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Abstract 

This thesis places dung firmly at the centre of livestock farming. It tests the overarching 
hypothesis that intentional management of dung as a critical resource on-farm has multiple 
benefits that improve the resilience of beef production systems. 

Dung is a primary resource in beef production systems. This importance of dung as an organic 
fertiliser that recycles nutrients in agricultural systems is widely recognised and understood. 
The connection between disease, dung and its management through diet choice for beef 
cattle has received far less attention. 

In this study, the cattle diet, both intake and forage management, significantly influenced the 
rate of bulk and biochemical (fibre fractions, protein, lipids, carbohydrates, organic matter, 
ash and micronutrients) dung degradation over 84 days under three forage management 
treatments on the North Wyke Farm Platform. Site-specific factors were the primary drivers 
of bulk dung degradation; 70% of degradation was driven by field site and 4% by dung type. 

Non-target impacts of anthelmintics pose a risk to dung fauna that moderate dung 
degradation. A multiple-regression model predicted that targeted selective treatments (TST) 
created refugia for dung-breeding fly Scathophaga stercoraria and that proportions of treated 
cattle (55%) was more influential than effective dung drug concentrations (13%).  

Effective TST programmes rely on practical diagnostic tools. A non-invasive protocol was 
developed for the quantification of immuno-markers (immunoglobulins and lactoferrin) in 
dung for gastrointestinal health assessment. 

The anecdotal benefits of increasingly popular ‘mob grazing’ were supported by case studies 

of factors including pasture performance, reduced gastrointestinal nematode (GIN) burden, 

and soil organic matter content over a grazing season in a UK-wide study. 

The conclusion of this multidisciplinary study is that dung management has a critical role to 

play in a systems-level understanding of beef production and that optimisation relies on a 

quantitative understanding of the relationships between wider biological processes on farms.  
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Summary 

The focus of innovation in beef production worldwide has been the increase in liveweight 

gain, and with less attention paid to improving other aspects of the livestock system. Beef is 

a high-status food, with demand and rates of consumption growing globally. To meet this 

demand in an environmentally appropriate manner, all aspects of the production cycle must 

be optimised. Achieving this goal requires a multi-disciplinary approach to identify and 

address areas for improvement. 

With over 1.5 billion cattle worldwide, beef production has major significance economically, 

environmentally, nutritionally, and culturally. Within such systems, dung plays a crucial role 

in the turnover of nutrients, emission of greenhouse gasses, and the transmission of parasitic 

diseases. Despite this, there is remarkably little consideration placed on the specific 

characteristics of dung and how it can be more effectively considered and utilised as a 

resource within livestock systems. The influence of dung is large and widespread, impacting 

pasture fertility, greenhouse emissions, pathogen epidemiology, while also being able to 

provide valuable information about animal health. Therefore, enhancing our knowledge and 

capabilities to effectively utilise dung as a resource represents an opportunity to improve the 

way in which livestock production systems function. The scale and distribution of beef 

production means that its potential impact is high and that even the smallest of changes to 

production can have a big effect. Due to the complex and dynamic nature of livestock systems, 

advancement requires multi-disciplinary and multi-level scientific research. 
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1.1 Dung 

Dung is a fundamental and valuable resource in pasture-based livestock systems and is 

involved in a host of processes. The impact of dung can be both positive and negative, 

depending on the metric and context considered. From promoting pasture productivity to 

facilitating parasitic diseases, the importance of dung within grazing livestock systems cannot 

be underestimated. Factors surrounding the role and characteristics of cattle dung are 

extremely interlinked and therefore complex. There are 1.5 billion cattle on the globe (Figure 

1.1) that produce substantial quantities of faeces. According to Lorimor et al. (2004), a 450kg 

beef cow will produce approximately 15 tonnes of dung per year, while a 200kg calf may 

produce 8 tonnes.  At the global-scale, this equates to annual production of an estimated 15-

20 billion tonnes. Therefore, a minor modification in dung management could have significant 

consequences. 

 

Figure 1.1 - Heat map of worldwide head of cattle by country. The country with the least is 
Greenland (15), and the country with the most is Brazil (211 million).  No data was available 
for the Western Sahara (white). Source: original image, created using data from FAO (2017). 

Recent debates about the sustainability of meat in human diet has focussed on the human 

health and environmental impacts, especially the contribution to  greenhouse gas emissions 

300,000,000 
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and climate change caused by methane production during ruminant fermentation (Garnett, 

2009; Gill et al., 2010; Phetteplace et al., 2001), with comparatively minor flux from dung and 

urine (Flessa et al., 2002; Schils et al., 2007). A 2006 report by the Food and Agricultural 

Organization of the United Nations, entitled “Livestock’s long shadow” (Steinfeld et al., 2006), 

brought attention to the environmental impact of livestock and calculated that livestock 

production was responsible for 18% (later revised to  15% (Gerber et al., 2013)) of global 

greenhouse gas emissions. Such reports have added to the pressure to reduce global 

consumption of and the environmental footprint of beef, although quantity and price remain 

the primary factors considered when purchasing beef by the majority of consumers (Verbeke 

et al., 2010). This creates an issue for beef producers, particularly those who place value on 

environmental sustainability and manage their farm accordingly. While short-term 

profitability and long-term environmental sustainability often contrast each other, that need 

not be the case. For instance, effective land and grazing management improve indicators of 

soil health, e.g. soil carbon sequestration when compared to arable systems (Lal, 2004; 

Freibauer et al., 2004). Dung can significantly increase soil microbial biomass and respiration 

(Belay et al., 2001; Ghoshal and Singh, 1995; Lovell and Jarvis, 1996; Rochette and Gregorich, 

1998; Witter et al., 1993), two primary metrics representative of soil quality, health, and 

productivity (Rice et al., 1996; Schloter et al., 2003). By improving soil health, the need for 

external fertiliser inputs is lessened (Aarons et al., 2009; Ayoola and Makinde, 2008), reducing 

costs and potentially the run-off impacts such as water-course eutrophication (Weimin and 

Lijiao, 2001).  

1.1.1 Nutritional value 

A key role of dung is as an organic  fertiliser that facilitates the cycling of nutrients from cattle 

diet back into the soil system to provide nutrients for the subsequent crop, and secondarily a 

vast variety of organisms that rely on dung within their food web (Aarons et al., 2009; Ayoola 

and Makinde, 2008; During et al., 1973; Moe and Wegge, 2008; W. Sheldrick et al., 2003; 

Williams and Haynes, 1995).  Dung is as a source of nutrients within the wider environment, 

acting both a food source and refuge for invertebrates and microorganisms (Dungait et al., 

2008; Marshall, 1977; Standen, 1984). These, in turn, can help to facilitate nutrient cycling 

while also enhancing local ecology and system health (D’arcy-Burt and Blackshaw, 1991; 

McCracken et al., 1995). 
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1.1.2   Dung degradation 

The rate at which dung degrades is influenced by a plethora of interacting factors, making it 

a complex process, such factors include: fauna, climate, use of veterinary drugs, and diet. 

Small changes in these variables have the potential to alter the rate of degradation greatly. It 

should be noted that many of the factors which influence dung degradation do so, at least in 

part, due to their effect on the composition of fauna that colonise the dung and which are 

instrumental in the process of degradation. 

1.1.2.1 Climate and weather 

The role of climatic variables upon dung degradation has been well documented, particularly 

the influence of gross seasonal changes (Dickinson et al., 1981; Holter, 1979; Weeda, 1967). 

However, due to the complex interactions between climate and dung degradation, it is 

important to understand the individual factors involved. Post-excretion, the water content of 

dung is mainly controlled by climatic factors, notably, precipitation and temperature, but 

potentially also humidity and sunlight. Dickinson et al. (1981) reported rainfall to be a main 

climatic factor influencing degradation, due to the physical breakdown of dung by the water 

and by the increases in dung water content. Weeda (1967) found that consistency of dung 

due to liquid content could increase degradation by 100% when comparing the moistest 

natural dung to the driest. Further evidence in support was found by Barth et al. (1995), who 

reported that small changes in dung moisture of just 1-2% could significantly alter dung fauna 

development and dung degradation. Increased air temperatures have the potential to reduce 

dung water content through evaporation, however, after a point and especially with radiative 

heat from sunlight, dung may form an exterior crust. This crust protects the inside of the pat 

and can help to retain moisture (Dungait et al., 2005; Holter, 1979). At the opposite end of 

the spectrum, low temperatures may freeze the dung, this locks up water, reducing its 

availability, it also protects the dung from physical breakdown. At such temperatures, 

enzymatic activity in soil microbes would decrease, and the invertebrate community would 

be greatly reduced. Climate may also indirectly affect diet and excreted nutrients through its 

impacts upon flora communities, water availability and utilisation, feeding patterns, and 

energy expenditure. 
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1.1.2.2 Diet and nutrition 

There has been limited research linking animal diet, dung composition, and dung degradation. 

The physical composition of cattle dung is determined by the animal’s biology, diet, and 

utilisation of nutrients. The varied and significantly different diets of different cattle may 

result in significant differences in the composition of their dung and therefore impact upon 

all dung related processes including invertebrate activity, degradation, nutrient composition, 

and gastrointestinal nematode (GIN) activity. Barth (1993) observed that cattle diet was a 

driver of invertebrate colonisation of dung while further research by (Barth et al., 1994b) 

found that specific dung factors such as pH, moisture, and organic matter content, influenced 

beetle colonisation behaviour and development. Diet has also been found to impact the 

faecal excretion of veterinary anthelmintics, administered to cattle, with dung ivermectin 

residues being five times greater from grain-fed cattle than from grazing cattle (Cook et al., 

1996). The same study also found that grain-fed cattle produced more acidic dung than 

grazing cattle (6.4 and 7.3 respectively). These results highlight the impact that dung 

composition can have upon a variety of different dung processes. The general lack of research 

into this means it is a key area in which understanding can be enriched, with the potential to 

inform positive changes in beef production systems. Achieving this requires clearly defined 

methodologies in dung analysis. 

1.1.2.3 Anthelmintic use 

Many invertebrates are instrumental in the breakdown of dung and its incorporation into the 

soil. Thus a reduction in populations may reduce the rate of dung degradation. As previously 

discussed, the application of anthelmintics, for the control of endoparasites, can significantly 

impact the rate by which cattle dung degrades, impacting the nutrient cycle and local ecology 

(Barth et al., 1993; Floate, 1998a). The primary consideration for the use of anthelmintics is, 

as it should be, animal health and wellbeing. However, there is scope to include consideration 

of the environmental impacts of anthelmintics as part of wider veterinary strategies, 

complementing the veterinary evidence supporting restricting anthelmintic use. 

1.1.3 Dung and parasites 

Dung is involved in the lifecycle and transmission of numerous significant livestock pathogens. 

This is particularly true of parasitic diseases such as GINs, whose eggs are excreted in the 
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faeces of their host. The dung then provides a warm, moist, and protected environment for 

the eggs and larvae to develop, after which they migrate onto pasture to infect a host. Dung 

fauna can also play a significant role in the control of GIN populations, through the 

consumption and burying of dung, killing or inhibiting larvae (Fincher, 1973, 1975). This also 

further highlights the importance of considering the non-target, insecticidal, impact of 

anthelmintics excreted within dung. The timing and distance over which migration occurs is a 

key lifecycle variable, and there are many factors which influence this, including those which 

are involved in dung degradation. Soil type affects larval migration (Stromberg, 1997) and it 

is thus reasonable to consider dung consistency, as determined by climate and diet may also. 

If migration from the dung onto pasture requires increased energy and time, it is reasonable 

to believe that that will reduce the distance which the parasite may migrate away from the 

dung. This is particularly important because cattle avoid grazing near faeces. To add further 

complexity: as dung degrades and is influenced by its environment, the consistency and size 

will change, along with the parasites ability to migrate out of it. Within dry faeces, parasites 

may be desiccated, and movement inhibited, this may force migration downwards into the 

soil, while moisture provides a medium for larvae to move in. Rain may wash larvae onto 

surrounding herbage, and heavy droplets can transport larvae as far as 90cm (Stromberg, 

1997). As with all organisms, each parasite has an optimum temperature, at which its fitness 

is highest, deviation from this temperature will lead to inhibition of metabolic process and 

thus the ability of larvae to exit the faeces. 

Irrespective of international differences in beef production systems, the ubiquity and scale of 

beef production means that small changes can have a large impact. The complex and dynamic 

nature of livestock production systems means that there is a vast array of factors which can 

influence production and impact. Whether it be aspects of animal health, fertiliser use, soil 

quality, or other, no single factor is of most importance, and no single factor sits in isolation. 

It is, therefore, necessary to take a multi-disciplinary and multi-level approach to researching 

livestock production for its long-term development and sustainability. 

Dung has another, highly significant, role within agriculture. Dung is a vehicle for the expulsion 

of the eggs of parasitic gastrointestinal nematodes (GINs) (and other gastrointestinal 

helminthic parasites) and is an essential part of the GIN lifecycle (Figure 1.2). As a host, cattle 

provide a relatively stable, albeit challenging, environment for GINs, as does the warmth and 
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moisture of dung. Nematodes (of all types) are found throughout the lithosphere (Borgonie 

et al., 2011) with the widely reported figure that nematodes represent up to 80% of all 

individual animals on earth. Whether or not that figure is correct, it highlights their ubiquity 

and their ability to adapt and exploit resources, including other animals. This ubiquity, 

combined with the worldwide distribution of cattle, this means that GINs and associated 

diseases are prevalent worldwide. This is compounded by the increasing occurrence of 

anthelmintic resistance and represents a significant threat to livestock production (Waller, 

1994, 1997, 1999). Stemming the tide of anthelmintic resistance requires changes in the way 

in which we treat and prevent GIN infections. Successful implementation of resistance 

mitigating treatment strategies, such as targeted selective treatment (TST) (Kenyon et al., 

2009; van Wyk et al., 2006) requires an advancement in veterinary diagnostics. While 

technologies for the molecular and immunological diagnosis of health are routinely used 

within human medicine, the practical translation of these technologies into effective 

veterinary tools has lagged far behind. 

 

Figure 1.2 - The typical lifecycle of gastrointestinal nematodes (GINs) in cattle. Source: original, 
using image of cattle edited from Buffum (1905). 
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All of these factors and their impacts are driven by livestock management practices. Effective 

livestock management is no small feat, and there is certainly no unique right or wrong 

strategy. Management requires the consideration and balancing of the whole range of 

agricultural factors, within the context of a system’s own goals and ethos. Effective 

management has to be informed and, therefore, requires a system-level understanding of 

livestock production, founded on scientific research and evidence.  

1.1.4 UK beef production 

The UK’s beef industry produces approximately 900,000 tonnes of beef per year (FAO, 2017), 

the majority of which is produced by pasture-based grazing systems. Total production equates 

to produce worth around £2.8 billion annually (AHDB, 2017), with substantial indirect value 

added elsewhere across the food production industry and the wider economy. Over the past 

half-century, the UK beef industry has been through a period of significant change, facilitated 

by major advances in the scientific understanding of animal production and by technological 

advances. This has led to an increase in animal productivity from a mean carcass dressed 

weight of approximately 265kg 1980 to over 350kg in 2016 (FAO, 2017). Simultaneously there 

has been a decrease in the total head of cattle. However, these two factors have balanced 

out, and total meat production has remained relatively static, despite a significant increase in 

the UK’s human population over that period (FAO, 2017). Increases in animal productivity 

have been fundamental to improving resource efficiency within grazing beef systems. The 

increase in individual animal productivity, as driven by breeding, nutrition, and management, 

is biologically and ethically limited and may be beginning to plateau (Figure 1.3). In the 

developed world, between 1962 and 2006, mean carcass weight increased 64% (165kg to 

271kg). However, it is predicted that from 2006 to 2050 this value will only increase by 4% (to 

283kg) (FAO, 2006). Such a plateau would represent a halt in the industry’s primary driver 

(increases in live weight) of efficiency increase. This may create a shift in focus towards meat 

quality and system sustainability (both environmentally and economically), both of which 

hold the potential to increase profitability in the long-term. Given the substantial size of the 

industry and its role in the UK economy and society, the sustainability and improvement of 

the industry are of high importance.  
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Figure 1.3 - Mean dressed weight and total head of cattle within the UK from 1980 to 2016 
(FAO, 2017). 

The rapid and significant productivity increases that have been seen in the past are unlikely 

to continue into the future. One reason for this is the realisation that high increases in short-

term productivity can be detrimental to animal and system health. As a result, there needs to 

be a push towards ensuring long-term sustainability, as opposed to simply creating high 

yields. Another major reason is that the progress over recent decades has been brought about 

through the application of fundamental science, such as an improved understand of genetics, 

enabling rapid progress at a rate which is not sustainable. As this continues, advancement will 

come from more specific and high-tech research, often focussing on seemingly small factors. 

It is the cumulative effect of optimising smaller aspects of the system that will yield significant 

overall benefits. Achieving this requires scientific research that does not just focus on one 

factor or use one approach, but instead, draws together different factors using different 

methodologies. By combining approaches such as computer modelling, controlled studies, 

and case studies, it is possible to develop a contextual and rounded view of the different 

aspects of beef production and identify gaps in our understanding. 

1.2 Management 

The overwhelming majority of beef produced in the UK comes from pasture-grazing cattle, a 

stark contrast to feed-lot systems which are commonplace throughout other parts of the 
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world. Grazing systems are far more complex and dynamic than feed-lot systems and, 

consequently, there are more potential options for variations in management and efficiency 

improvements. There is no precise ‘best practice’ for grazing cattle systems and how a farm 

is managed and operates is dependent on a range of complex and interacting factors. One 

example is climate, which varies significantly across the UK with both latitude and longitude. 

Northern regions are typically colder than Southern, while Western regions are typically 

wetter than Eastern. This has wide implications across the system and can become a limiting 

factor to production and productivity. For example, fresh-water mud snails are the 

intermediate host of the parasitic liver fluke (Fasciola hepatica). Therefore, liver fluke 

prevalence is highly linked with weather (Fox et al., 2011; Ollerenshaw, 1958). Therefore, 

farms in such regions must consider that as part of their management strategy, this could 

involve changes in grazing and the use of veterinary intervention.  

