(1), p.17758.

4.2 Coriander germination

To control for plant developmental stage it is favourable to have synchronous

germination of plants for laboratory experiments. Established germination and

seed sterilisation protocols for Arabidopsis (Weigel and Glazebrook, 2002) led

to asynchronous germination in Coriander over the course of 7 to 14 days. Even
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Figure 4.2: Coriander germination is insensitive to GA3. Stratified Coriander seeds
were imbibed in three different concentrations of GA3 in water as indicated in the
figure.

with stratification, within-fruit germination was asynchronous. Gibberellic Acid

(GA3) is well documented for breaking dormancy in many species (reviewed in

Miransari and Smith (2014)). In a pilot experiment where Coriander seeds were

imbibed in different concentrations of GA3, Coriander appeared to be insensitive

to GA3 treatment (figure 4.2), which is consistent with observations from the

commercial glasshouse (Simon Budge (Vitacress), pers. comm.). Rather than

optimising a protocol for breaking dormancy, germination was synchronised

through scarification, imbibition in H2O and manual selection for potting on as

described in 2.2.1.
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4.3 Supplemental UV-B antagonises shade-avoidance

in Coriander

4.3.1 UV-B inhibits hypocotyl elongation in shade-avoiding

Coriander

Coriander seedlings were grown under high (5) and low (0.05) R:FR ratio condi-

tions in 12 hour light 12 hour dark photocycles with and without UV-B supple-

mentation (figure 4.3a,4.3b). Seedling hypocotyls were measured 13 days after

germination. Plants grown in low R:FR ratio achieved by supplementing white

light with far red LEDs (WL + FR) were significantly elongated when compared

to plants grown in high R:FR ratio white light (WL), showing that Coriander

displays shade avoidance (Fraser et al., 2016) (figure 4.3b). Coriander seedlings

supplemented with low intensity (1.5 mmol m-2 s-1) UV-B in a background of

high R:FR (WL + UV-B) were not significantly different compared to WL con-

trols. However, hypocotyl lengths of UV-B treated Coriander in a low R:FR

ratio background (WL + FR + UV-B) were significantly shorter than Corian-

der grown in WL + FR, similar to responses observed in Arabidopsis (Hayes

et al., 2014) (figure 4.3b). The addition of low dose UV-B only had a significant

effect in low R:FR grown plants, which suggests that UV-B mediated effects on

Coriander hypocotyl elongation may only be observed in crowded conditions.

Different Coriander cultivars exhibit different stem-elongation phe-

notypes

In this study, the magnitude of shade avoidance was cultivar-dependent. Slow

Bolt is a variety of Coriander that has been the industry standard, characterised

by its long time to flowering, distinctive aroma and superior flavour. However,

a new variety, Cruiser, is now being widely grown by horticulturalists and this

recently developed cultivar is described as:

“... a new variety of Coriander particularly distinguished by its
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Figure 4.3: UV-B inhibits hypocotyl elongation in shade-avoiding Coriander. (4.3a)
Coriander were germinated in WL for 3 days and then placed into WL, WL + UV-
B, WL + FR & WL + FR + UV-B conditions as indicated for a further 10 days.
Scale bar = 20mm. (4.3b) Coriander Hypocotyl Lengths (mm) as grown in 4.3a
ANOVA (F(3,60) = 13.865 p <0.001) n = 16. Different red Letters indicate statistically
significant differences by Tukey’s post hoc test at p<0.05.
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slow bolting, large round leaves with bright, shiny, dark green color

and fewer serrated margins, a distinctive upright, but basal branch-

ing habit, long shelf life and good vigour indexing...” (Shrestha and

Warren, 2016)

Both the Slow Bolt and Cruiser cultivars displayed elongated hypocotyls in WL

+ FR compared to WL controls, though hypocotyl lengths for Slow Bolt were

significantly longer than Cruiser in WL + FR (figure 4.4). UV-B supplemen-

tation at 1.5 mmol m-2 s-1 inhibited low R:FR-induced hypocotyl elongation of

both cultivars, though again the Slow Bolt cultivar displayed significantly longer

hypocotyls compared to Cruiser. Due to its enhanced elongation phenotype in

low R:FR ratio conditions, the Slow Bolt cultivar was used for subsequent ex-

periments.

4.3.2 UV-B supplementation increases compactness of ma-

ture shade avoiding Coriander

Seedling phenotypes can be a reasonable predictor of mature plant phenotypes,

so the effect of low R:FR and UV-B on mature Coriander plant phenotypes

were also examined. Coriander plants were grown until they were 28 days old,

a developmental stage when they produce multiple petioles with variable leaf

phenotypes, and a similar age to commercially grown Coriander when it is trans-

ported to customers (figure 4.5).

Shade-avoiding Arabidopsis has been shown to produce fewer and smaller leaf

blades when compared to controls as resources are diverted toward elongation

(Nagatani et al., 1991; Finlayson et al., 2010). In addition, Hayes et al. (2014)

reported a complex interaction where low R:FR and UV-B delivered separately

inhibit leaf expansion, but low R:FR in a background of UV-B promotes leaf

expansion in a UVR8-dependent manner. The effect of these light signals on

Coriander leaf morphology and production was assessed through comparison of

total visible leaf area in plants grown in high and low R:FR, with and without
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Figure 4.4: Hypocotyl elongation in different Coriander cultivars. ‘Slow Bolt’ (Blue)
and ‘Cruiser’ (Red) were germinated and grown as in Figure 4.3. n = 18 – 21 seedlings.
Student’s T-tests were performed to test for differences between cultivars in the indi-
cated conditions. * indicates significant difference between cultivars at p <0.05. WL
+ FR (t(37) = 2.624, p = 0.0126), WL + FR + UV-B (t(38) = 2.541, p = 0.0153).
** indicates significant difference between WL + FR and WL + FR + UV-B in the
Cruiser Cultivar at p < 0.05 (t(39) = 7.988, p < 0.001).

93



CHAPTER 4. THE EFFECT OF UV-B SUPPLEMENTATION ON
SHADE-AVOIDING CORIANDRUM SATIVUM

UV-B supplementation. WL- and WL + UV-B-treated plants did not differ

significantly in their total visible leaf areas, whereas WL + FR-treated plants

had significantly reduced total visible leaf area when compared to other treat-

ments. WL + FR + UV-B-treated plants were not significantly different to

either groups, being rather variable and lying between them (figure 4.6a). Each

petiole has varying numbers of leaf blades, so it follows that total visible leaf

area could be linked to the number of petioles. WL + FR-treated plants had

a significantly reduced petiole count compared to plants grown in WL and WL

+ UV-B. WL + FR + UV-B-grown plant petiole counts did not differ signifi-

cantly from the other groups, lying between WL and WL + FR-grown plants

(figure 4.6b). Thus, UV-B did not significantly increase total visible leaf area

or petiole number in either R:FR ratio. UV-B-treated plants did, however, ap-

pear more compact, which was reflected in the lengths of the longest petioles.

WL + UV-B-treated plants did not significantly differ from WL controls, yet

the significantly elongated petioles of WL + FR treated plants were significantly

reduced by supplemental UV-B ( figure 4.6c). In order to give a measure of plant

compactness, the ratio between total visible leaf area and total petiole lengths

(that is, a leaf blade to stalk ratio) was analysed. This comparison showed that

plants grown in WL + FR had a significantly reduced leaf blade to stalk ratio

compared to plants grown in WL and that the addition of UV-B to the low

R:FR condition significantly increased this parameter, but not sufficiently to

return to the level of high R:FR-grown plants (figure 4.6d).

Taken together, light quality has dramatic effects on Coriander architecture. A

low R:FR ratio drives elongation of hypocotyls in seedlings and elongation of

petioles in adult plants, both of which are inhibited by UV-B. On the other

hand, the reduction in leaf area and number of petioles caused by low R:FR

were not significantly alleviated by UV-B. Nevertheless, UV-B treated plants

(WL + FR + UV-B) were still more compact than their low R:FR (WL + FR)

controls as demonstrated by the ratio of total visible leaf area to total petiole

lengths.
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Figure 4.5: Phenotypes of 28-day-old Coriander (Slow Bolt) grown in 12h photope-
riods. Seedlings were germinated in WL for 3 days and then placed into WL, WL +
UV-B, WL + FR & WL + FR + UV-B conditions as indicated for a further 25 days.
Scale bar = 50 mm

95



CHAPTER 4. THE EFFECT OF UV-B SUPPLEMENTATION ON
SHADE-AVOIDING CORIANDRUM SATIVUM

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

To
ta

l V
is

ib
le

 L
ea

f B
la

de
 A

re
a 

(m
m

2 )

0

1000

2000

3000

4000

5000

a

ab
b b

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

N
um

be
r 

of
 P

et
io

le
s

0

2

4

6

8

a
ab

bc
c

A 

A B 

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

To
ta

l V
is

ib
le

 L
ea

f A
re

a 
(m

m
2 )

To
ta

l P
et

io
le

 L
en

gt
hs

 (m
m

)

0

2

4

6

8

10

12

14

16

a

cc

b

C 

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

M
ea

n 
Lo

ng
es

t P
et

io
le

 L
en

gt
h 

(m
m

)

0

20

40

60

80

100

120

140

a

a

c

b

D 
(a)

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

To
ta

l V
is

ib
le

 L
ea

f B
la

de
 A

re
a 

(m
m

2 )

0

1000

2000

3000

4000

5000

a

ab
b b

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

N
um

be
r 

of
 P

et
io

le
s

0

2

4

6

8

a
ab

bc
c

A 

A B 

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

To
ta

l V
is

ib
le

 L
ea

f A
re

a 
(m

m
2 )

To
ta

l P
et

io
le

 L
en

gt
hs

 (m
m

)

0

2

4

6

8

10

12

14

16

a

cc

b

C 

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

M
ea

n 
Lo

ng
es

t P
et

io
le

 L
en

gt
h 

(m
m

)

0

20

40

60

80

100

120

140

a

a

c

b

D (b)

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

To
ta

l V
is

ib
le

 L
ea

f B
la

de
 A

re
a 

(m
m

2 )

0

1000

2000

3000

4000

5000

a

ab
b b

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

N
um

be
r 

of
 P

et
io

le
s

0

2

4

6

8

a
ab

bc
c

A 

A B 

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

To
ta

l V
is

ib
le

 L
ea

f A
re

a 
(m

m
2 )

To
ta

l P
et

io
le

 L
en

gt
hs

 (m
m

)

0

2

4

6

8

10

12

14

16

a

cc

b

C 

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

M
ea

n 
Lo

ng
es

t P
et

io
le

 L
en

gt
h 

(m
m

)

0

20

40

60

80

100

120

140

a

a

c

b

D 

(c)

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

To
ta

l V
is

ib
le

 L
ea

f B
la

de
 A

re
a 

(m
m

2 )

0

1000

2000

3000

4000

5000

a

ab
b b

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

N
um

be
r 

of
 P

et
io

le
s

0

2

4

6

8

a
ab

bc
c

A 

A B 

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

To
ta

l V
is

ib
le

 L
ea

f A
re

a 
(m

m
2 )

To
ta

l P
et

io
le

 L
en

gt
hs

 (m
m

)

0

2

4

6

8

10

12

14

16

a

cc

b

C 

W
L

W
L + 

UV-B

W
L + 

FR

W
L + 

FR + 
UV-B

M
ea

n 
Lo

ng
es

t P
et

io
le

 L
en

gt
h 

(m
m

)

0

20

40

60

80

100

120

140

a

a

c

b

D 

(d)

Figure 4.6: UV-B inhibits petiole elongation but does not significantly increase leaf
blade area or number of petioles in mature shade-avoiding Coriander. Morphological
data were gathered from 28-day-old Coriander grown as in Figure 4.5. (4.6a) Total
Visible Leaf Blade Area, ANOVA (F(3,44) = 5.696, p = 0.002. (4.6b) Number of
Petioles, Median +/- 1 S.D., ANOVA (F(3,44) = 19.319, p < 0.001). (4.6c) Mean
Longest Petiole length, ANOVA (F(3,44) = 32.694, p < 0.001 (4.6d) Ratio of Total
Visible Leaf Area to Total Petiole Lengths, ANOVA (F(3,44) = 25.926, p < 0.001.
n = 12. Different Letters indicate statistically significant differences by Tukey’s post
hoc test at p<0.05.
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4.4 Is there an optimum time of day for UV-B-

mediated inhibition of shade avoidance in Co-

riander?

Considering that greenhouse materials such as glass or clear acrylic filter UV-B

radiation, the data described in section 4.3 indicate that supplementation with

UV-B could be a way of improving the compactness and hence the aesthetic qual-

ity of Coriander in commercial glasshouse settings. However, UV-B exposure

may present health and safety concerns for workers and continuous illumination

would not be economically or environmentally favourable. In Arabidopsis it has

previously been shown that aspects of the UVR8 signalling pathway are gated

by the circadian clock, seemingly on a “gene-by-gene basis” (Fehér et al., 2011).

Thus, there could be a time-of-day when plants are most sensitive to UV-B for

the inhibition of elongation, which may give the opportunity to deliver UV-B

for short doses yet still give meaningful effects on physiology. For Vitacress,

this could be a solution that improves Coriander product quality while limiting

workers’ risk of exposure to harmful UV-B radiation and reducing economical

and environmental costs associated with energy usage.

4.4.1 Coriander hypocotyl elongation rate is rhythmic in

light/dark cycles

The rate of hypocotyl elongation in Arabidopsis is rhythmic; in continuous light

the peak rate occurs at c. 8h after subjective dawn whereas in short days (8

h light : 16 h dark) it peaks at the end of the night (Nozue et al., 2007).

The mechanistic basis for rhythmic hypocotyl growth has been described by an

external coincidence model (Nozue et al., 2007).

To analyse growth rate in Coriander, infra-red time-lapse photography was em-

ployed (figure 4.7). As before (section 4.3.1), UV-B supplementation clearly in-

hibited elongation in backgrounds of WL and WL + FR (figure 4.7a,4.7b). Sim-
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ilar to Arabidopsis, Coriander displayed rhythmic hypocotyl elongation. The

daily peak of elongation rate for Coriander in all tested conditions tended to oc-

cur during the light period (figure 4.7c,4.7d), this is likely to result from growth

in 12 h light, 12 h dark cycles. Peak elongation rate in the WL + FR condi-

tion occured around the middle of the day and the plants supplemented with

UV-B in a low R:FR background clearly had this peak curtailed (figure 4.7d).

Taken together these data suggest that the major time to target for UV-B inhi-

bition of hypocotyl elongation is during the light period. Doing so avoids giving

monochromatic UV-B during the night period, an unrealistic condition that

would not be experienced in nature that may have effects (e.g. on entrainment

(Fehér et al., 2011)) that are difficult to predict and interpret.

4.4.2 Short doses of UV-B at different times of day marginally

affects the magnitude of inhibition of shade avoid-

ance

A single short (4 h) 1.5 mmol m-2 s-1 UV-B treatment given at three different

times-of-day to three separate groups of shade-avoiding Coriander (0-4 h, 4-8 h,

8-12 h) was sufficient to significantly inhibit hypocotyl elongation compared to

the WL + FR-grown control (figure 4.8). The timing of treatments, however,

had only marginal effects on response magnitude: The 8-12 h treatment resulted

in the greatest decrease in mean hypocotyl length (17% decrease), followed by

UV-B treatment at the start of day (13% decrease), while the treatment given

at the middle of the day was least effective (8% decrease). Unsurprisingly,

the 12 h UV-B treatment (for the length of the photoperiod) resulted in the

shortest hypocotyls (25% shorter), indicating that the total UV-B dose is the

most important factor for mediating the inhibition of shade avoidance.
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Figure 4.7: Shade-avoiding Coriander exhibits rhythmic hypocotyl growth, which is
suppressed by UV-B. Coriander were germinated in WL for 3 days then placed into
the indicated conditions for timelapse IR photography. Hourly hypocotyl length and
growth rate of Coriander in WL (4.7a,4.7c) and WL + FR (4.7b,4.7d) n = 8 +/- 1
S.E.M.
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Figure 4.8: The timing of UV-B supplementation is unimportant for inhibition of
shade-avoidance. Coriander were germinated in WL for 3 days and then placed into
WL + FR & WL + FR supplemented with UV-B at the indicated times for a further
10 days. n = 57-61. ANOVA (F(4,288) = 25.484, p < 0.001) Different Letters indicate
statistically significant differences by Tukey’s post hoc test at p<0.05.
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PAR 400-700 nm (mmol m-2 s-1) R:FR ratio

Glasshouse 421 1.34

Glasshouse Canopy 192 0.86

Growth Cabinet 70 5

Growth Cabinet Shade 70 0.05

Table 4.1: A summary of typical PAR and R:FR ratio measurements in glasshouse
and growth cabinet lighting from this study.

