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ABSTRACT

The theory of autopoiesis (auto - self, poiesis - producing) suggests that a living system
distinguishes itself from non-living matter by its ability to generate and maintain
itself. With the increase in systems thinking and complexity science at the turn of

the twenty-first century, this idea has been steadily gaining traction in fields as diverse as
biology, the social sciences, law and architecture. The theory has been adopted most widely
in the field of synthetic biology and chemistry where it provides a conceptual framework
within which to understand the organisational logic of minimal living cells (protocells).
The potential of autopoiesis to inform protocell research is dependent on a greater un-
derstanding of the organisational pathways that may lead to the formation of the most
basic autopoietic systems. A computational study into the formation and persistence of
proto-autopoietic organisations from simple, unstructured beginnings is reported here.

Computer simulations show that unstructured populations of interacting finite state
automata self-organise under different environmental conditions to robust, self-producing
structures called niches. The criteria for an autopoietic system remains a contested issue
in the field and, as such, these niches could not be deemed to be fully autopoietic although
they did routinely demonstrate the critical processes of self-production and adaptation.
Competition at the individual, networked and niche level operated on such processes and
was responsible for the continuous transformation of the population’s structure in response
to changes in the environment. Such structural coupling ensured the maintenance of the
organisational identity of the proto-autopoietic system - the hallmark of autopoiesis - which
was enabled by the emergence of hierarchical, strongly connected and dynamically stable
networks that proved resilient to major environmental perturbations.

This work has tested the hypothesis that autopoietic systems can emerge from simple,
unstructured beginnings. The research findings uphold this hypothesis, and several impor-
tant features and properties of proto-autopoietic systems have also been reported. This
research has shown that proto-autopoietic organisations are generated and maintained
through competitive production processes and protocell researchers may wish to consider
this in the design of their experimental strategies.
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INTRODUCTION

Natural selection may explain the
survival of the fittest, but it cannot
explain the arrival of the fittest. -
Hugo De Vries in Species and
Varieties: Their Origin by
Mutation (1904)

1.1 Context

The theory of cellular life proposes that biological cells are the essential building blocks for

living systems, with the single cell subjected to Darwinian evolution being the primary

unit for life [1]. This raises the circular question of how the first living cells emerged in

the absence of established biological evolution. The Russian chemist - Alexander Oparin

- developed the concept of ’molecular evolution as the chemical progenitor of biological

evolution’ [2] and this has come to be the basis for modern research into the origin of

life. Specifically, Oparin proposed [3] that initially simple abiotic molecules spontaneously

formed more complex molecular chemistries. This may lead to the emergence of the

primitive processes of replication, metabolism and compartmentalisation which would be

a critical step on the pathway to the emergence of the first living cells. Such a primitive

system would need to operate in a manner that maintained and increased its viability
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CHAPTER 1. INTRODUCTION

in the presence of selective pressures. In this way it is envisaged that such a system

would evolve as it endured and adapted under various environments. This would be a

form of autonomous chemical system and that has been conceptualised as a protocell

[4]. The need for a systems perspective on protocell formation has led to the emergence

of the discipline of systems chemistry which focuses on the development of molecular

systems that demonstrate emergent properties that are only possible through the collective

behaviour of the interacting molecules that constitute the chemical system of interest.

"One of the grand challenges of Systems Chemistry, namely producing synthetic life,

might be fulfilled through the design of a collection of molecules, a ’network’, that is simple

enough to self-organize, yet sufficiently complex to accommodate the essential properties

of a living organism: compartmentalisation, replication and metabolism, all maintained

out-of-equilibrium." [5]

As a discipline still in its infancy, systems chemists do not yet have a definitive body of

knowledge of which design strategies (e.g. chemical affinities, reaction network structures,

feedback loops, and so on) would be likely to achieve such outcomes. Nevertheless, attempts

have been made to define a system architecture deemed to be most closely aligned to this

aim and one of the more prominent and convincing models is based on the theory of

autopoiesis [6].

The theory of autopoiesis [7] - from the Greek auto- meaning ’self ’ and poiesis meaning

’production’ - was developed by the Chilean biologists Humberto Maturana and Francisco

Varela who proposed that living systems are distinguished from non-living systems by the

ability to continually reproduce and maintain themselves. In this concept an autopoietic

system consists of entities that interact with each other to produce new entities which are

identical to those that participated in the process. In other words, an autopoietic system

produces the components of which it is composed and this results in a system that can

persist over time as it produces new entities as old entities decay. A key characteristic

of an autopoietic system is that it creates an interface between its interior - containing

the entities of the production process - and its environment. The characteristic model

of an autopoietic system is a biological cell whereby the process of production creates a

membrane that encapsulates the internal reaction networks that produce the entities that

constitute the membrane. This circularity gives rise to a self-contained system that is

operationally closed. The relationships between the entities of such a system is called the

organisation of the autopoietic system and the specific arrangement and configuration of

those entities at any moment in time is its structure.

A conceptual example of an autopoietic organisation is a chemistry consisting of three

components [6] - a substrate, a product and a waste product - that collectively are sufficient
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to form and maintain a boundary that encapsulates the reactions that are required to

produce the boundary. A schematic of such a minimal autopoietic cell is shown in Figure

1.1.

Figure 1.1: Luisi’s schematic of a minimal autopoietic cell where a substrate entity (A) produces the product
(S) which links to other S entities to form a boundary which encapsulates the A → S reaction. Over time
S decays to the waste product (P) leaving a hole in the boundary which is repaired by another S molecule
generated from the internal reaction. Taken from [8].

This artificial chemistry was first simulated by Francisco Varela in 1974 [9] and has

since been examined in detail [10],[11] with more recent simulations emphasising the

physical accuracy of the reactions and the transport of artificial chemistries. The boundary

of an autopoietic system does more than act as a compartment. It also acts as a mediating

interface with the environment that through a sensorium [2] allows an exchange of matter

and information between the interior and the exterior. This exchange can trigger changes

to the structure of the autopoietic cell which, in turn, can lead to a change in the state

of the system. Some of these changes may be transitory, with no long term effect on the

system, whilst others may be persistent and that permanently change the structure (but

not the organisation) of the system. This plasticity [8] is an important characteristic of

an autopoietic system as it allows the system to adapt to its environment. Of course, a

change in behaviour of an open system such as an autopoietic cell will lead to changes in

the environment through altered emissions (as waste product or information) from the cell

itself. Such structural coupling between cell and environment is a reflexive cycle i.e. the

autopoietic system forms and is formed by its environment. This process of adaptation is
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called cognition and has been studied extensively [12],[13],[14],[2],[15],[16]. It is the main

mechanism by which an autopoietic system is claimed to evolve [7]. The combination of

cognition with the process of autopoiesis (self-production) constitutes and maintains the

organisation of the system.

The main strengths of the theory of autopoiesis are that: (a) the concept is sufficiently

abstract and agnostic to the chemical systems or molecules by which an autopoietic system

can be realised. Together these provide the desirable quality of minimality which, when

seeking to model the formation of a basic living system, is to be favoured; and (b) it

is a scalable concept that has explanatory power through all of the major evolutionary

transitions [17] from the most basic living cell to human cognition to social systems. It has

generated interest outside of its field of origin (biology) and been applied to social systems

[18], art [19], knowledge in institutions [20], computation theory [21], information systems

[22], law [23] and architecture [24].

However, the adoption of autopoietic theory within biology has had a somewhat slow

uptake primarily because it arrived at a time in the early 1970’s when a reductionist

paradigm was prevalent in the field with research efforts focused on the extrapolation of

the genome to explain biological behaviour. Nevertheless towards the end of the twentieth

century and with the increasing attention being given to system sciences - particularly

systems biology and complexity science - autopoiesis began to be recognised as a concept

that was somewhat ahead of its time [6]. Within the specialised field of neurobiology

and cognitive sciences autopoiesis is now widely accepted as a central tenet of embodied

cognition theory [25]. Within the relatively new field of synthetic biology autopoiesis has

been adopted as a popular model of the system logic of a minimal living cell (the so-called

protocell) [26]. By comparison, within the field of evolutionary biology autopoiesis has still

not been recognised as part of the theoretical firmament alongside DNA and Darwinian

evolution (the so-called modern synthesis) nor does it form part of the ongoing extended

evolutionary synthesis movement. This has been investigated [27] with the conclusion that

the lack of clarity and the under-developed nature of the relationship between autopoiesis

and Darwinian evolution is the main issue. Attempts have been made to relate these

two fields [7], [28], [29], [30]; however, a clear understanding of the relationship remains

elusive. Subsequently autopoiesis remains an outlier in evolutionary biology research.

As a case in point a recent review of the extended evolutionary synthesis [31] makes

no mention or reference to autopoiesis or any related works even though the authors

state the fundamental importance of ’constructive processes’ to developing the field of

biology. As will be discussed in Chapter 2 autopoiesis is intrinsically and fundamentally a

constructive process and so its continued omission from the conversation on evolutionary
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biology warrants attention.

My view, which is introduced here but which unfolds throughout this thesis, is that the

state-of-the-art in the field of autopoiesis research does not directly address nor sufficiently

explain how autopoietic systems may form from simple, unstructured beginnings. Or,

in other words, given the innate power of autopoiesis theory to explain constructive

processes it does not adequately explain the origin of itself. Maturana & Varela [32] describe

the coming together of three concurrent processes (metabolism, compartmentation and

adaptation) but they omitted to address where and how these processes could have emerged.

The artificial chemistries used to demonstrate the formation of a minimal autopoietic

cell [9] - and to prove the concept of autopoiesis - rely entirely on the presence of an

ideal chemistry. Yet from where could such a chemistry have emerged? We could assume,

no matter how improbable, that such a chemistry could occur spontaneously given a

sufficiently diverse population of chemicals able to interact over very large timescales 1 but

this dodges the question and effectively ’kicks the can down the road’. The hypothesis that

needs to be tested is that autopoietic systems form from a pathway that originated from

simple, undefined and unstructured beginnings. Such a system may become increasingly

structured over time and such an organised chemical system may act as a resilient platform

from which various candidate autopoietic organisations could be trialled and tested. Such

platforms would themselves need to demonstrate a degree of self-maintenance and renewal

simply to sustain themselves in an external environment. As such, these platforms would

need to exhibit autopoietic-like behaviour without actually being fully autopoietic. I call

these proto-autopoietic systems. With this simple distinction in mind we can now ask

questions such as:

• What construction occurs prior to the formation of a fully autopoietic system?

• What are the organisational pathways from very simple organisations to those that

begin to exhibit proto-autopoietic behaviour?

• What are the properties of proto-autopoietic systems?

• How do such properties emerge from simple, undefined beginnings?

• Do such proto-autopoietic systems endure?

• Is it possible that fully autopoietic systems could form from these proto-autopoietic

states?
1Stuart Kauffman’s work on the emergence of autocatalytic sets attempts to answer such questions and

this is discussed in Chapter 2.
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• At what point does a proto-autopoietic system become a fully-fledged autopoietic

system?

Such proto-autopoietic states need to be understood if we are to explain how autopoietic

systems may have formed on the early earth and before the arrival of the first living cell.

The purpose of this project is to investigate the possible pathways to autopoiesis. The

contribution that this research may make, is to suggest a theory for the origin of autopoietic

forms of organisation.

1.2 Research Aims

The research questions that this project sought to answer and the related aims of this

project were:

Research Question Research Aim

Q1. Can autopoietic sys-

tems form from simple, un-

structured beginnings?

State the criteria and method for evaluating whether a

system has achieved autopoiesis. Maturana & Varela orig-

inally proposed such criteria [7] which was subsequently

refined [6]. The criteria for a physical boundary remains a

contested issue [33] and this will be discussed in Chapter 2

Q2. If they exist, what

pathways emerge and what

are their properties?

Develop a minimal computational model that supports an

interacting population coupled to an environment. This

will require a model that distinguishes an internal envi-

ronment (i.e. the positions of the interacting entities in

time and space) from an external environment (i.e. those

global parameters that perturb the internal environment).

It is important that the chosen model and methodology

strike the right balance between being minimal enough to

avoid any claim of over-engineering the results and yet able

to demonstrate non-trivial and interesting behaviours. De-

sign a strategy for identifying and measuring any emergent

properties of an evolving population of interacting entities.

Both quantitative and qualitative approaches should be

considered
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Q3. If they exist, why

and how do these pathways

form?

The model must have a temporal dimension from which a

variety of time-series data can be generated e.g. changes

in structure of a population over time, growth and decay

of interaction networks, changes in the composition and/or

diversity of the population. State their limitations and

review the impact that this may have on supporting the

formation of autopoietic systems. Review the results from

simulations and define the properties of proto-autopoietic

structures as a springboard from which fully autopoietic

systems may emerge

Q4. What contribution

does this make to the the-

ory of autopoiesis?

Identify and state clearly the current limitations of the

theory of autopoiesis and its application. State which limi-

tations this work addresses e.g. provide more insight into

the origin of autopoietic systems

Q5. What contribution

does this make to the ori-

gin of life?

Review the state-of-the-art in the theoretical approaches

to defining a living system and clearly outline the current

limitations in the field especially where it relates to au-

topoiesis

Q6. Can autopoietic theory

contribute more than it has

to evolutionary theory?

The project should consider the perceived limitations of

autopoietic theory in extending our understanding of evo-

lutionary processes. Furthermore, consideration should be

given to whether a greater understanding of the origin of

autopoietic systems can provide new insights into evolu-

tionary biology

Q7. How can a better un-

derstanding of the forma-

tion of autopoietic struc-

tures benefit experimental

work on protocells?

Consider the impact that any findings may have on experi-

mental work to chemically construct protocells

Table 1.1: Research questions and aims.
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1.3 Rationale

This project examines how a simple, initial population of interacting entities may become

more structured over time. The phenomena of self-organisation and emergence are the

two concepts from the field of complexity science - which is the study of the phenomena

arising from large numbers of interacting entities [34] - that capture the behaviour that

will need to be reproduced. As such this project takes a complexity science approach to

examining the formation of self-organising networks that may demonstrate autopoietic

properties. A common method in complexity science is to reproduce the behaviour of a

system of interest through simulating a computational model. Such an approach makes

it possible for a large number of entities to interact concurrently under environmental

conditions that vary in "real time". Such variations are not plausible using analytical

methods such as the numerical simulation of a system of differential equations.

Two of the main tools in the complexity scientist’s toolbox that are valuable for this

project are information theory and network theory. The former provides a way to quantita-

tively measure the complexity of a process, a structure or a collection of entities whilst the

latter provides a concise mathematical approach to quantifying the relationships between

large numbers of entities. Both approaches are required to record and define the structures

and processes that may emerge as a simple population self-organises and evolves.

Given that this project is simulating how minimal beginnings can generate complexity

- inline with Oparin’s suggestion [35] of an increasingly complex autonomous chemical

system - it will be important to maintain a degree of integrity to how entities interact

and how they produce new entities. The basis for the model will need to be a minimal

population where each entity in the system represents a unique behaviour of interaction.

As will be discussed in Chapter 2 a pre-existing model developed by James Crutchfield

& Olaf Gornerup called the Finitary Process Soup [36] provides a useful starting point

with one of the advantages of this model being that the entities are a special class of finite

state transducer called ε-machines. These are minimal representations of unique physical

processes that adhere to rigorous mathematical rules for their own construction and their

collective behaviour and that can be quantified using measures of complexity [37]. In the

words of Crutchfield & Gornerup their model allows a modeller to: “state the question of

whether or not complexity has genuinely emerged over time in pre-biotic and pre-chemical

processes” [36]. However their model has several limitations that needed to be addressed

to allow this project’s research aims to be pursued and this is discussed in the next chapter.
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1.4 Scope

This research project is a computational study of the emergence and dynamics of proto-

autopoietic systems as steady-state organisations that occur under various environmental

conditions. The computer simulations that were performed focused on the nature of the

interactions between entities and the basis for their self-organisation. The intent was not to

accurately model the physical and chemical processes that lead to the formation of a proto-

cell [38],[39] as an example of a complete autopoietic unit that satisfies Maturana & Varela’s

criteria. Instead the focus was on examining the emergence of proto-autopoietic networks

from an initially uniform and unstructured state. The formation of a membrane/boundary -

which is commonly demonstrated in other computational work on autopoiesis - was not a

specific aim of this project. As discussed in Chapter 2 the necessity of a physical boundary

for a system to become autopoietic is a contested issue and pursuing it risked de-focusing

the main aim of this project which is on understanding the structures and processes

that emerge from undefined beginnings. Furthermore the number of assumptions that

would need to be designed into the model to support a physical boundary would need to

increase significantly to ensure that a credible process of physical boundary formation

could be accurately simulated. This was deemed to be an unnecessary complication that

would detract from a more elegant, minimal model of an interacting population subject to

environmental perturbations where the primary aim was to investigate self-organisation,

adaptation and persistence2.

Autocatalysis [40], and specifically autocatalytic networks, was not an explicit focus

for this project. Autopoietic systems, even proto-autopoietic, are likely to consist of one or

more autocatalytic cycles [33] and, in that context, they are examined. There is extensive

literature on the formation and evolution of autocatalytic cycles [41] in origin of life

scenarios but less so in the context of autopoietic systems. The key distinction in this project

that distinguishes it from work on autocatalysis is the focus on the adaptive behaviour

of the system in the presence of various forms of perturbation from the environment and

neighbouring systems. This allowed the important cognition process of autopoietic theory

to be explicitly examined alongside the autopoietic process of production and maintenance.

Other models of living systems were considered - Tibor Ganti’s chemoton [42], Eigen &

Schuster’s hypercycles [43] - however as is discussed in the next chapter they assume the

presence of reasonably sophisticated biochemical machinery such as information-encoded

molecules that can control replicative processes. As should now be clear this project was

2I show that even a minimal model of interacting entities can demonstrate the emergence of boundary-like
spatial patterns (see Chapter 7).
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focused on examining the possible pathways to such biological capabilities and therefore,

by definition, models that rely on templated replication were excluded as they did not

support such research aims.

1.5 Outline of Chapters

Chapter 2 examines in detail the theory of autopoiesis and related literature. The structure

of the first part of this chapter is based on the three criteria of an autopoietic as proposed

by Francisco Varela [44]: self-boundary, self-maintenance and self-generation. This proves

to be a useful framework within which to examine not just the theory, but also investigate

the limitations and challenges to the underlying assumptions of the model. The main

theoretical issue of whether or not an autopoietic system needs to have a physical boundary

(i.e. an encapsulating membrane) or whether non-physical ’boundaries’ are also allowed

(e.g. a system is deemed to be maintaining a boundary if it is able to preserve its dynamic

equilibrium) are discussed. Whilst the issue is not resolved here it does prompt the need to

appropriately define the forms of organisation that are generated from my simulations. This

is subsequently discussed and I propose the term proto-autopoietic system to describe a sys-

tem that consists of dynamically stable strongly connected networks of mutually producing

entities, that emerge under specific environmental conditions and that do not necessarily

form a physical boundary. Previous computational work that has directly demonstrated

autopoiesis (Varela et al. [9], McMullin [45]) or that has demonstrated behaviour indicative

of proto-autopoiesis are discussed and compared and this gives particular attention to

Fontana’s algorithmic chemistry [46] and Crutchfield & Gornerup’s Finitary Process Soup

[36]. Comparison of these models concludes with the recognition that the Finitary Process

Soup - albeit with limitations that would need to be addressed - provides a rigorous and

credible foundation for examining self-organisation and to quantitatively measure any

structural or network complexities that may arise.

Chapter 3 explains how the research aims were addressed by extending and enhancing

the Finitary Process Soup model. Two models are introduced - the information niche model

and the computation niche model - that were derived from the minimum number of assump-

tions required to generate sufficiently complex behaviour in an interacting population that

was quantifiable. The information niche model extended the finitary process soup model

[36] to examine the effect of environmental conditions and environmental perturbations on

the dynamics of an interacting population. This model was called the information niche

model to acknowledge the finding that the interacting population transformed itself to

different structural configurations that fit to specific environmental conditions (i.e. analo-
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gous to an ecological niche [47]) and that the information content of these different states

could be quantified. The computation niche model enhanced the information niche model

by formally defining a systems interface (analogous to a biological membrane) that was po-

sitioned between an internal interacting population and an environment. This membrane

consisted of the same automaton types that were present in the internal population but

with a different mode of operation e.g. whereas the automata in the internal population

interacted to produce new automata, the automata in the membrane (so-called membrane

automata) processed information from the environment and other membrane automata

that may, or may not, trigger a membrane automaton to emit information that had the

potential to excite or inhibit its equivalent automata in the interacting population. This

proved to be a valuable enhancement as it allowed the autopoietic notions of structural

coupling, cognition, and information processing to be examined. Analysis of this model

revealed that the systems interface in conjunction with the environment and the internal

population was computing the next state of the system. As such this model was called the

computation niche model. Chapter 3 also describes the following methods that were used

for analysing the simulation results: Shannon entropy [48]), structural complexity [37], in-

teraction network complexity [36]) and network analysis measures such as determining the

degree distribution [49] of a network. New methods for detecting strongly connected com-

ponents of networks in an interacting population and testing those networks for dynamic

stability were developed specifically for this project and these are also described.

Chapter 4 is a reproduction of my published paper, "Emergence and Dynamics of

Self-Producing Information Niches as a Step Towards Pre-Evolutionary Organization" [50].

This paper describes the key properties of proto-autopoietic organisations that emerged

from simulating a one-state automata population evolving under the influence of fixed and

intermittent environmental conditions. The main contribution that this paper makes to the

field of autopoiesis is that proto-autopoietic organisations emerge from simple beginnings,

and that they have specific properties related to the structure of their interaction networks.

They represent a minimal beginning for an autopoietic system. The paper introduces the

notion of an information niche as a particular instance of a proto-autopoietic system as a

dynamically stable strongly connected network of mutually producing automata that form

distinct organisational steady states under various environmental conditions. Critically it

is noted that information can be lost or gained during a perturbation and, in some cases,

this leaves the system unable to transform itself back to a prior configuration state. The

environment can play the role of adding the necessary information back into the population

in the form of a perturbation which proves sufficient for the population to transform to

prior states. The paper used the information niche model and also made use of most of the
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information and network measures described in Chapter 3.

Chapter 5 describes the results of simulating a population of interacting two-state

automata and examines the structure of the resultant steady-state populations. Simulation

results reveal that competition between two niches (as separate proto-autopoietic systems)

emerged and eventually led to an event where one of the niches came to dominate the

population at the demise of the other niche. In the presence of some influx of automata

from outside the population these previously competing niches that were operating on a

’competitive exclusion principle’[51] were now cohabiting in the population. New competi-

tive behaviour in response to environmental changes were observed with the emergence of

two competing survival strategies called ’replicate & lock-in’ and ’mutual maintenance’.

The structure and properties of the underlying networks that were partly driving such

population dynamics were examined and this revealed similar properties to those that had

been identified in the one-state information niche simulations (as per Chapter 4).

Chapter 6 examines the spatial patterns that emerged in one-state and two-state infor-

mation niches under zero diffusivity conditions. In the one-state population the patterns

that emerged under zero diffusivity conditions were characterised as two competing do-

mains of automata separated by a dynamic and continually produced boundary consisting

of two other types of automata. Competition between these domains proceeded under a

’protected outgrowth’ mechanism determined by the expansion of the domain boundaries.

The two-state niche also formed homogenous domains on the lattice consisting of a single

type of automata that grew outwards until meeting other homogenous domains. However,

there was no evidence of boundary-type automata. Instead the domains were in direct

contact with other domains and competition between them proceeded by two mechanisms:

’replicate and lock-in’ and ’mutual maintenance’ with the former proving to be the more

effective. The emergence of these various competitive, or survival, strategies were entirely

unexpected and were not evident from examination of the individual automata.

Chapter 7 describes part one of a two part investigation into the cognitive process of an

autopoietic system which was Maturana & Varela’s concept for how an autopoietic system

adapts to changes in its environment [7]. The ability of an information niche to assimilate

and accommodate material that was generated from external processes allowing two niches

(a one-state and a two-state niche) to interact and exchange material (i.e. automata) was

simulated and the results are presented. There were two findings: (i) information niches

that consisted of simpler entities tended to be more resilient in the presence of foreign

automata, and (ii) they were also more readily reproduced in neighbouring populations.

These observations suggest that proto-autopoietic systems that contain the simplest of

automata should be more resilient to perturbations in the form of an influx of foreign
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entities and, secondly, that simpler networks should be more easily reproduced. This has

implications for understanding how autopoietic systems may scale and evolve.

Chapter 8 is part two of the investigation into the cognitive process of an autopoietic

system. This chapter introduces the use of the computation niche model which explicitly

defines the system interface of an autopoietic system with its environment. This allowed

several features of autopoietic theory to be examined including: (a) structural coupling of

the niche with its environment, (b) the relationship between a system interface (analogous

to a membrane) and the production of new automata, and (c) the effect of environmental

noise on interaction dynamics in the population. The main findings were that the system

dynamics are hierarchical with an interplay of top-down, bottom-up and same-level in-

formation processing yielding a proto-autopoietic system that demonstrates information

closure i.e. it is able to retain the information required to re-generate all possible system

states; this was not evident from simulating the information niche model. This has implica-

tions for understanding the causal structure of an emergent proto-autopoietic system. An

important finding was that proto-autopoietic systems with a population of automata that

were too simple cannot respond effectively to extreme environmental conditions (specifi-

cally, the simplest of one-state automata ceased to participate in interactions with other

automata). This observation implies that autopoietic systems may reside within a ’window

of viability’ [52], where they are not too simple nor too diverse, to endure under varying

environmental conditions.

Chapter 9 presents the results of simulating the endogenous diversification of a compu-

tation niche driven entirely from an initial seed population. This seed population consisted

of all 129 self-replicating automaton types that exist in one-state and two-state populations.

These self-replicators were chosen as they could interact with each other to produce novel

types of automata whilst also reproducing themselves. This was deemed to create a degree

of competition between self-replication and the diversification of the population. From

this the notion of whether novelty could be regulated via. self-organisation was examined.

The results were unequivocal: an explosion in the appearance of novel automata was

noted followed by a rapid tailing off in the rate of production of new types of automata.

After 50 generations the population transitioned through four phases characterised as: I -

Diversification, II - Competition, III - Penetration and IV - Saturation. The main finding

was that open-ended novelty - even in the presence of a competing dynamic in the form of

self-replicating automata - remained unregulated. There was no emergent regulation on

the production of novel automata due to competition from established automata. Subse-

quently, the production of novel automata dominated population dynamics and this led to a

diverse, unstructured population. Therefore one conclusion is that an ability to regulate the
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rate of novelty production within a self-producing population could be a critical property

of an autopoietic system. I believe this is a new finding in the field of autopoiesis and

reinforces the notion that an autopoietic system must maintain itself within a ’window of

viability’. Cognition could be the process by which the system maintains itself within a

window of viability in response to changes in its own structure and changes to its external

environment.

Chapter 10 discusses the results from Chapters 4-9 and evaluates them against the

original research aims of the project. Several themes emerge in this chapter e.g. the

notion of a proto-autopoietic or autopoietic system maintaining itself within a window of

viability, that the information content of a self-producing system constrains or enables

its ability to respond to environmental changes, and the emergence of strongly connected

and hierarchical networks. These observations were drawn from an interacting population

that was - at a fundamental level - driven by a process of competition occurring at the

individual (automata), collective (network) and autopoietic (niche) level. It is proposed

that the core dynamic of an autopoietic system arises from a competitive process, and that

all other processes - such as structural transformations of the population in response to

changes in the environment - are realised through competition at multiple levels. Not only

does this have implications for what types of processes should be sought (i.e. competitive)

in producing an autopoietic system in the real-world but this also has implications for

bridging the conceptual gap between autopoiesis and Darwinian evolution i.e. selection

at multiple levels (automata, network, niche) occurs in simulations of the most simple

of autopoietic systems and therefore a competitive process is the continuum that joins

these two theories. The general properties of an autopoietic system are also proposed as:

(i) strongly connected networks that drive the self-production process; (ii) redundancy

within that network and the population; (iii) diversity as a mechanism to recover from

environmental perturbations; and (iv) modularity in the network architecture which equips

an autopoietic system with the ability to completely reproduce itself. These properties

provide the qualities of robustness and resilience which would be critical to the survival

and long-term persistence of a simple self-producing system which can act as a springboard

from which more complex forms of organisation could emerge.

Chapter 11 concludes with a summary of the research findings. The conclusion states

that the hypothesis that autopoietic systems can emerge from simple, unstructured begin-

nings holds, and that the work undertaken in this project contributes to our understanding

of the possible pathways to autopoietic systems. An assessment of the limitations of the

research are described and these must be borne in mind when interpreting my results and

conclusions. Recommendations for future work are also proposed.
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2
BACKGROUND AND LITERATURE REVIEW

This chapter provides the necessary background to understand autopoiesis as a

model of a minimal living system. The three criteria for determining whether a

system is autopoietic are examined in detail by reference to the current thinking

and literature in the field. This leads into a review of computational models of autopoiesis

(termed "computational autopoiesis") that are based on simulated artificial chemistries

as a way to demonstrate how autopoietic systems can self-organise and endure. Several

limitations in the field are identified, in particular the lack of any convincing narrative for

how autopoietic systems may form from simple, unstructured beginnings.

2.1 A Minimal Living System

A living system is distinguished from non-living matter by its ability to reproduce and

maintain itself [9]. To achieve this, a minimal living system must integrate three functions

[4]: (i) it must maintain its identity through the localisation of its constituent parts

(compartmentation); (ii) it must use free energy from its environment in order to maintain,

grow and reproduce itself (metabolism); and (iii) it must be equipped with some form of

heritable information that can be transferred to future reproductions of itself. Alexander

Oparin proposed that the origin of the first living cell must have emerged from increasingly

complex chemical reactions that were able to endure over extended periods of time [35].

This would be a form of autonomous chemical system able to demonstrate sufficient

functionality and behaviour to be determined as living.
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A biological cell is the archetype of a living system, and a minimally functional version

is called a protocell [1]. Efforts to develop protocells have grown significantly in the past

two decades [26] and experimental approaches have included both top down and bottom up

methodologies[53]: (a) the top-down approach takes a contemporary biological cell with the

aim of isolating the minimal genetic requirements to maintain the cell as a living system by

the progressive removal of non-essential genes up to the point at which biological function

is just retained [54], and (b) the bottom-up approach attempts to synthesise a biological cell

from simple chemical precursors [55] such as nucleic acids and peptides contained within

fatty-acid vesicles [56], peptide-nucleotide microdroplets as membrane-free protocells [57],

or protein-polymer nano-conjugates [58]. Whilst the top-down approach efficiently makes

use of the building blocks that already exist (DNA/RNA/proteins), it is not an approach

that can directly explain how living systems may have emerged in the absence of such

complex molecular machinery. By comparison, it is necessary with the bottom-up approach

to consider more broadly the chemical pathways by which a protocell can be created.

A chemical pathway from an initially random assembly of molecules to a minimal

protocell, without the use of any genetic apparatus, has been hypothesised [59] as feasi-

ble through mutually catalytic metabolic networks that exhibit the transfer of chemical

information. Such assemblies of molecules would be held together by non-covalent inter-

actions [60]. Whilst this is a compelling argument, there remains the issue of whether

such assemblies of molecules have the capacity to store and transfer information and to

undergo chemical selection and evolution in the absence of informational polymers [61].

Therefore, a major requirement is demonstrable proof that an assembly of molecules can

retain and transfer information over generations in the absence of informational polymers

such as RNA and DNA. There have been some suggestions of how this informational

step could be achieved with the notion that protein interactions were “the first form of

reproducing life and that nucleic acids evolved later as memory molecules” [62]. An al-

ternative suggestion is that a protocell is the basic unit of prebiotic evolution [63] that

increases in organisational complexity as it evolves. This implies that there are minimal

cells (e.g. vesicles) that are sufficiently robust that they allow alternative phenotypes to be

explored with successful variants representing a change in the functional capability of the

protocell. Such successful phenotypes become the new basic unit of evolution from which

more sophisticated phenotypes can be trialled. This is very much aligned to Oparin’s view

of abiogenesis resulting from a long and increasingly complex system of chemical reactions.

Shirt-Ediss et al. [63] set out three challenges to experimental protocell research: (i)

coupling chemistry with vesicle dynamics: discover simple reaction networks that can

spontaneously absorb into existing vesicles to modify the properties of the vesicle to induce
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growth and reproduction. In turn, the vesicle should be supportive of that chemistry (this

has similarities to autopoiesis (see Section 2.2)); (ii) finding conditions and mechanisms for

minimal functional integration: this requires a search for specific conditions and the set

of interactions that lead to a minimally functioning system that, at the least, integrates

spatial and kinetic mechanisms; and (iii) characterising the evolutionary dynamics of

pre-Darwinian protocells: working with simple chemical structures to explore how such

chemical assemblies could operate far-from-equilibrium in a robust manner such that

a range of alternate phenotypes can be explored. Coupled to simple chemistry that can

also divide with regularity, this may provide a minimal platform from which alternate

mechanisms that produce increasingly reliable operation and heredity can be examined.

As will be discussed in Section 2.2 Shirt-Ediss et al’s third challenge resonates strongly

with the notion of a proto-autopoietic system.

The investigative effort into exploring alternative chemical pathways to abiogenesis

has given rise to a new discipline within the field of chemistry called systems chemistry

that: “... seeks insight into complex networks of interacting molecules and their system-

level properties. These properties emerge through the collective behaviour of the system’s

components and cannot be attributed to the individual components acting in isolation. The

way in which specific interactions between the components propagate through the system

dictates these emergent properties” [64].

This definition incorporates language from complexity science [34] (collective behaviour,

emergent properties) and has parallels with the work of Maturana & Varela’s theory

of autopoiesis (see Section 2.2). Complexity science is the body of knowledge, tools and

techniques for the study of complex systems which has been defined as: “A system in which

large networks of components with no central control and simple rules of operation give

rise to complex collective behaviour, sophisticated information processing, and adaptation

via. learning or evolution” [34].

Complexity science is therefore concerned with how large systems change over time as

a result of the interactions between the entities of which the system is composed [65]. Such

relationships tend to be nonlinear, and interactions at the local level can lead to changes

at the global level through a process of self-organisation [66]. A common phenomenon of

self-organisation is the emergence of behaviour that cannot be predicted from examination

of the individual entities of the system. This is one of the hallmarks of complex behaviour

and, due to the nonlinear relationships involved, favours the use of mathematical models

implemented as agent-based and/or numerical computer simulations to reproduce such

dynamics.

There are two classes of computer model in systems chemistry:
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1. Computational systems chemistry seeks to build highly detailed molecular simula-

tions to accurately reproduce the physical and chemical kinetics that may be involved

in the formation of a protocell [67]. Computational chemistry is an active area of

research that requires access to substantial computer resources to perform very

complex calculations such as interatomic forces and the electron density surrounding

nuclei [68]

2. Abstract models that emphasise the general processes and properties that could lead

to the emergence of systems that could support protocell formation. The common

feature of such models is the focus on reproducing complex behaviour such as self-

organisation, emergence and adaptation which are concepts that reside within the

discipline of complexity science.

The field of complexity science - with its depth and richness of tools, concepts and

methods that have been tried and tested across multiple disciplines - has the potential to

enrich the domains of chemistry and systems chemistry [69]. The maturity, and therefore

the usefulness, of complexity science, rather than systems chemistry, in developing our

theoretical understanding of pathways to autopoiesis is more helpful. For example, the

mention of networks and collective behaviour is similar to that used in the definition

of systems chemistry. Whilst adaptation is implicit to the protocell as a "basic unit of

evolution" [1], it is not covered at all in the definition of systems chemistry. Furthermore,

whilst systems chemistry mentions "propagation" this is a rather ambiguous term and it is

not obvious what information processing may mean in the context of a protocell. This is

a serious omission given that information processing in living systems, and particularly

biological cells, is an active and important field of investigation [70]. The complexity

science description of a complex system is applicable to the concept of a protocell. In

general complexity science has much to offer the development of the systems chemistry

field, not least in bringing greater clarity and maturity of thinking to what constitutes a

complex system. Whilst systems chemistry is fundamental to experimental protocell work

it lacks the body of knowledge required to also examine the theoretical aspects of protocells.

Therefore the main epistemological backdrop to this project is the language, concepts and

tools of complexity science. This topic is returned to in Chapter 10.

Theoretical models of a minimal living system have been proposed with the three more

prominent models referenced in protocell experimental research being Ganti’s chemoton

[42], Maturana & Varela’s autopoietic systems [9], and Eigen & Schuster’s hypercycles

[43] [67] - see [39] and [71] for a detailed review of the state-of-the-art. Such models have

guided and inspired the design of computer-based models [4],[8] to examine and explore the
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dynamics and formation of in silico (artificial) cells. Two other important theories of living

systems are (a) the Metabolism-Repair (M-R systems) model developed by Robert Rosen

[72] and that overlaps considerably with autopoietic theory. M-R systems theory provides

an important comparison to the adaptive nature of autopoietic systems and, as such, it

is introduced and described in Section 2.2.3; and (b) Stuart Kauffman’s autocatalytic

sets [40] which explains how networks of reactions can become more complex over time.

Whilst Kauffman’s work isn’t a complete theory it does provide important concepts that

are relevant to thinking about pathways to living systems from simple beginnings. His

work is most related to the specific process of autopoiesis and, as such, is discussed where

it is most relevant (see Section 2.2).

Eigen & Schuster’s hypercycle model [43] is an abstract model of self-replicating entities

that form autocatalytic networks. They defined self-replication as the ability of an entity

to catalyse its own reproduction. When that same entity formed part of an autocatalytic

cycle, they referred to it as a network replicator and defined it as the dependency that an

entity had on other entities to reproduce it. Self-replication is reminiscent of RNA, whilst

network replication is characteristic of a metabolism. The combination of self-replicators

and network replicators form a hypercycle. A hypercycle is a collection of entities that

replicate themselves through self-reinforcing loops (self-replication) and that catalyse

the production of other entities (network replication). In this way each entity catalyses

the creation of the entities on which it is dependent for its own replication and with the

final entity in such a system catalysing the first entity in a cyclical reaction. Therefore

a hypercycle reinforces itself. Eigen & Schuster purport that this process of continual

reinforcement through a system of replications satisfies the notion of a living system. As a

theory it is wholly dependent on replicative processes that use informational molecules

and highly refined catalysts (e.g. RNA and proteins) and, as such, can aid in both top

down and bottom up experimental research that seeks to harness and/or reproduce modern

molecular machinery. However, given that my research is examining minimal, unstructured

beginnings of a living system, any theory that is dependent on the presence of complex

molecular machinery is, by definition, outside of the scope of this project. Consequently

Eigen & Schuster’s hypercycle theory, whilst well-studied and supported, is excluded from

further consideration.

Tibor Ganti proposed a particularly elegant model of a protocell which he termed a

chemoton [73]. The chemoton is a contained system consisting of three reaction cycles: an

autocatalytic cycle that constitutes the protocell’s metabolic system, a replication cycle

consisting of the protocell’s genetic system, and a membrane-forming system (see Figure

2.1). Nutrients enter the cell and waste is extracted from the cell and this process is
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managed by the metabolic system. The creation, maintenance and reproduction of the cell

is the result of a carefully orchestrated interplay of these three subsystems. The chemoton

model is an intricate and detailed explanation of the internal features of cellular life that

continues to prove its worth as a general heuristic for experimental design [74].

Figure 2.1: The metabolic cycle of Ganti’s chemoton [42] is an autocatalytic chemical cycle consuming the
nutrient ’X’ and producing ’Y’ as waste with intermediate ’A’; ’R’ is a by-product of the replication process that
is required to produce ’M’ the membrane molecule. Adapted from [42].

Ganti’s chemoton offers a simpler depiction of the necessary processes to generate and

maintain a minimal living system that also includes a templated replication process, albeit

Ganti is less prescriptive over the use of informational molecules. The chemoton model

represents a bottom-up constructive approach. However, whilst this level of detail builds

confidence in the model, it has been argued that it is too prescriptive and, as such, the

chemoton model is too narrow to expand to include higher notions of life centred around

concepts of epistemology, cognition and social behaviours [8]. By comparison the theory of

autopoiesis does not have such profound limitations.

Maturana & Varela’s theory of autopoiesis is a more general theory of a living system

that does not require the explicit processes of templated replication nor informational
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molecules. Autopoiesis is the preferred conceptual framework for bottom-up protocell

researchers looking to understand the system logic of a minimal living cell [26]. The openly

cited reason for the continued popularity of autopoietic theory in the protocell researcher

community is its independence from nucleic acids thus providing researchers with greater

freedom in how they design their experiments [8].

There are a number of other related models of living systems including Beer’s Model of

Living Systems [75], Schwarz’s Living System Model [76], Dittrich & di Speroni’s chemical

organisation theory [77]. These models are only cited here for completeness; conceptually

they are more detailed, more prescriptive about the processes that are required and draw on

a larger number of assumptions. Therefore they are not minimal models of living systems

and are not considered further. Figure 2.2 provides a summary of the core literature on

autopoiesis and related works.

2.2 Autopoiesis

In 1974 two Chilean biologists, Humberto Maturana and Francisco Varela, announced

their theory of how living systems are organised. They proposed that all living systems are

self-producing - autopoietic (auto for self and poiesis for production) - and that it is this

unique behaviour that distinguishes living from non-living matter. Figure 2.3 illustrates

the concept of an autopoietic system as a topological bounded structure maintained by

the dynamic interplay between a boundary and internal reactions. As can be seen, the

semi-permeable boundary allows the substrate A to diffuse into the system where it

participates in the internal reaction A → S the product of which is a component of the

boundary itself. Over time the component S decays to a waste product P in the reaction

S → P leaving a hole in the boundary. This hole is subsequently repaired by the migration

of the product S to the boundary thus completing a maintenance cycle. This minimal

example is demonstrating that: “A system can be said to be living if it is able to transform

external matter/energy into an internal process of self-maintenance and production of its

own components” [8].

A protocell - as the archetype of autopoiesis - is an open, dissipative system with

a sequence of chemical processes occurring inside the cell to maintain a boundary and

therefore its identity within its environment. The maintenance of its boundary and its

identity is the defining behaviour of an autopoietic system.

An autopoietic system is able to maintain itself through its internal network of reactions

that produce the components of which the system is composed. Therefore, autopoietic

systems: “(i) through their interactions and transformations continuously regenerate and
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Figure 2.2: Summary of the key papers contributing to or closely related to the field of autopoiesis.
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Figure 2.3: Luisi’s schematic of a minimal autopoietic cell where a substrate entity (A) produces the product
(S) which links to other S entities to form a boundary which encapsulates the A → S reaction. Over time
S decays to the waste product (P) leaving a hole in the boundary which is repaired by a newly produced S
migrating to the cell boundary. The dynamic behaviour of the system is described by the two differential
equations vgen = dS

dt , vdec = −dS
dt and the interplay of the two determines the present state of the autopoietic

cell as growing, at homeostasis, or decaying. Taken from [8].

realize the network of processes that produced them” and “(ii) constitute [the cell] as

a concrete unity in space in which [the components] exist by specifying the topological

domain of its realization as such a network” [9]. In other words the autopoietic system

organises the production of its own components which allow it to maintain the network that

is producing them. The self-referential nature of these systems is a signature characteristic

of autopoiesis. Consider Maturana’s own words on this matter:

“When you regard a living system you always find a network of processes or molecules

that interact in such a way as to produce the very network that produced them and that

determine its boundary. Such a network I call autopoietic. Whenever you encounter a net-

work whose operations eventually produce itself as a result, you are facing an autopoietic

system. It produces itself. The system is open to the input of matter but closed with regard

to the dynamics of the relations that generate it” (taken from [78]).

Luisi [8] offers a useful depiction of his “cyclic logic of cellular life” (see Figure 2.4).

This has proved to be a useful framework within which to understand and organise my

own results on simulating the formation of autopoietic systems (see Chapter 4).
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Figure 2.4: An autopoietic system depicted as Luisi’s cyclic logic of cellular life [8]. Adapted from [8].

For me the most compelling aspect of autopoiesis - and as illustrated in Luisi’s cyclic

logic diagram - is that it does not require any assumptions about the specific molecules or

chemistries that are required to construct a living system.

Francisco Varela (from [8]) proposed three criteria for autopoiesis:

Component Criteria
Self-boundary Does the system have a boundary of its own making?
Self-maintenance Is the system capable of maintaining its own identity

through dynamic processes? Are the components that
are being used up being made anew by the system itself?

Self-generation Does this happen throughout a network of reactions
that are generated by the system itself?

Table 2.1: Varela’s criteria for autopoiesis [8].

Applying these criteria to the real world, Luisi gives the example of the following as

not being autopoietic: “a virus.... as it does not produce the protein coat of its boundary or

its nucleic acids (the host cell does this)” [8]. Each of these criteria will now be described

along with related literature.

2.2.1 The boundary of an autopoietic system

Applying the first criteria - the system has a boundary of its own making - is perhaps the

most contentious issue. As explained by Barry McMullin, with molecular autopoiesis (i.e.

as it pertains to a biological cell), “the boundary performs at least the function of limiting
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or controlling the spatial diffusion of the molecules constituting the system” and “in the

absence of such control on diffusion, the reactant concentrations may dilute to the point

where one or more of the defining reactions effectively ceases to operate, and the whole self-

sustaining reaction network then breaks down” [33]. In other words, molecular autopoiesis

is wholly a physical manifestation of an autopoietic system and the criteria should apply

to a physical system. However, and McMullin goes on to explain, a computer simulation of

an autopoietic system (see Section 2.3) demonstrates the compartmentation of a reaction

network with the compartmental boundary maintained by that network. In the simulation

the boundary is constantly decaying and that requires continuous maintenance which is a

sufficient demonstration of one of the phenomena of autopoietic systems. Nevertheless, and

as explained by McMullin, “... the fact that the spatial localization is regularly interrupted

in this way makes it more difficult to be clear what exactly the ’topological’ autopoietic

requirement is” [33]. Here McMullin is referring to an older criterion of an autopoietic sys-

tem as “specifying the topological domain of its realization” [7] which Varela subsequently

simplified to “does the system have a boundary of its own making?” [9]. The apparent

quandary that McMullin identifies is born out of his investigation into what distinguishes

an autopoietic system from an autocatalytic one. This is an important question as, it is

generally assumed, that any reaction network that continually produces the components

that regenerates the network is an autocatalytic one. An autopoietic system is highly likely

to always consist of an autocatalytic reaction network. What, then, is the distinction? As

McMullin states, “the critical distinction is that autopoiesis specifically requires that this

confinement should itself be in some sense a product of the confined reaction network,

whereas collective autocatalysis is assumed to rely on some independent confinement

mechanism” [33]. Dissatisfied with the lack of clarity of Maturana & Varela’s criterion

McMullin proposed the following informal heuristic test [33]:

1. Consider two instances of the same collectively self-sustaining reaction network

consisting of exactly the same set of molecular species

2. Each is constituted instantaneously by distinct collections of individual molecules

occurring in separate reaction vessels

3. Mix the contents of the two vessels together into a single vessel assuming that any

food set continues to be available

4. Are there still two separate reaction networks or just one?
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Statement 4 is only true if the networks themselves maintain their individuality in

the absence of any spatial separation mechanism. If this can be meaningfully shown

then the reaction networks can be reasonably believed to meet the criteria for “specifying

the topological domain of its realization” [33]. If the reaction networks cannot be readily

distinguished then the singular network that is the product of their amalgamation should

be considered as collectively autocatalytic. I acknowledge what McMullin is attempting

here - to generalise on the concept of a boundary to extend the applicability of autopoietic

theory outside of cellular life - however how does one use this in practice? How does one

go about distinguishing the continued co-existence of two separate reaction networks

that are constituted of an identical set of molecules? This requires an ability for the

reaction networks to co-exist in a physical space that would, nevertheless, allow them to

maintain themselves as separately identifiable entities. Indeed, McMullin goes on to use his

heuristic test on contemporary state-of-the-art computer simulations that may demonstrate

autopoiesis [33] and these included: Walter Fontana’s algorithmic chemistry which I discuss

in Section 2.3.2; John Holland’s α-universes [79]; Tom Ray’s Tierra model [80]; and the

Substrate-Catalyst-Link (SCL) model [9] which McMullin developed with Francisco Varela

and which I present in Section 2.3.1. Given that three of these models do not specifically

set out to demonstrate autopoiesis - they allude to the existence of a relationship based on

observations of self-organisation, renewal and persistence - it is of no great surprise that

McMullin’s "heuristic test" places them firmly as collectively autocatalytic systems and

not autopoietic. However, what is surprising is that the SCL model, designed as it was to

specifically demonstrate autopoiesis, does not in fact pass the McMullin heuristic either and

therefore should not qualify as exhibiting proper autopoietic organisation. The emphasis

here on proper is mine, and in recognition of the contested status of what is deemed an

irrevocable characteristic of autopoietic behaviour. It is interesting to note that the majority

of discussion in the literature centres on the definition of what qualifies as an autopoietic

system rather than on a deeper understanding of the underlying mechanics from which

self-producing behaviour emerges. One of the contributions that my work makes here is to

bring a quantitative dimension to the underlying processes and components that constitute

a system-level behaviour that demonstrates how a system can maintain its identity within

a changing environment and, it can be argued, is maintaining a non-physical boundary.

An attempt to illuminate the mechanics of an autopoietic system comes from the field

of artificial life [81] 1 where Virgo et al [16] challenge the significance (or not) of the spatial

boundary in an autopoietic system and, in doing so, deconstruct the continual renewal

of such systems to processes and dynamics. They agree that boundary formation and

1Incidentally it has been suggested that autopoiesis is a founding concept for artificial life.
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maintenance is critical to the demarcation of the living system as a unity against its

background environment, however, the boundary does not exclusively take on the role of

containing the processes that constitute the autopoietic system. In separating out demarca-

tion from containment the authors de-conflict two concepts which, they claim, are too often

conflated: the physical boundary of an autopoietic system and the operational limits of the

system itself. The former is produced by the system whilst the latter determines which

processes are part of the system. Their aim is to bring precision to the definitions and

meaning associated with autopoiesis. For example, they define a process as, “something

that happens repeatedly or which tends to happen whenever the right conditions are met”

[16] and that within the physical/chemical realm that such processes share properties e.g.

every process transforms something into something else. Processes have a causal effect. By

comparison, the dynamics of a system are the way in which the variables of the system

change over time and processes are the things that effect those changes. The essential

point here is the co-dependence between processes (e.g. process B is wholly dependent on

process A) and that this forms networks of dependent processes which have the property

of operational closure. Operational limits therefore describe which processes are in scope

to the correct functioning of an autopoietic system. Consider Figure 2.5, which illustrates

an autopoietic system that consists of several inter-dependent processes one of which

(’M’) forms the boundary. One of the enabling processes on which process ’M’ is indirectly

dependent (process ’W’ in the example) resides outside of the operational limits.

From Figure 2.5 the processes ’w’,’x’,’y’ and ’z’ are not part of an operationally closed

network and there is an absence of cyclical dependency between them. By comparison, the

processes ’a’,’b’,’c’ and ’M’ are in a strongly connected network that is cyclical and opera-

tionally closed. One can assume, and Virgo et al’s depiction does not dissuade us otherwise,

that those processes which reside within the operational limits are also contained within

the spatial boundary formed by process ’M’. As Virgo et al. state quite clearly the spatial

boundary of an autopoietic system is not the same as its operational limits. This is an

interesting claim as, apart from challenging the conceptual constraint that an autopoietic

unit must have a physical boundary, it clarifies the embedded nature of an autopoietic

system in its environment. For example, by accepting that the spatial boundary of an

organism is not equivalent to the operational limits of the system, this forces an acceptance

that an autopoietic system may include processes that are not occurring within its spatial

boundary. This is a pertinent point to bear in mind when considering the role of structural

coupling in the process of cognition within an autopoietic system (see Section 2.2.3). They

then proceed to prove this statement by referring to the original works of Maturana &

Varela where they state that autopoietic systems are homeostatic. They test this statement
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Figure 2.5: An illustration of the operational limits of an autopoietic system as suggested by Virgo et al [16].
Taken from [16].

by demonstrating that homeostatic machines can consist of processes and dependencies

outside of the defined operational limits of the autopoietic unit e.g. a thermostat as a

homeostatic machine has to take into account the heater, the air in the room, and so on.

This notion of dependent processes that reside outside of the classically defined autopoi-

etic unit they refer to as "extended autopoiesis" [16]. To illustrate this point Virgo et al.

recite the example given by Wheeler [82] of an earthworm: the worm builds tunnels held

open by its secretions which in turn helps it to digest its food. If the autopoietic boundary

of the worm is considered as stopping at its outer skin then this completely ignores the

dependency that it - as an autopoietic system - has on the effects of its secretions. So what

is the autopoietic system here? The worm or the worm and its secretions and tunnels?

Maturana & Varela themselves provide the explanation, “... if one says that there is a

machine M, in which there is a feedback loop through the environment so that the effects

of its output affect its input, one is in fact talking about a larger machine M’ which includes

the environment and the feedback loop in its defining organization” [7]. Therefore the

worm and its secretions form the autopoietic system even though the secretions reside

outside of the physical spatial boundary of the worm itself. In conclusion, Virgo et al. have
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demonstrated a respectable argument for why defining the spatial boundary as a critical

defining component of an autopoietic system is too limited and risks missing important

structural dependencies. Their work also appears to highlight a contradiction in Maturana

& Varela’s original thinking between the necessity of a boundary to achieve operational

closure whilst paradoxically also recognising that dependencies on processes external to

that boundary should be considered part of the operational closure of the system. Virgo et

al. set out to challenge the notion of the sacredness of a spatial boundary in identifying au-

topoietic systems and I believe they do this well through the notion of extended autopoiesis.

This does, of course, raise the question of how to identify autopoietic systems if spatial

boundaries are not a reliable guide. Surprisingly they do not explore this and yet they have

laid out the necessary concepts - dependent processes and extended autopoiesis - from

which a procedure could be developed to detect and trace the autopoietic forms in a complex

system. My work progresses these concepts somewhat with an investigation into the pro-

cesses and dynamics that lead to the formation of non-trivial self-producing populations of

interacting entities. As will be discussed shortly, I claim that such interacting populations

that have evolved to a steady-state configuration under specific environmental conditions -

what I call a niche - are proto-autopoietic. I introduce the term proto-autopoietic here to

refer to those critical processes that generate a self-producing system capable of reaching

a dynamic equilibrium, but that do not necessarily form a physical boundary.

Another challenge to Maturana & Varela’s insistence that the boundary is a physical

one comes from the social sciences. Niklas Luhmann was the pioneer of social autopoiesis

[18] and who quite successfully introduced the concept of autopoiesis into efforts to un-

derstand collective human behaviour. He stated his goal as, “the application of the notion

of autopoiesis to social systems [which] required the development of a more general ’non-

physical’ notion of autopoiesis” (from Vanderstraeten’s review [83]). Luhmann began to

tackle this by proposing that the social processes of the autopoietic network were processes

of communication between people rather than molecular reactions. In Luhmann’s own

words: “For a theory of autopoietic systems, only communication is a serious candidate for

the position of the elementary unit of the basic self-referential process of social systems”

[18].

Luhmann’s adaptation retains the main feature of autopoiesis - self-maintenance due

to a process of self-generation from within - and that the boundary in a social system are

the rules that define the system. These social systems are open in that they interact with

their immediate environment and other social systems, and they do so without losing their

identity. Consider a football team which occupies a location (the football ground), the team

colours, the team emblem, the team’s history and its supporters. These define the properties
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of the system and new players and new supporters are transformed into being team players

and team supporters as they become integrated into the bounded structure which is the

team’s identity. Consider Figure 2.6 which is reproduced from [8] and illustrates the same

cyclical logic that Luisi [8] uses to define an autopoietic system (as per Figure 2.4), except

that here human relationships substitute for chemical reactions and the rules of the

social community substitute for the membrane boundary. The critical distinction that

Luhmann made and that extricated autopoiesis from the biological realm - sadly without

the support of Maturana & Varela - was to re-define a boundary as non-physical. This

was an important development in the field of autopoiesis that led to application of the

theory into other non-biological areas such as art [19], knowledge in institutions [20],

computation theory [21], information systems [22], law [23] and architecture [24]. As will

be seen in later chapters physical and non-physical boundaries are evident in my work,

which suggests that Maturana & Varela’s prescription for a physical, bounded domain may

be too restrictive and that challenges to their original work have merit.

Figure 2.6: The concept of social autopoiesis retains the circularity of chemical autopoiesis except that people
are the entities that enter and leave the autopoietic system and the interactions between them are in the form
of communication. Adapted from [8].

The final challenge to the physical boundary conjecture comes from the field of synthetic

biology and protocell research. Whilst some high profile protocell researchers specifically

denote the need for a membrane [55], there is a growing body of research focused on

membraneless protocells [84],[85],[86]. These approaches employ complex coacervates

formed from aqueous two-phase separation techniques (such as electrostatics) [84]. If we

consider the two-phase separation that occurs when oil and water are mixed together, then

coacervate protocells employ the same principle, but entirely in an aqueous solution, by

varying the pH, temperature and ionic strength of the two components with separation
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occurring when the polymer component exceeds a given threshold [87]. So does this mean

that biologists are abandoning autopoiesis as a systematic framework? I believe the answer

is no they are not, and instead greater emphasis is being placed on the organisational

logic of a cell as consisting of autopoietic processes [2] that do not explicitly demand

the formation of a physical boundary (see Figure 2.7). The protocell is considered as an

organised chemical system that undergoes changes according to its own activity and the

inputs that it receives from its environment. Of course, this requires some delineation of

what is part of the system and what is external to it; however that particular task is left to

the individual researcher to define within the context of their own experiments.