1.2.1 Rotational grazing 

Pasture-based beef production systems often practice rotational grazing, moving cattle 

between different fields/areas throughout the grazing season. Successfully implemented 

rotational systems allow for pasture to have fallow resting periods over which flora can 

regenerate and regrow, improving pasture productivity, reducing the need for external 

inputs, and therefore increasing farm carrying capacity. Furthermore, rotational grazing has 

been successfully implemented for the control of parasitic diseases by ‘breaking’ their 

lifecycles. Although widely used in conventional farming, these potential benefits are of great 

appeal to organic farms. 

1.2.1.1 Pasture productivity 

Chapman et al. (2003) conducted a controlled experiment comparing set-stocked (where 

animals remain on one field for a prolonged period of many months) and rotational grazing 

systems under both high and low fertiliser inputs. Results showed that rotational grazing led 

to greater total herbage production, and therefore supported a greater stocking density. The 

study also found that rotational management also significantly impacted pasture 

composition, with the rotational systems yielding a tonne less of clover (dry matter basis). As 

a consequence, the major growth benefit was to the primary grass crop. It was concluded that 

either management style, in isolation, would mean missing out on the positives of the others 
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and that an integrated and varied management system has the potential to harness the 

positives of both. This is somewhat concurrent with prior observations by (Brougham, 1960) 

who found that changes in grazing management throughout the year could be a tool for 

improving pasture. For example, intensive grazing during the autumn would reduce the 

abundance of dominant summer species; this would decrease short-term yields as the 

conditions would not allow the summer species to re-establish, however, this would allow for 

winter species to establish more easily. The primary findings of Chapman et al. (2003) are 

mirrored across many other studies. Stobbs (1969) examined rotation grazing of Zebu cattle 

in Africa, finding that it yielded benefits when herbage was low, and suggesting it promotes 

pasture recovery. This study also found significant differences in pasture composition 

between rotational grazing and set stocking systems. Walton et al. (1981) conducted a 

controlled experiment which looked in more detail, including pasture productivity concerning 

animal weight gain per hectare, which is a better real-world measure for beef production 

systems. It was found that cattle weight gain was 218 kg/ha in the rotational system, 

compared to 119 kg/ha in their continuously grazed equivalent, the increase due to the ability 

for greater stocking densities. It was also found that that the percentage of alfalfa in the sward 

increased from 23 to 47% under rotational grazing and that animals graze for 2.4hrs less per 

day. The rotational system yielded more digestible forage with higher proportions of protein, 

calcium, magnesium, and copper. These examples highlight the importance of pasture 

management and trade-offs involved in pasture management and how, ultimately, it is down 

to an informed preference on a farm-by-farm basis. Farms that practice this most effectively 

will be more profitable and economically sustainable. 

1.2.1.2 Parasite control 

Gastrointestinal nematode (GIN) eggs, deposited in faeces, are not immediately infective, L1 

larvae must hatch from the eggs and moult twice before becoming infective L3. The length of 

time this takes depends on the species and weather. For example in high humidity and warm 

temperatures (20-25°C) Haemonchus contortus and Trichostrongylus colubriformis eggs can 

become infective L3 in as little as 3-4 days (Hsu and Levine, 1977; Veglia, 1916). Whilst at 10°C 

this process may take 16 days (Smith, 1990), or longer if conditions are dry. It is thought that 

by moving animals onto fresh pasture before deposited eggs become infective again, that the 

parasite lifecycle can be ‘broken’ or at least that pasture is not grazed when it is most 
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infective. This means that the peak infectivity of a parasite population, on pasture, is avoided 

by available host animals. After this peak numbers steadily decline and, therefore, the longer 

that pasture is left fallow, the lower the risk of infection to livestock when they return to graze 

that pasture (Stromberg and Averbeck, 1999). A number of studies have found rotational 

grazing effective for the control of parasitic diseases of grazing ruminants (Barger et al., 1994; 

Larsson et al., 2006; Marley et al., 2007; Stromberg and Averbeck, 1999), although in some 

instances no significant benefit has been observed (Eysker et al., 1993; Kunkel and Murphy, 

1988). The effectiveness of such strategies is inevitably dependent on factors such as the 

nematode species present and the local weather and climate, which may explain why some 

studies have found it to be effective and others not. It is possible that an ineffective rotational 

grazing system might even increase parasitic infections at a herd level. Rotational grazing 

typically requires high stocking densities (with respect to the area of land immediately being 

grazed), therefore if a rotation were slightly slower than parasite development, i.e. if parasites 

became infective within five days, but rotations were weekly, cattle would be exposed to an 

unusually high density of infective larvae.  

1.2.2  Organic farming  

The UK organic food industry is growing steadily, and currently, approximately 15% of cattle 

in the UK are classified as organic (DEFRA, 2017). There are various definitions of ‘organic’, 

with respect to food production. Perhaps the most widely used is that of the Soil Association, 

who set out a comprehensive set of standards which they use to certify farms. The standards 

aim for the ‘highest possible standards of animal welfare, environmental and wildlife 

protection” (Soil Association, 2017a). In many aspects, these standards are significantly more 

stringent than those required by law. For beef production, such standards include that cattle 

must be free range for >200 days per year, no artificial fertilisers are to be used on pasture, a 

minimum 60% grass-based diet, no antibiotics to be used prophylactically, and that pesticides 

are limited in use. For many farmers, these standards fit in with their own ethos. However, it 

is important to consider that livestock production is a business and that additional regulations 

can constrain profitability.  

There is a range of pros and cons to organic farming, further complicating the balance which 

management must achieve. A key downside is typically a loss in productivity, in beef 
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production systems this is often characterised by a reduced stocking density (Stockdale et al., 

2001) and carcass weight (Woodward and Fernández, 1999), resulting in a higher production 

cost of meat (Fernández and Woodward, 1999). This reduced gross performance productivity 

is not always directly reflected by a lower economic productivity as it is somewhat mitigated 

by the potential benefits, such as reduced inputs and increased meat value. 

1.2.2.1 Environmental impact 

Organic systems have been shown to reduce the dependence on external farm inputs due to 

improved soil fertility and biodiversity, providing a cost saving and evidence for system 

sustainability (Bengtsson et al., 2005; Maeder et al., 2002; Stockdale et al., 2001). A key 

feature of organic farms is that they do not routinely use synthetic fertilisers, herbicides, or 

pesticides, all of which have environmental costs due to their production and impacts (Figure 

1.4). Therefore, the removal of these components has the potential to reduce the 

environmental impact of production, so long as yields are not disproportionately diminished 

as a result.

 

Figure 1.4 - Inputs and emission sources of conventional beef production.  Whilst components 
labelled “a” are relevant to both conventional and organic farming, all components labelled 
“c” and some labelled “b” are not a part of organic systems. Source: Beauchemin et al. (2010). 
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Flessa et al. (2002) compared conventional and organic beef production and found that 

organic systems produced lower greenhouse gas emissions per hectare of land, however 

when adjusted for a reduced beef yield, systems did not differ. The study did not account for 

land use efficiency, doing so could provide evidence that the conventional system has (net) 

lower greenhouse gas emissions than the organic system. For example, the land freed up 

through the more intensive conventional system could be converted to woodland, which 

would reduce the net greenhouse gas emissions over the same area and sequester carbon. A 

significant study in this field, by Tuomisto et al. (2012), conducted a meta-analysis of the 

environmental impact of organic farming (arable and livestock), compared to conventional 

systems. The results of Flessa et al. (2002) were mirrored in this study, finding that the total 

negative environmental impact per area was reduced, but that this was not necessarily 

reflected relative to yield. 

1.2.2.2 Carcass characteristics 

Carcass characteristics have been shown to differ between organic, intensive, and 

conventional systems. Woodward and Fernández (1999) found that conventionally reared 

steers had a significantly higher carcass weight than organic steers, along with larger rib eyes 

(a value cut) and less fat – which is not necessarily considered positive or negative, as fats can 

dictate taste. These factors may be somewhat linked to the higher weight gain and feed 

conversion (irrespective of dry matter intake) when compared to organic animals (Fernández 

and Woodward, 1999). However, it is notable that Blanco-Penedo et al. (2012) found that, 

despite similar disease incidence, organic cattle carcasses were significantly less condemned 

at abattoir, implying a health advantage while also partially mitigating for loses due to 

decreased carcass weight, characteristic of organic beef production. 

1.2.2.3 Ensuring benefits 

There are potential benefits to the organic production of beef. However, these can easily be 

overshadowed by reductions in yield. Therefore, if achieved, improvement of yield on organic 

beef farms towards the levels achieved by conventional systems would provide a strong 

justification for organic beef production. Two main objectives need to be achieved to 

accomplish this; the first is to ensure animal productivity and the second is to ensure pasture 

productivity. Animal productivity is primarily achieved through ensuring that animals are free 

from disease and have high-quality nutrition. Pasture productivity can be achieved by 
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ensuring soil health and providing flora with optimal conditions for growth. Effective 

management of rotational grazing has some potential in addressing both of these, through 

reducing the risk of parasitic infections and by enhancing soil and pasture health and 

productivity, as previously outlined. 

1.3 Gastrointestinal nematodes and cattle 

Parasitic diseases are a primary source of losses within beef and livestock production systems 

worldwide. In particular, GINs can cause substantial losses due to their impact on animal 

health and performance, resulting from underlying pathology. GIN lifecycles are relatively 

simple when compared to cestodes or trematodes which have intermediate hosts such as 

mites and snails. However, this simplicity has allowed them to become ubiquitous throughout 

the world in both wild and domesticated mammals, resulting in significant productivity losses 

in livestock. Therefore, the prevention and control of GINs is a key consideration for improving 

the environmental and economic sustainability of beef production systems.  

While the diagnosis of parasitic diseases can be relatively straightforward through the use of 

faecal egg counts (FEC), which are widely practised by veterinarians, farmers, and 

researchers, there is scope for greatly improving the tools that are available for diagnosis and 

for developing new tools. This could facilitate more precise and effective treatment of 

parasitic diseases within a targeted selective treatment (TST) programme. Improving the 

management of  treatment has the short-term benefits of improving individual animal health, 

but also the long-term benefit of mitigating the development of anthelmintic resistance in 

helminth populations (van Wyk, 2001; van Wyk et al., 2006). Such resistance occurs when 

anthelmintics place a selection pressure on parasite populations, favouring the inheritance of 

genes which enable individuals to tolerate the drugs. The more broadly this pressure is 

applied to a population, the more likely it is that resistant phenotypes prevail. In addition to 

the impact of parasites on animal health, it is also necessary to consider the environmental 

impact of parasitic diseases, caused by anthelmintic usage, and the potential wider impacts 

of these on farm productivity and performance. 
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1.3.1 Prevalence and impact 

1.3.1.1 Animal health and pathology 

A key pathological sign of GIN infections is a reduction in feed intake. Feed intake studies can 

be conducted by either (or both) artificially introducing an infection to observe with a control 

group of non-infected animals, or by introducing an intervention measure with a control 

group of infected animals. Experimental examples of both options have yielded analogous 

findings. Forbes et al. (2000) found that cattle that had not been treated with anthelmintics 

(ivermectin) grazed for an average of 105 minutes per day less than their treated 

counterparts, resulting in 0.78kg less feed intake, similar results were observed by Bell et al. 

(1988). Taylor et al. (1989) found that artificially infected animals had reduced feed intakes, 

but that there was a threshold - calves trickle infected with 10,000 Ostertagia ostertagi larvae 

daily had a reduced feed intake, whereas those infected with 2000 daily did not. The exact 

mechanism that causes this behaviour is not fully understood.  

Gastrin, a hormone that stimulates gastric acid secretion, has long been associated with GIN 

infections. Within ruminants, the gross effect of gastrin is a reduction in reticular contraction 

and abomasal emptying, both of which result in a slowing of the passage of feed through the 

rumen. Grovum (1981) found that levels impacted feed intake in sheep. Work led by Professor 

Mark Fox (Royal Veterinary College, University of London) explored the role of gastrin as a 

part of the mechanism for feed intake suppression. In response to GIN infections, finding that 

elevated gastrin levels reduced food intake of cattle (Fox et al., 1989a, b, c; Fox, 1997; Fox et 

al., 2002). Similarly, Fox et al. (2006) observed that lectin, a hormone which regulates energy 

expenditure through controlling appetite, may be linked to reduced food intake in response 

to GIN infections. 

A compounding factor to reduced food intake is feed conversion rate (animal weight gain per 

weight of feed consumed), which can be reduced due to GIN infections. Goldberg (1965) 

found that artificially infected animals had a reduced feed conversion of 9.2-12.2 percentage 

points. Comparable results were also found by studies investigating the positive impacts of 

anthelmintic treatment on feed conversion (Bauck et al., 1989; Leland et al., 1980; Williams 

et al., 1991). Part of the reasoning for this is the cost to the host of mounting an immune 

response to infection. 
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The culmination of these combined factors is a total reduction in animal weight. Borges et al. 

(2013) observed that GIN infection levels, as measured by FECs, negatively correlated with 

calf weight. Analogous findings have been presented by Ploeger and Kloosterman (1993) and 

Devaney et al. (1992), whom both looked specifically at calf weight gain. Devaney et al. (1992) 

reported a difference in weight of 10 kg, over 16-20 weeks, between uninfected and infected 

animals. Similarly, (Dimander et al., 2000, 2003) observed that low-level GIN infections of 

calves could cause losses of 30-60 kg within their first 12 months, whereas Sutherland and 

Leathwick (2011) observed 14 kg of loses over the same period. Such gross productivity losses 

have an impact on final sale weight and therefore the total profit per animal.  

1.3.1.2 Economics 

Economic losses, to livestock producers, from GIN infections, are caused by a range of direct 

and indirect factors. The most prominent measure is animal performance (weight 

maintenance and gain), a factor driven by the underlying pathology of infection.  

Further direct losses occur through the use of anthelmintics and the cost of veterinary 

services. Anthelmintics are used to simultaneously improve animal health and profitability. 

Therefore, there is an economic argument for their use as a money saving device. Leland et 

al. (1980) found that that the feed efficiency benefits at 28 and 51 days, yielded by 

anthelmintics, outweighed the cost of treatment. Across the EU (European Union), annual 

sales of anthelmintics are estimated to equate to €400 million (Selzer, 2009). The ability to 

lessen the use of anthelmintics, through informed management strategies, would yield 

economic benefits to livestock producers as well as a health benefit to the animals. Examples 

of this are the use of targeted selective treatment and selective breeding for diseases 

resistance (Malan et al., 2001; van Wyk et al., 2006). 

Estimating the economic impact of any particular diseases is incredibly difficult due to the 

diversity of the direct and indirect losses involved (Morgan et al., 2013; Sutherland and 

Leathwick, 2011). The impact of GIN diseases can be yet more complicated to estimate as, in 

cattle, they do not always cause notable pathology meaning that they may not be treated or 

even diagnosed. In such instances, small inconspicuous productivity loses may occur. While 

no figure can be realistically calculated, there is evidence that provides a picture as to the 

economic scale of the problem. A 2002 report by DEFRA (DEFRA, 2002) estimated the cost of 
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a range of livestock diseases. The 15 target diseases of cattle they examined cost 

approximately £402 million (£610 million when adjusted for inflation for 2016 (Bank of 

England, 2017)) to the industry. Of those, two helminth diseases were included, parasitic 

bronchitis and fasciolosis, costing £9.5 million and £23 million respectively.  

Estimations of the economic impact of animal diseases are calculated on an annual basis. This, 

therefore, does not account for the long-term impact of current behaviours. A prime example 

of this is the increasing prevalence of resistance to veterinary medicines due to their current 

usage (Sutherland and Leathwick, 2011; Teuber, 2001; Waller, 1994, 1997), the potential 

future financial impact of this could be tremendous, conservatively in the hundreds of millions 

of pounds. Given all of the information available, it is reasonable to believe that GIN infections 

of cattle annually cost the UK beef producers tens of millions of pounds with the cost of all 

helminth diseases in the hundreds of millions or more. 

1.3.2 Diagnostics 

A range of diagnostic methods are available for the identification of GINS, each with specific 

benefits and drawbacks. Faecal egg counts (FEC) are the most commonly used methods and, 

while they have significant merit, provided limited information on the true impact of infection 

on the host. There is also significant variation between FEC techniques, therefore limiting the 

external validity of results (Bosco et al., 2014; Levecke et al., 2012; Rossanigo and Gruner, 

1991).  A range of molecular methods are technically feasible, such as polymerase chain 

reaction (PCR) diagnostics (Zarlenga and Higgins, 2001) and enzyme-linked immunosorbent 

assays (ELISAs) (Keus et al., 1981). However, these are not widely used or well-established 

within veterinary science, outside of an academic context. Improving the convenience and 

resource requirements of immunological methods, as has been achieved within human 

medicine, would promote the uptake of such methods. Molecular methods are necessary for 

the accurate identification of nematode species (McKeand, 1999) and would help to inform 

control strategies at local and national levels. Combining different diagnostic approaches has 

the potential to provide comprehensive bodies of evidence to inform treatment decision 

making. For example, FECs could be used to identify parasite species, but also to identify 

individual hosts that may require further health assessment by immunological and molecular 

methods. 
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1.3.2.1 Immunological diagnosis 

The parasitic trematode, liver fluke (Fasciola hepatica), attracts significant scientific attention. 

While it is not as ubiquitous as GINs, where it does strike (the west of the UK), its impact can 

be devastating. Enzyme-linked immunosorbent assays (ELISA) are commercially available for 

detection of F. hepatica in cattle (Farrel et al., 1981) and sheep (Zimmerman et al., 1982), by 

identifying specific antigens in sera, plasma, and milk. ELISA can identify infection as soon as 

six weeks post-ingestion, and the assay requires an incubation time of about 1hr 45mins. Also, 

the method is highly sensitive. The main drawback of ELISA is the cost of the kits, making 

diagnosis notably more costly than FEC. Due to the requirements of the test, it is not currently 

possible for farmers to conduct testing themselves. However, research by Gordon et al. (2012) 

has shown great promise for a coproantigen ELISA that utilised faecal samples, further 

development and success could lead to more efficient and practical detection of F. hepatica 

within livestock worldwide. Similarly, ELISAs have been utilised for the detection of other 

parasitic diseases, Cornelissen et al. (1997) used the method for the detection of bovine 

lungworm (Dictyocaulus vivparus).  A prime practical example of this application is the 

detection of carbohydrate larval surface antigens (CarLA) in sheep saliva (Merlin et al., 2017). 