4.5 Supplemental UV-B inhibits Coriander stem

elongation in greenhouse environments

As would be expected, the light spectra given by fluorescent bulbs in growth

cabinets differs greatly from natural light in the glasshouse in its quality and

quantity (figure 4.9 and table 4.1). In addition, the R:FR ratio measured in

dense stands within the Coriander canopy was less extreme than the treatments

provided in the growth cabinets (table 4.1). Due to the substantial differences

between light conditions in artificial versus natural light conditions, it is pru-

dent to assess the effectiveness of UV-B supplementation for the manipulation

of Coriander architecture in commercial glasshouses. Plants were exposed to

sunlight levels of PAR, which ranged from 60 to > 800 mmol m-2 s-1 depending

on time of day and cloud cover. A minimum PAR of 165 mmol m-2 s-1 and 16

h photoperiods were maintained using supplementary fluorescent lamps (Plug

and Grow compact 200 W). UV-B supplementation was provided using Philips

TL100W/01 narrow band UV-B bulbs.

4.5.1 The UV-B-mediated inhibition of Coriander hypocotyl

elongation in the glasshouse is density-dependent

When planted at a density of 1 seedling per 16 cm2, i.e. one seedling per pot,

UV-B supplementation did not have a significant effect on hypocotyl length

whether given for the length of the day (16 h) or for just 4 h at midday when
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Figure 4.9: Typical light spectra traces in glasshouse and growth cabinet lighting.

compared to control seedlings (figure 4.10). Interestingly, when seedlings were

planted at a higher density of 4 seedlings per 10 cm2 (approaching the density

that they are grown at Vitacress), 4 h UV-B supplementation at midday was

sufficient to significantly inhibit hypocotyl elongation (figure 4.11), though giv-

ing a longer UV-B treatment for the duration of the photoperiod (16 h) had a

greater effect (figure 4.11). These observations are consistent with previous data

that showed UV-B supplementation to have an effect on hypocotyl elongation

only under low R:FR ratio (simulated crowding) conditions (section 4.3).

When Coriander plants were grown for 32 days in the glasshouse, 4 h and 16 h

UV-B treatments were similarly effective in inhibiting of hypocotyl elongation

(figure 4.12a). However, significant inhibition of petiole elongation was only

found in plants treated with the longer (16 h) UV-B treatment (figure 4.12b).
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Figure 4.10: UV-B supplementation did not inhibit the hypocotyl elongation of
seedlings in the glasshouse when grown at low density. Coriander seedlings were grown
for 10 days with 16h photoperiods maintained with supplemental white light bulbs.
UV-B was provided by narrow band UV-B bulbs for either the entire photoperiod (16
h) or for 4 h at the middle of the day. 1 seed 16 cm-2, n = 12, ANOVA (F(2,33) =
0.656, p = 0.526).
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Figure 4.11: UV-B supplementation inhibited hypocotyl elongation of seedlings in
glasshouses when grown at high density. Coriander seedlings were grown for 10 days
with 16h photoperiods maintained with supplemental white light bulbs. UV-B was
provided by narrow band UV-B bulbs for either the entire photoperiod (16 h) or for
4 h at the middle of the day. (4.11a) Shared pots at a density of 4 seedlings 10 cm-2,
n = 20, ANOVA (F(2,57) = 23.106, p < 0.001), different letters indicate statistically
significant differences by Tukey’s post hoc test at p < 0.05. (4.11b) Phenotype of
representative seedlings. Scale bar = 20 mm.
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Figure 4.12: UV-B inhibited mean petiole elongation in mature Coriander grown at
high density (4 seedlings 10 cm-2) in the glasshouse. Coriander was grown for 32 days
with 16 h photoperiods maintained with supplemental white light bulbs. UV-B was
provided by narrow band UV-B bulbs for either the entire photoperiod (16 h) or for
4 h at the middle of the day. Plotted are morphological data from 32 day old plants
4.12a Hypocotyl Lengths, ANOVA (F(2,87) = 8.551, p <0.001). 4.12b Mean Petiole
Length ANOVA (F(2,87) = 4.015, p = 0.021). N = 30. Different red letters indicate
statistically significant differences at p < 0.05.
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4.5.2 Varying the intensity of UV-B irradiance did not

significantly vary the magnitude of hypocotyl elon-

gation inhibition in the Vitacress Glasshouse

On site experiments were conducted in the trial area of the Vitacress Runcton

glasshouses to investigate the application of knowledge to a commercial horticul-

ture setting. Potted Coriander were taken direct from the production line at 7

days after potting and placed in the experimental conditions. As before, plants

were exposed to sunlight levels of PAR, which ranged from 60 to > 800 mmol m-2

s-1 depending on time of day and cloud cover, but a minimum PAR of 200 mmol

m-2 s-1 and 16 h photoperiods were maintained using supplementary fluorescent

lamps. UV-B supplementation was provided using Philips TL100W/01 narrow

band UV-B bulbs.

PAR over the course of the experiment was highly variable due to cloud cover

and the height of the sun. It has been shown in numerous studies that mod-

ulation of PAR (400-700 nm) alters the sensitivity of plant responses to UV-B

(reviewed in Krizek (2004), who noted that “In general, one observes a reduction

in total biomass and plant height with decreasing PAR and increasing UV-B.”).

Thus, the ratio of UV-B : PAR, which would be artificially high in laboratory

experiments compared to the field due to technical limitations of the growth

cabinets, could be important for the magnitude of inhibition of shade avoid-

ance in Coriander. Three different intensities of UV-B corresponding to low (1

mmol m-2 s-1), medium (2 mmol m-2 s-1) and high (3 mmol m-2 s-1) were trialled.

After 10 days all three UV-B intensities had significantly inhibited hypocotyl

elongation, however between the different intensities there was no significant

difference, suggesting that UV-B at 1 mmol m-2 s-1could be just as effective as

3 mmol m-2 s-1 at inhibiting hypocotyl elongation in the glasshouse (4.13).
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Figure 4.13: The magnitude of UV-B-mediated inhibition of hypocotyl elongation in
the glasshouse is not dependent on UV-B intensity. Supplemental UV-B was delivered
for the length of the photoperiod (16h, maintained by incandescent bulbs in the Vi-
tacress glasshouse). Three intensities of UV-B irradiation were given, corresponding
to low (1 mmol m-2 s-1), medium (2 mmol m-2 s-1) and high (3 mmol m-2 s-1) doses for
10 days. ANOVA (F(3,116) = 4.933, p = 0.003), n = 30 different red letters indicate
statistically significant differences by Tukey’s post hoc at p < 0.05.
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4.6 UV-B and R:FR effects on Coriander chloro-

phyll and phytonutrient content

4.6.1 R:FR ratio and UV-B treatment have no significant

effect on leaf chlorophyll abundance

An objective for the potted herb industry is the production of aesthetically ap-

pealing products with dark green leaves. As it has been previously reported that

R:FR ratio and UV-B irradiation can have impacts on chlorophyll abundance

(Bartoli et al., 2009) and photosynthetic efficiency (Davey et al., 2012), the leaf

blade chlorophyll content of plants grown in WL, WL +UV-B, WL +FR and

WL +FR + UV-B were quantified using the Witham et al. (1971) method.

In the tested conditions neither R:FR ratio nor UV-B treatment significantly

affected chlorophyll content in the leaf blades of 28-day-old Coriander (figure

4.14).

4.6.2 UV-B elevates leaf antioxidant capacity

Early studies of plant responses to UV-B explored its role as a stressor that

causes damage to DNA and tissues through photodimer formation and oxidative

stress in photosynthetic machinery (Jansen et al., 1998). Due to the recovery

of the Earth’s stratospheric ozone layer since the Montreal protocol (Strahan

and Douglass, 2018), concerns about the effects of high intensity UV-B have

lessened, with recent experiments testing the hypothesis that UV-B signalling

acts as an acclimating “eustress” that activates antioxidant defences prior to the

onset of oxidative pressures caused by exposure to high “distress” levels of UV-B

(Hideg et al., 2013; Czégény et al., 2016a,b).

Total antioxidant capacity was assayed in leaf blades from 28-day-old Coriander

that had been grown under supplemental UV-B at high and low R:FR ratio.

In high R:FR, plants treated with UV-B displayed significantly greater total

antioxidant capacity compared to plants grown just under WL (figure 4.15). As
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Figure 4.14: Low intensity UV-B and low R:FR do not significantly alter chloro-
phyll content. Leaf tissue was sampled from 28-day-old Coriander cv. Slow Bolt
grown in 12h photoperiods. Seedlings were germinated in WL for 3 days and then
placed into WL, WL + UV-B, WL + FR & WL + FR + UV-B conditions as indi-
cated for a further 25 days. Chlorophyll A & B content in the different light condi-
tions as determined by the Witham et al. (1971) method. Chlorophyll A, ANOVA
(F(3,12)=2.84,p=0.083); Chlorophyll B, ANOVA (F(3,12)=2.84,p=0.363); Chloro-
phyll A&B, ANOVA (F(3,12)=1.918,p=0.181) n = 4. Means +/- 1 S.E.M..
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Figure 4.15: UV-B supplementation elevated leaf anti-oxidant capacity in high R:FR
but not low R:FR. Leaf tissue was sampled from 28-day-old Coriander cv. Slow Bolt
grown in 12h photoperiods. Seedlings were germinated in WL for 3 days and then
placed into WL, WL + UV-B, WL + FR & WL + FR + UV-B conditions as indicated
for a further 25 days. Anti-oxidant activity (in Trolox equivalent nmol mg-1 fresh leaf
tissue) in UV-B treated plants, n = 8. Plotted are means +/- 1 S.E.M. At high R:FR,
t(14) = -4.419, p = 0.000584. * indicates statistically significant differences at p <
0.05.

seen in other species (Bartoli et al., 2009), Coriander grown in WL + FR had a

reduced antioxidant capacity compared to WL-grown plants. Leaf antioxidant

capacity was not significantly elevated by UV-B in a background of low R:FR,

suggesting that low dose UV-B is not sufficient to alleviate the low R:FR ratio-

induced reduction in antioxidant capacity.

4.6.3 UV-B elevates leaf flavonoid content

Coriander leaves were qualitatively assayed for changes in flavonol glycoside con-

tent in response to UV-B in different R:FR ratio backgrounds using thin layer

chromatography (TLC) and DPBA derivation as previously described (Stracke
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et al., 2010b). Under UV-illumination at 365 nm, DPBA-conjugated methano-

lic flavonol glycoside extracts fluoresce as follows: green - kaempferol deriva-

tives, orange - quercetin derivatives, blue - sinapate derivatives and unknown

substances, dark red - chlorophyll. Arabidopsis mutants deficient in flavonoid

biosynthesis were included as controls: TT4 encodes CHALCONE SYNTHASE

and it catalyses the first step in the flavonol biosynthesis pathway, whereas

FLAVONOID 3’-HYDROXYLASE (encoded by TT7 ) catalyses the conversion

of kaempferol and dihydrokaempferol to quercetin and dihydroquercetin respec-

tively (Winkel-Shirley et al., 1995) (figure 4.1).

Mobile Phase Optimisation

Initially, the Stracke et al. (2010b) protocol was followed exactly, with a mo-

bile phase system of ethyl acetate/formic acid/acetic acid/water (100:26:12:12

v/v/v/v). However, with the equipment available, after derivation with DPBA

the separation of flavonol glycoside bands in the Arabidopsis controls was less

than optimal (figure 4.16a). Reducing the polarity of the mobile phase by al-

tering the composition of the mobile phase to 100:26:6:12 (v/v/v/v) resulted in

improved band separation in Arabidopsis (figure 4.16b). In the Coriander sam-

ples, separation was also improved by altering the mobile phase (figure 4.16c to

4.16d). There is scope to further improve separation of the bands, but separa-

tion was sufficient to demonstrate differences between treatments (figure 4.17

top panel).

UV-B elevates Coriander leaf quercetin content

Consistent with its role in the first step of the flavonoid biosynthesis pathway

(figure 4.1), methanolic extracts from the tt4 mutants lacked flavonol glyco-

sides when compared to Col-0 in all conditions as indicated by the absence of

green and orange derivatives. Similarly, the absence of orange derivatives in the

methanolic extracts from tt7 mutants indicated the absence of quercetin deriva-

tives. Additional orange bands in Col-0 after UV-B illumination indicated that
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(a) (b)

(c) (d)

Figure 4.16: Pilot thin layer chromatography experiments to optimise mobile phase.
Arabidopsis Col-0 (4.16a,4.16b) and Coriander (4.16c,4.16d) with ethyl acetate/formic
acid/acetic acid/water 100:26:12:12 v/v/v/v (4.16a,4.16c) and 100:26:6:12 v/v/v/v
((4.16b),4.16d) mobile phases.
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UV-B elevates the accumulation of quercetin derivatives in both high and low

R:FR backgrounds. This result correlated with a decrease in sinapate deriva-

tives (as indicated by the disappearance of the dark blue bands in the UV-B

treated plants (figure 4.17 bottom panel)). While accumulation of flavonol gly-

cosides in Coriander grown in backgrounds of high and low R:FR did not differ

substantially, UV-B treatment elevated the accumulation of quercetin deriva-

tives as indicated by the presence of orange bands in the Coriander methanolic

extracts (figure 4.17 top panel).

Flavonoids do not contribute to UV-B - mediated inhibition of shade

avoidance

Flavonoids, in particular quercetin, have been shown to modulate auxin trans-

port in plants (Peer and Murphy, 2007). Given that auxin synthesis and trans-

port are central regulators of shade avoidance (Casal, 2012) and its inhibition

by UV-B (Hayes et al., 2014), and as UV-B augments flavonoid accumulation as

described above in section 4.3.1, the question of whether flavonoids contribute

to the inhibition of shade avoidance is thus raised. Analysis of hypocotyl elon-

gation in the tt4 and tt7 Arabidopsis mutants grown in high and low R:FR

with and without UV-B supplementation did not find a statistically significant

interaction with genotype and treatment as factors (figure 4.18) (data collected

by Dr Ashutosh Sharma).

4.7 UVR8 in Coriander could not be detected us-

ing a polyclonal Arabidopsis UVR8 antibody

UV-B is sensed by the UVR8 photoreceptor, first described in Arabidopsis

(Rizzini et al., 2011), but phylogenetic and molecular evidence suggest its func-

tional conservation across multiple taxa and early-diverging lineages (Fernandez

et al., 2016; Soriano et al., 2018). As Coriander clearly responded to UV-B ir-
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Figure 4.17: UV-B supplementation elevates leaf flavonoid content. Leaf tissue
was sampled from 28-day-old Coriander cv. Slow Bolt grown in 12h photoperiods.
Seedlings were germinated in WL for 3 days and then placed into WL, WL + UV-
B, WL + FR & WL + FR + UV-B conditions as indicated for a further 25 days.
Leaf flavonol glycoside accumulation as assayed by high performance thin layer chro-
matography and derivation with DPBA as described previously (Stracke et al., 2010b).
Flavonol glycoside derivatives are imaged with UV-illumination (365nm). Fluorescent
Colour key: green, kaempferol derivatives; orange, quercetin derivatives; blue, sinapate
derivatives and unknown substances; dark red, chlorophyll.
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Figure 4.18: Hypocotyl elongation of flavonoid biosynthesis mutants. Plants were
grown in long day (16h light/8h dark) for 3 days in WL and then 4 days in the
indicated light conditions. Two Way ANOVA interaction with genotype and light
condition as factors (F(6,166) = 1.480, p = 0.188). Data for this figure was collected
by Dr Ashutosh Sharma.

radiation in a fashion that is canonical with UVR8 signaling (Jenkins, 2017),

one might expect Coriander to have a UVR8 homologue. However, an anno-

tated complete nuclear genome sequence for Coriander is not yet available and a

BLAST search of the obtainable Coriander sequences in the NCBI database for

the AtUVR8 coding sequence did not return any significant sequence similari-

ties. Nor did western blot experiments with a custom made polyclonal antibody

raised against Arabidopsis UVR82, unambiguously bind to a specific band in

the Coriander samples (figure 4.19).