Figure 2.7: The organisational logic of modern cellular systems as proposed by Stephen Mann [2] that is an
adaptation of Luisi’s cyclical model of cellular life. Taken from [2].

In summary, the boundary of an autopoietic system is considered a critical criterion by

the founders of the theory (Maturana & Varela) and yet it is considered a contested issue.

Two competing notions continue to exist in the literature: those who adhere to the strict

physical meaning of a membrane-like boundary that only makes sense within biological

systems; and those that promote a broader meaning of boundary to denote the existence of

cyclical processes that are operationally closed with the effect of maintaining the identity

of the system. The former advocate that only physical boundaries that encapsulate the
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reactions that create the boundary itself qualify as autopoietic systems. The latter advocate

that the original physical meaning of a boundary is too restrictive and excludes a broader

understanding of so-called extended autopoiesis [16] where dependencies outside of any

physical boundary are still critical to the functioning of that autopoietic system. The

contribution that my research makes to this discussion is threefold: (i) I demonstrate that

physical membrane-like boundaries can form spontaneously in very simple populations

driven entirely by the chemical affinity between interacting entities; (ii) that the identity

of a self-producing and self-sustaining population of interacting entities can persist even

under significant environmental perturbations in the absence of a physical boundary; and

(iii) given that I observed the emergence of physical and non-physical boundaries in my

simulations, this suggests that the notion of "extended autopoiesis" may well be correct.

In general terms my work provides additional insight into the underlying dependent

processes, structures and properties that lead to the retainment of a system identity. As

discussed in Chapter 10, I outline the properties that I have observed in studying the

proto-autopoietic networks that provide a resilient mechanism for maintaining system

identities. I also offer the rule that a system is autopoietic if it can maintain sufficient

information within its dynamic organisation to re-generate and maintain itself even after

severe environmental shocks. The interesting observation that arises from this is that in

some cases a system is wholly dependent on the environment to provide the necessary

information required for it to re-generate itself. This strengthens the case for the extended

autopoiesis argument. From my own research I find that I associate my understanding

closer to that offered by Bourgine & Stewart where “an autopoietic system is a network

of processes that produces the components that reproduce the network, and that also

regulates the boundary conditions necessary for its ongoing existence as a network” [13].

2.2.2 Maintenance of an autopoietic system

Maintenance - within the context of autopoietic theory - is the continued and enduring

presence of the overall organisation of the system. Maturana & Varela give a very specific

meaning to organisation as, “... those relations that must be present in order for something

to exist” (p. 42, [32]). The organisation of an autopoietic system is the relation between its

components and the properties of those components that define the system as a single entity

(a unity). For example, the organisation of a computer can be described as the necessary

relations between components such as the central processing unit, memory, hard drives,

power supply and so on. The unity of these components may be identified as a computer as

this organisational form would produce the necessary properties expected of a computer.
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Organisation is the invariant property of an autopoietic system in that if the organisation

changes then the identity of the system changes (e.g. removal of the central processing unit

in our computer means that it is no longer identified as a computer) and may no longer

be autopoietic. Maintenance is about the continued renewal of those components that

are required to maintain the functional relations that permit the system to acquire and

regenerate its own identity. Such maintenance represents organisational (or operational)

closure whereby the product of the organisation of the system is the organisation itself. This

is the essential and distinguishing behaviour of autopoietic systems from other autonomous

systems. All possible states of the system must maintain this autopoietic organisation

otherwise the whole system falls apart.

Whilst the organisation of a system describes the invariant properties of the system,

its structure are those variable elements that actually constitute the system as a unity

in space and time. Whilst the organisation of a protocell does not change between differ-

ent manifestations of the cell (they are all of the same organisation which constitutes

their autopoietic behaviour), their structures will be different. Structure describes the

actual components and the actual relations of an autopoietic system. Structure is the

real manifestation of an autopoietic system whilst its organisation is the more abstract

generality that is common to all possible manifestations of such a system. An autopoietic

system is structurally determined i.e. the structural changes that are possible within the

system at a moment in time are determined by the current structure of the system itself.

Structural changes arise through endogenous and exogenous sources as described by John

Mingers [88]: “... [structural changes] will occur in response to both internal dynamics and

environmental interactions.... perturbations in the environment trigger changes of state in

the organism, but since all possible changes must maintain autopoiesis, the actual nature

of these changes and the possible interactions which an organism can successfully undergo

are determined by the organism’s physical structure”.

The relevant point here is that the environment does not determine or specify the

structural changes that occur in an autopoietic system. Only the present structure of

the autopoietic system can determine what the possible state changes to the system are.

Environmental perturbations can only act to trigger structural change and they do not

determine the nature of that change. The interplay between environment and autopoietic

unit, with the structure of the latter being influenced by the former, is known as structural

coupling and this is discussed in Section 2.2.3.

An autopoietic system - a unity - has both organisation and structure. Such a unity

is realised at a moment in time as a particular structure and the changes in state of the

system are structurally determined. There are many possible structures which can realise
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the same organisation in a many-to-one relationship. The structure will have properties

and features not specified by the organisation e.g. the particular brand of CPU in the

computer, the storage capacity of the hard disk, and so on. Hence, structural changes occur

without altering the organisation e.g. as our hypothetical computer ages we upgrade the

processor, add more memory, replace the power supply and yet its identity as a computer

remains unchanged. However, organisation and structure are not independent of each other.

An organisation of a living system can only exist (i.e. its identity) through the continued

renewal of its components with the ability to do that, from moment to moment, determined

by the structure of the system. These are inextricably linked concepts. The operational

limits of autopoietic systems are defined by its organisation and its relationship with its

environment. The notion of extended autopoiesis that is implied here is relevant to the

exploration of the possible pathways to autopoiesis and, more specifically, the types of

organisation that may unfold from simple and uniform beginnings.

The notion of organisation and structure as two separate but linked entities is rein-

forced by Robert Rosen and his Metabolism-Repair (M,R) theory [72]. Rosen (who was a

pioneer of studying biology as a complex adaptive system) claimed that the organisation of

a system must be independent from the "material particles" 2 that constitute the system.

In a story told by his daughter Ms. Judith Rosen, he explains this quite beautifully [89]:

“The human body completely changes the matter it is made of roughly every 8 weeks,

through metabolism, replication and repair. Yet, you’re still you with all your memories,

your personality... If science insists on chasing particles, they will follow them right through

an organism and miss the organism entirely”.

Like Maturana & Varela, Rosen is emphasising the importance of understanding the

organisation of a living thing rather than what it is made of. This is partly a statement that

reductionism is not sufficient to understand biological phenomena and also an indication of

what Rosen believed, namely, that understanding the relations between things in a living

system is more important to explaining a living system than understanding the individual

parts of that system.

Robert Rosen’s Metabolism-Repair theory is based on the notion that biological systems

are distinguished from non-living systems by their organisation, which is a result of the

complex interactions between the components of the organism, the behaviour of which

cannot be reduced to any one component in isolation. Specifically, “when we break the

system apart in order to study it, we destroy its organization and therefore cannot see how

it functions” (Robert Rosen as quoted in p. 118 of [90]). His concept of organisation is that,

“... a system is organised if it autonomously tends to an organized state” [91] through a

2Rosen’s "material particles" are synonymous with Maturana & Varela’s "structure".
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thermodynamic process of self-organisation. The link to thermodynamics and, specifically

the Second Law of Thermodynamics, would therefore suggest that such organised states are

out of equilibrium and that the underlying processes of the system are open and dissipative.

Rosen suggests that the measure of a system’s degree of organisation is equivalent to the

improbability of its state (although he does not offer a method for determining this). From

this he suggests that identifying and studying the properties of organisations that are able

to autonomously move to an organised state should be our primary focus in understanding

biological systems. This motivation led to his development of the Metabolism-Repair (M,R)

system theory that attempts to capture the minimal functionality of a living system.

An (M,R)-system consists of two functions: Metabolism (M) which is an abstraction

of anabolic and catabolic functions, and Repair (R) which is an abstraction of a genetic

function that provides the information necessary to construct the M-R system (including

re-generation and replication). Unlike Maturana & Varela, Rosen does not specify the need

for a boundary and in this sense it is a more general formalism of an autonomous, self-

producing system. Consider Figure 2.8 which illustrates an (M,R) system as consisting of A

an environment, B a Repair function, f a Metabolism function and Φ a Replication function.

The diagram can be understood as follows: A is transformed into B assisted by f , B is

transformed into f assisted by Φ, f is transformed into Φ assisted by B. Here the dashed

and solid lines denote the efficient cause (the process which brings something about which,

in chemical terms, would be a catalyst) and the material cause (the physical properties that

are being changed in the formation of something i.e. chemical transformation) respectively,

with the directional arrows indicating the flow of causation. Metabolism is the set of

chemical transformations A → B catalysed by a set of catalysts f . Repair is the production

of the set of catalysts f as instigated by the growth and decay of the system catalysed by

the replication system Φ. The organisational invariance (which Rosen calls Replication)

is realised through the maintenance of the repair system. In the (M,R)-system model all

catalysts are produced internally.

From this Rosen proposes that, “... a material system is an organism if, and only if, it is

closed to efficient causation” (p. of [91]). That is, if f is any component of such a system,

the question "why f " has an answer within the system, which corresponds to the category

of efficient cause of f ’ (p. 244 of [91]). In simpler terms, all information required about the

system and its environment must be encoded into the organisation of the system itself. This

information is “capable of acting causally on the organism’s present behaviour based on

relations projected to be applicable in the future” [92]. This insight gave rise to the notion

of (M,R)-systems as anticipatory: “An anticipatory system is a natural system that contains

an internal predictive model of itself and of its environment, which allows it to change state
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Figure 2.8: An illustration of the causal flows in Rosen’s (M,R) system model which is a minimal abstraction
of an open, dissipative system that is able to transition to, and maintain, an organised state. The solid lines
indicate a material cause and dashed lines indicate an efficient cause. Labelling is expressed in category-
theoretic language where: A is the Environment, B is the Repair function, f is the Metabolism function and Φ
is the Replication function. Adapted from [90].

at an instant in accord with the model’s predictions pertaining to a later instant”[91]. More

recently, Karl Friston’s energy minimisation model [93] has provided a similar explanation;

namely, that a living system aims to maintain its structural and functional integrity

through ’active inference’ of changes in state of itself and its environment.

Rosen’s model is not incompatible with autopoiesis and indeed Francisco Varela sug-

gested the term “intentionality” [44] to convey a similar notion. The effect of intentionality

has been investigated using an artificial life simulation [94] with the result that an autopoi-

etic system that embodies even the most basic form of anticipation improves its viability.

In this work intentionality was manifested as self-repair of the membrane. Equivalently,

the organisation of an autopoietic system is the internal predictive model encoded in the

relations between its components that represent knowledge of how to self-produce; the

ability to change state based on that model is structurally determined. An exploration of

the properties of cellular self-organisation [95] reinforced the criticality of the notion of

"closure to efficient causation" in (M,R)-systems to the viability of an organism and that

this is synonymous to the concept of "organisational closure" in the theory of autopoiesis.

In general the (M,R)-system and autopoietic theories abstract out the specifics of

components and instead emphasise a circular causation as the embodiment of a living

system. The intersection of autopoiesis and (M,R)-systems theory has been investigated [92]

with the conclusion that autopoietic systems are a subset of (M,R)-systems. If that should

prove to be the case, then an autopoietic system must inherit some of the characteristics

of a (M,R)-system such as encoding all of the information required for self-production

and self-maintenance. And yet, to the best knowledge of this author, there have been

no investigations into the information content of an autopoietic system. This unexplored
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aspect of autopoietic systems is directly investigated in this project and, as presented in

Chapter 4 and discussed in more detail in Chapter 10, I discovered that the ability for a

self-producing system to transition to different structural states can be quantified by the

Shannon entropy of its current structure.

Whilst (M,R)-systems theory and autopoietic theory share a number of important

concepts, the former is based on category theory which is a rather specialist branch of

mathematics. This is not without merit for a receptive audience - and, indeed, work has

been published on distinguishing between the two theories from a category theoretic per-

spective [96] - however it was decided early on in this project that the technical nature of

category theory risked making the model, and therefore the findings, too inaccessible to a

wider non-mathematical audience. Hence, whilst (M,R)-systems would share a common

conceptual home with autopoiesis, it would not be central to this project.

Kauffman’s collective autocatalysis theory
The description of Kauffman’s collective autocatalysis in this section first appeared in a

previous report [97] by this author and is reproduced here.

Another closely related model to autopoiesis is autocatalysis [40] or, more precisely,

collective autocatalysis [33]. Autocatalysis is a chemical dissipative system [98] that self-

reproduces - it consists of a set of chemicals that through their reactions reproduce the

chemicals in the set. Under conditions of dissipation and random decay, autocatalytic sets

have the potential to reconstruct their own lost components and if the energy input exceeds

the energy output then the autocatalytic set grows in volume. If this autocatalytic set is

within some form of cellular enclosure then osmotic pressure can cause the container to split

(aka. cell fission). Stuart Kauffman [40] proposed and Doyne Farmer et al [99] developed

in detail a computational model of polymers that were created through the reaction of

smaller and simpler molecules and from which, over time and with a sufficiently diverse

population of polymer species, an autocatalytic set formed. The idea is that polymers

will emerge from the catalysed reactions of simpler molecules no matter how improbable

those initial reactions may be. This assumption built on the results of experimental work

by Cavadore [100] and Fox & Dose [101] that showed that small molecules (such as

peptides) can catalyse the reactions of other peptides. Kauffman’s hypothesis was simple:

self-reproduction is a “natural collective expression of polymer chemistry” [40] and the

underlying physical mechanism that enables such behaviour is autocatalysis. To achieve

catalytic closure in a set of catalytic polymers, Kauffman suggests four steps:

1. All possible polymers up to a critical length M should be available to participate in a
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reaction (either as a substrate or as an enzyme)

2. All possible combinations of legitimate reactions that can occur in this set and by

which these polymers can be formed from one another should be considered

3. The capacities of polymers to catalyse reactions should be clearly defined i.e. all

polymers have the capacity to catalyse a reaction (whilst there is a very small

probability that a reaction can occur between two molecules in the absence of a

catalyst, these are not included in Kauffman’s model)

4. The probability that a set of polymers contains a subset which is reflexively autocat-

alytic rises to 1 as a critical threshold is reached

In a system of just two molecules representing an initial food set there were ≈ 2M+1

numbers of polymers that could be produced from the cumulative effect of increasingly

complex molecules reacting and producing new molecules. Therefore, as M increased, the

number of polymer species increased exponentially. The molecules that participated in

the chemical reaction - the catalyst and the substrates - were chosen at random. As the

process iterates the proportion of new molecules in the population grows and were more

likely to be randomly selected to be a catalyst in a future reaction. In this way, a network

of reactions grew over time with simple molecules reacting to create new molecules, which

themselves catalyse other reactions possibly those that create their own substrates. If a

subset of this reaction network consists of molecules that catalyse and produce each other,

an autocatalytic set is deemed to have formed. The conditions for a Kauffman autocatalytic

set to form are: (i) in which every reaction in R is catalysed by at least one molecule involved

in any of the reactions in R; and (ii) if every reactant in R can be constructed from an

initial food set F by successive applications of reactions from R. If both of these conditions

are met then it is defined as a reflexively autocatalytic and F-generated (RAF) set [41]. A

formal method for detecting and confirming such sets has been described in detail [102].

The emergence of an RAF set is the key mechanism by which more complex chemistry

can arise and sustain itself from simple, random precursors. This is the cornerstone of

Kauffman’s theory.

There is a critical relationship between the probability P of a catalysed reaction

occurring and the critical length of polymer M required to form an autocatalytic set. The

critical length M is the threshold at which there is a sufficient diversity and number

of polymer species 2M+1 available to participate in reactions a subset of which form an

autocatalytic set. The more improbable a reaction the greater the diversity and the longer
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the period of time required for a reaction network to begin to develop. The ratio of reactions

to polymers is given by:

(2.1)
M∑

i=1

M− i
2i ≈ M−2

The left hand side of Equation 2.1 is the total number of possible reactions of all

polymers at a given length (i) up to the maximum length M, divided by the number of all

possible polymer species of length i - which is approximately the same as the maximum

length of polymer (M) less the number of different types of monomer constituting those

polymers (in this case, the polymers have a binary alphabet hence there are two types of

monomer).

The implication of Equation 2.1 is that as M increases the number of polymer species

increases. However, the number of reactions occurring increases faster than the number

of new polymer species being created. Indeed the ratio of reactions to polymers increases

linearly with M. This leads to more legitimate reactions in the system than there are

polymers and this imbalance, ’reflects the simple combinatorics of polymer strings made

up of two monomer units’ [103]. The connectivity between polymers is therefore a key

consideration in autocatalysis. Phase transitions in random graphs [104] can provide a

succinct explanation of how the connectivity of a network reaches a critical point whereby

all vertices are connected to at least one other vertex, thus forming a complete path through

the network. Kauffman refers to this connected graph as "one gigantic component" and

this characteristic of random graphs is another cornerstone in the theory of autocatalytic

sets of proteins.

Kauffman ran a number of simulations to evaluate the model, and a reflexively auto-

catalytic set successfully formed as a subset within a larger reaction graph. The conclusion

of his work was that “... any sufficiently complex set of catalytic polymers can be expected

to be collectively autocatalytic” and, as such, “... life may be more probable than we have

supposed” [103].

A more recent development of the Kauffman model is Segre et al’s Graded Autocatalysis

Replication Domain (GARD) model [105] of the primordial chemical selection of mutually

catalytic sets (where mutual catalysis is equivalent to network replication as per Eigen

& Schuster hypercycles [43]). The model describes how “catalytic closure can sustain

self-replication up to a critical dilution rate [which is] related to the extent of mutual

catalysis involved” [105]. GARD simulations offer a rigorous kinetic analysis with which

to model the behaviour of ensembles of molecules and the spontaneous formation and

maintenance of autocatalytic sets. As popular as the GARD model has become it is not
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without its limitations. It is claimed that self- sustaining autocatalytic networks - as

regularly generated by GARD simulations - do not evolve and, as such, constrain the

prospect of metabolism as one of the main mechanisms of the origin of life [106]. A

counter-argument [107] is that the GARD model does allow for, and demonstrate, how

"evolution-like" behaviour can emerge in molecular systems, on the condition that excess

mutual catalysis (network replication) exceeds self-catalysis (self-replication) in the system.

The evolvability of autocatalytic sets in the GARD model and the emergence of peripheries

of molecules that were maintained by an autocatalytic core but that were not part of

the core itself have also been demonstrated [108]. These peripheries act as a form of

phenotype and the rate at which they replicate is a measure of fitness compared to other

peripheries and other autocatalytic cores thus demonstrating a degree of natural selection

(and therefore evolution).

The relationship between autocatalysis and autopoiesis has been investigated [33] and

this acknowledged that their formation and organisation are by similar processes with

the critical distinction being that an autopoietic systems autocatalytic process generates

a spatial boundary. Now, not withstanding the contested nature of spatial boundaries

in autopoietic theory, the distinction can be considered more generally as implying that

autocatalytic systems are not autopoietic and yet autopoietic systems may consist of

one or more autocatalytic cycles. A more fundamental difference - as argued in [109] -

is that Kauffman’s autocatalytic model of a living system is dependent on a large set

of entities (polymers) numbered in the thousands. Kauffman deems this an absolute

necessity to achieve the statistical properties required for autocatalytic closure to occur.

This requirement is opposite to the model of a living system as devised by Maturana

& Varela which implies that a much smaller system should be sufficient for a minimal

autopoietic system. However, Kauffman’s model is addressing impoverished and under-

developed initial conditions i.e. the complete absence of highly efficient catalysts. For

example, if any polymer in the system has a probability of 10−9 of catalysing a reaction

then the “probability of catalytic closure occurring is very low unless there are at least

3×108 different kinds of molecules” [109] that are all available to interact with each other

at any time. Clearly, more efficient catalysts would reduce the size and diversity of the

population required to achieve catalytic closure. It may be the case that autocatalysis

acts as the springboard from which more efficient forms of organisation can emerge and

that these more optimal configurations are minimal, self-producing and self-maintaining

systems that have the sufficient functionality and efficiency of operation to achieve not just

catalytic closure but also efficient causation closure (i.e. as required by both autopoiesis and

(M,R)-systems). These more efficient forms of organisation then provide the platform for the
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emergence of more sophisticated living systems. Autocatalytic cycles formed spontaneously

in all of my simulations of a population of interacting automata and, in the context of

autopoiesis, I propose that such networks - with properties of dynamically stable, strongly

connected components - are a recurring feature of all systems that are developing towards

an autopoietic state.

2.2.3 Cognition

Cognition3 is a process that is, “... an effective action, an action that will enable a living

being to continue its existence in a definitive environment” (page 29 of [32]). In simpler

terms cognition is the process of bringing together the mutual interactions between an

autopoietic system and its environment and the subsequent changes to both that occur as

a result. More specifically, autopoietic systems are deemed to be structurally coupled to

their immediate environment and, as such, undergo dynamic changes due to perturbations

from the surrounding medium. “Successful autopoiesis” [88] leads to the selection of a

structure which is the most suited to the environment. An autopoietic system is realised by

a particular structure and, as the system is structurally determined, this defines the future

changes that may be possible. My own research confirms this and, specifically, quantifies

the structural states that a given autopoietic system can transform itself to. John Mingers

suggests that we think of structural coupling as: “... changes may preserve the structure as

it is or they may radically alter it (think of an acorn developing into an oak [tree]) so the

structure is said to be plastic. This plastic structure exists within an environment which

perturbs it and triggers changes. The environment does not determine the changes but

it can be said to select the state from among those made possible at any instant by the

system’s structure” (p. 168 of [88]).

Two types of interactions between an autopoietic system and its environment have been

suggested by Bourgine & Stewart: “type A interactions that lead to changes in the internal

state of the system, and type B interactions that lead to changes in the environment or that

modify the relation of the system to the environment” [13]. Distinguishing the interactions

in this manner allowed Bourgine & Stewart to propose a more precise definition of cognition:

“A system is cognitive if and only if type A interactions serve to trigger type B interactions

in a specific way, so as to satisfy a viability constraint” [13].

Type A interactions are referred to as "sensations" and type B interactions as "actions".

Type A interactions are mediated by specialised "sensory organs" in the boundary of

3According to an interview with Varela (as presented in [8]) he admitted that this was an unfortunate
choice of word given the anthropomorphic meaning usually attributed to it.
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the system and type B interactions are mediated by specialised "effector organs" also

situated in the boundary [13]. As such, they are defining the boundary as the systems

interface between the internal organisation (which is maintained via. autopoiesis) and the

environment. Hence, “... the sensory input must not only be used to guide the actions in an

intelligent way but that, conversely, the actions of an organism also have consequences for

its subsequent sensory inputs” (p. 339 of [13]). Whilst I am uncomfortable with the use

of the word intelligent here (I prefer to use the word logical) the meaning is quite clear:

sensory inputs have a causal effect on the internal structure of the autopoietic structure

which, given that the system is structure-determined, will lead to a subsequent change in

the sensory inputs in the systems interface.

Bitbol & Luisi [12] suggest that there are two meanings for cognition: (i) the metabolism

of a living unit is the most direct form of cognition given the implied continual exchange

with the environment both of which form and are formed by each other which they refer to

as “a simultaneous coming to being for the organism and for the environment” [12], and

(ii) the adaptation of the system to novelty (the authors refer to "new foreign molecules"

however I prefer the more general notion of new entities) leading to a change in the

metabolic pattern i.e. the underlying networks of production that are continually producing

the critical components required to re-generate the autopoietic system. These two forms of

cognition are equivalent to Piaget’s [110] assimilation and accommodation with the latter

arguably more pertinent to the concepts described here.

Piaget’s work is grounded in cognitive development from the field of psychology and

the meaning of his two terms are best conveyed with the following example [110]: “A

child seeing a zebra for the first time and calling it a horse. The child assimilates this

information into her schema for a horse. When the child accommodates information, she

takes into consideration the different properties of a zebra compared to a horse, perhaps

calling a zebra a horse with stripes. When she eventually learns the name of zebra, she

has accommodated this information”.

Hence, assimilation is the process of making sense of new information/entities by

reference to the information/entities that are already present in the system and to attempt

to fit the new entity into that model/schema/representation whereas accommodation

requires the revision and change to the existing model/schema/representations so that the

new information/entity can be incorporated. So, in the context of autopoiesis and Bitbol

& Luisi’s two forms of cognition assimilation is equivalent to the uptake and exchange of

metabolites in the metabolic network, and accommodation is biological adaptation where

the system’s metabolic network is changed in a way that endures.

Bringing this together autopoiesis (self-production) and cognition (adaptation) are
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the two critical processes that generate and maintain a living system. Yet, which of

these fundamental processes is the progenitor of an autopoietic system? Is there any

primacy between these two processes: i.e. does a basic form of autopoiesis need to form

before the system is able to perform any kind of cognition? What is the nature of their

co-creation and co-dependency? Is one process sufficient for a system to be autopoietic?

Bitbol & Luisi examined this and concluded that “autopoiesis alone is only a necessary, but

not sufficient, condition for life” [12]. In other words, some form of cognition is required

for life. The claim that autopoietic systems require a basic form of cognition is worth

exploring further as it may yield insight into the critical stages and properties of proto-

autopoietic systems that enables them to become fully autopoietic. I explicitly examine the

assimilation/accommodation behaviour of a proto-autopoietic system with the development

of the information niche model that emulates an influx of new entities (molecules) from the

environment (see Chapter 7). To examine cognition in the type A/type B forms proposed by

Bourgine & Stewart I developed the computation niche model (see Section 3 and 8) which

explicitly models a systems interface (boundary) as an information processing component

that receives and transduces information from the environment (type A) that leads to

internal changes in the structure of the system. Such changes lead to changes in the

systems interface and also changes in the information emitted by the system into the

environment. The emissions have the effect of modulating environmental information

(type B interaction) which, in turn, is received by the systems interface thus completing

an operationally closed cycle. The conclusions I draw from these studies is that a self-

producing system that consists of hierarchical, dynamically stable and strongly connected

networks are very robust to environmental perturbations. I also show that the underlying

interaction network that drives the behaviour of the internal population adapts readily to

new types of entities although this does not necessarily lead to a change in the structure of

the system as a whole (i.e. the system is assimilating but not accommodating).

Evolution is the “change in heritable characteristics of biological populations over

successive generations” [111] or, more generally, the gradual development of something.

Darwinian evolution [112] states that organisms develop through natural selection of

minor variations that occur over time and that may increase the organism’s ability to

compete and reproduce. As such, it is a theory of how biological evolution occurs. Humberto

Maturana has proposed [7] that autopoietic systems evolve - in the general (non-Darwinian)

sense of the word - by the continual interactions between environment and the system

where the system regenerates and optimises its organisational states for maintaining its

identity. The plasticity of the system - facilitated by the cognitive process of accommodation

- in response to changes in the environment over time leads to natural drift. Natural
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drift is a dynamic process that affects the structure of an autopoietic system which over

cumulative adaptations forms a historical product [29]. Bitbol & Luisi [12] declare that for

an autopoietic system to evolve requires that as a minimum Piaget’s accommodation is

possible.

2.2.4 Limitations of Autopoietic Theory

The three prevalent issues in the field of autopoiesis are:

The conceptual gap between autopoiesis and Darwinian evolution.

Autopoietic theory has been studied extensively [12],[13],[14],[2],[15],[16] (also see Figure

2.2) and yet it has not had a substantial impact within its field of origin which was biology.

This has been investigated [27],[6] with the conclusion that (a) the lack of any emphasis on

DNA, in the theory of autopoiesis, at a time (in the early 1970’s) when DNA/RNA dominated

discourse of the behaviour of biological systems and the prevalent scientific worldview was

almost entirely reductionist, and (b) the lack of any convincing explanation of evolution and,

specifically, to Darwinian evolution. Addressing the former has been largely rectified [6]

whilst several attempts to address the latter [7],[28],[29], [30] have remained inconclusive.

Advocates of autopoietic theory can rightly demand greater clarification from Darwinism

especially about the lack of serious questioning of the assumptions of natural selection as

the primary mechanism (a largely philosophical issue given the phenomenological basis

of Darwin’s theory) whilst critics of autopoiesis may demand more evidence for evolution

of such systems in the absence of genetic machinery [30]. Is there a possible contribution

that the theory of autopoiesis can make to addressing the remaining theoretical issues of

Darwinian evolution? As is discussed in Chapter 10 I believe that my research takes steps

towards showing a unification of these two theories through the fundamental mechanism

of competition. Clearly natural selection as a core mechanism of Darwinian evolution

has a competitive element. From my own research I have observed that the behaviour of

proto-autopoietic systems can be explained by competition between interacting entities,

networks and populations. Such multi-level selection - survival of the most competitive -

was present where a selective pressure existed (e.g. a finite population size). Competition

between automata - and the networks that they form - in my simulation model led to the

growth and decay (and eventually extinction) of some automaton types which led to the

population structure reaching a steady-state within a given environment. The populations

of automata transform via. a selection process with the emergent structure representing

the best "fit" to the environment. This is why I refer to these steady-state structures as

niches. The idea that a fundamental mechanism of autopoietic operation is a competitive
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process, that extends into and persists throughout the Darwinian evolution of biological

systems, could be a new insight arising from my research.

Autopoietic systems are uncomputable.

If we accept that an autopoietic system is a sub-class of (M,R)-systems then by association

they are also closed to efficient causation and as such are non-computable [92]. This is

a feature of (M,R)-systems that was demonstrated by Robert Rosen but which remains

a controversial and contested topic [109]. In essence, this non-computability claims that

autopoietic systems cannot be modelled or simulated computationally [92]: “The non-

computability of autopoietic systems, as advanced here, apparently collides with the

simulation results involving tessellation automata. But new versions of this simulation

show that the original report of computational autopoiesis was flawed, as it used a non-

documented feature involving chain-based bond inhibition. Thus the closure exhibited by

tessellation automata is not a consequence of the "network" of simulated processes, but

rather an artefact of coding procedures”. However, this claim has been strongly refuted

by McMullin who in collaboration with Varela identified and corrected the original model.

In his own words: “... the overall thesis of Letelier et al. of the "non-computability" of

autopoietic systems - should be taken as refuted, rather than corroborated, by [our] results”

[113]. Hence, the non-computability of autopoiesis is a contested issue and the acceptance

and weight given to any research findings generated from my simulation results will be

interpreted with respect to the reader’s own views on this matter.

The criteria for a physical boundary remains contested and unresolved.

As has already been discussed in this chapter the requirement for a self-producing system

to have a physical boundary for it to be deemed to be autopoietic is a contested issue. There

appears to be a trend in the field away from such a prescriptive requirement (e.g. Virgo

et al’s work on extended autopoiesis [16], Luhmann’s work on social autopoiesis [18]) and

towards acceptance of non-physical boundaries. This has important implications for how

the findings of my own research are interpreted and the basis of any claims that I make.

2.3 Computational Models of Autopoiesis

Since the inception of the theory of autopoiesis, there have been a number of computer

simulations of autopoietic-like behaviour. The original computational model of autopoiesis,

Varela et al’s Substrate-Catalyst-Link model [9] was the progenitor of all other models

and this is introduced shortly. Fontana’s Algorithmic Chemistry [46] and Crutchfield &

45



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Gornerup’s Finitary Process Soup [36] are the models that most closely align with my

research aims and those, too, are discussed in this section.

The field of computational autopoiesis is, of course, much richer than these three models

and here I wish to acknowledge such work: Breyer et al’s self-assembling structures [114],

Ono & Ikegami’s artificial chemistries on a lattice [115], Beer’s exploration of autopoiesis

in ’the Game of Life’ [116], Wiedermann’s autopoietic automata [117], De Loor et al’s

simulations of abstract autopoietic machines [118], Wang et al’s lattice model of emergence

and maintenance of an autopoietic system [119], and more recently, Matsufuji & Narikiyo’s

simulations of the evolution of autopoietic cells [120]. Whilst they are all of merit in their

own right I do not discuss them further.

2.3.1 Substrate-Catalyst-Link (SCL) model

The description of the Substrate-Catalyst-Link model first appeared in a previous report

[121] by this author and is reproduced in part here.

Varela et al. [9] developed the first computation model of an autopoietic system which

successfully demonstrated the formation and maintenance of a boundary around an in-

ternal reaction that was producing the product that formed the membrane. The reaction

schema for their ideal chemistry is shown in Figure 2.9.

Figure 2.9: The schema for the ideal chemistry of Varela et al’s SCL model of autopoiesis. Taken from [9].

Figure 2.9 outlines the three reactions that constitute the artificial chemistry of the

Substrate-Link model:

Reaction 1: the composition of two substrate molecules (circle) into a link molecule (circle

in a square) catalysed by the catalyst molecule (star). The link product feeds Reaction 2.

Reaction 2: the bonding of a link molecule onto an existing link chain that will form the

membrane boundary.
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Reaction 3: the disintegration of a link molecule to two substrate molecules that poten-

tially leaves a hole in the link chain that constitutes the membrane.

Figure 2.10: Over six successive time-steps (t = 0 to 6), a catalyst (the star) transformed substrate molecules
(the circle) into membrane molecules (circle in a square) which bonded to compartmentalise the catalyst and
substrate molecules to produce more membrane molecules. Taken from [9].

As shown in Figure 2.10 a tessellated grid was initialised with all locations occupied

by substrate molecules and a single catalyst molecule at t = 0. In successive time-steps

t = 1 to 6 the composition (Reaction 1) and condensation (Reaction 2) reactions occurred

with formation of the link molecules that subsequently bond to other link molecules. At the

end of this snapshot of the simulation (t = 6) the catalyst molecule has become enclosed

by link molecules. Varela’s model assumed that link molecules were semi-permeable and

that allowed substrate molecules to diffuse through unhindered. Conversely, the catalyst

molecule was unable to migrate through link molecules.

In later time steps (t = 44 to 47) the disintegration of a link molecule (Reaction 3) left a

hole in the link-chain. This was subsequently repaired by the production of another link

molecule and its subsequently bonding to the link-chain thus repairing the hole in the

membrane (see Figure 2.11). With the SCL model, Varela et al. successfully demonstrated

the basic concepts of autopoiesis.

Attempts to repeat Varela’s simulation were not routinely successful [11] and a subse-

quent investigation led to the identification of "chain bond inhibition" as a critical rule in
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Figure 2.11: In later time-steps (t = 44 to 47) the Varela simulation demonstrated the repair of the membrane.
Taken from [9].

the simulation. This rule only allows link-link formation at the terminal ends of the link

molecules or the terminal ends of link-link chains; a corrected version of the model was

implemented and the simulation results confirmed Varela’s earlier results [45].

A 3-D tessellation automaton was implemented to demonstrate a more complete and

physically realistic demonstration of autopoiesis [13]. This minimal model of autopoiesis

was based on a spherical membrane enclosing an internal volume. The semi-permeable

membrane was a two-dimensional sheet that decayed at a given rate to leave holes. Internal

reactions generated the membrane product which diffused from the interior to the outer

boundary where they filled holes in the membrane. Conceptually their model was similar

to the original model with the exception that it was implemented as a three dimensional

entity. This more realistic model equipped Bourgine & Stewart with the means to critically

examine the definition of autopoiesis and cognition, as they observed from their simulations,

and which led them to suggest the following clarifications to autopoietic theory: “(i) An

autopoietic system is a network of processes that produces the components that reproduce

the network and that also regulates the boundary conditions necessary for its ongoing

existence as a network, and (ii) A system is cognitive if and only if sensory inputs serve to

trigger actions in a specific way, so as to satisfy a viability constraint” [13].

They conclude that, “... a system can be autopoietic without being cognitive, and

cognitive without being autopoietic” [13]. They theorise that: (i) an autopoietic system is

a random dynamical system that is defined only within its organised autopoietic domain

(that is, it is not dependent on any external source for constructing itself); and (ii) a system

that is both autopoietic and cognitive is a living system. The first of these points does not

explicitly denounce "extended autopoiesis" [16] but rather simply states the possibility that

an autopoietic system can form in the absence of any dependency on external processes.

Bourgine & Stewart conclude with the observation that more work is required to explore

the increasing complexity of the simulation of autopoietic systems such that: “a [network]
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of reactions so much richer... that the probability of it having emerged from an environment

of the same level of complexity is close to unity” [13].

This is consistent with Kauffman’s hypothesis [103] that once a chemical reaction

network surpassed a certain threshold of complexity then autocatalysis was likely to occur.

However, whilst autocatalysis - more specifically, collective autocatalysis [33] - is a likely

requirement for an autopoietic system it does not necessarily satisfy the criteria for an

autopoietic system as has already been discussed.

These models - the original Varela computational model and the Bourgine & Stewart

work - suffer from two serious limitations in addressing the research aims of this project:

firstly, they are extremely limited in their ability to consider other factors such as the effect

of environmental perturbations, reproduction and heredity and interactions with other

autopoietic systems; and secondly, and most critically, they are totally reliant on assuming

the presence of an ideal qualitative chemistry which by design overcomes the need for their

model to demonstrate how a "network of reactions" would form in the first place. To explore

autopoiesis and to further demonstrate its applicability to systems chemistry approaches

to protolife it is therefore important to look to computational models that demonstrate

how autopoiesis and cognition processes may form in the absence of any pre-determined

selective chemistry. Such models will need to allow for a system to increase the number

of, and diversity of, its components and processes from initially simple populations. These

populations should also have the potential to undertake preferential interactions, to self-

organise and to generate self-producing behaviour. Such models exist and are known as

artificial chemistries [90].

2.3.2 Algorithmic Chemistry

The description of the Algorithmic Chemistry model in this section first appeared in a

previous report [121] by this author and is reproduced in part here.

Algorithmic chemistry (AlChemy) is an artificial chemistry whose molecules are repre-

sented as mathematical functions 4 that can interact with other mathematical functions

[46]. The interaction between these functions generate a new function, by the mathemat-

ical operation of functional composition, whereby the new function inherits the domain

(the input) of the first parent function and the range (the output) of the second parent

function. Not all interactions yield a valid function and these are prohibited and essentially

4A mathematical function is simply a mapping from one domain to another and represents a transformation
e.g. the multiplication (×) function takes as input the numbers ’2’ and ’8’ and outputs the number ’16’.
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ignored. Algorithmic chemistry is based on the λ calculus which is a minimal language of

computation.

More formally, functions are represented as λ-expressions. Each unique λ-expression

has the possibility of operating on other λ-expressions and, by doing so, transforms that

expression into a new λ-expression. However, unlike a normal chemical reaction, the

reactants (the λ-expression that transformed the other λ-expression) do not get consumed

in the process and continue to exist alongside their new child operator. Instead, as one new

operator is created another one is randomly selected and removed from the simulation. As

such, the overall population size is kept constant and creates a form of selective pressure

between operators to replicate and/or to form mutually replicative networks of interactions

with other operators.

Each function is a λ-expression which simply denotes the syntax and language used

to describe a function. In simple terms: a function receives a variable, processes that

variable in some manner determined by the internal structure of the function, and outputs

a variable. Each λ-expression is a mini-algorithm that describes how to process the variable

received by the function. As these molecules collide the collision can be reactive (a product

molecule is produced) or elastic (no product molecule is produced). If two molecules react

then the product molecule is the result of functional composition i.e. the input to one

function f is the output from the other function g written as f (g).

The following algorithm that describes how these molecules react [46]:

1. Select two functions from the population

2. Test whether their collision is reactive or elastic

3. If reactive then add the product molecule into the population; remove another -

randomly selected molecule - from the population to maintain a constant population

size

4. If elastic then no product molecule is produced

5. Repeat

This collection of functions - which are essentially interacting strings of characters in

the language of λ calculus - that collide, react and create - is known as a "Turing Gas"

which Fontana simulated under various scenarios [46].

Turing Gas without Perturbations. Fontana simulated an initial population of 1,000 ran-

domly generated and unique functions evolved over 105 iterations involving 100,000
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reactions that led to the creation of 18 new functions that were not present initially. This

led to a quasi-stationary state of the system that self-organised from random initial condi-

tions. Fontana offered this as evidence that the AlChemy model could generate innovation.

The relationship between the 18 functions that remained at the end of the simulation (all

others were diluted out of the population) were described as an interaction graph that was

autocatalytic, closed and that did not consist of any parasitic sets.

Turing Gas without Copiers. The second set of simulations set the boundary condition

that no copying functions were allowed. Some functions are identity functions - that is,

when they react with another function the product is identical to the non-identity function

- and they are universal copiers. Other copiers are "partial copiers" meaning that they

create a copy of themselves or the function they are reacting with but they only do this

with a subset of functions in the population. In running simulations of this type Fontana

identified three absorbing states for the population:

• heterogeneous mixture of elastic colliders (dead system)

• a single self-reproducing function

• a self-reproducing set in which every function is a seeding set (this absorbing state

was described as a quasi steady-state)

This experiment also revealed that:

• innovation decays fast

• the trend towards closure of the population is based on the appearance of identity

functions and partial copiers

• functions not linked to transformation pathways are eventually displaced by dilution

(removed from the population)

• nesting of autocatalytic components is a frequently observed pattern

Fontana summarised his findings as [46]:

• the only way for a function to survive is to become part of some transformation

pathway

• a transformation pathway survives by becoming closed (self-maintaining)

51



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

• stability of self-reproducing sets (of functions) is strongly influenced by the number

and size of the initial seeding sets (functions created under initial conditions)

The AlChemy model demonstrated the formation of three hierarchical levels of organi-

sation:

Level 0. The operators (objects) in the system only perform one type of operation
- an identity operation and thus self-replication. Within a Level 0 organ-
isation it is possible that a hypercycle [43] emerges whereby operators
mutually copy one another.

Level 1. By prohibiting the identity function a different organisation emerges. In
the words of Fontana: “... at the syntactical level there exist common reg-
ularities that characterize the structures of all operators maintained in
the system. These regularities define a grammar, i.e. lawful arrangements
of identifiable substructures.... furthermore, when new operators are cre-
ated from interactions within the system, their structure conforms with
the grammar.... the subspace specified by the grammar is invariant as
interactions proceed; closure has been attained” [46]. Fontana’s invariant
subspace bears similarities to the invariant frequency distribution of a
single state finitary process soup (see Section 2.3.3). These laws specify the
relationships between objects whose structure conforms with the specified
grammar. Overall a system that attains such properties is behaving as
a single object and this invariant entity is called an "organization" [46].
Indeed a Level 1 organisation is conceptually equivalent to a Crutchfield
& Gornerup ’meta machine’ in the finitary process soup (see Section 2.3.3).

Level 2. Self-maintaining organisations (Level 1) that are combined in some man-
ner have the potential to create Level 2 organisations. Level 2 organisa-
tions are characterised as two or more Level 1 organisations that co-exist
with cross-interactions producing new operators that do not belong to
either organisation. These interstitial operators act as a glue (according
to Fontana) that links, or integrates, the Level 1 organisations in a higher
order unit. This is an interesting result as it is a demonstration of two au-
topoietic systems becoming structurally coupled which could be indicative
of a pathway to multicellularity.

Although not mentioned by Fontana, there appears to be an association between

Level 0 and Level 1 organisations with the autopoietic process, and Level 2 with the

cognition process. Furthermore, there is a close similarity between Fontana’s operators and

"organizations" with Crutchfield’s ε-machines and meta machines (to be discussed shortly).

Fontana’s model succeeds in demonstrating an increase in the complexity of initially simple
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and unconnected unity’s into hierarchical organisations from an initial achemical state and

- through the mutual transformations that emerge - begins to exhibit chemical behaviour

with the formation of sustained networks of interactions (i.e. autocatalysis).

However, the model has a number of limitations: (i) as networks become more complex

the ability to detect and analyse the existence of separate organisations in the Turing

Gas becomes problematic; (ii) there does not appear to be a natural extension of the

model to a spatial dimension, and (iii) the model - based on λ-expressions does not allow

for a straightforward estimation of the information content of the "Turing Gas" or any

organisations present within it. In a sense, the AlChemy is too minimal (or abstract) to

allow a more detailed pursuit of the research goals of this project.

Such limitations - particularly the difficulty with which to identify organisations in

an increasingly complex Turing Gas - were partly addressed by Peter Dittrich and Pietro

Speroni di Fenizio with their theory of chemical organisation [77]. Their approach consisted

of two parts: (i) they defined a chemical organisation as a closed and self-maintaining

set of components which explicitly linked an interaction network with the set of possible

organisations that could be generated by those interactions; and (ii) mapped the set of

organisations to a state space. This two step process was represented as a differential

equation that describes the chemical dynamics of the network and, as such, every stationary

state that could be found was an instance of an organisation. This was an elegant solution

to the first of the limitations of the AlChemy model as described above. However, it did not

address the remaining issues and for that we have to turn to Crutchfield & Gornerup’s

Finitary Process Soup model.

2.3.3 Finitary Process Soup

The Finitary Process Soup (FPS) model - developed by James Crutchfield and Olaf

Gornerup [36] - was adopted as the underlying model for my project that I subsequently

developed into the information niche and computation niche models (see Chapter 3). In

this section the FPS is introduced in general terms followed by a brief discussion on its

limitations. A more detailed explanation of the model is described in Chapter 3.

The FPS is an abstract approach to studying prebiotic mechanisms that, in a simi-

lar way to the AlChemy model, makes no assumptions about a pre-existing chemistry.

Crutchfield & Gornerup define a population of entities that can interact. Each entity

represents a function, specifically, an information processing function i.e. they process

binary information (bits). Functions receive binary information, process that information

in some way, and then emit binary information and they can do so in increasingly complex
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and well-defined ways. Hence, as was the case with the AlChemy model, functions can

interact with each other and their product is a new function via. the process of functional

composition. However, where Fontana chose λ-expressions to represent these functions

Crutchfield & Gornerup chose to represent functions as a special class of finite state

transducer called ε-machines. ε-machines are minimal representations of unique stochastic

processes and the manner in which they are defined, and the basis for their interaction

with other ε-machines, follow explicit rules for evaluating functional compositions. Only

valid ε-machines were allowed in the FPS model.

As ε-machines interact with other ε-machines over extended periods of time (106

iterations is normal) the overall structure of the population reaches a steady-state where

the frequencies of each object become invariant. These invariant distributions are called

"meta machines" and are deemed to be analogous to an autocatalytic set. Each ε-machine’s

internal structure can be quantified precisely by estimating its structural complexity [37].

Furthermore, the structure of the population can also be measured by estimating the

interaction network complexity [36]. The ability to quantitatively measure the structure of

individual entities and their collective organisation directly addresses the first and third

limitations of the AlChemy model.

Simulations of the FPS model by Crutchfield & Gornerup [36] revealed that an initially

uniform population of ε-machines self-organise to a steady-state distribution that persists

over time - a meta machine. This meta machine represented a “global complexity [that

was] due to the emergence of higher level structures and this in turn is facilitated by the

discovery and maintenance of relatively non-complex, but general objects” [36]. "General

objects" refers to the most simple ε-machines (i.e. one-state finite state automata) and

’higher level structures’ is referring to the underlying network of production that emerged

as the population evolved. Crutchfield & Gornerup’s intimation that such meta machines

are autopoietic is questionable as their work does not demonstrate any kind of perturbation

that may disrupt the identity of the meta machine, and therefore test the presence of a

cognitive (or adaptive) process. The persistence of automata in a steady-state configuration

in their model is indicative of, at least, the presence of self-production, and therefore

their work demonstrates the emergence of some but not all of the basic processes of an

autopoietic system.

The FPS model has a number of distinct advantages over the AlChemy and the

Substrate-Link model:

1. The structure of ε-machines can be quantified using structural complexity which

is derived from algorithmic information theory [122]. This presents an objective
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measurement for the complexity of individuals within a population, and how the

complexity of the population changes over time. Such a measurement is not feasible

with either the AlChemy or Substrate-Link models.

2. The model is grounded in information theory and computation theory which are two

well defined and researched fields.

3. Work by Piantadosi & Crutchfield [123] added a spatial dimension to the FPS model,

and their results showed the emergence of spatial patterns that were reminiscent of

boundary formation.

However, the FPS model has a number of limitations:

1. The emergence of a steady-state structure that persists through the formation of

self-producing networks is a clear example of proto-autopoietic behaviour. However

the FPS model does not demonstrate autopoiesis as the process of cognition is not

demonstrated (a limitation which is addressed by this project).

2. The role of the environment in the population dynamics is limited to an influx of

ε-machines. The effect of short-range vs. long-range interactions is therefore excluded.

Later unpublished work [123] adds a spatial dimension which partly addresses this

issue (see Chapter 3) and yet this model was also too limited in that it did not allow

for environmental perturbations. The information niche model addresses all of these

issues and is described in Chapter 3 and the results of simulating the model are

presented in Chapters 4 - 7.

3. There is no mechanism for examining emissions or outflow from the population into

the environment and the effect that this may have on the subsequent feedback from

the environment on population dynamics. This is required for examining structural

coupling. Addressing this issue required the extension of the FPS model to specifically

model a systems interface between the interacting population and the environment.

The model that was developed to address this is called the computation niche model

and this is described in Chapter 3 and the results of simulating the model are

presented in Chapter 8.

4. ε-machines are information processing objects and yet their functional behaviour

is not examined in any of the models developed by Crutchfield & Gornerup [36] or

Piantadosi & Crutchfield [123]. For example, each ε-machine represents a unique

stochastic process and yet its intrinsic information processing properties are only
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used to determine the information processing properties of potential offspring. This

omits the interesting possibility of examining the behaviour of the process that it

represents. In other words there is a duality to ε-machines: (i) they are interacting

entities that produce other entities via. functional composition, and (ii) they are

information processing objects that receive, process and transmit information. The

former is the only aspect of an ε-machine that is considered in the FPS model. This

is not necessarily an issue but rather a missed opportunity. The computation niche

model that I have developed makes full use of the dual nature of an ε-machine by

modelling interactions between them as per the FPS model but also by modelling

their information processing behaviour in an explicitly defined systems interface (a

membrane) between an internal interacting population and an environment.

5. Interactions between steady-state populations are not supported by the FPS model.

As such, important concepts of autopoiesis such as reproduction and heredity cannot

be examined. This is addressed by the information niche model and the results of

simulating inter-population exchanges as reported in Chapter 7.

These limitations are specifically addressed in this project with the development of the

information niche and computation niche models which are discussed in the next chapter.

2.4 Summary

This chapter has introduced the theory of autopoiesis as a minimal model of a living system

that whilst minimal and simple in concept provides a theoretical continuum from the

formation of the most basic living system (a protocell) to systems of significant complexity

such as human cognition and social systems. A comparison to other models of living systems

highlighted the general and universal nature of the theory and therefore its attraction as a

framework for understanding the system logic of a basic living system. The state-of-the-art

in the field of autopoiesis has been presented and the current limitations in the field

discussed.

This chapter also examined computational models of autopoiesis from Varela et al’s

original algorithm [9] (the Substrate-Catalyst-Link model) and related tessellation models

[13] that were reliant on the pre-existence of an ideal and well-defined chemistry to more

abstract and bottom up models that emphasised the emergence of organisational forms

from undefined and simple beginnings such as Fontana’s algorithmic chemistry [46] and

Crutchfield & Gornerup’s Finitary Process Soup [36].

56



2.4. SUMMARY

This chapter concluded with an explanation of the benefits and limitations of the

Finitary Process Soup model and this leads naturally into the next chapter where the

enhancements and extensions that are made to this model - the information niche model

and the computation niche model - are described in detail.

57





C
H

A
P

T
E

R

3
MODELS AND METHODS

3.1 Introduction

This Chapter describes the methodology, models and methods that were adopted, developed

and implemented in addressing the Research Aims (as described in Chapter 1). Two

computational models are described, the information niche model (see Section 3.3) and the

computation niche model (see Section 3.4). Both models were implemented in the MATLAB

programming language (see Appendix 12.2). The quantitative methods that were used to

analyse and characterise the simulation results were drawn from information theory [124]

and network theory [49] and the specific methods used and their application are described

in Section 3.5 and 3.6 respectively. A significant number of simulations of both models

were run with various simulation set-ups that makes it impractical to discuss them in this

chapter. Instead, the introduction to each of the Results chapters (Chapters 4 - 9) explains

the specific set-up of the information niche or computation niche model relevant to the

results that are presented in that chapter.

The Finitary Process Soup (FPS) model [36] was a model of a population of interacting

finite state automata that produced new automata via. those interactions. Simulations

of the model revealed that a population would self-organise to a persistent steady-state

thus demonstrating a basic process of autopoiesis (i.e. self-production). The rationale for

selecting the FPS model as the starting point for the development of my own computational

models was explained in Chapter 2 (see Section 2.3.3). The FPS model had the following

limitations: (a) no provision for altering environmental conditions during the simulation to
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emulate perturbations and therefore no way to examine the robustness of the system nor

the degree to which it can maintain its identity, and (b) the inability of the model to support

any kind of detailed investigation into the cognition process of an autopoietic system e.g.

how an interacting population can adapt to environmental changes or perturbations.

To address these limitations three major developments to the FPS model were made:

1. The ability to instigate environmental perturbations was introduced by allowing

abrupt or incremental changes to environmental parameters. This created a ’fitness

landscape’ through which the population could evolve to different steady-state niches

and from which the relative robustness of these self-organising populations could be

assessed (see Section 3.3).

2. The transfer of entities between populations was introduced to model and simulate

the ’accommodation’ form of the cognition process (see Section 3.3.3).

3. The development of an innovative model of a membrane that would act as the system

interface between an interacting population and its environment (see Section 3.4).

This allowed the nature of the cognition process of an autopoietic system via. its

structural coupling with its environment to be modelled and examined.

These additional developments were necessary to generate a sufficient level of data

- both in terms of variety and volume - to allow the research aims to be investigated.

Developments (1) and (2) were implemented in the information niche model (see Section

3.3) and (3) was implemented in the computation niche model (see Section 3.4). A niche

was defined as a state of the population of interacting automata at dynamic equilibrium.

The information niche model was an enhancement to the FPS model1 [36],[123] that

allowed the nature and dynamics of the production processes that generated and main-

tained a self-producing population to be examined under a wide range of environmental

conditions. An information niche was defined as a steady-state population of automata that

were generated and maintained through dynamically stable, strongly connected networks

of mutually producing automata.

The computation niche model was an extension to the information niche model that

explicitly defined a systems interface (a membrane) between an internal population of

interacting automata operating under well-mixed conditions and an environment that was

generating binary information. The membrane was a network of finite state automata

1A description of the FPS model has been subsumed into the description of the information niche model
(Section 3.2 and Section 3.3) with the enhancements that were developed during this project identified where
appropriate.
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(belonging to the ε-machine class) that received and emitted information to each other

whilst also simultaneously processing information that was received from the environ-

ment. The activity of the membrane automata had a direct effect on the interactions

that occurred in the internal population and subsequently changes to the composition of

population automata. Reciprocally the composition of the internal interacting population

dictated the weightings given to the edges of the membrane network which subsequently

influenced the flow of information over the network. Furthermore, transmissions from

the membrane automata were aggregated into a single emission from the niche into the

environment where it modulated environmental information. Examination of the results

of simulating this model revealed that the three processes of computation - information

transfer, information modification and information storage - were present. This led to

a computation niche being defined as a steady-state population of automata that were

generated and maintained through the continuous transfer, storage and modification of

information that was an intrinsic property of the production and computation processes

occurring between the interacting population, the membrane and the environment. Table

3.1 compares the main attributes of each model.

Analysis of the simulation results from both models used methods from information

theory and network theory. From information theory, Shannon’s information entropy [48]

was used to measure the information content of steady-state populations (see Section 3.5.3)

and the complexity of the population (see Section 3.5.2) and the structural complexity of

individual automata (see Section 3.5.4). From network science, graph theory was used to

represent the membrane of the computation niche model (see Section 3.4.2), the interaction

relationships between automata in the population (e.g. the interaction network, see Section

3.6.1) and the structure of such a network (see Section 3.6.3) proved useful when analysing

the dynamics of the interacting population. These information-theoretic and network-

theoretic methods and how they were applied to the information niche and computation

niche models are described in Section 3.5 and Section 3.6 respectively.

3.2 Automata

The basic units of interaction in the information niche and computation niche models were

finite state automata (simply referred to as automata) [125]. Automata were a special

class of finite state transducers (ε-machines) that could read a binary alphabet i.e. accept

a binary input x, process that information according to the internal structure of the

automaton f (x), and emit a binary output y (see Figure 3.1). As these automata belonged

to the ε-machine class they had to adhere to the following properties [126]: (i) with the
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model attribute information niche computation niche
units of production one-state & two-state automata one-state & multi-state

automata

internal environment square lattice well-mixed reactor

selective pressure random replacement random replacement

membrane parameter automata network

environmental perturba-
tion

rate of influx of new automata
(Φin)

environmental information mag-
nitude (Φenv)

perturbation effect global local

population mobility (dif-
fusion)

variable (zero diffusivity to well-
mixed)

fixed (well-mixed)

material influx random generation of new au-
tomata

none

information influx none environment information aper-
ture (Φenv)

adaptation accommodation / assimilation of
foreign automata

structural coupling via modula-
tion of the environment

reproduction inter-niche exchange of au-
tomata

N/A

novelty N/A open-ended production of new
automaton types

Table 3.1: A comparison of the attributes of the information niche and computation niche models.

automaton represented as a graph with states as vertices and transitions as edges then it

should form a single strongly connected component, (ii) all transitions were deterministic

whereby the current state and the next input symbol were sufficient to determine the next

state 2, and (iii) the automaton was minimal in that it was the smallest representation of

the information processing function that it represents. The information processing function

of an ε-machine was determined by its number of states and the transitions between those

states. There were a total of four possible transitions from each state represented as a

pair of input and output symbols (0 | 0,0 | 1,1 | 0 and 1 | 1). The combination of states and

transitions was unique to each type of ε-machine.