Within human medicine, faeces (or “stool”) is routinely used for the diagnosis of disease, 

through the quantification of immunomarkers. A small number of studies have applied this 

principle to veterinary medicine, successfully using faecal markers to detect specific diseases 

or assess animal immunology (Duménigo et al., 1996; Peters et al., 2004; Watt et al., 2015; 

Wedrychowicz et al., 1985). Nevertheless, such uses of faeces have received little attention, 

yet hold great potential to enhance veterinary diagnostics. The development of effective 

faecal diagnostic tools would reduce the need for time-consuming and welfare-negative 

invasive procedures while possibly providing novel information on gastrointestinal health. 

Human medicine has seen significant innovation in the development of immunological 

diagnosis methods, leading to a number of cheap, rapid, and effective, molecular diagnostic 

tools that can be utilised in the field. One example is the circulating cathodic antigen (CCA) 

dipstick (Figure 1.5), a lateral flow device which can detect Schistosoma spp. antigens in host 

urine (Sousa-Figueiredo et al., 2013) and are now routinely used. The technology is founded 

on the same principles of ELISAs, a solution or product with the target molecule moves 

laterally along the device until it reaches an indicator strip which captures and reacts to the 
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target molecule, indicating its presence. Such levels innovation has not been seen in 

veterinary medicine and represent a key area in which major advancements can be made. 

The technology and scientific capabilities exist to make such advancements. 

 

Figure 1.5 - Circulating cathodic antigen dipstick (CCA). A practical tool used for the diagnosis 
of schistosomiasis in humans, through detecting antigens of Schistosoma spp. in urine. a) 
Receiver, where sample is applied b) test-strip, indicating if sample if positive. A similar tool 
could potentially be created for rapid diagnostic of gastrointestinal nematodes (GINs) and 
other agriculturally significant parasites. Source: Rapid Diagnostics (2015). 

1.3.2.2 Faecal egg counts 

Faecal egg count techniques typically rely on the isolation and separation of parasite eggs 

from faecal material, followed by microscopic identification and manual counting of eggs. The 

eggs per gram (epg) of faeces is then calculated and used as a proxy measure the 

severity/intensity of infection. A wide variety of techniques are available, each with their own 

benefits and shortcomings (Bosco et al., 2014; Levecke et al., 2012). The primary benefits of 

FEC techniques are that they are usually quantitative, cheap, and simple to conduct. This 

means that they can be used worldwide irrespective of resource limitations. FECs, however, 

are by no means perfect. The spatial overdispersal of eggs within faecal material is an issue 

impacting most FEC techniques, leading to large sample variability (Carstensen et al., 2013; 

Lester et al., 2012). Mature parasites shed eggs in cycles and therefore repeat sampling of the 

same individual can yield significantly different results within a short period. This mechanism 

can also facilitate spatial clumping of eggs within faeces, meaning that sub-samples may not 

be representative. Furthermore, the water content of the faeces has the potential to dilute 

or concentrate eggs, resulting in biased egg counts (Le Jambre et al., 2007). This is particularly 

important considering that diarrhoea is symptomatic of many gastrointestinal parasitic 

infections and drought events can lead to outbreaks of parasitic diseases. All of these factors 
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can compound, culminating in inadvertent biases. Levecke et al. (2012) compared 

standardised FLOTAC, McMaster, and Cornell-Wisconsin FEC techniques in the context of 

drug efficacy testing and found that all of the methods produced bias. Furthermore, these 

biases were not consistent across the techniques nor were they consistent for the same 

techniques tested at different egg concentrations.  

1.3.3 Anthelmintic treatment 

Anthelmintics are the primary class of drug used to combat helminth infections of livestock. 

Their use is widespread and routine, not just as a reactive treatment for diagnosed infections, 

but also prophylactically. The ubiquitous administration of anthelmintics has been one of the 

driving forces of increased animal performance, by reducing animal energy expenditure on 

immune responses and by preventing damage to organs. However, this has not been without 

cost, resistance to anthelmintics is becoming increasingly prevalent and poses a significant 

risk to livestock production worldwide (Borges et al., 2013; Köhler, 2001; Papadopoulos, 2008; 

Papadopoulos et al., 2012; Sutherland and Leathwick, 2011; Waller, 1994, 1997). The 

development of anthelmintic resistance, due to overuse and inappropriate use, means that 

the industry will be less able to react to specific outbreaks as and when they occur. It also 

means that animals suffering the most may not be able to benefit from effective medication. 

Furthermore, the use of anthelmintics has an environmental impact due to the non-target 

insecticidal properties of anthelmintics of all classes (Beynon, 2012; Beynon et al., 2015; 

Strong, 1993; Strong and James, 1993; Wall and Beynon, 2012). While this all may sound 

particularly negative, there is an important place for anthelmintics within veterinary 

medicine. Anthelmintics need to be used more sparingly and not as a first resort; this will 

increase the longevity of their efficacy. 

Arguably, the largest issue regarding parasite control is sustainability. Resistance to 

anthelmintics is a constant hurdle to treatment, and it is, therefore, vital to conserve the 

efficacy of current drugs for as long as possible. For sustainable parasite control, we must 

focus on prevention rather than treatment and combine multiple control methods, with 

different targets, to do this, thus altering farming practice as a whole. Such approaches 

include, but are not exclusive to anthelmintic use, grazing rotations, nutrition, selective 

breeding, control of movement, and climate monitoring. Analogous to the theory of 
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combination drug therapy, combining different control methods into one strategy greatly 

reduces the likelihood of an individual having a resistance genotype to the entire strategy, 

compared to its singular components. 

1.3.3.1 Anthelmintic resistance 

The resistance of helminths to anthelmintic medication represents a major threat to UK and 

worldwide livestock production. Reports from across the world have identified resistance to 

every major anthelmintic, on every content (Borges et al., 2013; Papadopoulos, 2008; 

Papadopoulos et al., 2012; Sutherland and Leathwick, 2011; Waller, 1994, 1997). The 

consequence of anthelmintic resistance is the inability to be able to effectively respond to 

significant infections or outbreaks, with the potential of major loses.   

Although scientific literature on the topic is readily available, anthelmintic resistance has 

received relatively little public attention when compared to antimicrobial resistance (AMR), 

which in recent years, has taken centre stage in medical and agricultural politics within the 

UK. This has led to positive changes across those industries, catalysed by significant media 

coverage of AMR and commentary from influential individuals. This is down to a host of social 

and scientific factors. Bacterial diseases are far more prevalent in developed societies than 

helmintic diseases are. As a result, the general public has a far greater awareness and personal 

investment in antibiotics than they do anthelmintics. The majority of individuals in the UK will 

have taken antibiotics at numerous points in their life, while they most likely will have never 

taken anthelmintics. Anthelmintic resistance in the developed world is also not, directly, an 

anthropogenic issue, it is a step or two detached from the day to day lives of most. The more 

rapid reproductive cycle and the ubiquity of pathogenic bacteria, compared to helminths, 

does make AMR a more imminent and serious threat. However, anthelmintic resistance is 

likely to become an increasingly significant issue if actions are delayed until it is too big to 

ignore.  

Reducing the use of anthelmintics and the prevalence of resistance necessitates more precise 

and informed practice across veterinary medicine. There is also the need for farmers to 

implement non-medicinal control strategies to prevent disease, these include rotational 

grazing management, high levels of nutrition, adequate biosecurity measures, and hygienic 

operation. 
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1.3.3.2 Environmental impact 

The environmental impact of anthelmintics is well-studied and the chemical mechanisms well 

understood. Anthelmintics, administered to cattle, are not fully metabolised or degraded and, 

consequently, are excreted by the animal in dung and urine (Gover and Strong, 1995; Iglesias 

et al., 2006; Sommer et al., 1992). When these residues enter the ecosystem, they exert non-

target effects on invertebrates and other organisms, reducing their populations and 

impacting local ecology (Adler et al., 2016; Barth et al., 1993; Beynon, 2012; Floate, 1998a; 

Gover and Strong, 1995; Iglesias et al., 2006; Madsen et al., 1990a; Sommer et al., 1992; 

Sommer and Bibby, 2002; Sommer and Nielsen, 1992; Wall and Beynon, 2012). The 

mechanism for this effect varies between anthelmintic classes. For example, macrocycling 

lactones (e.g. ivermectin) bind to glutamate-gated chloride channels of invertebrate nerve 

and muscle cells, permanently opening them resulting in paralysis and ultimate death 

(Cheeseman et al., 2001; Köhler, 2001; McCavera et al., 2009; Njue and Prichard, 2004; 

Wolstenholme and Rogers, 2005).The impact of this effect extends beyond that of 

biodiversity, as the impacted species play vital roles in the degradation of dung and nutrient 

cycling, all of which impacts soil quality and associated factors (Barth et al., 1993; Floate, 

1998a; Wall and Beynon, 2012). When combined with the potential negative impact of 

anthelmintic resistance, this evidence supports lessening the use of anthelmintics.  

There is somewhat of a stagnation of research into these impacts, with large similarities 

between studies that take the approach of comparing the activity of an invertebrate(s) in 

dung with or without anthelmintic residues. A key factor that has not been touched on is how 

the applications of anthelmintics are managed at a herd level, which would provide more 

representative information on the non-target impacts of anthelmintics within the real world. 

In recent years the implementation of TST programs has changed how anthelmintics are 

administered, which is likely to have affected the way anthelmintic residues interact with 

dung fauna. Part of the reason for the lack of research into this specific aspect may be the 

scale and complexity of implementing such an experiment. Therefore, computer modelling 

may be a prime candidate to simplify the system and minimise hurdles such as ethics and 

resource availability. This has been attempted once already by Boxall et al. (2007). However, 

the model was fundamentally flawed due to an inadvertent cap that the algorithm places on 
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anthelmintic toxicity. Nevertheless, the work was important in highlighting the issue and 

laying a basic framework that could be utilised in the future. 

1.3.3.3 Targeted selective treatment 

Targeted selective treatment is an approach to the use of veterinary medicines which  uses 

diagnostic individual animal information to decide which individuals require treatment. 

Significant evidence for the benefit of TST has led to it becoming the recommended ‘best 

practice’ for the treatment of livestock against parasitic diseases. TST has been found to 

lessen the selection pressures that favoured anthelmintic resistance genes, therefore, slowing 

the rate by which resistance genes become prevelant.  By not treating the entire herd refugia 

is formed, and a proportion of non-anthelmintic-resistant parasites survive, slowing the rate 

at which resistant genes become prevalent (Figure 1.6) (Kenyon et al., 2009; van Wyk, 2001; 

van Wyk et al., 2006). A refugium of dung without anthelmintic residues is also simultaneously 

created for invertebrates (Cooke et al., 2017). 

 

Figure 1.6 - Mechanism for refugia formation through targeted selective treatment (TST) 
strategies. a) original gastrointestinal nematode (GIN) population with some resistant 
individuals b) parasite population after whole-herd anthelmintic treatment, with all GINs 
resistance c) population after TST, with an increased number of resistant individuals, but 
susceptible individuals still present. Source: original. 

A key aspect of TST is an effective health assessment which is used to inform treatment. 

Depending on treatment goals, diagnosis of an infection is not necessarily enough information 

to warrant treatment. Vercruysse and Claerebout (2001) proposed two thresholds for 

treatment. The first is a ‘production-based threshold’; this is a sub-clinical level at which the 
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cost of treatment is outweighed by its benefits, particularly with regards to ensuring weight 

gain and future infection. The higher threshold is the “therapeutic threshold”, the level at 

which immediate treatment is necessary for animal health. In many systems these two 

thresholds will not be the same, however, the closer they are brought together, the more 

beneficial a treatment regime can be to both animal health and economic productivity. The 

formal definition of such thresholds is also not always feasible and therefore may be a 

subjective threshold to which objective information is applied to. In order to assess an animal 

in relation to these thresholds, it is necessary for there to be a range of effective diagnostic 

tools. This is an area where significant advancement can be made. Bath and van Wyk (2009) 

developed a five-point checklist (for small ruminants) for informing TST treatments, 

representing a significant advancement by defining a clear procedure. The checklist looked at 

gross health markers, eye colour, body condition, tail cleanliness, jaw shape, nasal discharge, 

and coat condition. These are useful metrics for assessing general health, especially as an 

initial assessment, but provided limited information as to the cause of infirmity and internal 

pathology. 

1.4 Conclusion 

Significant advances in UK beef production have enabled the industry to respond to 

challenges over the past three decades. In addition to the historical and persistent challenges, 

such as consumer demands for low prices and pressure to reduce environmental impacts, 

new challenges are emerging. The most pertinent of these is maintaining the rate of industry 

advancement in response to emerging challenges. There is no one key area in which 

improvements are necessary, and instead, widespread continual and incremental advances 

are necessary. This requires a multidisciplinary scientific approach to assess numerous 

factors, utilising numerous approaches, in relation to one-another. No particular farming 

system/approach is intrinsically superior to another. In particular, the literature surrounding 

organic farming and rotational grazing show that the strategies can yield benefits or costs, 

depending on how they are implemented. Successful implication of farm management 

strategies requires farms to be informed about their systems, animals, and the implications 

of their decisions. This can be most widely achieved through the development and application 

of scientific research, investigating the multivariate factors of farming systems. In support of 

that, solutions need to be practical for real-world use by farmers, veterinarians, and other 
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stakeholders. Achieving all of this is the best strategy to tackle the challenges of pasture-

based beef production within the UK and worldwide. Furthermore, it can find and develop 

effective strategies to improve the balance between productivity and environmental impact 

in the short and long-term. 

The objective of this thesis is to test the overarching hypothesis that intentional management 

of dung as a critical resource on-farm has multiple benefits that improve the resilience of beef 

production systems. The hypothesis is tested using a multi-disciplinary approach and gathers 

evidence from a range of sources, from individual animal data through to farm-level case 

studies. 
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2 Chapter 2 

Dung dynamics - Biochemical composition and degradation 

of cattle dung from three typical UK grazing systems. 
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Summary 

A key consideration in the management of pasture-based livestock systems is pasture type. 

Acting as the primary source of nutrition for livestock, forage type and quality have the 

potential to be major drivers of gross farm productivity. However, the importance of sward 

management is not only derived from its impact on animal development but due to a wider 

role in nutrient cycling and local ecology. Three typical UK grazing systems were compared to 

investigate differences in the individual characteristics of each system’s forage and dung. In 

addition, the manner by which dung degrades within each system was measured. Significant 

differences were found in the composition of forage and dung, as determined by a range of 

biochemical and physical metrics. Furthermore, the rates at which dung degraded, both 

regarding total organic matter and specific biochemical components, varied significantly 

between systems. Variations in dung degradation rate were found to be 69% driven by 

pasture type on which the dung degraded on and 4% by composition of the dung. Results 

provide strong evidence to show that pasture type alone has the potential to significantly 

impact the nutritional properties of cattle dung, with a knock-on impact on important 

ecological and environmental processes. When combined with other management decisions, 

such as the use of anthelmintics, these differences could compound on a large scale to great 

effect. 
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2.1 Introduction 

Dung is a vital agriculture resource that is involved in the recycling of nutrients from livestock 

to the soil, facilitating a host of complex and interactive biological process relevant to system 

productivity and the wider environment (Figure 2.1). The rate and manner in which dung 

degrades may influence the nature of nutrient turnover and incorporation by impacting upon 

factors such as leaching potential and digestibility of the dung by invertebrates. There is, 

therefore, a necessity to further understand the drivers and dynamics of dung degradation. 

In addition, artificially applied fertilisers, both organic and inorganic, are applied sporadically 

in bulk, whereas the deposition of cattle dung via defecation is a much more continuous and 

consistent input. Consistent inputs are more stable and resilient whereas bulk applications of 

fertilisers may increase the susceptibility of nutrient run-off, leading to reduced nutrient-soil 

incorporation and increasing the potential for negative environmental impacts such as 

eutrophication (Hart et al., 2004; Smith et al., 2001). This may occur, for example, if large 

quantities of fertilisers were applied shortly before a period of heavy rainfall. 

 

Figure 2.1 - Diagram showing the basis of the dung cycle within grazing livestock systems. 
Source: original. 
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Dung is also a central component in the lifecycle of gastrointestinal nematodes (GINs) and 

other significant parasites, which rely on dung as an environment for their transmission onto 

pasture and for the hatching of eggs and development of larvae. Whilst little is known about 

the impact of dung dynamics on the transmission of GINs, it is feasible to consider that factors 

such as composition and degradation may influence the development and transmission of 

such pathogens. 

Grazing livestock systems are incredibly complex and with that complexity comes a host of 

management decisions which must be made. One of the primary considerations is pasture 

type. In these systems, pasture is central to the network of factors and variables which farm 

management must consider on a regular basis. Pasture management, therefore, is 

instrumental in driving factors such as soil quality, forage quality, biodiversity, hydrology, and 

most crucially, animal health. This impact upon biology has the potential to subsequently 

impact the characteristics of waste products from the animal, especially dung. If pasture type 

were to significantly impact the composition of cattle dung, it is feasible that this may alter 

the rate and manner in which dung degrades, with knock-on impacts throughout the dung 

cycle and wider farm system.  

2.1.1 Dung as fertiliser 

A significant focus is put upon the characteristics of artificially applied fertilisers, and great 

consideration is taken to optimise nutrient levels of these fertilisers before application.  This 

is done to optimise yields but particularly important as such fertilisers are introducing new 

nutrients to the system. The Agriculture and Horticulture Development Board (AHDB) have 

produced the Nutrient Management Guide, which provides practical information on the 

typical nutrient contents of fertilisers and their application (AHDB, 2010). This reflects the 

importance of fertilisers within agriculture systems and the need to optimise their uses to 

enhance yield and reduce their environmental impacts. Despite the detailed attention that 

fertilisers receive, there is significantly less active consideration as to the composition of 

dung/manure, which is applied artificially to pasture or deposited naturally by cattle. Cattle 

dung is a valuable resource in pasture-fed beef production systems and is a key component 

of the nutrient cycle (W. F. Sheldrick et al., 2003). Dung, returned to pasture, facilitates the 

turnover and recycling of nutrients from the animal, back into the soil, where they become 
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readily available for soil biological processes. (Aarons et al., 2009; Ayoola and Makinde, 2008; 

During et al., 1973). A typical adult animal within a beef herd can produce upwards of 7 tonnes 

of dung in a typical 170 day grazing season (Lorimor et al., 2004). When upscaled to herd level 

this represents a significant amount, and therefore even small nutritional differences in dung 

composition could manifest as a large difference in gross nutrient inputs between different 

systems. Furthermore, there are estimated to be over 1.5 billion cattle in the world (FAO, 

2017), a number which is set to increase above 2 billion by the year 2050 (FAO, 2006). Any 

change, no matter how small, can have a significant net impact globally. These differences 

could impact a range of other biological processes, in the environment, leading to variations 

in soil quality, pasture productivity, and in forage nutritional quality, which is pertinent to 

animal health and performance. This represents a key gap in our knowledge of livestock 

production systems. 