4.8 Discussion

Consistent with previous reports from studies in the Arabidopsis model (Hayes

et al., 2014), low R:FR - induced elongation of Coriander stems and petioles

was inhibited by supplementation of low dose UV-B (section 4.3). Observations

2
The custom polyclonal anti-UVR8 antibody was generously provided by Prof. Gareth

Jenkins
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Figure 4.19: A UVR8 polyclonal antibody did not bind to specific bands in Coriander
protein samples. Plants were grown in WL and WL + FR. Tissue was sampled from 10
day old Arabidopsis whole seedlings and leaf tissue from 14 day old Coriander. Protein
samples suspended in extraction buffer were directly irradiated with 20 mmolm-2s-1
UV-B for 10 minutes before 25 mg protein was loaded into each well. (4.19a) 50 second
exposure. Numbers in the left lane correspond to molecular weight bands in kDa.
(4.19b) 10 minute exposure. (4.19c) Ponceau stain of the RUBISCO large subunit
loading control.
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that Coriander demonstrated substantial elongation in response to low R:FR

suggests Coriander is not a shade tolerant species and may account in part for

the observed spindly architecture of the herb as it is often commercially grown

in dense stands.

The plant growth hormone auxin plays a key role in promoting stem elonga-

tion and has a well established role in shade avoidance (Fraser et al., 2016),

whereas UV-B has been shown to down-regulate auxin signaling and biosyn-

thesis in Arabidopsis shade avoidance (Hayes et al., 2014). The similarities in

the architectural responses to R:FR ratio and UV-B between Coriander and

Arabidopsis suggest that similar signaling mechanisms exist in both species.

In Arabidopsis, shade has been shown to reduce the number of leaves produced

due to an increase of the time interval between initiation of new leaves, or plas-

tochron (Cookson and Granier, 2006). As growth in low R:FR reduced the

number of petioles produced in Coriander it was hypothesised that UV-B may

also alleviate this reduction in leaf initation rate. However, UV-B supplemen-

tation did not significantly affect the number of petioles in either high or low

R:FR in Coriander. The observation that 28-day-old Coriander plants appeared

more compact under UV-B treatment occurred mainly through the inhibition

of petiole elongation (section 4.3.2).

Responses to UV-B have previously been shown to be gated by the plant cir-

cadian clock in Arabidopsis (Fehér et al., 2011). In nature the level of UV-B

varies over the course of the day (Findlay and Jenkins, 2016). Stem elonga-

tion in Arabidopsis is rhythmic (Nozue et al., 2007) and analysis of Coriander

hypocotyl elongation rate revealed that in 12 h light/12 h dark photoperiod

conditions, Coriander displayed maximal growth rate during the light period

(section 4.4.1). While a shorter 4 h UV-B dose was sufficient to significantly

inhibit hypocotyl elongation in a background of WL + FR, targeting this treat-

ment to different times of day only produced marginal differences (figure 4.8).

This may suggest that, unlike many reported UV-B responses, UV-B-induced

inhibition of shade avoidance may not be gated by the circadian clock, or the
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data may be a consequence of differences in circadian and photomorphogenic

regulation between Arabidopsis and Coriander. Alternatively, if the inhibition

of elongation is circadian gated, then perhaps this gating negates rhythms of

UV-B responsiveness (Fehér et al., 2011) to minimise differences caused by the

time of day of treatment, thus acting to preserve rhythmic growth (Nozue et al.,

2007).

The data presented here focus on the effects UV-B and shade avoidance on

Coriander, with the experiments being carried out almost exclusively in 12 h

light, 12 h dark photocycles. It would thus be of interest to investigate the

effect of UV-B on Coriander architecture in different length photoperiods i.e.

short (8 h light) and long (16 h light) day conditions. In Arabidopsis, growth in

short day photoperiods promotes hypocotyl elongation and produces maximum

growth rate at the end of the night due to the coincidence of transcriptional and

post-translational regulation of PIF abundance and activity by light signaling

and the circadian clock (Nozue et al., 2007; Soy et al., 2016; Martín et al., 2018).

Growth in different photoperiods with altering light quality may concomitantly

shift the period of maximum elongation and the timing of responsiveness to UV-

B inhibition of shade avoidance. Such future experiments could be informative

as in winter months, shorter days with more cloud cover may exacerbate the

shade avoidance elongation response.

Whilst UV-B supplementation did not significantly inhibit Coriander elongation

in a background of WL (PAR = 70 mmol m-2 s-1); the data reported here do not

exclude the possibility that UV-B supplementation could repress elongation in

low PAR environments where blue light and red light are depleted to low levels

(de Wit et al., 2016). Nevertheless, at higher (sunlight) PAR levels found in

glasshouse growing environments (see table 4.1 for typical values of glasshouse

PAR), low dose UV-B supplementation significantly inhibited elongation of Co-

riander hypocotyls only when grown in dense stands (section 4.5.1), consistent

with the inhibition of hypocotyl elongation in a background of WL + FR in

growth cabinet conditions (section 4.3.1).
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PAR in glasshouses (as opposed to controlled climate growth chambers) is highly

variable due to cloud cover and the height of the sun. The importance of the

UV-B : PAR ratio for the inhibition of hypocotyl elongation was crudely tested

by using 3 different intensities of UV-B for the duration of the photoperiod.

Interestingly, all three UV-B treatments significantly inhibited hypocotyl elon-

gation. Observations that the three treatments were similarly effective may

reflect the sensitivity of the mechanism of UV-B sensing by UVR8, i.e. a 1

mmol m-2 s-1 treatment for the duration of the photoperiod is as saturating as

a 3 mmol m-2 s-1 treatment. This result does not support the proposition that

UVR8-inhibition of hypocotyl elongation is a result of photodimer accumula-

tion (Biever et al., 2014)3 as were this the case the highest intensity of UV-B

should result in the shortest hypocotyls, unless the response is already saturated

with lower intensity UV-B irradiation. The data reported here would not be

inconsistent with the finding that the UVR8 monomer/dimer equilibrium stays

reasonably constant over the course of the day (Findlay and Jenkins, 2016).

Considering its conservation in early diverging lineages (Soriano et al., 2018),

it seems reasonable to assume that Coriander will have a UVR8 homologue.

Yet in this work, a homologue could not be unambiguously identified using the

available Arabidopsis antibody (section 4.7). In the absence of an annotated

Coriander genome, the question of whether or not Coriander has the UVR8

protein remains open.

Low R:FR ratio light and high intensity UV-B radiation have been reported to

reduce leaf chlorophyll content in multiple species (Bartoli et al., 2009; Kumar

and Pandey, 2017). With the observed healing of the ozone layer (Solomon

et al., 2016), more research emphasis is now being placed on the regulatory ef-

fects of low-dose, non-harmful UV-B radiation, which has been found to improve

photosynthetic efficiency (Davey et al., 2012). In the tested conditions, neither

R:FR ratio nor low intensity UV-B significantly depleted, or promoted, chloro-

3
The work reported by Biever et al. (2014) investigated photomorphogenesis in etiolated

seedlings so is not directly comparable to the data reported here. Nevertheless, it presents a

hypothesis that the data in this thesis do not support.
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phyll abundance, suggesting that Coriander chlorophyll accumulation may not

be as sensitive to light quality as in other species (section 4.6.1).

Following UV-B perception, Arabidopsis upregulates antioxidant defences via

the UVR8-COP1-HY5 signaling pathway (Ulm et al., 2004; Rizzini et al., 2011;

Jenkins, 2017) for the prevention or alleviation of DNA damage and oxidative

pressure (Hideg et al., 2013). Consistent with studies in Arabidopsis (Csepregi

et al., 2017), for Coriander grown in a background of WL, low dose UV-B sig-

nificantly increased antioxidant capacity (figure 4.15). However, it was striking

that the same UV-B treatment given to Coriander grown in low R:FR ratio

did not significantly increase antioxidant capacity. Indeed, Coriander grown in

a low R:FR ratio exhibited a drop in antioxidant capacity compared to plants

grown in a high R:FR ratio, which is consistent with findings in other species

(Bartoli et al., 2009). Observations that antioxidant capacity is inhibited by

low R:FR ratio light could be interpreted as plants diverting resources from an-

tioxidant defence toward elongation. Plants may perceive a high R:FR ratio as

a signal of direct sunlight, which is associated with high light, and the potential

for damage due to excess irradiance. Conversely, a low R:FR ratio is a signal of

indirect or reduced light (perhaps due to shade) and hence in this context pho-

toprotective mechanisms are less important. As UV-B is a component of direct

sunlight, it was surprising that supplemental UV-B irradiation was insufficient

to significantly elevate antioxidant capacity in a low R:FR ratio background,

suggesting that low R:FR ratio light blocks UV-B activation of antioxidant de-

fences. While interesting, it should be noted that in a natural context plants

would only receive sunlight levels of UV-B in conjunction with a low R:FR ratio

on emergence from a canopy.

Analysis of Coriander leaves for changes in flavonol glycoside content using thin

layer chromatography suggests that in both a background of WL and WL +

FR, UV-B mainly induces the accumulation of quercetin (section 4.6.3). While

increases in flavonoids vary from species to species, the increase of quercetin by

UV-B has previously been reported in such unrelated taxa as petunia (Ryan
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et al., 1998), Brassica napus (Wilson et al., 1998) and apple (Solovchenko and

Schmitz-Eiberger, 2003). Like other flavonoids, quercetin has UV-B absorptive

properties, but it also acts as an effective antioxidant (Agati and Tattini, 2010)

likely due to multiple hydroxy groups in the A, B & C aromatic rings (Rice-

Evans et al., 1996). However, quercetin is not likely to play a large role in Corian-

der’s ROS scavenging as the antioxidant capacity data show that when UV-B

is given in a background of WL + FR, there is no significant increase in total

antioxidant capacity (figure 4.15) despite the clear increase in quercetin (figure

4.17). In spite of its potential health benefits, quercetin, like other flavonoids is

associated with bitter flavours (Drewnowski and Gomez-Carneros, 2000). Thus

growers may need to balance aesthetic and health benefits with flavour alter-

ations. Aldehydes are understood to be the main contributor to Coriander’s

(polarizing, due to variants of the OR6A2 olfactory receptor gene in humans

(Eriksson et al., 2012)) flavour. It would be interesting to analyse, perhaps us-

ing Gas Chromatography Mass Spectroscopy (GC-MS), the aldehyde content of

UV-B-treated Coriander.

In addition to their antioxidant and sunscreening properties, flavonoids have

been shown to negatively regulate auxin transport (Peer and Murphy, 2007).

Hypocotyl elongation analysis of flavonoid deficient mutants tt4 and tt7 found

that they behaved similarly to wild type controls (figure 4.18), suggesting that

flavonoids do not play a key role in the UV-B mediated inhibition of shade

avoidance.

The results reported in this chapter suggest that the inclusion of UV-B into

growth regimes can give appreciable benefits to Coriander architecture and al-

terations to phytonutrient content. While 4 h UV-B delivered daily at 1.5 mmol

m-2 s-1 was sufficient to elicit a significant suppression of hypocotyl elongation

even in highly variable glasshouse conditions, the data indicate that the tim-

ing and the intensity of the UV-B dose were relatively unimportant compared

to the duration of dose. Here, fluorescent narrow band UV-B bulbs were used

to deliver supplemental UV-B treatments, but due to advancements in UV-B
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LED technology, future research is likely to utilise LEDs (Wargent, 2016). At

present, UV-B LEDs are still prohibitively expensive, with short lifespans and

fairly high energy requirements. An alternative solution that may also minimise

energy consumption could be the construction of greenhouses from materials

with relatively high UV-B transmission qualities (Paul et al., 2005). It would

thus be interesting to see if such UV-B transparent materials can improve the

architecture and alter the phytonutrient content of glasshouse grown Coriander.

122



Chapter 5

Low R:FR Ratio Damps

Rhythms of CCA1 and

TOC1 Expression

5.1 Introduction

H
ow plants adapt to crowded conditions through stem elongation and the

elevation of petioles continues to be intensely studied. A major cue for

plants that they are in close proximity to neighbouring vegetation is the relative

enrichment of long wavelength FR light, resulting in a low R:FR ratio that is

perceived by the phytochrome photoreceptors (reviewed in Casal (2012); Pierik

and De Wit (2014); Fraser et al. (2016)). A low R:FR ratio causes the sta-

bilisation of PIFs 4 and 5 (Lorrain et al., 2008) and the dephosphorylation of

PIF7 (Li et al., 2012a), resulting in an elevation of auxin synthesis and trans-

port, and ultimately the elongation of hypocotyls and petioles. In addition to

controlling stem elongation through direct interactions with PIF proteins, pho-

toreceptors regulate the entrainment of the plant circadian clock (Oakenfull and
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Davis, 2017).

At dawn, the transition from dark to light is a vital clock resetting cue (Millar

et al., 1995b). The phytochrome and cryptochrome photoreceptors have major

roles in the entrainment process (Somers et al., 1998; Wenden et al., 2011) and

the UVR8 photoreceptor has also been shown to entrain the circadian clock

independently of HY5 and HYH (Fehér et al., 2011). The R-light photorecep-

tor, phyB, physically interacts with the evening complex component EARLY

FLOWERING 3 (ELF3), and through this mechanism may provide a light in-

put pathway into the circadian clock (Liu et al., 2001; Kolmos et al., 2011).

PhyA has been shown to mediate low fluence R and B light signalling to the

circadian clock (Somers et al., 1998), but there have been no reports of direct

interaction between phyA and circadian clock components. Loss of ELF4 func-

tion has, however, been shown to curtail FR signalling to the clock, suggesting

a role in phyA signalling (Wenden et al., 2011).

The morning-expressed Myb-like transcription factor CCA1 (Wang and Tobin,

1998) along with its close homolog LHY (Schaffer et al., 1998), repress the ex-

pression of the evening-phased PSEUDO RESPONSE REGULATOR (PRR)

TIMING OF CAB EXPRESSION 1 (TOC1) through interaction with a pro-

moter motif known as the evening element (EE) (Alabadí et al., 2001). Subse-

quently, TOC1 acts as a transcriptional repressor that represses the expression

of CCA1 and LHY (Huang et al., 2012a; Gendron et al., 2012; Pokhilko et al.,

2012). Together these genes form a core negative feedback loop within the Ara-

bidopsis circadian clock. CCA1 is regarded as a central transcriptional repressor

of the plant circadian clock. Over-expression of CCA1 causes clock arrhythmia

in LL, with plants displaying extremely elongated hypocotyls (Wang and Tobin,

1998). TOC1 over-expressors are also arrhythmic in LL (Makino et al., 2002),

but, in contrast with CCA1 over-expressors, display short hypocotyls. TOC1

has recently been shown to bind to PIF3 and PIF4 and inhibit the expression

of PIF targets, thereby inhibiting hypocotyl elongation (Soy et al., 2016; Zhu

et al., 2016).
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Through circadian gating, the clock exerts control over the phase of cellular

and physiological processes such as hypocotyl elongation to produce rhythmic

behaviours and restrict responses to appropriate times of day (Greenham and

Mcclung, 2015). The circadian clock provides a competitive advantage, but only

if its period matches its environment (Dodd et al., 2005), the clock can therefore

only provide its advantage if it is correctly entrained. Dowson-Day and Millar

(1999) showed that disruption of the plant circadian clock altered rhythmic pat-

terns of hypocotyl elongation. Experiments by Nozue et al. (2007) demonstrated

that, by regulating PIF transcript abundance and PIF protein abundance re-

spectively, the circadian clock and light mediate rhythmic hypocotyl growth in

driven conditions, proposing an “external coincidence” model to explain their

observations. Nusinow et al. (2011) reported that the evening complex medi-

ates rhythms of PIF transcript abundance, while another report proposed that

PIF4 and ELF3 form a non DNA-binding complex, independent of the other

evening complex components (Nieto et al., 2015). Other studies have found

that the rapid shade avoidance response is gated by the circadian clock (Salter

et al., 2003), although Sellaro et al. (2012) report that the evening complex

plays only a minor role in the gating of shade avoidance in driven conditions.

Reminiscent of the ELF3-PIF4 interaction (Nieto et al., 2015), recent work has

revealed that members of the PRR family also mediate the circadian gating of

hypocotyl elongation and shade avoidance through direct interaction with PIFs

(Soy et al., 2016; Martín et al., 2018).