Formally, an automaton (Ti) was the tuple:

2This is in the strict sense that the next transition of an ε-machine wasn’t determined probabilistically
and it was entirely acceptable for there to be two transitions leaving the current state triggered by the same
input symbol and, in such cases, the transition that was taken was determined with equal probability.
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Figure 3.1: An automaton was an information processing function that mapped an input (x) to an output (y)
according to its internal structure ( f (x)).

• Q was the finite set of states of the automaton labelled as Q = {A,B,C...}. Hence, the

length of the set (|Q |) was the number of states that the automaton consisted of.

• A was the finite set called the alphabet of the automaton where A= {0,1}

• δ was the state transition function Q i ×A→Q j

• S was the symbol set S = {x, y} consisting of strings over the alphabet A where x was

the input symbol and y was the output symbol of a state transition

The state transition function (δ) could be represented as a |Q | × |Q | table or graphi-

cally as shown in Figure 3.2 for a two-state automaton.

Figure 3.2: (a) The function of a two-state automaton represented as a state transition table indicating the
input and output symbol pair (x | y) for each transition from a state. The input symbol to an automaton dictates
the transition that it takes from its current state. For example, on receiving the symbol ’1’ whilst in state A
this automaton would take the transition A → B and output the symbol ’1’; (b) a graphical representation of
the same automaton where the circles indicate the state of the automaton and the directed arrows indicate the
from/to relationship of transitions from those states. Each edge is labelled with the input/output (x | y) pair.
Please note: the representation of each automaton state as a double-bordered circle indicates that any state
can also be a start state. This is the correct representation of the states for an ε-machine class automaton
however start and end states of an automaton are not relevant in how they are implemented in the information
niche and computation niche models.
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Box 3.1 Software representation of automata

Each automata was represented in the simulation program as a list with the states

encoded as follows:

Q: A,B,C, ... , n → 1,2,3, ... , n

, and the transitions encoded as:

0 | 0 1
0 | 1 2
1 | 0 3
1 | 1 4

A state transition was therefore represented as δi j : [ start state, symbol pair,

destination state ] e.g. δAB : [142] represented the transition A → B with the symbol

pair 1 | 1. This coding scheme was applied to all automata e.g. the automata shown

in Figure 3.2 was represented as the list:

δAA : [121]
δAB : [142]
δBA : [211]
δBB : [232]

See Section 12.2 of Chapter 12 for more information on the software implementation

of the information niche and computation niche models.

The result of an interaction between two automata (Ta and Tb) was determined by

performing the functional composition Tb ◦ Ta = Tc whereby the new automaton (Tc)

inherited the domain of the first automaton (Ta) and the range of the second automaton

(Tb). An interaction was only successful when the range of automaton Ta overlapped

with the domain of automaton Tb. Where there was a partial overlap between the range

of Ta with the domain of Tb then a partial composition occurred - see the schema in

Figure 3.3 and the illustrated example in Figure 3.4. The functional composition was a

non-commutative relationship where Tb ◦Ta 6= Ta ◦Tb.

There were four possible outcomes from automaton interactions:

• No production - the interaction between two automata was not successful as the range

of Ta did not exist in the domain of Tb. Such interactions produced a transitionless

automaton (T0) which was forbidden in the model as in any interaction with other
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Figure 3.3: The composite function from the functional composition of two existing automata: (a) the composite
automaton inherits the domain of the Ta automaton and the range of the Tb automaton - the mapping of
both the domain of Ta and the range of Tb to the new automaton is partial where the overlap of the range of
Ta with the domain of Tb is not total; (b) a pictorial representation of the composition rules indicating that
the range of Ta and the domain of Tb may not fully overlap and hence the composite automaton would be a
partial composition of the Ta and Tb automata.

automatons (including itself) it would always produce itself leading to its certain and

complete domination of the population

• Type 1 - a new automaton type was generated from the interaction of two other

automatons and was different from Ta and Tb (see Figure 3.4)

• Type 2 - a new automaton was generated from the interaction of two other automa-

tons and was identical to one of them (see Figure 3.5)

• Self-replication - a new automaton was generated where Ta = Tb = Tc (see Figure

3.6)

Automata were categorised based on their number of states (|Q |) e.g. one-state, two-

state, and so on. The library of one-state automata used in the information niche and

computation niche models are shown in their graphical form in Figure 3.7, and the software

representation of an automaton is shown in Box 3.1.

Interactions between automata with multiple states (|Q |> 1) produced new automata

with | Qnew |=| Q | × | Q | states. Given that all automata were required to satisfy the

criteria for the class of finite state transducers known as ε-machines - thus maintaining the

integrity of the automaton types in the population as representing unique, non-duplicated

functions - the product automaton (Tc) was further processed in the following sequence

[126]:
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Figure 3.4: Automata could only interact when the range (output) from the first automaton (Ta) was in the
domain (input) of the second automaton (Tb). In this example, the output from the first automaton matched
the input of the second automaton and hence the interaction was successful. A successful interaction led to the
production of a new automaton that inherited the domain of the first automaton (Ta) and the range of the
second automaton (Tb) which, in this example, led to the formation of an automaton with a different structure
(function) than either of the interacting automata that produced it.

Figure 3.5: Example of the production of a new automata (Tc) where it was identical to Ta or Tb.

Figure 3.6: Automata could also interact with automata of their own type (i.e. Ta = Tb) and for some automaton
types this led to self-replication and hence Tc = Ta = Tb.

1. all unreachable states of the product automaton (Tc) were removed

2. the automaton was minimised using the Hopcroft algorithm [127] which identified

equivalent states and replaced them with a single state leaving an automaton with

|Qmin | states where |Qmin |≤|Qnew |
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Figure 3.7: (a) Graphical representation of the 15 single-state automaton types (T). The binary numbers on the
arrows indicate the state transitions e.g. T3 accepted only the input symbol ’0’ which it transformed to either
a ’0’ or ’1’ output symbol; (b) The functional composition of the automata T2 and T13 in the non-commutative
equation T2 ◦T13 (as per Tb ◦Ta) to generate the T10 automata. T2 transforms the output from T13 which
yields the T10 automata that takes the input domain from T13 and the output range from T2. There were
a total of 207 interactions in this one-state automata library (see Section 3.6.1). Where the domain of a Tb
automata did not match any outputs from the Ta automata then the interaction was deemed to be unsuccessful.
Taken from [50].

3. validation that the topology of the minimised automaton had at least Qmin transi-

tions. Where there are | Qmin | −1 transitions then at least one state did not have

an outgoing transition and, as such, the automaton was not a strongly connected

topology and hence failed the ε-machine criteria

Not all interactions generated a valid automaton after the above processing had
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occurred and these were considered unsuccessful and the product automaton was discarded

and no changes were made to the population. Successful productions were those that met

the criteria of an ε-machine and would consist of 1≤|Qmin |≤|Qnew | states. Sometimes new

automata introduced new unique functionality into the population. These novel automata

were important in examining the dynamics of an open-ended population (see the results

of simulations of generating novel automata in Chapter 9). Implementation of the above

procedure for minimising and validating new multi-state automata as valid ε-machines was

computationally expensive and required a parallel processing strategy using the University

of Bristol supercomputer "BlueCrystal" (see Appendix 12.1.1 for further information).

In summary, interacting finite state automata produced new automata and the rules

governing their interactions as described in this section were implemented consistently in

the information niche and computation niche models.

3.3 The Information Niche - a model of a self-producing
population

An information niche was the label given to a population of interacting automata that had

reached a steady-state composition within an environment. The information niche model

consisted of three components: the automata (as described in Section 3.2), the internal

environment which was a square lattice with a single automata occupying each lattice

site and in which the automata interact and produce new automata (see Section 3.3.1),

and an external environment that imposed conditions on the interacting population in two

ways: (a) the random replacement of incumbent population automata with a randomly

generated automata to simulate the influx of foreign automata into the population, and (b)

the random re-location of automata on the lattice to simulate diffusion and spatial mixing

(see Section 3.3.2).

3.3.1 Internal Environment

Each of the 15 types of one-state automata (see Figure 3.7) were randomly distributed in

equal numbers across a square lattice Γ of n×n sites where n was the width of the lattice.

Each site was occupied by a single automata to give a total population size of N = n2. The

lattice was equivalent to a two-dimensional asynchronous cellular automaton (see Box 3.2).

The replication of a new automata proceeded by randomly selecting an existing automata

Td from the lattice as a candidate to be replaced by a new automata (Tc). There were two

ways in which the Tc automata could be generated: (a) from the functional composition of
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two successfully interacting automata (as per the non-commutative equation Tb ◦Ta = Tc)

that reside on neighbouring sites to Td (see Figure 3.8), or (b) from the random replacement

of Td with a randomly generated automata (Tc). The probability that Tc was a randomly

generated automata or derived from the interactions of two neighbouring automata was

given by Φ and 1−Φ, respectively where 0≤Φ≤ 1. The successful production of Tc replaced

Td thus maintaining a constant population size (N). A constant value for N created a

selective pressure between automaton types each of which must be continually produced

to maintain their presence in the population.

The procedure for producing new automata was iterated from 105 to 107 time steps

(depending on the aims of a particular simulation run) and that led to the growth or decay

of particular automaton types (T). This simulated the population dynamics over time

and that led to the emergence of a number of distinct information niches. Changes in the

structure and composition of the population were observed as the simulation progressed

and this was captured at each time step by updating the frequency distribution ( f ) of the

information processing types present in the emerging community. The following difference

equation described the rate of change in the concentration of an automaton ( fc) on each

time step [123]:

(3.1) ∆ fc =
(
(1− fc)

∑
Tb◦Ta=Tc

fa fb

)
−

(
fc

∑
Tb◦Ta 6=Tc
Tb◦Ta 6=T0

fa fb

)

Where Ta,Tb were the interacting automata, Tc was the new automaton produced

from that interaction and fa, fb, fc were their normalised frequencies of occurrence in

the population. T0 was the transitionless automaton that results from an unsuccessful

interaction and which was disallowed in the population. This is a rate equation with the

first term indicating the growth of Tc and the second term the decay of Tc. Specifically:

(i) growth - the probability of adding the automata Tc into the population was equal to

the probability of selecting two neighbours Ta and Tb that produced Tc multiplied by

the probability that the automata that was being replaced (Td) was not the same as Tc

(as depicted by the 1− fc term); and (ii) decay - the probability of Tc being chosen for

replacement ( fc of the second term) and replaced by an automaton that was neither Tc nor

T0.

The frequency distribution of the automaton types in the population could be deter-

mined by solving ∆ f = 0 for Equation 3.1. Given that only one lattice location was updated

on each time step (an asynchronous update - see Box 3.2) and that there were a large

number of automata in the population (given by N which had a typical value of 90,000
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Figure 3.8: The internal environment in which automata interacted was: (a) a square lattice (Γi, j) of n×n
sites consisting of a single automata per site. Automata at the boundaries could interact with other automata
at the opposite boundary e.g. an automata at lattice site Γ1,1 (the top-left corner) could interact with automata
at the bottom left corner Γn,1; and (b) the automata (Td) on the lattice site Γi, j was chosen at random for
replacement by a new automata generated from the interactions of two of its neighbours. An interacting pair
were randomly selected from the sites labelled as 1,2,3,4 with the four valid pairings shown e.g. with an
equal probability of 1/4 the automata at sites 1 (Ta) and 3 (Tb) could be selected to interact. The functional
composition operation would proceed as normal and should a new automata (Tc) be produced then this would
replace Td . Otherwise, Td would not be replaced and would remain at Γi, j . Taken from [50].
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for most simulations) this resulted in small changes to the frequency distribution. Hence,

discrete time was considered to be a good approximation for continuous time.

3.3.2 Environmental Perturbations

Spatial mixing of automata occurred within the population by randomly selecting a lattice

site and exchanging the residing automaton with another type positioned on a different lat-

tice site along one of the cardinal directions at a distance d selected from a one-dimensional

Gaussian distribution with variance v and mean = 0 and rounding d to the nearest cor-

responding lattice site. This was repeated for c numbers of different sites per time step.

The combination of c and v approximated diffusion such that as c → N and v → n the

population was considered to be well mixed and, conversely, when c = 0 and v = 0 the

population had zero mobility [123].
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Box 3.2 Asynchronous vs. Synchronous Update of the Population

A cellular automaton [128] (CA) is a collection of cells usually arrayed on a grid

that can be in one of a number of finite states. Each cell updates its state based

on a rule that depends on the states of the neighbouring cells. The dynamics of a

CA are generated by repeated application of this local rule by all cells. There are

two approaches to updating a CA: "synchronous" whereby all cells are evaluated

as per the local rule and the state of each cell is updated accordingly within the

same time step; and "asynchronous" where all cells are evaluated successively one

after the other i.e. over separate time steps. The appropriate update process to use

for modelling a biological process has been investigated and evaluated in terms of

’model stability’ [129]. In summary, model stability consists of three considerations:

(i) stability of the dynamic system that reaches stable stationary points, (ii) the

qualitative behaviour of the model (and its results) do not change significantly if

parameters are varied within a certain range, (iii) that the qualitative results of

the model are only dependent on the assumptions made about a real biological

system i.e. the results are not dependent on how the model has been implemented,

for example, whether as a numerical solution of a differential equation or as a

cellular automata. Schonfisch & de Roos [129] identified that the two approaches

can lead to qualitatively and quantitatively different results in both transient and

long-term behaviours of the model with asynchronous updating offering a better

approximation of real continuous time. Synchronous updating assumes that all

events occur in parallel and, as pointed out by the authors, ’... at most points in time

and at most places nothing happens’ and, as such, a model whereby at most only

one event can happen per time step more accurately captures a biological process.

The information niche model used the asynchronous update approach.

To simulate the effect of foreign automata entering the population from the environment

randomly generated automaton types were allowed to replace randomly selected automata

in the population at time t with a probability given by Φ, where 0≤Φ≤ 1 [36]. With Φ= 0,

there was no influx of automata from the environment, no random replacement occurred

and therefore changes to the population occurred entirely from the interactions of the

existing automata. Whereas with Φ= 1, there was a constant influx of randomly generated

automata that were replacing existing automata on each time-step. The combination of

the spatial mixing (c,v) and influx rate (Φ) parameters were varied to simulate a range of

fixed environmental conditions. The effect of fixed environmental conditions on automata
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populations were investigated with a one-state automata population (see Chapters 4 and

6) and a two-state automata population (see Chapter 5).

The effect of intermittent changes to the environment parameters on the robustness of

the population was also investigated. For this, changes to environmental conditions could

be made once a steady-state population (niche) had emerged:

(i) set the spatial mixing parameters to their opposite value e.g. if a niche had formed

in a well-mixed environment then set the spatial mixing parameters to simulate a

zero-diffusivity environment e.g. c = 0,v = 0

(ii) set the influx rate to its opposite value e.g. if a niche was produced with Φ= 0

then set the influx rate in the range 0<Φ≤ 1

(iii) effect changes to the environment that correspond to both (i) and (ii) occurring

at the same time

These sudden changes to environmental conditions (perturbations) once a niche had

formed were allowed to persist for a minimum of 106 iterations. This proved a sufficient

duration for the population to transform its own composition to a new steady-state that

represented a different niche in the environment. Once a new niche had formed then

the original environmental conditions were reimposed on the population. Subsequently,

either the original niche structure was reproduced or a new niche structure emerged.

Such intermittent changes to environmental parameters were simulated for one-state and

two-state automata populations (see Chapter 4 and Chapter 5).

3.3.3 Co-Habitation of the Lattice

To further examine population dynamics and the emergent behaviour of more complex

populations a one-state automata population and a two-state automata population were

combined into a joint population located on a n×n lattice. The effect of different initial

proportions of each population were investigated in three ways:

1. All automaton types from unevolved one-state and two-state population (T), con-

sisting of 15 and 1,873 automaton types respectively for a total of 1,888 types, were

considered as a single joint population uniformly distributed across the lattice. The

corresponding frequency distribution vector ( f ) describing this joint and uniform

population was given by f = { f i ∈ T | f i = 1
|T| } where | T | was the length of the set

of automaton types. Hence, each automaton in this joint population had an initial

normalised frequency of f i = 1/1888= 0.0005

73



CHAPTER 3. MODELS AND METHODS

2. automaton types from evolved one-state and two-state populations (i.e. information

niches) were combined into a joint population. The population size varied and was

dependent on the number of automata that remained after a niche had formed.

Therefore, the automaton types in the joint population was given by Tss = Tss1+Tss2

where the subscript ss indicated that the set of automaton types had been drawn from

evolved, steady-state populations. The joint population was uniformly distributed

across the lattice with the corresponding frequency distribution vector ( fss) given by

fss = { f i ∈ Tss | 1
|Tss| }

3. As per (2) except that the initial proportions of the one-state and two-state automata

matched their distributions in their original niches. As such, the frequency distri-

bution vector was given by fss = { f i ∈ Tss | f i
Z } where Z was a normalising factor

given by Z =∑
fss1 +∑

fss2 where fss1, fss2 were the normalised frequency distribu-

tion of the steady-state one-state and two-state automata populations respectively.

Furthermore, | fss |=| fss1 | + | fss2 |

The evolution of these joint populations was recorded for a minimum of 106 time-steps

and the population structure was analysed. The results of simulating the co-habitation of

these populations is presented in Chapter 7.

3.3.4 Inter-niche Transfer of Automata

To examine the cognition process of an autopoietic system (see Section 2.2.3) a model was

developed that allowed a two-state automata population to donate one of its automata

to a separate one-state automata population at a rate given by 0≤Φ≤ 1. This led to the

replacement of an existing one-state automaton with the two-state automaton from the

donor population with a probability given by Φ. Initially, each population was allowed to

evolve to a steady-state before the influx rate was increased 0≤Φ≤ 1 to allow two-state

automata to enter the one-state population. The changes in the structure of the receiving

population was recorded throughout the simulations and the results are presented in

Chapter 7.

3.4 The Computation Niche - a model of a self-producing
population with a membrane

The computation niche was an extension of the information niche model operating under

well-mixed conditions with the addition of a membrane component that regulated the
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production of new automata. The membrane component consisted of a network of automata

over which binary information was transferred. The information received by each automata

in the membrane determined whether or not that membrane-based automata ’fires’ (i.e.

surpasses its activation threshold and emits a binary symbol) thus ’exciting’ (i.e. primed

and ready to participate in interactions) its equivalent automata type in the internal

population. Excited population automata were then available to interact with other excited

automaton types. Changes in the internal population were reflected in the weightings

over the membrane network which, in turn, influenced which information was transferred

between membrane automata (see Section 3.6.2). In this way the combination of the

membrane and the internal population was processing information. Indeed, the information

processes of storage, modification and transfer were all exhibited and hence the label

’computation niche’ was used to describe the model (see Section 3.4.4).

The conceptual motivation for the computation niche model was Luisi’s minimal au-

topoietic cell [6] - see Figure 3.9 and Section 3.6.2 for more detail.

The computation niche model explicitly modelled the three components: an exter-

nal environment, an information processing membrane and the internal self-producing

population. Each of these components will now be described in more detail.

3.4.1 Internal Environment

The internal population of the computation niche was based on a simplified version of the

information niche model under well-mixed conditions. As global environmental conditions,

such as spatial mixing and an influx of material (automata), were not examined in the com-

putation niche model there was no requirement for a cellular automaton implementation

of the population. Instead the interactions in the internal population operated analogous

to a well-mixed chemical reactor (i.e. where all interactions were possible).

All possible interactions in the population at time t were determined by the activity of

the membrane (see Section 3.4.2) with excited automata interacting with all other excited

automata to produce new automata3. Interactions proceeded on the assumption that in a

well-mixed population all automata were available to each other to interact. For each new

automata that was produced an existing automata was randomly selected and removed

from the population thus maintaining a constant population size. All possible interactions

that could occur were performed within the same time step. This was equivalent to a

3An investigation into the effect of making this production step a stochastic process (i.e. possible inter-
actions were subject to a failure rate) demonstrated a delay in the formation of the computation niche but
qualitatively produced the same result. As such, a probabilistic aspect to the production of automata in the
computation niche model was deemed to be unnecessary and only increased simulation run times.

75



CHAPTER 3. MODELS AND METHODS

Figure 3.9: The inclusion of a membrane component into the information niche model - aka. the computation
niche model - was partly inspired by Luisi’s model of a minimal autopoietic unit (a) in that the membrane S was
determined by the internal reaction A → S. The decay of the membrane S → P indicated the requirement for
continuous renewal of the membrane via. continual production of S. The high level concept of the computation
niche (b) was equivalent to this whereby the membrane reflected the productions that occurred in the interior.
Furthermore, the membrane acted as the interface between the internal population of interacting automata
and the environment. Luisi’s model shows the migration of a substrate molecule A through the membrane
but does not show any effect of the membrane on this molecule nor on the internal reactions beyond simply
acting as a semi-permeable container. The functionality of the membrane in the computation niche is more
comprehensive whereby the behaviour of the membrane influences the productions that occur within the
interior (green arrow). This is a limitation of the Luisi model and one that the computation niche addresses.
Image in (a) taken from [8].

76



3.4. THE COMPUTATION NICHE - A MODEL OF A SELF-PRODUCING POPULATION
WITH A MEMBRANE

synchronous update of the population on each time-step. As explained in Box 3.2 an

asynchronous update method was preferred for emulating biological behaviour in a cellular

automaton model however this was deemed less relevant in the computation niche model

for two reasons: (i) the well-stirred chemical reaction model used in the internal population

of the computation niche was not a cellular automaton; and (ii) repeated simulation runs to

test the computation niche model with a one-state population demonstrated qualitatively

and quantitatively similar results to a one-state information niche model under well-mixed

conditions (see Chapter 8 and Appendix 12.3).

The internal population was quantitatively defined by an interaction matrix (G) and

the frequency distribution of the population ( f ). On each time step the currently active

membrane automata (represented by the binary vector Ψ where Ψ= 0 and Ψ= 1 repre-

sented a de-activated and activated automaton respectively) operated on G to temporarily

disable parts of the interaction matrix which corresponded with the inactive membrane

automata. This led to the inhibition of the interactions involving automata of the same

type as the inactive membrane automata and subsequently suppressed the production

of the automata that would have been produced from the interactions involving those

automata. The interactions that occurred at time t were therefore determined by element-

wise multiplication (¯) of the interaction matrix G with the membrane automata status

vector Ψ (and where Ψ′ was the transpose of that vector):

(3.2) GΨ = (Ψ¯G)¯Ψ′

Where GΨ was a square matrix of the same dimension as G. The first term yields the

product GΨi that sets all elements of a row (i) in GΨ to zero where Ψi = 0; and the second

term sets all elements of a column ( j) in GΨ to zero where Ψ′
j = 0.

Where two automata that could interact were (i) active (Ψi = 1), and (ii) present in the

population ( f i > 0) a new automaton was produced. The automaton produced was indicated

by the value of the interaction matrix element at G i j where i, j were the indices of the

two interacting automata (Ta,Tb) respectively. The change in the frequency of automata of

type i in the population was determined by:

(3.3) ∆ f i =
∑∑

f t ¯ A i ¯ f ′t

Where:

f t was the normalised frequency distribution of the population in the current time

step (as a row vector)
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A i was the adjacency matrix of G i
Ψ

that described all possible interactions that can

produce automaton type i

f ′t was the transpose of the frequency distribution vector

Subsequently, the overall change in the frequency distribution of the population was

the difference between the frequency of the previous population (Ft) and the changes in

the frequency of the population due to new productions (∆F) to give:

(3.4) f t+1 = Ft +∆F∑
Ft +∆F

Where:

Ft was the absolute frequency count of each automata type in the population (as an

integer row vector)

∆F was an integer row vector indicating the absolute change in the frequency of each

automata type due to being produced or removed from the population

The divisor was a normalisation factor given as the sum of the updated frequencies

of each automaton

f t+1 was the normalised frequency distribution of the population

The population’s normalised frequency distribution was used to set the weightings of

the edges in the membrane network as explained in Section 3.6.2.

When a type of automaton (Ti) was no longer present in the population (i.e. f i = 0) then

all interactions with which it was involved were no longer part of the interaction network

(GΨ) for that time step. When an automaton type was no longer present in the population

it was also removed from the membrane. An automaton type that was currently extinct

could only be re-introduced into the population and the membrane by being produced by

other automata that were present in the population.

3.4.2 Membrane

The membrane was a network of automata that transmitted and received binary infor-

mation across its own network and exchanged information with an external environment.

Conceptually, the membrane separated an internal interacting population (e.g. an informa-

tion niche) from its environment. The function of the membrane was to process information
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Figure 3.10: The membrane could be visualised as a continuous structure that was embedded with distinct
membrane automata (M) each of which had a unique function that reflected the automaton types (T) in the
internal, interacting population. Each membrane automata transduces information from the environment
and other membrane automata and this sometimes led to emissions that signalled to the internal population
which automata were ’on’ (excited) or ’off ’ (inhibited) and able to participate in an interaction to produce a new
automaton (a form of top-down causation). This influenced the production of new automata which changed the
internal composition of the population which was then reflected in changes to the weighting of edges in the
membrane network (a form of bottom-up causation).

from three sources: the environment, from other automata within the membrane, and from

the internal population (see Figure 3.10).

The concept of a membrane was inspired by Luisi’s model of a minimal autopoietic cell

[6] whereby the membrane was produced and maintained by internal reactions. In the

Luisi model the membrane contained favourable reactions in the interior which led to the

growth and decay of molecules; simultaneously holes appeared in the membrane at a rate

consistent with the growth/decay dynamics in the interior. As such, the composition of the

membrane in the computation niche model should reflect the changing composition of the

internal population of interacting automata. An enhancement on the Luisi model was the

influence of an external environment on membrane behaviour and the subsequent effect
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that this may have on the interacting population. Any indirect influence that the external

environment may have had would be reflected in changes to the internal population

structure. This relationship was represented in the membrane as a network with weighted

edges between membrane automata where the value of those weightings were directly

determined from the population structure. Subsequently, over time and as a simulation

progressed the membrane evolved to become a network representation of the internal

population of interacting automata and the external environment.

The principles and assumptions behind the design of the membrane were:

1. The automata membrane model is emulating cell signalling [130] i.e. a membrane-

bound protein is activated in some manner and either allows small molecules into

the interior or transduce information from a membrane-based activity with either

event leading to the excitation of a particular molecular species in the interior. In

the computation niche model it was assumed that this excitation is of a high fidelity

with an extremely low probability of activating non-target automata in the interior.

Hence, excited automata in the interior population interacted - under well-mixed

conditions - with other excited automata to produce new automata. Within the

computation niche model the automata in the membrane automata were assumed to

be dormant by default and therefore needed to be triggered in some manner before

they excited/inhibited their counterparts in the internal population.

2. To model the maintenance of a membrane from the products of an internal population

the membrane itself needed to reflect the composition of the internal population.

One option that was considered was that the most populous automata formed the

membrane. However simulations of the information niche model demonstrated that

the domination of the population by a single type of automata was common and

therefore, in the computation niche implementation, this would lead to a homogenous

membrane with very limited information processing capacity (i.e. the membrane

would only ever represent the behaviour of one automaton type) and, as such, this

was dismissed as too limited. The decision was therefore made that the composition

of the internal population (i.e. the types of automata present and their relative

concentrations) would be accurately represented in the membrane as a network with

each automaton type that was present in the internal population represented as a

vertex in this network, the interactive relationship Ta → Tb would determine the

edges between those vertices, and the relative concentration of each automaton type

in the internal population would be represented as a weighting over the network

edges.
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3. The membrane was only a representation of the composition of the internal popu-

lation. It did not require the removal of any population automata to construct the

membrane.

4. Conceptually it was assumed that the membrane consisted of an inert medium that

prevented automata in the membrane network from directly interacting with each

other to produce new automata. The membrane automata was assumed to be fixed

in position and only able to communicate with other membrane automata via. some

mode of transferring binary information over their outgoing edges.

5. Changes in composition of the internal population directly affected the behaviour of

the membrane due to the change in weightings on the network edges; the implication

here was that automata in the membrane needed to be replaced however there were

limited positions in the membrane and therefore there was competition within the

membrane for occupying space. To reiterate, the number of each automata type in

the membrane was proportional to the composition of the population i.e. an increase

in the frequency of an automata being produced in the population would increase the

weighting given to that automaton’s information emissions over the membrane.

6. In the computation niche model the duality of a finite state automata as both function

(as an information processor) and reactant (as an interacting entity producing new

entities) was represented. Processing of information was performed by the membrane

automata. The functional composition of two automata to generate a new automata

was performed by the population automata.

7. The membrane model of the computation niche model has a number of conceptual

similarities to random boolean networks [131] and neural networks [132] but also

important differences. Clarification of such similarities and differences is provided in

Box 3.3.

In summary, the membrane was a network of unique and distinct finite state automata

that transmitted and received binary information from/to each other over the network

edges. The network was derived from the interaction network (as described in Section

3.6.1) and represented the interaction Tb ◦Ta where Ta was the source automaton in the

membrane whose emissions were transformed by the target automaton Tb also in the

membrane. An edge in the membrane network represented a communication channel

between two automaton where the output (y) from the source automaton (Ta) was received

by the target automaton (Tb) as an input (x). Each membrane automaton processed the
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information it received according to its own unique function which was a property of its

internal structure (τ). The automaton Tc which was produced from such an interaction was

not represented in the membrane automata as it was already represented in the internal

population (see Section 3.4.1).
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Box 3.3 Random Boolean Networks and Neural Networks compared to the Compu-

tation Niche membrane model

Random Boolean Networks (RBN) are a certain type of discrete, dynamical network

that was developed by Stuart Kauffman [131] to model gene regulatory networks. A

random boolean network has N vertices in a directed graph where each vertex is

either in an ON or OFF state (boolean 1 or 0). Each vertex in a RBN updates its state

based on the state values of the vertices which it is connected to on its incoming links.

By comparison, the membrane automata in the computation niche model update

their state based on the information that is received over their incoming links. This

is an important distinction as there are three possible values that are transmitted

over incoming links in the computation niche model - a non-communication event

represented by an empty set (;) or the transmission of a 0 or a 1 whereas in the

random boolean network model there are only two values (0,1).

Artificial Neural Networks (ANN) [132] are a type of computational model that

learn (adapt) to perform tasks efficiently and effectively (e.g. image recognition)

through modification of the edges of a network towards an optimal configuration. An

ANN is a set of connected vertices where each vertex emulates a biological synapse

in that they receive, process and transmit signals to other vertices over the edges

of the network. Edges are weighted to indicate the strength of the signal between

two vertices and are adjusted as learning proceeds. Vertices in an ANN typically

have a threshold that the incoming signals must surpass to trigger the vertex to

emit a signal over its own output edges. The computation niche model is closely

aligned to this concept with a couple of distinctions: (i) information (signals) from

the environment are treated as an incoming edge to all membrane automata which

is not a feature of an ANN; (ii) each automaton in the membrane network has a

distinct information processing function that gives it a unique behaviour in how

it responds to information it receives whereas in ANNs the output from vertices

are a function of the sum of their inputs - the edge weightings to/from a vertex

distinguish their behaviour. In the computation niche the edge weightings and the

unique function of the vertex contribute to their behaviour. These are important

differences as (i) allows the behaviour of a learning component (i.e. the membrane)

to incorporate changes in its environment into the adaptations that are occurring

within the network, and (ii) unlocks the ability to analyse the effect of the different

information processing behaviour of the membrane automata may have on the

systems ability to adapt.
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This information processing either led to the membrane automata (Mi) activating

(Ψi = 1) if a certain probabilistic threshold was reached otherwise the automata remained

inactive (Ψi = 0). An activated membrane automata: (a) emitted information (Yi) corre-

sponding to the processing that it had performed and this was transmitted over its outgoing

edges to other automata in the membrane network, and (b) excited its equivalent automata

type (Ti) in the internal population so that they were available for interacting with other

excited population automata. The membrane automata that were receiving emissions from

activated automata treated the incoming information as one of a number of simultaneous

information sources from the environment (E) and the emissions from other membrane

automata (Y ). As such whether a membrane automata activated or not (it’s behaviour) was

a function of the cumulative information it received from these information sources and

its subsequent processing of that information. If a membrane automata wasn’t activated

(Ψ= 0) then it did not transmit information to other membrane automata (Yi =;) nor did

it excite its equivalent automaton types in the internal population.

The effect of this on/off switching of membrane automata excited or inhibited inter-

actions in the population (a form of top-down causation) and to increase/decrease the

activation threshold of other membrane automata (a form of same-level causation). The

cumulative emissions from all activated automata were emitted into the environment as a

two-element probability distribution where it had the potential to modulate environmental

information (given by the out-flux parameter Φout where 0≤Φout ≤ 1). This in turn could

affect the activity of the membrane (a form of bottom-up causation). Hence, the computa-

tion niche was modelling hierarchical causation as the information flows between three

components - the environment, the membrane, and the internal population of interacting

automata.

Figure 3.11 is an illustrative example of a membrane. The information processing

functions of four one-state automata are shown (M1,M2,M4,M8) with M1 and M8 repeating

the information they received whilst M2 and M4 modify the information by ’bit flipping’.

Where the output from a membrane automaton could be processed by another membrane

automaton a directed edge captured the relationship (see Figure 3.11b). The membrane

network matrix describing such a network of membrane automata is shown in Figure 3.11c

with the corresponding topology shown in Figure 3.11d. An example of the operation of

this membrane is described in Table 3.2.

The membrane reflected the composition of the internal population by allocating a

real numbered value (a weighting labelled as λ where 0 ≤ λ ≤ 1) to each edge in the

membrane network. The weighting on each outgoing edge from an automaton was equal to

the normalised frequency (i.e. the concentration) of its equivalent automaton type (Ti) in
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Figure 3.11: Illustrated example of a small membrane network consisting of four automata. The automata are
of the same type as used in the information niche model however they are labelled as Mi rather than Ti to
distinguish their function in the membrane as processing information rather than interacting to produce new
automata: (a) the four membrane automata each of which was a single state information processing transducer
that received a single binary symbol and emitted a single binary symbol; (b) the syntax of the membrane
network where each vertex in the network represented an automaton type (Mi) and edges between vertices
indicated the direction of flow of information e.g. information was emitted (Ya) from an automaton (Ma)
that fulfilled the Ta role in the interaction equation Tb ◦Ta = Tc and which was received by an automaton
(Mb) fulfilling the Tb role. All membrane automaton would also simultaneously receive information from the
environment (E). All edges in the membrane indicated the automaton types that could interact to produce
a new automaton. The automaton Tc produced by the interaction of Ta with Tb was not represented in the
membrane network as this would duplicate information already contained in the interaction matrix (G); (c)
the membrane network (M) that described the Ta → Tb relationships that constituted the membrane network
structure where the row headings (i) signified the automaton type acting as Ta and the column headings ( j)
signified the automaton type acting as Tb in the interaction equation Tb ◦Ta = Tc. The value at Mi, j was
the binary symbol that Ta could transmit and that could be received by Tb and where ’-’ indicated that no
interaction was possible for that Ta,Tb pair; (d) the topology of the membrane automata network with an
average degree distribution of 2 with the transmitted symbol labelled on each edge.
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t active inactive transmitted symbol productions
t0 - M1,M2,M4,M8 - -
t1 M1 M2,M4,M8 M1 → 0 1×T1 : T1 ◦T1 = T1
t2 M1,M2 M3,M4 M1 → 0, M2 → 1 1×T1 : T1 ◦T1 = T1

1×T2 : T2 ◦T1 = T2
t3 M1,M2,M4,M8 - M1 → 0, M2 → 1

M4 → 0, M8 → 1
2×T1 : T1 ◦T1 = T1,T4 ◦T2 = T1
2×T2 : T2 ◦T1 = T2,T8 ◦T2 = T2
2×T4 : T1 ◦T4 = T4,T4 ◦T8 = T4
2×T8 : T2 ◦T4 = T8,T8 ◦T8 = T8

Table 3.2: For illustration purposes and assuming no threshold was being applied to the inputs to each
membrane automaton: At time-step t0 all membrane automata were inactive; at time-step t1, M1 was
spontaneously activated and emitted a ’0’ symbol over its outgoing edges. As a result it re-activated itself and
M2 which was the only other automaton that could process the binary symbol ’0’. At time-step t2, both M1
and M2 are active with M1 emitting a ’0’ symbol and thus re-activating itself and M2 whilst M2 emitted a
’1’ which activated the M4 and M8 membrane automata. At time-step t3 all automata were active with M1
and M2 emitting information as before and with M4 and M8 also now emitting a ’0’ and a ’1’ respectively
which, in turn, activated all remaining membrane automata. Whilst this information processing was occurring
in the membrane, productions in the internal population proceeded in parallel with the creation of a T1
automaton at time-step t1 via. self-replication, the automata T1 and T2 at time-step t2, and by time-step t3
all four automata were being produced in the population. In practice the activation of a membrane automaton
was subject to a randomly determined threshold being surpassed meaning that even if an automaton was
receiving an input it may not activate. This was a necessary design of the membrane model to prevent
self-activating membrane automata such as M1 and M8 from being constantly active in the membrane and
therefore constantly producing themselves in the population (they are both self-replicators).

the population, hence λi = f i. Therefore, the cumulative weighting of all outgoing edges

from a membrane automaton (Mi) was given by:

(3.5) λYi =
∑

y∈Yi

f i

, where Yi was the set of all outgoing edges from the membrane automaton Mi. Hence,

each outgoing edge had an identical weighting λy = f i.

For a given membrane automaton (Mi) the cumulative weighting of all incoming edges

(X i) was given by:

(3.6) λX i =
( ∑

x∈X i

λx

)
.
1
Z

, where X i was the set of all incoming edges to Mi, λx was the weighting of a single

edge (x) in the set X i, and Z =∑
λX i (i.e. a normalising factor).

The higher the concentration of a membrane automaton’s equivalent population au-

tomaton the greater the magnitude of its emissions due to a higher edge weighting (as per
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λi = f i). For the majority of the time emissions of a greater magnitude had more influence

on the activation behaviour of the receiving membrane automata 4. The weighting of edges

to match the internal population allowed for changes in the composition of the population

to influence information flow in the membrane (a form of bottom-up causation) and, given

that information flows contributed to the activation behaviour of membrane automata, also

indirectly affected the production dynamics in the internal population (a form of top-down

causation) thus closing a causal cycle.

Figure 3.12: Information was received at a membrane automaton’s input (X i) from the environment (E)
and connected automata (Y ). The information was then processed by the automaton according to its input
characteristics (τ) to determine if a threshold had been surpassed that triggered an emission from the
automaton (Yi) which was transmitted to membrane automata over its outgoing edges. The activation status
of the automaton was captured in the variable Ψi where Ψi = 0 and Ψi = 1 represented an inactive or
active automaton respectively. Cumulatively the emissions from all activated membrane automata were
emitted to the environment as a probability distribution (N ) of two events occurring (the probability that
the binary symbol ’0’ or ’1’ would be emitted from the niche respectively) at an intensity given by Φout and
0≤Φout ≤ 1. Each membrane automaton in the membrane therefore acted as an information processing unit
that transduced information from incoming communication channels (E,Y ) to its outgoing communication
channel (Yi) and modifying that information according to its internal structure.

Figure 3.12 summarises the three information processing steps performed by a mem-

brane automaton. Information could be received from two sources: the environment (E)

and other membrane automata (M). The processing of environmental information (E) by

membrane automata is explained in Section 3.4.3. Here, the information received (Xi)

by a membrane automaton (Mi) from other membrane automata (information from the

environment is treated in Section 3.4.3) was given by:

(3.7) Xi(t)=
( ∑

x∈X
λx

)
.
1
Z

Where:

4This was not always the case as some membrane automata could transmit more information (e.g. dual
output automata that can emit ’0’ and ’1’ symbols) in a time-step than automata to which they were connected
could process (e.g. mono input automata that could only accept either a ’0’ or a ’1’) and, in such circumstances,
the magnitude of the emission was irrelevant to the behaviour of such receiving automata.
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X i was a two-element vector that represented the sum of the magnitude of ’0’ and ’1’

symbols received on the automaton’s incoming edges (normalised such that the sum

of the vector was equal to the value 1)

X was the set of all incoming edges to the membrane automaton from one or more

automata connected to this automaton (Mi)

x was the information transmitted by an edge in the set X in the form of a two-

element probability distribution where P(x) = P[x = 0, x = 1]. Hence, if P(x = 0) = 1

then P(x = 1) = 0 and this would be represented as x = [1,0] and likewise if P(x =
1)= 1 then P(x = 0)= 0 and x = [0,1]. If no information had been transmitted on this

edge - that is, the source membrane automaton was inactive - then P(x) = [0,0] or

similarly P(x)=;

λx was the weighting value of the incoming edge x

Z was a normalisation factor applied to the sum of all the received information in X

to ensure that
∑

Xi = 1

Some membrane automata could emit a ’0’ or ’1’ depending on their information

processing capability and such automata could emit information over their outgoing edges

that was outside of the domain of automata that they were connected to. For example, the

membrane automaton M15 (functionally identical to the population automaton T15 - see

Figure 3.7) could transmit a ’0’ or a ’1’ and it was connected to the membrane automaton

M1 which could only receive a ’0’ symbol. Hence, M1 could receive transmissions from

M15 only when the latter was emitting a ’0’ symbol. As such, it was necessary to filter

the incoming information (Xi) by the functional domain of the receiving automaton (Mi)

according to:

(3.8) X
′
i =Xi.τi

Where X
′
i was the final input signal presented to the automaton Mi represented as

a two-element probability distribution where P(X
′
i = P(x = 0, x = 1) and τi was the input

probability distribution of the automaton that determined whether it could accept a ’0’

or ’1’. This probability distribution was calculated from the number of transitions of the

automaton that accepted a ’0’ and accepted a ’1’, as follows:

(3.9) τi = x0

x0 + x1
,

x1

x0 + x1
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Where x0 was the count of the automaton’s transitions that could accept a ’0’ symbol

and x1 was the count of the automaton’s transitions that could accept a ’1’ symbol. The

values x0 and x1 were normalised to yield the two-element probability distribution τi. For

example, the input properties (τ) for each of the four automaton types shown in Figure

3.11a were: τ1 = [1,0], τ2 = [1,0], τ4 = [0,1], τ8 = [0,1].

To determine whether the automaton was activated the automaton’s activation thresh-

old was generated as the random number r and the following conditional tested:

Ψi =
0 where P(x = 0) || P(x = 1)< r

1 otherwise

Where Ψ was a binary vector of length | M | and where each element represented

whether a membrane automaton Mi was active (Ψ= 1) or inactive (Ψ= 0) at the present

time-step. Hence,Ψi was ’1’ if either P(x′ = 0) or P(x′ = 1) equalled or surpassed the random

threshold r. Where Ψi = 1 the value for x that exceeded the threshold was taken as the

activated transition of the automaton (i.e. either the ’0’ or the ’1’ input symbol surpassed

the threshold and these would correspond to the state transition in the automata that had

the matching input symbol). If either value of x could have surpassed the threshold - for

example, in circumstances where the value of r was close to zero - then the transition that

the automata would take was determined randomly with equal probability.

When there was more than one possible transition that satisfied the condition (i.e. the

current state of an automaton had two transitions 0 | 0 and 0 | 1 for x = 0 or 1 | 0 and 1 | 1 for

x = 1) the transition that was taken was determined with 50/50 chance. In such occurrences

a random real number 0≤ r′ ≤ 1 was generated and the following cases examined e.g. in

the case where x = 0 activated the automaton:

r′ =
≤ 0.5, transition {0 | 0} was taken

> 0.5, transition {0 | 1} was taken

The same conditions applied where the input x = 1 activated the automaton. For

example, T7 had three transitions two of which accepted a ’0’ and the other a ’1’. After

determining the final input (X
′
) received at T7’s input, the input probability distribution

was P(X
′
T7

= {0.67,0.33}. Hence, where r = 0.5 the ’0’ symbol surpassed the activation

threshold and triggered an emission from the automaton. The symbol that was transmitted

was determined by the transition taken by the automaton on being activated. Given that

there were two possible transitions for the input symbol ’0’ the transition that was taken

was determined randomly with equal probability. The output symbol associated with the
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transition that was randomly selected was transmitted over the automaton’s outgoing

edges.

To recap an activated membrane automaton triggered two events:

(i) an activated membrane automaton emitted information (Yi) associated with the

output symbol of the transition that was executed during the processing of the

information it received at its input (X
′
)

(ii) the interacting automata in the population that were of the same type as the

activated membrane automaton were available to interact

Population automata triggered by the membrane could only interact with other acti-

vated population automata within that time step (as per the procedure described in Section

3.4.1). To summarise, if a membrane automaton was not activated then this had the effect

of inhibiting all interactions of its equivalent population automaton in the internal popu-

lation. Hence, the behaviour of the membrane directly affected the productions that took

place in the population for that time step. Changes in the population structure occurred

through the creation of new population automata that replaced existing automata (which

were removed from the population). This led to changes in the structure of the internal

population which led to changes in the edge weightings in the membrane automata net-

work. This subsequently affected the flow of information within the membrane and the

subsequent activation of membrane automata in the next time-step (t+1). Changes in

population structure therefore acted as a form of bottom-up causation on membrane be-

haviour. The circular relationship between the membrane, the internal population and the

environment are illustrated in Figure 3.13 and the algorithm for updating the computation

niche is described in Box 3.4.

3.4.3 Environment

The computation niche existed within an environment and the relationship between

the two was modelled as an exchange of binary information. The information emitted

by the environment was represented as a two-point Bernoulli probability distribution

E = {P(X = 0),P(X = 1)} where P(X = 0) = p and P(X = 1) = 1− p where 0 ≤ p ≤ 1. For

example, P(E) = [0.5,0.5] represented an environment that was producing 0’s and 1’s

with equal probability. By comparison, P(E)= [1,0] was an environment that constantly

produced a ’0’ symbol and P(E)= [0,1] was an environment that constantly produced a ’1’

symbol. To consider the most general case of the effect of environmental information on

the behaviour of the membrane the probability distribution P(E) was randomly generated
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on each iteration i.e. P(E)= (p,1− p) where p was a randomly generated number in the

range 0 ≤ p ≤ 1. Every membrane automaton had an incoming edge which represented

the information being received from the environment. As such, each automaton received

information from at least two sources - the environment (E) and other membrane automata

(Y ) - and this constituted a competitive tension between these information sources to

influence whether the receiving automaton would activate or not.

Figure 3.13: The computation niche extended the concept of the information niche to model the relationship
between three processes: a self-producing population that was operationally closed (related processes indicated
in blue), an environment that was continuously generating binary information (related processes indicated in
red), and a membrane that bisected the self-producing population of automata from the environment (related
processes indicated in green). The nexus of these processes was the membrane component which changed
to reflect both the structure of the population (represented as changes in the weightings over the edges of
the membrane network) and the binary information that was being received from the environment at time t.
Information from the environment was processed simultaneously by all membrane automata with the effect
of inhibiting the production of automata in the population (flows labelled ’A’). Changes in the structure of
the population affected the distribution of weights over the membrane network leading to a change in the
information processing behaviour of the membrane (flows labelled ’B’). Information generated by emissions
of membrane automata were transmitted into the environment subsequently modulating environmental
information (the flow labelled ’C’).

The calculation for determining the input (X
′
i) to a membrane automaton was extended

to incorporate environmental information:

(3.10) X
′
i = (Xi +E)•τi

Where Xi was the input to a membrane automaton from the aggregation of information

received from other membrane automata, τi was the input properties of that membrane
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automaton, and the environmental information (E) was a two-point probability distribution

that was set to various generating modes e.g. E was randomly set to emit ’0’ or ’1’ with

equal probability or E was set to emit a constant symbol (e.g. a ’0’ or a ’1’). Equation 3.10

combined the two probability distributions (X i,E) to yield a single probability distribution

that represented the total information transmitted to a membrane automaton (Mi). Not

all transmitted information could always be read by the receiving automaton and so

the probability distribution - that represented the transmitted information - needed to

be modified by the input properties of the receiving automaton (τi). For example, if the

transmitted information probability distribution was X i = [0.5,0.5] and yet the receiving

automaton could only read 0 symbols - where taui = [1,0]) - then (X i +E) would need to be

modified by the information processing domain of the receiving membrane automaton (τi).

Hence, the product X ′
i represented the transmitted information that could be read by the

receiving membrane automaton. This was an important step as it should not be possible

for transmitted information that was outside of the domain of the receiving automaton, to

be able to activate it.
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Box 3.4 Pseudocode for updating the computation niche model

begin
INPUTS:
M : the set of membrane network vertices
f : frequency distribution of the internal population
G : the interaction matrix of the internal population
Y : the set of incoming edges to each membrane automaton
λ : the weightings of each edge in Y

OUTPUTS:
updated f ,λ

UPDATE PROCEDURE:
for each i in M

comment: Determine input Xi to membrane automaton Mi

for each y in Y

R = y•λy

comment: Filter input based on automaton’s processing behaviour

R = R •τi

comment: Determine if membrane automaton is activated

r : randomly generated real number (0≤ r ≤ 1)

if R > r

comment: Membrane automaton has been activated

Ψi = 1

fi
end
comment: Produce new automata in the internal population

for each i in Ψ> 0

GΨ =Ψ•G i •ΨT

for each automaton j in GΨ

comment: Create new population automaton of type j

f j = f j +1

comment: Remove randomly select automaton (d) from population

fd = fd −1

end
comment: Update membrane to reflect changes in population structure

λ= f
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Sudden changes to the mode of generation of environmental information acted as a

form of perturbation on the membrane. Each vertex in the membrane received the same

information simultaneously from the environment and was treated as an incoming edge.

Similarly, a weighting was given to the environment information-bearing edge which

signified the level of influence of environmental information on the activation threshold

of a membrane automaton. This parameter was given by Φenv and was analogous to the

size of the opening (aperture), or the permeability, of the membrane that determined

the amount of environmental information that could enter the membrane. As such with

Φenv = 1 the aperture was completely open and the input to a membrane automaton

was completely determined by an exogenous information source from the environment.

Conversely, with Φenv = 0 the activation of automata was driven entirely by an endogenous

flow of information from within the membrane itself.

To examine the effect of structural coupling between the computation niche and the

environment two additional attributes were introduced: (a) the cumulative emissions

from all active membrane automata (Ψ) at time t were emitted from the niche into the

environment (N ), and (b) the parameter Φout (with 0≤Φout ≤ 1) which represented the

magnitude of the effect of the niche emissions on the environment. The niche emission (N )

was the normalised output from all membrane automata at time t according to:

(3.11) N =
( ∑

y∈Y
y

)
.
1
Z

Where N was a two-point probability distribution describing the probability of the

niche emitting a ’0’ or a ’1’ at that time-step, y was the information emitted from a

membrane automaton and Y was the set of all membrane automata emissions and Z was

a normalising factor. Figure 3.14 illustrates the cyclical nature of the information flows

within the membrane and between the membrane and the environment.

When Φout > 0 environmental information (E) was modulated by N according to:

(3.12) E t+1 =
(
(1−Φout)EB + (N .Φout)

)
.
1
Z

The term EB was a two-point Bernoulli probability distribution that represented

the mode of generating environmental information in the absence of any modulation

from the niche e.g. a randomly generated stream of binary digits or a constant binary

value. Hence, EB represented a form of background noise in the environment that was

being modulated by information flowing from the niche (N ). As Φout → 0 environmental
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Figure 3.14: There were three types of information flow within the computation niche model: (i) information
emitted from membrane automata and received by other automata within the membrane as shown by
the yi , yj , yk edges (from the set Y ) between the automata Mi , M j , Mk; (ii) information generated from the
environment within that time-step (E t) and received by all membrane automata simultaneously, and (iii)
the aggregation of information generated by all membrane automata that was normalised and emitted (N )
into the environment where it potentially modulated environmental information (E). The variable Z was the
normalising factor.

information was dominated by this background information source and, conversely, as

Φout → 1 environmental information was dominated by the information being produced by

the niche (N ). In practice, and as discussed in Chapter 8 (the results of simulating the

computation niche model) a range of settings for Φout were examined.

3.4.4 Computation in the niche

The three main elements of the computation niche - the membrane, the internal population

of interacting automata and the environment - and the relationships and exchange of

information between them have been described. The computation niche model was named

as such retrospectively when analysis of the simulation results identified the distributed

and intrinsic nature of information processing that was occurring in the model. Specifi-

cally, the core elements of computation - information transfer, information storage and

information processing - were present and Figure 3.15 illustrates where these processes

were manifested in the computation niche model.

As such, the computation niche could be said to be computing (i.e. solving) its own

organisation given its present state and that of the environment. Subsequently, a computa-

tion niche was defined as a steady-state population of automata that were generated and

maintained through the continuous transfer, storage and modification of information that
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Figure 3.15: A breakdown of one computational cycle in the computation niche that illustrates the type of
information processing occurring: information transfer (orange), information storage (blue) and information
modification/evaluation (green). The directed arrows show the procedural sequence in which each process was
executed.

was an intrinsic property of the production and computation processes occurring between

the interacting population, the membrane and the environment.

3.5 Information Measures

This section describes the information measures and methods used to characterise and

analyse the results of simulating the information niche and computation niche models.

All of the methods described are derived from Claude Shannon’s information theory [48]

which is the field of study into measuring, storing and transmitting information.

3.5.1 Shannon Information and Shannon Entropy

A key method used in analysing the information and computation niche simulation results

was estimating the Shannon entropy [48] of various components and processes of those

models. Shannon entropy measured the uncertainty of a system (or, as Cover & Thomas

prefer, a random variable [124]) based on the likelihood of events occurring in that system.
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In a system each event that could occur contained a certain amount of Shannon information,

given by I(x) = −log2 p(x), measured in binary digits (bits). Shannon information could

be understood as the amount of information that was yielded when that event occurred.

The less probable an event the more information it yielded when it did occur 5 and, as

such, Shannon’s Information was a measure of the degree of surprise - or the amount of

uncertainty - we had about an event occurring.

The Shannon information could be calculated for each possible event occurring in

a system. For example, on each time step in the information niche model one existing

automaton was randomly selected and replaced with a new automaton. In a one-state

population at the start of a simulation there were 15 automaton types. At the beginning

of a simulation each automaton type was equally distributed and therefore there was

a P(x) = 1
15 chance of an automaton of type x to be selected for replacement by a new

automaton. Hence, if automaton x was indeed selected then the Shannon Information that

was yielded from this event occurring was I(x)=−log2.P(x)=−log2. 1
15 = 3.9 bits.

The Shannon entropy was the average information that could be yielded from each

possible event in the system of interest:

(3.13) H(X )=− ∑
x∈X

p(x) log2 p(x),

Where p(x) was the probability of event x occurring from the set of all possible events

X . Continuing with the example of the random selection and replacement of automata in a

uniformly structured one-state population the Shannon entropy was 3.9 bits which was

the same as the Shannon information of a single event. This was to be expected as in a

uniformly structured population each event was equiprobable. Indeed, a population with

equally distributed numbers of automaton types was characterised by an equiprobable

distribution of all events occurring and this represented the maximum Shannon entropy of

the system [124]. When all events were equally probable there was the greatest uncertainty

about which event would occur next (e.g. which automaton type would be selected for

removal and replacement from the population). By comparison, and this was universally

the case in all of the simulations of the information niche and computation niche model,

as the production of new automata and the removal of existing automata proceeded then

the initially uniform distribution of automata was broken with some automaton types

growing in number whilst others decayed. Therefore, the probability distribution of all

5As a simple illustration of this concept consider the following example: the event of not winning the
lottery jackpot yields very little information. By comparison, the event that you win the jackpot is a big
surprise and conveys more information.
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automaton T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Frequency distribution of automaton types at t = 0 (i.e. uniform)
p(x) 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
I(x) 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9

p(x).I(x) 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26∑
p(x).I(x) H(X )= 3.9 bits

Frequency distribution of automaton types at t = 106 (i.e. non-uniform)
p(x) 0.069 0.069 0.125 0.069 0.125 0 0 0.069 0 0.125 0 0.125 0 0 0.225
I(x) 3.85 3.85 3 3.85 3 0 0 3.85 0 3 0 3 0 0 2.15

p(x).I(x) 0.26 0.26 0.37 0.26 0.37 0 0 0.26 0 0.37 0 0.37 0 0 0.48∑
p(x).I(x) H(X )= 3 bits

Table 3.3: An example of one way in which Shannon entropy was used in the information niche model. Here
the normalised frequency distribution, the Shannon information and the Shannon entropy was calculated
for a one-state automata population in the information niche model at t = 1 where all automaton types were
equally distributed and also at t = 106 where some automata had grown in number and others had decayed or
gone extinct.

possible events in the system became non-uniform. The Shannon entropy of a non-uniform

distribution of events would always be less than the maximum Shannon entropy as the

uncertainty about the next event to occur had been reduced i.e. if automata of type x had

grown in number in the population then there was now an increased likelihood that it

would be randomly selected to be removed and replaced with a new automaton. Hence, as

the information niche and computation niche simulations progressed the initial uniform

state of the population became less uniform. The uncertainty about the possible changes

that could occur had been decreased as there was increasing structure emerging within the

niche. Measuring the Shannon entropy of the normalised frequency distribution of each

automaton type in the population provided a quantitative estimate of the structure of the

population. For example, consider the worked example in Table 3.3 showing the reduction

in Shannon entropy of 3.9 bits when the population was uniformly distributed to 3 bits

after significant changes had occurred to the composition of the population.