Dungait et al. (2005) investigated the dynamics of nitrogen, carbon, and phosphorus within 

livestock systems (Figure 2.2), showing the complex and diverse interactions that occur 

throughout grazing systems. This would become exponentially more complex with every 

added element, whether it be the inclusion of more nutrients, biodiversity, or environmental 

factors, highlighting the sheer complexity of agricultural systems. 

 

Figure 2.2 - Model of the complex interactions of the N, P and C cycles in a mixed farming 
(arable crops and livestock) system. Covalent bonding between elements is indicated by C
N P. Source: Dungait et al. (2012). 
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2.1.1.1 Legislation and regulation 

There have been significant attempts to control the use of fertilisers in an attempt to mitigate 

for their potential environmental impact. The Nitrates Directive, set out by the European 

Commission (1991), aims to protect water systems from agriculturally derived nitrates. As 

part of this, nitrate-vulnerable zones (NVZs), were defined across the UK, in which the 

application of nitrogen fertilisers and the storage of organic manures must be controlled in 

accordance with specific regulation. A key focus is placed upon the amount of nitrogen that 

can be applied annually per hectare, relative to yield. For manures, the cap is 170kg of N per 

hectare for conventional manures and 250kg for organic manures. While this focusses purely 

on nitrates, water systems are further protected by the Water Framework Directive 

(European Commission, 2000) and subsequent Ground Water Directive (European 

Commission, 2016), which are much broader ‘catch-all’ directives that cover additional 

aspects such as phosphates, particulate, and fertilisers run-off. These directives highlight the 

environmental importance of understanding and controlling dung dynamics. Furthermore, 

the regulations that they impose have the potential to influence farm management. It is 

therefore important that the tools and understanding are available to enable farms to utilise 

dung as a resource for maximum benefit, within regulation. Effectively achieving could yield 

benefits to farms and the wider environment. 

2.1.2 Epidemiology 

Dung also plays a vital role in the transmission of numerous agriculturally significant 

pathogens. As outlined in Chapter 1 (1.3), GINs, along with other helminths, rely on the 

passage of eggs through dung. The dung provides a relatively stable environment for 

embryonation, development, and survival. Bryan and Kerr (1989) reported that cattle dung 

that persisted through a drought led the accumulation of GINs in dung on the pasture. During 

rainfall these GINs migrated out of dung en masse, leading to a 10-fold increase in GIN larval 

pasture contamination. It is clear that this event was caused by the inhibition of dung 

degradation. There is significant evidence showing that insect activity can reduce parasite 

transmission through the consumption and burying of eggs and that other organisms such as 

bacteria, viruses, fungi, and predatory nematodes also feed on free-living stages of parasitic 

nematodes (Fincher, 1973; Larsen et al., 1994; Larsen, 2000; Waller, 2006; Waller and Faedo, 

1996). Many of these species, such as dung beetles, are also positively associated with the 
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degradation of dung and recycling of nutrients. Furthermore, other pathogens can be 

transmitted through cattle dung. Arguably the most topical of these is Mycobacterium bovis¸ 

the bacteria that cause tuberculosis (TB). Whilst M. bovis can persist in cattle faeces, the 

degradation of dung by invertebrates may reduce or remove the risk of transmission (Duffield 

and Young, 1985; Phillips et al., 2003). Therefore, it is feasible to consider that rapid 

degradation of dung, facilitated by invertebrate activity, may also be beneficial for the control 

of pathogenic diseases of livestock. 

2.1.3 Biodiversity 

Mature grazing cattle predominantly obtain nutrients through the consumption of pasture 

forages. However, a portion of these nutrients is not retained by the animal and is instead 

excreted in dung, thus returning them to pasture and wider environment. The turnover of 

these nutrients is facilitated by soil microbiology, with soil microbial biomass being an 

effective marker of soil health and fertility (Rice et al., 1996; Schloter et al., 2003). Lovell and 

Jarvis (1996) found that application and beef cattle dung to soil significantly increased soil 

microbial biomass and respiration, both positive indicators of soil health and fertility. 

Analogous findings have been found around the world in a variety of agricultural systems 

(Belay et al., 2001; Ghoshal and Singh, 1995; Rochette and Gregorich, 1998; Witter et al., 

1993). Rochette and Gregorich (1998) found that this effect was cumulative. In turn, soil 

microbial biomass is also driven by forage and sward structure, particularly rhizosphere 

characteristics (Haynes and Francis, 1993). The consequence of increased soil health and 

fertility is a potential reduction in dependence on external fertiliser inputs, increased pasture 

productivity, and increase system biomass and biodiversity. All of these factors may manifest 

as improved profitability and a reduced negative environmental impact. From this example it 

is clear to see the cyclic nature of nutrients within grazing livestock systems, further 

highlighting the significance that variations in dung and pasture composition play in system 

health. 

In addition to its agricultural importance, dung has value as a source of nutrients within the 

wider environment by acting as a food source and refugia for invertebrates and other 

organisms (Marshall, 1977; Standen, 1984). These, in turn, can help to facilitate nutrient 

cycling while also enhancing local ecology, biodiversity, and system health (D’arcy-Burt and 
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Blackshaw, 1991; McCracken et al., 1995). Equally, agricultural fertilisers, including manures, 

have the potential to harm the wider environment. A prime example of this is the nonpoint 

pollution of surface waters, which can lead to eutrophication of water systems and 

subsequent reductions in wildlife communities (Correll, 1998; Ulén et al., 2007). However 

such impacts of agriculture can be mitigated by reducing excess nutrients within the systems 

(Carpenter et al., 1998), reaffirming the need to more comprehensively understand the 

nutrient makeup of dung. Given the vital role of cattle feed and dung, in order to optimise the 

efficiency of beef cattle production, it is crucial that we understand the characteristics of feed 

and the dung which it subsequently produces.  

2.1.4 Forage composition 

Forages are routinely analysed for their nutritional composition. Indeed, animal nutrition is a 

heavily studied subject, and as a result, a large industry has emerged from it.  It is common 

for farmers to have forages, especially silage, analysed for nutritional composition, with the 

goal of improving forage quality and animal growth. Goering and Van Soest were pioneers in 

this field with many of today’s modern methods and definitions based on the techniques that 

they developed. Many companies now offer commerical forage analysis services, for around 

£10 per sample for near-infrared spectroscopy (NIRS) analysis. Macronutrients (i.e. protein, 

fats, carbohydrates, and fibre) drive bulk metabolic processes such as digestion and growth, 

while micronutrients (elements, such as magnesium and iron) play much more subtle roles 

on a molecular level. Imbalances in either can have significant impacts on animal health and 

performance. However, such analysis is predominantly limited to forages, with limited 

consideration of other materials, particularly dungs and manures, for which the methods are 

transferable. 

During winter, cattle are typically housed and fed on silage, grass that has been tightly packed 

in air-tight bales and left to ferment. After ensiling, bales are left for a period of weeks to 

ferment. During this time, differences in the starting properties of bales (such as moisture, 

pH, and oxygen) can manifest as significant differences in silage quality and composition at 

the time of consumption (Muck, 1988). As a result of the fermentation process, complete 

silage analysis requires investigation of additional factors such as pH and lactic acid content, 

which are not typically considered for fresh forage (Charmley, 2001). Filya (2004) compared 



37 

 

fresh maize to 90-day ensiled maize and observed higher concentrations of crude protein and 

organic matter but lower concentrations of fibrous components, showing the impact of 

ensiling forages on their composition. 

2.1.4.1 Macronutrients 

As a primary part of forage analysis, the biochemical composition of feeds is operationally 

defined by various groups of compounds gravimetrically (Figure 2.3). While exact methods 

vary, underlying principles and groups are consistent. Traditionally, forage analysis is 

conducting using wet chemistry techniques, pioneered by Goering and Soest (1970), however 

rapid and nondestructive techniques, such as near-infrared spectroscopy (NIRS), are 

becoming increasingly common (Batten, 1998). Although commonly called ‘forage analysis’, 

the techniques are not exclusively for utilisation on forages and are used widely across the 

food industry. There is also the potential for the techniques to be applied to agricultural 

materials, such as dung and manures (Batten, 1998; Burns and Ciurczak, 2001; Stitcher et al., 

1969). 

 

Figure 2.3 - Multi-level pie chart showing typical components of forage analysis of dried 
material and their respective sub-components. Inner levels are sub-portions of outer levels. 
Proportions are arbitrary and not to scale. OM = organic matter, NDF = neutral detergent fibre, 
ADF = acid detergent fibre, ADL = acid detergent lignin, CP = crude protein, CL = crude lipids, 
NFC = non-fibre carbohydrates. 



38 

 

Organic matter (OM) is a fundamental measurement when analysing agricultural materials 

such as feeds, dungs, and soils. However, with regards to forage, it provides only the most 

basic information as to the ‘quality’ of a feed and the components of OM need to be measured 

independently. OM is typically measured by loss on ignition. Anything not classified as OM is 

considered as ash. 

Neutral detergent fibre (NDF) is the most commonly analysed component of forage and is 

often used as a proxy for forage digestibility (Mertens and Ely, 1979; Oba and Allen, 1999), 

with higher NDF suggesting higher quality forage. The NDF portion of forage is comprised of 

cellulose, hemicellulose, and lignin, all of which are plant cell wall constituents. While 

cellulose is more complex than hemicellulose; both are relatively simple when compared to 

lignin, which is a highly complex molecule whose primary function is to provide strength and 

rigidity to plant structure.  These varying structures have a significant influence on their 

digestibility, with lignin being highly indigestible. Arelovich et al. (2008) found that, in beef 

cattle, small increases in NDF intake increased net energy intake, without compromising feed 

efficiency. NDF is traditionally quantified through wet chemistry, by the digestion of forage in 

a pH neutral detergent, which strips away proteins, lipids, and carbohydrates (Goering and 

Soest, 1970). 

Acid detergent fibre (ADF) is a component of NDF comprised of cellulose and lignin. The 

process for determining ADF is similar to that of NDF, however, also removes hemicellulose 

(Goering and Soest, 1970). ADF is highly indigestible for ruminants, and therefore ADF is 

inversely related to forage digestibility. ADF is typically quantified similarly to NDF, however, 

with an acid detergent, capable of dissolving hemicellulose through the hydrolysis of 

hemicellulose chains, breaking them into smaller monomeric sugars which acid can degrade 

(Binder and Raines, 2010). 

Acid detergent lignin (ADL) is furthermore a sub-component of ADF and is only comprised of 

lignin. Lignin reduces feed digestibility and is often used as a predictor of such. While fibre is 

considered a valuable component of feeds, the ADL sub-component is not. Therefore, a lower 

proportion of ADL, compared to ADF, is generally sought after. ADL is determined by acid 

soaking of ADF, to remove cellulose, followed by ashing to determine lignin (Goering and 

Soest, 1970).   
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Crude protein (CP), despite only making up around 10-15% of cattle dry matter intake, is a 

vitally important component, often used as part of quality assessment (Mertens and Ely, 

1979). High protein feeds (such a soybean, linseed, and other grains) are often used as 

supplements to beef cattle (Byers and Moxon, 1980; Galyean, 1996). Protein is a high-value 

resource and facilitates cattle growth and feed efficiency, with respect to carcass weight amd 

price. CP increases dry matter (DM) and NDF digestion, contributing to body weight 

maintenance and body condition, these effects are especially pertinent during times of stress, 

such as winter calving (Beaty et al., 1994). 

Crude lipids (CL) represent the insoluble fats of forage and typically makes up the smallest 

proportion of forage when compared to other components. This is due to the predominantly 

grass-based diet of pasture fed livestock. In feedlot systems CL content of feed may be higher, 

for example, cotton seed contains as much as 175g kg-1 (dry matter basis) of CL, compared to 

concentrations of around 100g kg-1 in many pasture forages (National Research Council, 

2000).While all dietary components are important;  crude lipids are generally not considered 

to be of central importance. CL is typically quantified by solvent extraction (in which lipids are 

soluble) and filtration through cellulose membranes (Nielsen, 2003; Thiex et al., 2003).  

Non-fibre carbohydrates (NFC) are calculated as the remainder once the other components 

have been accounted for. However, that is not to mean that it is any less important. NFC is 

highly digestible and therefore a valuable energy source, in addition, this energy promotes 

microbial growth and digestibility within the rumen (Hoover and Stokes, 1991). NFC has the 

potential to impact NDF digestibility, both positively and negatively, and it is the ration of NFC 

to NDF that is important. However, that ratio is dependent on rumen pH and the effect of 

NFC on pH (Arroquy et al., 2005; Haddad and Grant, 2000).  

The book “Nutrient Requirements of Beef Cattle” (National Research Council, 2000) includes 

a library of feeds which has information on typical nutrient values of many common forages. 

A selection of those feeds are outlined above, for reference (Table 2.1). 
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Table 2.1 - Typical nutrient values of various common livestock feeds (National Research 
Council, 2000). 

 Nutrient (g kg-1 DM) 

Feed NDF Lignin CP Fat Ash 

Alfalfa silage (full bloom) 510 120 160 27 80 

Clover (ladino hay) 360 670 224 27 94 

Legume pasture (spring) 330 26 280 27 100 

Wheat (straw) 789 130 35 20 77 

Barley (silage) 568 31 119 29 83 

Maize cobs (ground) 870 68 28 6 18 

Maize silage (40% grain) 450 40 92 31 40 

Barley malt 460 30 281 14 70 

 

2.1.4.2 Micronutrients 

In addition to bulk increase in liveweight, nutrients play much more subtle roles in animal 

health. Deficiencies and overabundance of particular nutrients can have significant health 

implications. For example, deficiencies in selenium increase susceptibility of cattle to disease 

(Boyne and Arthur, 1981; Koller et al., 1983; Stabel et al., 1989), while an overexposure can 

be toxic (selenosis) (Koller and Exon, 1986; Olson, 1986). Similarly, deficiencies in protein and 

zinc can increase susceptibility to GINs by inhibition of antibody production (Coop and 

Holmes, 1996; Coop and Kyriazakis, 1999; Scott and Koski, 2000). Balancing micronutrients 

can, therefore, be difficult without supplementation (Spears, 1995), bringing about the 

possibility of systemic losses through reduced animal performance, costs of reacting to 

infection, and costs of preventative measures. ‘Hidden hunger’ is a form of malnutrition in 

which micronutrient deficiencies lead to pathogenesis despite there being a seemingly 

adequate supply of consumable feed. While typically associated with humans, livestock are 

also susceptible to the condition. Many of the symptoms of nutrient deficiencies are similar, 
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such as wasting, lethargy, and anaemia. As a result, the diagnosis and treatment of 

micronutrient deficiencies can be difficult.  

Micronutrient deficiencies are common worldwide, but perhaps most impactful in developing 

nations where the resources are not always available to provide rounded diets or to respond 

to incidence. These are also the regions in which livestock are most depended on for milk, 

meat, and strength. A farms susceptibility to micronutrient deficiencies is dependent on a 

wide range of factors, such as soil and pasture properties (Gissel-Nielsen et al., 1984, 1984; 

Gupta et al., 2008). 

2.1.5 Research objectives 

The rate at which dung degrades is important for many processes relating to animal and 

environmental health. In this chapter, we used the North Wyke Farm Platform to test the 

overarching hypothesis that: Cattle diet drives the composition of cattle dung and its 

subsequent degradation in grassland systems and that improved forage management may 

provide options to control and improve system health. We tested this using four sub-

hypotheses: 

Hypothesis 1 – The composition of cattle dung, from the three studied grazing systems, differ 

significantly. 

Hypothesis 2 – The composition of feed (fresh herbage and silage), from the three studied 

grazing systems, differ significantly. 

Hypothesis 3 – The rate of degradation of fresh dung varies significantly based upon the 

composition of that dung and the grazing system in which that dung is. 

Hypothesis 4 – The gross mass of dung pats, from the three studied grazing systems, will be 

significantly different. 

2.2 Methods 

Dung, herbage, and silage were taken from three typical UK farming systems. The dung was 

initially analysed to quantify various chemical and physical properties. Representative 

samples of dung were then taken from each of the three systems and used in a dung 

degradation experiment where the biochemical properties of dung were analysed over a time 
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series. All three of the studied systems were represented at the study site, Rothamsted 

Research’s North Wyke Farm Platform (Devon, UK; Hatch et al., 2011; Orr et al., 2016). Each 

system is represented by an individual ‘farmlet’, an independent and isolated system 

functioning within the larger farm. Each farmlet has its own independent herd of beef cattle 

and at the time of sampling each herd was predominantly made up of Charolais crosses, and 

British Blue crosses. Other than the variation in pasture, the farmlets are similar. The site 

(50.76950,-3.90128; Appendix 8.3) was chosen to reduce the impact of variation in 

uncontrollable variables, such as weather, climate, and topography, and also due to the high 

amount of data available for the site as a whole. The three grazing systems that were 

represented in the study are as follows: 

Increased legumes – These plots have a high proportion of white clover (approx. 30%) sewn 

into the pasture. The nitrogen-fixing properties of the legumes mean that the increased 

legume fields have a reduced fertiliser input. This is known as the blue farmlet (B). 

Permanent pasture – Enhanced by inorganic fertilisers, this ley has been in place for at least 

20 years on each field within that system. This is known as the green farmlet (G). 

High sugar monoculture – At the time of the study, under a high sugar monoculture, these 

fields are reseeded every five years with whatever is considered as the most novel and 

suitable new grass variety at the time. This is known as the red farmlet (R). 