In chapter 3, rhythms of transcript abundance for HY5, HYH and GA2ox1

after UV-B treatment were unexpectedly abolished in free-running low R:FR

ratio conditions, suggesting that the circadian gating of the UV-B induction

of these genes was lost. The experiments reported in this chapter investigate

the hypothesis that this loss of circadian gating could be a consequence of an

alteration of the behaviour of the circadian clock.
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5.2 Low R:FR ratio damps free-running oscilla-

tions of CCA1 and TOC1 relative transcript

abundance

Experiments were carried out on the same cDNA collected in section 3.3: Plants

were entrained in 12 h light/12 h dark photocycles in high R:FR (5) and low

R:FR (0.05) at PAR = 70 mmol m-2 s-1 for four days before transfer to con-

tinuous light (LL) on day 5 (while maintaining their respective R:FR ratios).

6-, 7- & 8-day-old seedlings were sampled for RNA analysis every 4 h (figure

5.1). The relative transcript abundance of two well-characterised circadian clock

genes was analysed. CCA1 is a morning - phased repressor, whereas TOC1 is

an evening - phased repressor (reviewed in Hsu and Harmer (2014)). Under

high R:FR, CCA1 (figure 5.1a) and TOC1 (figure 5.1b) both had rhythms of

transcript abundance in LL consistent with previous reports: CCA1 relative

transcript abundance peaked at the start of the subjective day and TOC1 rel-

ative transcript abundance peaked at the end of subjective day. For plants

entrained and grown in low R:FR, transcript oscillations were damped to the

point that they appeared arrhythmic. Notably, oscillations of CCA1 transcript

damped to a low abundance whereas oscillations of TOC1 transcript damped

to a high abundance (figure 5.1).

5.3 Low R:FR ratio damps free-run oscillations

of CCA1pro::LUC and TOC1pro::LUC

The altered levels of CCA1 and TOC1 transcript abundance (figure 5.1) may

result from low R:FR-mediated effects on promoter activity. Luciferase assays

were employed to analyse the dynamics of CCA1 and TOC1 promoter activity

at a PAR of 47 mmol m-2 s-1 in three different R:FR ratios; high = 1.2, interme-

diate = 0.5 & low = 0.05, which correspond with neighbour detection conditions
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Figure 5.1: R:FR ratio alters behaviour of CCA1 and TOC1 transcript abundance
in free run. Wild type Arabidopsis (L.er) seedlings were entrained in 12 h L : 12
D in either R:FR = 5 (open circles) or R:FR = 0.05 (filled circles) for 4 d. Plants
were transferred to 24 h LL on day 5. 6, 7 & 8 day-old-seedlings were sampled for
RNA analysis. Plotted is mean relative transcript abundance of two independent
experiments (n = 2) of (5.1a) CCA1, (5.1b) TOC1 normalised to ACTIN-2 +/- 1
S.E.M.
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in nature such as direct sunlight, moderate crowding and densely crowded con-

ditions respectively. Transgenic plants expressing CCA1pro::LUC (figure 5.2a)

and TOC1pro::LUC (figure 5.2b) had strong rhythmic behaviour across the

range of R:FR ratios in driven (LD) conditions (first 48 h of data acquisition),

which suggests that low R:FR in LD cycles does not disrupt entrainment (figure

5.2). 24 h after transfer to LL low R:FR, CCA1pro::LUC and TOC1pro::LUC

oscillations were damped compared to high and intermediate R:FR (figure 5.2).

CCA1pro::LUC and TOC1pro::LUC signal damped low and high respectively,

which is consistent with the transcript abundance data (section 5.2) and their

reciprocal transcriptional repression (Gendron et al., 2012; Hsu and Harmer,

2014).

Relative amplitude error (RAE) from Fast Fourier Transform Non Linear Least

Squares (FFT-NLLS) analysis indicates the closeness of fit of the experimental

data to a sine wave (where 0 is perfect fit, 1 is no fit and values > 0.5 could be

interpreted to suggest arrhythmia for luciferase reporters). FFT-NLLS analysis

of luciferase data after the initial 24 h in continuous light showed that plants

in continuous low R:FR had marginally greater RAEs than plants grown in

high and intermediate R:FR. This observation may be due to a drop in the

signal to noise ratio as the reduction in R:FR ratio caused a reduction in am-

plitude so noise becomes a larger portion of the signal, it also suggests damping

of promoter activity and that rhythmicity was weakened by low R:FR. Both

CCA1pro::LUC and TOC1pro::LUC still showed robust rhythmicity with RAEs

<0.5 (figure 5.3a). With reductions in R:FR ratio from 1.2 to 0.5 to 0.05, both

CCA1pro::LUC and TOC1pro::LUC plants displayed reduced period lengths

(figure 5.3b,5.3c), which suggests that lowering R:FR ratio may accelerate the

circadian clock in LL. In the first 48 h after transfer to LL, a 5 h delay in phase

in CCA1pro::LUC and TOC1pro::LUC signal was observed in the low R:FR-

treated plants that was not observed in the intermediate and high R:FR-treated

plants (figure 5.2).

The data described above indicate that the R:FR ratio affects circadian clock
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function in LL. In particular, low R:FR-grown plants in LL had damped oscilla-

tions and shortened periods. In LD, there was no obvious difference in behaviour

of the circadian clock between the different R:FR ratios, which suggests that in

the presence of a strong entraining signal, that is, the transition from dark to

light at the start of the day, clock function is mostly unaffected.

5.4 Discussion

In this chapter, the data reported show that R:FR ratio affects the rhythmic

behaviour of central clock components in free-running conditions. Observa-

tions that CCA1 and TOC1 transcript and promoter activity display damped

oscillations (to the point where oscillations in transcript abundance were not

visible - possibly due to larger sampling intervals) in low R:FR supports pre-

vious findings from experiments using monochromatic FR to entrain the clock

(Wenden et al., 2011). Both the transcript abundance and luciferase data sug-

gest that CCA1 expression damps low whereas TOC1 expression damps high

in low R:FR. Given that both CCA1 and TOC1 act as reciprocal transcrip-

tional repressors (Matsushika et al., 2002; Gendron et al., 2012), one possibility

is that low R:FR elevates TOC1 expression in the first instance, which causes

a subsequent suppression of CCA1 expression. The extremely low R:FR ratio

used here may be acting similarly to the monochromatic FR used in Wenden

et al. (2011): where it was surmised that the clock paused at a point in its limit

cycle. It has been shown that the plant circadian clock displays tissue-specific

behaviours, with guard cells, epidermal cells and the vasculature all having dis-

tinct circadian clocks (Yakir et al., 2011; Endo et al., 2014). Some tissues also

appear to display inter-organ coupling, though the coupling factor has yet to be

established (Endo et al., 2014; Endo, 2016), it has been suggested that in roots

a photosynthesis-related (James et al., 2008) or perhaps hormonal signal may

communicate timing information between the shoot and the root (Gould et al.,

2017). The pause in the limit cycle could, therefore, happen heterogeneously
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Figure 5.2: R:FR ratio alters behaviour of CCA1pro::LUC and TOC1pro::LUC.
Traces of luciferase activity of (5.2a) CCA1pro::LUC, (5.2b) TOC1pro::LUC in the
Col-0 background in R:FR ratio = 0.05 (red line), 0.5 (grey line) and 1.2 (blue line)
as indicated in driven (LD 0 – 48h), followed by free-run (LL 48-168h) conditions.
Dark grey shading indicates night while light grey shading indicates subjective night.
Plants were grown for 7 d in PAR = 70 m mol m-2 s-1 at the R:FR ratio indicated
then transferred to PAR = 47 mmol m-2 s-1for 3 d to entrain maintaining the same
R:FR ratios. 10-day-old plants in clusters of 12 were dosed with luciferin and imaging
commenced 24 h later (Time 0 on graph). Plotted are means +/- 1 S.E.M., n = 6.
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Figure 5.3: Low R:FR ratio reduces period length. (5.3a) Relative Amplitude
Error and period length scatter plot, using data derived from FFT-NLLS analy-
sis of CCA1pro::LUC and TOC1pro::LUC free-run data (Figure 5.2). Plotted are
means +/- 1 S.E.M., n = 6. Period length box plots of (5.3b) CCA1pro::LUC and
(5.3c) TOC1pro::LUC. Different letters indicate statistically significant differences
by one-way ANOVA at p < 0.05 (CCA1pro::LUC (F(2,15) = 230.559, p < 0.001),
TOC1pro::LUC (F(2,15) = 215.589, p < 0.001)).
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across cells or organs: The damping of oscillations observed in continuous low

R:FR reported here may result from a loss of synchronicity between cells or tis-

sues (Yakir et al., 2011; Wenden et al., 2012), maintenance of synchronicity but

a reduction in amplitude range, or perhaps a mixture of the two. Unfortunately

it was not possible to discern which of these possibilities is the cause as the

techniques used here sampled the whole aerial tissue of seedings. Wenden et al.

(2011) also showed that the elf4-1 mutation abolished the damping of rhythms

caused by FR. It would therefore be interesting to investigate the role of ELF4

in low R:FR. The low R:FR-induced damping of circadian oscillations in LL is

likely not isolated to just CCA1 and TOC1 due to the interlocking feedback

loop architecture of the circadian clock system and its downstream components,

although this remains to be tested. A damping of oscillations of the circadian

clock may explain the loss of the circadian gating of the UV-B-induced genes

HY5, HYH and GA2ox1 reported in chapter 3: Supposing that mechanisms

for circadian gating include direct association of rhythmic clock components to

proteins and promoters to cause transcriptional repression or chromatin modi-

fications (Hsu et al., 2013; Nieto et al., 2015; Soy et al., 2016; Zhu et al., 2016;

Martín et al., 2018), a loss of rhythmicity in the abundance of circadian clock

proteins could lead to a loss of rhythmicity in promoter activity, and hence

transcript abundance, of target genes. Taken alongside the circadian clock’s

pervasive control of the transcriptome (Covington et al., 2008), it is likely that

the expression and the circadian gating of many other downstream genes will

be affected in their expression.

Observations that CCA1pro::LUC and TOC1pro::LUC exhibited damped os-

cillations and a phase delay of c. 5 h after 24 h in the lowest R:FR (figure 5.2)

raises the possibility that there could be a threshold R:FR ratio below 0.5 where

phase is delayed and rhythmicity is damped in LL. In the conditions used here,

reducing the R:FR ratio progressively shortened period in LL (figure 5.3), such

that in spite of the initial phase delay of c. 5 h, the plants grown in low R:FR

ratio came back into phase with plants grown in high and intermediate R:FR
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after 72-84 h (figure 5.2). In contrast, Jiménez-Gómez et al. (2010) reported

that simulated shade increased period length in free-run, but this result may

reflect ecotype-specific responses to shade of the Bay-0 and Sha ELF3 alleles.

As reductions in R:FR ratio were achieved through increasing the intensity of

the FR LEDs, this increased clock pace in low R:FR could be a consequence of

Aschoff’s rule, where increasing the light intensity that a diurnal organism is

exposed to shortens its period in free run (Aschoff, 1979). Another possibility

is that FR supplementation increases metabolic entrainment of the oscillator:

Haydon et al. (2013) showed that the addition of sugar to arabidopsis growth

media shortens circadian period in a PRR7-dependent manner. Taken alongside

the Emerson effect, where maximum photosynthetic rate is achieved with a

combination of 680 and 700 nm wavelengths (Emerson, 1958), it is possible

that, as previously described in Lactuca sativa by Zhen and van Iersel (2017),

the supplementation of FR to the experimental light conditions increases the

rate of photosynthesis, which strengthens sugar entrainment of the circadian

clock and hence shortens period length in free-run.

Observations that extremely low R:FR ratios caused damping of clock oscilla-

tions in free-run, but not in driven conditions suggests that such responses may

not occur naturally in diurnal cycles of shade. In addition, an extremely low

R:FR ratio would generally be experienced naturally by plants in conditions

of very low PAR (figure 2.2). The combination of continuous light and an ex-

tremely low R:FR ratio in a background of moderate PAR does therefore not

accurately reflect natural light conditions. In order to study circadian behaviour

under different R:FR ratios in physiologically relevant conditions, the following

chapter (6) investigates the circadian clock in deep shade conditions that more

accurately reflect those found in nature.
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Chapter 6

Circadian Clock Behaviour

and the Regulation of Stem

Elongation in Deep Shade

6.1 Introduction

A
system commonly used for studying shade avoidance reduces the R:FR ra-

tio while keeping PAR constant by adding FR to a background of (e.g.)

white light. In doing so, plants can be exposed to realistic R:FR ratios without

having to alter environmental features with shade netting or filters, which al-

lows researchers to study proximity perception rather than shade. In controlled

climate chambers, the capabilities of FR LED light sources make it possible to

achieve R:FR ratios of < 0.1 without reducing R fluence rate, e.g. a R:FR ratio

of 0.05 in a background of PAR = 70 mmol m-2 s-1 (figure 2.1c). In nature,

however, a ratio of R:FR < 0.1 would be found in canopy shade where PAR

< 10 mmol m-2 s-1 (figure 2.2a). Ballaré et al. (1990) showed that, in natural

conditions, FR light scattered by vegetation in dense stands is perceived by
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stems and causes internode elongation in Sinapis alba and Datura ferox. It is

interesting that this early study noted that at greater canopy densities, block-

ing FR light did not fully cancel the elongation response, suggesting that the

additional elongation is attributable, at least in part, to a lower fluence rate of

R and B light (due to its absorption by vegetation for photosynthesis) (Ballaré

et al., 1990).

Phytochromes perceive R:FR: phyB is photoconverted to the inactive Pr form

when R:FR is moderately lowered to mimic dense stands without shading (Franklin,

2008). In deep shade, where both PAR and R:FR ratio are very low, phyA sig-

nalling antagonises stem elongation (Martínez-García et al., 2014). phyA is

highly light labile, it accumulates to high levels in etiolated seedlings and sig-

nals during rapid photoconversion between Pr and Pfr, but on transfer to light

that establishes a high proportion of Pfr (e.g. R) phyA is rapidly degraded to

low steady-state levels by the proteasome (Clough and Vierstra, 1997; Debrieux

and Fankhauser, 2010). The rapid turnover of phyA in light explains why phyA

only antagonises shade avoidance when PAR is very low. Yanovsky et al. (1995)

reported that in deep shade, phyA mutants had impaired de-etiolation, had ex-

tremely elongated hypocotyls and died. Perhaps, therefore, the FR-induced an-

tagonism of hypocotyl elongation by phyA in deep shade may prevent excessive

elongation in an otherwise light-depleted environment where other photorecep-

tors would not be expected to signal. To date, only PIF1 and PIF3 have been

reported to bind to phyA (Shen et al., 2005; Bauer et al., 2004). A recent study

shed new light on the mechanism of phyA signalling, reporting that phyA ac-

cumulates in deep shade and competes with SCFTIR1 to bind to and stabilise

the AUX/IAA repressors of the AUXIN RESPONSE FACTOR (ARF) family

to inhibit auxin-induced transcription (Yang et al., 2018). Nevertheless, a com-

prehensive model for the antagonism of shade avoidance by phyA remains to be

established.

Blue light (B) is also attenuated in deep shade. Cryptochromes perceive B light

and, in low B light, have been shown to physically interact with both PIF4
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and PIF5 and co-associate with PIF target promoters to modulate their activ-

ity (Pedmale et al., 2015). de Wit et al. (2016) reported that the combination

of low B and low R:FR resulted in longer hypocotyls and petioles than either

signal alone, arguing that enhanced PIF abundance and transcriptional activity

resulted in increased brassinosteroid and auxin signalling. Other studies pro-

pose that in deep and prolonged shade, less auxin is synthesised than in neigh-

bour detection conditions. Instead, auxin sensitivity is enhanced in deep shade

through the increased expression of the auxin receptors AUXIN SIGNALLING

F-BOX PROTEIN 1 (AFB1 ) (Hersch et al., 2014), AFB2 and TIR1 (Puccia-

riello et al., 2018). Elongation in deep shade, therefore, is regulated through

interactions between photoreceptors and PIFs to modulate the levels of, and

sensitivity to, growth hormones including auxin and brassinosteroid. While

studies have reported that the circadian clock gates shade avoidance through

transcriptional regulation and by direct interactions with PIFs by clock compo-

nents (Salter et al., 2003; Soy et al., 2016), the role of the circadian clock on

elongation in deep shade has yet to be explored.