The Shannon entropy was used in the information niche and computation niche models

to:

1. Quantify the complexity of the interaction network that was driving production of

new automata (Section 3.5.2)

2. Quantify the minimum information required to generate a niche (Section 3.5.3)

3. Quantify the internal complexity of an automaton (Section 3.5.4).

Each of these measures will now be described.

98



3.5. INFORMATION MEASURES

3.5.2 Interaction Network Complexity

The distribution of automaton types in a given population determined the range of possible

interactions. Changes in population structure 6, and the consequent diversity of interac-

tions available, was quantified at each time step using the interaction network complexity

(Cµ(G)), which measured the amount of information required to describe the probability

that each interaction could occur in the population contingent on the current structure of

the population [36]:

(3.14) Cµ(G)=− ∑
fa, fb, fc

vc
ab

V
log2

vc
ab

V
,

where

vc
ab =

 fa fb, if Tc = Tb ◦Ta has occurred

0, otherwise.

Where vc
ab was the number of times that automaton type Tc could be produced from

the interaction of Ta and Tb, V = ∑
vc was a normalising factor and fa, fb were the

proportion of automaton types Ta and Tb in the population, respectively. Equation 3.14

determined the likelihood of an interaction occurring to produce Tc given the current

composition of the population. Over time changes occurred to the population as some

automaton types increased in number whilst some became extinct. Such changes were to

the benefit of those automaton types that were growing in number as they were more likely

to get selected to participate in future interactions. As only one new automaton could be

produced on each iteration, every interaction that could occur was competing with all other

potential interactions. Subsequently, the probability of a specific interaction occurring was

contrasted against the sum of the probability of all other possible interactions, as given

by the normalisation term V . The probability of an interaction occurring to generate a

particular automata type was the sum of the normalised frequencies of those automata

responsible for its production. This normalised probability was calculated for each automata

type in the population to yield a probability distribution. The Shannon entropy of this

probability distribution then yielded the interaction network complexity Cµ(G). Calculating

the interaction network complexity provided a quantitative measure of changes in the

Shannon entropy of the interaction network.

6Population structure and population composition are used interchangeably and both refer to the number
of and type of automaton types that are present in the population at a moment in time.
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3.5.3 Information Content of a Population

Quantifying the minimum information required for generating a niche (i.e. a steady-state

configuration of the population) was undertaken by defining the production threshold as

a measure of the information required to describe the minimum number and the type of

automata that were required to be produced to create the niche. The production threshold

for a niche was determined by calculating the Shannon entropy (H) of the frequency

distribution (X ) of each automaton type that would need to be produced within a given

population:

(3.15) H(X )=−
|T|∑
i=1

xi log2 xi,

where xi was the proportion of interactions in the population that produced automaton

type i and T was the set of all automaton types (and | T | was the size of that set). The

production threshold differed between niches depending on the number of constituent

automata, with lower values for those niches in which not all automaton types were

present. This measure was used to compare the information required to transition between

niches, elucidate how the niches transitioned in response to perturbations in environmental

conditions and explain why some niches were more robust than others. In general, the

production threshold and interaction network complexity were complementary. The former

quantified the information required to generate a niche, whereas the latter quantified the

information required to describe a niche after it had evolved to a steady-state distribution,

and any interactions that remained between the automata.

3.5.4 Structural Complexity

Given the specific properties of ε-machines [133] - on which the interacting automata of the

information niche and computation niche models were based - it was possible to quantify

the structural complexity of an automata or, more usefully, the "amount of information

storage it has" [134] which was given by [135]:

(3.16) Cµ(T)=− ∑
σ∈S

P(σ) log2 P(σ),

where P(σ) was the probability distribution over the states (S ) of the automaton (i.e.

how often they were visited). The structural complexity of an automaton was therefore

estimated based on the distribution of probabilities over its internal states. The structural
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complexity was calculated for each new novel automata generated in the open-ended

population simulations (see Chapter 9).

3.5.5 Information Processing Capacity of Automata

Each automaton had an information processing capacity (%) which indicated the domain

and range of information that it could process (or, alternatively, the binary symbols that

it could receive and transmit) and, therefore, the range of interactions it could have

with other automata. The higher the interaction potential of an automaton the more

possibilities it had to interact with a wider range of automata either in the role of a Ta or

a Tb automaton in the functional composition operation Tb ◦Ta = Tc. This was measured

directly from the automaton’s structure. For example, the one-state automaton T1 accepted

a ’0’ and emitted a ’0’ from the alphabet A = {0,1} and therefore it had one input channel

and one output channel for a total of two channels. Formally this was denoted as the

logarithm %(T1)= log2(2)= 1 bit. By comparison, the one-state automaton T3 accepted a

’0’ and emitted a ’0’ or a ’1’ for a total of three channels hence %(T3) = log2(3) = 1.6 bits.

The automata in the one-state population were partitioned in this manner to aid in the

analysis of their competitive properties (see Section 8.3.4).

3.6 Network Measures

A network [49] was a collection of vertices joined by edges that represented the relationships

that existed between automata. An automata was represented as a vertex in all the

networks that were generated in the information niche and computation niche models.

Two types of network were implemented: the interaction network (G) - see Section 3.3 -

that described which automata were produced from the interactions of other automata,

and the membrane network (M ) - see Section 3.4.2 - which described the order in which

automata interacted with each other.

This section describes the methods used to capture the properties of these networks in

one-state, two-state and multi-state automata populations.

3.6.1 Interaction Network

The interaction network (G) [36] was a directed graph where vertices represented au-

tomaton types and the directed edges indicated that the vertex at the beginning of the

edge was Ta and the vertex at the end of the edge was Tc in the functional composition

operation Tb ◦Ta = Tc and the labelled edge indicated the automata type Tb that was
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transforming the output of the Ta automata to produce the Tc automata. This network was

mathematically represented as a | T | × | T | matrix (where T was the set of all automaton

types in the population and | T | was the size of that set) where the rows (i) indicated the

Ta automaton types and the columns ( j) indicated the Tb automaton types. The value

at the intersection of a row and column (G i, j) was the index of the automata type that

was produced (Tc) by the interaction of Ta and Tb. For example, the automata type T2

interacting with T4 creates the automata type T1 and therefore the matrix entry was

G2,4 = 1 which was represented graphically as shown in Figure 3.16.

Figure 3.16: An example of the graphical representation of the interaction network (G). The two vertices
represent the Ta and Tc automata and the edge label represents the Tb automata in the functional composition
equation Tb ◦Ta = Tc.

3.6.2 Membrane Network

The membrane network (M ) was a directed graph where vertices represented automaton

types and the directed edges indicated that the vertex at the beginning of the edge was

Ta and the vertex at the end of the edge was Tb in the functional composition operation

Tb◦Ta = Tc. The network was mathematically represented as a | T | × | T | matrix where the

rows (i) indicated the Ta automaton types and the columns ( j) indicated the Tb automaton

types. The intersection of a row and a column (Mi, j) indicated the binary symbol that

could be transmitted from Ta and received by Tb. This was only the case where the range

of the Ta automata type was in the domain of the Tb automata type and therefore the

automata type Tb could receive information from Ta. If this was not the case then a null

value (Mi, j =;) indicated that these automaton types did not communicate with each other

in that particular ordering (the functional composition operation was non-commutative

and therefore the ordering of the automaton types could lead to a different outcome). For

example, T2 as Ta and T1 as Tb could not communicate and therefore M2,1 =; but they

could when T1 was Ta and T2 was Tb and therefore M1,2 = 1. Figure 3.17 illustrates the

graphical representation of the relationship between Ta and Tb automata.

Figure 3.17: An example of the graphical representation of the membrane network (M ). The two vertices
represent the Ta and Tb automata in the functional composition operation Tb ◦Ta = Tc and the edge label
represents the binary symbol that was transmitted from Ta to Tb.
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3.6.3 Topology and Degree Distribution

The general properties of the interaction network (G) that represented the productions

within the automata population were characterised as (i) the number of vertices and edges

within the network, and (ii) the degree distribution of those edges [49].

The number of vertices in the network at time t was calculated from examination of

the interaction network matrix. Where G i,− 6= ; (the automata acted as a Ta automaton

in at least one interaction that produces a new automata) or G−,i 6= ; (the automata acts

as a Tb automaton in at least one successful interaction that produces a new automata)

and f i > 0 (the automata exists in the population) the automata was deemed to exist in the

population, and to be available to interact with other automata, and therefore was part of

the topology of the interaction network.

The degree of a vertex (k) in the network was the number of edges it had to other

vertices - both incoming and outgoing edges - and the degree distribution (P(k)) was the

probability distribution of those degrees over the network i.e. the fraction of vertices in

the network with a degree of k. Subsequently, with v the total number of vertices in the

network, vk the number of vertices with a degree k then the probability of a vertex with

a degree of k occurring in the network was given by P(k) = vk
v . The degree distribution

revealed the structure of the network e.g. a network with a long tail degree distribution

[136] indicated that there were a very few, highly connected vertices with the majority of

the remaining vertices in the network significantly less well connected and, by comparison,

a network with a very narrow degree distribution indicated a highly connected network

with a more symmetric topology.

The topology and the degree distribution of the interaction network was examined in

one-state (see Chapter 4), two-state (see Chapter 5), multi-state (see Chapter 9) and joint

one/two-state automata populations (see Chapter 7).

3.6.4 Detecting strongly connected networks

Self-organising behaviour has been linked to positive feedback loops in a system [137]

which in a network topology is recognised as a strongly connected component [138]. For

directed networks that are describing reactions/interactions such structural motifs indi-

cate the presence of reciprocation and mutual production [139]. There are a significant

number of different interaction sub-networks in a one-state automata population and so

an algorithm was developed to detect structures in the interaction network (G) that had

the motif of a strongly connected component (see Box 3.5).
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Box 3.5 Pseudocode for identifying strongly connected interaction networks

begin
W :The set of all possible combinations of sub-networks
for each w in W

create adjacency matrix A for w

where A i are outgoing edges and A j are incoming edges
if SUM(A i) ≥ 2 AND SUM(A j) ≥ 2 for EACH vertex in w

then add w to S

end

This was an exhaustive algorithm that examined all possible combinations (W) of

automata interactions partitioned into many sub-networks (w) ranging in size from two

to 15 automaton types. For each possible sub-network (w) an adjacency matrix (A) was

generated that defined the topology of the network as a directed graph [49]. The vertices

represented individual automaton types and the edges signified the interactions that could

occur to generate new automaton types within that network. The structure of A was

tested for mutual production where: (i) A had a minimum in-degree of two edges, and (ii) a

minimum out-degree of two edges7 This implied that the automata in the network produced

at least one other automata (excluding self-replication) within the same sub-network. A

sub-network was considered to be a candidate for a strongly connected network (S) only if

all of its constituent automata met this criteria.

3.6.5 Examining the dynamic stability of an interaction network

Dynamically stable networks were deemed to be those that could continually produce

their constituent components without any going extinct (due to other automata being over-

produced) and that did not generate novel automata. A numerical simulation of Equation

3.1 was developed to examine the dynamic stability of the strongly connected networks

(S) that had been detected in the interaction network (G). The algorithm - which was

implemented in MATLAB - is shown in Box 3.6.

7Two edges are required to describe a single interaction. Therefore, a minimum in-degree of two was
required to denote that the automata represented by a vertex was produced. A minimum out-degree of two
was required as each automata in the network must produce at least one other automata apart from itself.
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Box 3.6 Pseudocode for testing the dynamic stability of an interaction network

begin
T : the set of automata in the population
S : the strongly connected interaction matrix that produced automaton i

f : the normalised frequency vector of all automata in the population
Z : number of iterations of the simulation
comment: Run the numerical simulation

while z < Z

for each Ti in S

comment: Calculate changes in frequency of each automaton

f i = ( f .Si). f T

if f i = 0

comment: Loss of this automaton - network deemed unstable

end

The value for Z was determined from performing several test runs of the numerical

simulation. Typically a network’s stability could be determined within 104 iterations. The

value for Z used to analyse the networks of the information niche and computation niche

simulation results was set at 106.

3.6.6 Identifying and counting the unique states of the membrane
network

Analysis of the activation history of the membrane’s automata identified all of the unique

states that the membrane occupied during a simulation. A state here was defined as a

unique configuration of the activation status (i.e. active or inactive) of the membrane

automata recorded in the vectorΨ. An algorithm was developed to examine the time-series

data of the membrane automata activation status
←−
Ψ which had been recorded on each

iteration of the simulation (|←−Ψ |= Z where Z was the number of iterations of the simulation)

- see Box 3.7.
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Box 3.7 Pseudocode for identifying the unique states of the membrane network

begin
←−
Ψ : the history (of length Z) of the activation status of each membrane automaton
Ψz : the activation status of each membrane automaton at a given point (z) in history
Σ : the unique states of the membrane network that have been identified
s : a specific state of the membrane network
Ω : the counted observations of a membrane network state in

←−
Ψ

comment: Work through the history of the network membrane states

for each Ψz in
←−
Ψ

find Ψz in Σ
if found
comment: A previously discovered network state observed again

Ωs +1

else
comment: A new network state discovered

i =|Σ | +1

Σi =Ψz

Ωs = 1

end

This algorithm examined the activation history of the membrane and identified each

unique state that the membrane entered and how often it entered that state during the

simulation. Where:

Σ was a matrix where each row was a unique state of the membrane network (s) and

each column represented the activation status of each membrane automaton (M) in that

state.

Ω was a 1× |Σall,− | vector where each Ωi represented the counted observations of a

membrane network state in
←−
Ψ.

The algorithm proceeds by examining the activation status of each membrane automa-

ton at a specified point (z) in history. The collective status of all membrane automata

represents a state of the membrane (s) and each unique state is stored in Σ. As the history

of each membrane automaton’s activation status is examined the algorithm checks to see if

the configuration of membrane activation status has been seen before or whether a new

state of the membrane has been found. If the former, then the membrane has re-visited a

prior state and this is recorded in the variable Ωs. If the latter, then the membrane has
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entered a new state and this is added to Σ. Hence, on completion of this algorithm the

number of unique states that the membrane network occupied during the simulation was

given by |Σ | and the number of times that the membrane network visited those state was

given by Ω. The Shannon entropy of the rate of occurrence of each network state H(Ωnorm)

was calculated from the normalised form of Ω.

3.7 Summary

This chapter has introduced the concepts of the information niche and the computation

niche as complementary models of self-organising populations that examine the two core

processes of autopoiesis and cognition under a range of various and varying environmental

conditions. The methods for identifying and measuring the emergent properties of these

systems has also been discussed. Each Results chapter begins with an explanation of how

the simulation of the information niche or computation niche model was set-up to generate

the results that are discussed.
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4
RESULTS I - ONE-STATE INFORMATION NICHES

4.1 Reproduction of published paper: Emergence and
Dynamics of Self-Producing Information Niches as a
Step Towards Pre-Evolutionary Organization

Chapter 4 is a reproduction of the published paper, "Emergence and Dynamics of Self-

Producing Information Niches as a Step Towards Pre-Evolutionary Organization" [50] in

the Royal Society Interface journal. Reproduced with permission. The full citation is:

Emergence and dynamics of self-producing information niches as a step
towards pre-evolutionary organization
Richard J. Carter, Karoline Wiesner, Stephen Mann
J. R. Soc. Interface 2018 15 20170807;
DOI: 10.1098/rsif.2017.0807.
Published 17 January 2018.

This paper describes the key properties of proto-autopoietic organisations that emerged

from simulating a one-state automata population evolving under the influence of fixed and

intermittent environmental conditions. The main contribution that this paper makes to

the field of autopoiesis are:

1. the proto-autopoietic organisations that emerge and that are analysed and quantified

109



CHAPTER 4. RESULTS I - ONE-STATE INFORMATION NICHES

are formed from very simple conditions. As such, this result demonstrates that the

basic properties of self-production and robustness required for an autopoietic system

can be formed from minimal beginnings. This is an area of autopoietic research that

has traditionally been under-developed.

2. the notion of an information niche is introduced to the field of autopoiesis as a

particular instance of a proto-autopoietic system as a dynamically stable strongly

connected network of mutually producing automata that form distinct organisational

steady states under various environmental conditions and perturbations. Critically

it was discovered that information can be lost or gained during a perturbation and,

in some cases, this leaves the system unable to transform itself back to a prior

configuration state. The environment can play the role of adding the necessary

information back into the population in the form of a perturbation which proves

sufficient for the population to transform to prior states. These findings extend our

understanding of the role of an environment in the formation and persistence of

autopoietic-like organisations.

The paper is based on the information niche model and made use of most of the

information and network measures described in Chapter 3. My contribution to this paper

was the implementation and development of the enhancements to the Finitary Process

Soup, the design and running of all simulations, and the analysis of the simulation results.

The citation numbering used in this publication relate only to those included at the end of

the paper. They do not match the citation numbering used in the rest of this thesis.
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As a step towards understanding pre-evolutionary organization in non-

genetic systems, we develop a model to investigate the emergence and

dynamics of proto-autopoietic networks in an interacting population of

simple information processing entities (automata). Our simulations indicate

that dynamically stable strongly connected networks of mutually producing

communication channels emerge under specific environmental conditions.

We refer to these distinct organizational steady states as information niches.
In each case, we measure the information content by the Shannon entropy,

and determine the fitness landscape, robustness and transition pathways for

information niches subjected to intermittent environmental perturbations

under non-evolutionary conditions. By determining the information required

to generate each niche, we show that niche transitions are only allowed if

accompanied by an equal or increased level of information production that

arises internally or via environmental perturbations that serve as an exogenous

source of population diversification. Overall, our simulations show how proto-

autopoietic networks of basic information processors form and compete, and

under what conditions they persist over time or go extinct. These findings may

be relevant to understanding how inanimate systems such as chemically com-

municating protocells can initiate the transition to living matter prior to the

onset of contemporary evolutionary and genetic mechanisms.

1. Introduction
Theoretical models that attempt to distinguish living from non-living systems,

such as Gànti’s chemoton [1,2] and Eigen & Schuster’s hypercycles [3], assume

the presence of replicative molecular machinery, and are constrained in their out-

look as they exclude the possibility of protolife behaviour under non-replicative,

non-evolutionary conditions [4]. By comparison, the theory of autopoiesis [5] pos-

tulates that a living system is distinguished byan ability to continually produce and

maintain itself. As these systems properties are not necessarily contingent on the

presence of a functioning genetic apparatus, the study of autopoiesis may be critical

not only for understanding the transition from (geo)chemistry to protobiology on a

pre-Darwinian/pre-genetic early Earth [6] but also for the laboratory-based

bottom-up design and construction of synthetic cellularity [7]. Previous compu-

tational models of autopoiesis have demonstrated properties such as spatial

boundary formation and self-repair in artificial chemistry systems [8–10], but a

major limitation of these simulations is their reliance on the pre-existence of an

ideal chemistry. While these abstract models have helped to demonstrate the

concept of autopoiesis, they do not address how such chemistries come into

existence, persist or compete for space, materials and energy under complex reac-

tion conditions. In contrast, other models of autopoiesis such as algorithmic

chemistry [11], algebraic chemistry [12] and matrix chemistry [13] do not specify

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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an ideal chemistry but model the production of interacting

entities to simulate the spontaneous formation of higher levels

of organization.

In recent years, an alternative prebiotic evolutionary

model, termed the finitary process soup [14], has been

advanced. It is a model based on binary communication chan-

nels and their interaction. The channels take a single bit as

input and produce a single bit as output. Since there is no sto-

chasticity, these are deterministic input–output automata [15].

Reproduction, in this model, is represented as an interaction

between two automata, with the potential of producing a

new automaton. Crutchfield and Gornerup [14,16] present a

detailed analysis of the structure and dynamics of this ‘soup’

of interacting automata. Interestingly, in this model, the emer-

gence of higher level organization occurs spontaneously. Out

of an initial set of 15 automata, subsets (networks) of mutually

producing automata emerge. These automata networks (also

called meta-machines) can be considered as self-producing,

autonomous information processing entities. As such, the fini-

tary process soup model represents a basic mechanism for

the emergence of autopoiesis in an interacting population.

While these findings contribute to the exploration of viable

pathways to autopoiesis, they do not specifically pursue the

question of how these networks form and compete, and why

some networks persist over time while others go extinct.

In this paper, we extend the finitary process soup model to

investigate the emergence of steady-state production networks

under fixed or intermittent environmental conditions gener-

ated by changes in the degree of mixing within and influx

rate into an interacting closed population of single-state auto-

mata. We find that different environmental conditions lead to

different stable combinations, or networks, of mutually produ-

cing automata. We call these networks information niches, and

we study their specific structural and dynamical properties.

The model shows a variety of behaviour, from a small subset

of mutually producing automata to a hierarchical network of

automata maintaining a stable population. This is quite sur-

prising, given that the model includes only the simplest

types of input–output automata.

Furthermore, we investigated the population of automata

under sudden environmental perturbations. We observed the

emergence of a fitness landscape in which information niches

are stable points, which the system can switch between upon

perturbation. These results show how proto-autopoietic net-

works of basic information processors form and compete, and

under what conditions they persist over time or go extinct.

Thus, our model represents a mechanism for the formation of

fitness landscapes under non-evolutionary conditions. These

findings may be relevant to understanding how inanimate sys-

tems such as chemically communicating protocells can initiate

the transition to living matter prior to the onset of contemporary

evolutionary and genetic mechanisms.

2. Computational model and methods
2.1. Dynamics of information niches under fixed or

intermittent environmental conditions
We employed a previously described computational model

[14] to investigate the emergence of steady-state interacting

networks and their mutual dependency within a population

of interacting/replicating information processing automata.

The initial population consisted of 15 types (T1 to T15)

of single-state automata that act as selective communica-

tion channels capable of receiving information from a binary

alphabet (A ¼ f0,1g), processing the inputs using between

one and four switching/non-switching binary transitions,

and emitting the corresponding output in the form of a func-

tional composition in which the sequential processing of the

output from one automaton acts as the input for another

(figure 1). In the original studies [14], these input–output auto-

mata were treated as a special category of finite-state

transducers referred to as 1-machines.

Significantly, the replicating population was composition-

ally closed because the binary interactions between various

single-state automata were unable to generate information com-

munication channels outside the original set of 15 members.

An environmental context was imposed on the interacting

automata by initially distributing equal numbers of the 15

types randomly across a square lattice G of n � n sites with

each site occupied by an individual single-state automaton to

give a population size of N ¼ n2 ¼ 90 000, which was then repli-

cated iteratively using functional composition (figure 1b). The

production of automata proceeded by randomly selecting a lat-

tice site Gi,j whose occupying automaton (Td) may or may not be

replaced by a new type Tc depending on the competition

between the environmental influx and internal production

dynamics (figure 2). The probabilities that Tc is a randomly gen-

erated automaton entering from the external environment or

alternatively derived from the functional composition of two

neighbouring automata were given by F and 1 2 F, respect-

ively. Production of Tc by either option replaced Td, which was

subsequently removed from the population to maintain a con-

stant value for N. This constraint generated a survival selective

pressure between different types of automata, which must be

continually produced to prevent depletion from the population.

The production process was iterated for up to 1 � 107 time

steps to simulate the emergence of a number of distinct infor-

mation niches. Changes in the structure and composition of

the population were observed with increasing numbers of iter-

ations, and this was captured at each time step by updating the

frequency distribution ( f ) of the information processing types

present in the emerging community. The following differential

equation described the changes in f on each time step [17]:

dfc
dt
¼ ð1� fcÞ

X
Ta�Tb¼Tc

fafb � fc
X

Ta � Tb = Tc
Ta � Tb = T0

fafb, ð2:1Þ

where Ta,Tb are the interacting machines, Tc is the new automa-

ton produced from that interaction and fa, fb, fc are their

normalized frequencies of occurrence in the population. T0 is

the transitionless automaton that represented an unsuccessful

interaction and was prohibited in the population. Equation

(2.1) determines two factors: (i) the probability of adding the

automaton Tc is equal to the probability of selecting two neigh-

bours Ta and Tb that produce Tc multiplied by the probability

that the automaton that is being replaced (Td) is not the same

as Tc and (ii) the probability of neither Tc nor T0 being pro-

duced. The invariant frequency distribution of machine types

can therefore be determined by solving df=dt ¼ 0. Here, dis-

crete time is a good approximation for continuous time as

only one lattice location is updated on each time step and so

for large N (our minimum value for N is 90 000) this leads to

a small change in the overall frequency distribution of all
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automata. This equation assumes that all interactions are pos-

sible on each time step, which is consistent with a well-mixed

environment with no influx of automata.

Spatial mixing occurred within the population during

replication by randomly selecting a lattice site and exchanging

the residing automaton with another type positioned on a

different lattice site along one of the cardinal directions at a dis-

tance d selected from a one-dimensional Gaussian distribution

with variance v and mean ¼ 0 and rounding d to the nearest

corresponding lattice site. This was repeated for c numbers of

different sites per production time step. The combination of c
and v approximated diffusion within the replicating popu-

lation such that when c! N and v! n the population was

well mixed, while for c! 0 and v! 0 the population of auto-

maton had very low mobility [17]. To simulate the coupling of

the replicating population to changes in an external environ-

ment, randomly generated automaton types replace

randomly selected automata in the population at time t with

a probability given by F, where 0 � F � 1. With F ¼ 0, no

random replacement occurred and population dynamics

were driven entirely by the composition of existing automata.

We refer to the process of random replacement as influx to

convey the notion of the movement of externally generated

automata into the population. In contrast, with F ¼ 1, the

population dynamics were determined entirely by randomly

generated automata entering the lattice from the external

environment [14]. Twenty-five combinations of the spatial

mixing (c, v) and influx dynamics (F) parameters were used

to simulate a range of fixed environmental conditions to

assess the impact on the production dynamics of the automa-

ton population and the emergence of the information niches.

We investigated the effect of intermittent changes in the

environmental parameters on the robustness and transition

pathways of the information niches to map the fitness land-

scape. For this, the following modifications in environmental

conditions were imposed once a steady-state niche was

attained: (i) inversion of the spatial mixing parameter such
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Figure 1. (a) Schematic representation showing a compositionally closed
population of 15 types of single-state automata (T ). The population includes
four members that are capable of only one transition (T1, T2, T4, T8), along
with six (T3, T5, T6, T9, T10, T12), four (T7, T11, T13, T14) and one (T15) that
exhibit two, three and four transitions, respectively. The binary numbers
on the curved arrows on the top or bottom of the circles indicate the various
possible transitions; for example, T3 operates only with an input signal of 0,
transducing this to either 0 (non-switched output) or 1 (switched output)
with 50% probability in each case. (b) Scheme showing an example of
the functional composition of two machines (described by the non-commu-
tative equation, T2 + T13, where + is the functional composition operator) to
generate T10. The three outputs from T13 are received with equal probability
and transformed by T2 to produce T10, which inherits the input domain from
T13 and the output range of T2. The number of possible unique binary inter-
actions (207) is described by an interaction network (G) in the form of a
jTj � jTj matrix; all functional compositions are members of the set of
15 types producing a compositionally closed population of interacting
machines. Unsuccessful interactions between machines create the transition-
less machine T0, which is prohibited in our model of an interacting
community.
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Figure 2. Graphic illustrating the computational model for generating
internal production dynamics in a square lattice of nxn sites comprising
single-state automata of type T [17]. The lattice has periodic boundary con-
ditions, i.e. a regular toroid topology, and, as such, an automaton in the top
two rows of the lattice can interact with automata directly opposite it in the
bottom two rows of the lattice and vice versa. The same condition applies to
an automaton on the left edge and right edge of the lattice. Spatial mixing
also occurs in the same manner. An automaton (Td) on lattice site Gi,j is
chosen at random for replacement by functional composition involving
types (Ta,Tb) selected from the sites (1,2,3,4) adjacent to Td. Only one pair
of neighbours from the two possible pairwise combinations (1,3 or 2,4) is
selected to interact according to the non-commutative equation Tb + Ta,
where the order of the interacting pair is selected randomly according to
an equal probability of 1/4. If the functional composition generates a new
automaton (Tc), this replaces Td at lattice position Gi,j, which is subsequently
removed from the population. If no interaction occurs, then a transitionless
machine T0 is generated such that Td is not replaced and remains on the
lattice site. The new population is then subjected to different levels of spatial
mixing.
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that conditions contrary to those in which the niche was

produced are imposed, e.g. if a niche was formed in a well-

mixed environment then the environmental conditions were

reset to simulate a highly restricted movement of the automata

(c, v ¼ 0); (ii) inversion of the influx setting of new machines

into the lattice, e.g. if a niche was produced in the absence of

any influx of automata (F ¼ 0) then this parameter was reset

to 0 , F � 1; (iii) simultaneous perturbations associated with

modifications (i) and (ii); (iv) introduction of a type-restricted

influx (F0) of automata that were randomly selected from the

specified subset of automaton types (T6,T7,T9,T11,T13,T14);

and (v) simultaneous perturbations associated with modifi-

cations (i) and (iv). Perturbations on the initially produced

steady-state niche were undertaken for a minimum of 1 � 106

iterations, which was usually sufficient for the population to

reconfigure into a new steady-state conformation. The pertur-

bations were then removed by resetting the environmental

parameters back to their original values, and changes to

the population structure recorded. Consequently, the original

( primary) niche was re-created or a new (secondary) niche was

established by perturbing the primary niche.

2.2 Structure and dynamics of information niches
2.2.1. Quantifying niche structure, diversity and the minimum

information required for niche generation
The distribution of automaton types in a given population was

structurally defined, and was responsible for the range of poss-

ible interactions. Changes in population structure, and the

consequent diversity of interactions available, was quantified

at each time step using the interaction network complexity

(Cm(G)), which measured the amount of information required

to describe the probability that each interaction could occur

in the population contingent on the current structure of the

population [14],

CmðGÞ ¼ �
X

fa ,fb ,fc.0

vc
ab

V
log2

vc
ab

V
, ð2:2Þ

where

vc
ab ¼

fafb, if Tc¼ Tb � Ta has occurred
0, otherwise,

�

V ¼ Svc is a normalizing factor and fa, fb are the proportion of

automaton types a and b in the population, respectively.

Equation (2.2) determines the likelihood of an interaction occur-

ring to produce Tc from the concentration of automata

exhibiting the required functional composition. As the popu-

lation evolves, some automaton types became extinct while

others became more populous. As a consequence, automata

produced by types that were increasing in concentration were

more likely to be produced than those that were dependent on

types that had become extinct. Such dynamics were reflected

in the complexity of the interaction network, which reduced

when some automaton types became extinct. Given that only

one new automaton was produced at each time step, every inter-

action that occurred was competing with all other potential

interactions. Subsequently, the probability of a specific inter-

action occurring was contrasted against the sum of the

probability of all other possible interactions, as given by the nor-

malization term V. The probability of an interaction occurring to

generate an automaton was the sum of the normalized frequen-

cies of those automata responsible for its production. This

normalized probability was calculated for each machine type

in the population to yield a probability distribution. The infor-

mation entropy of this probability distribution then yielded

the interaction network complexity Cm(G). As such, calculating

Cm(G) provided a signature of the structure of the population at

a given moment in time, and, when compared with the initial

unstructured compositionally homogeneous population at the

start of a simulation, provided a quantitative measure of the

reduction in information entropy (or, conversely, the amount

of order that was being created within the population) as the

network system evolved into a niche.

Quantifying the minimum information required for niche

generation was undertaken by defining the production

threshold as a measure of the information required to describe

the minimum number and type of automata that were required

to be produced to create a niche. The production threshold for a

niche was determined by calculating the Shannon entropy (H )

of the frequency distribution (X ) of each automaton type that

would need to be produced within a given population,

HðXÞ ¼ �
XjTj
i¼1

xilog2xi, ð2:3Þ

where xi is the proportion of interactions in the population that

produce automaton type i and T is the set of all automaton types.

The production threshold differed between niches depending on

the number of constituent automata, with lower values for those

niches in which not all automaton types were present. We used

this measure to compare the information required to transition

between niches, elucidate how the niches transitioned in

response to perturbations in environmental conditions

and explain why some niches were more robust than others.

In general, the production threshold and interaction network

complexity were complementary. The former quantified the

information required to generate a niche, whereas the latter

quantified the information required to describe a niche after it

had evolved to a steady-state distribution, and any interactions

that remained between the automata.

2.2.2. Identifying strongly connected production networks
Even in a relatively simple population of interacting entities the

number of possible networks that describe all possible

sequences of interactions can be significant. Identifying and

examining all such sub-networks within a given population

was used to identify specific networks responsible for self-

organization of the population into a niche. One of the drivers

of self-organizing behaviour was nonlinearity caused by

positive feedback loops in the system [18], and this was mani-

fested in an interaction network as a strongly connected cyclic

topology [19,20]. We developed an algorithm to identify and

categorize any sub-network structures in the interaction

network (G) that had the motif of a strongly connected network,

i.e. whereby a subset of automata mutually produce each other:

begin
W : The set of all possible combinations of sub-networks
for each w in W

create adjacency matrix A for w where Ai are outgoing edges
and Aj are incoming edges

if SUM(Ai) � 2 AND SUM(Aj) � 2 for EACH node in w
then add w to S

end
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This is an exhaustive algorithm that examines all possible

combinations (W ) of automaton interactions partitioned into

many sub-networks (w) ranging in size from two to 15 automa-

ton types. An adjacency matrix (A) was generated for each sub-

network to describe the associated topology as a directed

graph [21] with nodes and directed edges indicative of an indi-

vidual automaton type and which automata interact to

produce other automaton types, respectively. The adjacency

matrix of each sub-network was tested for the characteristic

of mutual production between members (i.e. a cycle), whereby

each automaton (node) in the sub-network must have: (i) a

minimum in-degree of two edges, implying that it is produced

by at least one interaction of automata in the sub-network apart

from with itself (self-replication), and (ii) a minimum out-

degree of two edges, implying that the automaton produces

one other automaton apart from itself within the sub-network.

A sub-network was considered to be a candidate for a strongly

connected network only if all constituent automata fulfil these

criteria. The set of candidate strongly connected networks (S)

was then examined for dynamic stability.

2.2.3. Determining dynamically stable networks
To identify dynamically stable networks we numerically

solved df=dt ¼ 0 of equation (2.1) for each strongly connected

network (S) identified in the interaction network (G). All sub-

networks in S were examined for dynamic stability and the

automaton types in the numerical simulation were restricted

to those present in the sub-network under consideration.

Networks whose production dynamics resulted in extinction

of any of the constituent members, or which created new

information processors that were not original members of

the network, were deemed unstable.

3. Results
3.1. Emergence and properties of primary information

niches under fixed environmental conditions
Twenty-five environments were simulated by setting unique

combinations of the spatial mixing (c, v) and influx dynamics

(F) parameters in the range of 0 � c � N, 0 � v � n and 0 �
F � 1 for an evolving population of 90 000 interacting automata

distributed equally across 15 different types. The emergence of

steady-state network configurations (information niches) under

fixed environmental conditions typically required between 1 �
106 and 1 � 107 iterations. After every iteration, the changes in

frequency ( f ) of each automaton type were determined until

steady-state conditions were attained. Significantly, six distinct

primary information niches (A–F) comprising strongly con-

nected components of self-producing communication channel

networks were obtained (figure 3).

3.1.1. Influence of spatial mixing and non-diffusivity
Niche A consisted of a steady-state network of nine automata

that emerged from a well-mixed population (1 � c � N, 1 �
v � n) in the absence of an influx of randomly generated auto-

mata (F ¼ 0). Six automata became extinct (T6, T7, T9, T11, T13,

T14) and the remaining nine types differentiated into three

distinct clusters exhibiting no growth (T1, T2, T4, T8), slow

growth (T3, T5, T10, T12) and fast growth (T15), all of which

reached steady-state frequencies after t ¼ 4 � 105 time steps

(figure 3a). T15 was produced from 35 interactions and was

therefore the most frequently produced automaton. In com-

parison, automaton types in the slow and no growth clusters

were generated from 21 or 15 interactions, respectively,

while those that became extinct were produced from only

eight interactions involving the (T7, T11, T13, T14) (six inter-

actions) and (T6, T9) (two interactions) sub-groups.

Interestingly, extinction of the six automata resulted in a drastic

reduction in the number of interactions in the population from

207 to 63 interactions, which were then responsible for produ-

cing each of the remaining automata at an equal rate

(seven interactions per automaton) and establishing steady-

state conditions within the population.

In contrast, simulations of the population production

dynamics under fixed conditions of no spatial mixing (c ¼ 0,

v ¼ 0) and no randomly generated influx (F ¼ 0) produced

niche B, which comprised a four-automaton steady-state net-

work consisting of types T1, T2, T4, and T8 (figure 3b). The

population dynamics initially mirrored those observed for a

well-mixed environment (niche A), but then exhibited a

major transition at t ¼ 2 � 105 after which the initial growth

of T15 and the (T3, T5, T10, T12) group was replaced by a rapid

decrease in their frequency such that these automata became

extinct after approximately 3 � 106 iterations. As a conse-

quence, the (T1, T2, T4, T8) group, which exhibited no growth

in a well-mixed environment (niche A), differentiated into

fast growing and non-growing populations of T2 and T4, and

T1 and T8, respectively, with the (T2, T4) pair occupying

approximately 85% of the final population of niche B produced

in the absence of spatial mixing. Under these conditions, inter-

actions between the automata were spatially restricted such

that short-range interactions dominated the population

dynamics. As a consequence, two mechanisms were respon-

sible for the fast growth of T2 and T4 in niche B: (i)

independent interactions between T2 or T4 with a range of

other automata gave rise to self-replication, or alternatively

to production of T1 and T8, which subsequently interacted

with various other automata to generate T2 and T4 and

(ii) local concentrations of T2 and T4 produced a spatial cluster

(defined as a contiguous square area of the lattice consisting of

nine T2 or T4 automata), which acted as a nucleation domain

for protected outgrowth.

3.1.2. Influence of influx dynamics
Having simulated the influence of spatial mixing and non-

diffusivity on niche formation, we next investigated the effect

of introducing an influx of randomly generated automata

into an interacting population of automata under a range of

mixing conditions. In the presence of both spatial mixing and

significant influx dynamics (0 � c � N, 0 � v � n and 0.25 �
F � 0.9), the emerging steady-state population (niche C) was

structured similarly to niche A except that the (T6, T7, T9, T11,

T13, T14) group no longer became extinct (figure 3c). As a con-

sequence, all 15 automaton types survived to produce a

heterogeneous population structure comprising four steady-

state clusters consisting of (T6, T7, T9, T11, T13, T14) with a

decreased frequency, (T1, T2, T4, T8) with constant frequency,

and (T3, T5, T10, T12) and T15, which exhibited slow and fast

growth, respectively. In contrast, simulations of the population

production dynamics under spatial mixing (0 � c � N, 0 � v �
n) and with a very high influx of randomly generated automata

(0.9 , F � 1; niche D) indicated that under these conditions

the population dynamics were dominated by the influx
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Figure 3. Plots of frequency distributions ( f ) against iteration time step (t) for interacting populations of automata under different simulated fixed environmental
conditions. The simulations show the evolution of six distinct information niches comprising steady-state networks of selected and clustered information processing
channels from an interacting population consisting of 90 000 single-state automata distributed at t ¼ 0 equally across 15 different types (shown in different colours)
and subjected to three different environment inputs. (a) Niche A: population production dynamics in an environment with high spatial mixing of automata (1 � c � N,
1 � v � n) and with no influx of randomly generated automata (F ¼ 0) showing extinction of six automaton types and the emergence of a steady-state distribution of
nine survival types arranged into three distinct clusters with one, four or four members after t ¼ 4 � 105 time steps. (b) Niche B: extinction and steady-state survival of
11 and four binary automaton types, respectively, under a highly immobile environment exhibiting no diffusivity (c ¼ 0, v ¼ 0) and no randomly generated influx
(F ¼ 0). The survivors are arranged in three sub-groups containing one, one or two members. (c) Niche C: population production dynamics across a range of
mixing conditions (0 � c � N, 0 � v � n) and subjected to a considerable rate of influx of randomly generated automata (0.25 � F � 0.9). All automaton
types survive to produce a heterogeneous population structure comprising four steady-state clusters consisting of one, four, four and six members. The population
is structured similarly to niche A except that six members no longer become extinct. (d ) Niche D: under all mixing conditions (0 � c � N, 0 � v � n) and with F
. 0.9 the population dynamics are dominated by the influx of new randomly generated automata from the environment such that the population remains unstruc-
tured and compositionally homogeneous over 1 � 105 iterations. (e) Niche E: with no diffusive mixing on the lattice (c ¼ 0, v ¼ 0) and with a very low influx rate
(0 , F , 0.1); the population is structurally similar to niche B except that three sub-groups of automaton types ((T15), (T3,T5,T10,T12) and (T6,T7,T9,T11,T13,T14)) no
longer go extinct. ( f ) Niche F: with restricted automaton influx (F0 ¼ 0.25) and under a range of mixing conditions (0 � c � N, 0 � v � n) the population
evolves to three groups of automata (T15), (T6,T7,T9,T11,T13,T14) and (T3,T5,T10,T12), with the group (T1,T2,T4,T8) going extinct.
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rate from the environment. As a consequence, the population

had no memory of previous interactions, and therefore

remained unstructured with a composition uniformly distribu-

ted over all 15 automaton types even over 1 � 105 iterations

(figure 3d ). We simulated the population production

dynamics under conditions of no diffusive mixing on the lattice

(c ¼ 0, v ¼ 0) and with a very low influx rate (0 , F , 0.1).

The resulting niche E was structurally similar to niche B
(c ¼ 0, v ¼ 0; F ¼ 0) but showed no automaton extinctions.

Finally, we simulated the population dynamics under a

type-restricted influx (F0 ¼ 0.25) comprising randomly gener-

ated automata drawn from a specified subset of automaton

types (T6, T7, T9, T11, T13, T14). This specific subset was

chosen as it represented the automaton types that were most

frequently depleted from the population, or in the case of

niches A and B became extinct. Thus, by restricting the environ-

mental influx to this subset, we not only increased their

concentration in the environment but also increased the prob-

ability that an automaton type from this subset would be

re-introduced into the population during the simulation. As a

consequence, rapid decay and extinction of (T1, T2, T4, T8),

slow decay and extinction of (T3, T5, T10, T12) and rapid

growth of T15 were observed to produce niche F. Niche F was

structured into two groups consisting of a dominant automa-

ton (T15) that occupied 70% of the population, along with a

constant concentration of the (T6, T7, T9, T11, T13, T14) cluster,

which was sustained by the limited influx dynamics into the

lattice. Significantly, T15 exhibited rapid growth because it

was the only automaton produced (via eight interactions) by

the restricted subset of influx automata (T6, T7, T9, T11, T13,

T14), and was the only self-replicator in the population.

3.1.3. Niche landscape and niche construction
Niche C was predominant across a wide range of fixed con-

ditions of spatial mixing and random influx, indicating that

the network constellation producing the distinctive four clus-

ters was extremely robust. In contrast, niches A and D were

produced under a limited set of conditions (1 � c � N, 1 �
v � n; F ¼ 0 and 0 � c � N, 0 � v � n; F . 0.9, respectively),

and B represented a singularity at c ¼ 0, v ¼ 0; F ¼ 0. The cor-

responding information landscape was mapped by plotting

the interaction network complexity values (Cm(G)) for niches

produced under different environmental conditions (figure 4).

A niche with a higher interaction network complexity has

more interactions and a more uniform distribution of auto-

mata and hence there is more uncertainty over what the next

automaton to be produced will be. By contrast, there is less

uncertainty in a lower complexity niche for the opposite

reasons, i.e. fewer possible interactions and a non-uniform

population and therefore more certainty over which automata

are likely to be produced. An alternative interpretation is that

more complex niches host a greater degree of competition

between automata to reproduce due to each automaton

having a lower probability of being produced than an automa-

ton in a less complex niche (as measured by a lower interaction

network complexity).

The initially unstructured and uniformly distributed popu-

lation at t ¼ 0 had a Cm(G) value of 7.7 bits that represented all

207 possible interactions, and this reduced to 5.8 bits for niche

A (63 interactions) and to 2.6 bits for niche B (eight inter-

actions), indicative of higher levels of structuration

particularly for niche B. In contrast, the Cm(G) value for niche

C was 7.0 bits, which represented all 207 interactions and a

small decrease in complexity (20.7 bits) due to structuring of

the population into four clusters. As niche D contained no

changes in the frequency distribution of the original popu-

lation, the Cm(G) value remained at 7.7 bits. Niche E, which

had a similar spatial lattice structure to niche B but with

inclusion of all automaton types in the population, had a

Cm(G) value of 6 bits. This represented all 207 possible
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Figure 4. Three-dimensional map of the interaction network complexity Cm(G) against environmental parameters (c, v, F) showing the information niche land-
scape. The information niches reside at different levels of Cm(G). Note the prevalence of niche C. Niche F, which is produced under compositionally restricted influx
(F0 ¼ 0.25), is not shown. There is little sensitivity to changes in the interaction network complexity measured for a wide range of values for c and v. In general,
spatial mixing has a mild effect on population structure, and given that the interaction network complexity is contingent on structure, results in minor changes to
the interaction network complexity.
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interactions but with more and less structure than niche C and

niche B, respectively. In general, the rates of formation of the

information niches were decreased as the rate of spatial

mixing decreased and/or the influx rate of new randomly gen-

erated automata increased. For example, growth of the (T2, T4)

group in niche B was reduced as 0 , F � 0.1 and disappeared

with 0.1 , F � 1. This indicated that increasing the number of

automaton types persisting in the population due to a continu-

ous influx from the environment (F . 0) destabilized the onset

of structuration and the concomitant emergence of steady-state

networks. In contrast, at F ¼ 0, 11 automaton types became

extinct in niche B, which reduces the robustness of the network

with respect to its ability to self-generate.

We executed an algorithm to identify interaction net-

works in a one-state automaton population that had

strongly connected topologies characteristic of mutual pro-

duction. The algorithm generated 7831 interaction networks

ranging in size from two to 15 automata and exhibiting

different levels of specialism (figure 5a–d). A subset of 129

networks was identified as strongly connected, implying

that they were closed under composition. Of these, 29 were

dynamically stable, i.e. under dynamical conditions each

automaton in the network continued to be produced at a

rate that no single automaton was over-produced (leading

to complete dominance) or under-produced (leading to

decay and ultimately extinction) within the population.

Such networks are similar to meta-machines [16], and

endured indefinitely unless subjected to changes in the

environmental conditions that disrupted the population

dynamics. Of the 29 closed and stable networks, niche A
(high spatial mixing (1 � c � N, 1 � v � n) and no intake

dynamics (F ¼ 0)) contained 28 (the closed and stable net-

work fT6, T9g became extinct with time), while niche B
with no lattice diffusion and no random influx (c ¼ 0, v ¼ 0;

F ¼ 0) contained only one. In contrast, niche C, which

emerged under a wide range of population mixing and

influx conditions (0 � c � N, 0 � v � n; 0.25 � F � 0.9), con-

tained all 29 dynamically stable strongly connected

networks. As expected, niche D produced under high levels

of spatial mixing (0 � c � N, 0 � v � n) and very high

influx (F . 0.9) did not contain any stable networks.

We also searched for stable networks of production that

were not only closed under composition but also irreducible.

Production networks were irreducible if removal of one auto-

maton resulted in dynamic instability that led to the decay of

the network to a single automaton. Of the 29 dynamically

stable networks, a subset of 12 networks termed elementary
networks was identified as being closed, stable and irreducible

(figure 5e). Niches A, B, C and D contained 11, 1, 12 and 0

elementary networks and niches E and F contained 12 and

0 elementary networks, respectively. Significantly, there was

an association between niches with a higher number of

elementary networks and their persistence across a range of

environmental conditions, e.g. niches A and C collectively

occupied approximately 75% of the information landscape

(figure 4). While this was not a universal finding—niche E
occurred only once and this was due to its formation exclu-

sively in a low influx and low diffusive environment—it

did suggest a degree of robustness conferred on a niche cour-

tesy of the presence of more than one elementary network.

The presence of the elementary network fT6,T9g in niche C
was a direct consequence of the influx of randomly generated

automata from the environment as this elementary network

did not persist in the absence of any influx (niche A). Signifi-

cantly, information niche A was constructed from a

hierarchical organization in which the successive combination

of elementary networks (level 0) produced intermediate net-

works (level 1), which in turn were integrated and embedded

in a higher-order structure (level 2) (figure 5f ). There were 15

construction pathways by which the higher-order network

produced niche A, with each pathway the result of a unique

combination of elementary and intermediate networks. Each

network in the hierarchical organization was closed and dyna-

mically stable. In contrast, niche B with a single elementary

network was non-hierarchical.

The pathway to niche C involved the same elementary net-

works as niche A, except that in the presence of an influx of

randomly generated automata (0 , F � 0.9) the group (T6,

T7, T9, T11, T13, T14) became organized into strongly connected

networks that were dynamically unstable, and were therefore

not part of the network hierarchy. Significantly, niches A and

C consisted of automata that were each produced by at least

two elementary networks, indicating a level of redundancy

in the organization (figure 5f ); for example, deconstruction of

niche A indicated that the redundancy at level 1 involved

decomposition of the intermediate networks into a subset of

six (fT1, T3g, fT1, T5g, fT3, T12g, fT5, T10g, fT8, T10g, fT8,

T12g) of the total of 12 elementary networks.

3.2. Dynamics of information niches under
environmental perturbations

To investigate the influence of environmental perturbations

on the robustness and possible transitions of the primary

information niches we simulated the response in the popu-

lation dynamics to intermittent changes in the parameters c,

v, F and F0 (figure 6). These parameters were varied to simu-

late five types of perturbation that were imposed on each

primary niche (niches A–F): (i) switching of lattice diffusivity

to a value opposite to that initially associated with niche for-

mation; (ii) switching of the influx rate to one of four possible

values (F ¼ 0, 0 , F , 0.1, 0.1 � F � 0.9 and 0.9 , F � 1),

which in each case corresponded to a parameter opposite to

that initially associated with niche formation; (iii) application

of (i) and (ii) concurrently; (iv) restricting the influx compo-

sition from a random selection of 15 automaton types to a

confined group of six specified automata (T6, T7, T9, T11,

T13, T14) at a rate F0 ¼ 0.25; and (v) application of (i) and

(iv) concurrently. In general, the results indicated that impos-

ing environmental perturbations on the primary niches

produces transformations in the internal structure of the

population through the growth or decay in various automa-

ton types, which under certain conditions (introducing

diffusive mixing into niche B/E or removing influx into

niche F ) generated two new secondary niches (niche X and

niche Y ). We then perturbed these secondary niches by re-

setting the environmental parameters to those initially used

for the formation of the associated primary niche to assess

the reversibility of the niche transitions across the information

landscape (figure 6c–d).

In total, 39 transitions between six primary niches and two

secondary niches were identified (figure 6e). In some cases, the

transitions were unidirectional. For example, niches A and C
were established after 7.5 � 105 iterations under well-

mixed conditions with no or low intake dynamics (c ¼ N, v ¼
n; F ¼ 0 or c ¼ N, v ¼ n; F ¼ 0.08), respectively, and then
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subjected to an extreme perturbation by switching the lattice

diffusivity to zero (c ¼ 0, v ¼ 0). As a consequence, over

1.25� 106 iterations niches B and E emerged in each

population, respectively, with T15 experiencing a rapid decay

while T2, T4 underwent fast growth. Once niches B or E were

fully established, we re-adjusted the parameters to their original
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Figure 5. (a – d) Examples of the different types of network topologies generated from all combinations of interactions between automata in order of increasing spe-
cialism. (a) The most general topology (7702 identified types). The topology consists of a directed network in which each node represents an automaton and edges
(arrows) signify that the automaton is involved in the production of the automaton positioned at the termination of the edge. For example, automata T2 and T10 interact
to produce T7, which interacts with T10 to produce T5. In this example, the algorithm identifies the three networks fT2, T7, T10g, fT5, T7, T10g and fT2, T5, T7, T10g. (b)
Network with apparent strongly connected components (100 identified types), indicating that the constituent automata mutually produce each other; however, over time
automata are also produced outside of the network (dashed arrows leading from T11 and T14), or the system becomes dynamically unstable because of competition within
the same network that leads to extinction of one or more of its members. Edges with double arrows indicate that the connected automata are involved in producing each
other. (c) Example of a strongly connected network (17 identified types) that only produces automata within the network, is dynamically stable and can be reduced into
smaller sub-networks. (d ) Example of a strongly connected network (12 identified types) that is dynamically stable and irreducible (elementary networks). A curved arrow
indicates that the automaton is involved in its own production. (e) All 12 elementary networks of a one-state automaton population. Some automata are produced by more
than one network and this is highlighted for T3 (green boxes). Multiple pathways to producing the same automaton (redundancy) confers a degree of robustness to the
continued production of an automation even if an elementary network decays due to the extinction of one of its constituents. By comparison, T6 and T9 are only produced
by one elementary network and these automata often become extinct. Niche A consists of all elementary networks except fT6, T9g; niche B consists of only one network
fT1, T2, T4, T8g; and niche C consists of all of the elementary networks. ( f ) An example of a pathway to the bottom-up hierarchical construction of niche A based on the
integration of three elementary networks (level 0) that combine to form two larger networks (level 1), which become embedded at level 2. Note that T15 is only produced
when the level 1 networks are combined. Double arrows indicate that the associated automata are involved in producing each other and curved arrows indicate an
automaton that is involved in self-production.
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Figure 6. Plots of frequency distributions ( f ) against iteration time step (t) showing the population dynamics when subjected to intermittent and extreme changes in
environmental conditions (red text). (a) Primary information niche A was established after 1 � 106 iterations, and then the lattice diffusivity reduced to zero. Niche B
emerged within 5 � 106 iterations and subsequently resetting the parameters to their original values formed a new secondary niche X, which was distinguished by two
groups of automata (T1,T2, T4, T8) and (T3, T5, T10, T12). (b) Similarly, primary niche C was established after 1 � 106 iterations and then the lattice diffusivity reduced to zero
leading to the reversible emergence of niche E after 5 � 106 iterations; resetting the parameters to their original values re-created niche C. (c) Formation of the secondary
niche X; niche B formed after 3 � 106 iterations and then the lattice diffusivity was increased for 2 � 106 iterations to generate niche X after which the perturbation was
removed and the population transitioned back to niche B. (d ) Primary niche F was established under type-restricted automaton influx (F0 ¼ 0.25), and then the popu-
lation perturbed by removing the intake restriction to produce the homogenized secondary niche Y comprising the self-replicator T15; resetting the parameters led to the
reverse transition back to niche F. (e) Information niche transition diagram; each box represents a niche and the associated environmental parameters indicate the con-
ditions under which the information niche forms, and the production threshold of the niche in binary digits. Arrows between niches indicate possible transitions and
whether they are irreversible (red single arrows) or reversible (blue double arrows). Niche D is a special case as it represents an unstructured, uniformly distributed
population, which can be produced from perturbing all primary and secondary niches by setting F ¼ 1.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170807

10

 on February 15, 2018http://rsif.royalsocietypublishing.org/Downloaded from 



values, and assessed how the emerging populations responded.

Niche C was re-established within 1 � 106 iterations, indicating

that the C to E transition was reversible across the information

landscape under the imposed environmental conditions,

while niche A was not re-established from niche B. Instead,

niche B transitioned into a new niche (niche X ), which consisted

of eight automaton types clustered into two groups (T1, T2, T4,

T8) and (T3, T5, T10, T12) (figure 6a,b). Secondary niche X was

also produced from niche E by introducing lattice diffusivity

into the simulations. Increasing the number of long-range inter-

actions within the highly structured populations of niches B and

E eliminated the T2 and T4 domains such that the production

dynamics were dominated by the elementary network fT1,

T2, T4, T8g, which produced each of its members with equal

probability. This led to a transient period with a reduction in

the number of T2 and T4 automata and corresponding increase

in the number of T1 and T8 automata until a new steady state

was reached after approximately 5 � 105 iterations (figure 6c).

Secondary niche Y was generated by perturbation of primary

niche F, which was produced under restricted influx conditions

(F0 ¼ 0.25) via switching off the partial influx of new automata

(F0 ¼ 0) (figure 6d). Under the new environmental conditions,

the T15 frequency, which comprised approximately 70% of the

population of niche F, increased rapidly to almost 100% in

niche Y to produce a homogenized population. This was princi-

pally because (i) T15 could be generated from 21 interactions

including a high level of self-replication and (ii) the clusters

(T7, T11, T13, T14) and (T6, T9) were each produced from only

six and two interactions, respectively, and collectively did not

form a closed and stable network of production.