2.2.1 Dung and feed collection 

On each farmlet, silage is produced annually from herbage derived from the farmlet’s own 

supply and fed only to cattle from that farmlet. At the time at which it was fed to cattle 

(14/01/15), ten grab samples of silage (approximately 300g dry weight) were taken and 

pooled for each farmlet. Herbage samples were collected (22/07/15) along a 13 point W-

transect across one field within each farmlet; herbage was cut at approximately 4cm from the 

ground to represent grazing height (Grant et al., 1996) and combined to form a composite 

sample. All samples were stored in tied plastic bags within clip-top plastic drums at 4°C for no 

longer than two days before being prepared for analysis. 

Dung samples were taken from the cattle twice. Initially, when they were being fed on a silage 

diet (14/01/15)and again when they were grazing on pasture (22/07/15). It was ensured that 
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cattle were on their specified diet for at least one month before sampling, thus excluding the 

significant influence of past diet on dung composition (Dungait et al., 2005). During the first 

sampling, fresh dung samples were collected by waiting for the individual to defacate and 

recovering dung from the ground, being careful not to incorporate any foreign material. Dung 

was thoroughly mixed and transferred to 150ml, screw top, plastic containers.  

During the second sampling, more dung was required to analyse dung degradation rates. In 

this instance, > 18 kg of dung was collected from each farmlet. Dung was collected by 

monitoring cattle, immediately after defecation their dung was collected into plastic bags 

using a clean ladle, bags were then cable tied and stored in slurry containers at 4˚C for no 

longer than two days.  

2.2.2 Dung degradation 

An 84-day dung degradation field study was conducted to analyse the rate of dung 

degradation of different dungs across the different grazing systems and to investigate how 

the composition of cattle dung changes over time. The field trial began on 24/07/15 and ran 

for 84 days until 16/09/15. After 28, 56, and 84 days four dung pats of each type were 

randomly selected to be removed from each field plot. Cattle were turned out between 

14/04/15 and 24/04/15. Weather data for the experimental period is available in Appendix 

8.1. 

Collected dung was homogenised using a clean and dry cement mixer. This formed a 

representative and distinct dung type from each farmlet, named b, g, and r, respectively. Five-

hundred grams (wet weight) portions of dung were then dispensed into pre-weighed plastic 

bags. A sub-sample of each dung type was retained for analysis. On each farmlet (B, G, R), 

artificial dung pats of each type (b, g, r) were placed. Thus nine groups were formed (Bb, Bg, 

Br, Gb, Gg, Gr, Rb, Rg, Rr). 

Dung pats were formed by placing a Ø15 cm plastic cylinder on the centre of the mesh and 

squeezing dung out of their bags into the cylinders. Bags were retained and reweighed to 

determine the weight of any residue. Thus the weight of each dung pat was known. Pats were 

placed directly on 20x20 cm green plastic garden mesh, of a 20 mm aperture, held down in 

the corners by 9-inch steel pegs. Each farmlet had an individual field plot (Figure 2.4), which 

measured 5 x 5 m surrounded by an electric fence to prevent disturbance from livestock. No 
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faeces or other notable materials and features (such as trees, rabbit holes etc.) were present 

inside or within 10m of the plots. The outer 55cm within each plot was unused and left as a 

buffer strip. The experimental area inside of the buffer zone was split into a 6 x 6 grid of 36 

subplots, each measuring 65 x 65 cm. Dung pats were placed in the centre of each plot, leaving 

a 50 cm gap between pats to prevent mixing and direct invertebrate migration. Pat location 

within field plots was designated by a controlled random block design, using a random 

number generator, with the caveats that each row and column contained two pats of each 

dung type and that each quadrant contained three pats of each dung type (Appendix 8.2). The 

location of field plots was chosen for topographic similarity, all with North-West (45˚) slopes 

and a rise < 0.5 m (Appendix 8.3).  

 

Figure 2.4 - Schematic of plot design for placement of artificial dung pats on each of the three 
farmlets. Each dung pat had a unique 65 x 65 cm square in the 6 x 6 grid. The grid was 
protected by a 55cm buffer zone to ensure it was not disturbed by animals. 

2.2.3 Dung and feed analysis 

The collected dung, herbage, and silage (including that from the degradation experiment) 

underwent an array of analyses to quantify specific compounds and physical characteristics. 

Unless otherwise stated, all materials underwent all analyses.  
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2.2.3.1 Sample preparation 

Samples were prepared for analysis by being oven dried at 65°C until a constant weight and 

ground to < 2 mm in an electronic grinder (Bosco BCG01) with stainless steel blades. 

Processed samples were stored in screw top plastic containers at 4°C. Weights, taken during 

this process, also gave results on the proportion of moisture and dry matter in samples. 

2.2.3.2 Organic matter (OM) and ash 

OM and ash were determined by loss on ignition at 360°C to a constant weight (> 6 hrs). 

Porcelain crucibles were washed, pre-furnaced, and allowed to cool in a desiccator. Then, 0.5 

g of dried and ground sample was weighed into the crucible, before furnacing. OM was 

determined as the loss in weight of the sample and crucible, as a proportion of the original 

sample weight. The remainder was classified as ash. 

2.2.3.3 Neutral detergent fibre (NDF) 

Neutral detergent fibre was determined by crucible methods, in accordance with EN ISO 

16472, using cold and hot extraction units (FOSS: FT 121 Fibertec™ and Fibertec™ 8000, 

respectively). Firstly, 0.5 g of sample was added to sintered crucibles (porosity 2) along with 

0.5 g of sodium sulphite (to prevent protein clumping). Crucibles were fixed into place in the 

cold extraction unit and soaked in acetone while agitated by pressurised air. After five 

minutes the acetone was aspirated off, removing the majority of non-polar lipids. This 

acetone rinsing process was repeated thrice.  

Crucibles were then secured in the hot extraction unit and underwent a digestion process in 

neutral detergent solution (NDS) (Ankom FND20C) with n-octanol as an anti-foaming agent 

and α-amylase to aid digestion of non-NDF compounds. Next, 20 ml of NDS and four drops of 

n-octanol were added to the crucible, which was agitated with pressurised air to mix. 

Crucibles were heated while another 20 ml of NDS was added. Heating continued until the 

solution began to boil. Two minutes after boiling was reached a final 10 ml of NDS was added 

and boiling continued. Two minutes later 2 ml of α-amylase was added and refluxing 

continued for 55 mins. Crucibles were then taken off the boil and drained by vacuum. Then, 

15 ml of deionised water and 2ml of α-amylase was then added, and the crucible agitated for 

a further minute. Crucibles were then repeatedly rinsed with deionised water and drained by 

vacuum. 
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Crucibles were then placed back onto the cold extraction unit and soaked in approximately 

30 ml of acetone for 5 mins (without agitation). The acetone was then vacuum extracted 

through the sinter. This step was repeated three times. Crucibles and samples were then dried 

at 105˚C to a constant weight, and NDF determined as the remaining material in the crucible, 

as a proportion of the original sample weight. 

Between uses, crucibles were soaked in hypochlorite, in a sonicator bath for 1 hr, rinsed, run 

through the dishwasher, and furnaced at 525°C.  

2.2.3.4 Acid detergent fibre (ADF) (ADF) 

Acid detergent fibre was analysed similarly to NDF and in accordance with EN ISO 13906. 

Firstly, 1.0 g of sample was added to a sintered crucible (porosity 2) along with 0.5 g of sodium 

sulphite. Samples underwent acetone washing in the cold extraction unit, as per the NDF 

protocol, to remove lipids. 

During the hot extraction stage 45 ml of acid detergent solution (ADS) (Ankom FAD20C) and 

four drops of n-octanol were added to the crucible, which was agitated with pressurised air 

to mix. Crucibles were heated while another 45 ml of ADS was added. Heating continued until 

the solution began to boil. Two minutes later a final 10ml of ADS was added and boiling 

maintained under reflux for 55 mins after which heating was ceases, allow for gradual cooling. 

Then, 30ml of 90°C deionised water was then added to the crucibles as samples were mixed 

using pressurised air. Crucibles were then repeatedly rinsed with deionised water and drained 

by vacuum. Samples were then acetone soaked, rinsed, dried, and weighed, as per the NDF 

protocol.  

Between uses, crucibles were soaked in hypochlorite, in a sonicator bath for 1hr, rinsed, run 

through the dishwasher, and furnaced at 525°C for at least 3 hrs. After removal from the 

furnace, crucibles were left to cool to room temperature in a desiccator, before being 

weighed.  

2.2.3.5 Acid detergent lignin (ADL) 

Acid detergent lignin determination was conducted subsequent to ADF quantification, using 

the same sub-samples that went through the ADF procedure. Within the crucibles, samples 

were soaked in 72% sulphuric acid for 3 hrs, being stirred every hour. Crucibles were then 
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vacuum drained to remove the acid and then repeatedly rinsed with warm deionised water. 

Crucibles were then oven dried at 105°C and weighed, before being furnaced at 525°C. ADL 

was determined as the remaining material, after furnacing, as a proportion of original sample 

weight.  

2.2.3.6 Crude protein (CP) 

A method comparison was conducted comparing the Kjeldahl and Dumas methods of crude 

protein quantification (Appendix 7.6). As a result, CP was analysed by Dumas combustion 

using a flash elemental analyser (Thermo Scientific Flash EA1112). 5 mg of sample was 

combusted at 960°C, with exothermic tin combustion at 1600°C, using a carrier gas of helium 

at 140 ml min-1. Gas chromatography separation used a 0.5 m column packed with active 

carbon at isothermal 50°C. 

2.2.3.7 Crude lipids (CL) 

CL was quantified by Soxhlet extraction. 1.0 gram of dried and ground sample was placed in 

a cellulose extraction thimble (Fisherbrand™ 11754043) into the top of which fat-free cotton 

wool was placed. The thimble was then placed in a glass extraction chamber which had a cool 

water condenser fitted to the top. A clean 250 ml round bottom boiling flask was oven dried 

at 105°c, allowed to cool in a desiccator, and then weighed. It was then filled with 200 ml 

petroleum ether (ACROS Organics™ 326720025) and attached to the bottom of the extraction 

chamber. The Soxhlet was left to reflux for 24 hrs and then cool before being dried heated at 

103°C, allowed to cool in a desiccator, and reweighed. CL was quantified as the difference in 

the final and initial weight of the boiling flask, expressed as a percentage of the original 

sample weight. 

2.2.3.8 Non-fibre carbohydrates (NFC) 

Non-fibre carbohydrates was determined as the remaining matter after the deduction of CP, 

CL, NDF, and ash and was calculated a deduction calculation (Equation 2.1). 

 

𝑁𝐹𝐶 = 1000 − 𝐶𝑃 − 𝐶𝐿 − 𝑁𝐷𝐹 − 𝐴𝑠ℎ 

Equation 2.1 - Equation used to determine NFC content of organic material, all units as grams 
per kilogram of dry matter. 
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2.2.4 Elemental micronutrient analysis 

Elemental micronutrient analysis was conducted using X-ray fluorescence (XRF) spectroscopy 

(Bruker TRACER 5i pXRF, USA) on fresh samples that had been dried and ground as specified. 

Elements measured were, in alphabetical order: aluminium (Al), arsenic (As), bromine (Br), 

calcium (Ca), cobalt (Co), chromium (Cr), copper (Cu), Iron (Fe), potassium (K), magnesium 

(Mg), manganese (Mn), sodium (Na), nickel (Ni), phosphorus (P), sulphur (S), selenium (Se), 

and zinc (Zn). The excitation source was a 4W rhodium target X-ray tube (Max 35μA at 50Kv), 

and the detector was a proprietary 40 mm2 silicon drift detector (< 140 eV at 250,000cps 

(counts per second)). Plant calibrations had previously been established using reference 

material values measured in-house by total acid dissolution ICP-OES analysis (Towett et al., 

2015). Approximately 5 g of sample was placed into sample cups which have a 4 µm prolene 

film at their base; cups were then placed between the excitation source and detector. Results 

(%) are an average of continual measurements throughout a 30 second measurement period, 

and an error was calculated as two standard deviations. 

2.2.5 Particle size analysis 

Fresh dung (not dried and ground) from cattle fed on silage was analysed for differences in 

physical composition by measuring the proportions of various particles sizes within the dung. 

Four sieves were assembled on a sieve shaker (Fritsch Vibratory Sieve Shaker, Analysette 3 

pro) in ascending order of mesh size (45 µm, 106 µm, 250 µm, and 2000 µm). Fresh dung of 

an equivalent 2.5 g DM was placed on the top sieve and the water hood affixed. Water was 

administered, via spray nozzles in the hood, at a rate of 1L min-1 and the sieves shaken at a 

1.0 amplitude for 15 min. The top sieve was then removed and the procedure repeated for 5 

mins, this was repeated a total of three times so that each sieve was on top for an equivalent 

period. Sieves were then backwashed using ultra pure (Milli-Q™) water into filter papers 

(Whatman® 4) (clean, pre-dried at 65°C, and weighed). Filter papers were then dried at 65°C 

until constant weight. DM weight of each particulate fraction was determined as the increase 

in weight of the filter paper. 

Particle size was not continued forward as an analysis of pasture derived dung. This was due 

to the time-consuming manner of the protocol; it was therefore deemed to be most 

productive to focus on other analyses. 
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2.2.6 In situ dung pat mass 

The total mass of fresh dung pats, deposited onto grazed pasture, was determined by 

calculating the volume of dung pats and the density of the dung using novel and original 

methodology. 

In order to quantify volume, the diameter (Ø) of the dung pat was measured – the mean of 

three length measurements was taken, the first perpendicular to the North-most field 

boundary (0˚) and the subsequent two at 120˚ and 240˚. Along each length measured, pat 

depths were also measured at points 1/6th, 3/6th, and 5/6th out from the centre of the pat 

to the edge. From a top-down view, the dung pat is split into an outer annulus, inner annulus, 

and a central circle – each of which represents one-third of the diameter of the entire dung 

pat. The aforementioned depth measurements thus lie within the centre each of these areas, 

multiplying these areas by the depth gives an estimation of volumes of those areas (Equation 

2.2 – 2.5, Figure 2.5). 

𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑐𝑖𝑟𝑐𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 =  𝑥𝜋 (
∅

6
)

2

 

Equation 2.2 - Equation to estimate central circle volume of a dung pat. 

𝐼𝑛𝑛𝑒𝑟 𝑎𝑛𝑛𝑢𝑙𝑢𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑦 [𝜋 (
∅

3
)

2

− 𝜋 (
∅

6
)

2

] 

Equation 2.3 - Equation to estimate inner annulus volume of a dung pat. 

𝑂𝑢𝑡𝑒𝑟 𝑎𝑛𝑛𝑢𝑙𝑢𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑧 [𝜋 (
∅

2
)

2

− 𝜋 (
∅

3
)

2

] 

Equation 2.4 - Equation to estimate outer annulus volume of a dung pat. 

The sum of these three volumes equals the total volume of the entire pat and is simplified 

(Equation 2.5). 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑛𝑔 𝑝𝑎𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 =
𝜋∅2

36
[𝑥 + 3𝑦 + 5𝑧] 

Equation 2.5 - Simplified equation to estimate the total volume of a dung pat. 
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Figure 2.5 - Schematic of a dung pat with points of measurement for volume determination. 

Dung density was calculated by utilising the same principles used to quantify soil bulk density. 

33 ml sample pots were oven dried at 65°c to a constant weight. Dung from the cow pats was 

placed into sample pots with great care to avoid compaction; any overfill was carefully 

removed. The samples were oven dried at 65°c to a constant weight. The weight per litre of 

dung was then determined as dung density. This density was then multiplied by the volume 

of the pat to determine the dungs total DM content. These values can then be combined with 

the aforementioned biochemical and elemental analyses to quantify the total mass of specific 

dung components. 

2.2.7 Statistical analysis 

The biochemical components of each farmlet’s fresh herbage, silage, and dung were 

compared using one-way ANOVA with post hoc Tukey tests. The independent variables in 

each test were the farmlet and material, and the dependent variables were the quantified 

components. 

A general linear model was applied to determine to what extend the two independent 

variables, dung location (B, G, R) and dung type (b g r) drove dung degradation. 
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Quadratic polynomial curves were fitted to dung degradation curves for each measured 

biochemical component. Curves for each group were then compared using an extra sum-of-

squares F- test to identify significant differences in concentration changes over time. To 

analyse if the row or column in which dung pats were placed created an experimental bias or 

edge bias, a two-way ANOVA was completed. Independent variables were: row and column, 

the dependent variable was total OM (g), and day of sample collection was a covariate. 

Micronutrients were compared in reference to minimum requirements and maximum 

tolerances of beef cattle as outlined by National Research Council (2000). 

A one-way ANOVA was conducted to identify is the distribution of particle sizes in dung 

differed between the different dung types analysed. A post-hoc Tukey test was then used to 

identify the groupings of any differences. 

Dung pat total dry masses from each farmlet, as determined by volume and mass, were 

compared using a one-way ANOVA. The independent variable was the farmlet, and the 

dependent variable was dung mass. 

2.3 Results 

2.3.1 Material composition 

When compared, the biochemical components of dung and feeds varied significantly between 

the different farmlets and materials, supporting hypotheses 1 and 2. It is important to note 

that ADL is a component of ADF, and ADF is a component of ADL. Therefore the results for 

these components are intrinsically linked. 
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Significant differences were found in the OM content of the different feed and dungs across 

the three farmlets (Figure 2.6). Whilst there is relatively little variation between different 

sample groups, differences were found due to the small variation and standard error between 

repeats. With regards to forage, the blue farmlet was had the highest silage OM and was not 

statistically different to the green farmlet which had the highest herbage OM. For both silage 

and herbage the red farmlet had the lowest OM. Greater differences were observed between 

the organic matter of different dung types. When on a silage diet, all dungs had significantly 

different OM content. Dung produced from a herbage diet was, in all instances, of a lower 

OM content than dung produces on a silage diet. 