Light quantity as well as quality influences the behaviour of the plant circadian

clock. In constant conditions, the clock demonstrates fluence-rate dependent

behaviour with increases in R, B and UV-B fluence rates causing period short-

ening (Somers et al., 1998; Fehér et al., 2011). As reported by Jiménez-Gómez

et al. (2010) and as demonstrated in chapter 5, R:FR ratio also has an impact

on the behaviour of the clock. Haydon et al. (2013) showed that the lengthening

of circadian period caused by growth in < 10 mmol m-2 s-1 light (presumably

due to a weakening of sugar signalling to the clock) can be reversed in a PRR7-

dependent manner through the addition of sugar to arabidopsis growth media.

It is possible that in deep shade, metabolic entrainment of the plant circadian

clock could also be weakened. In the context of low PAR, phyA accumulates to

very high levels, where its minor absorbtion of B light, alongside its absorbtion

of R and FR light, may take on an important role in the entrainment of the

clock (Somers et al., 1998). The effects and input mechanisms of monochro-
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matic light to the plant circadian clock are well-studied, but the mechanisms

and relative contributions of the different photoreceptors to the entrainment of

the plant circadian clock in shaded conditions remains unclear.

In chapter 5, the effect of low R:FR ratio on clock function was sufficient to

damp oscillations of clock components in continuous light but not in driven

conditions (where there is a strong entraining stimulus); it was hypothesised

that by weakening the entraining stimulus in driven conditions (by lowering PAR

to simulate deep canopy shade), low R:FR - induced damping of oscillations

might be observed. By simulating natural light conditions, it might also be

possible to assign a physiological significance to the observations of circadian

clock behaviour in low R:FR ratio light. This chapter analyses circadian clock

behaviour and its regulation of hypocotyl elongation in simulated deep shade

conditions.

6.2 In low PAR, low R:FR ratio elevates peak

TOC1 and evening complex expression

CCA1pro::LUC and TOC1pro::LUC plants were entrained in 12 h L/12 h D

(12L:12D) under R:FR = 5, PAR = 70 mmol m-2 s-1at 20 ºC for 7 days then

transferred to PAR = 5 mmol m-2 s-1 for 4 days to entrain in low PAR before

imaging. Three cycles of 12L:12D at R:FR = 0.9 were captured followed by

three cycles of 12L:12D at R:FR = 0.05 before return to four cycles of R:FR =

0.9 (Figure 6.1). Peak luciferase signal was reduced by an order of magnitude

under PAR = 5 mmol m-2 s-1 (Figure 6.1c,6.1d) compared to plants in PAR =

47 mmol m-2 s-1 (Figure 5.2) but the luciferase signal from both CCA1pro::LUC

and TOC1pro::LUC was still rhythmic, with luciferase signal traces displaying

kurtoses typical of plants in driven conditions (figure 6.1c,6.1d). CCA1pro::LUC

signal appeared to be unaffected by the altering R:FR ratio light conditions

(figure 6.1c). After 12 h in R:FR = 0.05, peak TOC1pro::LUC signal showed
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Figure 6.1: In low PAR, low R:FR ratio elevates TOC1pro::LUC signal in driven
cycles. For luciferase assays in PAR = 5 mmol m-2 s-1 Plants were grown in WL PAR
= 70 mmol m-2 s-1, R:FR = 5 for 7 days before transfer to PAR = 5 mmol m-2 s-1, R:FR
= 0.9 for 4 days. Imaging was carried out during 10 driven cycles of PAR = 5 mmol
m-2 s-1at R:FR = 0.9 and R:FR = 0.05 as indicated in the experimental design (6.1a).
(6.1b) No shading indicates light period at R:FR = 0.9, red shading indicates light
period at R:FR = 0.05 and gray shading indicates dark period. (6.1c) CCA1pro::LUC,
(6.1d) TOC1pro::LUC, n = 6, plotted are means +/- 1 S.E.M. .
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Figure 6.2: TOC1 relative transcript abundance is elevated by supplemental FR in
low PAR . TOC1 relative transcript abundance normalised to PP2A at R:FR = 2.5
and R:FR = 0.05. Col-0 plants were grown in PAR = 5, R:FR = 2.5 or R:FR = 0.05
for 7 days before sampling at the indicated times. Plotted are the means +/- 1 S.E.M.
n = 3.

increased amplitude during the night compared to under R:FR = 0.9, while on

return to R:FR = 0.9, TOC1pro::LUC signal peak amplitude dropped to the

level it was before the cycles of R:FR = 0.05 (figure 6.1d). Consistent with

the elevation of TOC1pro::LUC signal, FR in a background of low PAR also

elevated TOC1 relative transcript abundance, producing a discernible peak in

early night that was not present in high R:FR (figure 6.2).

At a higher PAR (47 mmol m-2 s-1) (Figure 6.3), FR supplementation did not

augment TOC1 promoter activity. Unlike at low PAR, peak TOC1pro::LUC

signal steadily increased with time due to increases in leaf area related to plant

growth whether it was under low (0.05) or high (1.2) R:FR. Furthermore, peak

signal did not decrease after return to high R:FR (figure 6.3). These data

suggest that the elevation of TOC1 promoter activity is a phenomenon that is

particular to deep shade.
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Figure 6.3: At high PAR, supplemental FR does not elevate TOC1pro::LUC signal
in driven cycles. Plants were germinated in WL PAR = 70 mmol m-2 s-1, R:FR = 5 for
7 days before transfer to PAR = 47 mmol m-2 s-1, R:FR = 0.9 for 4 days entrainment.
Imaging was carried out during two driven cycles of PAR = 47 mmol m-2 s-1, R:FR
= 0.9 followed by three driven cycles of PAR = 47 mmol m-2 s-1, R:FR = 0.05 then a
further 4 cycles at PAR = 47 mmol m-2 s-1, R:FR = 0.9, as indicated, on clusters of
12 plants. N = 6, plotted are means +/- 1 S.E.M. No shading indicates light period
at R:FR = 0.9, red shading indicates light period at R:FR = 0.05 and gray shading
indicates dark period.
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Given that the TOC1 promoter contains the evening element motif (AAAATATCT),

the transcript abundance of genes encoding evening complex components ELF3,

ELF4 and LUX, all of which also contain the evening element motif, was also

analysed in low PAR and low R:FR. These data were rather variable and did

not consistently show alterations in ELF3, ELF4 and LUX relative transcript

abundance in responses to changes in R:FR in a background of deep shade

(figure 6.4)

6.3 phyA and RVE8 regulate TOC1 and evening

complex transcript abundance in deep shade

Phytochromes detect the R:FR ratio and communicate information about a

plant’s environment (Fraser et al., 2016). In particular, phyB is a major regu-

lator of red light signalling whereas FR stimulates phyA signalling in low PAR.

phyA has previously been shown to mediate FR entrainment of the plant cir-

cadian clock (Wenden et al., 2011), and Tepperman et al. (2001) reported that

TOC1 was upregulated by phyA following FR treatment of etiolated seedlings.

Consistent with these data, in low PAR, whereas the phyB-1 mutant was simi-

lar to WT with elevated TOC1 transcript abundance in low R:FR; the phyA-1

mutant did not demonstrate the low R:FR - induced elevation of TOC1 (figure

6.5), suggesting that the elevation of TOC1 expression in low PAR, low R:FR

is phyA-mediated.

To date, there has been no evidence of direct association of phyA with the TOC1

promoter. The TOC1 promoter does not appear in a publicly available ChIP-

seq and RNA-seq dataset that identified promoters of genes directly targeted

by phyA (Chen et al., 2014). There are also very few identified positive regula-

tors in the plant circadian system, which was highlighted by Somers (2012) who

lamented the “dearth of activators”. Recent work has, however, found a new

central circadian clock component, REVEILLE 8 (RVE8) to be an activator of
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Figure 6.4: Relative Transcript Abundance of evening complex genes under changing
R:FR in low PAR. (6.4a) ELF3, (6.4b) ELF4 and (6.4c) LUX normalised to PP2A
at R:FR = 2.5 (blue) and R:FR = 0.05 (red). Col-0 plants were grown in PAR = 5,
R:FR = 2.5 or R:FR = 0.05 for 7 days before sampling at the indicated times. Plotted
are the means +/- 1 S.E.M. n = 3.

143



CHAPTER 6. CIRCADIAN CLOCK BEHAVIOUR AND THE
REGULATION OF STEM ELONGATION IN DEEP SHADE

TO
C

1 
R

el
at

iv
e 

Tr
an

sc
rip

t 
Ab

un
da

nc
e 

N
or

m
al

is
ed

 to
 P

P2
A

0

5

10

15

20

25

30

R:FR = 2.5
R:FR = 0.05

L. e
r

phyA
-1

phyB
-1

0.06 0.30 0.08
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Figure 6.6: In low PAR, low FR - induced elevation of TOC1 transcript is dependent
on RVE8. TOC1 relative transcript abundance at dusk normalised to PP2A in 3 day
old rve8-1 mutant in the Col-0 background in PAR = 5 mmol m-2 s-1 R:FR = 2.5 and
R:FR = 0.05. n = 3, plotted are means +/- 1 S.E.M. Located above the bar charts
are p-values from t-tests comparing the DDCT values within genotypes.

gene expression that appears to associate with the evening element of promoters

such as TOC1 to promote histone acetylation, an epigenetic mark associated

with gene expression (Rawat et al., 2011; Hsu et al., 2013). In low PAR, the FR-

induced elevation in TOC1 relative transcript abundance was also dependent

on the presence of RVE8 (Figure 6.6) . In addition, the evening complex genes

ELF3, ELF4 and LUX, which also contain the evening element in their pro-

moter regions, had elevated expression at dusk that also appeared to be phyA-

and RVE8- dependent (Figure 6.7). Contrasting with Chen et al. (2014), in the

conditions used here, RVE8 relative transcript abundance was not promoted in
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Figure 6.7: phyA and RVE8 regulate transcript abundance of evening complex genes
in deep shade. Relative transcript abundance of Evening Complex genes at dusk
normalised to PP2A in 3 day old phyA-1 and rve8-1 mutants grown in PAR = 5 mmol
m-2 s-1 at R:FR = 2.5 and R:FR = 0.05, n = 3, plotted are means +/- 1 S.E.M.
Located above the bar charts are p-values from t-tests comparing the DDCT values
within genotypes.

146



CHAPTER 6. CIRCADIAN CLOCK BEHAVIOUR AND THE
REGULATION OF STEM ELONGATION IN DEEP SHADE

R
VE

8 
R

el
at

iv
e 

Tr
an

sc
rip

t 
Ab

un
da

nc
e 

N
or

m
al

is
ed

 to
 P

P2
A

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Time since dawn (h)

0 2 4 6 8

R
VE

8 
R

el
at

iv
e 

Tr
an

sc
rip

t 
Ab

un
da

nc
e 

N
or

m
al

is
ed

 to
 P

P2
A

0

1

2

3

4

5
L.er R:FR = 2.5
L.er R:FR = 0.05
phyA-1 R:FR = 2.5
phyA-1 R:FR = 0.05

L.er

phyA
-1

Figure 6.8: In low PAR, low FR did not elevate RVE8 transcript abundance. Time-
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low R:FR, nor was it phyA-dependent (figure 6.8) . These data suggest that

while phyA and RVE8 are required for the upregulation of TOC1 and evening

complex expression, they may not be operating in a linear transcriptional path-

way where low R:FR-activated phyA promotes the transcription of RVE8, which

promotes the transcription of TOC1.

6.4 TOC1 and RVE8 contribute to phyA-mediated

FR inhibition of hypocotyl elongation in deep

shade

Martínez-García et al. (2014) reported that phyA was important for the inhi-
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bition of hypocotyl elongation in light conditions that simulate plant canopy

shade but not neighbour proximity. That is, conditions of low PAR and low

R:FR where both B and R light are simultaneously depleted. Additionally,

TOC1 has recently been reported to bind to and inhibit PIF3 (Soy et al., 2016)

and PIF4 (Zhu et al., 2016) through co-binding to PIF target promoters and

the suppression of PIF target gene expression (Soy et al., 2016). Furthermore,

Rawat et al. (2011) observed that the fluence rate-dependence of hypocotyl elon-

gation in rve8-1 mutants resembled mutants in the phyA signalling pathway,

while Gray et al. (2017) found that the REVEILLE genes inhibited growth of

juvenile and adult plants. In this context, the data described above lead to the

hypothesis that in low PAR, low R:FR-induced elevation of TOC1 expression

may inhibit low PAR-induced hypocotyl elongation. The results described below

are from experiments carried out in 12L:12D, 8L:16D and LL photoperiods.

6.4.1 In low PAR, low R:FR-mediated inhibition of hypocotyl

elongation is phyA-dependent

phyA-1 plants were grown for 7 days in low PAR at high (2.5) and low (0.05)

R:FR ratios under continuous light, 12L:12D or 8L:16D photocycles. Both

phyA-1 and L. er seedlings were extremely elongated in all the conditions and

photoperiods. Wild-type plants supplemented with FR in a background of low

PAR were consistently significantly shorter than plants grown in R:FR = 2.5.

The phyA-1 mutant behaved oppositely, being significantly elongated with FR

supplementation, compared to R:FR = 2.5. A two way ANOVA with genotype

and R:FR ratio as factors found that there was a highly significant interaction

between genotype and R:FR ratio in continuous light (Figure 6.9a), 12L:12D

(Figure 6.9b) and 8L:16D (Figure 6.9c) conditions. Taken together, these data

confirm previous reports that phyA is responsible for inhibition of hypocotyl

elongation in low R:FR in a background of low PAR (Martínez-García et al.,

2014).
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Figure 6.9: In low R:FR with a background of low PAR, phyA inhibits hypocotyl
elongation. Seedlings of the phyA-1 mutant in the L. er background were germinated
in WL then grown for 7 days in continuous light (6.9a), 12 h light : 12 h dark (6.9b)
or 8 h light : 16 h dark (6.9c) under R:FR = 2.5 (blue) or R:FR = 0.05 (red) as
indicated. Data are shown as box plots representing the 1st, 2nd and 3rd quartiles
with whiskers representing the 10th and 90th percentile. Data are representative of
two independent experiments with n = 24. P values for Two-Way ANOVA comparing
mutant to wild type using genotype and R:FR ratio as factors are quoted below the
box plots. Different red letters above the box plots indicate statistically significant
differences by Pairwise Multiple Comparison (Tukey test) at p < 0.05.
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6.4.2 TOC1 and RVE8 inhibit hypocotyl elongation in

deep shade

At low PAR, growth in low R:FR significantly inhibited hypocotyl elongation

in WT, toc1-101 and rve8-1 mutants in all photoperiods. The magnitude of re-

sponse to FR supplementation, however, differed depending on photoperiod and

genotype (Figure 6.10). In high R:FR, toc1-101 and rve8-1 both demonstrated

significantly longer hypocotyls than WT in continuous light (Figure 6.10a) and

12L:12D (Figure 6.10b) with toc1-101 significantly longer than rve8-1 in both

cases. In 8L:16D conditions (Figure 6.10c), rve8-1 was significantly longer than

Col-0 while toc1-101 in high R:FR did not significantly differ with Col-0 or

rve8-1. In low R:FR, toc1-101 and rve8-1 had significantly longer hypocotyls

than WT in continuous light (Figure 6.10a), 12L:12D (Figure 6.10b) and 8L:16D

(Figure 6.10c). The hypocotyl phenotypes were significantly longer for toc1-101

than rve8-1 in continuous light (Figure 6.10a) and 12L:12D (Figure 6.10b), but

in 8L:16D toc1-101 and rve8-1 hypocotyl lengths did not significantly differ

to each other while both still being significantly elongated compared to WT

(Figure 6.10c).

Two-way ANOVA using R:FR ratio and genotype as factors were used to test if

the magnitude of hypocotyl inhibition by low R:FR was dependent on genotype.

In continuous light, comparing the toc1-101 mutant to WT found a significant

interaction between genotype and R:FR ratio. Similarly, there was a significant

interaction between genotype and R:FR when comparing the rve8-1 mutant to

WT. In this instance, the inhibition of hypocotyl elongation in response to low

R:FR in the toc1-101 and rve8-1 mutants was greater than the response to low

R:FR in WT (Figure 6.10a). In 12L:12D, comparing the toc1-101 mutant to

WT found a significant interaction between genotype and R:FR ratio. How-

ever, there was not a significant interaction between genotype and R:FR when

comparing the rve8-1 mutant to WT. The inhibition of hypocotyl elongation in

response to low R:FR in the toc1-101 mutant was greater than the response to
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low R:FR in WT, but not significantly different in the rve8-1 mutant (Figure

6.10b). In 8L:16D, comparing the toc1-101 mutant to WT found a significant

interaction between genotype and R:FR ratio. Similarly, a two-way ANOVA

found a significant interaction between genotype and R:FR when comparing

the rve8-1 mutant to WT. The inhibition of hypocotyl elongation in response

to low R:FR in the toc1-101 and rve8-1 mutants was less than the response to

low R:FR in WT, suggesting that the FR-mediated suppression of hypocotyl

elongation was attenuated in 8L:16D photoperiods (Figure 6.10c).