The production threshold was calculated for each niche

and the loss or gain of information between niches under-

going reversible or non-reversible transitions examined. As

shown in figure 6e, the production threshold of primary

niches C, D and E was 3.6 bits, niche A was 3.1 bits, and

niches F and B was 3 bits and 2 bits, respectively. The pro-

duction thresholds for the secondary niches X and Y were 2

and 2.2 bits, respectively. As the production threshold relates

to how much information is required for a niche to persist via

the continual production of certain automata, in general tran-

sitions within the niche landscape occurred when there was a

reduction or no significant change in the information content.

However, transitions that resulted in a loss of information

and a subsequent reduction in the production threshold of

the population were irreversible unless sufficient information

was added from the environment. For example, niche A (3.1

bits; 0 , c � N, 0 , v � n; F ¼ 0) transitioned to niche B by

setting the lattice diffusivity to zero (c, v ¼ 0), which resulted

in a reduced information content (2 bits) because extinction of

T15 reduced the number of possible interactions in niche B.

Re-setting the parameters to enable lattice diffusivity (0 , c
� N, 0 , v � n; F ¼ 0) did not re-establish niche A because

increasing spatial mixing did not provide additional infor-

mation content (T15 was irredeemably lost from the

population). Instead, niche B transitioned into niche X (2 bits)

that had the same information content as niche B but a different

steady-state configuration. Indeed, the only way to re-gain lost

information was through an influx of automata from outside

the population by increasing the F parameter. Thus, the tran-

sition from niche C (0 , c � N, 0 , v � n; 0 , F , 0.9) to B
(c, v ¼ 0; F ¼ 0) was reversible because the initial perturbation

step was linked with a reduction of information from 3.6 to 2

bits (figure 6e), and the return pathway associated with

an increase in new information due to the re-established

environmental influx of automata.

Based on the above analysis, the robustness of each niche

within the information landscape was observed to be depen-

dent on the environmental conditions under which it was

formed, and the nature of any subsequent perturbations. In par-

ticular, niches that were generated under zero influx conditions

resulted in the extinction of six (T6, T7, T9, T11, T13, T14) of the 15

types of automata, while all the automaton types were retained

in niches constructed under high influx conditions. Robust

niches such as niches C, D, E and F could recover from any

type of perturbation, and were associated with high information

environments characterized by the presence of lattice diffusivity

(0 , c � N, 0 , v � n) and some environmental influx (0 ,

F , 0.9). Conversely, niches that were less robust were pro-

duced in low information environments characterized by zero

diffusivity (c, v ¼ 0) and no influx of automata (F ¼ 0).

4. Conclusion
We have examined a self-producing system in a pre-evolution-

ary/pre-genetic scenario by extending the finitary process soup

model [14] to investigate the influence of environmental con-

ditions and perturbations on the dynamics and emerging

organizational complexity of an interacting population of

single-state information processing entities (automata). Our

simulations indicate that dynamically stable strongly connected

networks of mutually producing automata emerge under

specific environmental conditions associated with changes in

the degree of spatial lattice mixing and influx dynamics. The

emergence of a limited number of these information niches

suggests an underlying fitness landscape, which sculpts the

self-organizing community of interacting automata into a self-

referential system that is contingent on the interplay of internal

and external population production dynamics (figure 7). In this

perspective, the information niche represents a nexus between

four key processes: (i) the mutual production of automata and

formation of closed and stable networks, (ii) emergence of a

hierarchical interaction network structure, (iii) onset of dynamic

stability in the networks of production, and (iv) redundancy

within the population and interaction network.

Our simulations indicate that an information niche was

more robust and viable with increasing levels of redundancy,

as each automaton was produced by at least two different

and independent elementary networks, and the associated

modularity enables effective niche recovery when subjected to

extreme environmental perturbations. Among the fitness land-

scape, niches C and E are able to reconstruct when subjected to

fluctuating environmental parameters principally due to mod-

ulating the interface with the environment by coupling of the

internal production dynamics to the randomly generated

intake of new automata. Significantly, reversible niche tran-

sitions are only allowed if accompanied by an equal or

increased level of information production. In some cases, the

environmental perturbation generates additional information

that drives the niche transition, and as such acts as an exogen-

ous source of diversification of the population. Thus, taken

together our simulations show that characteristics indicative

of mutual production and redundancy confer resilience on

the dynamics and emerging organizational complexity of inter-

acting/replicating populations of simple information

processing entities.
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Within a more general context, our model describes a

basic mechanism for coupling environmental parameters

into a community of interacting objects that function as com-

munication channels, and therefore offers a new approach for

studying the onset of autopoiesis within both a prebiological

scenario and bottom-up synthetic biology context. We

demonstrate that the emergence of information niches

occurs without the introduction of novel forms into an

environmental fitness landscape, suggesting that commu-

nities of interacting entities such as chemically active

synthetic protocells [22,23] could become hierarchically struc-

tured and dynamically stable over time even in the absence of

evolution. Such observations provide insights into how

simple informational transitions between interacting mem-

bers of a consortium could lead to self-sustaining structured

populations comprising proto-autopoietic networks, and

could therefore initiate a bridge in the transition from inani-

mate to living matter via a collective process of protocell

self-production operating under non-evolutive/self-replication

conditions. Moreover, this in turn might provide a resilient

platform for the onset of evolutionary processes responsible,

for example, for the emergence of protolife entities from pre-

biotic inanimate systems. While closed systems based on

single causal state automata are incapable of simulating evol-

ution in the Darwinian sense due to the absence of novelty in

the automata types produced over successive generations, the

functional composition of two-state automata is known to

generate communication channels exhibiting entirely novel

features [16], suggesting that the environmental dependence

of such communities would provide a rich landscape for

modelling more complex aspects of autopoiesis. Simulations

based on these multi-state systems are the focus of future

work.
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RESULTS II - TWO-STATE INFORMATION NICHES

5.1 Introduction

This chapter describes the results from simulating an exclusively two-state automata

population. The following simulations were executed:

• Simulation of a two-state automata population self-organising to a niche under

well-mixed conditions (see section 5.2)

• Simulation of a two-state automata population self-organising to a niche under low

diffusivity conditions (see section 5.3)

• Simulation of a two-state automata population self-organising to a niche under con-

ditions of (i) intermittent and, separately (ii) constant, influx of externally generated

automata (see section 5.4)

To verify the results each simulation was repeated five times. All subsequent re-runs

accurately re-produced the same outcomes and any differences were minor and due to the

stochastic nature of the model. Only one of the results from each simulation is reported

here as the differences were deemed inconsequential to the subsequent analysis and

interpretation of the results. Box 5.1 has important information on the numbering system

used during these simulations to identify individual two-state automata.
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CHAPTER 5. RESULTS II - TWO-STATE INFORMATION NICHES

Box 5.1 An important note on the referencing of individual automata

Each individual two-state automata in this chapter is referenced sequentially in

the range T1...T1873. This should not be confused with the notation used to refer-

ence the one-state automata (T1...T15) e.g. where the T1 −T15 two-state automata

are referenced in this chapter these are not the same automata as the one-state

automata that are referenced as T1 −T15 in Chapter 4. Chapter 7 - which examines

mixed one-state/two-state automata populations - explains the correct referencing

of the automata to be used in interpreting the results that are described therein.

5.2 Emergence of a two-state automata niche under
well-mixed conditions

The simulation was initialised with a population of 90,000 two-state automata on a

300×300 lattice of 1,873 unique types equating to an average of 48 automata of each type.

The simulation was run for 2×106 iterations under environmental conditions of diffusive

mixing (c = N,v = n) and no influx of external automata (Φ= 0). This resulted in a niche

(niche 2A) consisting of 21 automata with all other automaton types going extinct (see

Figure 5.1).

The simulation was repeated and produced a near identical result with a steady-

state structure with only minor differences due to the stochastic nature of the automata

replacement algorithm. However, a third run produced a different niche (niche 2B) that had

the same number of automata (21) as niche 2A but now consisted of the automata that had

previously competed and decayed in the previous two simulations. Repeated simulation

runs indicated that each niche could come to dominate and that this appeared to be

probabilistically determined. Analysis of the interaction network revealed that these niches

were generated from strongly connected networks whereby the automata constituting niche

2A mutually produced each other (and the same was true for the automata in niche 2B).

This insight led to the observation that competition was occurring at two levels: at the

individual automata level where pairs of automata were competing with each other e.g.

T712 from niche 2B competes with T775 from niche 2A, T55 competes with T36, and so

on (see Table 5.1), and (ii) at the network level where collectively the performance of

all automata in the two strongly connected networks constituting niche 2A and 2B had

an impact on the individual competitiveness of each of their constituent automata (see

Figure 5.2 and Figure 5.3 for the automata in niches 2A and 2B respectively). Given the
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Figure 5.1: Simulation of a two-state population under well-mixed conditions showed an initial stage of
competition between two different subsets of automata with one subset eventually dominating whilst the
other decayed rapidly. This divergence occurred at the 105 iteration. The result was a niche consisting of 21
automata (niche 2A). Repeated simulations revealed that occasionally the other competing subset of automata
came to dominate the population to create a new niche (niche 2B) with a near identical steady-state structure.

interconnected nature of a niche, all automata in a given niche benefited from one or more

of their members out-competing rival automata in the other niche. The likelihood of one

niche out-competing the other appeared to be probabilistically close to parity. The stochastic

nature of how automata were chosen for interaction and therefore which automata were

produced was determined as the reason for the alternating dominance between the two

niches over repeated simulation runs.

Compared to the one-state population (see Chapter 4) these results indicated that

in a population with a higher average structural complexity1 three levels of competition

had occurred: (i) between individual automata; (ii) between networks of automata; and

(ii) between niches. As can be seen in Figures 5.2 and 5.3, the constituent automata in

niches 2A and 2B were topographically identical and the information they processed was

the mirror image of the other niche. Each niche processed the exact same information:

20 transitions of 0 | 0, 20 transitions of 0 | 1, 20 transitions of 1 | 0 and 20 transitions of

1All one-state automata have Cµ(T)= 0 bits compared to an average of Cµ(T)= 0.94 bits in the two-state
population.
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category niche 2A f niche 2B no. edges no. productions

Fast Growth

T95 0.21 T102 1,884 11,700
T60 0.2 T39 1,884 11,700
T493 0.18 T411 1,874 22,805
T712 0.17 T775 1,522 22,805

Medium Growth
T488 0.09 T402 1,795 9,519
T717 0.09 T766 1,874 22,805
T55 0.058 T36 1,522 5,980

Slow Growth
T15 0.0007 T40 1,411 1,595
T107 0.0006 T137 1,401 1,088
T2 0.0006 T4 1,411 1,595

Slow Decay

T47 0.0004 T22 1,411 1,595
T81 0.0004 T79 1,411 1,595
T106 0.0003 T561 1,322 758
T617 0.0003 T134 1,322 758
T120 0.0003 T204 1,401 1,088
T417 0.0003 T303 1,322 758
T421 0.0003 T309 1,401 1,088
T613 0.0002 T555 1,401 1,088
T121 0.0002 T207 1,322 758
T1 0.0002 T3 1,510 1,223
T43 0.0001 T20 1,510 1,223

Table 5.1: The competing niches in a two-state population consisted of symmetrical automata e.g. the automata
T1 in niche 2A with the transitions {0 | 1,0 | 0} had a symmetrical twin T2 in niche 2B with the transitions
{1 | 0,0 | 0} however they did not interact to produce other two-state automata. Under well-mixed conditions
these competing pairs contributed to, and benefited from, the replicative performance of the automata that
also constituted their respective niches. The automata from each niche were categorised (e.g. Fast Growth)
according to the rate at which they were produced with respect to their initial f which was 0.0005 for each
automaton. The f values shown in this table correspond to each niche e.g. automata type T95 constituted 21%
(0.21) of the population in niche 2A and, similarly, its symmetrical twin automata type T102 constituted 21%
of the population of niche 2B.

1 | 1. However, individual automata were processing information differently from their

counterpart automata in the other niche. Furthermore, as the population evolved the large

majority of automata went extinct and the remaining automata were produced the same

number of times (15) which led to the steady-state structure that defined the niche.

The two-state interaction network consisted of 1,873 vertices and 355,484 edges repre-

senting the number of potential interactions that produced two-state automata. Of those

potential interactions 220,476 produced the 42 automata that constituted the two niches

2A and 2B. For each niche there were 110,238 interactions that produced the automata

within that niche with 61.86% (68,189 interactions) producing the High Growth automata,

34.23% (37,737 interactions) producing the Medium Growth automata and 3.91% (4,312
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Figure 5.2: The 21 two-state automaton types that constituted niche 2A. Taken from [121].
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Figure 5.3: The 21 two-state automaton types that constituted niche 2B. The topology of this niche’s automata
were identical to those in niche 2A however each automata processed a different domain and range of binary
information compared to their symmetrical twin in the other niche. Hence, whilst individual automata
processed different information to their ’twin’ in the other niche, as a collection of automata the niches 2A and
2B processed the same domain and range of binary information. Taken from [121].
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interactions) producing the Slow Growth and Slow Decay automata. At the end of the

simulation the 1,852 two-state automata that were initially present had gone extinct

leading to a reduction in the interaction network complexity from 19.22 bits at t = 0 to 6.02

bits at t = 2×106. Of those extinct automata 22.6% (424) were not produced at all and the

remainder were produced in very low numbers and were eventually selected for removal

from the population. An analysis of the interaction network indicated that it was heavily

skewed towards producing a small number of automaton types in the population (see Table

5.2 and Figure 5.4).

As a large number of automata went extinct the interaction network complexity was

drastically reduced. The number of interactions that were producing the niche automata

were no longer possible as the automaton types that took part in those interactions were

no longer present in the population. This led to the population becoming dominated by

the automata that were part of strongly connected networks (i.e. mutually producing each

other). Given that each automata in the competing niches were produced in equal number

then the eventual dominance of one niche over the other was a function of the history of

the productions that had occurred i.e. the incidental advantage conferred to one niche over

the other was based on the chance that its constituent automata happened to have been

produced more frequently up to that point.

Frequency of Production No. of automaton types
0 424

1-300 1,313
301-600 76
601-900 10

901-1200 16
1201-1500 8
1501-1800 12

.. ..
6001-6300 2

.. ..
9601-9900 4

.. ..
12001-12300 4

.. ..
20001-23000 4

Table 5.2: The histogram of the number of productions that occurred in the interaction network and the
number of automata that were produced in each bin. Analysis of the production of two-state automata showed
that a very small number of automata (14 automaton types representing 0.2% of the population) were produced
considerably more often than other automata.
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Figure 5.4: The degree distribution of the two-state interaction network. The x-axis was the k values (i.e. the
total incoming and outgoing edges to/from each vertex in the network where a vertex represented an automata
type) allocated into bins of width 100. The y-axis was the log P(k) values for each of the k bins. The vast
majority of vertices in the network had fewer than 200 edges whilst a very small number of vertices had a
large number of edges (> 1,000) that indicated a heterogeneous network structure with a small number of
highly connected ’hubs’ [136].

The degree distribution varied significantly (see figure 5.4) and indicated a heteroge-

neous network structure that consisted of a large number of vertices with a hundred or so

edges and a very small number of vertices that were highly connected (> 1,000 edges). In

general, there was a direct relationship between an automaton’s degree of connectedness

and the frequency with which it was produced e.g. the small subset of automata that

were highly connected and highly produced were members of the set of automata that

constituted the niches 2A and 2B. Figure 5.5 shows the topology of the interaction network

for these niches after all other automata had gone extinct, and the population was in a

steady-state.

5.3 Emergence of a two-state automata niche under
zero-diffusivity conditions

A population of 90,000 two-state automata consisting of 1,873 unique types (with an

average of 48 of each type) were randomly distributed on a 300 by 300 lattice and the

simulation iterated for 5×107 iterations under environmental conditions of no diffusive
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Figure 5.5: The competing interaction networks for niche 2A and 2B. Each network had an identical topology
that was a fully connected network consisting of seven vertices and 49 edges. Neither network held an intrinsic
advantage over the other and the event that leads to the dominance of one set of automata occurred as a result
of chance due to the stochastic nature of the random replacement mechanism of the information niche model.

mixing (c = 0,v = 0) and no influx of external automata (Φ = 0). This resulted in the

emergence of the niche 2C.

The population followed the same trajectory as the well-mixed environment (niches

2A and 2B) up to t = 105 after which there was a turning point with the previously

low frequency automata from niches 2A and 2B growing rapidly to the detriment of the

previously dominant automata (see Figure 5.6). The competition between niche 2A and

niche 2B was not evident and appeared to have been neutralised by the lack of spatial

mixing within the population. Subsequently, the 42 automata of niches 2A and 2B co-

existed within a new steady-state structure representing the new niche 2C. There were far

fewer extinctions with 1,593 two-state automaton types remaining in the population (280

had gone extinct). This resulted in a higher interaction network complexity of Cµ(G)= 8.98

bits compared to the Cµ(G)= 6.02 bits of niche 2A or 2B.

The niche 2C population transitioned through three phases. To aid in the analysis of

the observed population dynamics the automata were allocated to five groups depending

on their final frequency, in niche 2A or 2B and in niche 2C respectively, as shown in Table

5.3).

Phase 1 was characterised by the extremely fast growth of the automata groups A and

B during the early stages of the simulation whilst the population was sufficiently well
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Figure 5.6: The population dynamics of a two-state automata population under conditions that emulated no
diffusion (c = 0,v = 0) and which led to the emergence of a new niche (2C). In the first 2.5×105 iterations the
population dynamics followed the same trajectory as niches 2A and 2B however there was a sharp turning
point thereafter with the automata that constituted the ’Fast Growth’ and ’Medium Growth’ groups in the
niche 2A,2B configurations experiencing rapid decay. The automata that constituted the ’No Growth’ groups
in niches 2A,2B here had instead experienced rapid growth into two groups - a dominant group consisting
of the automata T613,T15,T22,T555,T137,T40,T47,T107 and a smaller group consisting of the automata
T43,T1,T3,T20.

group automaton types frequency category in
2A,2B

frequency category in
2C

A T39, T60, T95, T102, T411, T493,
T712, T775

high frequency low frequency

B T36, T55, T402, T488, T717, T766 medium frequency low frequency
C T15, T40, T47, T22, T107, T137,

T613, T555

low frequency high frequency

D T1, T3, T20, T43 low frequency medium frequency
E T2, T4, T81, T79, T106, T561,

T120, T204, T121, T207, T417,
T303, T421, T309, T617, T134

low frequency low frequency

Table 5.3: The automata in the niches 2A,2B behaved differently under zero-diffusivity conditions. Analysis of
the dynamics that was driving such different behaviour was aided by categorising the automata into the five
groups (A−E) and determining the frequency category to which the automata in those groups belonged.
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distributed across the lattice (thus re-producing the same dynamics as seen in the formation

of niches 2A and 2B). These automata groups quickly saturated the lattice where they

were readily available for the automata in groups C and D to interact and from which

the C,D automata reproduced themselves. In this way, the A,B groups were a food set for

the C,D groups and this explained the growth in number of the automata in those latter

groups (C and D). This was a one-way relationship - the automata in C,D only replicated

themselves in all interactions with the automata in A,B. The lack of any spatial mixing,

and the depletion of the A,B food set to produce more C,D automata, led to a marked

reduction in the diversity of interactions that could take place. Over time the rate of change

in the composition of the neighbourhood of each automata reduced significantly and this

led to a reduction in the concentration of the A,B automata groups.

Phase 2 marked a rapid transition of the structure of the population with the sudden

and rapid decay of automata in the groups A and B and the continued growth of the

automata in the C and D groups. The production advantage of groups A and B - that they

self-replicated in any interaction with other members of their group leading to a higher

intensity of production - became a disadvantage as this required ready access to the other

automata in their group which was severely curtailed by the zero diffusivity conditions

set by the environment. By comparison, the automata in groups C and D continued to be

produced by the automata in groups A and B even whilst those groups were decaying. This

led to C,D replicated faster than other automata due to their self-replicative behaviour

and this led to the formation of concentrated domains on the lattice that were constituted

by a single type of automaton from the C or D groups. Simultaneously, these automata

benefited from a ’replicate & lock-in’ phenomenon whereby they did not readily interact

with the other automata that shared the A,B food set. This non-interaction had the

indirect effect of protecting the domains of C,D automata from being eroded through the

gradual replacement at their periphery with different automaton types. This combination

of maximising the food set of groups A,B in a one-way beneficial relationship to replicate

themselves whilst not interacting readily with other C,D automata meant that these

domains of automata were very robust structures on the lattice. Such a ’replicate and

lock-in’ mechanism proved to be an effective survival strategy. However, it was not the

only survival mechanism observed - an interesting observation was that the A,B automata

did not go extinct and this was due to a ’mutual maintenance’ mechanism whereby these

automata would mutually produce each other whilst also performing self-replication. This

had the effect of maintaining a dynamic domain boundary between these domains that

was able to partly counteract the ’replicate & lock-in’ strategy of the automata in groups C
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and D.

Phase 3 was characterised by the extinction of a large number of automata which sig-

nificantly reduced the diversity of the interaction network. Consequently, the number

of possible interactions with which to maintain the remaining population of automata

were significantly reduced and parity was seen in the interaction network i.e. all of the

remaining automata were produced in equal amounts. At this point the established do-

mains of automata from groups A,B and C,D were able to maintain their concentration

across the lattice through their respective competing processes of ’mutual maintenance’

and ’replicate/lock-in’ and this led to the emergence of the steady-state structure of niche

2C.

Chapter 6 provides a more detailed explanation of the competing mechanisms and the

spatial dynamics that led to the formation of niche 2C.

5.4 Emergence of two-state automata niches under influx
conditions

A population of 90,000 two-state automata consisting of 1,873 unique types (with an

average of 48 of each type) were randomly distributed on a 300 by 300 lattice. Simulations

were run for 5×107 iterations under environmental conditions of no diffusive mixing

(c = 0,v = 0) and an influx of external automata at (i) a moderate rate (0.1<Φ≤ 0.7), (ii) a

high rate (0.7<Φ≤ 0.9), and (iii) a very high rate (0.9<Φ≤ 1).

With the influx rate in the range 0<Φ≤ 0.7 the niches 2A or 2B emerged albeit their

formation was delayed when compared to an influx rate of Φ= 0 (as described in section

5.2). The higher the influx rate the longer the delay in formation of the niche. A similar

observation was made about the one-state population (see Chapter 4).

With the influx rate in the range 0.7 <Φ ≤ 0.9 a new niche (2D) formed (see Figure

5.7). This niche was characterised by the co-existence / co-habitation of niches 2A and

2B on the lattice. The influx of automata had interrupted the intense competition in the

earlier stages of evolution of the population and that would ordinarily lead to the eventual

dominance of either 2A or 2B niche automata. Under these conditions all automaton types

survived leading to a more complex population structure.

Finally, with 0.9 <Φ ≤ 1 there was a lack of any structure in the population as the

replacement of automata on the lattice was dominated by automata that had been randomly

generated rather than selected from the existing population. This had the effect of negating
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Figure 5.7: The emergence of niche 2D in the presence of an influx of external automata through random
replacement at a rate 0.7 <Φ≤ 0.9 had the effect of neutralising the initial competition between the niche
2A and 2B automata leading to their co-existence in the population. The three clusters of automata that had
undergone significant growth from t = 0 consisted of equal numbers of automata from niches 2A and 2B e.g.
T411,T712 from niche 2A and T493,T766 from niche 2B, and so on. T′ represents all other automaton types in
the population.

any structural ’memory’ that the population could generate leading to an unstructured

state. Whilst this state didn’t represent a structured population, it was a possible state

that could be reached by the population and, as such, was designated as niche 2E (see

Figure 5.8).

5.5 Quantitative Analysis of Niche Structures

The information content and complexity of each niche was measured by calculating the

average structural complexity (Cµ(T)), the production threshold (H(X )) and the interaction

network complexity (Cµ(G)), respectively.

As can be seen from Table 5.4, niches 2A and 2B constitute a population of automata

that were marginally of a higher average structural complexity compared to the other

two-state niches. The range of structural complexity in the initial two-state population

of 1,873 automaton types was 0.72−1 bits. Table 5.5 shows the structural complexity
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Figure 5.8: The emergence of niche 2E in the presence of a very high rate of influx of external automata
through random replacement at a rate 0.9<Φ≤ 1 and that led to an unstructured population. The majority of
new automata that were being introduced into the population were generated randomly rather than being
produced from the interactions of existing automata.

niches
measure 2A 2B 2C 2D 2E

(a) average structural complexity (< Cµ(T)>) 0.95 0.95 0.94 0.94 0.94
(b) production threshold (H(X )) 3.3 3.3 6.29 7.16 7.2
(c) interaction network complexity (Cµ(G)) 6.02 6.02 8.98 11.58 18.43

Table 5.4: Comparison of (a) the average structural complexity (< Cµ(T) >) showing that the more highly
structured niches consisted of marginally more complex automata, (b) the information content (H(x)) for each
niche indicated an increase in the amount of information required to re-construct each niche as environmental
disturbances were increased, and (c) the interaction network complexity Cµ(G) which was an overall measure
of the complexity of a niche and, as can be seen, the complexity of the niches increase with changes in
environmental conditions. All measures were generated using the final frequency distribution of the automata
in each niche (i.e. the population structure) at a steady-state.

138



5.6. SUMMARY

Cµ(T) bits 0.722 0.845 0.89 0.971 0.918 0.985 0.998 1
No. automata 56 168 48 48 408 432 368 345

Table 5.5: The structural complexity measurements of the two-state automata population were compartmented
into eight discrete and well-defined classes. All automaton types in a class had an identical Cµ(T) value
illustrating the structural diversity in the two-state automata population.

measurements of each automata type in the two-state population compartmented into

eight discrete classes. By comparison, the range of structural complexity per automata

in niches 2A or 2B were 0.92−1 bits suggesting that these niche automata resided in

the higher structural complexity classes. Given that 99% of the population went extinct

as niches 2A and 2B formed it can be surmised that the lower structural complexity

automata were removed from the population. Hence it was observed that the most highly

structured niches consisted of a very small number of automata each of which had a

higher-than-average structural complexity.

The production threshold - that is, the amount of information required to generate

the niche - increased with the degree of environmental disturbance present during the

formation of a niche. This was to be expected given that niches 2A and 2B consisted of

only 21 automata each compared to the 1,593 automata present in niche 2C, and the 1,873

automata present in niches 2D and 2E.

Similarly, the interaction network complexity - the information required to describe

the niche after it had evolved to a steady-state distribution and the possible interactions

in that population - increased with the magnitude of environmental disturbance. The

amount of structure in a niche was equated to the reduction in the interaction network

complexity from the initial, unstructured two-state population (Cµ(G)= 18.43 bits) to that

of the steady-state niche population. For niches 2A or 2B this was 6.02 bits representing a

reduction of 12.41 bits. The lower Cµ(G) value for niche 2D (11.58 bits) compared to 2E

(18.43 bits) was due to the presence of more structure in niche 2D.

5.6 Summary

This chapter has presented the results from simulating a two-state automata population

evolving to five different information niches under various environmental conditions. The

following niches were discovered:

1. Niche 2A or 2B emerged under well-mixed conditions, with the population under-

going an initial period of intense competition with two groups of 21 automata each

emerging as highly competitive, strongly connected networks. These competing
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groups co-existed up till t = 2.5×105. At that point a sudden divergence occurred

with one of the groups spontaneously undergoing rapid decay leaving the remaining

group to grow and dominate the population. Repeated simulation runs revealed that

either group of automata could come to dominate leading to the formation of either

niche 2A or 2B. The stochastic nature of the information niche model meant that

it was not possible to predict which niche would be likely to emerge as the ’winner’.

Both niches were robust and persisted even in the presence of a moderate influx

(0.1≤Φ< 0.7) of externally generated automata

2. Niche 2C emerged under low diffusivity conditions leading to the co-existence of the

two groups of automata that had previously competed and that led to the formation

of niche 2A or 2B. However, the automata that had previously been poor competitors

(i.e. underwent decay and eventual extinction) under well-mixed conditions now

dominated the population leading to the emergence of a new steady-state structure

that represented a new niche (2C). Two competing mechanisms were identified - the

’replicate & lock-in’ and ’mutual maintenance’ processes - which were not observed

in the one-state information niche simulations. This suggested that a population

with a higher average structural complexity generated concurrent mechanisms of

competition and survival that led to more complex competitive dynamics. These

mechanisms are explored in more detail in Chapter 6.

3. A high level of influx of externally generated automata (0.7≤Φ≤ 0.9) had the effect

of neutralising the competition between the two competing niches (2A,2B) leading

to their co-existence in the population. The resulting steady-state organisation was

designated as niche 2D.

4. With a very high rate of influx of external automata (0.9 < Φ ≤ 1) the degree of

disturbance was such that no structure emerged in the population. This was due to

the loss of any ’history’ of the populations endogenous productions meaning that no

single automata could maintain its growth trajectory. The converse was also true in

that this also meant that uncompetitive automata could also not maintain a decay

trajectory. The result was a homogenous state of the population known as niche 2E.

Furthermore, the following general observations were made:

1. Two highly competitive automata groups emerged whose interaction networks had

the following properties: (i) strongly connected topology where each member of the

network was produced by other members of the network; and (ii) dynamically stable
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with no constituent members going extinct. This was consistent with the findings

from simulating the information niche model with a simpler, one-state population of

automata (see Chapter 4).

2. A two-state population of automata had a higher average structural complexity

that produced more complex population dynamics than a one-state population that

had zero structural complexity. For example, the two highly competitive groups of

automata that emerged to form niche 2A or 2B could co-exist under conditions where

there was a high rate of influx (0.7 ≤ Φ ≤ 0.9) of externally generated automata,

whilst they competed intensely until the ’death’ of one of groups under well-mixed

(c = N,v = n) and closed conditions (Φ = 0). This may indicate that increasingly

complex automata populations are able to support multiple niches simultaneously.

This is discussed further in Chapter 10.

3. The information niche model with a significantly larger and more diverse population

did not generate an increased number of distinct niches for the range of environmen-

tal conditions simulated e.g. the one-state and two-state automata simulations both

identified five distinct niches under fixed environmental conditions. The two environ-

mental parameters used to simulate environmental disturbances - spatial mixing

(c,v) and an influx (Φ) of externally generated automata - may have constrained an

exhaustive examination of the theoretical range of possible structural states of a

two-state population under the influence of an environment. This is discussed further

in Chapter 10.
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6
RESULTS III - SPATIAL PATTERNS

6.1 Introduction

This chapter presents the results of investigating the spatial patterns that formed on

the lattice (Γ) during the formation of one-state and two-state information niches under

certain environmental conditions. Niche 1B from the one-state population and niche

2C from the two-state population emerged under non-diffusive conditions and were of

particular interest as their lattice configurations demonstrated domain and boundary

patterns and dynamics. This was of interest as autopoietic theory requires the formation

of compartmented structures [9] and, whilst this requirement is debatable (as discussed

in Chapter 10), the formation of such structures in niches 1B and 2C warranted further

investigation.

6.2 Pattern formation on the lattice of a one-state
information niche

The spatial configuration and topological structure associated with the emergence of the

steady state niche 1B produced in the absence of lattice site (Γi, j) diffusion (c = 0,v = 0)

and no influx of randomly generated automata (Φ= 0) was investigated. A distinct spatial

configuration was associated with niche 1B (see Figure 6.1a) compared with information

niches 1A, 1C and 1D, which showed no spatial structure due to lattice diffusivity (see
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Figure 6.1b). This result was similar to that reported in [123].

Amongst the automata in niche 1C, the high frequency (T2, T4) group was de-mixed

into a bi-continuous structure of T2- and T4-rich domains that were separated by a thin

boundary layer comprising the low frequency population of T1 and T8 automata. The latter

formed specifically at the interface due to the non-commutative functional compositions:

T2 ◦T4 = T1 and T4 ◦T2 = T8. Growth of the T2- and T4-rich domains occurred through the

generation of new automata specifically in the boundary regions comprising an interfacial

’double-layer’, and was associated with continuous repair of the (T1,T8) boundary (as

illustrated in Figure 6.1c-f).

Figure 6.1 illustrates the expansion of domains via. the outward growth of a boundary.

In niche 1B only four automaton types remained from a population of 15 automaton types.

Under well-mixed conditions these automata experienced no growth and only maintained

their initial concentration in the population. However, under zero diffusivity conditions

these automata became very competitive and came to dominate the population with the

extinction of the other 11 automaton types. Repeated simulations indicated that the

eventual configuration of the lattice was primarily due to the stochastic nature of the

replication process and the initial random configuration of the automata on the lattice at

t = 0.

Figure 6.2 illustrates the domain and boundary characteristics of the four automata

T1,T2,T4,T8 that emerged uniquely under low diffusivity environmental conditions. In

this configuration setting the T2,T4 (domain) automata constituted distinct contiguous

domains on the lattice and the T1,T8 (boundary) automata formed at the interface between

domains to form a boundary that bisected those domains. Specifically:

• T1,T8 self-replicated and were self-sustaining along the interface between the T2

and T4 domains

• T1 was created by the interaction of the domain automata T2 with T4 (as per the

non-commutative relationship: T2 ◦T4 = T1) and hence wherever those two domains

came into direct contact the boundary automaton T1 was produced

• T2 was created from the interaction of T8 with itself and also between T1 and itself.

As such, formation of the T2 domain was dependent on the presence of boundary

automata

• T4 was created from the interaction of T8 and itself and also between T1 and itself.

As such, the formation of T4 was dependent on the presence of boundary automata
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Figure 6.1: (a) Colour coded map showing the spatial configuration of the lattice of niche 1B. A distinct
topological structure consisting of a bi-continuous arrangement of T2(blue)- and T4(yellow)-rich domains
separated by a thin interfacial layer of T1 (red) and T8 (orange) automata are shown; lattice x and y axes ran
from 1→ n from the top-left corner to the bottom-right, and (x,y) provided a unique index for each automaton
sited on the lattice Γx,y; (b) the colour-coded map for niches 1A, 1C, or 1D showing no spatial structure on
the lattice due to the presence of spatial mixing. (c-f) Example of lattice domain growth (c,d) and boundary
repair (e,f) for niche 1B: (c) a boundary automaton of different type to the adjacent domain automaton (T8;
dashed circle) was randomly selected for replacement, and the interacting neighbours selected with a 25%
probability to perform the functional composition T8 ◦T4 (double circles); (d) As T8 ◦T4 = T4, automaton T4
replaced T8, leading to an increase in the size and coherence of the T4 domain; (e) in a later iteration, a T2
domain automaton, surrounded by three boundary automata, was randomly selected to be replaced (dashed
circle) and the selected interacting neighbours were T8 ◦T8 (double circles); (f) As T8 ◦T8 = T8, automaton
T2 was replaced by T8, repairing the boundary and shrinking of the adjacent domain. Whilst growth of a
domain produced a temporary decay in the boundary, the defects were subsequently repaired at the expense
of other automata in adjacent domains. This dynamic produced a bi-continuous spatial configuration after
107 iterations as shown in (a). However, over a very large number of iterations (t >> 107), either the T2 or
T4 domain completely dominated the lattice, resulting in extinction of all other automaton types and the
formation of a homogeneous population.
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Figure 6.2: A one-dimensional extract of the lattice illustrating the spatial configuration of niche 1B that
consisted of four automaton types that - due to their relationships - led to the emergence of two complementary
behaviours of domain automata (T2,T4) and boundary automata (T1,T8).

• T8 was created by the interaction of T4 and T2 (T4 ◦T2 = T8) and hence wherever

those two domains came into direct contact the boundary automaton T8 was produced

Hence, T2 and T4 did not produce each other however they did participate in main-

taining the boundary automata between their respective domains. These four automaton

types formed an elementary network (i.e. dynamically stable, strongly connected and

irreducible - see Chapter 4) that was unique in a one-state population; its constituent

automaton types were the only combination of automata that produced each other in a

manner whereby each domain automaton could produce a boundary automaton but it could

not produce itself nor the other domain automaton. Furthermore a boundary automaton

could produce themselves and a domain automaton. This led to the ’protected outgrowth’

of each domain because (a) decay of a domain could only occur via. boundary dynamics

and hence the interior of each domain was protected from being directly changed, and

(b) the encroachment of a boundary into another domain enabled the other (competing)

domain to expand into the space created by the extension of the boundary (as illustrated

in Figure 6.1c-f). Hence, from the unique relationships between these four automata - that

were also competing with each other1 - a survival strategy emerged. This survival strategy,

of domain growth facilitated through a continually maintained and expanding boundary,

required co-operation between this subset of automata and that was subsequently termed

’protected outgrowth’. There was no evidence of the emergence of alternative competitive

strategies from the interaction networks of other one-state automaton types operating

under zero-diffusivity conditions and such automata were subsequently expelled from the

population.
1This may seem to contradict the co-operative behaviour seen in niche 1B however competition between

automata for survival was present and this was demonstrated where either the T2 or T4 automata would come
to dominate and homogenise the lattice. Such occurrences required extended timescales (i.e. 108 iterations).
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6.3 Pattern formation on the lattice of a two-state
information niche

The spatial configuration and topological structure associated with the emergence of

the steady state niche 2C which emerged in an environment that was absent of lattice

site diffusion (c = 0,v = 0) and no influx of randomly generated automata (Φ = 0) was

investigated. Domains enriched with single automaton types were evident on the lattice.

Further examination of the lattice did not indicate the presence of any boundary-type

automata similar to those that had been observed in niche 1B. Instead the domains were

in direct contact with each other (see Figures 6.3 and 6.4).

Figure 6.3: The spatial patterns of the lattice for the niche 2C at 5×106 showing two areas of interest where
T766 automaton types were surrounded by T102 automata. Examination of the changes in the lattice at this
location over successive time-steps, along with an analysis of the interaction network between these automata,
indicated the presence of the ’mutual maintenance’ survival mechanism. Taken from [121].

Large regions of homogenous domains of automaton types formed from two compet-

ing survival mechanisms (see Table 6.1 for the list of two-state automaton types that
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constituted these domains):

(a) automata that had the ability to self-replicate and to mutually produce other

self-replicators. Examination of the lattice revealed the motif of a domain surrounded

by another domain (see Figure 6.3). This compartmentation of the interior domain

was a result of two domains of automata mutually producing each other at their

interface whilst simultaneously self-replicating within their interior (see Figure 6.7).

This proved to be a reasonable survival strategy and the automata exhibiting such

’mutual maintenance’ behaviour remained in the population albeit at a low frequency.

Figure 6.4: Evolution of niche 2C illustrated by the spatial patterns during the three different phases of the
population: (a) the state of the lattice at t = 0 with the 1,873 two-state automaton types randomly distributed
across the 300 by 300 lattice; (b) the lattice at t = 0.5×106 (Phase 1) indicating the peak of concentration
of the small subset of 14 automaton types that self-replicated and mutually produced each other (’mutual
maintenance’ automata shown as yellow regions), (c) the lattice at the start of the crossover point (Phase 2 at
t = 1.5×106) where the dominant automata from Phase 1 had decayed significantly as they were used as the
food set for the production of the ’replicate & lock-in’ automata which had now replaced them as the dominant
automata in the niche (red, orange and blue regions), and (d) the final state of the lattice at t = 107 (Phase 3)
with dominance of the lattice by the ’replicate & lock-in’ automata.
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(b) automata that used the automata in (a) as a food set to produce themselves in

non-reciprocal interactions thus leading to their outgrowth from a ’seeded’ location

on the lattice. This growth continued whilst there was either a sufficient food set

available in the neighbouring lattice sites, or until the outer edges of the domain

met another domain with which it could not interact thus forming a hard domain

boundary (see Figure 6.6). Such domain boundaries were characterised as a mutually

exclusive region between two domains i.e. no possible interactions existed between

the adjacent domain automata and therefore no new automata could be produced

at the interface between those domains. Once a domain was surrounded by other

automata with which it could not interact no further growth - nor decay - of the

domain was possible. In this way, and over time, all of the domains of this type

became locked in. This ’replicate & lock-in’ mechanism of domain growth followed

by exclusion emerged as a survival strategy and participating automata came to

dominate the niche.

These concurrent mechanisms of survival in the niche - ’replicate & lock-in’ and

’mutual maintenance’ - were in competition throughout the formation of niche 2C. As the

population precipitated on the lattice (i.e. the frequency of changes to and the diversity of

the neighbourhood of each automaton decreased as the simulation progressed) the selfish

behaviour of the ’replicate & lock-in’ automata became more effective (see Figure 6.5).

By comparison, the ’mutual maintenance’ automata were dependent on the presence of

other automata in their neighbourhood that supported such a survival mechanism (see

Figure 6.7). The time-series data for a simulation of niche 2C (see Figure 6.5) revealed

how this competition typically unfolded with the initial, rapid growth of the ’mutual

maintenance’ automata during Phase 1 providing a rich food set for the ’replicate &

lock-in’ automata that subsequently experience rapid growth in Phase 2 leading to the

displacement of the ’mutual maintenance’ automata. This culminated in the precipitation

of the lattice during Phase 3 characterised by a population dominated by domains of

’replicate & lock-in’ automata.

Survival Mode Participating automaton types
Mutual maintenance T36,T39,T55,T60,T95,T102,T402,

T411,T488,T493,T712,T717,T766,T775

Replicate & Lock-In T1,T3,T15,T20,T22,T40,T45,T47,T107,T134,T137,T555,T613,T617

Table 6.1: The automaton types that participated in the ’Replicate & Lock-In’ and ’Mutual Maintenance’
survival mechanisms in a two-state automata population operating under zero diffusivity (c = 0, v = 0, Φ= 0)
environmental conditions.
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Figure 6.5: The time-series of the frequency distribution of the population indicating the three phases (1 - 3)
through which the population evolved to form niche 2C.
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Figure 6.6: Illustration of the replicate & lock-in strategy that emerged during the simulation: (a) the T60
automata are self-replicators and were rapidly produced in the earlier stages of the simulation and became
highly concentrated on the lattice. Here the T60 automata have surrounded the T47 automata which are a
network replicator (i.e. T47 needed to interact with other automata apart from itself to produce itself); (b) in
any interaction between these two automata the T47 automata were produced and replaced the T60 automata
as illustrated here; (c) this outward growth of the T47 automata into a T60 rich lattice continued with the
T60 automata acting as a food set; and (d) this process continued until the T47 domain (illustrated as blue
circles) met other domains (illustrated as orange and green circles) consisting of automata that were also
using the T60 type automata as a food set. Where these domains met the growth of their domains ceased as
their constituent automata could not interact with each other thus rendering these domains effectively ’locked
in’ and with no further growth of the domain possible at the boundary with the opposing domain.
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Figure 6.7: Illustration of the mutual maintenance strategy that emerged for a small group of automata under
conditions of low diffusivity on the lattice. The example automata here are T60 and T95, which self-replicated
and produced each other in all interactions between them: (a) a small subsection of the lattice illustrating
the T60 automaton type surrounding the T95 automata, (b) two automata are selected (as indicated by the
dashed lines) to interact according to T60 ◦T95 = T60, (c) the interaction produced a new T60 automaton which
replaced the T95 automaton that was previously at that location, and (d) a sample of the same sub-section of
the lattice at a later point in time indicated that the T95 automaton had now successfully replicated itself in
its interactions with the T60 automata according to T95 ◦T60 = T95.

6.4 Summary

This chapter has examined the spatial patterns that form on the two-dimensional lattice of

the one-state information niche 1B and the two-state information niche 2C both of which

emerged under low-diffusivity environmental conditions (c = 0, v = 0, Φ= 0). Both niches

formed elaborate spatial patterns on the lattice that were characteristic of distinct domains

and boundaries between those domains.

• Niche 1B formed two domains composed of automata T2 or T4 that competed through

a mechanism of ’protected outgrowth’ whereby each domain is seeking to extend

its boundary via. production of the boundary automata (T1,T8) into the lattice sites

of an adjacent, competing domain. This competitive process led to the formation
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of complex spatial patterns that were reminiscent of those discovered in physical

systems such as spinodal decomposition (see Chapter 10). The non-trivial dynamics

that led to the evolution of such spatial patterns were surprising given that a very

small population of just four automata was responsible for such complexity.

• Niche 2C formed domains of automata that were not composed of any boundary

automata. Rather the domains were immediately adjacent to each other. Two com-

peting mechanisms were identified - ’replicate & lock-in’ and ’mutual maintenance’

- with the automata that were part of the former the most competitive and that

came to dominate the population. The automata operating as part of the ’mutual

maintenance’ mechanism were still present in the population over extended periods

of time and, hence, were judged to be operating an effective survival strategy. Both of

these mechanisms arose as a result of the intrinsic information processing capability

of different automaton types and the relationships between them.

• Automata operating the ’replicate & lock-in’ strategy would produce themselves in the

vast majority of interactions with other automata and, critical to their success, in any

interaction with the group of automata that grew exponentially in the early stages

(Phase 1) of the simulation. This rich food set of self-replicating and fast growing

automata rapidly populated the lattice, however, as they met the ’replicate & lock-in’

automata they were unable to compete as they were transformed into ’replicate &

lock-in’ automata without any reciprocation. This led to the rapid growth of ’replicate

& lock-in’ domains that proceeded until these domains reached other ’replicate &

lock-in’ domains with which they were unable to interact. This resulted in mutually

exclusive zones of production at the interface of these domains that prevented further

growth of those domains (hence the ’lock-in’ aspect of this mechanism).

• By comparison, the ’mutual maintenance’ domains consisted of self-replicators that

were effective at dynamically reproducing other self-replicating automata domains at

their point of contact. This had the effect of maintaining domains of self-replicators

in proximity to other self-replicating domains. However, this was not an effective

strategy for expanding the domains across the lattice but it was an effective strategy

for protecting and maintaining such co-operating domains in the population albeit in

very small numbers.

• The information niche model has demonstrated non-trivial spatial patterning on the

lattice in a one-state and two-state automata population. Three novel, competing

mechanisms emerged through the intrinsic information processing nature of the

153



CHAPTER 6. RESULTS III - SPATIAL PATTERNS

automata and the relationships between them and these directly led to the formation

of the spatial patterns observed. Whether a two-dimensional lattice with discrete,

fixed locations for automata was a constraint on all possible spatial dynamics of a

one-state or two-state automata population is discussed in Chapter 10.
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7
RESULTS IV - INTERACTING ONE-STATE AND TWO-STATE

INFORMATION NICHES

7.1 Introduction

A key characteristic of an autopoietic system is its ability to maintain its identity in the

presence of external disturbances. The process by which it is proposed to do this is called

cognition [7] which can be decomposed into two steps [12] (see Figure 7.1):

1. Assimilation. A change in the internal structure of the system via. the absorption in

some way of elements that are presently external to the entity and their subsequent

integration into the inner processes of the entity, whilst maintaining the original

identity and viability of the system. This process is termed assimilation and it

leads to a temporary change in the entity’s structure without any loss of its global

organisation. Entities that are able to contribute to the production processes are

said to be actively assimilated whilst those entities that are more neutral and non-

participatory are deemed to be passively assimilated with the latter type eventually

being expelled from the system [13].

2. Accommodation (or Adaptation as per [12]). A disturbance that permanently changes

the autopoietic system and leads to a re-organisation of the system. This discrete

evolution of the autopoietic system [7] equips the recently modified system to process

further disturbances of the same kind in a more efficient way. The re-organisation

must continue to re-generate an autopoietic system.
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Figure 7.1: The cognition process [12] within the context of an automata population indicating the two types of
adaptation that can occur: (a) assimilation where a new entity or disturbance becomes part of the structure of
the system without changing its overall organisation, and (b) accommodation where a new entity or disturbance
triggers a re-organisation of the system without its loss of identity as an autopoietic system.

This chapter is part one of a two part investigation into cognition in a self-producing

population of one-state and two-state automata. The focus of these simulations was on the

effect of material disturbances either through the influx of externally generated automata

from an established neighbouring niche or the co-location of automata from two previously

separate populations. Two specific questions were posed: (i) does the identity of either

a one-state or two-state niche re-generate and emerge even when co-located with other

automata?; and (ii) does the identity of an established niche maintain itself or is it lost in

the presence of material disturbances?

The second part of investigating cognition is covered in Chapter 8 which examined the

effect of endogenous and exogenous information flows on the formation of a one-state niche.

7.2 Simulation Set-up

Two developments were required to the information niche model:

1. Allow an influx of automata from an established two-state niche (2A) into an existing

one-state niche (1A). A two-state population under well-mixed conditions was gen-

erated to a steady-state structure that corresponded to niche 2A (see chapter 5). In

addition, a one-state population under well-mixed conditions was also generated to a

steady-state structure that corresponded to niche 1A (see chapter 4). The simulation

model was extended to handle the productions that arose from the interactions

between the one-state and the inflow of two-state automata that constituted these
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separate niches. The model was configured so that there was a unidirectional flow of

two-state automata into the one-state population.

2. Allow the co-location of one-state/two-state (joint) automata populations on the same

lattice. This required the a priori generation of a joint interaction network matrix

(G joint) to capture all possible interactions between the 1,888 automaton types (15

one-state and 1,873 two-state automata) in the joint population.

Once these enhancements were developed and tested the following simulations were

performed:

• Simulation of an intermixed, joint one-state and two-state population consisting

of 1,888 automaton types under well-mixed (see section 7.3) and low diffusivity

conditions (see section 7.4)

• Automata from the niche 1A consisting of nine one-state automata combined with

the automata of the niche 2A consisting of 21 two-state automata simulated firstly

from an initially uniform distribution of automata (see section 7.5) and secondly

where the initial distribution of automata corresponded to their original compositions

in their original niche configurations (see section 7.6)

• An established two-state automata niche 2A disturbing the one-state niche 1A via.

the influx of single two-state automata per time step at a rate Φ= 0.5 (see section

7.7)

7.3 The dynamics of a joint one-state/two-state population
under well-mixed conditions

The joint population consisted of all 15 one-state automaton types (T1..T15) and all 1,873

two-state automaton types (T16..T1888)1 representing a total of 1,888 unique automaton

types. An interaction matrix G joint was generated that identified 400,744 interactions

between all one-state and two-state automata: 207 of those interactions were exclusively

between one-state automata, 355,484 interactions were exclusively between two-state

automata and 45,053 interactions were new interactions between one-state and two-

state automata. In all cases only interactions that produced one-state and two-state

1The indexing used to identify each unique automata type was i = 1→ 1,8888 and so automata type T16 in
the joint population corresponded to the two-state automata type T1 and automata type T1888 corresponded
to the two-state automata type T1873 from the two-state population as per Chapter 5.
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Figure 7.2: The degree distribution of the joint one-state/two-state interaction network. The x-axis were the k
values (the incoming and outgoing edges from each vertex in the network) allocated into bins of width 200.
The y-axis were the log P(k) values for each of the k bins. As can be seen the large majority of vertices in
the network had fewer than 400 edges whilst a very small number of vertices had a large number of edges
indicating a heterogeneous network structure with a small number of highly connected ’hubs’ [136]. Compared
to an exclusively two-state interaction network the joint one-state/two-state network had more hubs with >
2,000 edges due to the inclusion of the one-state automata which constituted these highly connected vertices
in the network.

automata were allowed and added to the joint interaction matrix. The characteristics of

this interaction network is shown in Figure 7.2.

The joint one-state/two-state population had an initial interaction network complexity

of Cµ(G joint)= 18.61 bits, an average structural complexity of < Cµ(T)>= 0.93 bits and a

production threshold of H(X )= 3.9 bits. The population was distributed across a 300 by

300 lattice with an average count of 48 of each type of automata. The simulation was run

under well-mixed conditions (c = N,v = n,Φ= 0 where N was the population size and n the

width of the lattice) for 107 iterations (see Figure 7.3).

From an initial population of 1,888 automaton types only 35 automaton types remained
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Figure 7.3: A graph showing the time-series frequency distribution of the joint one-state/two-state population
over 107 iterations showing that: (i) the one-state niche (1A) was reproduced albeit with a different structure
that accentuated the frequency gap between the four automata clusters ’Fast Growth’ (T15),’Slow Growth’
(T3,T5,T10,T12), ’No Growth’ (T1,T2,T4,T8) and ’Slow Decay’ (T6,T7,T9,T11,T13,T14) - see Chapter 4; (ii)
that the Fast Growth and Medium Growth automata from the two-state niches (2A and 2B) were present in
the same proportions as in their original niche composition albeit at a very low concentration representing just
3.3% of the population. The remainder of two-state automata observed in those original exclusively two-state
niches had gone extinct in the joint population; and (iii) the continual production of a small subset of automata
(T21,T24,T43,T64,T80,T87) that were able to survive in the joint population due to their interactions with
the one-state automata (in an exclusive two-state population these automaton types would go extinct).

in the joint population. The composition of the surviving population was:

• All nine of the one-state automaton types that were present in niche 1A were also

present and accounted for 98% of the joint population. The one-state niche (1A) had

therefore successfully re-generated its identity with a slightly altered structure with

the magnitude of difference between these automata accentuated with T15 more

populous than in the original niche. Examination of the interaction network revealed

that in the initial stages of the simulation a total of 25,729 interactions could produce

these one-state automata and this accounted mainly for the very fast growth of T15.

• 20 of the 42 automata that represented most of the Fast Growth/Medium Growth

category automata from niches 2A/2B were present and which, collectively, occupied
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1.99% of the joint population. The other 22 automata from those niches had gone

extinct and therefore niches 2A and 2B did not re-generate in a joint population.

Only the high performing two-state automata from those niches were able to survive.

• A very low frequency (0.01%) of six two-state automata (T21, T24, T43, T64, T80, T87)

that did not belong to any previously observed niches were continually produced in

the joint population albeit in very small numbers. Their interactions with the one-

state automata enabled their own continual production whereas previously they did

not survive in an exclusively two-state population. This may indicate the assimilation

of new automata.

The persistence of a small subset of the two-state automata within a space (i.e. the

lattice) dominated by a successfully reproduced one-state niche (1A) suggested that a form

of passive assimilation had occurred in the joint population.

7.4 The dynamics of a joint one-state/two-state population
under zero diffusivity conditions

The joint population of one-state and two-state automata was simulated for 107 iterations

under conditions of zero diffusivity on the lattice (c = 0,v = 0,Φ= 0). The results (see Figure

7.4) showed a strong re-generation of niche 1B with T4 (47%) and T2 (44%) dominating the

niche with the one-state ’boundary’ automata T1 and T8 also increasing their concentration

to collectively occupy 5% of the lattice. The remaining automata consisted of a low frequency

of the one-state automata T3,T5,T10,T12 (3%) and a very low frequency of 12 two-state

automata (1%) that were originally the dominant automata in niche 2C.

The composition of the one-state automata in the population was consistent with

niche 1B and hence the one-state niche was successfully re-constructed in a competing

population of 1,888 automaton types. The surviving two-state automata were those that

were operating the ’replicate & lock-in’ survival mechanism in niche 2C which - although

not a superior strategy to the ’protected outgrowth’ mechanism of the one-state population

- provided a degree of competitiveness. Interestingly, all two-state automata that were

operating the ’mutual maintenance’ survival mechanism went extinct even though they

initially grew in number more rapidly than any other two-state automata in the early

stages of the simulation. Their number were depleted as they were replaced by the high

performing one-state automata and the ’replicate & lock-in’ two-state automata where

both groups had used the ’mutual maintenance’ automata as a food set.
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Figure 7.4: The time-series frequency distribution plot for the joint population of one-state and two-state
automata under conditions of zero-diffusivity (c = 0,v = 0,Φ= 0). As can be seen the one-state niche 1B formed
readily (as indicated by the frequency distribution of automata T1,T2,T4,T8 at t = 107) and which came to
dominate the population. The two-state population followed a similar trajectory to that which formed niche
2C however the ’mutual maintenance’ automata that grew quickly early in the simulation (I and II) decayed
rapidly after t = 0.5×106 and eventually went extinct leaving only the ’replicate & lock-in’ automata (III)
which were able to survive in the joint population albeit at a very low frequency.

Examination of the one-state/two-state joint interaction matrix indicated that the

’mutual maintenance’ two-state automata produced the one-state automata in the majority

of interactions that occurred. As such, and as was the case with the ’replicate & lock-

in’ two-state automata (see Chapter 5), the one-state automata were using the ’mutual

maintenance’ automata as a food set in their own production. Given the very rapid growth

of one-state automata across the lattice this led to a high intensity consumption of this

food set at a rate that did not give the ’mutual maintenance’ automata pairs enough time

to produce (maintain) each other thus disrupting their survival mechanism. Consequently,

they were rapidly depleted from the population. The one-state automata appeared to be

little affected by this extinction event. By comparison, the two-state ’replicate & lock-in’

automata decayed in number and this was exacerbated as most of the interactions they
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had with the dominant one-state automata generated more highly competitive one-state

automata. Nevertheless, this group of two-state automata did persist in the population

over extensive time periods and this was confirmed with multiple re-runs of the simulation

(i.e. multiple simulations were performed and after 107 iterations the population was

examined and demonstrated the continued presence of these 14 two-state automata albeit

at a very low frequency).