 

Figure 2.6 - Organic matter (OM) g kg-1 of dry matter, of forage and dung types from three 
typical UK grazing systems. Statistically significant differences, as identified by ANOVA, were 
found (F = 187.24, p < 0.0005). Columns not sharing a same letter are statistically different to 
one another, as identified by a post-hoc Tukey test. Error bars represent standard error. 
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NDF results (Figure 2.7) yielded no significant differences, for each feed type, between 

farmlets. However, differences were found between the materials, most notably between 

silage and dung derived from grazed herbage. Dung from cattle fed on silage generally had a 

higher NDF content than dung from cattle grazing on pasture. NDF concentrations were much 

more variable between dung types than between feed types. 

 

Figure 2.7 - Neutral detergent fibre (NDF) g kg-1 of dry matter, of forage and dung types from 
three typical UK grazing systems. Statistically significant differences, as identified by ANOVA, 
were found (F = 76.02, p < 0.0005). Columns not sharing a same letter are statistically different 
to one another, as identified by a post-hoc Tukey test. Error bars represent standard error. 
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Acid detergent fibre results (Figure 2.8) showed that ADF was more concentrated in the dung 

than it was in feed. Half of the feed sample groups were had significantly lower ADF than all 

the dung samples. Herbage and herbage-derived dung typically had lower concentrations 

than their silage counterparts. There was also greater variety in feed ADF concentrations, 

both between repeats within groups and between groups. This variation would reduce the 

number of statistical differences observed compared to if variation was lower. 

 

Figure 2.8 - Acid detergent fibre (ADF) g kg-1 of dry matter, of forage and dung types from 
three typical UK grazing systems. Statistically significant differences, as identified by ANOVA, 
were found (F = 29.47, p < 0.0005). Columns not sharing a same letter are statistically different 
to one another, as identified by a post-hoc Tukey test. Error bars represent standard error. 
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Acid detergent lignin concentrations (Figure 2.9) varied significantly between feed and dung. 

All feed samples had significantly lower ADL concentrations than all dung samples. Between 

feed samples, herbage appeared to have less ADL than silage, although this was only 

significant when compared herbage from the red farmlet to the other silages. Dung ADL 

concentrations followed a clearer pattern for both silage-derived and herbage-derived dung, 

ADL levels were highest from the blue farmlet and lowest from the red. Overall dung from 

silage fed cattle had higher ADL concentrations than that produced from herbage fed animals. 

The standard errors were generally quite low, with the exception of dung from the green 

farmlet and a herbage diet which showed a high variation. 

 

Figure 2.9 - Acid detergent lignin (ADL) g kg-1 of dry matter, of forage and dung types from 
three typical UK grazing systems. Statistically significant differences, as identified by ANOVA, 
were found (F = 10.12, p < 0.0005). Columns not sharing a same letter are statistically different 
to one another, as identified by a post-hoc Tukey test. Error bars represent standard error. 
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Crude protein levels (Figure 2.10) were highly variable between the different materials and 

also between materials of the same group, derived from different farmlets. Crude protein 

levels in dung somewhat mirrored those from the equivalent feed, especially when comparing 

silage and silage-derived dung. 

 

Figure 2.10 - Crude protein (CP) g kg-1 of dry matter, of forage and dung types from three 
typical UK grazing systems. Statistically significant differences, as identified by ANOVA, were 
found (F = 9.56, p < 0.0005). Columns not sharing a same letter are statistically different to 
one another, as identified by a post-hoc Tukey test. Error bars represent standard error. 
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Crude lipids were also highly variable (Figure 2.11), producing relatively high standard errors, 

especially within herbage samples. Concentrations in dung closely reflected those in the feed 

from which that dung was generated with higher feed CLi pairing up with higher dung CLi 

concentrations. In all instances, CLi concentrations were higher in dung than for the dietary 

equivalent material. 

 

Figure 2.11 - Crude lipids (CL) g kg-1 of dry matter, of forage and dung types from three typical 
UK grazing systems. Statistically significant differences, as identified by ANOVA, were found 
(F = 1.71, p < 0.0005). Columns not sharing a same letter are statistically different to one 
another, as identified by a post-hoc Tukey test. Error bars represent standard error. 
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In all instances, NFC levels (Figure 2.12) were higher in feeds than in dung, however this was 

not always significant. Dung derived from a herbage diet had the lowest NFC concentrations 

compared to other materials and was significantly different to all other sample groups apart 

from dung derived from silage from the red farmlet. Variation in NFC was relatively high 

compared to other measured components. 

 

Figure 2.12 - Non-fibre carbohydrate (NFC) g kg-1 of dry matter, of forage and dung types from 
three typical UK grazing systems. Statistically significant differences, as identified by ANOVA, 
were found (F = 26.58, p < 0.0005). Columns not sharing a same letter are statistically different 
to one another, as identified by a post-hoc Tukey test. Error bars represent standard error. 
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Elemental analysis by XRF successfully quantified 17 of the 19 elements within the capability 

of the device. Bromine and selenium, in all instances, were below the limit of detection (LOD) 

of 1ppm (Table 2.2). An associated error table is available in Appendix 7.5. 

Table 2.2  Results of XRF analysis showing concentrations of elements (ppm) in silage, 
herbages, and subsequent dungs, over the three farmlets of Rothamsted Research’s North 
Wyke Farm Platform. For forages, Results are colour coded by their value, in reference to their 
minimum and maximum concentrations as per National Research Council (2000). <LOD refers 
to results below the limit of detection. Whilst for many samples it was possible to determine 
if <LOD samples were above or below thresholds, it was not possible for all samples. Therefore, 
<LOD samples were left colourless. 

    Concentration of element in material (ppm) 

    Feed Dung 
    Silage Herbage Silage diet Herbage diet 

  Min Max B G R B G R B G R B G R 

Al n/a 1000 < LOD < LOD 1121 1131 < LOD < LOD 2539 2935 1946 753 870 2831 

As n/a 50 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 1 

Br n/a 200 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 

Ca 5500 n/a 26417 30449 30314 16458 26552 39471 11637 9475 11486 9498 13615 16399 

Co 0.1 10 1 < LOD < LOD < LOD 1 2 15 4 3 4 2 4 

Cr n/a 1000 25 < LOD < LOD < LOD < LOD < LOD 49 38 36 44 17 69 

Cu 10 100 < LOD < LOD < LOD < LOD < LOD < LOD 284 13 < LOD 28 24 < LOD 

Fe 50 1000 441 444 2066 1036 593 301 3444 3523 3622 1624 1221 4111 

K 6000 30000 4455 5629 4231 5800 5811 6982 12303 17209 10853 21993 12781 10279 

Mg 1000 4000 2137 3132 2484 1359 3192 3327 6199 5446 4735 3093 4154 2815 

Mn 20 1000 295 256 442 259 309 249 697 529 840 948 582 777 

Na 600 n/a 16259 27587 < LOD < LOD < LOD 34534 19034 < LOD < LOD < LOD 18649 < LOD 

Ni n/a 50 2 2 < LOD < LOD < LOD 4 < LOD < LOD < LOD < LOD 1 < LOD 

P 2200 100000 2200 2875 2598 2514 3053 3482 6057 7243 7139 5248 8369 5324 

S 1500 4000 1485 2231 1910 2235 2432 3265 2723 2388 2533 1914 2602 2116 

Se 0.1 2 < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD 

Zn 30 500 20 32 < LOD 14 < LOD 30 91 85 39 73 160 74 
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2.3.2 Dung degradation 

A two-way ANOVA showed no statistically significant difference in total OM content between 

different rows (F = 0.31, p = 0.905) and columns (F = 0.56, p = 0.733) of field plots. Quadratic 

polynomial curves for total organic matter were significantly different between the nine 

groups, as determined by an extra sum-of-squares F-test (F = 6.140, p < 0.0005) (Figure 2.13; 

Appendix 7.4). Clear grouping and patterns can be seen across both independent variables. 

Dung placed on the green farmlet degraded the slowest, followed by red, and then blue. 

Within each of those groups, the order of the rate of degradation of each dung type was the 

same, dung from the blue system degrading slowest, then red, then green. A comparison of 

decay rates, by general linear model, attributed 69.4% of degradation to be driven by field 

site (B, G, R) and 4.4% to be driven by dung type (b, g, r) (p < 0.0005). Results support the 

acceptance of Hypothesis 3. 
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Figure 2.13 - Quadratic polynomial curves of organic matter concentration (% of DM), over 84 
days, for three field plots (B, G, R) with three distinct dung types on each (b, g, r) forming 9 
groups (Bb, Bg, Br, Gb, Gg, Gr, Rb, Rg, Rr). For raw data, see Appendix 7.4. 
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Neutral detergent fibre concentrations increased over time for all groups. Concentrations 

increased most slowly in dung located on the green farmlet, from approximately 43% to 

54% and most rapidly in the red farmlet, reaching more than 75% for samples Rb and Rr. 

Some grouping is apparent with the NDF concentrations lowest in dung placed on the green 

farmlet by the end of the 84 day experiment. Curves for each data set were not significantly 

different (F = 1.291, p = 0.1882) (Figure 2.14; Appendix 7.4). 

  

Figure 2.14 - Quadratic polynomial curves of neutral detergent fibre concentration  (% of DM), 
over 84 days, for three field plots (B, G, R) with three distinct dung types on each (b, g, r) 
forming 9 groups (Bb, Bg, Br, Gb, Gg, Gr, Rb, Rg, Rr). For raw data, see Appendix 7.4. 
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Acid detergent fibre concentrations increased continuously with clear grouping, by location, 

becoming apparent over time (Figure 2.15; Appendix 7.4).  Whilst dung degrading on the red 

farmlet had ADF concentrations of approximately 70% after 84 days, concentrations from 

dung on the green farmlet were approximately 40% after the same period. By the end of the 

experimental period at each location the red dung had the highest ADF concentration 

followed by green and then blue with the lowest. Curves for each data set were significantly 

different (F = 3.846, p < 0.0001). 

 

Figure 2.15 - Quadratic polynomial curves of acid detergent fibre concentration  (% of DM), 
over 84 days, for three field plots (B, G, R) with three distinct dung types on each (b, g, r) 
forming 9 groups (Bb, Bg, Br, Gb, Gg, Gr, Rb, Rg, Rr). For raw data, see Appendix 7.4. 
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Acid detergent lignin concentrations initially increased towards 28 days before a steady 

decline for the remainder of the experiment (Figure 2.16; Appendix 7.4). Some grouping was 

present by dung type, although not as clearly as with components, with concentrations in 

dung derived from the red farmlet increasing rapidly over the first half of the experiment, 

followed by an equally rapid decline. Curves for each data set were significantly different (F = 

3.069, p < 0.0001). 

 

Figure 2.16 - Quadratic polynomial curves of acid detergent lignin concentration  (% of DM), 
over 84 days, for three field plots (B, G, R) with three distinct dung types on each (b, g, r) 
forming 9 groups (Bb, Bg, Br, Gb, Gg, Gr, Rb, Rg, Rr). For raw data, see Appendix 7.4. 

 

 

 

  

A c id  d e te rg e n t  lig n in

D a y s

%
 o

f 
 D

M

0 1 4 2 8 4 2 5 6 7 0 8 4

1 0

1 2

1 4

1 6

1 8

2 0
B b

B g

B r

G b

G g

G r

R b

R g

R r



64 

 

As a percentage of total DM, CP decreased gradually over time, after small initial increase and 

plateaus (Figure 2.17; Appendix 7.4). Some grouping was present, becoming more apparent 

over time, with crude protein concentration reducing most rapidly in dung located on the red 

farmlet, reducing to as little as <8%, compared to a slower reduction on the green farmlet to 

around 16%. Curves were significantly different for each data set (F = 4.123, p < 0.0001). 

 

Figure 2.17 - Quadratic polynomial curves of crude protein concentration (% of DM), over 84 
days, for three field plots (B, G, R) with three distinct dung types on each (b, g, r) forming 9 
groups (Bb, Bg, Br, Gb, Gg, Gr, Rb, Rg, Rr). For raw data, see Appendix 7.4. 
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Crude lipids levels decreased over time, rapidly at first with the rate decreasing and almost 

plateauing towards 84 days (Figure 2.18). Rates of decrease were greatest for dung located 

on the red farmlet and from dung derived from animals on the blue farmlet. The initial CLi 

concentrations of dung appeared to have only a relatively minor influence to the 

concentrations observed at the end of the experimental period. Curves were significantly 

different for each data set (F = 2.558, p = 0.0006). 

 

Figure 2.18 - Quadratic polynomial curves of crude lipid concentration (% of DM), over 84 days, 
for three field plots (B, G, R) with three distinct dung types on each (b, g, r) forming 9 groups 
(Bb, Bg, Br, Gb, Gg, Gr, Rb, Rg, Rr). For raw data, see Appendix 7.4. 
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Non-fibre carbohydrate concentrations consistently decreased and in many cases, fell to 

undetectable levels (Figure 2.19; Appendix 7.4). This rate of decrease was least in dung 

located on the green farmlet. Curves for each data set were not significantly different (F = 

1.008, p = 0.4626). 

 

Figure 2.19 - Quadratic polynomial curves of non-fibre carbohydrate concentration (% of DM), 
over 84 days, for three field plots (B, G, R) with three distinct dung types on each (b, g, r) 
forming 9 groups (Bb, Bg, Br, Gb, Gg, Gr, Rb, Rg, Rr). For raw data, see Appendix 7.4. 
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2.3.3 Particle size 

One-way ANOVA and 2-sample t-tests found statistically significant differences in the particle 

size composition of the different dungs examined (Figure 2.20). For all samples, soluble 

material was the largest particle component of the dung and material >2000 µm the smallest 

component. Significant differences were found between at least one pairing in every particle 

size apart from 45-106µm.  

 

Figure 2.20 - Dung derived from cattle fed on three distinct silage types, each derived from a 
unique farmlet, (Blue, Green, Red), were compared for differences in particle size composition. 
Particle size compositions quantified were: soluble, 45-106µm, 106-250µm, 250-2000µm, and 
>2000µm. A One-way ANOVA found statistical differences between dung types for three of the 
four particle sizes (soluble, 250-2000µm, and >2000µm – F = 13.31, p = 0.002, F = 3.09, p = 
0.095, F = 3.88, p = 0.061, F = 29.52, p < 0.0005, F = 5.51, p = 0.027 respectively). Columns not 
sharing the same letters are significantly different to each other, as identified by a posthoc 
Tukey test. 
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2.3.4 Dung pat mass 

Differences in total DM of fresh dung pats, as determined by One-way ANOVA, were not 

significant (F = 0.70, p = 0.507) (Figure 2.21). However, there is a greater than 20% difference 

in mean dung pat mass between the red and green farmlets, with a much greater range in pat 

size observed on the green farmlet than on the red. Results reject the hypothesis 4 in favour 

of the null hypothesis. 

 

Figure 2.21 - Boxplots of total dry matter (DM) (g) of fresh dung pats, naturally deposited onto 
pasture, derived from each of the three farmlets. Mean values, left to right, are 46.1g, 53.3g, 
and 41.8g. Asterisks represent mean.  

 

2.4 Discussion 

Pasture composition of the three different systems produced significant differences in the 

chemical and physical composition of cattle dung. While these differences did manifest 

themselves as differences in the rate of dung degradation, the pasture on which a dung pat 

was located was found to be a greater driver of degradation than the biochemical 

composition of the dung. Evidence is found supporting the hypothesis that pasture 
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management, with regards to pasture composition, can have a significant impact on factors 

central to the nutrient cycling process. Such differences when scaled up to the amount of 

dung produced per animal per year, may produce a significant change in the nutrient dynamic 

cycling within the system.  

2.4.1 Nutrition analysis 

The significant differences found in feed composition infer the possibility of consequential 

variations in the nutritional and health status of animals within the different farmlets. These 

differences may not necessarily manifest themselves as significant changes in liveweight or 

other health measures, possibly because the diets of each system are generally balanced, or 

because some deficiencies and overabundances only manifest in certain circumstances. For 

example, selenium deficiency can increase disease susceptibility, but only in situations where 

there is a significant disease challenge to the animal  (Boyne and Arthur, 1981; Koller et al., 

1983; Stabel et al., 1989). In addition, micronutrient inadequacies can be caused and 

exacerbated by stress (Stabel et al., 1989), cattle reared on the North Wyke Farm Platform 

are reared under ‘best practice’ management, meaning animal stress and its consequences 

are minimised as much as possible. 

2.4.1.1 Macronutrients 

Acid detergent fibre concentrations in dung were higher than in feed. ADF is relatively 

indigestible, particularly due to its lignin component which is not broken down by the animal 

due to the cross-linking and lack of liable bonds. This is reflected by the observed higher ADL 

levels in dung than feed. Nevertheless, ADF is a valuable component of feeds by facilitating 

the healthy transition and passage of nutrients through the rumen. Conversely, NFC levels 

were lower in dung than in feed, NFC represents highly digestible carbohydrates and sugars, 

which are readily utilised by the animal (Hoover and Stokes, 1991).  

Whilst it is not possible to conclude that one particular forage is of better quality than any 

other within the study, the breadth of significant differences observed is important. The 

potential impact of these differences could be far-reaching and drive important biological 

mechanisms relating to animal health and performance.  

Whilst herds from each farmlet did not significantly different in their cold carcass weights 

(Appendix 8.7) that does not mean that nutritional differences have no impact. Nutritional 



70 

 

differences may be masking greater differences in performance than are observed, they may 

drive unmeasured factors relating to meat quality, or they may only become apparent in times 

of stress (i.e. a disease outbreak). 

2.4.2 Micronutrients 

A number of key micronutrient imbalances were observed in forages when compared to 

recommended thresholds (National Research Council, 2000). Two forage samples were 

recorded to have an overabundance of iron, whilst for blue farmlet herbage this was only 4% 

in excess of the top threshold, red farmlet silage was 107% over. At high levels, iron can be 

toxic to cattle, reducing feed intake and causing diarrhoea and even hypothermia (Dillman et 

al., 1980; National Research Council, 2000). Given that silage is the predominant feed during 

winter, the potential for hypothermia and reduced body temperature mediation is of 

particular importance. Of the six forages, five showed potassium concentrations below the 

minimum threshold. Whilst severe potassium defficiencies are not common in cattle; they do 

have the ability to reduce feed intake and weight gain (Devlin et al., 1969).  The high 

absorption of dietary potassium, through the rumen, means that deficiencies can occur 

quickly. Forage zinc concentrations were below the lower threshold for two of the forage 

samples (blue farmlet herbage and silage), below limits of detection for two others (red 

farmlet silage and green farmlet herbage), and the two samples within range (green farmlet 

silage and red farmlet herbage) were only so by small amounts.  