These data demonstrate that both TOC1 and RVE8 inhibit hypocotyl elonga-

tion in low PAR in high R:FR and in low R:FR. The observations that both

the toc1-101 and rve8-1 mutants had significantly attenuated responses to FR

supplementation compared to wild-type in 8L:16D suggest that the elevation in

TOC1 expression in low R:FR described above contributes to the FR-mediated

inhibition of hypocotyl elongation, though statistically significant effects appear

to be limited to short day (8L:16D) photocycles.

6.4.3 In deep shade, TOC1 regulation of hypocotyl elon-

gation rate is photoperiod- and R:FR-dependent

Section 6.4.2 demonstrated that the extent of TOC1’s role in regulating light-

quality-mediated hypocotyl elongation in low PAR is affected by photoperiod

length. Previous reports have shown that TOC1 inhibits hypocotyl elongation

at the middle and end of night in short day photoperiods, and also gates the

shade avoidance response (Soy et al., 2016). The observation that toc1-101

mutants had a significantly attenuated response to low R:FR compared to wild-

type only in short day photoperiods may, therefore, be reflected by differences in

elongation rate in 12L:12D and 8L:16D photoperiods. The hypocotyl elongation

rate of the toc1-101 mutant was analysed in low PAR at high and low R:FR and

in 12L:12D and 8L:16D photoperiods using timelapse IR photography (figure

6.11). The data presented are from the 48 h period 3 days after germination
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Figure 6.10: TOC1 and RVE8 contribute to the FR-mediated inhibition of hypocotyl
elongation in low PAR in a photoperiod dependent manner. Seedlings of toc1-101 and
rve8-1 in the Col-0 background were germinated in WL then grown for 7 days in
continuous light (6.10a), 12 h light : 12 h dark or (6.10b) 8h light : 16h dark (6.10c)
under R:FR = 2.5 (blue) or R:FR = 0.05 (red) as indicated. Data are shown as box
plots representing the 1st, 2nd and 3rd quartiles with whiskers representing the 10th
and 90th percentile. Data are representative of two independent experiments with n =
24. P values for Two-Way ANOVA comparing mutant to wild type using genotype and
R:FR ratio as factors are quoted below the box plots. Different red letters above the
box plots indicate statistically significant differences by Pairwise Multiple Comparison
(Tukey test) at p < 0.05.

152



CHAPTER 6. CIRCADIAN CLOCK BEHAVIOUR AND THE
REGULATION OF STEM ELONGATION IN DEEP SHADE

when the majority of hypocotyl elongation occured.

In 12L:12D, toc1-101 peak hypocotyl elongation rate, which in both high and

low R:FR was greater than Col-0 peak elongation rate, occured around the 4th

dawn (24 h) and gradually declined throughout the light period in both high and

low R:FR (figure 6.11a,6.11b). In Col-0, peak elongation rate occured at dawn

and declined over the course of the light period in high R:FR. In low R:FR,

however, elongation rate at dawn was lower than in high R:FR, though still

elevated compared to the dark period; and continued to climb until a peak of

elongation rate at c. 32 h, (which was marginally lower than in high R:FR) when

it declined into the dark period. During the dark period, toc1-101 elongation

rate after high R:FR (figure 6.11a) climbed from c. 16 h through to dawn at 24 h,

whereas after low R:FR (figure 6.11b), the elongation rate started climbing later,

from c. 20 h until dawn. In Col-0, elongation rate remained low throughout

the dark period in both high (figure 6.11a) and low R:FR (figure 6.11b), with

elongation rate climbing only in the final c. 2 - 3 h before dawn.

In 8L:16D, peak hypocotyl elongation rate occured at dawn in both toc1-101 and

Col-0 in both high and low R:FR, though peak rate, as well as rates in general,

were mostly lower in low R:FR compared to high R:FR (figure 6.11c,6.11d).

In Col-0, elongation rate was reduced in low R:FR compared to high R:FR at

dawn and throughout the light period (figure 6.11c,6.11d). In high R:FR, the

elongation rate of toc1-101 climbed from the start of the dark period until it

peaked at dawn, whereas Col-0 elongation rate only started climbing from c.

16 h until dawn (figure 6.11c). In low R:FR, elongation rate in toc1-101 and

Col-0 remained low during the dark period until c. 20 h when elongation rate

climbed sharply in toc1-101 and only steadily in Col-0 (figure 6.11d). The peak

toc1-101 elongation rate at dawn was higher than Col-0 in low R:FR, with a

peak of similar height to Col-0 at dawn in high R:FR (figure 6.11c,6.11d).
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Figure 6.11: In low PAR, TOC1-mediated regulation of hypocotyl elongation rate
is R:FR- and photoperiod-dependent. Seedlings of toc1-101 (red) in the Col-0 (blue)
background were germinated in 12L:12D WL then placed into 12L:12D PAR = 5 mmol
m-2 s-1 (6.11a, 6.11b) or were germinated in 8L:16D WL then placed into 8L:16D PAR
= 5 mmol m-2 s-1 (6.11c, 6.11d) at R:FR = 2.5 (6.11a, 6.11c) or R:FR = 0.05 (6.11b,
6.11d). Growth rate was analysed using timelapse IR photography. Plotted are 48 h
of hypocotyl elongation rate data starting at dawn on the 3rd day after germination.
Data were smoothed using a 3 h rolling average to reduce noise. Unshaded areas
indicate the light period whereas shaded areas indicate the dark period, n = 12 +/- 1
S.E.M.
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Figure 6.12: PIF4 and PIF5 expression is not elevated by FR supplementation in
low PAR. Relative transcript abundance of (6.12a) PIF4 and (6.12b) PIF5 normalised
to PP2A at R:FR = 2.5 and R:FR = 0.05. Col-0 plants were grown in PAR = 5, R:FR
= 2.5 or R:FR = 0.05 for 7 days before sampling at the indicated times. Plotted are
the means +/- 1 S.E.M. n = 3.

6.5 PIF4 and PIF5 transcript abundance is not

reduced by FR supplementation in low PAR

Given that the evening complex is reported to suppress PIF transcript abun-

dance (Nusinow et al., 2011), the observation that evening complex components

had small elevations in transcript abundance with FR supplementation in low

PAR (figure 6.7) raised the possibility that low R:FR in low PAR could reduce

PIF expression. The relative transcript abundance of PIF4 was unaffected by

changing R:FR, whereas PIF5 transcript abundance was elevated by low R:FR

(figure 6.12). As the data above report that low R:FR in a background of low

PAR inhibits hypocotyl elongation (section 6.4), these data suggest that PIF

transcriptional regulation is unlikely to be a component of the mechanism.
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6.6 Discussion

The data reported in this chapter show that in a background of low PAR, R:FR

ratio affects clock behaviour in driven conditions, which in turn has effects on

the circadian regulation of stem elongation. As low R:FR ratio was previously

observed to damp circadian oscillations in continuous light but not in driven

conditions (where there is a strong entraining stimulus) (chapter 5), it was hy-

pothesised that by weakening the entraining stimulus (by lowering PAR to levels

simulating deep shade), low R:FR - induced damping of oscillations might be

observed in driven conditions. Results from luciferase assays in low PAR in-

dicated that promoter activity for both CCA1pro::LUC and TOC1pro::LUC

remained rhythmic (figure 6.1), though with peak signal reduced by an order of

magnitude compared to growth in higher PAR (compare figures 6.1d & 6.3). It

is well-documented that through the process of entrainment, expression of circa-

dian clock components is induced by light either via photoreceptors (Oakenfull

and Davis, 2017) or through photosynthetic entrainment (Haydon et al., 2013),

so it is likely that by reducing the light input into the circadian system, the

light-induced activation of circadian clock genes is restricted and hence results

in a reduction in peak luciferase bioluminescence.

Unexpectedly, when plants were exposed to low R:FR in low PAR, TOC1pro::LUC

bioluminescence was augmented and when transferred back into high R:FR,

TOC1pro::LUC bioluminescence returned to its earlier level (figure 6.1d). FR

supplementation specifically increased TOC1 promoter activity and not CCA1

(figure 6.1c), suggesting that the increase in amplitude was not simply a general

response of the clock to entrainment by higher light levels but rather an upregu-

lation of TOC1 in low R:FR. Furthermore, while the elevation of TOC1pro::LUC

bioluminescence seems to be an effect that is low PAR-specific, it is likely that

the mechanism still operates at higher PAR, but due to an overall increase in

amplitude range of the circadian oscillator in higher PAR, any effects are masked

(figure 6.3). The increase in TOC1 promoter activity in low R:FR correlated
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with an increase in TOC1 relative transcript abundance (figure 6.2), it would

therefore also be interesting to analyse the effect of low R:FR on TOC1 pro-

tein abundance in low PAR. As of the writing of this thesis, optimisation of

the TOC1 western blot protocol had not been completed so data on this are

unavailable.

One explanation for the elevated expression of circadian clock components could

relate to the Emerson effect (Emerson, 1957): long wavelength red light (700

nm) stimulates photosystem (PS) I whereas red (680 nm) light stimulates PSII,

meaning that maximum photosynthetic rate is achieved with a combination of

these wavelengths. It is possible, therefore, that the addition of FR to the low

PAR conditions increases the rate of photosynthesis (which will be extremely low

in deep shade conditions) to strengthen sugar entrainment of the circadian clock

and hence augment the expression of circadian clock components. In low PAR

(< 10 mmol m-2 s-1), the addition of sugar to Arabidopsis growth media shortens

circadian period in a PRR7-dependent manner (Haydon et al., 2013). To test

the involvement of photosynthetic entrainment in the FR-induced elevation of

circadian clock gene expression in low PAR, it would be interesting to analyse

the behaviour of clock gene promoter-driven luciferase reporters in the prr7-11

mutant with and without FR supplementation.

Consistent with previous studies (Tepperman et al., 2001; Wenden et al., 2011;

Hsu et al., 2013), phyA and RVE8 appear to be responsible for mediating the

FR-induced upregulation of TOC1 as well as evening complex genes in low PAR

(section 6.3). Whereas phyA is required for the FR-induced upregulation of

TOC1 transcripts, phyA does not directly associate with the TOC1 promoter,

but it does associate with the RVE8 promoter to induce TOC1 expression in

response to FR (Chen et al., 2014). RVE8 is a clock-regulated transcriptional

activator within the circadian oscillator that mediates histone acetylation at

EE-containing promoters (Hsu et al., 2013). The low R:FR-induced elevation

at dusk of TOC1, and evening complex, transcripts was also dependent on the

presence of RVE8 (figure 6.6,6.7). In the conditions used here, low R:FR did not
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augment RVE8 transcript abundance in a phyA-dependent manner or otherwise

(figure 6.8). Thus, the data reported in section 6.3 suggest that the elevation of

TOC1 and evening complex expression by FR in low PAR is both phyA- and

RVE8-dependent but that they do not operate in a linear transcriptional path-

way. One possibility is that phyA and RVE8 have post-translational interactions

in low R:FR, perhaps leading to an increase in RVE8 movement to the nucleus

through the FHY1/FHL pathway, used for nuclear import of phyA (Hiltbrunner

et al., 2006; Genoud et al., 2008) resulting in increased expression of evening

genes. Another possibility is that phyA could still be associating with the RVE8

promoter after FR irradiation, but rather than promoting RVE8 expression, its

association may induce alternative splicing of RVE8 transcripts. Shikata et al.

(2014) reported that phyA and phyB can mediate alternative splicing of mul-

tiple transcripts in R light, though it is unclear if FR can trigger a similar

response. Alternative splicing of circadian clock components in response to en-

vironmental stimuli is also not unprecedented as it has been reported that CCA1

has temperature-dependent splicing variants (Seo et al., 2012). It is interesting

that, in spite of having a partially redundant role with RVE4 and RVE6, the

rve8-1 mutation is sufficient to remove the FR-induced elevation of TOC1 and

evening complex expression at dusk (Figure 6.6,6.7). This may be because, ac-

cording to the ChIP- and RNA-seq dataset made available by Chen et al. (2014),

phyA only interacts with the RVE8 promoter and not with the promoters for

RVE4 and RVE6.

Recent studies have found that TOC1 mediates the circadian gating of hypocotyl

elongation through direct interaction with PIFs and the suppression of the ex-

pression of PIF targets (Soy et al., 2016; Zhu et al., 2016). Given that phyA and

RVE8 have also previously been implicated in the control of hypocotyl elonga-

tion (Martínez-García et al., 2014; Gray et al., 2017), it was hypothesised that

the phyA- and RVE8-dependent augmentation of TOC1 expression by FR may

be a mechanism for hypocotyl elongation inhibition in deep shade. In contrast

to results from canonical shade avoidance experiments, where supplementation

158



CHAPTER 6. CIRCADIAN CLOCK BEHAVIOUR AND THE
REGULATION OF STEM ELONGATION IN DEEP SHADE

of FR in a background of high PAR provokes hypocotyl elongation (Franklin,

2008), FR supplementation in deep shade inhibited hypocotyl elongation in wild

type plants (figure 6.9,6.10). Consistent with previous reports (Martínez-García

et al., 2014), phyA inhibits hypocotyl elongation in low R:FR ratio and low PAR.

Comparison of wild type and phyA-1 mutants suggests that phyA is responsi-

ble for the majority of the FR-induced inhibition of hypocotyl elongation in

deep shade (figure 6.9). The observation that a reduction in R:FR in low PAR

promoted hypocotyl elongation in the phyA mutant is likely a consequence of

phyB inactivation: The sensitivity of the phyB photoreceptor is such that even

at extremely low fluence rates of red light phyB signalling is activated (Reed

et al., 1994), the addition of FR to this situation will cause activated phyB to

revert to its non-signalling Pr form. The role of phyA, as has been surmised

in previous reports (Martínez-García et al., 2014), is likely to be prevention

of over-elongation in deep shade, which is an acute resource limiting condition

where there is reduced activation of both phyB and cryptochrome photorecep-

tors (de Wit et al., 2016). End-point hypocotyl elongation data indicate that

TOC1 and RVE8 significantly inhibit hypocotyl elongation in deep shade, both

with and without FR supplementation. In short day photocycles (8L:16D), there

was a significant attenuation of FR-mediated inhibition of hypocotyl elongation

in the toc1-101 and rve8-1 mutants compared to WT (Figure 6.10), which sug-

gests that in short day conditions, the elevation of TOC1 expression increases

the magnitude of FR-induced inhibition of hypocotyl elongation. In longer pho-

toperiod conditions, however, the toc1-101 and rve8-1 mutants did not display

a significant attenuation of FR-induced inhibition of hypocotyl elongation when

compared to wild type controls. This could result from FR supplementation

activating multiple phyA-regulated growth repressors, which dominate in the

absence of TOC1 or RVE8. This photoperiod dependence could alternatively

be explained by rhythmic hypocotyl growth in low PAR. In high R:FR (figure

6.11a,6.11c), peak hypocotyl elongation rate occured around dawn and remained

high thoughout the light period due, perhaps, to PIF stabilisation because of a
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lack of photoreceptor activation in low PAR. In low R:FR (figure 6.11b,6.11d),

elongation rate was marginally lower during the light period, maybe because of

inhibition through phyA activity in low R:FR. During the dark period, after a

high R:FR light period in both day lengths (figure 6.11a,6.11c), toc1-101 mutant

elongation rate climbed earlier in the night than in Col-0, which is consistent

with previous reports (Soy et al., 2016). In low R:FR (figure 6.11b,6.11d), how-

ever, elongation rate of toc1-101 mutants during the dark period did not start

climbing earlier than Col-0. Instead, toc1-101 had a higher peak elongation rate

at dawn than Col-0, an observation that was particularly clear in the 8L:16D

low R:FR condition when toc1-101 elongation rate climbed sharply between 20

and 24 h to match that of Col-0 peak elongation rate in high R:FR at dawn

in 8L:16D (figure 6.11d). The larger difference in peak elongation rate at dawn

in low PAR and low R:FR between toc1-101 and Col-0 in 8L:16D compared to

12L:12D may, therefore, account for the observation that in 8L:16D, mutation of

TOC1 significantly attenuated low R:FR-induced inhibition of hypocotyl elon-

gation (figure 6.10). Furthermore, the observation that the climb in elongation

rate of toc1-101 in low R:FR was delayed compared to toc1-101 in high R:FR

could be consistent with the notion that TOC1 has partial redundancy with the

other PRRs to inhibit elongation sequentially through the night (Martín et al.,

2018). It would, therefore, be interesting to analyse PRR5, PRR7 and PRR9

transcript abundance to see if these clock components behave similarly to TOC1

in low R:FR. Hypocotyl analysis of a PRR knockout mutant, i.e. prr579 crossed

with the toc1-101 mutant could also be informative, provided the seed is viable.