At t = 1 the production threshold for the joint population was H(X ) = 7.4 bits, the

average structural complexity was < Cµ(T) >= 0.93 bits and the interaction network

complexity was Cµ(G)= 18.6 bits. At t = 107 these were: H(X )= 4.65 bits, Cµ(T)= 0.78 bits

and Cµ(G)= 3.56 bits. Compared to the equivalent measurements from niche 1B and niche

2C:

niche H(X ) bits < Cµ(T)> bits Cµ(G) bits
joint 2.8 0.78 3.56
1B 2 0 2.6
2C 6.29 0.94 8.98

Table 7.1: Comparison of key measurements between the joint population, niche 1B and niche 2C.

As can be seen in Table 7.1 the steady-state joint population under zero-diffusivity

conditions had a lower production threshold compared to the two-state niche 2C (with

a production threshold of H(X ) = 2.8 bits compared to H(X ) = 6.29 bits for niche 2C).

The primary reason for this difference were the fewer remaining automata in the joint

one-state/two-state population of 36 automaton types compared to the 1,568 surviving

automaton types in niche 2C. For similar reasons the interaction network complexity

was also lower in the joint population than niche 2C and, indeed, the difference here was

accentuated due to the more uniformly spread frequency of automata in niche 2C (i.e. a

more uniformly spread population increases our uncertainty over which automata will

interact in the next time-step). It was clear from examination of the population structure

of the joint population compared to niche 2C that the former had two highly dominant

one-state automata (T2,T4) that accounted for nearly 90% of the population. Hence, there

was more certainty over which automata were likely to interact in the next time step (as

quantified with a lower interaction network complexity measurement). Finally, the steady-

state joint population had a lower average structural complexity compared to niche 2C due

to the presence of one-state automata which have a structural complexity of Cµ(T)= 0 bits

thus reducing the population average.
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7.5 The dynamics of the one-state automata of niche 1A

combined with the two-state automata of niche 2B

under initial uniform conditions

The nine automata from the one-state niche 1A and the 21 automata from the two-state

niche 2B were combined into a single population consisting of 30 one-state/two-state

automata2. The interaction network for this population was generated G1A,2B and analysis

of the network revealed that new interactions had been created between the one-state and

two-state automata (see Figure 7.5). Through these new interactions the 1A automata

were produced from up to 252 interactions and the 2B automata from 462 interactions. In

their original independent niches there were 63 and 315 interactions respectively and so

the automata were benefiting with an additional 189 interactions producing 1A automata

and an additional 147 interactions producing 2B automata as a result of their co-location

on the lattice.

A simulation of 90,000 automata interacting under well-mixed conditions was run

with the population initially distributed evenly giving a uniform frequency distribution at

t = 1. The simulation was iterated for 107 iterations and the time-series of the frequency

distribution (see Figure 7.6) clearly showed that the 1A niche automata came to dominate

the population from the outset. By comparison, the 2B niche automata rapidly decayed

to occupy just 1.3% of the population although none went extinct. As such, even though

the two-state automata were not competitive under these conditions they did persist.

Examination of the interaction network showed that each of the one-state automata had a

production advantage over the two-state automata by each being potentially produced from

28 interactions compared to 22 interactions for each of the two-state automata respectively.

The persistence of the two-state automata was partly courtesy of their interactions with

highly concentrated one-state automata that allowed them to replicate themselves (Figure

7.5 illustrates the mutual production between the two sets of automata). However, the

1A niche automata did not re-construct the niche 1A structure because each of these

automata were produced in equal amounts (from 28 interactions each) and the final order

of these automata was due to the stochasticity of the selection of interacting automata (the

simulation was repeated a further four times to confirm this observation).

2Simulations were re-run using the niche 2A automata instead of the niche 2B automata. The results
were quantitatively and qualitatively very similar.
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Figure 7.5: The interaction networks for the set of automata from the one-state niche 1A (T1A), the two-state
niche 2A (T2A) and the two-state niche 2B (T2B). This diagram captured the Tb ◦Ta = Tc relationship with
the direction of the arrow indicating the Ta to Tc relationship which was transformed by the Tb automata as
indicated on the edge label: (a) the one-state niche 1A and two-state niche 2B automata interaction network
where 63 interactions (T1A ◦T1A = T1A) were the one-state automata reproducing each other, 147 interactions
involved T1A and T2B automata that generated all of the T2B automaton types according to T2B ◦T1A = T2B,
315 interactions were generated exclusively from two-state automata T2B ◦T2B = T2B that only generated
2B automata and 189 interactions whereby the two-state automata interacted with one-state automata to
produce one-state automata (T2B ◦T1A = T1A); (b) the interaction network of the 1A niche and 2A niche
automata showing a different structure to (a). Here the transformation of the output from T1A automata by a
T2A automata produced more T1A automata and, likewise, the transformation of the output from the T2A
automata by T1A automata produced T2A automata. Although the topology of interactions networks (a) and
(b) were different the population dynamics and steady-state structure of the population were quantitatively
and qualitatively very similar.
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Figure 7.6: The time-series of the frequencies of each automata in the joint population of automata from niche
1A and 2B distributed evenly at t = 1 and evolved under well-mixed conditions (c = N,v = n,Φ= 0) for 107

iterations. The one-state automata experienced rapid growth leading to their dominance of the population.

7.6 The dynamics of the one-state automata of niche 1A

combined with the two-state automata of niche 2B

initialised to their original niche structure

A joint population was created as per section 7.5 consisting of 30 automaton types: nine

automaton types from niche 1A and 21 automaton types from niche 2B. The initial frequen-

cies of the automata were in proportion to their frequency of occurrence in their original

niches. The assumption here was that each niche initially contributed towards 50% of the

population and, as such, with a population size of 90,000 each niche was represented by

45,000 automata. Within that allocation the original niche frequency distributions were

re-created e.g. the T15 automata type occupied 22% of niche 1A and, as such, would occupy

22% of the 50% allocated to niche 1A giving its initial concentration in the joint population

as 11%. Table 7.2 shows the initial frequencies allocated to each of the 30 automaton types
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at t = 1.

The simulation was run for 107 iterations and the resulting population dynamics are

shown in Figure 7.7. The initial concentration of automata was proportional to its frequency

of occurrence in its original niche composition. As can be seen in Figure 7.7 and Table 7.2

(the final f i column) the one-state automata grew significantly from constituting 50% of

the population at t = 1 to 97% of the population at t = 107 leaving the two-state population

to decay to occupy just 3% of the population.

Figure 7.7: Population dynamics of the joint population of automata from niche 1A and 2B distributed at
t = 1 according to their proportions in their original niches. The population was evolved under well-mixed
conditions (c,v = 0 and Φ= 0) for 107 iterations. As can be seen the three 1A niche automata (T5,T10,T15)
experienced rapid growth and came to dominate the population whilst six 2B niche automata went extinct
leaving a reduced number of two-state automata (I).

The dominant automata (T15,T5,T10) benefited from an increase in the number of

times that they were produced in a joint 1A,2C niche population combined with a higher

initial frequency relative to the rest of the population3. This advantage was quantified

by calculating the interaction network complexity (Cµ(G i)) for each automata type (i) at

3The 1A niche automata T3,T12 which were as competitive and populous as the T5,T10 in an isolated 1A
niche environment were not produced as often from interactions with the 2B niche automata as T5,T10 and
yet were still able to endure in the joint niche population.
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Ti initial f i final f i initial f i - final f i Cµ(G i )

niche 1A

T1 0.034 0.017 -0.017 2.8
T2 0.034 0.024 -0.01 2.8
T3 0.07 0.035 -0.035 2.8
T4 0.035 0.028 -0.007 2.8
T5 0.06 0.17 0.11 4.6
T8 0.033 0.038 0.005 2.8
T10 0.062 0.25 0.188 4.6
T12 0.062 0.056 -0.006 2.8
T15 0.11 0.35 0.24 4.6∑

i f i 0.5 0.97 0.47

niche 2B

T3 0.0001 0 -0.0001 1.6
T4 0.0003 0.0001 -0.0002 1.6
T20 0.00005 0 -0.00005 1.6
T22 0.0002 0.0005 0.0003 1.6
T36 0.032 0 -0.032 3.2
T39 0.1 0.003 -0.097 3.2
T40 0.0003 0.001 0.0007 1.6
T79 0.0002 0.0017 0.0015 1.6
T102 0.11 0.01 -0.1 3.2
T134 0.0001 0 -0.0001 1.6
T137 0.0003 0.0001 -0.0002 1.6
T204 0.0001 0.0005 0.0004 1.6
T207 0.0001 0.0003 0.0002 1.6
T303 0.0001 0 -0.0001 1.6
T309 0.0001 0.0002 0.0001 1.6
T402 0.05 0 -0.05 3.2
T411 0.09 0.0016 -0.084 3.2
T555 0.0001 0.0007 0.0006 1.6
T561 0.0001 0.0005 0.0004 1.6
T766 0.04 0.005 -0.035 3.2
T775 0.08 0.003 -0.077 3.2∑

i f i 0.5 0.03 -0.47

Table 7.2: Comparison of the initial and final frequencies of each automata type in the joint one-state niche
(1A) and two-state niche (2B) population. The interaction network complexity Cµ(G i) of each automata type is
shown. NOTE: the original indices for referencing the niche 2B automata have been used to aid comparison to
the results of Chapter 5 and should not be confused with the niche 1A automata with the same index number.
The simulation used the indices i = 1...30 for each automata with niche 1A automata indexed i = 1−9 and the
niche 2B automata indexed as i = 10−30.
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t = 1 and the results are shown in the last column of Table 7.2. For the 1A niche automata

there was an association of a higher Cµ(G) with better overall performance throughout

the simulation e.g. T5,T10,T15 had the highest Cµ(G) values at 4.6 bits each which was

significantly higher than the next lower measurement at 3.2 bits which was measured for

seven 2B niche automata. A larger number of interactions involving automata that had a

higher frequency in the population yielded a higher Cµ(G i) value e.g. the total frequency

of all automata at t = 1 that could interact to produce: T15 was 0.86, T1 was 0.23 and

the two-state automata T775 was 0.73. As the population reached a steady-state it was

interesting to note that the Cµ(G i) values for the interaction network of each automata

were converging to 2.4 bits. This indicated that the increased order that emerged in

the population as it evolved had reduced the uncertainty about which automata will be

produced i.e. more structure had emerged in the population. Examination of the interaction

network showed that the loss of six two-state automata had reduced the production rate of

all automata e.g. one-state automata were produced from 16 interactions rather than 28

initially, and the remaining two-state automata were produced from 11 interactions from

22 initially.

7.7 Disturbance of the one-state niche 1A from an influx of
two-state niche 2B automata

To examine the effect of an inflow of automata from an established two-state niche (2B)

into an existing one-state niche (1A) a series of simulations were run under well-mixed

conditions (c = N,v = n) with a uni-directional flow of the 2B automata into the 1A

automata niche at various rates in the range 0<Φ< 1. On each iteration of the algorithm

either a new automaton was created from interactions within the existing population or

from the random replacement of an existing automaton with an automaton selected from

niche 2B. The automata transferred from niche 2B was selected probabilistically from

the frequency distribution of the 2B population and, as such, higher frequency automata

were more likely to be selected to be transferred into niche 1A. It was assumed that

the contributing niche 2B continually produced automata to maintain its steady-state

structure and that the loss of its automata to niche 1A was inconsequential (at most, only

one automaton would be removed from niche 2B on each iteration which would represent

a very small fraction of that niche’s population). Niche 2B automata entering niche 1A

were able to interact with incumbent automata in the niche and this caused changes to the

interaction network in the receiving population. Each two-state automata transferred in
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this way replaced an incumbent automata in the receiving niche. Over time this meant

that two-state automata that had become part of the receiving niche - either through influx

or from endogenous production - were themselves possibly replaced by incoming automata.

The simulation was initialised by setting the frequency of the automata in both niches

to the proportions that they were present in their original steady-state niches and the

simulation was run for 107 iterations.

Figure 7.8: Time-series frequency distribution for a simulation of the random replacement of incumbent niche
1A automata with two-state automata from niche 2B at the rate Φ= 0.05. Selection of automata from niche
2B was randomly determined with higher frequency automata in that niche more likely to be selected to
replace an incumbent automata. The initial population was exclusively the one-state automata from niche 1B
ordered in the proportions in which they present in their original niche. As can be seen even with a very low
rate of replacement of Φ= 0.05 the two-state niche 2C was reproduced in this population to the detriment of
the incumbent one-state automata. The automata group labelled as ’I’ were the low frequency automata from
niche 2B.

As can be seen in Figure 7.8 with Φ= 0.05 the structure of niche 2B was reproduced

entirely in the 1A niche with the complete loss of all one-state automata. Examination of

the interaction network in the incumbent population showed that the two-state automata

were being produced from 462 interactions compared to the 252 interactions that produced
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the one-state automata. As the one-state automata went extinct this reduced the number

of two-state interactions to 315 interactions however this was in the absence of any

competition from the one-state automata. For all values of 0<Φ≤ 1 the two-state niche

was reconstructed in the one-state population and came to dominate the population with

a subsequent loss and ultimately extinction of the one-state automata. The value of Φ

determined how quickly this was realised. In other words, given enough time the interaction

network of the two-state niche would be re-constructed in the one-state niche even when

the rate of influx was very low (e.g. Φ= 0.01).

7.8 Perturbation of a one-state population via. the influx of
two-state automata

The simulation was set-up according to that described in section 7.7 except that the

receiving population was now the unstructured one-state population of 15 automaton

types and the contributing population was the unstructured two-state population of 1,873

automaton types. Four simulations were each run for 5×106 iterations with Φ= 0.05,Φ=
0.5,Φ= 0.8,Φ= 0.9 respectively and the results are shown in Figure 7.9.

Figure 7.9a was the result of a very low rate of influx (Φ = 0.05) where there was a

5% chance of a two-state automata replacing an incumbent automata in the population.

There was a slow decay of all incumbent one-state automata (with the exception of T15)

as they were replaced by the influx of two-state automata. T15 initially underwent fast

growth which began to level off towards the end of the simulation. The incoming two-state

automata were self-organising with the niche 2A and 2B automata being produced at a

rate faster than new two-state automata were fluxing into the population. This led to a

delineation of the 2A,2B automata from other two-state automata as the former were now

being produced endogenously to the point where the fast growth automata T95 and T102

from niches 2A and 2B respectively outnumbered the previously competitive one-state

automata T3,T5,T10,T12. The very low rate of influx allowed the interaction network to

dominate population dynamics.

By comparison, Figures 7.9b-d demonstrated the opposite effect whereby the influx

rate was at a rate where the effect of the interaction network was heavily inhibited in

driving population dynamics. For example, the two-state automata that were now present

in the receiving population did not self-organise into niches 2A,2B but rather stayed as

an unstructured sub-population of the one-state population. In Figures 7.9b-c the T15

automata were able to continue to be produced 50% and 20% of the time respectively
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Figure 7.9: The time-series frequency distributions for four simulations of the random replacement of incum-
bent one-state automata population (15 types) with two-state automata population (1,873 types) for various
values of Φ over 107 iterations: (a) with Φ= 0.05 the one-state automata T15 undergoes rapid and continued
growth to dominate the population whilst the remaining one-state undergo a reduction in concentration whilst
incoming two-state automata established niches 2A and 2B concurrently; (b-c) with Φ= 0.5 and Φ= 0.8 res-
pectively the endogenous interactions in the receiving population were disrupted to the point where two-state
automata already in that population were unable to reproduce the niches 2A or 2B; (d) with Φ = 0.95 all
structure was lost in the receiving population as the replacement of automata was driven from an unstructured
two-state population.

and therefore were able to persist under a moderate (Φ= 0.5) to high (Φ= 0.8) influx of

two-state automata. However, as shown in Figure 7.9d with an influx rate of Φ= 0.95 all

structure was lost as the population dynamics were driven 95% of the time by sampling

from an unstructured population of 1,873 two-state automata.
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7.8.1 The effect of removing the perturbation

To examine whether the two-state automata arriving in the one-state population were

being ’assimilated’ or ’accommodated’ four simulations were run that examined the effect

of switching off the influx (Φ= 0) of two-state automata into the one-state population from

t = 2×106 and, in two simulations, re-enabling the influx but at a reduced rate (Φ= 0.65)

from t = 3.5×106. The results of these four simulations are shown in Figure 7.10.

Figure 7.10a shows that the one-state automata underwent a steady decline in concen-

tration in the presence of an influx of two-state automata at the high rate of Φ= 0.85 and

this led to the extinction of all one-state automata except T15. Once the influx of two-state

automata had been disabled (Φ= 0) at t = 2×106 then the one-state T15 automata very

quickly dominated the population. This was because the interactions between the two-state

automata produced the T15 automata more often than they did each other. As T15 grew

in concentration it was selected more and more frequently to interact with itself to create

the self-replication interaction T15 ◦T15 = T15 to reproduce itself. The decrease in the rate

at which T15 came to dominate the population was due to the process of selecting an

automaton to remove from the population which, due to the method used, meant that the

greater the concentration of an automata the more likely it was to be selected for removal

from the population. Given the stochastic nature of the interaction and removal process

this meant that on some iterations non-T15 automata were removed as shown by the

gradual decline of the remaining automaton types. Incidentally, the remaining automata

were primarily the niche 2A and 2B automata which continued to persist throughout the

simulation. The population dynamics from t = 2×106 and with Φ= 0 were driven entirely

by the interaction network which enabled the self-producing networks of this population

to emerge to form a steady state population structure characterised by the dominance

of T15. This population had adapted to the two-state automata as they were now able to

continually produce themselves independently of a steady influx of their type from outside

i.e. the ’operational limits’ [16] of this autopoietic system was entirely enclosed within

the population and was not dependent on any external processes. Figure 7.10c shows the

results of running a similar simulation that re-introduced an influx of two-state automata

(at a rate Φ= 0.65) at the 3.5×106 iteration which led to the reduction in concentration of

T15 and the niche 2A,2B automata as the production of new automata was disrupted by

the influx of two-state automata.

Figure 7.10b shows the one-state automata decaying quickly due to the very high

influx rate (Φ= 0.95) of two-state automata into the population to the extent that they go

extinct. This was evident once the influx rate was disabled (Φ= 0) at t = 2×106 and the
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Figure 7.10: The time-series frequency distributions for four simulations where (a) from t = 1 the influx of
two-state automata was at the rate Φ= 0.85 and was then halted (Φ= 0) at the t = 2×106 iteration for the
remainder of the simulation showing the rapid growth of the T15 one-state automata and the presence of the
two-state automata from niche 2A and 2B; (b) from t = 1 the influx of two-state automata was at the more
aggressive rate of Φ= 0.95 leading to the extinction of all one-state automata by the 26 iteration at which
point the influx of automata was halted (Φ= 0) for the remainder of the simulation leading to the reproduction
and competition between niches 2A and 2B until a divergence event at the 2.25×106 iteration leading to
the domination of the population by the niche 2A automata; (c) the same settings and timings were used as
per (a) except at the 3.5×106 iteration the influx of two-state automata was re-enabled at a lower rate of
Φ= 0.65 for the remainder of the simulation showing a significant reduction in the concentration of T15 until
a new steady-state was reached; and (d) the same settings and timings were used as per (b) except that at the
3.5×106 iteration the influx of two-state automata was re-enabled at Φ= 0.65 which led to the reduction in
concentration of the niche 2A automata and an increase in the concentration of niche 2B automata.

two-state automata completely dominated the population and re-created the competitive

dynamics seen with the formation of niche 2A after a period of competition with the niche

2B automata (see Chapter 5). Figure 7.10d shows the effect of re-introducing an influx of

two-state automata (at a rate Φ= 0.65) which, predictably, disrupts the internal production
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dynamics to reduce the concentration of the niche 2A automata whilst increasing the

concentration of the niche 2B automata. The effect of an external perturbation on two-state

automata production dynamics was discussed in Chapter 5 and was seen again here with

the neutralisation of the competition between those two niches to the extent that they

could co-habit the population.

The rate of Φ= 0.65 was determined4 to be the maximum rate at which a population

structure was retained. With Φ> 0.65 the population structure collapsed due to a signifi-

cant interruption of the internal production dynamics caused by the high rate of influx of

two-state automata.

These simulations demonstrated how ’fragments’ of two-state automata networks could

re-build the network required to reproduce a two-state niche via. the accommodation

of two-state automata into an initially one-state population. This supports Maturana’s

proposed mechanism by which autopoietic systems reproduce [7].

These simulation results also revealed an interesting sequence of phases (see Figure

7.11) that the population went through beginning with the destruction of the incumbent

population via. the rapid assimilation of foreign automata (at a rate Φ = 0.95) through

to the establishment of internal production dynamics (with an impermeable boundary

with Φ= 0) to continually produce those foreign automata which become the incumbent

automata to form either niche 2A or 2B even in the presence of a re-established influx of

two-state automata at a lower rate of Φ= 0.65.

In a chemical or biological setting this would imply that a foreign material that had

successfully entered into an interior space and displaced the incumbent entities, would need

to somehow spontaneously form and regulate its systems interface to prevent the continued

flow of foreign material into its recently claimed space (i.e. establishing Φ= 0). This would

be necessary to allow the relationships between the now encapsulated entities to form a

network of interactions leading to their self-production and the emergence of a steady-state

organisation. This would constitute the reproduction of an external niche within a new

space. Once established this niche would ’re-enable’ its systems interface sufficiently to

allow a regulated flow (e.g. in these simulations the maximum rate was Φ= 0.65) of foreign

material that was sufficient to allow it to structurally couple to its environment. These

simulations have demonstrated the essence of the concept of an autopoietic system as able

to self-produce and re-produce from ’fragments’ of their production networks [7].

4Additional simulations were run in the range Φ= 0.5→ 0.9 to isolate the approximate value for Φ= 0.65
as the maximum rate for a niche structure to maintain itself in the presence of an influx of externally generated
automata.
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Figure 7.11: With Φ= 0.95 two-state automata entered the one-state population which displaced primarily
one-state automata which were removed from the population. At such a high rate of influx all one-state
automata were depleted from the population to leave two-state automata remaining. With Φ= 0 the internal
production dynamics dominated and this led to the formation of either niche 2A or 2B. With an influx of
two-state automata re-established at the rate Φ= 0.65 there was an inflow and outflow of two-state automata
however the niche structure was now maintained. In this illustration the boundary lines of each ’cell’ signify
the rate of influx of automata with solid double lines indicating an impermeable boundary (Φ = 0), large
dashed lines indicating a semi-permeable boundary (Φ = 0.65) and small dashed lines indicating a highly
permeable boundary (Φ= 0.95).

7.9 Summary

This chapter has investigated whether one-state and two-state populations can maintain

and/or reproduce information niches that previously emerged in exclusively one-state or

two-state populations (see Chapters 4 and 5 respectively). Three scenarios were simulated:

a joint population of 1,888 one-state and two-state automata, a small population consisting

of only those automata that constituted the niches 1A and 2B, and the one-state population

(and, separately, in its evolved form as niche 1A) as an incumbent population perturbed by

a uni-directional flow of two-state automata replacing the incumbent automata at various

rates of 0<Φ≤ 1.

The following simulation results were presented and discussed:

• A joint one-state/two-state population consisting of 1,888 unique automaton types

interacting over 106 iterations under well-mixed conditions (c = N,v = n,Φ = 0)

demonstrated that niche 1A emerged and persisted within the joint population. Only

the high-growth/medium-growth automata from niches 2A and 2B were able to

persist in the joint population at a very low frequency. Indeed, the one-state niche

1A dominated and occupied 97% of the population with the two-state automata

occupying the remaining 3.3%.

• A joint one-state/two-state population consisting of 1,888 unique automaton types
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interacting over 106 iterations under zero-diffusivity conditions (c = 0,v = 0,Φ= 0)

demonstrated that niche 1B emerged and dominated the population. Niche 2C did

not emerge although the dominant automata from that niche - the ’replicate & lock-in’

automata - did persist at a very low frequency. The ’mutual maintenance’ two-state

automata from niche 2C did not survive and went extinct.

• A joint population consisting of the niche 1A automata and the niche 2B automata

set to an initially equal concentration interacting over 107 iterations under well-

mixed conditions demonstrated that the 1A automata dominated. However, there

was no discernible structure to the one-state automata that matched the structure of

niche 1A whereas the two-state automata - although of a very low frequency - were

proportioned in accordance with niche 2B. The dominance of the one-state automata

was due to the additional interactions that produced them from the presence of the

two-state automata.

• A joint population consisting of the niche 1A automata and the niche 2B automata

set to an initial frequency distribution that represented their proportions in their

original niche configurations. This population interacted over 107 iterations under

well-mixed conditions. The one-state automata experienced growth at various rates

in the early stages of the simulation whilst the two-state automata decayed rapidly.

The original niche structures were not maintained.

• A one-state automata population of 15 different types perturbed by two-state au-

tomata of 1,873 automaton types replacing incumbent one-state automata at the

rates Φ = 0.05,Φ = 0.5,Φ = 0.8,Φ = 0.95 respectively. The one-state automata T15

proved to be very robust and a very high rate (Φ= 0.95) of incoming two-state au-

tomata was required before it succumbed and eventually went extinct. All other

one-state automata went extinct in the presence of any disturbance of two-state

automata. Further simulations were run to examine the effect of disabling the influx

of automata (i.e. Φ= 0) after 2×106 iterations and in the case where all one-state

automata had gone extinct by this time (as was the case where Φ = 0.95) this led

to the formation of niche 2A or 2B. However, where the one-state automata T15

was still present at this time (as was the case where 0<Φ≤ 0.8 up to 2×106) this

led to it dominating the population. Re-enabling the influx of two-state automata

(at a maximum rate of Φ = 0.65) led to these population structures maintaining

themselves; with Φ> 0.65 the influx of two-state automata disrupted endogenous

production to the extent that any population structure was destroyed.
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Analysis of the above results led to the following observations:

• A uni-directional flow of automata from one niche to another led to the reproduction

of the structure of the donating population in the receiving population; the velocity

with which this reproduction was achieved increased as the influx flow rate increased

to a maximum of Φ= 1

• The co-location of one-state and two-state automata did not affect the ability for one-

state automata to evolve to the steady-state niche 1A under well-mixed conditions.

However, the actual structure of the niche was different e.g. the one-state niche was

characterised by a very high frequency of T15 and a significantly lower frequency of

the other one-state automata when compared to the original niche 1A. Nevertheless,

the ordering and therefore the identity of the niche was reproduced.

• An injection of two-state automata drawn from an established niche (2B) of 21

automata was far more effective in reproducing itself than two-state automata

drawn from a uniform, unstructured ensemble of 1,873 two-state automaton types.

This indicated that an efficient, optimised group of automata (as per the 2B niche

automata) were able to reproduce their own steady-state structure at a far faster rate

across a wider range of conditions (where the rate at which this happened was in the

range 0<Φ≤ 1 then niche 2B would be reproduced). By comparison, an unstructured

population of two-state automata required a specific change in conditions (i.e. the

disabling of an influx of two-state automata at t = 2×106 andΦ= 0) before a structure

could emerge. Within 2×106 iterations of the simulation a two-state population

would be assimilated within a one-state population with the subsequent effect on the

receiving population determined by the rate at which incumbent automata had been

replaced by external two-state automata: (a) with 0<Φ< 0.95 the incoming two-state

automata were able to establish their own production dynamics albeit at a very low

concentration with the T15 one-state automata still present in the population thus

demonstrating that the foreign two-state automata had been accommodated in a

one-state population; and (b) with 0.95 ≤Φ≤ 1 the one-state population had been

eliminated leading to the complete dominance and reproduction of the external,

unstructured two-state population. However, for this two-state population to form a

more ordered structure required the removal of any influx from the external two-state

population. From there, the maintenance of the ordinary population dynamics of a

two-state population under well-mixed conditions (see Chapter 5) were possible. This

177



CHAPTER 7. RESULTS IV - INTERACTING ONE-STATE AND TWO-STATE
INFORMATION NICHES

was a demonstrable example of the importance of the ’operational closure’ concept of

an autopoietic system [16].

• The less structured and diverse that the population of automata that was acting as

the source for perturbing and replacing incumbent automata was the more likely it

was that the incumbent population would persist. Conversely, the more structured

and efficient the source of automata then the less likely the incumbent population

would be able to compete and persist. Hence, in a more general chemical or biological

setting the nature of and maturity of neighbouring cells or systems should play

a contingent role on the viability of an autopoietic system that was exchanging

material with its external environment.

• All simulation results exhibited the active assimilation of two-state automata along-

side, or into, a one-state population that led to changes in the internal structure of

that population. This was due to the interactivity that existed between the one-state

and two-state automata. The passive form of assimilation would only be present

where there was no interaction between automata however this would only occur

in extremely simple (and therefore trivial) populations e.g. where the range of the

incumbent population of automata did not match the domain of any of the incoming

automata, and vice versa5. Given the assumption that these subsets of automata

are self-producing and maintaining means that such mutual exclusion (or disjoint

automata sets) were only possible where both sets of automata consisted of just one

self-replicating automata each e.g. the T1 and T8 one state automata where their

respective domain and range of information processing are disjoint.

This chapter has examined the cognition process of autopoiesis through simulating the

influx and presence of foreign molecules into unstructured or evolved populations. The

next chapter examines cognition as the internal and external flows of information within a

self-producing population and with its environment.

5As a general notion this means that one set of automata can only ever process say the ’0’ symbol and the
other set of automata can only ever process the ’1’ symbol.
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8
RESULTS V - ONE-STATE COMPUTATION NICHE SIMULATIONS

8.1 Introduction

This chapter presents the results of simulating a one-state automata population evolving in

the computation niche model. The three components that constituted the computation niche

model were an environment, a membrane, and an internal replicating population. The

membrane was a network of automata that transmitted and received binary information

across its own network and exchanged information with the external environment. Concep-

tually, the membrane separated the internal interacting population (e.g. an information

niche) from the environment.

To identify the possible steady-states that the population could reach a wide range of

environment settings were simulated. The computation niche model allowed for a wide

range of environmental settings to be simulated: (i) the transmission of environmental

information into the niche (random, a constant ’0’, or a constant ’1’), (ii) the intensity with

which that information was transmitted was given by Φin across the range 0 ≤Φin ≤ 1

increasing in 0.1 increments to give 11 different values for Φin, (iii) the transmission

of information from the niche into the environment and (iv) the intensity with which

niche information was transmitted into the environment was given by Φout across the

range 0≤Φout ≤ 1 increasing in increments of 0.1 to give 11 different values for Φout. Two

approaches were taken to simulate the computation niche model using these parameters.

The first approach was to run a small number of simulations for different parameter

values that represented no noise (Φin = 0), low noise (Φin = 0.25), medium noise (Φin = 0.5)
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and high levels of noise (Φin = 0.75). The aim was to understand, broadly, what the effect

of different rates of environmental noise had on membrane activity and, subsequently, the

different steady states that the population could reach.

The second approach was a more detailed exploration of other possible steady-states

of the population by examining smaller changes in the parameter values. A set of 11

simulations were run for different values of the rate of environmental noise (Φin) being

received into the membrane. In addition, to continue to explore the possible steady states

that the niche could reach, another set of simulations were run for 11 different types of

environmental information (E) being received into the membrane at 11 different rates

(Φin) which required a further 121 simulations. Hence, a total of 136 simulations were

run to explore the possible states that the population could reach under the influence of

environmental noise.

A similar approach was taken to examine the effect of emissions from the niche that

modulated environmental information. Firstly, the effect of the niche emissions on the

environment were examined for four different emission rates (Φout = 0,Φout = 0.25,Φout =
0.5,Φout = 0.75). Secondly, more detailed simulations were run to examine the effect of

different degrees of coupling between the niche and the environment for 11 values of Φin

and 11 values of Φout that required a total of 121 simulations. In total, 125 simulations

were run to explore the possible states that the population could reach where emissions

from the niche could modulate environmental noise.

As such, to sufficiently explore all possible steady states of the computation niche under

the influence of environmental noise - both modulated and unmodulated - required a total

of 261 simulations. The following sections describe the results of these simulations:

• Four simulations to examine the effect of environmental noise on the membrane, with

any subsequent effect on the internal self-producing population, under the following

conditions: no environment (E = ;), a random environment (E = P(e = 0, e = 1) =
[0.5,0.5]), a constant 0 environment (E = P(e = 0, e = 1) = [1,0]), and a constant 1

environment (E = P(e = 0, e = 1)= [0,1]). See Section 8.3.

• 11 simulations of the computation niche under the influence of fixed environmen-

tal noise proceeding in 0.1 increments (E = {[0,1], [0.1,0.9], ..., [0.9,0.1], [1,0]}). See

Section 8.3.5.

• 121 simulations of the computation niche under the influence of random environmen-

tal noise that increased in intensity in 0.1 increments (Φin = [0,0.1, ...,0.9,1) repeated
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for each of the 11 environmental settings ((E = {[0,1], [0.1,0.9], ..., [0.9,0.1], [1,0]}).

See Section 8.3.6.

• Four simulations of the niche coupled to the environment with coupling strength

increasing in 0.25 increments from Φout = {0,0.25,0.5,0.75}.

• 121 simulations of the computation niche in the presence of both environmental

noise and niche emissions, with values in the range 0≤Φin ≤ 1 (environment) and

0≤Φout ≤ 1 (niche), that were increased in 0.1 increments. See Section 8.3.7.

8.2 Set up of the Computation Niche membrane

To examine the effect of a membrane on the production dynamics of a self-producing

population a membrane network (M) was initialised consisting of 15 one-state automaton

types. The membrane network consisted of 15 vertices and a total of 207 edges (see Figure

8.1). The weightings (λ) on each edge were initialised to the normalised frequencies of

the uniform distribution of the population at t = 0 e.g. in a 15 automata population the

concentration of each automata type was 1/15th. Therefore, at t = 0 each edge in the

membrane network was equally weighted at λ= 0.0048. The initial cumulative weightings

of the communication channels received by each membrane automaton (Mi) - relative to

all other automata in the membrane - is shown in Table 8.1.

Mi in-degree (kin) out-degree (kout)
∑
λi at t = 0

∑
λi at tmax with E =; ∑

λi at tmax with E = [0.5,0.5]
M1 12 12 0.058 0.056 0.057
M2 12 12 0.058 0.056 0.057
M3 12 15 0.058 0.056 0.057
M4 12 12 0.058 0.056 0.057
M5 15 12 0.0725 0.074 0.073
M6 15 15 0.0725 0.074 0.073
M7 15 15 0.0725 0.074 0.073
M8 12 12 0.058 0.056 0.057
M9 15 15 0.0725 0.074 0.073
M10 15 12 0.0725 0.074 0.073
M11 15 15 0.0725 0.074 0.073
M12 12 15 0.058 0.056 0.057
M13 15 15 0.0725 0.074 0.073
M14 15 15 0.0725 0.074 0.073
M15 15 15 0.0725 0.074 0.073

Total 207 207 1 1 1

Table 8.1: The cumulative weightings of the incoming edges for each target membrane automata (Mi) compar-
ing the initial weightings (t = 0) with the final weightings (t = tmax) with and without environmental noise
present (E =; and E = [0.5,0.5] respectively). The final cumulative weightings of each membrane automaton’s
incoming edges under those two environmental settings were different from each other and the initial values.
This demonstrated how the membrane adapted to reflect the changing structure of the internal self-producing
population.
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Figure 8.1: The topology of the membrane automata network where the directed edges indicate the flow
of transfer of information between the source automata (Ma) to target (Mb) automata from the interac-
tion relationship Tb ◦Ta = Tc i.e. automata Ma emitted information which was received by Mb that then
subsequently processed that information according to its internal structure. This was a highly connected
network with an average in-degree of 13.8 and an average out-degree of 13.8 giving a 1:1 ratio that indicated a
highly symmetrical structure of 207 edges. As each membrane automaton was highly connected this created
competition within the membrane network in the form of multiple source automata interfering in each others
attempts to influence the activation of shared target automata.

At t = 0 the membrane automata had not yet received an input and, as such, they were

all set to spontaneously emit their nominal output as given by their internal structure.

Where an automaton had the possibility of emitting a ’0’ or a ’1’ then the output was chosen

with equal probability. The probabilities - as shown in Table 8.2 - were always the same

value at t = 0 for successive simulation runs when there was no environmental noise1.

Table 8.2 shows the probabilities of each membrane automata receiving (X ) and emit-

1With environmental noise present then this had the effect of modulating the information received (X ) at
each receiving membrane automaton and therefore the probabilities would be dependent on the value of the
environmental noise.
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Outgoing Edges Incoming Edges
automata P(yi = 0) P(yi = 1) P(xi = 0) P(xi = 1) Accepts 0 Accepts 1 Pactive

max
M1 1 0 0.625 0.375 y n 0.625
M2 0 1 0.625 0.375 y n 0.625
M3 0.5 0.5 0.625 0.375 y n 0.625
M4 1 0 0.375 0.625 n y 0.625
M5 1 0 0.5 0.5 y y 0.5
M6 0.5 0.5 0.5 0.5 y y 0.5
M7 0.67 0.33 0.5 0.5 y y 0.5
M8 0 1 0.375 0.625 n y 0.625
M9 0.5 0.5 0.5 0.5 y y 0.5
M10 0 1 0.5 0.5 y y 0.5
M11 0.33 0.67 0.5 0.5 y y 0.5
M12 0.5 0.5 0.375 0.625 n y 0.625
M13 0.67 0.33 0.5 0.5 y y 0.5
M14 0.33 0.67 0.5 0.5 y y 0.5
M15 0.5 0.5 0.5 0.5 y y 0.5

Table 8.2: The information processing behaviour of membrane automata showing the probability of an
automata emitting (P(Y )) a symbol ’0’ or ’1’, the probability of an automata receiving (P(X )) a ’0’ or a ’1’ and
the probability of the activation threshold (Pactive

max ) being surpassed to activate a membrane automata.

ting (Y ) binary information in the absence of environmental information. Incoming edges

(X ) to membrane automata could carry symbols that were outside of its domain. This

was because some transmitting automata had an output range that surpassed that of

the domain of the receiving automata e.g. dual output automata could emit a ’0’ or ’1’

at different time-steps whilst mono input automata could only ever process a ’0’ or ’1’

but not both. Subsequently, mono input channel automata ignored (i.e. did not process)

information that was outside of their domain. The event of triggering a membrane au-

tomaton was independent for each input symbol, and as such, the input probabilities X i

were not additive e.g. the T6 automaton could accept both ’0’ and ’1’ symbols but could only

execute a transition based on one of those inputs. The input that surpassed the activation

threshold of the automaton was chosen as the transition. The probability of an automaton

activating at time t was the maximum probability of one of its inputs. Examination of

the membrane network determined the nominal Pactive
max value for each automaton which

took into consideration the probability of mono input automata receiving out-of-range

information from dual output automata.

Figure 8.2 illustrates how the input probability distribution (P(Mi)) was calculated

for a membrane automaton. As can be seen the cumulative inputs from each incoming

edge was normalised to give a two-element probability distribution. This distribution
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Figure 8.2: An illustrated example of the calculation of Pactive
max for the membrane automaton M1. Each

membrane automata M j in the set MJ = {M1, M3, ..., M15} transmitted information to M1 (it also transmitted
to itself) in the form of a two-element probability distribution P(M j) = [P(y = 0),P(y = 1)] = 1. The input
function P(M1) was the cumulative probability distribution of all inputs. In this example the weightings on
each edge were assumed to be equal and therefore Pactive

max = max(P(M1))= 0.625. Under changing conditions
the edge weightings modulated the information received by M1, that could lead to fluctuating values of Pactive

max
which subsequently effected the activation behaviour of the receiving automata. Z was a normalising factor.

captured the information that had been collected at the membrane automaton’s inputs. To

determine whether the membrane activated required this input probability distribution

(X ) to be filtered to the information processing domain of the receiving automaton (τ) (as

per equation 3.8) to give X ′ = [0.625,0.375]× [1,0]T = [0.625,0] where T was the transpose

of the vector τ. As such at t = 1 there was a 62.5% chance that the membrane automaton

M1 would activate.

8.3 The effect of a membrane on a self-producing
population

Simulations of the computation niche model were run for 1×105 iterations2 with the

membrane network initialised as described in section 8.2 and the internal population

2 The computation niche model performed a synchronous update of the internal population, compared to
an asynchronous update which was used in the information niche model, and this required significantly less
iterations to generate a steady-state population. The decision to use a synchronous approach was based on the
need to ensure that each distributed function (e.g. a membrane automaton or a population-based automaton)
was processing the same up-to-date information at the same time.
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initialised to a uniform distribution of 90,000 automata across the 15 different one-state

automaton types operating under well-mixed conditions.

Four environmental settings were simulated: (a) with no environmental noise (Φin = 0)

meaning that information flow over the membrane were effected only by the membrane

itself and changes in population structure, (b) the environment randomly generated 0’s and

1’s from a uniform probability distribution, (c) the environment only generated the symbol

’0’, and (d) the environment only generated the symbol ’1’. For one simulation setting the

environment aperture Φ was set to Φ = 0 indicating that membrane automata activity

was determined solely from information received from other membrane automata. For the

remaining three simulation settings the environment aperture Φ was set to Φ= 1 which

meant that the calculation to determine whether a membrane automata was activated was

determined solely by the information it received from the environment. A more in-depth

examination of various values for the environmental aperture were also examined (see

section 8.8). Sections 8.3.1-8.3.3 interpret the results of the population dynamics shown in

Figure 8.3.

8.3.1 The effect of a membrane on production dynamics in the absence
of environmental noise

A computation niche consisting of 90,000 one-state population automata and 15 one-state

membrane automata were simulated for 1×105 with Φin = 0. Figure 8.3a shows the results

of simulating the computation niche in the absence of environmental noise. The processing

in the membrane network and the production of new automata were determined entirely

by the flow of information (i) within the membrane network, (ii) from the membrane to the

internal population, and (iii) changes in population structure reflected in the weightings of

the membrane network edges. The simulation was run for 1×105 iterations and the results

showed that the internal population had evolved to a steady-state structure characterised

by fast growth (1off), slow growth (4off), no growth (4off) and fast decay (6off) automata

respectively. These proportions were similar to those of niche 1D (see Chapter 4) and

confirmed that the computation niche model was producing the expected behaviour of a

one-state automata population under well-mixed conditions. The reason why niche 1D was

reproduced rather than niche 1A was examined in detail and the findings are presented in

Appendix 12.3.

On average the membrane automata were active 64.6% of the time:

The production of population automata for each of these activity groupings were:
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Figure 8.3: The steady-state population structure of the computation niche model after 1×105 iterations with
and without environmental noise: (a) the steady-state population with no environmental noise (Φ= 0) was very
similar to the one-state information niche 1D population structure; (b) a constant environmental noise that
switched randomly from ’0’ and ’1’ led (where the randomly generated number r ≤ 0.5 indicated the generation
of the ’0’ symbol and r > 0.5 generated a ’1’ symbol) to a significant drop in the concentration of six automata
(that were all mono input automata) to generate a new steady-state structure; (c) a constant ’0’ was emitted
as environmental noise and this led to the drop in concentration of all automata that could only process ’1’
symbols; (d) a constant ’1’ was emitted as environmental noise and this led to a reduction in those automata
that could only process ’0’ symbols. For (b)-(d) the environmental aperture was set to Φ= 1 hence membrane
automata were only processing environmental information.
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group membrane automata time active
A M1,M2,M3,M4,M8,M12 67%
B M5,M6,M7,M9,M10,M11,M13,M14,M15 63%

Table 8.3: Examination of the activity within the membrane showed that seven membrane automata were
active for 67% of the time and nine were active for 63% of the time.

group automata produced ( f ) total f
A T1(4), T2(4), T3(4), T4(4), T8(4), T12(4) 0.49
B T5(13), T6(2),T7(6), T9(2), T10(13), T11(6), T13(6), T14(6), T15(27) 0.51

Table 8.4: Examination of the activity within the membrane showed that seven membrane automata were
active for 67% (Group A) of the simulation and nine were active for 63% of the time (Group B). Simulating
these groups separately showed that their activation in the membrane only led to production of themselves in
the internal population indicating a strongly connected network components. The number in brackets indicate
the number of times that automata type could be produced from the interaction network of which it was a
member.

The following observations were made:

• the interaction matrix (G) for these two groups were strongly connected components

i.e. each member of the group was produced by other members of the group exclusively.

The final frequency distribution (total f in Table 8.4) showed a near even split in the

population between the two groups and yet group A consisted of 50% less membrane

automata than group B. This suggested a link between the activity of a membrane

automaton and the success (or not) of the production of its equivalent population

automaton i.e. a more active membrane automaton leads to its equivalent population

automaton being more successful in getting replicated

• the membrane matrix (M) revealed that the group A automata had less incoming

edges than those in group B (kin = 12 compared to kin = 15 respectively)

• the weightings on the membrane network showed that the group A edge weightings

were lower than the group B network weightings. In general terms the higher the

weighting on an edge the more that the information communicated over that edge

influenced the activation behaviour of the receiving (target) automata. In this case

the effect of the edge weightings were counterintuitive - the lower weighted edges in

group A were activating their receiving automata more frequently. This disparity

can be explained as follows: the weightings signify the ’amplitude’ of the information

being sent over that edge, and not the fit between the range of information that

can be sent over that edge and the domain of the automata receiving it. Hence,
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membrane automata that could alternate between emitting a ’0’ or a ’1’ (so-called

dual output automata) would sometimes emit information that was of no value to

the receiving vertex e.g. automaton T6 emitted a ’0’ or a ’1’ over its outgoing edges

to all other automata in the membrane network and for those automata that could

only receive one of those symbols there were occasions where no information was

received as it could not ’read’ all the information emitted by T6. This negating effect

of information on receiving automata was not restricted to mono input automata.

Given that dual input channel automata could receive information from all other

membrane automata there were occasions where they would receive competing

information e.g. a ’0’ over one edge and a ’1’ over another edge. Such competition

between information sources caused interference that decreased the input probability

distribution received by a membrane automaton which subsequently decreased

the probability of that automaton surpassing its activation threshold. Dual output

automata had this effect on all automata in the network and the difference between

the activity of automata in group A compared to group B was simply because they had

less incoming connections to other automata in the membrane which translated into

less interference (from competing information sources) at their inputs. This suggested

that simpler automata were less effected by competing information sources by virtue

of their lower information processing properties i.e. they were less susceptible to

’noise’ from the other membrane automata.

8.3.2 The effect of constant random environmental noise on production
dynamics

A computation niche consisting of 90,000 one-state population automata and 15 one-state

membrane automata were simulated for 1×105 with Φin = 1 and E = [r,1− r] where r was

a real number in the range 0≤ r ≤ 1 randomly generated on each iteration. As such, the

environmental input to a membrane automaton was a probability distribution and not an

absolute value of ’0’ or ’1’. The time-series of the frequency distribution of the population

automata is shown in Figure 8.3b and the change in membrane activity shown in Figure

8.4.

The structure of the steady-state population was similar to that produced by the

computation niche under endogenous information flow only. However there was a noticeable

reduction in the production of the automata T1,T2,T3,T4,T8 and T12. These automata

shared the characteristic of being mono input automata i.e. they could only receive one

type of symbol (either a ’0’ or a ’1’). Given that the generation of environmental noise was
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sampled from a uniform distribution there were times where environmental information

was weighted towards the extremes (e.g. e = 0 or e = 1) which, for mono input receivers,

was detrimental as they were very unlikely to activate - if at all. Whilst this was not

a phenomenon exclusive to these automata - the membrane automata in group B were

receiving the same environmental information - the group B automata could benefit from

the full range of environmental information as they were dual input automata.

Table 8.5 shows a comparison of the ratio of activity of each membrane automata when

the population was isolated from the environment (with Φ= 0) and when it was receiving

randomly generated environmental information (with Φ= 1 and E = [r,1− r]).

automata Φ= 0 Φ= 1 difference
set A 0.33/0.67 0.42/0.58 ±0.09
set B 0.37/0.63 0.34/0.66 ±0.03

inactive/active inactive/active

Table 8.5: Comparison of the average activity of membrane automata (i.e. active or inactive) under isolated
(Φ= 0) and random environmental noise (Φ= 1 and E = [r,1− r]) conditions. A significant reduction in the
activity of the group A membrane automata in the presence of environmental noise was due to the limited
processing of the mono input automata that constituted this group. By comparison, the group B automata
were more active in the presence of environmental information.

As can be seen, the presence of environmental information reduced the activity of the

automata in set A and increased the activity of the automata in set B. This indicated

that the mono input channel automata (group A) were more sensitive to changes in

environmental information. The converse was that the dual input channel membrane

automata (group B) were less effected by the environment and, indeed, benefited as they

were able to process a wider range of inputs and, as such, their activity levels increased.

The additional uncertainty introduced by the presence of environmental noise disrupted

the normal operation of the membrane to the detriment of the simpler automata from

group A and to the benefit of the more complex information processing automata of group

B.

8.3.3 The effect of constant environmental noise of fixed value on
production dynamics

Two simulations were run of a computation niche consisting of 90,000 one-state population

automata and 15 one-state membrane automata for 1×105 iterations with Φin = 1 and

E = [1,0] and E = [0,1] respectively. Such values for E indicated that the probability of the

environment transmitting a ’0’ symbol or a ’1’ symbol was certain over the duration of the

simulation. The time-series of the frequency distribution of the population automata with
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Figure 8.4: Comparison of the behaviour and structure of the internal population with (red) and without
(blue) environmental noise effecting the membrane automata. Environmental noise had the most effect on the
activity of membrane automata - in the absence of any environmental noise the activity range of membrane
automata were tightly grouped in the range 63% to 67% of the time, compared to the range 50% to 100% of
automata active over the duration of the simulation with environmental noise. Such a difference in membrane
behaviour resulted in a different population structure with the automata {T5,T6,T7,T9,T10,T11,T13,T14,T15}
increasing in concentration and the automata {T1,T2,T3,T4,T8,T12} decreasing in concentration.

environmental noise at the fixed value of ’0’ is shown in Figure 8.3c and at the fixed value

of ’1’ is shown in Figure 8.3d.

With environmental noise as a constant ’0’ there was a significant reduction of the

automata T4,T8 and T12 in the population. These automata could only process a ’1’ symbol

and were never activated during the simulation whilst all other automata were constantly

active.

With environmental noise as a constant ’1’ only those membrane automata that could

process a ’1’ symbol were active during the simulation. As such, those automata that could

not process ’1’ (T1,T2,T3) were never activated.

In both simulations the inactive membrane automata were also poorly produced in

the internal population. Examination of the interaction matrix showed that under nor-

mal conditions (i.e. in the absence of environmental noise) the population automata

T1,T2,T3,T4,T8 and T12 were heavily involved in their own production either as self-

replicators (T1,T8) or in interactions with each other. However, due to the inactive nature
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of their membrane counterparts under constant environmental noise of a fixed value, the

number of interactions in the population that could produce them decreased drastically

from 60 interactions producing 15 each of T1,T2,T4,T8 to just 8 interactions producing two

of each, and from 42 interactions producing 21 each of T3 and T12 to just 4 interactions

producing two of each. The constant environmental noise of a fixed value decimated the

production of population automata for those membrane automata that remained inactive

due to their mono input channels.

Figure 8.5: Changes in the final frequency of each automata type as a result of changes in environmental
noise. The baseline (at zero) was the frequency distribution of the population in the absence of environmental
noise. The +/- fractional change in frequency of each automata type is shown in the presence of random
environmental noise (red), fixed ’0’ environmental noise (blue), and fixed ’1’ environmental noise (green). Those
automata with minimal changes across all three environmental noise settings were deemed to be more robust
to environmental noise. Group A automata (mono input) are T1,T2,T3,T4,T8,T12 and the remainder are
Group B automata (dual input). As can be seen the frequency of the Group A automata were considerably
more sensitive to environmental noise than the Group B automata.

Figure 8.5 shows the fractional change in the frequency of each population automata

for each of the three environmental noise conditions examined and illustrates that the au-

tomata in the computation niche responded in three different ways to environmental noise:

(i) the production of T6 and T9 were relatively unperturbed with minimal changes to their

level of concentration in the population, (ii) the production of T5,T7,T10,T11,T13,T14,T15

benefited from the presence of environmental noise (as dual input automata) by success-
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fully occupying a greater part of the population, and (iii) the production of T1,T2,T3,T4,T8

and T10 were heavily influenced by the prevailing environmental information that under

random or fixed value conditions led to some automata (T3,T12) losing over 8% of the

population to other automata. Those automata in (i) and (ii) were part of group B (dual

input automata) and those in (iii) were part of group A (mono input automata) indicating

that automata with a wider ’language’ were more robust to the presence of environmental

noise.

8.3.4 Examining the information processing capacity of automata and
sensitivity to environmental noise

There was an association between the information processing capacity (%)3 of a membrane

automata, its sensitivity to environmental noise and the subsequent effect this had on

the production of new automata. Consider Table 8.6 which show the one-state automata

allocated into one of three partitions based on their % values, and Figure 8.6 which

illustrates the flow of production between those partitions.

Partition %(Ti) automata % activity change edges (e) interactions
1 1 bit T1,T2,T4,T8 9% reduction 1 24
2 1.6 bits T3,T5,T10,T12 9% reduction 2 27
3 2 bits T6,T9 2

T7,T11,T13,T14 3% increase 3 30
T15 4

Table 8.6: The one-state automaton types partitioned into three groups dependent on their information
processing capacities as measured by their respective % values.

Analysis of the behaviour of objects within and across these partitions revealed that

interactions were adhering to the following condition:

Condition: If %(Ta)> %(Tb) then %(Tc)≤ %(Ta)

Ta,Tb automata could not create a Tc automaton of greater information processing

capacity than the interacting automaton with the highest %. The only exception to this was

in the production of T15. It was not always the case that the Tc automaton would inherit

the information processing capacity of the Ta,Tb automaton with the highest %.

Conversely, higher % automata could create an automaton with a lower %. This indicated

that the production of automata flowed in two directions: downwards e.g. from partition 3

3See section 3.5.5 for a reminder of this measure.
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Figure 8.6: Partition map showing the flow of production of new automata between the partitions. In general,
production flows either downwards to partitions of lower information processing capacity (%) or horizontally
within a partition. In only two cases - T5 ◦T3 = T15 and T12 ◦T10 = T15 from partition 2 - did production flow
upwards to a higher partition due to the multiplicative effect of the functional composition of two automata.

to all other partitions and from partition 2 down to partition 1, and (b) horizontally within

a partition.

There was no upward flow of production between partitions with the exception of

partition 2 automata to T15 in partition 3. This was due to the multiplicative nature

of producing a new automaton e.g. the functional composition of two automata with

each having only one edge (e) could only create a new automaton with a maximum of

emax = 1×1= 1 transitions with one having two edges, emax = 2×1= 2 and emax = 1×2=
2 transitions. However, with each automaton having two edges then emax = 2× 2 = 4

transitions and this latter case was how T15 could be constructed from partition 2 automata

(which were all two transition automata).

Furthermore, automata with three transitions could not be created by 1-transition or

2-transition automata. This explained why the automata in partition 3 (with the exception

of T15 which was a 4-edge automaton) performed so poorly in replication. They were only

produced from horizontal production flows within their partition and they also participated

in downward production flows which benefited objects in the lower % partitions which was

not reciprocated. To summarise, production flow occurred where (a) the complexity of either

Ta or Tb was equal to that of the Tc except where (b) the multiplicative effect of functional

composition led to the creation of more information processing capacity and this was only

possible when both Ta and Tb consisted of at least 2 transitions each.

The information processing capacity (%) measure was only applicable to examination

of individual states of an automata as it was a measure of the scope of interactions
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that an automata could undertake at that time (i.e. it’s interaction potential). As such,

its usefulness in analysing multi-state automata was very limited as the information

processing capacity was determined by the present state of the automaton. In multi-state

automata the information processing capacity of the membrane automata varied dependent

on its present state and the alphabet that could be processed whilst in that state i.e. it’s

information processing capacity was determined by the possible transitions from its present

state.

8.3.5 The effect of varying the magnitude and the type of
environmental noise on production dynamics

To further understand the relationship between the environment and population structure

11 simulations were run under various environmental conditions. Starting with constant

environmental noise of ’0’ the population was evolved with the environment aperture set to

Φ= 0.5 and the frequency distribution of each automaton was noted after 1×105 iterations.

This was repeated for each increment of E from (1,0) in 0.1 increments to (0,1). The results

are shown in figure 8.7.

The reference point at P(E) = (0.5,0.5) in Figure 8.7 - which is the midpoint of the

x-axis - was where the population’s frequency distribution most closely aligned to the

structure of the computation niche in the absence of environmental noise. Production of

some automata were sensitive to changes in the environment e.g. T3 benefitted from an

environment where P(E)→ (0,1) but fared less well where P(E)→ (1,0). This was a direct

result of environmental information amplifying or inhibiting the information that was

received by each membrane automaton. Depending on the processing that occurred at each

membrane automata the same environmental information could amplify the activation

of an automaton whilst simultaneously inhibiting the activation of another. For example,

with P(E)= (1,0) (i.e. e = 0) the membrane automaton T1 - which only accepted a ’0’ symbol

- was more likely to activate than T2 - which could only accept ’1’ symbols. This was

because of the summation of inputs to each automaton surpassing (or not) the activation

threshold. As such, environmental information could reduce the activation threshold for a

membrane automaton meaning that it was triggered more frequently, or it could increase

the activation threshold thus reducing the chances of that automaton being activated.
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Figure 8.7: The final frequency distribution of automaton types for eleven different environmental settings
incrementing from P(E) = (0,1) → P(E) = (1,0) and with the environmental aperture set at Φ = 0.5. The
production of seven automata (indicated by ∗) were more sensitive to changes in environmental information.
The x-axis indicated the environmental information setting used for that simulation run and the y-axis
indicated the final frequency distribution of the population automata after 105 iterations. The environmental
setting of P(E) = (0.5,0.5) was the closest match to the computation niche that formed in the absence of
environmental noise.