In the majority of cases, results below the limit of detection were likely to also be below the 

minimum threshold set for that particular element. However, as detection limits were not 

known it was not always possible to confirm that with certainty. For example, two positive 

zinc concentrations were below the minimum threshold. Therefore it can be deduced that all 

<LOD samples are below those values and therefore also below the minimum threshold. 

Conversely, sodium samples below <LOD can only certainly be said to be below the lowest 

positive value of 16259 ppm, which is far greater than the minimum threshold of 600 ppm. 

Testing of a range of concentrations of reference materials, for each element, would provide 

information of the detection limits of the XRF apparatus, therefore allowing for more 

information to be derived from results that fall below these limits. 
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2.4.3 Dung degradation 

Results show that dung pat location was a greater driver of degradation than dung 

composition. This means that parameters that vary between the field sites are driving the 

degradation, such as invertebrate activity and growth of flora. In the blue farmlet, in which 

dung degraded at the greatest rate, it was observed that legumes were pushing through the 

dung pats as they grew, concurrent with observations by Weeda (1967), whilst in the other 

field plots, this was rarely the case. Fungi were also notably more visible in these pats than in 

those on the other two farmlets, which may have important implications for GIN survival due 

to the nematophagous nature of many fungi (Larsen et al., 1994; Larsen, 2000; Waller and 

Larsen, 1993). Over time the biochemical composition of dung pats significantly change. 

Immediate trends emerged with CL and NFC concentrations quickly diminishing and, after an 

initial lag phase, protein. These compounds share two characteristics; they are all high in 

energy and all scarce within the dung. The culmination of this is that dung pats became more 

fibrous in nature as these other components diminished. Fibrous components of dung may 

form large and complex structures which provide strength against abiotic degradation. 

Conversely, other components, such as protein and lipids are more predominant in the liquid 

phase of dung, which is highly susceptible to abiotic events such as rainfall. This is also the 

phase that invertebrates typical feed on, whilst fibre is of comparatively low nutrition to 

invertebrates. The culmination of these effects is the persistent of fibrous dung components 

over time and the relatively more rapid removal of non-fibre components of dung.  

Whilst significant differences were found, between groups, in the temporal concentrations of 

many of the dung components, the general trends of groups were consistently similar. This 

strengthens the external validity of findings, suggesting that these trends are likely to be seen 

elsewhere with other dung types and environments, however, the extent of these trends may 

differ more greatly than in this example. The significant differences in degradation rates have 

implications for nutrient cycling. Taking the two most extreme examples in the study, over 84 

days Gb lost 45% of OM whilst Bg lost 80%. The consequence for this is that nutritional 

components of Bg are more quickly available for organisms within the system, in a more 

consistent manner, this harbours the potential to enhance soil OM, the soil microbiome, and 

consequently pasture productivity. This may also have an impact on the movement of 

pathogens within the system. Invertebrates and fungi have been found to consume and bury 
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pathogens of livestock, including GINs, reducing the risk of infection (Duffield and Young, 

1985; Fincher, 1973, 1975; Larsen et al., 1994, 2000; Phillips et al., 2003; Waller and Larsen, 

1993). Such organisms are also positively associated with dung degradation (Barth et al., 

1994b, 1995; Floate, 1998b; Lussenhop et al., 1980) and, through similar underlying 

mechanisms, the degradation of cattle dung may be an indicator or driver of reduced risk of 

pathogenic infection in livestock. 

The role of invertebrates in dung degradation is particularly interesting in relation to the use 

of veterinary medicines. Invertebrates play a significant role in the degradation of dung. 

However, this can be impeded by the use of veterinary medicines, such as anthelmintics, 

which can possess insecticidal properties (Adler et al., 2016; Barth et al., 1993, 1994a; Floate, 

1998a; Lumaret et al., 2012; Wall and Beynon, 2012; Wall and Strong, 1987). In addition to 

pasture management, another key aspect of farm management is the chosen level of 

veterinary intervention, particularly for parasitic diseases. It is common for farms to whole-

herd dose on a regular basis, while at the other end of the spectrum, organic farms only treat 

when there is a significant risk to animal health, with targeted selective treatment as a more 

intermediate approach. Such variations in the management of veterinary medicines, 

therefore, impact dung degradation. Combined with the observed differences in dung 

degradation, brought about by pasture type, this could create significant variability, between 

diverse farming systems, to the rate that dung degrades and nutrients cycle within their 

specific system. The impact that the management of veterinary medicines has upon dung 

fauna has been well-studied at causal level (Barth et al., 1994a; Beynon, 2012; Floate, 1998a; 

Madsen et al., 1990a; Römbke et al., 2009; Wall and Beynon, 2012; Wall and Strong, 1987), 

and there is, therefore, the necessity for a more detailed approach, especially in relation to 

the nuanced differences in treatments. 

While no statistically significant differences were found between dung pat masses across the 

three systems, it is notable that the mean and distribution for dung pats on the red system 

were much smaller than that of the green system. Given that difference and the p-value of 

0.246, there is the potential that there could be a real-world difference. A larger and more 

longitudinal sample would be necessary to show this conclusively. Such an experiment could 

further be enhanced by the incorporation of additional and more varied diets into the 

experimental design, which could exacerbate differences. This would be well complemented 
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by observational research into the defecation rates of different cattle, providing more 

resolution as to the exact dynamics of natural dung deposition onto pasture. 

2.4.4 Further work 

Despite the differences between the pastures, there were still similarities in the diets of each 

herd and therefore the biochemical and physical properties of the dung. A broader range of 

dung types, such as those derived from grain-based diets, or from animals suffering from 

diarrhoea, would allow further work to more comprehensively assess the impact of pasture 

type upon dung dynamics. In such an instance, as more varied diets were included more 

diversity in dung biochemistry would be observed, which may further manifest itself in 

physical consistency, which is a reported driver of dung degradation (Weeda, 1967). For 

example, dung with lower viscosity will have a greater surface area-to-volume ratio, absorb 

into soil more easily, and will be more sensitive to abiotic degradation. A consequence of this 

could be increased nutrient losses in runoff (Eghball et al., 1997). In other and potentially 

extreme examples, dung composition may become a more significant driver. For example, 

dung with very little structure, such as that caused by diarrhoea (a common clinical sign of 

parasitemia), is likely to degrade quickly due to increased mobility and absorbency.  

When attempting to understand livestock production systems as a whole, it is essential to 

monitor feed and dung composition. This is particularly pertinent to system nutrient cycling 

and animal health, both of which are core considerations and metrics within pasture-based 

livestock systems. Dung composition is a vital aspect of system nutrient dynamics through the 

deposition and turnover of significant quantities of biochemicals. Increased understanding of 

these dynamics would allow for assessment of nutrient use and waste and the environmental 

impact of the system on the surrounding environment, such as the impact on water sources. 

The result of this is increased efficiency both economically and environmentally, by 

minimising energy losses and sub-optimal feed conversion. This must be balanced with animal 

health considerations, which have to be central to decision-making. However, the three 

systems examined yielded no significant difference in cattle carcass sale prices. This provides 

reassurance that differences in pasture type can be made without impacting animal 

performance – so long as appropriate caution is taken. 
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2.4.5 Analysis of agricultural materials 

The value of the work is two-fold, with benefits towards agricultural science in general, but 

also by the novel development and application of methods for agricultural materials. 

Forage analysis is a well-studied and established field, and the methods have been refined 

and scrutinised over the years. However, the overwhelming focus has been on the analysis of 

feed (hence the name, ‘forage analysis’), yet there is scope and use for these methods to be 

used to analyse other materials. Quantification of dung components goes towards providing 

a more complete picture of animal nutrition, by providing information regarding which 

nutrients, and to what extent, are most utilised and most passed by the animal. Furthermore, 

these results provided valuable information regarding the physical composition of dung and 

how that changes over time with the turnover of nutrients into the environment. 

Although not taken forward, the methodology used for dung particle size analysis is relatively 

novel, based on pre-existing principles used elsewhere in agricultural and environmental 

science. Particle size differences have the potential to impact the physical nutrient flows 

within agricultural systems by influencing the transport of nutrients in water, for example. 

Particle size analysis has been utilised in the study of slurries. However, these principles have 

not been readily applied to dung. While dung is typically more solid than slurry; its physical 

properties are subject to change with the absorption of moisture during rainfall. 

The estimation of dung pat mass was a technical success. While there is no comparable 

protocol available to validate this method, the underlying mathematical principles are well-

founded. The method is also simple, requiring few resources. This method could be more 

widely applied to estimate the input of dung, by cattle, on pasture, providing supporting 

information for the assessment of total system nutrient inputs. Given the comparative lack of 

detailed focus that is placed upon naturally deposited dung as a fertiliser, compared to 

manually applied fertilisers, it seems that there is significant room for advancement in our 

understanding and optimisation of dung as a fertiliser. 

2.5 Conclusion 

Dung degradation is a complex and dynamic process which is driven by numerous abiotic and 

biotic factors. The environment in which dung is deposited is the significant determining 



75 

 

factor as to how it will degrade when compared to dung biochemical composition. Over time, 

non-fibre components of dung are removed and as a consequence dung becomes more 

fibrous. Significant observed differences in dung degradation highlight the impact that could 

be posed to nutrient cycling within agricultural systems which, when scaled up, may have 

compounding knock-on effects on productivity. Significant differences between feed and 

dung types were found across a range of variables. However, the three farmlet’s are more 

alike than they differ and it is reasonable to assume that the differences found would be far 

greater if sampled across a wide geographical range of beef farms with a variety of 

management regimes. Therefore, the significant, even though often small, differences found 

between feed types and dung types highlight the significant role that dung plays within 

pasture-fed livestock systems. Results support a case for more detailed consideration of 

nutrient qualities of livestock dung and the role that it can play in productive and sustainable 

livestock systems. The lack of significant differences in cattle carcass prices provides 

reassurance that subtle changes in pasture type are unlikely to impact end-product value 

heavily.  

To comprehensively assess grazing livestock systems, particularly with respect to 

sustainability, it is essential for there to be a greater scientific focus on dung composition and 

dynamics, especially concerning dung as a nutrient and fertiliser. This work provides insight 

into how aspects of that may be achieved.  
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3 Chapter 3 

Anthelmintic impacts - Modelling the impact of targeted 

anthelmintic treatment of cattle on dung fauna 
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The primary work of this chapter has been published in a peer-reviewed journal. A copy has 

been provided in Appendix (8.8).  

Cooke, AS, Morgan, ER & Dungait, JA, 2017, ‘Modelling the impact of targeted anthelmintic 

treatment of cattle on dung fauna’. Environmental Toxicology and Pharmacology. DOI: 

10.1016/j.etap.2017.02.012. 

Summary 

The insecticidal properties of many anthelmintics pose a risk to dung fauna, through the 

effects of drug residues in dung on the activity, oviposition, and development of dung-

dwelling invertebrates. Reductions of dung fauna can inhibit dung degradation, which may 

impact biodiversity and nutrient cycling on farms. A simulation model was created to predict 

the impact of antiparasitic drugs on cattle dung fauna, and calibrated using published data on 

the dung-breeding fly, Scathophaga stercoraria. This model was then tested under different 

effective dung drug concentrations (EC) and proportions of treated cattle (PT) to determine 

the impact under different application regimens. EC accounted for 12.9% of the observed 

variation in S. stercoraria population size, while PT accounted for 54.9%. The model outputs 

indicate that the ‘best practice’ within veterinary medicine for targeted selective treatments 

(TST), in order to attenuate selection for drug resistance in parasite populations, will reduce 

the negative impacts of treatments on dung fauna populations by providing a population 

refugia. This provides novel evidence for the benefits of TST regimens on local food webs, 

relative to whole-herd treatments. The model outputs were used to create a risk graph for 

stakeholders to use to estimate the risk of anthelminthic toxicity to dung fauna. 
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3.1 Introduction 

In  
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Chapter 2 it was shown how the management of pasture can influence the properties of cattle 

dung and how it degrades - the observed variations, driven by pat location were most likely 

facilitated by local biology. However, this is not the only management decision which has the 

potential to impact dung dynamics. Pharmaceutical, veterinary interventions applied both 

prophylactically and reactively, are core aspects of farm management decision making, 

essential for the maintenance and improvement of animal health. Integral to this strategy is 

the use of anthelmintics. Anthelmintic medicines are widely and routinely administered to 
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grazing livestock to control gastrointestinal nematodes and other parasites and commonly 

administered across entire herds in single instances at similar times. Residues of anthelmintics 

can be found in the dung of the treated animal, and these residues can have insecticidal 

properties, therefore reducing the biological diversity and activity within the dung. Dung 

biology is key in the degradation and turnover of nutrients. Dung acts as a vital material for 

the recycling of nutrients, particularly of N and P, within livestock systems (Lovell and Jarvis, 

1996; MacDlarmid and Watkin, 1971; Williams and Haynes, 1995). The release of these 

nutrients into the environment relies on a range of biotic and abiotic factors, which facilitate 

the breakdown and incorporation of dung into the soil, where it can then act as a fertiliser. 

Dung is a rich environment for many invertebrates, fungi, and other microorganisms and soon 

after it hits the ground, a biological invasion occurs.  

3.1.1 Dung biology 

Within the dung, biological activity drives a range of essential processes such as the turnover 

of nutrients into the soil, for use by plants, and to the broader ecosystem food web. Annually, 

dung beetles alone are estimated to provide £367million of ecosystem services to the UK 

cattle industry, an equivalent of approximately £40 per animal (Beynon et al., 2015). The 

biological dynamics within dung are complex, organisms use dung as a food source, as a 

refuge, or as an opportunity to predate. This creates a dynamic food web which, over the life-

span of a dung pat, grows and collapses. No organism exists in isolation within the dung, and 

the dung community does not exist in isolation from the rest of the environment. For 

example, dung invertebrates can impact the competition for resources between bacteria and 

fungi (Lussenhop et al., 1980). 

3.1.1.1 Insects 

This invasion of insects is relatively orderly and over the course of succession, the food web 

within that dung increases in complexity (Hafez, 1939; Snowball, 1946; Valiela, 1974). 

Burrowers are typically the first to invade dung and persist for the lifespan of the dung pat’s 

food web. These are typically burrowing beetles (Superfamily: Scarabaeoidea), of which there 

are approximately 100 species in the UK. These beetles create channels within the dung, 

aerating it and providing access points for other species, typically predatory beetles, such as 

rove beetles (Family: Staphylinidae). Such beetles are quick to colonise, initially smaller 
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species, but as the dung food web develops, larger species invade. Dung flies (Family: 

Scathophagidae) are also quick to invade and lay eggs. The dung provides a suitably warm, 

moist, and nutritious environment for their offspring. The larvae, which are coprophagous 

(Blanckenhorn et al., 2010), are a vital food source for predatory beetles, but quickly outgrow 

this vulnerability. As the food web develops further, more and more species invade, such as 

predatory mites, parasitic hymenopterans, smaller dipterans, hydrophilids, and many more 

(Valiela, 1974). Such insects are not just part of the dung food web, but the wider food web 

of the local ecosystem. For example, mature dung flies are predatory, feeding on other 

dipterans (Blanckenhorn et al., 2010; Cotterell, 1920; Sasaki, 1984) and are themselves the 

prey of various species of birds and bats. Invertebrate activity in dung may also affect the 

development of GINs which are inadvertently buried by dung beetles, thereby reducing larval 

availability on pasture (Bryan, 1976; Fincher, 1973; Sands and Wall, 2017) 

3.1.1.2 Earthworms 

Earthworms have been shown to significantly contribute to the degradation and 

disappearance of cattle dung (Barth et al., 1994a; Dickinson et al., 1981; Holter, 1979; Madsen 

et al., 1990b). Earthworms can be split into three main groups, epigeic, endogeic, and anecic, 

each of which have unique functions within the soil ecosystem. Epigeic earthworms remain 

on or near the soil surface, moving horizontally through litter and the uppermost strata. 

Endogeic earthworms live slightly deeper, although predominantly move on the horizontal 

plane, and tunnel through the topsoil and upper strata. Anecic earthworms move vertically, 

creating deep and extensive burrowed networks. The variation in movement between these 

groups facilitates the incorporation of dung nutrients throughout the soil strata. As a result, 

earthworm activity has been linked to improved soil quality and plant nutrient uptake (Chaoui 

et al., 2003; Stork and Eggleton, 1992). In addition, earthworms have been shown to reduce 

the burden of GIN infections in ruminants, within the same system, through their impact upon 

GIN larvae in dung, most likely through consumption of GIN eggs (d’Alexis et al., 2009; Waller 

and Faedo, 1996). 

3.1.1.3 Fungi 

There is great diversity and richness within fungal communities, and their succession within 

dung has been well-studied (Harper and Webster, 1964). Many species of coprophilous fungi 
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are able to break down components such as lignin, which is highly indigestible and can tie up 

nutrients within cellulose, away from microorganisms (Freer and Detroy, 1982). Fungi can 

impact GINs within dung through nematophagous activity and the release of mycotoxins 

(Larsen et al., 1994; Larsen, 2000; Waller, 2006; Waller and Faedo, 1996; Waller and Larsen, 

1993). 

3.1.1.4 Microorganisms 

The significant increases in nutrients, beneath and around dung pats, have been linked to 

higher soil microbial biomass – an indicator of soil health (Aarons et al., 2009; Ghoshal and 

Singh, 1995; Helal and Sauerbeck, 1986; Lovell and Jarvis, 1996; Rice et al., 1996). As nutrients 

from dung are incorporated into the soil, they are utilised and processed by a wide variety of 

microorganisms. This recycling of nutrients makes them more readily available for uptake by 

plants, facilitating growth and pasture productivity, whilst simultaneously increasing soil 

organic matter and carbon (Moe and Wegge, 2008; Williams and Haynes, 1995, 1995). 

3.1.1.5 Impact of anthelmintics 

Whilst herd health is of paramount importance both ethically and economically; it is also 

important to consider the use of anthelmintics in the context of the whole farming system. 