(Niwa et al., 2009) suggest that the external coincidence model (Nozue et al.,

2007) can account for photoperiod-dependent promotion of hypocotyl elonga-

tion in short days: Shortening the photoperiod shifts the timing of peak PIF

abundance into the night, where it is protected from activated photoreceptors.

The combination of short day photoperiods and the low PAR of deep shade

reducing photoreceptor activation leaves PIFs predominantly regulated by the

circadian clock. As PIF transcript abundance was not reduced by lowering the
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R:FR ratio in low PAR (Figure 6.12), FR-induced alterations in the circadian

regulation of PIF activity are likely restricted to post-translational interactions

with the PRRs (Soy et al., 2016; Martín et al., 2018), and perhaps ELF3 (Nieto

et al., 2015).

Neither the toc1-101 or rve8-1 mutants fully resembled the phyA-1 mutant

in their responses, suggesting that there is functional redundancy with other

phyA-regulated suppressors of elongation. Indeed, given that the PRRs 9, 7

and 5 have been reported to inhibit hypocotyl elongation in a manner very

similar to TOC1 (PRR1) (Martín et al., 2018) alongside the finding that PRR5

is RVE8-regulated through the evening element in its promoter (Rawat et al.,

2011), it would be interesting to test if these circadian clock genes are also

FR-induced and whether they too contribute to the FR-induced inhibition of

hypocotyl elongation by phyA. In addition, since the PRRs sequentially repress

hypocotyl elongation through their interaction with PIFs (Martín et al., 2018),

it would be interesting, as already noted, to see if the relative contributions of

the different PRRs to the inhibition of hypocotyl elongation were shade and

photoperiod-dependent.

Keeping the circadian clock robustly entrained in low PAR could be another

adaptive significance of the FR-induced upregulation of TOC1 and other evening-

phased circadian clock genes. In the absence of FR irradiation in low PAR, the

amplitude range of TOC1pro::LUC oscillations was limited compared to plants

grown in high PAR (compare figures 6.1d & 6.3), yet the addition of FR sub-

stantially boosted the peak promoter activity for TOC1. Taken alongside the

result that a peak in TOC1 relative transcript abundance at dusk was observed

under FR irradiation in low PAR but not in the absence of FR (figure 6.2), it

follows that FR light signalling mediated by phyA to the circadian oscillator

may become more important in situations of low PAR (like deep shade) for

keeping the circadian oscillator entrained. This suggestion is consistent with

the hypothesis that by co-opting an array of photoreceptors, the plant circa-

dian clock can entrain to a range of spectral qualities (Somers et al., 1998). If
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this were the case then the inhibition of hypocotyl elongation by TOC1 after

FR irradiation could be a consequence of having a properly entrained circadian

clock - rather than purely a direct antagonism of shade avoidance. Correct

circadian clock function is dependent on correct entrainment, therefore, an in-

correctly entrained circadian clock will have compromised function. In support

of this notion, it is likely no coincidence that Arabidopsis lines with disrupted

circadian clocks (e.g. CCA1-OX ) often have long hypocotyls.

The data presented in this chapter make contributions to the understanding

of FR signalling to the circadian clock. Mechanistically, whereas ELF4 was

previously identified as a potential node for the mediation of FR signalling by

phyA to the circadian oscillator (Wenden et al., 2011), the data presented here

suggest that RVE8 could link phyA and evening-phased genes (such as ELF4 )

to mediate FR signalling to the circadian clock. In low PAR, FR signalling

to the clock may take on an adaptive significance: The depletion of B and R

wavelengths in deep shade give reduced external cues to the day/night cycle.

The circadian clock has, therefore, recruited a photoreceptor that signals in

FR in order to still receive timing information for entrainment in deep shade.

Another potential adaptive significance, which may be a by-product of the re-

cruitment of phyA by the circadian clock for entrainment in deep shade, is the

contribution, through the FR-induced elevated expression of TOC1, to the in-

hibition of hypocotyl elongation in low PAR in short day photoperiods. This

photoperiod and light combination creates a resource- and external cue-limited

situation where plants are at the greatest risk of over-elongation and death; in

these conditions limiting hypocotyl elongation, therefore, takes on an acute level

of importance.
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Chapter 7

General Discussion

A
s plants cannot move away from unfavourable environmental conditions,

they instead adapt their development to improve their chance of survival

and reproductive success. The sensing of light conditions is especially impor-

tant to plants as they are photoautotrophs and for many plant species, shade

is harmful. On the perception of shade, or cues that suggest impending shade,

shade-avoiding species activate a powerful developmental program that priori-

tises the elongation of stems and petioles and the elevation of leaves. Shade

avoidance responses include several morphological adaptations at every life stage

of the plant. In seedlings, hypocotyls elongate; while in adult plants, petioles

elongate, leaves are elevated through hyponasty, and flowering is accelerated

(Fiorucci and Fankhauser, 2017). Over-elongation is, however, detrimental to

plant survival as it leaves them susceptible to lodging, wind damage and water

loss. The dramatic morphological changes triggered by shade perception are

limited by a number of mechanisms. Several of these mechanisms involve auto-

regulatory negative feedback, e.g. HFR1 (Hornitschek et al., 2009) or PAR1 and

PAR2 (Galstyan et al., 2011). Light quality changes can trigger photoreceptor

signaling pathways, which also have the effect of inhibiting elongation and hy-

ponasty. Intuitively, reversing the light quality changes that promote shade

avoidance limits elongation, e.g. elevating R:FR through short term pulses of
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R light to simulate sun flecks inhibits shade avoidance (Sellaro et al., 2012).

It has previously been shown that UV-B, perceived by UVR8, inhibits shade

avoidance (Hayes et al., 2014). FR, detected by phyA has also been shown to

limit elongation and improving seedling survival in low PAR (Yanovsky et al.,

1995; Martínez-García et al., 2014). The endogenous plant circadian clock man-

ages a plant’s resources to maximise its fitness in rhythmic environments. For

instance, the circadian clock regulates starch metabolism such that carbohy-

drate availability is maintained through the night until the following dawn (?).

A mechanism through which the clock manages resources is through a process

termed circadian gating, where the clock restricts environmental responses to

particular phases of the 24 h cycle (Hotta et al., 2007). It has been argued that

circadian gating of responses to UV-B can be interpreted as the saving of re-

sources during acclimation to UV-B without negatively impacting fitness (Fehér

et al., 2011; Takeuchi et al., 2014). Modern commercial growing environments

have the capability to provide supplemental lighting regimes to crops. Knowl-

edge of plant responses to different light qualities and the circadian regulation

of these responses may present opportunities to improve the yield and product

quality of commercially grown crops without genetic manipulation.

UV-B applied to commercial horticulture

Chapter 4 presents evidence that supplemental low dose UV-B inhibits shade

avoidance in Coriander, consistent with previous reports in Arabidopsis (Hayes

et al., 2014). Coriander seedlings shade avoid and their hypocotyls were signif-

icantly inhibited by supplemental UV-B (figure 4.3). Supplemental UV-B in a

background of low R:FR increased the compactness, of mature Coriander plants

through limiting low R:FR-induced petiole elongation (figure 4.6). PAR and

UV-B levels in nature are correlated but are also highly variable due to cloud

cover and the height of the sun. Experiments were conducted in the glasshouse

to investigate the importance of the UV-B : PAR ratio. Consistent with data

presented in section 4.3.1, supplemental UV-B in the glasshouse significantly
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inhibited hypocotyl elongation when Coriander was grown in dense stands (sec-

tion 4.5.1). Three different intensities of UV-B delivered for the duration of

the photoperiod were similarly effective at inhibiting hypocotyl elongation (sec-

tion 4.5.2). This result, where low intensity UV-B is as effective as high intensity

UV-B, likely reflects the sensitivity of both the UV-B perception mechanism and

the mechanism of the inhibition of hypocotyl elongation by UV-B. These data

demonstrate that UV-B is a potent brake on shade avoidance in Coriander and

that UV-B applied to this commercial crop improves its morphological product

quality. It is likely that UV-B treatments limit elongation in other herb crops

that have similar branching habits to coriander, such as parsely (Petroselinum

crispum). Torre et al. (2012) reported that the use of UV-B transparent green-

house cladding materials allowed growers to reduce the amount of plant growth

retardant chemicals used on Poinsettia (Euphorbia pulcherrima). It would be

interesting to analyse herb growth under UV-B transparent materials to see if

these conditions could also give meaningful improvements in product quality as

it would avoid energy consumption costs.

Previous reports have suggested that altering R:FR and UV-B irradiation can

impact chlorophyll abundance and photosynthetic efficiency (Bartoli et al., 2009;

Davey et al., 2012). However, the data reported in figure 4.14 suggest that nei-

ther R:FR ratio nor UV-B irradiation significantly affect leaf chlorophyll content

in Coriander. It may still be interesting for future work to analyse photosyn-

thetic efficiency, as it is reported that UVR8 increases photosynthetic efficiency

in elevated levels of UV-B (Davey et al., 2012). Current opinion sees UV-B

as an informational signal that is both a cue for photomorphogenesis and an

acclimating signal that activates UV-B defences prior to UV-B damage (Hideg

et al., 2013; Jenkins, 2014). Total antioxidant capacity in Coriander was in-

creased by supplemental UV-B in high R:FR, which is consistent with studies

in Arabidopsis (Csepregi et al., 2017). In low R:FR, UV-B supplementation

did not significantly increase total antioxidant capacity, which may reflect a

diverting of resources away from defence and toward elongation (Yang et al.,
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2016). Alternatively, low R:FR may be interpreted as a signal of reduced light,

i.e. shade, and hence a reduced risk of photosystem damage from high levels

of light (Banaś et al., 2012). Low R:FR signaling may override UV-B signaling

in this context as sunlight levels of UV-B alongside a low R:FR would only be

experienced by plants on emergence from canopies. Flavonoids absorb UV-B ra-

diation and act as sun-screening compounds in plants (Agati and Tattini, 2010).

Figure 4.17 demonstrates that supplemental UV-B increased Coriander flavonol

glycoside content in both high and low R:FR, similarly to Arabidopsis. Aug-

menting the total antioxidant capacity and flavonoid content may have health

benefits to consumers (Dou et al., 2017). However, flavonoids such as quercetin

are associated with bitter flavours so the aesthetic and nutritious benefits that

UV-B supplementation has on Coriander ought to be balanced against potential

adverse effects on flavour.

Work in this thesis has therefore shown that UV-B inhibits shade avoidance in

Coriander in both controlled climate chambers and glasshouses. It was hypoth-

esised that there may be a time of day when shade-avoiding Coriander is more

sensitive to inhibition of elongation by UV-B, and that this may be circadian-

regulated. A short dose of UV-B given at that point could provide product qual-

ity improvements that avoid the economical, environmental and safety draw-

backs of UV-B supplementation for long durations. Timelapse IR photography

of Coriander seedlings suggested that peak elongation rate for shade-avoiding

Coriander hypocotyls occurred during the light period (section 4.4.1). Further-

more, experiments in Arabidopsis suggested that there was a trend for short dose

UV-B treatments at the middle of the day to be more effective than treatments

at the start or the end of day (section 3.2.1).

Understanding time-of-day effects in UV-B-mediated hypocotyl inhi-

bition

Experiments on plants over-expressing CCA1 (figure 3.5) suggested that the

inhibition of hypocotyl elongation by UV-B is circadian regulated, like several
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other reported UV-B responses (Fehér et al., 2011; Takeuchi et al., 2014). A

previously suggested component of the mechanism for the antagonism of shade

avoidance by UV-B, GA2ox1 (Hayes et al., 2014), has its UV-B induction gated

by the circadian clock with peak transcript occurring at and around 6 - 8 h after

dawn and subjective dawn in LD (figure 3.12) and LL (figure 3.9a,figure 3.9b)

conditions respectively. In addition, the transcript abundance of the auxin syn-

thesis gene YUCCA8 (figure 3.16a,3.16b) and the auxin signaling gene IAA29

(figure 3.17a,3.17b) peaked at 6 - 8 h after dawn in LD in both high and low

R:FR. This pattern of transcript abundance in auxin-related genes is probably a

consequence of a peak in PIF transcript also at 6 - 8 h after dawn in these con-

ditions (figure 3.15), and the likely stabilisation of PIF proteins in low R:FR. At

all tested time-points, UV-B irradiation severely reduced transcript abundance

for these genes, with the greatest reductions in transcripts occurring 6 - 8 h after

dawn. It appears that the trend for the middle of the day 4 h UV-B treatment

to give the greatest inhibition of shade avoidance in Arabidopsis is a result of the

coincidence of: 1) the circadian gated peak of UV-B-induction of GA catabolism

genes, and 2) the observation that UV-B is such a strong inhibitor of auxin sig-

naling that the potential for the greatest reduction in auxin signaling occurs

when auxin-related genes would otherwise be at peak expression.

Short 4 h UV-B treatments elicited a significant inhibition of hypocotyl elon-

gation in shade-avoiding Coriander; but unlike in Arabidopsis, applying the

treatments at different times of day only produced marginal differences that did

not significantly differ (figure 4.8). This observation may reflect species-specific

differences in the circadian regulation of hypocotyl elongation and UV-B per-

ception between Arabidopsis and Coriander. Another reason only marginal

differences were observed between time points in Coriander could be that as

UV-B is such a potent inhibitor of auxin signaling, even short doses of UV-B

saturate the suppression pathway. However, the observation that a short dose of

UV-B did not inhibit hypocotyl elongation to the same extent as a UV-B dose

for the full duration of the photoperiod (figure 4.8) does not support this con-
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clusion and instead suggests that, after UV-B irradiation is stopped, hypocotyl

elongation rate increases. This possibility may mean that multiple short doses

of UV-B irradiation could be as effective at inhibiting hypocotyl elongation as

a single large dose. Further experiments that analyse elongation rate in Co-

riander during and in the hours after short UV-B treatments would be required

to resolve this point. It would also be interesting to test if the most effective

time-of-day for UV-B inhibition of hypocotyl elongation were shifted in differ-

ent photoperiods. For instance, in short photoperiods (8L:16D) peak hypocotyl

elongation rate occurs at the end of the night, so a UV-B dose that coincides

with this peak may elicit the greatest response. The mechanism for the circa-

dian gating of UV-B responses remains unclear. Previous studies suggest that

there is no central mechanism and that the circadian gating of UV-B responses

differs gene-by-gene (Fehér et al., 2011; Takeuchi et al., 2014). Given that tim-

ings of peak induction by UV-B differs between the genes tested in this thesis

(HY5, HYH and GA2ox1 ), and the observation that UV-B-induced GA2ox1

transcript damps high whereas HY5 and HYH UV-B-induced transcript damp

low, it is likely that they are also gated by separate clock components. It is

possible that clock components such as the PRRs may mediate the circadian

gating of these genes, perhaps through association with G-box-like motifs in

promoters (Liu et al., 2016) or through co-binding at promoters with transcrip-

tion factors in a manner that inhibits transcriptional activity (Martín et al.,

2018). PRRs may mediate the circadian gating of GA2ox1 (figure 3.18a), but

more work, using the prr579 triple mutant would be required to investigate this.

It has previously been suggested that the circadian gating of UV-B responses

could be considered as the saving of resources during acclimation to UV-B with-

out loss of fitness (Fehér et al., 2011; Takeuchi et al., 2014). By limiting the

peak of UV-B-induction of HY5, HYH and GA2ox1 transcripts to the light

period the circadian clock is also preventing UV-B responses from occurring

at inappropriate times-of-day, i.e. at night when there is no sunlight. A very

remote possibility is that circadian gating of UV-B responses prevents the stim-
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ulation of UVR8 signaling by moonlight. Carver et al. (1974) reported that the

moon reflects sunlight rather poorly and as wavelengths decrease, reflectivity

also decreases, though interestingly, UV-C is reflected better than UV-B. As

UVR8 is sensitive to UV-B at low fluence rates, it may be interesting to test

the dimer/monomer status of the UVR8 protein in moonlight levels of UV-B.