8.3.6 Examining the intensity of environmental noise on production
dynamics

To examine the effect of the intensity of the flow of information from the environment

on automata production - the influx rate Φin - the previous simulation (of examining the

final frequency distribution of the population for different types of information from the

environment) was repeated for various values of Φin where 0 ≤Φin ≤ 1 in increments of

0.1. This required 121 simulations: 11 simulations for E from E = [1,0]→ E = [0,1] in 0.1

increments for each of 11 different values of Φin. Each simulation was run for 1×105

iterations. The results are shown in Figure 8.8.

As to be expected when Φin = 0 (no environmental noise and where the niche was exclu-

sively processing endogenous information) there was little difference between successive

values of E because environmental information had no effect on population dynamics and

the variation in frequency of population automata was due to the stochastic nature of the
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Figure 8.8: The level of structural change that was occurring within the niche was dependent on the rate
of information flow into the niche from the environment. The y-axis shows the frequency of occurrence of
an automata type at the end of the simulation. Each column - separated by a vertical dotted line - showed
the results from 11 simulations for various environmental values for a given value of Φin as indicated on
the x axis. For example, for each of the 11 simulations for a given Φin the environmental information was
incremented from P(E)= [0,1]→ P(E)= [0,1] in 0.1 increments. For each simulation the computation niche
was allowed to evolve for 105 iterations at which point the frequency of each automata type was recorded.
There were three types of observed changes in the structure of the niche. Group B automaton types were
produced more frequently as Φin → 1, whilst Group A automaton types experienced drastic oscillations in
their rate of production as a result of environmental information and an increasing value of Φin. The rate of
production of the two automaton types (T6,T9) converged at Φin = 1.

membrane activation process. With 0<Φin ≤ 1 the scale of the variation that occurred in

production increased as Φin → 1 for those membrane automata that were more sensitive to

environmental information e.g. the group A automata.

8.3.7 The effect of modulating environmental noise with emissions
from the niche

To examine the effect of emissions from the niche (N ) entering into and modulating

the environment five successive simulations were run with the following out-flux rates

Φout = {0,0.25,0.5,0.75,1} respectively and with the rate of environmental noise into the

niche set to Φin = 1 throughout. The time-series data of the environmental information was
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captured on each iteration of the simulation and this was used to generate a histogram with

the value of each data point allocated into 1 of a 100 bins. This resulted in a distribution of

the likely environmental information values received by the membrane over the duration

of the simulation. The histogram values were normalised and the Shannon entropy of the

resultant normalised frequency distribution was calculated:

Φout H(E)(bits)
0 6.64

0.25 6.48
0.5 6.26
0.75 5.94

1 6.21

Table 8.7: The Shannon entropy of the environment H(E) for increasing rate of emissions from the computation
niche (Φout).

In general as the rate of niche emissions into the environment increased (as indicated

by a higher value for Φout in Table 8.7) the greater the reduction in the entropy of the

environment. However, there was an increase in environment entropy with Φout = 1 as

the environment was now fully mirroring the structure of the niche which had a flatter

distribution than the one seen in the environment with Φout = 0.75. Several subsequent

re-runs of the simulation in the range 0.75≤Φout ≤ 1 identified that there was a steady

increase in environment entropy as Φout → 1. Hence, emissions from the niche at the rate

Φout = 0.75 was the most effective at reducing the entropy of an environment that was

randomly generating binary information (see Figure 8.9).

The emissions from the niche were decreasing the Shannon entropy of the environment

thus reducing uncertainty about its next most likely transmission. Hence, the niche was

ordering the environment which - given the bi-directional flow of information between

the niche and the environment - meant that the behaviour of the membrane should

also become more predictable. There was a noticeable effect on the population dynamics

when environmental information was being modulated by emissions from the niche (see

Figure 8.10) that were similar to that observed when simulating the effect of random

environmental noise on membrane activity (see Figure 8.3b). Although there were slight

changes in the structure of the population for various values of Φin,out, the Shannon

entropy of the frequency distribution of automata at tmax was ≈ 3.6 bits in all cases

indicating that the identity of the computation niche was retained under the influence of

environmental noise that was being modulated by emissions from the niche itself via. the

membrane.
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Figure 8.9: Histogram of the value of E throughout four different simulations with varying values of Φout.
The stronger the coupling of the niche to the environment the greater the reduction in the Shannon entropy
generated in the environment up to a maximum of Φout = 0.75. Higher rates of niche emissions (Φout > 0.75)
into the environment led to a subsequent increase in entropy due to the environment increasingly mirroring
the niche emissions.

To examine the effect of various values for Φin,out on the entropy of the niche emis-

sions and environmental noise, 121 simulations were run for 1×105 for values of Φin =
{0.1,0.15, ...,0.95,1} and Φout = {0.1,0.15, ...,0.95,1}. The history of the niche emissions

and environmental noise during these simulations were used to estimate their respective

entropy (H(E) and H(N )). The results were mapped according to the value of Φin,Φout

and H as can be seen in Figure 8.11a for the entropy of the environment and Figure 8.11b

for the entropy of the niche emissions.

The environment entropy map showed a steep reduction in entropy as Φout → 0.75

before increasing in entropy from 0.75 < Φout ≤ 1. This was consistent with the earlier

finding that demonstrated niche emissions reduced the entropy of the environment. There

was one instance, with Φin = 1,Φout = 0.75, where there was a sudden reduction in entropy

from 5.8 bits down to 5.6 bits.

The niche entropy map showed a shallower profile with entropy decreasing with

Φin → 0 which suggested that the intensity of environmental noise on the membrane (Φin)
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Figure 8.10: The time-series plots of the frequency distribution of the computation niche population over 1×105

iterations for various Φin,out values: (a) the nominal population structure of the computation niche under
endogenous information flow conditions with Φin = 0,Φout = 0; (b) the population structure where a partial
exchange of information between the environment and the niche was occurring with Φin = 0.5,Φout = 0.5
leading to some separation of the T3,T5,T10,T12 concentrations with the reduction in number of the T3,T12
automata due to their only processing single symbols (e.g. ’0’ or ’1’ but not both); (c) the population structure
where information flow within the computation niche membrane was solely from environmental noise (Φin = 1)
and with the environmental noise itself mostly influenced by the emissions from the niche (Φout = 0.75). As can
be seen there was a greater reduction in the production of T3,T12 compared to (b); (d) the population structure
where the ’information coupling’ between the niche and the environment was total i.e. the membrane of the
niche solely processed environmental noise (Φin = 1) and emissions from the niche completely determined
environmental noise (Φout = 1) thus creating a closed cycle of information flow. As can be seen there was a
reduction in the production of T3 and T12.
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increased the uncertainty of the behaviour of the computation niche (as reflected in a

higher entropy of its emissions). Similarly, there was a sudden drop in entropy at the exact

same point as was observed in the environment entropy niche map (Φin = 1,Φout = 0.75).

Figure 8.12 reproduced the simulation data where Φin = 1 and various values of Φout in

the range 0.05≤Φout ≤ 1 were increased in 0.05 intervals. Four states of the computation

niche and environment were identified:

(i) with HE > HN the environmental entropy decreased at a faster rate than the

niche entropy was increased

(ii) there was a crossover point at Φout = 0.45 where HN > HE at which the environ-

ment and niche entropies continued to decrease and increase respectively

(iii) with Φout = 0.75 there was a sudden decrease in both entropies to the extent

that the entropy of the emissions from the niche were now lower than that of the

environment

(iv) from Φout = 0.8 → 1 the entropy of both returned to a value close to that prior

to (iii), however, the environmental entropy began to increase and at Φout = 1 the

entropy of both the niche and the environment were identical

Whilst the environment entropy changed significantly for all values of Φout the niche

entropy remained relatively stable throughout (with the noted exception at Φout = 0.75).

The niche entropy with Φout = 0.05 was 6.08 bits and with Φout = 1 was 6.15 bits compared

to the environment entropy of 6.6 bits and 6.15 bits respectively. The matching entropies

HN = HE with Φin = 1,Φout = 1 were anticipated as the membrane automata only received

information from the environment and the environment exactly matched the emissions

from the niche. The highest ratio of HN /HE was 1.03 with Φ = 0.65 and the lowest

was HN /HE = 0.92 with Φ= 0.05. According to Fernandez et al. [140] when HN /HE > 1

then the system (as represented by its emissions N ) is acting autonomously within its

environment (E) and they suggest that this indicated an autopoietic system.

The sudden change in the environment entropy and niche entropy at Φout = 0.75

warranted further study. As such, additional work was carried out to examine the change

in the entropy of environmental noise and the entropy of niche emissions within the narrow

range 0.7≤Φout ≤ 0.8. By increasing the value for Φout in small increments of 0.002 across

this range, an additional 50 simulations of the computation niche were run. The results

for measuring the entropy of environmental noise are shown in Figure 8.13. As can be

seen the change in entropy is sudden and not gradual. Measuring the entropy of the niche
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Figure 8.11: Maps of the environment and niche entropy measurements over 121 simulations for various
values of Φin,Φout: (a) the environmental entropy map showed a consistent decrease in entropy across all
values of 0≤Φin ≤ 1 and with 0≤Φout ≤ 0.75. However, there was a steady increase in environment entropy
in the range 0.75 < Φout ≤ 1. The mean environment entropy was < HE >= 6.18 bits with a maximum of
Hmax

E = 6.6 bits and a minimum of Hmin
E = 5.67 bits; (b) the niche entropy map showed a shallower profile

where the entropy steadily increased as Φin → 1. There was a significant dip in entropy to its lowest point at
Φin = 1,Φout = 0.75 which corresponded exactly with the minimum entropy point of environmental entropy.
The mean niche entropy was < HN >= 6.1 bits with a maximum of Hmax

N
= 6.2 bits and a minimum of

Hmin
N

= 5.38 bits.
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Figure 8.12: A graph comparing the changes in the Shannon entropy of emissions from the niche and the
environment over 21 simulations for increasing values for Φout. At Φ≈ 0.75 there was a distinct drop in the
Shannon entropy of both niche and environment.

emissions showed a similar sudden drop in value at Φ= 0.75. This suggested the presence

of a phase transition in the computation niche or an anomaly in the model. However, it was

clear from Figure 8.13 that there was no indication of any gradual lead in to the reduction

in entropy of the niche nor the environment. This could have been the result of a possible

error condition being reached in the model. Therefore this result, whilst interesting, could

not be deemed to be reliable. A more detailed investigation into the nature of this sudden

change in entropy of both the environmental noise and the niche emissions is recommended

for future work.

In summary, with emissions of information from the niche at a rate Φ= 0.75 there was

a simultaneous reduction in the entropy of both the niche and the environment. This may

suggest that the coupling of niche and environment had the effect of increasing the order of

both. Further work is required to investigate what effect, if any, this increased structuring

of information had on the structure and behaviour of the niche.
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Figure 8.13: The results of an additional 50 simulations of the computation niche detailing the changes in the
entropy of environmental noise (H(E)) across a narrow range of niche emissions (0.7≤Φout ≤ 0.8) with values
of Φout increased in increments of 0.002.

8.4 Analysis of the activity of the membrane

Analysis of the activation history of the membrane’s automata showed that a set of

membrane states representing the inactive/active status of each membrane automata

existed. A state here was the unique configuration of the membrane’s automata activation

status (i.e. inactive or active) recorded in the 15-element vector Ψ. An algorithm was

developed (see Chapter 3) to examine the time-series data of the membrane automata

activation status
←−
Ψ which had been recorded on each iteration of the simulation. The

algorithm identified each unique state that the membrane entered and how often it entered

that state during the simulation. This algorithm was executed on the results from four

simulations and the results are shown in Table 8.8.

For a simulation of the computation niche in the absence of environmental noise
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Φin E No. of Unique States (Σ) Most Visited Shannon entropy (H(Σ) bits)
0 ; 23,811 0.7% (683) 13.7
1 [r, 1− r] 22,386 6.3% (6,373) 11.9
1 [1, 0] 1 100% 0
1 [0, 1] 1 100 % 0

Table 8.8: The different states that the membrane could occupy for various environmental settings. The
number in brackets indicates the absolute count of the number of times the membrane re-visited the most
often visited state.

(Φin = 0) there were 23,811 unique states that the membrane occupied and in the presence

of random environmental noise (Φ= 1 and E = r) there were 22,386 unique states identified.

These were very small when compared to the theoretical maximum number of states which

was 215 and very large when compared to the number of states that the membrane

occupied in the presence of fixed environmental noise (i.e. e = 0 or e = 1). It was interesting

to note that the presence of environmental noise increased the number of states that

the membrane entered during the simulation and also the number of times that the

membrane re-visited those states e.g. the membrane network spent 6.3% of its time re-

visiting the same network state under random environmental noise compared to the

membrane network spending just 0.7% of its time re-visiting a prior state when there was

no environmental noise. The Shannon entropy of the distribution of states (H(Σ)) indicated

that the presence of environmental noise was introducing more order into the activity of

the membrane (H(ΣE=r)= 11.9 bits) compared to the membrane acting completely under

endogenous conditions (H(ΣE=;)= 13.7 bits). This was an interesting result as it suggested

that the presence of random environmental noise increased the range and diversity of

the activity of the membrane and yet simultaneously introduced a more structured and

predictable pattern of behaviour from the membrane than compared to the membrane

acting purely under an endogenous information flow (i.e. with no environmental noise). In

the context of the membrane as a system interface between a self-producing system and an

environment this increased diversity and structured behaviour of the membrane could be

important to the system adapting (through assimilation and accommodation) to changes in

its environment. This is worth exploring in future work.

By comparison in the presence of constant and fixed environmental noise (Φ= 1 and

E = [1,0] i.e. a constant ’0’ symbol) the membrane occupied and stayed in the same state

throughout the simulation. In this recurring state all membrane automata that could

process a ’0’ symbol were activated and all membrane automata that could not process

this symbol were de-activated (the three membrane automata M4,M8,M12) throughout the

simulation. Likewise, with Φ= 1 and E = [0,1] i.e. a constant ’1’ symbol, the membrane
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occupied and stayed in the same recurring state but this time with all ’1’ symbol processing

membrane automata activated and all membrane automata that could not process ’1’ de-

activated (the membrane automata M1,M2,M3) throughout. This represented a complete

lack of diversity in membrane activity which was reflected in a Shannon entropy of 0 bits.

On very rare occasions a simulation run of the computation niche in the absence of

environmental noise would result in the membrane becoming completely deactivated.

This subsequently led to the cessation of any production of new automata within the

internal population and, hence, the system effectively ’died’. Examination of the status

of the membrane automata immediately prior to this death state did not reveal any kind

of unusual activity. One possible explanation is the extremely unlikely scenario whereby

none of the membrane automata surpassed their activation threshold simply because the

randomly generated number (r) happened to be of a sufficiently high value for all fifteen

membrane automata within the same time step. This was a possible state, albeit rare, that

the membrane could enter. Over several hundred simulations of the computation niche the

’death state’ was observed on four occasions. This was an interesting phenomenon and may

indicate that the presence of environmental noise was necessary to reduce or prevent the

occurrence of a ’death state’ in the membrane. This is discussed further in Chapter 10.

8.5 Cognition and the Computation Niche model

The computation niche model demonstrated a cyclical and hierarchical process where

a primitive form of learning occurred with the coupling between the environment, the

membrane automata and the population automata reducing uncertainty about the future

behaviour of the system based on its previous behaviour and that of the environment. This

learning was stored as information in the weightings of the membrane network edges and

simultaneously in the frequency distribution of the internal population. If such information

represented an internal model of the system and its environment - as suggested by Robert

Rosen [72],[89] and his concept of anticipatory systems - then the computation niche

was anticipating the next state of itself based on past and present information. Such a

system required a continual renewal of the information storage and retrieval processes

to maintain a steady-state distribution of information within the system. It appeared

that the computation niche model was able to simulate such a dynamical process. Recent

developments in information theory such as transfer entropy [141] can be applied to the

computation niche model by treating components of the model as connected stochastic

processes representing a source and destination information source. From this the transfer

entropy method could be used to quantify the information flow between them. Indeed,
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analysing and quantifying a complex system as a computation process has been proposed

by Lizier et al. [142] and the application of such techniques to the computation niche model

is recommended as future research work (see Chapter 10).

The exchange of information between the membrane and the environment demon-

strated a basic form of structural coupling [7]. The niche was effecting the environment

in a way that contributed to its own operation. This suggested that the operational limits

of the computation niche model extended beyond the processes that were defined by the

membrane and internal population alone. As such, the computation niche model could be

useful for examining "extended autopoiesis" [16]. This concept purports that the opera-

tional limits of an autopoietic system should include those external processes that, whilst

not created by the system, it is dependent on.

8.6 Summary

This chapter has investigated the effect of a membrane as the interface between an

interacting population of self-producing automata and an external environment. The main

findings were:

• the membrane had a direct effect on the structure of the population by inhibiting

parts of the interaction network of the internal population

• the relationship between the membrane and the internal population was cyclical

with activation of membrane automata effecting the production of new automata

in the interior which changed the weightings of the membrane network and which

subsequently effected the information that was processed by the membrane

• environmental noise interfered with the normal operation of the membrane that,

dependent on the processing behaviour of each automata, could inhibit or excite

activation of membrane automata

• mono input membrane automata were more sensitive to environmental noise which

led to their reduced activation in the presence of random environmental noise and

their complete de-activation in the presence of constant environmental noise

• the greater the inhibition of the membrane the greater the change that occurred in

the structure of the internal population

• emissions from the niche into the environment modulated environmental noise and

this reduced the Shannon entropy of the environment
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• fixed probability environmental noise had a noticeable effect on the membrane

automata information processing and this led to a change in the population structure.

With environmental noise constantly producing a ’0’ or a ’1’ this created the largest

disturbances to the niche. Conversely, environmental noise that flipped with equal

probability between ’0’ and ’1’ had a more subtle effect on the population structure.

In all cases the degree of disturbance was more pronounced as the magnitude of the

noise that was transmitted into the membrane increased (i.e. as Φ→ 1)

• a niche could ’die’ when all membrane automata were de-activated which was ex-

tremely rare. In such instances the presence of environmental noise was required

to resurrect the membrane automata and prevent any further occurrences. This

observation revealed the critical importance that the environment had in perturbing

a membrane to prevent it entering a ’death state’

• the computation niche model could be used to model related concepts of autopoiesis

such as extended autopoiesis [16], Rosen’s anticipatory systems [89] and in under-

standing how computation occurs in distributed information processing systems

[142]
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9
RESULTS VI - NOVELTY IN A MULTI-STATE COMPUTATION

NICHE

9.1 Introduction

Chapters 4-8 have investigated the emergence of information and computation niches

in populations of one-state and two-state interacting automata. Whilst the results of

those simulations were non-trivial, the construction of novel automaton types through

endogenous growth was not examined. Interactions between one-state automata could only

ever produce other one-state automata, and - given the constraint that all automata must

belong to the special class of finite state transducers called ε-machines (T) - this constrained

the diversity of the population to 15 one-state automaton types (see Chapter 3). By contrast,

automata with two or more states (i.e. | Q |≥ 2 where Q was the set of states of an

automaton) could interact to generate a new automata that had up to Q′ =|Q | × |Q | states.

That new automata could then interact with other multi-state automata to create another

new automata with Q′′ =|Q′ | × |Q′ | states. And so on. Each new (novel) automata produced

by multi-state automata interactions introduced a new information processing function

into the population. However, for the reasons discussed in Chapter 5, the simulations of

two-state automata were restricted to producing two-state automata only. This chapter

describes the results of extending and simulating the computation niche model, to allow

unconstrained interactions between multi-state automata. This allowed for the open-ended

diversification of the population as new automaton types were produced. Any effect that

209



CHAPTER 9. RESULTS VI - NOVELTY IN A MULTI-STATE COMPUTATION NICHE

increasing the average structural complexity (< Cµ(T) >) and the interaction network

complexity (Cµ(G)) of the population had on production dynamics was also examined.

The questions that were being addressed with the open-ended novelty simulations

were:

How does novelty arise in an automata population? The ability for interacting au-

tomata of the ε-machine class with | Q |> 1 states to generate novel automata has been

previously reported [134]. What are the population dynamics of an unconstrained multi-

state automata population?

What was the effect of novelty? In a population that initially consisted of automata

that could self-replicate and where some mutual production was occurring, how did novelty

affect an established or emerging population?

How does novelty compare to self-replication as a competitive strategy? Due to

the requirement of the computation niche model for a constant population size to be

maintained the generation of new automata would displace incumbent automata (some of

which were self-replicators and some of which may be new types of automata). Simultane-

ously, self-replicators were reproducing themselves which also displaced other incumbent

automata. Given the synchronous update nature of the computation niche model all possi-

ble productions were carried out within a single time step. Changes in the frequency of

self-replicating automata and novel automata were recorded during the simulation.

What can novelty tell us about the evolution of self-producing populations? As

has been seen with the information niche and computation niche models, with a one-state

population there were a finite number of steady-state organisations that persisted (i.e. a

niche). These niches could not evolve in the Darwinian sense of the word and, as such, they

have been described as pre-evolutionary models. To evolve would require the ability for the

population to generate types of automata that were different to themselves and to do so in

an unrestricted manner i.e. without any constraints on the type of automata that could be

produced. An environment with limited space and limited resources created a competitive

pressure that acted as a form of constraint on the type of automata that could persist.

The interplay between creating new automaton types and their ability to subsequently

persist would provide some insight to how a self-producing system may adapt (through

assimilation and accommodation) over time.
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9.2 Simulation Setup

The simulation of open-ended generation of novel automata used the computation niche

model described in Chapter 8. The ability to generate multi-state automata with no

constraints was added to the model. For the reasons explained in Chapter 8 the synchronous

update of the population was more appropriate for examining the rate of novelty generation

in the population where all possible interactions - and subsequent production of automata -

were considered in each time step. By comparison, the asynchronous update of a population

only produced one new automaton on each iteration of the simulation and this would omit

a significant number of other possible interactions. Hence, in the open-ended simulations

reported here at the end of each iteration of the simulation all possible interactions were

performed and all valid productions of novel or existing automaton types were accounted

for. This represented the maximum development, or progression, of the population as a

whole given its current structure and the completion of one full update of the population

on each iteration of the simulation was referred to as a generation of the population.

The environmental condition experienced by the population was that of a well-mixed

environment (c = N,v = n,Φ = 0). Given the primary interest here of examining the

generation of novelty within a population, factors such as environmental perturbations or

noise were not considered. The population size was fixed at 99,950 automata and initially

consisted of 129 one-state and two-state automata that were self-replicators with an ability

to produce novel automaton types. This initial population was the seed (i.e. Generation 1

of the population) from which novel automata could be generated.

9.2.1 Generating and characterising the seed population

It was essential that the initial population of automata (at t = 1) had the potential to

generate new automaton types beyond the initial set of automata whilst also being able to

reproduce itself to a degree and thus act as a competitor to novel automata. The following

criteria defined the requirements for selecting the automata that would form the initial

generation:

1. The selection of automaton types to use in the initial population was guided by the

general assumption that - in the most basic self-producing system - self-replication

is likely to have preceded the generation of novelty. Self-replicators would have the

potential to interact with other self-replicators and therefore had the potential to

generate novel automaton types
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2. One-state automata were insufficient on their own as a seeding generation as they

could not generate automaton types that had more states than themselves. Therefore,

at least two automata consisting of two or more states were required (in addition to

self-replicating one-state automata) for constituting a viable seed population

3. The initial population should have the minimum complexity required to kick-start

the generation of new automaton types whilst simultaneously not introducing any

bias into the selection of that seed population

4. The initial population should include interactions that do not generate novelty

e.g. self-replication or interactions that re-produce the automata within the seed

population. This ensures that the competitive interplay between the re-production of

existing automata versus the introduction of novel automata could be examined

The seeding generation of automata that met the above criteria consisted of all one-

state and two-state self-replicating automata. The presence of the one-state self-replicating

automata satisfied conditions 1 and 3, and the two-state self-replicating automata satisfied

conditions 1,2 and 4. The presence of these self-replicating automata ensured that no bias

had been introduced into selecting the initial population (which satisfied condition 3). The

seeding population was generated from examining the interaction networks for a one-state

automata population (G1) and a two-state automata population (G2). Those automata that

were identified as self-replicators in G1 and G2 were added to the initial generation (Ts).

The algorithm for generating the seed set is shown in figure 9.1.

Figure 9.1: The seed population was derived from all one-state and two-state self-replicating automata of
which there were 10 one-state and 119 two-state automata for a total seed population of 129 automaton types.

The seed consisted of 10 one-state automata and 119 two-state automata. The average

structural complexity was < Cµ(T) >= 0.87 bits and the interaction network complexity

was Cµ(G)= 12.98 bits. There were 7,978 closed productions (excluding self-replications)

and 5,677 novel productions that generated automata that were outside of the seed set.

Figure 9.2 shows the results of simulating the population dynamics of the seed population

and where the production of new automata were prohibited. As can be seen the seed

population evolved to a steady-state computation niche with no loss of any of its automata.

This simulation provided an important insight to the dynamics of the seed population in
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Figure 9.2: The interaction and production dynamics of the seed population over 200 generations where the
production of novel automata was prohibited. The seed population had structured itself into four categories of
automata: (A) Fast Growth - consisting of a single one-state automaton (S10) that accounted for 7.2% of the
population; (B) Medium Growth - consisting of four two-state automata (S23,S28,S35,S37) that collectively
accounted for 11.2% of the population; (C) Slow Growth - consisting of 34 automata (four one-state and 30
two-state automata respectively) that accounted for 53.3% of the population; (D) No Growth - consisted of
three two-state automata (S38,S57,S94) occupying 2.5% of the population; and (E) Slow Decay - consisted of
the remainder of the seed population with five one-state automata and 82 two-state automata that occupied
25.8% of the population.

the absence of novelty and which provided a baseline for comparing the effect of novelty on

this same population.

9.2.2 Setting up the simulation

The simulation was initialised with an average number (775) of each of the 129 automaton

types of the seed population which were allowed to interact under well-mixed conditions.

Interactions between automata proceeded with the additional step of validating that the

new automaton (Tc) satisfied the criteria for an ε-machine (see chapter 3 and [126]). Any

new automata type (Tc) generated from this process was added to the population by

increasing the length of the frequency distribution vector f by f ′ =| f | +1 to generate

a new index | f ′ | that became the unique identifier (k) for that automata type in the
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population and the membrane. The new automata type (Tk) was added to the set of all

automaton types (T) and the interaction that generated that automata type was added to

the interaction network (G i, j = k) where i, j represented the interacting automata Ta,Tb

that produced it. A membrane automaton (Mk) was added to the membrane network

and the Mx (incoming) and My (outgoing) edges to/from Mk were added according to

Gk. This process was repeated for all valid productions of novel automata at time t. The

normalised frequency distribution and the edge weightings in the membrane network were

re-calculated at the end of the time step and after all valid productions had been completed.

The new automata were available to participate in interactions at the next time step (t+1)

of the simulation subject to their equivalent membrane automata being activated in the

membrane (as per the normal operation of the computation niche model).

The population was initialised with the seed automata consisting of 129 self-replicators.

The simulation was set to run for 50 generations and the data shown in Table 9.1 was

collected at the end of each generational cycle.

9.3 The generation and effect of novelty within a
computation niche

Figures 9.3 and 9.4 show the effect of novel automata being generated from an evolving

population which initially contained only the seed population. As can be seen the endoge-

nous growth of new types of automata had a significant impact on the seed population

with 85 seed automata going extinct (three one-state automata and 82 two-state automata)

from the Slow Decay category with only two automata from that group remaining at the

50th generation (g = 50).

The normal production dynamics of the seed population had been displaced by the 12th

generation where there was a sudden decay in all seed automata (see Table 9.2). The novel

automata had grown to occupy 84% of the population by the end of the simulation.

Examination of the population dynamics identified four phases that the population

progressed through and these were characterised as Phase I - Diversification, Phase II -

Competition, Phase III - Penetration, and Phase IV - Saturation (see Figure 9.5, Figure 9.6

and Figure 9.7):

I. Diversification (generations 1-3). The first transition of the population was domi-

nated by an explosion of new automaton types with 7,322 being introduced in just three

generations. This endogenous growth of novel automata immediately displaced the in-

cumbent automata from the initial population which experienced a reduction in their
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Data Acquired Variable Explanation
Average Structural Com-
plexity

< Cµ(T)> bits The internal structure of each au-
tomata type was quantified from es-
timating its structural complexity.
The average structural complexity
of all automata in each generation
provided a quantitative measure of
changes within the population

Interaction Network
Complexity

Cµ(G) bits The interaction network complex-
ity measure provided a quantitative
measure of the information required
to describe all interactions that could
occur and the likelihood with which
each production could occur. An inter-
action network complexity that was
increasing could signify two impor-
tant changes: a population that was
becoming increasingly diverse and/or
a population that was becoming in-
creasingly uniform

Changes in frequency
distribution

f The proportion of each automata
type in the population was captured
at each time step which revealed
whether an automata type was in-
creasing or decreasing in number

Min, Max, Mean and
Standard Deviation

min(Q), max(Q),
mean(Q), std(Q)

The statistical profile of each gen-
eration was examined: automata
with the least number of states
(min(Q)), the most number of states
(max(Q)), the average number of
states (mean(Q)) and the standard
deviation of the states of automata
in the population as a whole. This
provided a general indication of the
composition of the population at that
time

Number of automaton
types

| T | A count of all unique automaton
types in the population at time t

Table 9.1: The list of quantitative measurements that were used to characterise the endogenous growth of
novel automata from a seed population.
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Figure 9.3: The results from simulating the population dynamics over 50 generations leading to the introduction
of new (novel) automata that displaced the seed population. As can be seen the seed population decays after
the 12th generation due to the significant diversification of the population through the introduction of novel
automaton types.

concentration in the population. The interaction network grew in size with 7,732 new

vertices added. This was accompanied by a moderate increase in the interaction network

complexity (from 13.25 to 13.77 bits) and a significant increase in the average structural

complexity of the population (from 1.38 bits to 1.93 bits) - see Figure 9.5a. Even though

this phase was the shortest it experienced the most significant rate of introduction of new

automaton types of all the phases - see Figure 9.5b.

II. Competition (generations 4-8). The second transition was characterised with in-

creased competition between the incumbent automata and novel automata. The recently

introduced automaton types were establishing themselves in the population and increased

the range and number of their interactions with other automata. This displaced more of

the incumbent automata which saw their relative proportions decrease over this period.

The formation of new edges between existing automaton types in the interaction network

proceeded at a faster rate than the introduction of novel automaton types (see the sharp

reduction in the rate of change that was occurring to the population as illustrated in Figure

9.6). This introduced more structure into the population. This led to greater certainty
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Figure 9.4: The population dynamics over 50 generations isolated to: (a) the dynamics of the seed population
only (the novel automata dynamics have been omitted) showing the rapid decay of seed automata by the
12th generation; and (b) the dynamics of the novel automata only which appeared from generation 1 showing
growth and diversification as the simulation progressed.

217



CHAPTER 9. RESULTS VI - NOVELTY IN A MULTI-STATE COMPUTATION NICHE

that the next automaton to be produced would come from existing automaton types rather

than the generation of a new type of automaton. The reduction in the interaction network

complexity from 13.69 to 13.15 bits (see Figure 9.5a) supported this observation. As the

majority of productions were of existing automata this led to a significant decline in the

rate at which novel automata were being introduced e.g. 570 novel automata introduced

over five generations compared to the previous phase of 7,322 novel automata within just

three generations - see Table 9.3 for more information on the rate at which novel automata

were introduced in each phase and see Table 9.4 for the changes in the interaction network

complexity (Cµ(G)) across the phases.

III. Penetration (generations 9-22). The third transition was defined by the continued

growth and establishment of existing automata that increased their concentration in the

population. The continued rise in frequency of these automata, with the simultaneous

decrease in the frequency of the seed automata, introduced more uniformity into the

distribution of automata within the population. This was commensurate with the sharp

increase in the interaction network complexity from 13.18 to 14.51 bits. This internal

consolidation of existing automata was also supported by a significant reduction in the

rate of at which novel automata were being produced over this period (an average of 72

new automata per generation).

IV. Saturation (generations 23-50). The final phase was characterised by the rate of

change in the population reducing significantly. This phase was similar to the previous

phase - increased penetration and consolidation within the existing population at the

expense of new automata being introduced - except that the inter-generational changes

were significantly fewer. For example, the production rate of novel automata had reduced

from 72 per generation (in Phase III) to just 42 per generation in this phase. The rate

of change within the interaction network had also reduced as fewer new automaton

types were being added to the population. Indeed, the change in the interaction network

complexity (from 14.57 to 15.71 bits) saw a significant slow down with an increase of just

0.04 bits per generation in this phase compared to 0.17, 0.1 and 0.07 bits for the phases

I-III respectively.
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Figure 9.5: Changes in the population over 50 generations could be classified into four distinct phases I -
Diversification, II - Competition, III - Penetration and IV - Saturation : (a) the Interaction Network Complexity
(Cµ(G)) vs. the Average Structural Complexity of the Population (< Cµ(T) >) over 50 generations; (b) the
Number of automaton types in the population at the end of each generation.
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Figure 9.6: The average rate of change in automata frequency in the population indicating that an initial and
significant re-structuring of the population (Phase I shown in red) was followed by a drastic reduction (Phase
II shown in blue) and levelling off of the rate of novelty and the emergence of a steadier and more incremental
introduction of novel automata (Phase III and IV in yellow and green respectively).

Original Category f at g = 50 with Seed Automata Only f at g = 50 with Novel Automata
A - Fast Growth 7.2% 1.32%
B - Medium Growth 11.2% 2.36%
C - Slow Growth 53.5% 11.65%
D - No Growth 2.5% 0.6%
E - Slow Decay 25.8% 0.0006 %

Table 9.2: Comparison of the seed population at the end of 50 generations in the absence of the generation of
novel automata vs. the seed population in the presence of novel automata. The structure of the seed population
was disrupted leading to a significant reduction in the number of seed automata down to just 15.93% and the
extinction of 82 of the 129 automata that were originally present at t = 0.

Phase Generation No. of Types (change) Average Rate of Change
I. Diversification 1-3 129 to 7,451 (7,322) 2,440/gen
II. Competition 4-8 8,253 to 8,823 (570) 114/gen
III. Penetration 9-22 8,968 to 9,977 (1,009) 72/gen
IV. Saturation 23-50 10,010 to 11,302 (1,292) 46/gen

Table 9.3: Comparison of the composition of the population by the number of unique types and the rate at
which new automata were being introduced within each phase.
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Phase Generation Cµ(G) (change) Rate of Change in Cµ(G) per Generation
I. Diversification 1-3 13.25 to 13.77 (0.52) 0.17 bits/gen
II. Competition 4-8 13.69 to 13.15 (-0.54) 0.1 bits/gen
III. Penetration 9-22 13.18 to 14.51 (1.33) 0.09 bits/gen
IV. Saturation 23-50 14.57 to 15.71 (1.14) 0.04 bits/gen

Table 9.4: Comparison of the Interaction Network Complexity (Cµ(G)) and how much it changed (Rate of
Change) across the four phases of the population.

Phase Generation Average Cµ(T) (change) Qmin Qmax Qmean
I. Diversification 1-3 1.38 to 1.93 (0.55) 1 8 3.75
II. Competition 4-8 1.94 to 1.96 (0.02) 1 12 4.5
III. Penetration 9-22 1.97 to 2.03 (0.06) 1 17 4.8
IV. Saturation 23-50 2.04 to 2.13 (0.09) 1 34 5.3

Table 9.5: Comparison of the average Structural Complexity of the population Cµ(T) and the automata with
the least number of states (Qmin), the maximum number of states (Qmax) and the mean number of states
(Qmean) in the population for each of the four phases. The change in the structural complexity of the population
is shown in brackets and was the difference between this phase and the previous phase e.g. the seed population
at t = 0 had an average structural complexity of Cµ = 1.38 bits compared to the average structural complexity
of the population at the end of the 3rd generation with Cµ = 1.93 bits.

Figure 9.7: A graph comparing the relative concentration of the automata present at certain generations
split into the generation in which the automata was introduced to the population. As can be seen the seed
population (blue) decayed as the simulation proceeded. The novel automata that were introduced in Phase I
(1-3 shown in red) actually increased in number over three generational phases and decayed at a slower rate
than the seed population. Subsequent novel automata introduced in Phase II (orange) and Phase III (green)
increased in concentration but at a much slower rate than the novel automata introduced in Phase I.
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Figure 9.8: Comparison of the mean, mode and the maximum estimates of the structural complexity present
in the automata population in each generation.

The interaction network complexity (Cµ(G)) of the seed population at t = 0 was 12.98

bits and underwent a very modest reduction to 12.82 bits when dynamics were driven

under closed conditions (i.e. novel automata were forbidden) and significantly reduced to

8.33 bits in the presence of increased competition from novel automata being produced and

introduced into the population. The average structural complexity (< Cµ(T)>) of the seed

population at t = 0 was 0.87 bits which was retained under closed conditions and increased

to 0.9 bits in the presence of competing novel automata indicating that automata with a

lower structural complexity were, on average, less competitive and were more likely to go

extinct (see Table 9.5).

Whilst the population was still generating increasingly complex automata throughout

the simulation the average structural complexity only incrementally increased whilst the

overall mode of the structural complexity of the population was locked in from the 8th

generation (see Figure 9.8). These findings were consistent with what would be expected

from a ’passive evolution’ process [143].
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9.4 Summary

This chapter has examined the introduction of novel automata into an existing population.

The key findings were:

• An interacting seed population that consisted of 129 self-replicating and network-

replicating one-state and two-state automata interacting under the constraint that

novel types of automata were forbidden, self-organised into a steady-state organi-

sation structured into five clusters: A - Fast Growth automata (1 off), B - Medium

Growth (4 off), C - Slow Growth (34 off), D - No Growth (3 off) and E - Slow Decay

(82 off)

• The same simulation was re-run but now with novel automata able to be produced

and this resulted in the population failing to self-organise into a distinct, invariant

organisation and instead transitioned through four phases: Diversification, Competi-

tion, Penetration and Saturation. After an initial explosion of novel automata (the

Diversification phase) and within three generations of the population, the growth

rate of novel automaton types rapidly plateaued as internal competition came to

dominate (the Competition phase) leading to the establishment of novel automata

as the dominant types in the population (the Penetration phase) prior to a gradual

slowing down of both the level of competition within the population and the rate at

which new automaton types were produced (the Saturation phase)

• The initial (seed) population was devastated by the endogenous growth of novel

automata and its size was reduced from occupying 100% of the population to just

16% at the 50th generation and with 82 of the original 129 automata going extinct

• Novelty removed any existing structure within the population and, in the presence

of continuous novelty, prevented the establishment of any discernible structure.

This was demonstrated by comparing the dynamics of the seed population with and

without novel automata. In the former a steady-state emerged - a niche - whilst in

the latter this ordering of the population was prevented. This was entirely due to

the displacement of incumbent automata with novel automata. This was similar to

the observed behaviour of a constant influx of automata as seen in the information

niche results (see Chapter 4 - 7). Whilst the origin of these disruptive automata

was different - an inflow of new automata from an exogenous source compared to

the endogenous growth as presented in this chapter - they both demonstrated the
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disruptive effect that automata that were not part of an existing interaction network

had on the dynamics and structure of the population.

• The disruptive effect of novelty raised questions about the mechanism by which

it could be suppressed - possibly through some regulatory feedback mechanism

- to allow a steady-state structure of the population to emerge. This highlighted

the tension between diversification and consolidation in the population. A system

that could intrinsically and periodically move between these two extremes could

be demonstrative of a form of organisation that maintains itself in a "window of

viability" [144],[52]. A similar observation was made with the reproduction of a

niche from the network fragments transferring into a neighbouring population as

presented in Chapter 7. The simulation of a system to demonstrate such viable

behaviour could be the focus of future work.
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DISCUSSION

Chapters 4 - 9 presented the results from simulating the emergence and dynamics of

information niches and computation niches under various environmental conditions and

perturbations. This chapter summarises those results and evaluates the findings in light

of the research questions posed in Chapter 1 and discusses them with reference to related

work in the literature.

10.1 Summary of Simulation Results

Chapter 4 presented the results of simulating a population of one-state automata interact-

ing and evolving over a large number of iterations. The emergence of different information

niches for various environmental conditions were identified and the information content of

each niche was measured. This revealed that the ability for the population to transform

its structure in response to environmental perturbations was contingent on its present

structure and the nature of the perturbation both of which determined the amount of

information within the population at that time. It was shown that the ’fitness landscape’

that was sculpted by the environment was not traversable by the population if there was

an insufficient amount of information present in the population, and that was required to

undergo the necessary structural transformations. This finding is an original contribution

to the field of autopoiesis.

This chapter also revealed that there were initially a very large number of production

networks that were competing with each other to survive. Such inter-network competition
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was in addition to, and related to, inter-automata competition whereby the extinction of an

automata type could lead to the collapse of all networks that were dependent on it. Con-

versely, automata that were produced by several different networks tended to persist due to

the inherent redundancy with which they could be produced within the population. Further

analysis of these networks revealed that the most competitive networks had four properties:

(i) they were strongly connected indicating that each automata type in the network was

produced at least once by other automata in the same network; (ii) that when isolated

these networks were dynamically stable over time with no loss of any of their constituent

automata; (iii) they were hierarchical with larger networks decomposable to irreducible

elementary networks which acted as the building blocks for larger networks; and (iv) collec-

tively the surviving networks had redundancy i.e. each automata type in the network could

be produced from more than one (and typically several) different networks. These results

are comparable to those discovered by Crutchfield & Gornerup [36] whilst there were two

new observations from my work: (i) the discovery that the quantified information content

of a niche can explain the potential for a population to transform its structure to occupy

different niches in the environment; and (ii) the explicit definition of an information niche

as a population that transforms itself in response to changing environmental conditions to

reach a new steady-state. Crutchfield & Gornerup’s equivalent structures were called meta

machines and whilst this is an accurate description of the composition and relationships

of the population (a machine of machines) it does not capture the important observation

that different population structures form under different environmental conditions nor

does it capture the equally important observation that each steady-state structure has

a unique measure of information. Referring to these steady-state structures as informa-

tion niches adds the necessary ecological/evolutionary context required to appreciate the

similarities of the dynamics and self-organising behaviour of these systems to biological

behaviour. Another closely related work is that of Fontana’s algorithmic chemistry which

demonstrated similar structures emerging from an initially disordered state. In his work

Fontana describes the emergence of Level 0 (self-replication) and Level 1 (networked

replication) organisations - with the latter being a self-maintaining organisation - that

are equivalent to Crutchfield & Gornerup’s ε-machine and meta-machines respectively.

Fontana’s Level 1 organisation is similar to an information niche however, as was the case

with the Crutchfield & Gornerup work, there is no explicit consideration of how Level 1

organisations behave under varying environmental conditions. As such, the information

niche model offers a more powerful explanatory narrative than either of these two models

for how autopoietic systems may form under a range of environmental conditions.

Chapter 5 presented the results for simulating a population of two-state automata
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interacting and evolving over a large number of iterations. This led to the emergence

of different two-state information niches for various environmental conditions. The two-

state automata population was significantly more diverse (1,873 unique automaton types

compared to 15 automaton types in a one-state population) and this led to more complex

population dynamics with competition now occurring at the automata, network and the

niche level. Under well-mixed environmental conditions with automata production driven

entirely from endogenous automata the formation of two competing niches emerged and

after a period of co-existence an abrupt event occurred that led to the demise of one of

the niches. By comparison, in the presence of environmental perturbations those same

competing niches were able to co-habit and co-exist within the same space. Finally, under

conditions of non-diffusivity and where production of automata was dominated by local

interactions only then did two new competing mechanisms emerged that introduced new

population dynamics - the ’replicate & lock-in’ and ’mutual maintenance’ mechanisms

(Chapter 6 examined these mechanisms in detail). There does not appear to be any pub-

lished work that has achieved similar results nor interpretations. The work of Gornerup

& Crutchfield [134] examined the population dynamics in an open-ended model where

multi-state ε-machines could be generated and, whilst that particular work is more related

to my work on open-ended novelty (more on this shortly) what is relevant here is that their

results do not demonstrate nor do they discuss the emergence of novel forms of competition

and competitive strategies between networks of interacting automata. The relationship

between an increased level of diversity in the population, and an subsequent increase in

the range and type of competitive dynamics that emerge under varying environmental con-

ditions, has been demonstrated here and future work could examine three-state automata

populations.

Chapter 6 presented findings on the spatial patterns that emerged on the lattice

environment from the one-state and two-state simulations of the information niche model.

It was observed that interesting spatial configurations emerged only under environmental

conditions of zero mobility of automata (i.e. no diffusive mixing). The one-state niche

that emerged under such conditions was characterised as two competing domains of one-

state automata separated by a dynamic and continually produced boundary consisting

of two other types of automata. This reproduced similar results to unpublished work by

Piantadosi & Crutchfield [123] however my explanation of the behaviour of the boundary

differs. Piantadosi & Crutchfield have incorporated terminology such as general replicators,

spatial replicators and membrane replicators to describe the dynamics observed. Whilst

I acknowledge the attraction of categorising the automata in this way I deemed that

they were unnecessary and inaccurate. For example, they define a spatial replicator as
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an automaton that forms the spatial domains and are ’self-maintaining’ which is not

accurate. For example, the T2 and T4 automaton types that constitute the domains - and

in their language are spatial replicators - are not self-maintaining because T2 ◦T2 =; and

T4 ◦T4 =;. There is no renewal of automata within domains and, in effect, the automata

that constitute the interior of a domain have "precipitated" on the lattice. On this basis

the notion of a spatial replicator that they have introduced does not concur with what is

observed in the mechanics of domain and boundary dynamics. The only dynamic aspect

of a domain is at its boundary where domain growth occurs through the outward growth

of the boundary which is a function of the interactions between four different automata.

Competitive dynamics therefore played out at the immediate interface of domains and

boundaries and competition between domains was characterised by the seizure of part

of a competing domain through a two-step mechanism of (i) growth of the boundary into

a competing domain (as a random occurrence during the continual maintenance of the

boundary); and (ii) the replication of the automata from the other domain into the ’hole’

left by the boundary automata. This ’protected outgrowth’ mechanism proved to be a major

survival strategy for the four participating automata with the remaining eleven automaton

types going extinct. There is no description or explanation of such competitive dynamics in

Piantadosi & Crutchfield’s results.

Simulation of a two-state population under low-diffusivity conditions resulted in similar

spatial patterns with domains consisting of a single type of automata that had grown out-

wards until meeting other growing domains. However, there was no evidence of boundary-

type automata. Instead the domains were in direct contact with other domains. Exami-

nation of the underlying dynamics revealed that two competitive strategies had emerged

within the population: (i) a ’mutual maintenance’ strategy where a subset of automata were

co-operating to continually produce each other at their interface thus maintaining their

immediate areas of contact, and (ii) a ’replicate & lock-in’ strategy that was significantly

more aggressive in outward growth of a domain where in an interaction with other domains

these type of automata would only produce themselves. Hence, not only did this allow for

the transformation of neighbouring automata into themselves it also meant that there

were very few automata that could perform the reverse i.e. interact with one of these

self-replicating domains where any new automata that were produced were different from

one of the automata that was included in the interaction. This mechanism was termed

’replicate & lock-in’ which was a more aggressive form of the ’protected outgrowth’ strategy

observed in the one-state population. The results and analysis on two-state automata

under zero-diffusivity conditions is a new result in the artificial chemistry field.

Chapter 7 simulated two populations - a one-state population and a two-state popu-
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lation - interacting either through co-location within the same space or by the transfer

of automata from a two-state population into a one-state population. The simulation of a

one-state niche (1A) and a two-state niche (2B) was also performed. The main findings

were that: (i) the one-state niche was able to take advantage of the presence of a large

number of new automaton types that did not originate from within its own niche and this

led to its original automaton types being produced in higher numbers. Indeed, whilst the

presence of the two-state automata led to structural changes within the one-state niche,

its organisation (and hence its identity) of the one-state niche remained invariant. The

two-state niches did not retain their identity; (ii) in the case where the one-state and

two-state niches were located in separate environments but with a transfer of automata

from the latter into the former, the two-state niche was reproduced in the one-state niche

environment. The method of sampling from the two-state automata population (to deter-

mine the automata type to be transferred into the one-state population) was effectively

re-generating the donating population’s structure in the receiving population.

Chapter 8 simulated a one-state computation niche model under a wide range of envi-

ronmental conditions. With a one-state population the expected structure for a well-mixed

environment was reproduced as per the information niche model thus confirming the

accuracy and consistency of the results in the presence of a membrane. The membrane

had a demonstrable effect on the production dynamics of the internal population which

led to changes in the population structure. This, in turn, had an effect on the behaviour

of the membrane as the weights on the membrane network were directly correlated to

the population structure e.g. the more populous an automata type in the population the

higher the weighting on the outgoing edges of its membrane-equivalent automata. However,

there was a change in the interaction dynamics of a one-state automata population in the

presence of a membrane whereby no automata go extinct. This was examined1 and was

not due - as was first suspected - to the population update occurring synchronously on each

time-step rather than asynchronously i.e. any ’activated’ automata in the population were

deemed to interact on that same time-step whereas in the information niche model only one

automaton can be produced per time step. The underlying cause was examined in detail

and explained in Appendix 12.3 with the conclusion that the production process in the

computation niche model was partially sampling the population (due to the membrane in-

hibiting some population automaton types) whereas the information niche model was fully

sampling the population on each time step. This partial sampling had the effect of boosting

the production rate of less competitive automata at the expense of the more competitive

1The computation niche model was re-configured to only update one automaton per time-step and several
repeated simulations were run under the same conditions as the original simulation.
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automata. The consequence of this was that previously poorly performing automata (e.g.

T6,T9) were retained in the population. This is potentially an important insight to the role

of a biological membrane as it suggests that a process for regulating internal reactions

improves the survival chances of all constituent components. Such a function increases

the ability of the niche (aka. the biological cell) to retain sufficient information that would

be required to maintain its identity under a wide range of environmental conditions. This

simple insight may aid in our understanding of why compartmented structures tend to be

omnipresent in living systems. This warrants further investigation and is recommended

for future work.

Another key finding from simulating the computation niche model was that mono-input

automata were too simple and were not robust to extreme fluctuations in environmental

information leading to their long-term deactivation in the membrane and subsequent

dis-engagement of their equivalent automata in the internal population. This was shown

to be detrimental to their competitiveness. Emissions from the niche into the environment

had the effect of modulating the environmental noise that was subsequently received

into the niche via. the membrane. This led to a moderate change in population structure

which was demonstrative of structural coupling between a self-producing system and its

environment via. an exchange of information.

Chapter 9 examined the effect of the unconstrained production of novel automata

starting from a seed population of 129 self-replicating one-state and two-state automata.

One-state and two-state self-replicators were chosen as the seed population as they had

the ability to reproduce themselves whilst also interacting with each other to generate

novel automata. This created a competitive survival pressure where self-replication was

competing against novelty generation for occupying the lattice. The generation of novel

automata occurred so rapidly that the population underwent significant diversification in

just a few generations that the self-replicating automata were quickly displaced. Indeed,

there was a runaway effect where too much novelty was introduced into the population

and this prevented the establishment of any kind of structure within the population.

Eventually the population became saturated with no discernible structure. As such, the

conclusion was that novelty destroyed structure when left unregulated, and that this may

indicate a critical requirement for any kind of autopoietic system emerging from simple

beginnings, namely, an ability to regulate novelty and diversity. In studying this finding

the observation was made that there appears to be a ’window of viability’ [52],[144] for

self-producing systems that were not too simple and not too diverse. The ability for a

system to regulate novelty, and therefore the diversity, in its population appears to be an

important quality, and this is discussed later in this chapter.
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10.2 Evaluation of Results

This project has sought to examine whether autopoietic systems can form from minimal

and unstructured beginnings and, if so, the nature of and the properties of such pathways.

This has been achieved with the demonstration of the formation of autopoietic systems

that occupy a niche within a given environment. These niches persist through a continual

process of production (autopoiesis) that assimilates and accommodates (cognition) environ-

mental perturbations through structural transformations. Each of the original research

aims will now be evaluated in light of the research findings.

10.2.1 Can autopoietic systems form from simple, unstructured
beginnings?

Autopoietic systems that were maintaining a non-physical boundary formed
from simple, unstructured beginnings. The formation of so-called proto-autopoietic

networks emerged from a highly competitive environment and they exhibited specific

properties that yielded a survival advantage. Perturbing these systems revealed a degree

of robustness and an ability to maintain the system’s identity over time. Maturana &

Varela’s [7] strict criteria for autopoiesis - that the boundary generated by the network of

interactions must be physical2 - was not completely met by these results. However, given (i)

the contested view that systems can be autopoietic if they do not have a physical boundary,

and instead are maintaining a non-physical boundary; and (ii) these systems demonstrate

an autopoietic process (self-production and an ability to recover from perturbations) and

a cognitive process (structurally coupled to an environment) these systems were deemed

autopoietic on the condition that they were maintaining a non-physical boundary.

McMullin’s heuristic test was passed. In an attempt to make progress on the contested

issue of whether an autopoietic system must be maintaining a physical boundary, Barry

McMullin’s heuristic test [33] states that if a system can maintain its own identity in a

shared space with other systems then it can be deemed to be maintaining a non-physical

boundary. This test was applied to the results of the simulations on two-state automata

populations under the influence of an influx of external, randomly generated automata.

Chapter 7 described the long term co-habitation of the same population by competing

two-state automata niches without the loss of identity of either. This appeared to satisfy

2The continued contestation of whether autopoietic boundaries must be physical remains an ongoing issue
within the field.
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McMullin’s heuristic test, and if we accept that his test is deemed a reasonable indicator of

autopoiesis, then we can deduce that these systems were autopoietic.

Spatial patterns emerged under extreme environmental conditions but they
were not autopoietic. It is generally held that the formation of a boundary - or a com-

partment - is a critical step towards increasing biological complexity [145]. Information

niches demonstrated non-trivial spatial patterning on the lattice in one-state and two-state

automata populations under non-diffusive conditions. In the one-state population, domains

and boundaries were clearly evident and maintained by just four one-state automata. These

domains were competing and ultimately led to the dominance of one domain leading to a

homogenous structure after 108 iterations. Boundary formation had occurred directly as a

result of a competitive process and led to the success and persistence of the boundary and

domain automata co-operating in that process. Compartmentation not only occurred in the

most simple system (a one-state population) under a selective pressure but its formation

was necessary for the survival and persistence of the entities which had constructed it.

This demonstrated a basic autopoietic process in practice. The formation of domain and

boundaries confer a significant competitive advantage on those automata that cooperated

to form such relationships. The boundary automata acted as an interface between a domain

and the rest of the population and, in the simulations, it was seen that the growth of the

boundary by encroaching into a neighbouring domain allowed its host domain to grow into

the space recently vacated by the boundary. Hence, this protected outgrowth of a domain

was an important survival advantage as it reduced the diversity of the population and,

subsequently, competition. The spatial patterns formed by boundary and domain automata

were reminiscent of those seen in chemical reactions where there is a phase separation

of a mixture from one phase into two phases known as spinodal decomposition [146] and

the patterns that emerge in reaction diffusion systems exhibiting Turing instability in

morphogenetic systems [147]. Models of these systems have taken on a number of different

forms [148], such as predator-prey [149], and activator-inhibitor [150] systems. In my

simulations the environment acted as a morphogen - an agent (normally a chemical but

in this case a change in environmental conditions) - that caused morphogenesis to occur

in the population by severely restricting the movement of automata, so that only local

interactions were possible. This changed the accessibility that automata had to the full

diversity of the population. The resultant competitive automata were those that thrived on

local interactions and this was a function of the mutually producing networks that they

formed and that were reinforced by the spatial formation of domains and boundaries.

In the two-state population domains were evident however they lacked the dynamic bound-
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ary structures evident in the one-state population. Instead the domains were immediately

adjacent to each other. Two novel, competing mechanisms (replicate & lock-in, mutual

maintenance) emerged through the spontaneous affinity of a subset of automata based on

their intrinsic information processing properties. The role of the boundary was important

to the growth of a domain in the one-state niche as it translated between two incompatible

regions. This effect was missing from a two-state population where domains did form but,

in the absence of any boundary-forming automata, the population effectively reached a

state of stasis where no domains were able to grow as there were no possible interactions

between surrounding domains.

10.2.2 If they exist, what pathways emerged and what were their
properties?

Hierarchical, strongly connected networks were a signature feature. A popula-

tion of automata self-organised into production networks which, in a one-state population,

consisted of 7,831 different networks which was reduced to just 29 networks once the

population reached a steady-state. Competition between networks proceeded with their

constituent members growing or decaying in quantity dependent on the nature of the

network itself. For example, networks that were cyclic, redundant, hierarchical and dy-

namically stable were significantly more competitive than other networks. These highly

competitive networks consisted of automata that were more readily produced and formed

mutually producing relationships with other similar automata. The importance of cyclical,

mutually producing networks itself was not a new result and has been discussed exten-

sively by numerous prominent researchers such as Tibor Ganti [42], Eigen & Schuster

[43], and Stuart Kauffman [40] whose work on such networks has been studied in depth by

Hordijk & Steel [102],[41]. However, what none of these other works identified - or, at least,

explicitly stated - was the quantification of the properties of such competing networks.

Neither did they introduce the notion that these networks were competing with other

networks and that there were certain qualities which, due to their constituent components,

meant that some networks were more competitive than others. For example, Kauffman

proposed that autocatalytic networks will arise given enough time and diversity [103] and

Eigen & Schuster described what was required for a hypercycle to exist but neither were

able to describe what actually emerged under competitive conditions and nor what the

properties of those self-organised networks were. However, more recent research on the

evolvability of autocatalytic networks [108], complex network formation [151], and mea-

suring the degree of hierarchy in a complex network [152] are recognising the competing
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nature of the growth and persistence of such networks. In particular, the proposition that

the formation of hierarchical, self-maintaining and enduring networks is a signature com-

ponent of all biological organisms [153] complements my research findings. Nevertheless,

there remains a gap in the literature for addressing the notion that biological networks

may have formed from simpler networks that had to compete to survive. Furthermore,

a quantitative analysis of the properties of competing networks does not appear to have

been explicitly examined within the context of autopoiesis and my contribution here was

recently published [50].

The behaviour of ’networks of networks’ are claimed to be markedly different to the be-

haviour of single networks [154] and this rapidly growing area of research has implications

for a wide range of subject areas [155]. The characteristics of networks that out-compete

other networks has been examined [156] and that measuring the eigenvector centrality of

competing networks was an indication of success of that network. Cooperation of networks

has also been examined [157]. The examination of the structure of networks in Chapter 4

could be extended to measure the eigenvector centrality of each sub-network. This could be

implemented by extending the network detection algorithm (see Section 3.6) to include an

estimation of the eigenvector centrality of each network detected. This would simply be a

case of calculating the sum of the eigenvector centrality measure of each vertex. If mea-

sured for each network these measurements could be used to identify critical dependencies

between networks. Such an investigation could form the basis for future work (see Chapter

11).

The information content of a niche. Two measures of information - the Shannon en-

tropy of the frequency distribution of automata and the interaction network complexity -

were estimated for each steady-state that the population evolved to. This revealed varia-

tions in the amount of information contained within the population at each steady-state

and - given the structurally deterministic nature of an autopoietic system - this had a

contingent effect on the ability of the population to adapt to changes in the environment.

For example, a population in a state that contained low levels of information was not

able to "climb" a fitness landscape to states that required higher information content. To

do so required an influx of information in the form of randomly added automata from

the environment which acted as an exogenous source of diversification of the population.

Chapter 4 demonstrated how the full range of environmental conditions (given by c,v,Φ)

created a ’fitness’ landscape in which the automata population evolved. Each steady-state

configuration of the population was called an ’information niche’ to denote two factors:

(i) that the information required to re-produce each steady-state configuration could be
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estimated using Shannon entropy; and (ii) that each steady-state of the population occupied

a position in the fitness landscape (a niche) that was created by the environment. In a

one-state population six niches were identified. Each information niche could be seen as

a ’local optima’ [158] within a rugged landscape with the vertical axis representing the

production threshold of the population and the population traversing across the landscape

in response to changes in environmental conditions. The actual mechanism that drove the

transformation of the population from one niche to another was the accessibility of infor-

mation. For example, in a well-mixed environment with some influx of external automata

from the environment all possible automata interactions for a one-state population were

possible. The diversity and proximity of the population under such conditions resulted in

an ergodic process of production where all possible productions were examined given a

sufficient amount of time (this is one reason why the simulations were run for a minimum

of 106 iterations). Given that a more diverse population required more information then

the production threshold to reproduce that population would be higher. Hence, a rate of

influx of automata from the environment was promoting information generation in the

niche. By comparison, a low mobility environment with no influx of external automata

severely restricted the accessibility of automata to the full diversity of other automata

with which to interact. This resulted in interactions between automata being restricted

to those that were locally available only and such a non-ergodic process eventually led to

the extinction of the majority of automata from the population. Information within the

context of a self-producing system was about the diversity and accessibility of automata

for interactions. This bounded the structural transformations that were possible within

the population in response to the prevailing environmental conditions. This led to the

interesting observation that the population could only evolve to a niche in the environment

if it contained at least as much information as was required to describe that new niche. If

the population did not have sufficient information to describe that new niche (e.g. the new

niche required automaton types that did not already exist in the current population) then

additional information could only be generated through some influx of external automata.

Hence, the environment created multiple attractors [66] within an information landscape

and in which several different forms of autopoietic system (niches) could emerge.

The population consistently and repeatedly evolved to steady-state niches as
defined by the environment. A similar initial population evolving under similar envi-

ronmental conditions would evolve to a steady-state niche that was similar to previous

simulation results. Simulation results were highly repeatable indicating that the infor-

mation and computation niche models were deterministic for the same initial conditions
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and with fixed environmental conditions. Any structural variations between simulation

runs were a result of the inherent stochasticity of the ’select and replace’ mechanism of ex-

changing existing automata with new automata. The repeatable and consistent pathways

that emerged on each simulation indicated the presence of an attractor. The environment

defined these attractors of which there were four across the spectrum of environmental

conditions in the information niche model. Even when perturbed the structural values of

the population of automata (i.e. their respective proportions in the population) stayed close

to the attractor values. A dynamical analysis of the information and computation niche

model may yield further insight into the nature of these attractors.

The defining features of these self-producing systems were simplicity, diversity
and robustness. Chapter 8 demonstrated the effect of environmental noise on the be-

haviour of the membrane. Examination of the behaviour of membrane automata showed

that those automata that could only process a single symbol (e.g. mono input automaton

types) were more sensitive to changes in environmental noise. This sensitivity was particu-

larly acute where the environmental noise was at a constant value and, in some cases, this

led to the long-term deactivation of some membrane automata with a subsequent catas-

trophic impact on their equivalent automata type in the population. Random noise tended

to have the effect of maximising the activity of the membrane automata over successive

time steps. This observation suggests that there was a minimum level of complexity at

which robustness to environmental noise became effective. In the case of an automata

population this level of complexity was met when all states of an automaton could process

both ’0’ and ’1’ symbols. Of course, the intensity of environmental noise (which increased as

Φin → 1) would convey the degree of causal influence of those symbols on the information

processing that occurred in each membrane automata and which, subsequently, determined

whether its activation threshold had been met.

In a population consisting of one-state and two-state automata, and where multiple niches

had the potential to form, the niches that consisted of simpler automata (e.g. one-state)

were able to maintain their identity and structure whereas more complex niches (e.g.

two-state) were not able to maintain their identities. This was due to the production

advantage that lower complexity automata benefit from as interactions between automata

tended to produce lower complexity automata more often. This advantage was driven by

the requirement for new automata to meet the strict criteria of an ε-machine and this had

quite a drastic effect on reducing the number of states of newly produced automata. This

observation aligns with the idea that the most dominant species in evolutionary history

happen to be the smallest [159]. Conversely, it also appears to diverge from the generally
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held view that evolution moves from simple to more complex organisms [160] but this

would be incorrect. Simpler automata, whilst they tended to dominate diverse, multi-state

populations, did not drive out all other types of automata. In fact, it was observed that

two-state automata were being reproduced and sustained in a population dominated by

one-state automata partly because one-state automata interactions were contributing to

their production.

The membrane automata had an important modulating and buffering effect between

the environment and the population automata. The modulation of environmental noise

caused by information emitted from the membrane altered the noise that was subsequently

received from the environment. The buffering effect of the membrane minimised the

impact on the interactions between population automata when environmental noise was

present. Instead the membrane automata processed the environmental noise and whilst

this could lead to changes in the production dynamics of population automata it did not

interfere with the interactions between those automata. The effect that the environment

had on the population was therefore indirect where environmental noise could deactivate

membrane automata which in turn inhibited their equivalent population automata from

interacting. Environmental noise did not directly affect the interaction network of the

internal population. The effect of the membrane on the population was starkly illustrated

on the rare occasion where the membrane entered a state of complete de-activation which,

in the absence of environmental noise, became a permanent state leading to the death of

the niche entirely. It is interesting to note that the environment was the only information

source that could re-activate a non-active membrane. The ability for a relationship between

the membrane and the internal population to delimit the processes that make up an

autopoietic system has previously been refuted by Virgo et al. [16] and instead they have

proposed the concept of ’extended autopoiesis’. The emergent roles of the environment, the

membrane (boundary) and the internal population that I have observed in the computation

niche supports the extended autopoiesis argument. Indeed, the ’operational limits’ of the

computation niche has to include processes in the environment (in this case the generation

and transmission of information to the autopoietic system) to ensure the long-term survival

and robustness of a self-producing population.

10.2.3 If they exist, why and how do these pathways form?

Competition was a fundamental mechanism that occurred at multiple levels.
Pathways to a self-producing system proceeded through competition between automata

leading to "fitter" entities being produced more often, thus ensuring their survival. The
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environment defined the fitness landscape which could promote or suppress certain types

of automata and networks depending on their fit to the landscape. The critical mechanism

driving the emergence of the underlying networks of production was competition between

interacting automata to survive in their constrained environment which, as the population

evolved, extended to competition between networks and eventually between different

niches. Those automata that, by virtue of their composition and interactive behaviour,

formed mutually producing relationships with other automata benefited from a collective

ability to endure. Redundancy within such networks ensured a degree of robustness to

environmental perturbations. None of these properties were ’designed in’ nor present

under the initial conditions. Chapters 4 and 7 concluded that simpler automata were more

readily produced compared to more complex automata. The reason is straightforward: the

likelihood of two highly complex automata interacting to produce an automaton of at least

the same complexity was much less likely to happen than two simpler automata interacting

to produce another automaton of similar complexity. As explained previously this was

due to all new automata required to meet the criteria for an ε-machine, which involved

the minimisation of newly produced automata. Newly produced automata that were very

complex were less likely to stay in the same form after minimisation compared to automata

that were already of a very low complexity. For example, a one-state automaton could

not be minimised and hence would stay as a one-state automaton whereas a multi-state

automaton had a chance of being minimised to one consisting of fewer states. Or, to put

it another way, there were more interactions that produced simpler automata than there

were producing more complex automata. To compound this issue, the lack of more complex

automata further reduced the chances of other automata of a similar complexity being

reproduced. As such, being a simple form of automata conferred a significant survival

advantage through a higher rate of production compared to more complex automata. This

finding confirms similar findings in Gornerup & Crutchfield [134] and is analogous to

empirical evidence from the real world with the domination of prokaryotes [159].

More complex automata populations generated more complex competitive dynamics. For ex-

ample, in a well-mixed two-state population two competing networks of automata emerged

and it was only through chance that one of those networks came to dominate the population.

This repeatable occurrence of two niches competing and eventually leading to the demise of

one of those niches had an analog in ecology with the competitive exclusion principle [51].

The membrane was a noisy environment with intrinsic (information transfer between

membrane automata) and extrinsic (incoming environmental information) sources of infor-

mation competing to activate membrane automata. This represented a form of competition
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in the membrane whereby information sources (emitting membrane automata) were seek-

ing to maximise their "signal-to-noise" ratio. Each membrane automata was an information

source that could transmit to other membrane automata. The receiving membrane au-

tomata could accept some or all of the information that the source automata could emit.

In a one-state automata population, the membrane network was highly connected with

each membrane automata having at least nine incoming edges (receiving channels). These

multiple information sources were integrated into a single two-point probability distri-

bution, that potentially activated the receiving automata. The integration of incoming

information was a competition between the various information sources, with weak in-

coming signals3 unlikely to have a significant effect on the activation of the receiving

automata. Concurrently, each membrane automata was also receiving information from

the environment. Environmental noise could amplify or dampen signals received from

membrane-bound information sources. This implies that an information source that was

more effective in activating other membrane automata should receive a benefit from doing

so. This may be manifested as: (i) its equivalent population automata getting produced

in the population from interactions involving automata of the same type as the activated

membrane automata; and/or (ii) receiving information from the automata it activated thus

increasing its own chances of being activated in the future. This kind of analysis of the

dynamics of the membrane network as information that is transferred, processed and

modified lends itself to network information theory [161], which was developed to quantify

and understand systems where there were multiple, concurrent information sources and

receivers. The use of network information theory to the study of the computation niche

membrane dynamics is recommended for future work.

Environmental noise had a significant effect on the activity of membrane automata, which

tended to be to the benefit of automata that had more computational capacity as they

could process ’0’ and ’1’ symbols (dual input automata) compared to just one or other (mono

input automata). The environment (as an extrinsic information source) was competing

with intrinsic noise in the membrane whilst simultaneously emissions from the niche

was modulating environmental information. The noisy environment of the membrane -

with automata activating and transmitting simultaneously and that led to changes in the

production of new automata - has an interesting analogy to gene expression noise and the

effect it has on cellular behaviour [162], [163]. The quantification of gene expression noise

3As an example consider an outgoing edge with a low weighting value from a membrane automata sending
binary information that was marginal when compared to all other symbols when received at a receiving
automaton’s input e.g. a ’0’ was emitted when all other competing channels were emitting a ’1’ meaning that
this automaton’s emissions were less likely to influence the activation of the receiving automaton.

239



CHAPTER 10. DISCUSSION

in those models treated the total noise as the sum of the intrinsic (membrane) and extrinsic

(environment) noise which was consistent with how this was handled in the computation

niche.

The environment had a two fold effect on the competitive process in the niche. The first

factor - the global parameters c,v,Φ - had a significant effect on the competitiveness of

individual automata and production networks as all automata were effected simultaneously.

For example, the automata that were highly successful in a well-mixed environment were

not at all as effective in a zero-diffusion environment. The environment effectively created

a fitness landscape [158] which via. competition within the niche, led to the population

transforming its structure until a new steady-state was reached. The second factor -

environmental noise affecting the operation of membrane automata - had a dramatic

effect on the flow of information within the membrane which subsequently effected the

production of automata by promoting the production of automata that had a higher

information processing capacity.

In some instances the environment acted to stabilise population dynamics by introducing

variation into the population that had the effect of reducing the rate of production of highly

competitive automata networks. For example, the co-existence of two two-state competing

networks was only present when there was an influx of randomly generated automata from

the environment that disrupted production dynamics. This interesting observation - of a

stochastic process (the environment) having a stabilising effect on a population and that

allowed for the co-existence of competing entities [164] - has been observed in population

growth models [165], ecological niches [166], and climate change studies [167]. Indeed, the

theory of coexistence [168] has shown that, “environmental variation can buffer inferior

competitors against the competitive exclusion principle” [51].

The environment triggered changes in the population. Chapters 4 and 5 showed

the effect of the environment on the behaviour of a population of automata. The simulations

examined population dynamics under fixed and intermittent conditions and with and with-

out disturbances in the form of material or information influx. The population progressed

through a fitness landscape by structural transformations resulting from changes in the

underlying production dynamics of automata. The production dynamics were driven by the

interaction network and the current concentration of each automata type in the popula-

tion. This combination determined the probability with which each automata type could

be produced. The environment conditions affected these probabilities in three ways: (i)

inhibition (or not) of interactions due to restriction of movement of automata; (ii) inhibition

or amplification of interactions due to signalling changes from the membrane; and (iii) the
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introduction of new automata from exogenous (environment) or endogenous (construction

of novel automata) sources.

Under fixed environmental conditions in the information niche model, the simpler the

automata (as measured by a low structural complexity) the easier it was to reproduce.

Conversely, the chances of reproducing a more complex automata (of higher structural

complexity) were less. This was due to the requirement for all newly produced automata

to meet the criteria for an ε-machine - a minimal representation of a unique information

processing function. All new automata were subject to minimisation and, for automata

of a higher complexity, this tended to result in a reduction in their number of states. It

may be that the chances that this minimised automata would be of the same structural

complexity as one of the automata that produced it became less probable as the structural

complexity increased. For this reason, complex automata were less competitive when they

co-existed with simpler automata. They were not produced as often - which meant that

simpler automata were being produced instead - and this exacerbated the situation as

the automata chosen to interact were more likely to be of a simpler type. Changes to the

environment that affected the mobility and the influx of new automata did not appear to

change this relationship. However, in the computation niche model, under intermittent

and fluctuating environmental noise, the more complex automata in the population faired

better as they had the greater information processing capacity required to handle all binary

information.

In general, environmental conditions and environmental noise led to different effects in

the information niche and computation niche models. The environmental conditions of the

information niche model had a global effect on all population automata by:

(i) impacting on the availability of automata to interact with each other due to changes

in diffusivity (as set by the parameters c,v) of automata on the lattice

(ii) by acting as an exogenous source of diversification of the population by an influx

of automata from outside the population (as set by (Φ)

The environmental noise in the computation niche model had a local effect on membrane

automata by:

(iii) directly influencing the activation of membrane automata, which indirectly

effected interactions between automata, leading to changes in population structure

(iv) preventing a ’dead’ membrane state from occurring
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The possibility of combining global environmental conditions with localised environmental

noise into a single model is a potential area for future work.

Computing the attractor in the environment. A population of interacting automata

continually re-produced itself through interactions with other automata in the population.

The basis of this interaction was a successful functional composition requiring the output

an automata to be compatible with the input of a receiving automata. The new automata

then displaced incumbent automata. Given that automata represented a unique function -

it transformed the information it received by mapping an input to an output - the growth

or decay in the quantity of those functions in the population was an indication of how ’fit’

those functions were to the current environment. As the population evolved all possible

functions and organisations of those functions were explored - the underlying model and

algorithm represented an ergodic process - and the resultant steady-state structure of the

population represented the "solution" (niche) that was the best fit of the population to the

environment (the niche). In other words, a population of interacting automata computed

the attractor in a given environment through a de-centralised and concurrent process of

reproducing fitter information processing functions.

The composition and structure of each steady-state population was measured by the

Shannon entropy of the number and type of automata. Measuring each population in

this way revealed that in some cases the population was unable to traverse the fitness

landscape where the information required to describe the population at a different niche

was not contained in the population and nor was new information being added from the

environment. Information was therefore a measure of the complexity of each steady-state

population across a range of environmental conditions.

The information niche could therefore be seen holistically as an integrating function that

computes multiple information sources simultaneously (see Figure 10.1). The circular logic

depicted in this diagram is reminiscent of the model of a minimal autopoietic system [6],

the system logic of a protocell [2] and the logic of social autopoiesis [18].

Complexity begets complexity. The computation niche simulations demonstrated that

emissions from the niche had the effect of reducing the Shannon entropy of the environ-

ment and that the degree to which it did this was a function of the rate of out flux of

information from the niche Φout. The reduction in entropy of the environment due to mod-

ulation with niche emissions was found to be maximal with Φout ≈ 0.75 which resembled

a normal probability distribution profile. Above this value and the normal distribution

profile began to flatten thus increasing the Shannon entropy. Conversely, the environment
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Figure 10.1: The information niche continually integrated external factors such as changes in environmental
conditions, information and externally generated automata with internal changes in the structure of its
internal population. Taken from [50].

had a marginal effect on the complexity of the niche. This was consistent with Ashby’s Law

of Requisite Variety [169] which states that the regulatory mechanism of a system must be

at least as complex as the system it was regulating and “... the larger the variety of actions

available to control a system, the larger the variety of perturbations it is able to compensate

[for]” and “... the greater the variety within a system, the greater its ability to reduce

variety in its environment through regulation” [169]. The need for operational closure of

an autopoietic system required a system to be sufficiently complex to achieve closure but

only from the integrated nature of its constituent parts (its unity). If the environment was

significantly increasing the complexity of the niche then this would indicate the absence

of any operational closure of the system and would be more indicative of an allopoietic

system where the processes in the environment were partly, if not wholly, producing and

regulating the behaviour of the niche [90]. The Shannon entropy of the membrane was

increased when environmental noise was present. Conversely, the environment’s Shannon

entropy was reduced when the membrane was emitting information. The relationship

between the membrane and the environment was examined and this showed that whilst

the environment did increase the complexity of the membrane’s activity it was by a very

modest amount (an increase of 2%) on the complexity that was being generated by the

membrane itself. In other words, the Shannon entropy of the membrane was generated
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primarily by the switching on/off behaviour of its constituent automata. Therefore, the

niche was generating more of its own complexity than it was receiving from its environment

and Fernandez et al. [140] suggest that this indicates that the system was autopoietic

rather than allopoietic.

The rate of novelty needs to be regulated from the outset. The open-ended produc-

tion simulation described in Chapter 9 demonstrated an explosion in the diversity of the

population progressing through four phases: I - Diversification, II - Competition, III - Pene-

tration, IV - Saturation. As the population evolved through these phases the rate at which

new types of automata (novel automata) were produced reduced drastically. Examination

of the mode of the population’s structural complexity across all fifty generations showed

that by the 8th generation the mode of the population was locked in at 1.92 bits and this

was characteristic of a ’passive evolution’ process [143]. The average structural complexity

of the population increased gradually to 2.13 bits and this also concurred with other simu-

lations of passive evolution [170]. There was no clear structure within the population and

the interaction network complexity was very high compared to the initial seed population.

This was partly understandable due to the significant diversity of the population however

it was more than that. The majority of automata were of a very similar frequency in the

population (concentration) and this uniformity meant that competition was very intense in

the population. Such ’saturation’ of the population has been proposed as one reason why

dinosaurs went extinct [171].

There was a significant decline in the seed population with a consequent growth in the

number of new automaton types. The niche that the seed population would ordinarily

evolve to did not get reproduced. The intensity of competition generated from the diverse

automaton types created from endogenous novelty rapidly displaced the generations of

automata that created that diversity. The population may be cycling through generational

waves with the rise and fall of the seed population being replaced by a second wave of

automata produced entirely through novelty. More research and investigation is required

here and this is a potential focus for future work.

Whilst the investigation into open-ended evolution and the production of de novo automata

revealed interesting findings the model itself was fairly limited in that it only allowed

one form of novelty to occur i.e. new automaton types. The model did not, for example,

allow for new species of automata to emerge (e.g. those that process a different alphabet

other than binary), or changes to the population itself (e.g. growth or reduction in the

size of the population). Such changes would be in the form of ’genotype’ variation at the

automata level and ’phenotype’ variation at the population level. At a more fundamental
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level the model does not allow the mechanics of the self-producing system to evolve e.g. the

rules of interaction, the interacting units themselves and as such the organisation - in the

Maturana & Varela [7] sense - of the system.

In summary, the rapid diversification of the population through endogenous production

of novel automata prevented any persistent networks of production to form which would

have been required for the onset of proto-autopoietic and eventually autopoietic behaviour.

This strongly suggests that real-world autopoietic systems must generate and maintain

a regulatory mechanism sufficiently early in its lifecycle to limit or prevent runaway

diversification of its constituent population.

10.2.4 What contribution does this make to the theory of autopoiesis?

Demonstrates that autopoietic processes can emerge from undefined beginnings.
The simulation results demonstrated the fundamental processes of autopoiesis and cog-

nition emerging from the networks of interactions that formed from a simple population

of entities that compete at multiple levels to survive. The underlying population of in-

teracting automata increased in structure over time and reached a steady-state. Such

stable configurations provided an enduring and resilient state from which more complex

populations could form without loss of the underlying networks of production (e.g. Chapter

7 demonstrated that one-state and two-state niches co-existed within the same space). The

possibility for increasing the complexity of the underlying networks of production whilst

retaining several concurrent autopoietic identities, within the same space, was analogous

to Oparin’s ’increasing complexity of an autonomous chemical system’ [35]. What was not

observed was the spontaneous formation of an ideal chemistry of very few components

that efficiently produced a minimal autopoietic system. The simulation of the information

niche model under conditions of zero diffusivity led to the emergence of a small (four

automata) population that was demonstrating spatial pattern formation of domains and

boundaries on the lattice. However, this result was deemed to not be autopoietic as the

domain automata were not being maintained and the observed behaviour was partly an

effect of how the information niche model was designed.

The criteria for a physical boundary is overstated. The contested issue of whether

a physical boundary is a necessity for a system to be deemed autopoietic (as per Varela’s

criteria, see Chapter 2) was not upheld by this research. Indeed, the opposite was observed:

co-occurring autopoietic systems that were cohabiting a shared space maintained their

separate identities without the need for a physical boundary. This is further evidence in

favour of a ’non-physical’ interpretation of autopoiesis that was originally pioneered by
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Luhmann [18]. The recently introduced notion of "extended autopoiesis" [16] redefines our

understanding of the operational limits of an autopoietic system, and states that those

processes that may be physically outside of an autopoietic unit but on which it is dependent

should be considered part of its organisation.

10.2.5 What contribution does this make to the origin of life?

These research findings are consistent with Oparin’s view. Oparin proposed that

the origin of life arose through the increase in the complexity of ’autonomous chemical

systems’ to the point at which they resemble biological behaviour (i.e. a metabolism) [35].

Complexity here is synonymous with order and persistence which has been demonstrated in

this work both qualitatively (e.g. the recurring spatial patterns and networks of production)

and quantitatively (e.g. the frequency distribution of automata and the information content

of a steady-state population using Shannon entropy). As such, this work reinforces Oparin’s

view in a similar way that Fontana’s algorithmic chemistry does with demonstrating the

emergence of viable self-producing structures from simple, unstructured beginnings that

can provide the springboard for the construction of more complex forms of organisation.

10.2.6 Can autopoietic theory contribute more to evolutionary biology?

Autopoiesis and Darwinian evolutionary processes may exist on the same con-
tinuum. Autopoiesis and Darwinian evolution could be complementary in two ways:

(i) Darwinian evolution does not account for the origin of life as, ontologically, it does

not set out a description of what a living system actually is; Darwinian evolution is a

phenomenological theory based on empirical observations [30]. By comparison, autopoiesis

does define what a living system is and, as such, potentially offers an important theoretical

basis for Darwinian evolution. Darwinism is dependent on the transfer of information

between generations of organisms and this is dependent on templated replication for the

processes of variation, heredity and reproduction to occur. However, this is dependent

on the presence of sophisticated molecular machinery such as DNA and proteins. What

processes may have existed prior to the emergence of such biochemistry? What possible

pathways are there from the inception of a living system to the interwoven complexity

of the biology which is now referred to as the modern synthesis [172]? This is where

autopoiesis has an explanatory power that potentially reaches further back in time and to

simpler chemical environments that gave rise to the first living systems. Whilst the concept

of autopoiesis has been demonstrated with a toy chemistry consisting of three chemical
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entities [6], these approaches assumed the occurrence of an infinitesimally improbable

event where an ideal chemistry spontaneously formed and that happened to endure

(ii) competition is the universal mechanism by which the steady-state populations in the

information niche and computation niche simulations are formed. Natural selection is

also a competitive process. As such, both theories have a common process - competition -

that could be understood as extending on a continuum from chemical competition through

competing networks to competing autopoietic units and so on to competing species and

beyond that to competing ideas and norms in a social context. In this way one could argue

that the natural selection process of Darwinian evolution is present even in a minimal,

non-genetic system such as the proto-autopoietic populations studied here. The conceptual

gap between autopoietic theory and evolutionary theory is therefore arguably non-existent,

and instead a continuum on the pathway from simple, competing networks through to

abiogenesis and onwards to multicellularity and larger organisms exists, and should be

identified as such. The fundamental mechanism that drives this continuum is competition

that occurs at multiple levels (individual, network, niche) and as new, emergent properties

are formed which themselves contribute to enrich the competitive dynamics. I am not

aware of any literature in the field of autopoiesis that has made such a fundamental link

between autopoiesis and Darwinian evolution based on the idea that they share a common

mechanism - competition - that binds them at a theoretical level

A ’window of viability’ exists. The results of the one-state information niche model

(chapter 4) and the one-state computation niche model (chapter 8) demonstrated the

importance of a system’s ability to modulate its interface with its environment. Too little

exposure to the environment and the system became too simplified (e.g. the significant

reduction in the diversity of the population due to extinction of the majority of automaton

types caused by zero mobility environmental conditions) leading to a lack of information,

and too much and it was impossible for any kind of system identity to form (e.g. a very

high influx of externally generated automata). There was a ’window of viability’ [52]
4, a ’Goldilocks zone’, of the possible state space (or, the fitness landscape defined by

the environment) characterised by more moderate exchanges with the environment. It

may be that autopoietic systems happen to be able to efficiently and effectively maintain

themselves in this window of viability. Indeed, cognition is the process by which this

4The ’window of viability’ is a phrase coined by Ulanowicz and colleagues [52] to define a limited state space
where a system maximises its sustainability which they show tends to reside where the system is sufficiently
diverse whilst simultaneously being sufficiently efficient. Diversity introduces important redundancy into the
system thus allowing it to respond to shocks and perturbations from its environment. Efficiency ensures that
the system is able to effectively use resources to maintain itself.
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could be achieved i.e. accommodation of changes in the environment by alteration of the

autopoietic network. Those forms of organisation that are self-producing but not sufficiently

cognitive may be less competitive and therefore do not endure. This was seen in Chapter

4 with the finding that there were 7,821 possible networks and yet only 29 persisted.

Such competition between networks led to the survival of those networks that supported

the production of a plastic structure that could retain its identity under environmental

perturbations. The vast majority of networks which could not achieve this - because they

were not mutually producing, dynamically stable or strongly connected - did not survive.

Furthermore, very simple populations of automata (e.g. one-state) were unable to generate

novelty and therefore could not evolve. The presence of multi-state automata (e.g. ≥ two-

state) was necessary for the production of novel automata. As such, there is a minimal level

of complexity that a population must have, or that it can develop, to allow the production

of novelty. Such an ability may be important to how such systems maintain themselves

within a ’window of viability’. As has previously been explained, novelty cannot proceed

unchecked and the role of a systems interface (a membrane) may be the key to ensure

that just the right amount of diversity and level of information is maintained within the

population.

Elementary networks are the ’fragments’ required for reproduction and hered-
ity. As described in Chapter 4 elementary networks were self-producing, dynamically

stable networks that were irreducible (i.e. the removal of one automata type from the net-

work would mean the network ceased to exist). Elementary networks benefit from having

the attribute of dynamic stability. As such, under constant environmental conditions these

networks were persistent and provided an important foundation for the creation of more

complex networks of production thus creating a hierarchy of networks. They were the

building blocks of the larger networks that were required to achieve operational closure

of the system. It was shown (see Chapter 4) that a one-state niche was re-produced from

a ’seed’ of just three elementary networks which cooperated to produce two larger, inter-

mediate networks which themselves cooperated to generate the network that produced

and maintained the niche. As such, elementary networks were ’packets of information’

that were important in the reproduction of a niche as observed in the reproduction of

a niche through the randomly selected transfer of individual automata from one niche

to another (see Chapter 7). Hence this was a simple demonstration of the reproduction

of an autopoietic system that “... takes place whenever a unity ... undergoes a fracture

that separates fragments with individual structures realizing the same organization that

characterized the original one” [7].
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I hypothesise that Maturana’s ’organisational fragments’ [32] could be elementary net-

works. Chapter 7 demonstrated that self-producing systems are able to reproduce them-

selves from ’fragments’ of their own organisation. A related idea in the literature is that

autocatalytic networks compete and form irreducible ’autocatalytic cores’ [106] that act

as ’units of evolution’ in large molecular networks. However, as discussed by the authors,

their work did not specifically address heredity nor autopoiesis.

10.2.7 How can a better understanding of the pathways to autopoiesis
assist with the design of protocell experiments?

Signposting possible processes and architectures for pre-Darwinian protocells.
Chapter 2 cited that one of the challenges to protocell research was designing experiments

whereby a minimal protocell (e.g. a vesicle) can evolve through a series of pre-biotic

transitions towards more mature and sophisticated cellular structures. Such ’protocells

as units of prebiotic evolution’ [63] need to have the capacity to expand and grow in

functionality whilst achieving integration of that functionality. One of the challenges

for designing experiments is to achieve “far-from-equilibrium chemical assemblies that

involve low-molecular-weight species... divide with regularity, [and] explore an ample

range of - sufficiently robust - phenotypes, and have potential to set up mechanisms for

increasingly reliable heredity” [63]. In more abstract terms, how can very simple entities

self-organise into repeatable structures, that are sufficiently robust, to retain their identity

and reproduce themselves without loss of that identity? Such an ability has been observed

throughout my project. My notion of an information niche, as a dynamically stable strongly

connected network of mutually producing entities, that form distinct organisational steady

states under various environmental conditions, may provide a guiding framework for

experimental researchers.

Designing in competition and diversity. Autopoietic forms of organisation are strongly

dependent on the structure of the emergent network which itself is contingent on the diver-

sity of the population and the environmental conditions that are present. It is recommended

that experimental researchers consider the system-level relationships between all entities

in the design of protocell experiments especially with a view to ’designing in’ competition

between those entities.
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10.3 Summary

This chapter has discussed the results generated during this project with respect to the

contribution that this makes to the theory of autopoiesis. This was done through analysis of

the research findings and comparison to the literature where appropriate. The progress that

this project has made in answering the original research questions have been evaluated

and possible candidates for future work have been identified.
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CONCLUSION

11.1 Summary of Research Findings

This thesis has sought to answer the question of whether autopoietic systems can emerge

from simple, unstructured beginnings. The conclusion is that autopoietic systems do emerge

quite readily across a wide range of environmental conditions.

Two computational models were developed to address this question - the information

niche model and the computation niche model - which reproduced a population of finite

state automata interacting and producing new automata within a finite space coupled to

an environment. A wide variety of simulations of the models were run over a large number

of iterations under various conditions related to diffusive mixing and the rate of influx of

new material and information. The results were analysed using quantitative techniques

from information theory (Shannon entropy [48], interaction network complexity [36] and

structural complexity [37]) and network theory (graph construction and degree distribution

[49]) as described in Chapter 3. The models and all simulations were implemented in

MATLAB and performed on a local computer and occasionally on the University of Bristol’s

supercomputer BlueCrystal. All of the results were analysed for structural changes to the

population and characterisation of the underlying networks of production.

Autopoietic systems form from simple, unstructured beginnings. Simulation re-

sults consistently demonstrated that an initially uniform and unstructured population

evolved to a steady state structure - a niche - that persisted even in the presence of envi-
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ronmental perturbations. The processes of autopoiesis and cognition emerged routinely

and repeatedly across different simulation runs. The limitation of this result was that a

physical boundary was not demonstrated. Historically the criteria for an autopoietic sys-

tem has prescribed that the boundary created by an autopoietic process must be physical.

However, and as discussed in Chapter 2 and 10, there is a growing consensus that an

insistence on a physical boundary is too limiting and that non-physical boundaries (e.g. as

evidenced by a system that is able to maintain its organisational identity in the presence

of environmental changes) also satisfy the boundary criteria.

Operationally closed networks of production emerged. These structured popula-

tions were continually produced from a hierarchical, strongly connected and dynamically

stable production network that was formed from the interaction affinity that existed be-

tween the interacting automata. Such networks were shown to persist based on their

ability to produce the components which constituted the network itself. These networks

produced all of the components required to continually re-generate the network. These

operationally closed systems are the hallmark of an autopoietic system. Such networks

formed readily and repeatedly across simulation runs with the exception of extreme envi-

ronmental conditions that inhibited all interactions and endogenous production within the

population.

The environment sculpted the landscape through which a self-producing sys-
tem transformed itself to occupy a niche. It was evident that the range of environ-

mental conditions that were being simulated were creating a ’fitness landscape’ which

drove the structural transformation of the population from one steady-state structure to

another. Each niche represented a steady-state organisation that was operationally closed

and that was structurally coupled to the prevailing conditions of the environment.

The structure of autopoietic systems can be quantified. Quantitative measurements

of the steady state structure of the automata population provided an estimate of the

information content present in each niche. Comparison of these measurements for one-

state and two-state niches revealed one of the main findings of this project: a niche could

only transform its own structure to another niche in the environmental landscape if either

it (a) already contained enough information, or (b) the changing environmental conditions

generated the necessary information required to generate the structure of the destination

niche. This is a new result in the field of autopoiesis and has the potential to become a

practical approach to quantifying autopoietic structures.
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New methods were developed to fully examine the constructive processes that
were occurring. To fully explore the nature of the proto-autopoietic networks that

emerged and competed two methods were developed: (i) an algorithm to detect strongly

connected networks in an evolving population of interacting automata, and (ii) a numerical

simulation implementation of a differential equation to determine the dynamic stability of

a network. The development of these methods were necessary to identify the properties of

the proto-autopoietic networks that emerged.

Elementary networks enable reproduction and heredity. Each niche consisted of a

large network of networks that described all possible interactions within the population.

These networks were decomposable to elementary networks that were irreducible, dynami-

cally stable and strongly connected. They were the building blocks for the larger networks

that were required to achieve operational closure of the autopoietic system. In simulations

of the transfer of automata from one niche to another these elementary networks were

reproduced in the receiving niche. Once present in the receiving population they ensured

the continual production of their constituent parts thus forming a niche within a larger

niche. Over time, and as more automaton types were transferred into the receiving niche,

more elementary networks were formed which, in turn, began to combine into larger

networks. This continued until the autopoietic network that formed the donating niche

was reproduced in the receiving niche leading to the reproduction of the entirety of the

donating niche in the receiving niche. This demonstrated a basic form of reproduction and

heredity of an autopoietic system.

A ’window of viability’ exists. The robustness of a niche was contingent on the composi-

tion of the population itself. There were two factors to consider: (a) if the population was

too simple, both in terms of variety of automaton types and the information processing

capacity of those types, then as demonstrated in this work they were ineffective under

constant environmental noise and more complex automata were more resilient; and (b) in

the absence of any regulatory mechanism the population of automata produced increas-

ingly diverse and increasingly complex automata leading to saturation of the population. A

saturated population lacked any structure as the underlying networks of production were

diversifying too quickly and too frequently for any kind of recurring pattern of production

to emerge. This suggests that there was a ’window of viability’, whereby a population was

sufficiently diverse such that the processes of autopoiesis and cognition could maintain the

system within this window.
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11.2 Concluding Statement

An unstructured population of finite state automata self-organise to steady state structures

that are maintained by an operationally closed network that has the properties of mutual

production, redundancy and dynamic stability. Such properties are required to enable

the processes of autopoiesis and cognition and thus continually produce and maintain

the population’s identity within a changing environment. As these systems transform

themselves to new steady-states in the presence of environmental conditions they are

called niches. Niches satisfy all of the criteria for autopoiesis on the condition that a

non-physical boundary is accepted.

11.3 Limitations of this research

Although this research has achieved its aims there were some unavoidable limitations as

follows:

Limited demonstration of co-operation. Co-operation between autopoietic sets has

not been demonstrated. Interactions between autopoietic units was examined and this

demonstrated the degree of robustness and reproducibility of autopoietic units however the

emergence of a critical dependency between two separate systems was not observed e.g. one

autopoietic system ’giving up’ the ability to produce one or more automata on the grounds

that it now received it from a neighbouring autopoietic unit. The structural coupling

between autopoietic units remains an active area of interest with potential insights that

could contribute to computational studies of multicellularity [173].

Physical accuracy. The information niche and computation models do not accurately

reproduce the physical behaviour of chemicals in a confined vessel e.g. the lack of any

consideration of thermodynamics and the contingent effect that this may have had on

population dynamics. However, this would have increased the sophistication of the model

beyond the design priorities that were set out in Chapter 1 which were to determine the

minimal number of features and mechanisms required to reproduce the dynamics and

emergence arising from interacting populations.

Scalability. The computational cost of searching for all possible interactions within an

open-ended model very quickly became prohibitive. For example, in a 3-state automata

population there were 1.6 million unique automata representing 2.75× 1012 possible

interactions each of which would need to be examined for the potential for a successful

interaction. Furthermore, to ensure the integrity of the population the results of each of
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those interactions would need to be minimised and examined for whether they satisfied

the criteria for being a valid ε-machine. This is computationally prohibitive, and so whilst

the prospect of examining a very large range of unique processes and their collective

organisation is compelling, this highlights a major constraint on the information niche and

computation model.

No validation with experimental work. There was no translation of the insights

gained from this research into a framework for designing experiments for the fabrication

of bottom up protocell fabrication [4] from simple beginnings. This could have provided an

important opportunity to understand the challenges and opportunities from going from in

silico to in vitro research. The opportunity to test and revise the conclusions of this project

based on real-world experimental results could have been valuable and should be the focus

for future work.

11.4 Recommendations for Future Work

There are a wide range of possible avenues for further investigation into the emergence

and evolution of autopoietic systems. I believe that the cultivation and development of the

computation niche model - whilst retaining the ethos of making minimal assumptions in

the design of a computational model - should continue to yield insights into the nature

of self-producing systems. In parallel, I also believe it is important to bridge the gap

from computational study to experimental study. On both points I make the following

recommendations for future work:

Measure and analyse the information dynamics in a computation niche. As dis-

cussed in Chapter 10 the computation niche model can be understood as being composed

of connected stochastic processes. The information flow between these processes could be

estimated using information-theoretic techniques such as transfer entropy [141] and active

information storage [174] to quantify the computation that is occurring within the model.

Existing literature [142] provides not only a framework for understanding computation

in a complex system but also the open-source software - the Java Information Dynamics

Toolkit (JIDT) - required to estimate information flows. Such work may yield an insight

to the architecture of the niche, which may yield an insight into hierarchical causation

[175] of an autopoietic system captured as bottom up, same level and top down information

flows.
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Model populations of niches. Second-order autopoietic structures [7] have been sug-

gested as the pathway from single autopoietic units to either meta-autopoietic units

(interacting autopoietic systems that retain their own identity) or the integration of two

autopoietic units into a unity (so called symbiosis). There are clear parallels here to the

major evolutionary transitions [17] from single cells to multicellularity. The emergence of

second-order autopoietic structures could be investigated by "coarse-graining" the compu-

tation niche model such that each lattice site is occupied by a computation niche. Each

computation niche should itself consist of a lattice occupied by individual automata (as

per the current computation model). Neighbouring niches should be able to exchange

automata and information with each other and their environment. Such a model would

match that described by Maturana & Varela [32]. Whilst it is hoped that such a model

would demonstrate co-operation between niches care would need to be taken not to ’design

in’ such a mechanism. From a pragmatic standpoint such a model would benefit from

the implementation of parallel computing techniques to handle an inevitable increase in

computational cost. Research on the transition to multicellularity/second-order autopoietic

structures has received scant attention although it has recently been reported [176] that

autopoietic principles have been applied successfully to explain how cells in a multicellular

system handle environmental disturbances and self-maintenance.

Incorporate energy considerations into the model. Seminal work by Landauer [177]

on the "physics of information" examined the irreversibility and heat loss that occurs

from information processing. In essence, the erasure of a bit of information must lead to

an increase in entropy with the minimum possible amount of energy required to erase

one bit of information - the Landauer limit - given by kT(ln2) where k is the Boltzmann

constant, T is temperature and ln2 is the natural logarithm of 2. The premise here is that

an information processor generates heat (energy loss) as it manipulates information (e.g.

receives a 0 and outputs a 1). The addition of an information thermodynamics dimension

to the computation niche model would (i) bring the model closer to a more rigorous and

physical explanation of the emergence of the dissipative structures on the pathway to

autopoietic forms of organisation, and (ii) the energy cost of information processing [177]

and information flow [178] could be studied under the general heading of information

thermodynamics [179]. The extension of the computation niche model to incorporate an

energy representation would allow the information thermodynamics near and at steady-

state configurations to be examined. In other words, the information thermodynamics of

an autopoietic system could be estimated for the first time. Such a model could also be

used to examine dissipation-driven adaptation [180].
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11.5 Final Thoughts

Pathways to autopoiesis have been investigated using an abstract model of a population of

interacting automata that self-organise to steady-state self-producing structures. These

results were highly reproducible and the only occurrences where such structures did not

form was under extreme environmental conditions. Characterisation of a niche identified

the emergent properties of dynamic stability, hierarchy and strongly-connected networks

with inherent redundancy.

The theory of autopoiesis is undergoing something of a resurgence primarily due to

increased efforts in synthetic biology and protocell research (where it has been adopted

as a general framework for minimal cell architectures) and, more recently, the surge in

interest in artificial intelligence and the search for suitable models and architectures for

achieving the goal of "embodied AI" [181].

Whatever the future may hold for autopoietic theory a greater understanding of the

pathways to their formation and the structures and processes that emerge on that journey

can only assist with the application of the theory within and beyond its field of origin.
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APPENDIX

12.1 The pragmatics for handling multi-state automata
populations

Interactions between automata with more than one state (| Q |> 1) can produce new

automaton types that have up to | Q′ |=| Q | × | Q | states. Figure 12.1 illustrates the

functional composition of two two-state automata. However, the new automaton generated

from the functional composition operation (Q′), may not represent a valid ε-machine [126]

for the following reasons:

1. If one or more states in Q′ are not accessible from any other states (a so-called

unreachable state) then this Q′ is not a valid ε-machine

2. If one or more states in Q′ do not have an exit transition from that state to other

states then this means that the automata is not a strongly connected component and

therefore is not a valid ε-machine

If either of these conditions are met then Q′ is not a valid ε-machine. However, it is

possible to minimise an automata by (a) removing unreachable states (which addresses the

first condition); and (b) identifying states that are equivalent (they read and send the same

binary information) and combining them into a single state that may help to overcome

the second condition. The procedure required to undertake these steps is to minimise the

automaton using the Hopcroft algorithm [127]. After these steps are taken the test for a
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Figure 12.1: Illustrated example of the functional composition of two-state automata (Ta) and the two-state
automata (Tb). Each automata can be represented as a 2×2 matrix and the cross product yields a four-state
automata Tc. Subsequent minimisation (min) of the product automaton reduces to a two-state automata that
represented a valid ε-machine. The new automata was identical to Ta indicating that in this interaction Ta
successfully replicated itself. Taken from [121].

valid ε-machine was re-applied. Those automaton types that were valid ε-machines either

before or after minimisation were added into the population. If a minimised automata type

met either of the above conditions then it could be deemed an invalid automaton type and

discarded.

The run-time required to execute the Hopcroft algorithm increased in polynomial

time as the complexity of the automaton that was being minimised increased. This raised

practical issues with the amount of computational resources required to run the Hopcroft

algorithm on multi-state populations. Table 12.1 illustrates the number of interactions

that would need to be evaluated (i.e. functional composition followed by minimisation) to

construct an interaction network for the population, and subsequently, the estimated total

run time required:

Q | T | |G | O(n.s log n) Total Run Time Cumulative |G |
1 15 225 - - 225
2 1,873 3.5×106 8 2.8×107 3.6×106

3 1.6×106 2.75×1012 19 5.2×1013 2.76×1012

Table 12.1: The Hopcroft algorithm [127] had a worst-case run time of O(n.s log n) where s was the size of the
alphabet processed by the automata (i.e. 0 | 0, 0 | 1, 1 | 0 and 1 | 1, hence s = 4) - and n the number of states of
the automata.

As can be seen the computational task involved in processing the interactions between

automata with Q> 2 states becomes a significant challenge. Two alternative strategies

were developed to make the simulation of multi-state automata populations practical: (i)

the generation of the interaction network G of a population a priori so that it could be

used as a lookup table during the simulation of an exclusive two-state population (see
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Task Tb range Ta range
1 1 to 116 1 to 1873
2 117 to 233 1 to 1873
.. .. ..
16 1740 to 1873 1 to 1873

Table 12.2: Constructing the interaction network for a two-state automata population through 16 tasks
distributed across 16 compute nodes. Taken from [121].

Section 12.1.1); and (ii) the interaction network was constructed in real-time only for the

automata (Ta,Tb) that were randomly selected to interact in simulations of an open-ended

multi-state automata population (see Section 12.1.2).

12.1.1 Generating the interaction network for a two-state automata
population

There were 3,508,129 possible interactions in a population of 1,873 unique 2-state automata.

It was impractical to perform an interaction - the functional composition of the Ta,Tb

automata, the minimisation of the product automata Tc, and the validation of Tc as

an ε-machine - during a simulation. Instead the complete interaction network G for an

exclusive two-state population was generated a priori to running any simulation. The

construction of G would need to examine all 3.5 million possible interactions and to record

in the interaction matrix which interactions resulted in a minimised automata type that

was validated as an ε-machine. Examining each of these interactions serially would be

impractical and so an algorithm was developed to parallelise the task of generating the

two-state interaction network.

A parallel algorithm was developed and run on a single compute node of the University

of Bristol’s supercomputer (Blue Crystal). Each compute node consisted of 16 processor

cores. The task of generating the interaction network was therefore packaged into 16

discrete packages of work of 116 automata each (representing the Tb automata). For

example, Task 1 would examine the interactions involving the automaton types 1...116

acting as the Tb automata in interactions with each of the 1,873 two-state automaton types

acting as the Ta automata in the functional composition operation Tb ◦Ta = Tc. Task 2

examined the automaton types 117...233 as the Tb automata interacting with each of the

1,873 automaton types acting as Ta. Each task would generate a 1873×116 matrix. Each

task was allocated to a dedicated core on a Blue Crystal compute node - see Table 12.2.

On completion of all 16 tasks the interaction matrix (1873×1873) was constructed from

the concatenation of each 1873×116 matrix generated from each task. The completed in-
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teraction matrix was then used as a lookup table during the simulation which considerably

shortened the execution time.

12.1.2 Handling automata interactions in an open-ended,
unconstrained multi-state population

In an open-ended computation niche model (i.e. no restriction on the size and complexity of

the automata that can be generated) - see Chapter 9 - it was impractical to re-construct

the entire interaction network of the population for each novel automata type produced

on each time step, especially as some of the automaton types that were being generated

had up to 64 states. Consequently, the following procedure was used in the open-ended

computation niche simulations:

1. Automata Ta and Tb selected from the population to interact.
2. The latest version of the interaction G is examined to see if a known

interaction for Ta,Tb exists.
3a. If GTa,Tb <> ; and GTa,Tb > 0 then an interaction exists. The value at

GTa,Tb represents the valid automata type produced from this interaction.
3b. If GTa,Tb = 0 then no interaction exists between automata Ta and Tb.
3c. If GTa,Tb = ; then this interaction has not yet been examined. Perform

functional composition of Ta,Tb and minimise the resulting automata Tc.
Check whether the minimised automata Tc is a valid ε-machine.

4a. If Tc is a valid ε-machine then this is a new automata type. Add it to the
population and record the interaction that produced it at GTa,Tb = Tc.

4b. If Tc is not a valid ε-machine then discard this item and record an unsuc-
cessful interaction at GTa,Tb = 0.

This procedure constructs the interaction network G as the simulation proceeds. This

procedure is not an exhaustive search of all possible interactions within the population as

was the case with the procedure described in Section 12.1.1.

12.2 Software implementation in MATLAB

All simulations and analysis were written in MATLAB (version: R2016b). The implemen-

tation of the Finitary Process Soup [36],[123] in MATLAB was written entirely by the

author. The enhancements and extensions of the FPS model to what were subsequently

called the Information Niche model and the Computation Niche model were also written

entirely by the author. A dataset on the two-state interaction network was provided by

Professor James Crutchfield at the University of California in Davis, United States to aid
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with the test and validation of my Hopcroft minimisation implementation routine. All in-

formation and network measures used in this project were also implemented by the author

in MATLAB and the external software library, the Java Information Dynamics Toolkit

(JIDT) [142], was used to verify the results that I obtained from my own implementation

of Shannon’s information entropy [48]. Finally, the two papers [36],[123] were used to

compare the results I obtained and as reported in Chapters 4 (the outcome of simulating a

one-state automata population under well-mixed and zero-diffusivity conditions), Chapter

5 (the outcome of simulating a two-state automata population under well-mixed conditions)

and Chapter 7 (the spatial lattice patterns formed by niche 1B).

The simulation software and documentation of how the information niche and com-

putation niche model were implemented in MATLAB can be accessed from the Github

open-source repository at https://github.com/rjcarte/Pathways2Autopoiesis.

12.3 Explanation of the difference between the
information niche and computation niche results for a
one-state well-mixed population

Why was niche 1D reproduced by the computation niche and not niche 1A?. The

niche that emerged in the one-state computation niche model with no environmental noise

was structurally similar to information niche 1D (i.e. no automata go extinct). Given that

the parameter settings for the computation niche model were for a well-mixed population

why was niche 1A not produced? This was investigated by examining the effect of the

activity of the membrane on population dynamics, and an evaluation of the procedure

for selecting the automata that would be produced and replaced on each iteration of the

simulation.

Activity of the membrane. The randomly determined threshold of each membrane

automata may have been ’perturbing’ population dynamics in a way that was analogous

to an influx of external automata in the information niche model. To examine this the

randomly determined threshold parameter (r) was set to a constant value r = 0. With r = 0

a membrane automata would be active as long as it was receiving information from at

least one of its incoming links. As such, all membrane automata were constantly active.

This meant that all population automata were available to interact on every iteration

of the simulation. Simulations showed that the rate at which the decaying population

automata were being produced was now reduced when compared to when r was randomly

determined. However, the decaying population automata did not go extinct as per niche 1A.
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So, whilst the the membrane automata activation threshold effected population dynamics

it did not produce niche 1A.

Asynchronous update mode of the population. The computation niche model oper-

ated a synchronous update whereby all population automata that could be produced within

a given iteration were produced and replaced existing population automata. By compar-

ison, the information niche model operated an asynchronous update whereby only one

population automaton (randomly selected) was produced from the interaction between two

randomly selected population automata. The computation niche model was adjusted to run

in asynchronous mode and this only had the effect of slowing down the rate at which the

population evolved to a steady-state that was similar to niche 1D.

Determining which population automata were produced. Examination of the se-

lection procedure (sampling) used within the computation niche model showed that with

r > 0 the size of the population that was available for sampling varied over time due to the

activity of the membrane. By comparison, the information niche model was sampling from

a constant population size. Hence, the computation niche model was partially sampling 1

of the population given that certain automata were not available for interactions (due to an

inactive status of their equivalent membrane automata). Over time this partial sampling

of the population had the effect of equalising the frequency distribution of the population

automata and this effected the selection of automata that would interact. Consequently,

the rate at which the lower frequency population automata were selected for interacting

was boosted whilst the rate at which higher frequency population automata were selected

was reduced. On average this meant that the selection of an automaton to be produced in a

given time step was taken from a more uniform distribution. This selection process had

the effect of producing lower frequency population automata more frequently than would

have been the case in the information niche model - see the simulation results in Table

12.3 that compares the difference in the frequency with which each population automata

was produced over 4×105 iterations. In the computation niche model the automaton types

that went extinct in the information niche model (due to being produced less) were now

being produced often enough to remain in the population.

Whilst this comparison of the two simulations was useful it did not explain why the

computation niche model did not generate niche 1A. A more detailed examination of

the procedure for the selection of automata to interact in the computation niche model,

showed that the synchronous mode of updating the population meant that the population

didn’t need to be sampled as all active population automata at a given time-step would

1Partial sampling is an acceptable feature of the computation niche model as it relates directly to the
on/off switching activity of the membrane automata.
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Automata Type Information Niche Computation Niche Difference

T1 29020 29054 34
T2 27383 29087 1704
T3 49035 40344 -8691
T4 28787 29191 404
T5 51138 40608 -10530
T6 325 3854 3529
T7 1165 11533 10368
T8 27146 28902 1756
T9 327 3843 3516
T10 47276 40596 -6680
T11 1144 11523 10379
T12 48166 40283 -7883
T13 1134 11754 10620
T14 1136 11611 10475
T15 86818 67817 -19001

Total 400,000 400,000 0

Table 12.3: Comparison of the number of times each automata was produced in a simulation over 4×105

iterations under well-mixed conditions. As can be seen in the ’Difference’ column there was a significant
increase in the production of the automata T2,T6,T7,T9,T11,T13,T14 balanced against a significant decrease
in the production of the automata T3,T5,T10,T12,T15. These changes were due to the partial sampling that
occurred in the computation niche as a result of the membrane exciting or inhibiting different automaton
types in the population.

interact with other active population automata to produce new automata. However, when

the computation niche model was in asynchronous mode the sampling was from a list of

automata that could be produced at that time-step (dictated by the activated or deactivated

status of membrane automata) rather than sampling the automata that were available to

interact. This difference is important as these modes sample the population in different

ways: sampling the list of automata that could be produced on a time-step (as per the

computation niche) was actually selecting a single automata (Tc) from a partial interaction

network Gψ (ψ was the activation status of each membrane automata) whereas sampling

the population to select the automata that would interact required two automata to be

selected (Ta,Tb) from the frequency distribution f . Whilst this is not an issue with the

synchronous update mode (as the assumption was that all interactions that could take

place on a given time-step did occur) it did mean that sampling the interaction network

with the computation niche in asynchronous mode (where only one interaction could

occur) would not produce the same results as the information niche (which operated in

asynchronous mode). To test this a simulation was run with the computation niche in

asynchronous mode and with the selection of automata that were produced replaced with
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the process for selecting two population automata to interact as per the information niche

model. Furthermore, the activation threshold for membrane automata was set to r = 0 so

they were always active and this ensured that the population was fully sampled on each

time-step. The simulation result clearly showed the reproduction of niche 1A.

In summary, with the computation niche model in asynchronous mode, with membrane

automata permanently active and with the selection of automata to be produced on each

time step determined from the selection of two automata to interact (as per the information

niche model) then niche 1A was produced with the computation niche model.

The motivation for the above investigation was to confirm that the computation niche

model was capable of re-producing the niches 1A and 1D as per the information niche

model. This has been shown.
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