Over-expression of CCA1 both altered the pattern and increased the magnitude

of the time-of-day differences in UV-B inhibition of hypocotyl elongation (figure

3.5,3.5). An alternative interpretation of these data is that circadian gating of

the inhibition of hypocotyl elongation by UV-B acts to minimise time-of-day

differences during the light period. Indeed, there may be no adaptive advantage

to this process being more sensitive at one point than another during the light

period.

Circadian Regulation in Deep Shade

Experiments that tested the circadian gating of UV-B-induced genes led to the

unexpected observation that in LL low R:FR, the circadian gating of the UV-B

induction of HY5, HYH and GA2ox1 transcripts lost the pattern of UV-B-

mediated induction that occurred under LL high R:FR (section 3.3.1). While

this loss of circadian gating did not extend to plants in LD (section 3.3.2), this

result opened up a new avenue of investigation, which aimed to understand

why circadian gating was lost in LL low R:FR. Rhythms of CCA1 and TOC1

transcripts were also lost in LL low R:FR when compared to LL high R:FR

conditions (figure 5.1). Consistent with these observations, luciferase assays

showed that rhythms of CCA1 and TOC1 promoter activity were both damped

in LL low R:FR (figure 5.2). Interestingly, while both CCA1 transcript and

promoter activity damped low (figure 5.2a), TOC1 transcript and promoter

activity damped high (figure 5.2b), which was also consistent with the transcript

abundance data (figure 5.1). Previous work has described a similar effect that

occurs in monochromatic FR conditions: Wenden et al. (2011) reported that

in these conditions, circadian clock genes had damped transcript and promoter
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activity in a mechanism that involves ELF4. In addition, and consistent with

the data reported in this thesis, it was reported that morning gene expression

was suppressed whereas evening gene expression was promoted (Wenden et al.,

2011). Mechanisms for circadian gating likely include the direct association of

clock components with promoters to bring about transcriptional repression or

chromatin remodeling. It is, therefore, proposed that damping of oscillations of

circadian clock components in LL low R:FR may explain the loss of circadian

gating of UV-B-induced genes (section 3.3.1). Questions that remain include:

whether more circadian clock components are damped in LL low R:FR, and

whether the circadian gating and regulation of the expression of genes beyond

UV-B responses are similarly affected. Both possibilities seem likely due to

the complex interlocking feedback loop architecture of the clock and the large

proportion of genes that have been shown to be circadian regulated (Harmer

et al., 2000; Covington et al., 2008; Michael et al., 2008). Another interesting

observation was that in LL low R:FR, both CCA1 and TOC1 promoter activity

had significantly shorter periods than under high R:FR (figure 5.3b,5.3b). It is

possible that as increasing the intensity of FR LEDs was used to lower the R:FR

ratio, the shortening of period could be a consequence of Aschoff’s rule (Aschoff,

1979). Alternatively, increasing FR fluence rate may increase photosynthesis

and hence the sugar entrainment of the circadian oscillator (Haydon et al.,

2013). The influence of R:FR on the pace of the circadian clock may also be

mediated by a hitherto undescribed mechanism. Further experimentation using

a range of R:FR ratios without changing the total photon fluence rate would

help resolve the question of whether total photons or R:FR alters period length.

Low R:FR was sufficient to damp oscillations of clock components in continu-

ous light, but not in driven conditions at a PAR of c. 50 mmol m-2 s-1, likely

due to the presence of a strong entraining stimulus provided by LD cycles. It

was subsequently reasoned that were the entraining stimulus weakened through

experimenting in low PAR, low R:FR could induce damping of oscillations in

driven conditions as well. Propitiously, coupling low PAR to low R:FR also
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mimicked the ecologically relevant conditions of deep shade. Measurement of

PAR and R:FR ratio in deep shade conditions in the field suggested that R:FR of

< 0.1 could occur in PAR of < 10 mmol m-2 s-1 (figure 2.2a,2.2b). In laboratory

conditions that mimic deep shade, both CCA1pro::LUC and TOC1pro::LUC

remained rhythmic in LD whether in high or low R:FR. Unexpectedly, the am-

plitude of TOC1pro::LUC oscillations increased in low R:FR when compared

to high R:FR (figure 6.1). TOC1 transcripts in low PAR were also increased in

low R:FR when compared to high R:FR such that a peak in TOC1 transcript

abundance was only discernible in low R:FR (figure 6.2). CCA1pro::LUC am-

plitude, however, did not increase in low PAR and low R:FR, which suggests

that the increase in TOC1pro::LUC amplitude is not simply a consequence of

increased light signaling to the circadian clock overall. It is possible that this

mechanism also operates at high PAR, but as oscillation amplitudes were an

order of magnitude greater in high PAR than in low PAR, any effect is likely to

be masked (compare figure 6.3 and figure 6.1d).

The phytochromes detect R:FR and phyA is required for the FR entrainment of

the plant circadian clock (Wenden et al., 2011). Figure 6.5 suggested that phyA

mediates the low R:FR-induced elevation in TOC1 transcript abundance. This

observation correlates with previous studies, which report that phyA mediates

the FR-induction of genes such as TOC1 in etiolated seedlings (Tepperman

et al., 2001). As phyA does not directly associate with the TOC1 promoter

(Chen et al., 2014), it was conjectured that a missing component of the signaling

mechanism between phyA and TOC1 is likely to be a positive transcriptional

activator. Hsu et al. (2013) proposed that RVE8 binds to the evening element in

promoters of evening-phased genes, such as TOC1 to promote open chromatin

through histone acetylation. Furthermore, a publicly-available ChIP-seq dataset

suggested that phyA associates with the RVE8 promoter (Chen et al., 2014).

Two other studies added weight to the suspicion that RVE8 could be linked to

phyA and FR signaling. Firstly, Gray et al. (2017) reported that the REVEILLE

gene family inhibit growth in seedlings and adult plants. Secondly, Rawat et al.

171



CHAPTER 7. GENERAL DISCUSSION

(2011) speculated that RVE8 may be involved in the low fluence response due to

the hypocotyl elongation phenotypes of RVE8 over-expressing and rve8-1 lines:

“... the RVE8 phenotypes were less obvious at fluence rates of

8 mmol m-2 s-1 or higher, and almost absent at a fluence rate of

85 mmol m-2 s-1 ... This type of light-dependent phenotype is rem-

iniscent of mutants in the phyA signaling pathway such as fhy1...”

(Rawat et al., 2011)

Indeed, in low PAR, increases in TOC1 transcript in low R:FR compared to

high R:FR required RVE8 (figure 6.6). Furthermore, ELF3, ELF4 and LUX

transcript abundances were greater in low R:FR than in high R:FR in both a

phyA- and RVE8-dependent manner (figure 6.7). These observations are consis-

tent with the characterised role for RVE8 as a circadian transcriptional activator

of evening-phased genes (Hsu et al., 2013). While FR signaling to the clock re-

quired both phyA and RVE8, they do not appear to be working in a linear

transcriptional pathway as low R:FR did not significantly induce RVE8 tran-

script nor did mutation of phyA significantly affect RVE8 transcript abundance

(figure 6.8). As phyA perceives and mediates reponses to FR light, (Nagatani

et al., 1993; Parks and Quail, 1993; Whitelam et al., 1993), it is likely that phyA

signals upstream of RVE8. Further experimentation is required to elucidate the

possible interactions between phyA and RVE8, which may involve alternative

splicing of RVE8 or post-translational associations.

The involvement of RVE8 in mediating FR input into the circadian clock could

additionally contribute to a mechanistic explanation for both the shortening of

period and the damping of oscillations of the circadian clock in continuous low

R:FR (chapter 5). Rawat et al. (2011) reported that rve8-1 mutants have a

lengthened period whereas RVE8-OX transgenics have shortened period in LL,

which suggests that RVE8 increases the pace of the circadian clock. Were FR

supplementation in LL to induce an increase in RVE8 activity, period length in

LL might then be expected to shorten, as seen in figure 5.3a. Speculatively, the
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damping of oscillations in continuous low R:FR light described in chapter 5 could

also be consistent with the notion that RVE8 acts like a rheostat or variable

resistor for the circadian clock (Hsu et al., 2013). Current models of the plant

circadian clock take the form of variations on a sequential repressilator system

with multiple feedback loops (Pokhilko et al., 2012), where the coincidence of

consecutive activators, repressors and repressors of repressors at correct times

deliver high amplitude robust circadian oscillations (Shalit-Kaneh et al., 2018).

Should RVE8 signaling be increased and left on due to its activation by FR, then

what is effectively a variable resistor (Hsu et al., 2013) is left in an open state,

which could partially remove the precision of the oscillations of the circadian

clock and hence result in damping of oscillations (whether oscillations damp high

or low depend upon the clock component being looked at - e.g. CCA1 damps low

whereas TOC1 damps high in figure 5.1). Oscillations are damped rather than

abolished because while this resistor (RVE8) is left open, subsequent modulators

(that is, repressors) may still be active in their own oscillations. It would be

interesting to test the involvement of RVE8 in FR input to the circadian clock

using clock promoter-driven luciferase reporters in the rve8-1 mutant.

TOC1 limits plant shade avoidance in deep canopy shade

In deep canopy shade, phyA signaling inhibits hypocotyl elongation and pre-

vents seedlings from fatally over-elongating due to inactivation of both phyB

and cryptochrome photoreceptors (Yanovsky et al., 1995; Martínez-García et al.,

2014). The REVEILLE gene family inhibits growth (Gray et al., 2017) and the

hypocotyls of rve8-1 mutants bear similarity to mutants in the phyA signaling

pathway (Rawat et al., 2011). Furthermore, TOC1 gates hypocotyl elongation

through co-binding to PIF3 (Soy et al., 2016) and PIF4 (Zhu et al., 2016) at PIF

target promoters to suppress transcription of PIF targets. It was hypothesised,

therefore, that the phyA- and RVE8-mediated FR-induction of TOC1 transcript

could be a component of the mechanism of phyA antagonism of hypocotyl elon-

gation in deep shade.
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Low R:FR in a background of low PAR inhibited hypocotyl elongation in wild

type plants when compared to plants grown in high R:FR (figure 6.9,6.10).

Consistent with previous reports (Martínez-García et al., 2014), phyA mutants

exhibited elongated hypocotyls under low R:FR when compared to high R:FR,

which suggests that phyA mediates the majority of the FR-induced inhibition

of hypocotyl elongation in deep shade (figure 6.9). TOC1 and RVE8 inhibit

hypocotyl elongation in high and low R:FR in a background of deep shade

(figure 6.10). However, only in short day photoperiods (8L:16D) did the absence

of TOC1 and RVE8 significantly attenuate the low R:FR-induced inhibition

of hypocotyl elongation (figure 6.10c). Analysis of hypocotyl elongation rate

in low R:FR and low PAR, showed that toc1-101 plants in short days had

a higher peak elongation rate at dawn than wild type (Col-0) (figure 6.11d).

Indeed, this peak of elongation rate in toc1-101 in low R:FR at dawn (figure

6.11d) was slightly greater than peak elongation rate of Col-0 plants at dawn in

high R:FR (figure 6.11c). This observation is consistent with a model whereby

elevated levels of TOC1 in low R:FR inhibit hypocotyl elongation at the end of

the night. These data suggest that in short days and deep vegetational shade

where R:FR is low, FR signaling, mediated by phyA and RVE8, elevates TOC1

expression to augment the inhibition of hypocotyl elongation (figure 7.1). In

longer photoperiods, observations that toc1-101 and rve8-1 mutants did not

display significant attenuations of low R:FR-induced inhibition of hypocotyl

elongation may be due to the activation of multiple phyA signaling pathways

(Chen et al., 2014), which dominate in their repression of growth in the absence

of RVE8 and TOC1.

Observations that the toc1-101 mutant did not fully resemble the phyA phe-

notype, and that the toc1-101 mutant had a delayed climb in elongation rate

in low R:FR when compared to high R:FR, are consistent with the possibility

that the function of TOC1 in the phyA signaling cascade has functional redun-

dancy with other phyA-regulated suppressors of elongation. PIF4 and PIF5

transcripts were not reduced in low R:FR low PAR (figure 6.12), which suggests
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that PIF4 and PIF5 transcriptional regulation by the evening complex (Nusi-

now et al., 2011) is not likely to play a major role in the low R:FR-induced inhi-

bition of hypocotyl elongation in deep shade. However, ELF3, independently of

the evening complex, regulates PIF4 through direct protein interactions (Nieto

et al., 2015). It is a possibility, therefore, that increases in ELF3 transcript in

low R:FR (figure 6.7) result in greater ELF3 protein abundance; and that along

with TOC1 (Soy et al., 2016), ELF3 regulates PIF protein activity to inhibit

hypocotyl elongation in deep shade. It would also be interesting to assay PRR5

transcript abundance as RVE8 regulates PRR5 expression through the evening

element in its promoter (Rawat et al., 2011) and it has recently been shown

that PRR5, 7 and 9 along with PRR1 (TOC1) sequentially co-bind to PIFs

and their target promoters to inhibit their transcriptional activity during the

night (Martín et al., 2018). An alternative interpretation of the data presented

in section 6.4 could be that inhibition of hypocotyl elongation due to the ele-

vated expression of clock components is a beneficial by-product of keeping the

circadian oscillator entrained in deep shade conditions. Plants with disrupted

circadian clocks often have very elongated hypocotyls, which is a phenotype

that survives poorly in deep shade conditions (Yanovsky et al., 1995). As such,

the ecological relevance of the signaling mechanisms outlined in chapter 6 and

figure 7.1 deserve to be directly clarified through assaying the fitness of TOC1

alleles in deep shade conditions in the field.

Conclusions

This thesis demonstrates that applying continuous supplemental low dose UV-B

to the commercially important potted herb Coriander improves product qual-

ity morphologically and nutritionally. UV-B applied at different times of day

elicited different magnitudes of hypocotyl inhibition in Arabidopsis but not in

Coriander. It is highly possible that the time-of-day of peak sensitivity to UV-B

inhibition of hypocotyl elongation differs in different photoperiods. Future ap-

plications of the suppression of elongation by UV-B in commercial crops should
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(Hypocotyl Elongation)
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Figure 7.1: Hypothetical model of the TOC1-mediated inhibition of hypocotyl elon-
gation in deep shade. As sunlight passes through a dense canopy, PAR (R, G and B
light) and UV-B is depleted to very low levels. FR light is relatively enriched as it
is reflected and transmitted through the canopy. phyA is stabilised in low PAR, and
signals in FR. In a mechanism that requires the presence of both phyA and RVE8,
TOC1 expression is increased at dusk and during the night. The interaction between
phyA and RVE8 is yet to be determined, but does not appear to involve increases
in RVE8 transcript. RVE8 associates with the evening element (EE) in promoters
of evening-phased genes and stimulates histone acetylation, resulting in open chro-
matin (Hsu et al., 2013). Increased TOC1 expression inhibits hypocotyl elongation in
deep shade in short day conditions, likely through increased inhibition of PIF activity
through co-binding at PIF target promoters (Soy et al., 2016; Zhu et al., 2016; Martín
et al., 2018).

176



CHAPTER 7. GENERAL DISCUSSION

therefore consider different day lengths as well as light quality. It appears that

the inhibition of shade avoidance by UV-B is under circadian regulation, but

the mechanism has not been fully clarified. It is likely, given previous sugges-

tions that the clock gates UV-B responses on a gene-by-gene basis, that the

mechanism for the circadian gating of the UV-B inhibition of shade avoidance

is complex and operates at multiple levels of the signaling cascade. A surpris-

ing result showing that circadian gating was lost when plants were grown in

continuous low R:FR altered the course of this project to consider the effect

of shade on the behaviour of the circadian clock. Collectively, the data from

this line of inquiry suggest that the loss of gating is caused by damping of the

circadian clock, which in turn appears to be an artefact of FR signaling to the

oscillator in continuous light. Further experimentation identified a potential

adaptive significance for FR signaling to the oscillator, where in driven condi-

tions, FR signaling, mediated by phyA, increases the expression of TOC1, which

acts to inhibit hypocotyl elongation. This thesis has also identified RVE8 as a

key component involved in FR signaling to the circadian clock. The mechanism

of the putative interaction between phyA and RVE8 remains to be elucidated,

but does not appear to involve increases in RVE8 transcript abundance. Col-

lectively, this thesis highlights the importance of the interaction between light

quality and circadian regulation in plant development in challenging environ-

ments.
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