Biological activity is a key contributor to livestock systems, however, this can be negatively 

affected by the use of anthelmintics, which are not fully metabolized within the host animal 

and residues of the drug are often excreted in dung (McKellar et al., 1993) and urine 

(McKellar, 1997). This can, therefore, exert non-target effects on invertebrate fauna which 

spend part, or all, of their lifecycle in dung (Floate, 1998; Gover and Strong, 1995; Madsen et 

al., 1990; Sommer et al., 1992; Sutton et al., 2014) and also on soil invertebrates (Scheffczyk 

et al., 2016). Such effects include inhibited motility, oviposition, emergence, and reduced 

dung pat colonisation (Floate, 1998; Gover and Strong, 1995; Suarez et al., 2003). As an 

example, macrocyclic lactones act upon chloride channels in nerve and muscle cells, specific 

to organisms in the phyla Nematoda and Arthropoda, hence they affect many agricultural 

parasites and also non-target dung invertebrates. These anthelmintics bind to the glutamate-

gated chloride channel, with high affinity, this greatly increases the channel’s permeability by 

permanently ‘opening’ the gate. The result is a complete inhibition of channel function 



84 

 

leading to paralysis and severe inhibition of function and potentially death (Cheeseman et al., 

2001; Köhler, 2001; McCavera et al., 2009; Njue and Prichard, 2004; Wolstenholme and 

Rogers, 2005). 

The detrimental impact of anthelmintics on dung fauna has been observed across a range of 

species including beetles (Lumaret et al., 1993; O’Hea et al., 2010; Sommer and Nielsen, 1992; 

Wardhaugh et al., 2001, 1993), earthworms (Diao et al., 2007; Scheffczyk et al., 2016), 

arthropods (Diao et al., 2007; Scheffczyk et al., 2016), flies, and more (Beynon, 2012; 

McKellar, 1997; Wall and Strong, 1987). Reductions in the activity of such organisms, as can 

be caused by anthelmintic residues, consequently reduce the rate at which these nutrients 

are incorporated in soil and made available to plants, by the slowing of the dung degradation 

process. (Barth et al., 1993; Lee and Wall, 2006; Madsen et al., 1990b; Wall and Strong, 1987). 

More rapid incorporation of dung nutrients into the soil is typically beneficial by readily 

providing valuable resources to plants to invest in growth and structure (Goyal et al., 1993). 

Quicker degradation also lowers system losses in the case of events such as heavy rainfall 

which could see nutrients, trapped in undegraded dung, being leached and transported 

outside of the farm boundary. This negative impact is further compounded by reductions in 

biodiversity in local ecosystems and the loss of organisms able to mitigate the development 

of agriculturally significant GINs. In summary, dung plays an integral role in grazing livestock 

production systems and, as a consequence, factors that influence dung dynamics can have a 

significant knock-on effect throughout the rest of the system. Effective dung management 

has the ability to improve system performance in a self-propagating, cyclic manner (Figure 

3.1), therefore creating a more sustainable and secure farming system. 
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Figure 3.1 – Fundamental structure of the dung cycle and its role within grazing livestock 
systems. 

3.1.2 Targeted selective treatment 

The ability to assess and predict the impact of anthelmintics and other routine veterinary 

medicines on the wider environment is essential for informed drug development and policy 

in agriculture. In particular, parasite control practices that slow the development of resistance 

to commonly administered anthelmintics are essential to sustainable livestock production 

systems, and it is critical that we understand these practices in the context of the total farming 

system.  

In recent years, the mounting resistance of gastrointestinal parasites of domestic livestock to 

anthelmintic drugs  (Geurden et al., 2015; Sutherland and Leathwick, 2011; Waller, 1997, 

1994) has led to a shift away from whole-herd treatments, and recommendations for targeted 

selected treatment (TST) (Charlier et al., 2014). This practice is being promoted for all 

medicines of infectious diseases. Targeted selective treatment aims to ensure that 

anthelmintic susceptible genes remain within the parasite population, by providing a refugia 

of hosts, free from anthelmintics (Besier and Love, 2003; van Wyk et al., 2006). As an indirect 

effect of TST, the untreated proportion of the herd produces non-toxic dung (i.e. without 
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anthelmintic residues), which in turn creates refugia of dung for invertebrates to survive. To 

date, no systematic attempts have been made to evaluate an environmental benefit of TST. 

3.1.3 Previous modelling approaches  

The scale and complexities of the drug-dung-fauna system are challenging to observe and 

quantify in vivo and difficult to adequately represent under controlled laboratory conditions. 

Modelling techniques are a useful alternative to address these issues by allowing the 

manipulation of a wide range of variables specific to individual field scenarios, and rapid 

assessments of the potential impacts of new parasite control and other management 

practices on dung fauna.  

Boxall et al. (2007) developed a screening index for assessing the impact of veterinary 

medicines on dung flies. The index was simple and allowed estimates to be calculated with 

relatively small amounts of data, allowing rapid screening of multiple drugs. This is a key 

strength of the index, making it easy to use for non-specialists and non-modellers. The index 

assessed impact by multiplying three variables: the proportion of cattle treated (p), the 

proportion of time of faunal contact with dung (q), and dung toxicity (v) to calculate the 

impact of an anthelmintic treatment (impact = 100.p.q.v). A central assumption was that the 

three variables are equally weighted. However, there is no justification for this, and such an 

assumption inadvertently creates a potential mathematical ceiling to drug toxicity. For 

example, if a hypothetical drug was so toxic that it killed invertebrates on first contact, but 

the invertebrates were only in contact with it for one day of a 20-day lifecycle, according to 

the model, mortality would be only 5%. This would evidently not be the case. Whilst such a 

drug is not in existence or use; this example brings into question the mathematical validity of 

the model. 

Vale and Grant (2002) took a different approach in their development of a model to assess 

the impact of insecticide-contaminated dung on the abundance and distribution of dung 

fauna. The model considered a broad and novel range of variables including the response to 

distinct adverse ecological events on insect lifecycle stages and dung-insect interactions, 

which aided the understanding of the importance of refugia for the ecology of different 

species of invertebrates. The methodology was arguably more robust than that of Boxall et 

al. (2007), primarily achieved through the use of data on invertebrate biology from the 
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literature, which also makes the model adaptable to different invertebrates, given sufficient 

data. Whilst the outputs of the work provide significant insight into the topic, no specific tool 

is produced and, as a consequence, the model is not practical for use by others. 

Evaluation of the two aforementioned modelling approaches provides a crucial insight into 

how new efforts could be formulated in an attempt to harness the strengths of each model 

whilst limiting the weaknesses. Boxall et al. (2007) created an easy to use model, however, it 

lacked the use of observational data, whereas for Vale and Grant (2002), the reverse was the 

case. Therefore, a more effective solution would be to utilise the available invertebrate data 

in the literature and produce a model which can easily be interpreted by stakeholders and 

adapted to their needs. 

3.1.4 Research objectives 

Whilst there has been significant work investigating the impact of anthelmintics on dung 

fauna, it has overwhelmingly focused on drug toxicity, failing to account for variations in herd 

coverage, as we would see with TST. Given that TST is the current best-practice veterinary 

recommendation and is becoming more widely adopted, it is paramount that we now 

contextualise our knowledge of the environmental impacts of anthelmintics with respect to 

this industry development. 

Herein, the primary objective is to test the hypothesis that the proportion of cattle treated 

(PT) with anthelmintics has a more significant influence on Scathophaga stercoraria 

populations than the toxicity of drug residue in dung (EC). This is achieved through building 

on previous theoretical and modelling approaches to create a new modelling approach to 

simulate the drug-dung-fauna system and to evaluate the potential impacts of antiparasitic 

drug use in grazed cattle production systems. The model will be used to consider how 

different treatment regimens administered by farmers, under veterinary advice, for the 

purpose of livestock health and welfare, have non-target influences on dung invertebrates, 

and to provide a risk graph to assist stakeholders in selection of the most sustainable options 

in their livestock production systems. 

The secondary objective of the research is to assess the equal weighting of variables, as used 

by Boxall et al. (2007), by comparing results gained in this work, to the mathematical 

principles used in their paper. The following hypotheses will be tested: 
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Hypothesis 1 – Differences in simulated anthelmintic treatment regimes will have a significant 

impact on populations of modelled dung fauna. 

Hypothesis 2 – There is no significant difference between the results gathered from the newly 

created model and those reported by Boxall et al. (2007).  

3.2 Methods 

3.2.1 Concept formulation 

Both Boxall et al. (2007) and Vale and Grant (2007) developed models with significant pros 

and cons. The founding principles of this newly proposed model were based on the pros from 

both of the aforementioned models.  

The model was required to have a usable output. Given the complexity and uniqueness of 

most modelling software, it was decided that the model needed to provide a tangible output 

that can be utilised without manipulation or specific technical expertise. A risk chart, for 

different treatment regimes, was decided upon as the most suitable way in which to achieve 

this. 

It was also essential that the model utilised as much observational data, from the literature, 

as possible. The most abundant and relevant information available was on invertebrate 

lifecycles. This was to become the foundation from which the model ran. If lifecycles could be 

successfully modelled, a toxic anthelmintic could then be introduced at a later stage. This 

would also allow for other invertebrates to potentially be modelled, provided enough 

published lifecycle data was available. 

The final concept was to create an invertebrate lifecycle simulation, using secondary 

observational data. This would then be used as a model to test different treatment regimes, 

the results of which would be formatted to create a simple risk chart which would broadly 

assess a range of treatment regimes. Simultaneously, this would create an easy to interpret 

and highly visual result, ensuring accessibility of the outcomes across stakeholder groups.  

3.2.2 Software selection 

There is a wide variety of modelling software available for scientific use, and it was necessary 

to ensure that the most appropriate software was selected to ensure that the research 

objective could be achieved. The candidate software were R and NetLogo both of which are 

non-commercial freeware programs, developed by academic institutions. 
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R is the most used modelling software within STEM research and uses its own programming 

language (called R). The programme’s appeal is down to the simplicity of the platform which 

allows users to build and develop models from the ground up and with few restrictions. 

Widespread usage of R means that an extensive range of packages (pre-programmed R add-

ons) exist, which themselves can be built on. In addition, there are numerous active R 

communities online which can be used as a reference in model development and 

troubleshooting. 

NetLogo is most commonly used for ecological work and spatial modelling and described as a 

“multi-agent programmable modelling environment”. This is manifested by a virtual 

environment in which agents (known as ‘turtles’) exist and function as prescribed (Figure 3.2). 

The benefit of this is that each turtle moves and acts as an individual, only interacting with 

others if prescribed. For example, if a model had 100 sheep, each sheep would be an 

individual ‘turtle’. A key benefit of the NetLogo interface is the ease with which data can be 

viewed in real time as it is processed, as can the turtles. During programming, this allows for 

errors or anomalies to be easily spotted. Whilst such a system would be possible in R, that 

itself would require intensive high-level programming. Therefore, R models typically generate 

final values at the end of simulations, making it more difficult to identify potential errors 

during the simulation process. It is for these reasons that NetLogo was chosen in this instance. 

 

Figure 3.2 - NetLogo interface showing variables (sliders, top left quadrant), real-time data 
(bottom right), and modelling environment (right). Source: original, using NetLogo library 
model (Wilensky, 1999). 
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3.2.3 Model description 

A simulation model was created using NetLogo 5.0.4 (Wilensky, 1999) to estimate the impact 

of a hypothetical anthelmintic that expressed insecticidal properties when excreted in dung 

by cattle in a grazed field, upon the population of a model dung invertebrate. A 2-dimensional 

virtual pasture system was created, occupied by a herd of cattle and a population of the model 

invertebrate. All actions and interactions presented were simulated in hourly time-steps for 

each individual cattle or invertebrate, as appropriate. 

3.2.4 Components 

The model simulated the interaction between a model dung invertebrate and cattle 

defaecation behaviour, and potential for invertebrate survival to be changed by different 

concentrations of anthelmintic residues in the dung.  

The model invertebrate was the yellow dung fly Scathophaga stercoraria. The model utilized 

published data (Table 3.1) to simulate the lifecycle of S. stercoraria in a temperate cattle 

grazing system. S. stercoraria is a well-studied dung fauna species, for which detailed 

information on lifecycle parameters is widely available. The species is highly abundant across 

the northern hemisphere and some of its lifecycle stages are dependent on dung. 

Scathophaga stercoraria lay their eggs in fresh dung, the hatched larvae then feed on the 

dung before developing into flying adults. 

The model cattle were based on published data on temperate grazing commercial beef and 

dairy herds (Table 3.1). There were two components to cattle behaviour: (1) defaecation 

frequency, and (2) randomized movement across a field. The cattle were treated with a 

hypothetical anthelmintic, or untreated, producing toxic or non-toxic dung, respectively. The 

proportion of cattle treated (PT) ranged from 0 to 1 in increments of 0.1 and was specified as 

an independent variable in each simulation. 

The rate of defecation by the model cattle and the mean carrying capacity of resulting dung 

for S. stercoraria was based on published data for temperate commercial beef and dairy 

systems (Table 3.1).  
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The strength of the toxicity, i.e. Effective Concentration (EC) also ranged from 0 to 1 in 

increments of 0.1 and was specified as an independent variable in each simulation. The dung 

became unattractive for S .stercoraria regardless of toxicity after a simulated 120 h (= 5 days). 

Table 3.1 - Model variables and values used for simulations. Values are taken from 
observational and manipulative experiments available in the literature. Mean values are fixed 
constants other than those with a standard deviation (S.D.) which were random variables 
simulated across a normal distribution by random number generator using NetLogo 5.0.4. 
Sources: 1. Blanckenhorn, (1997), 2. Blanckenhorn et al. (2010), 3. Römbke et al. (2009), 4. Martin 
et al. (2004), 5. Aland et al. (2002), 6. Gary et al. (1970), 7. Oudshoorn et al. (2008), 8. Sahara et 
al. (1990), 9. Villettaz Robichaud et al. (2011), 10. Floate (1998), 11. Vale and Grant (2002), 12. 

Geiger (2010), 13. Parker (1970). 

Variable source Value 

Dung fauna (S. stercoraria) 

Adult life span (emergence to death)1  44 days 

Juvenile period (egg to emergence)2  22 days 

Female:male ratio1 1:1 

Dung preference3 0 

Progeny to reach adulthood4 10.8 (2.9) 

Cattle and dung 

Mean daily defecation rate (pats per day)5-9 11.2 (2.4) 

Dung attractive period (with drug residue) to S. stercoraria3,10,11 

(Floate, 1998c; Römbke et al., 2009; Vale and Grant, 2002)(K. d. 

Floate, 1998b; Römbke et al., 2009; Vale and Grant, 2002) 

5 days 

Dung attractive period (no drug residue) to S. stercoraria3,10,11  5 days 

Mean dung pat carrying capacity for juveniles12 4.3 

Season length 13 6 months 

Number of cattle 20 

A starting population of 100 individuals of S. stercoraria, covering a random distribution of 

ages within typical life expectancy for the species, were simultaneously introduced to the 

system. They actively sought out cattle dung in order to produce offspring with no preference 

for toxic or non-toxic dung. Population fitness responses of the S. stercoraria to contact with 

toxic dung was based on the interaction between specified PT and EC values.  

Primary assumptions were:  

(i) the model dung from treated animals retained a constant toxicity for 120 h 

(ii) there were no sub-lethal effects of the anthelmintics upon S. stercoraria 

(iii) there were no additional sources of mortality for S. stercoraria other than toxicosis or 

exceedance of lifespan 
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(iv) the population of S. stercoraria is isolated.  

No values or weightings of variables model were assumed or given arbitrary values. 

3.2.5 Implementation 

3.2.5.1 Primary simulations 

The model was run 605 times. Each run simulated 4380 h (6 months) using all combinations 

of 11 PT values and 11 EC values, totalling 121 unique sets of parameter values. There were 

five repeats of each set, with variable outcomes depending on values simulated from normal 

distributions: the mean of each set of repeats was used for statistical analyses. The Anderson-

Darling normality test was conducted on residuals for the dependent variable of final 

population size at the end of the simulated period to ensure appropriateness for parametric 

testing. This was followed by Pearson’s correlation analyses of final population size versus PT 

and EC. Multiple regression analyses were then conducted to attribute how much of the 

variation in final population size was due to PT and EC, respectively. 

3.2.5.2 Secondary simulations 

Individual paired simulations was run to evaluate the index created by Boxall et al. (2007). 

These simulations were performed in pairs in which the product of PT and EC was equal, but 

the individual values of PT and EC in each pair were not equal. To achieve this the values for 

PT and EC of pair 1 were switched to form pair 2 (Table 3.2). For the Boxall et al. (2007) model 

to agree with the presented model, there should be no significant differences between pairs 

that meet the aforementioned rules. Final population numbers from simulations were then 

subject to the Paired t-test. 

Table 3.2 - Values of PT and EC for paired simulations in order to evaluate Boxall et al. (2007) 
model. 

 Group A Group B 

Pair no. EC PT EC PT 

1 0.0 1.0 1.0 0.0 

2 0.1 0.9 0.9 0.1 

3 0.2 0.8 0.8 0.2 

4 0.3 0.7 0.7 0.3 

5 0.4 0.6 0.6 0.4 
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3.3 Results 

The distribution of final population sizes across all simulations was non-normal (Anderson-

Darling, p < 0.005; Figure 3.3). The data shows two distinct groupings based on final 

population size, one at 0 and the other in the region of 3100 to 4300. This latter group, the 

‘maximum fitness’ group, had a normal distribution (p = 0.383). Quartiles for the maximum 

fitness group were measured as Q0 = 3259, Q1 = 3597, Q2 = 3703, Q3 = 3798, Q4 = 4197. PT 

and EC combinations that resulted in final populations of < Q0, and therefore outside of this 

group, were considered as high risk. Combinations that fell between Q0 and Q1 were 

considered medium risk, and all over combinations resulting in final populations > Q1 were 

considered low risk (Figure 3.4).  

 

Figure 3.3 - Histogram showing the distribution of final population sizes across all simulations. 
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Figure 3.4 – Predicted risk of drug toxicity of different treatment regimes on S.stercoraria, 
based on results of all primary simulations. 

In general, incremental increases in PT and EC at low levels had little effect on final population 

size (= no. of individuals), but a tipping point was reached beyond which the population 

decreased exponentially (Table 3.3). Rising EC values from 0.0 to 0.5 brought about gradual 

decreases in final population size; however, as EC exceeded 0.5 its further incremental effect 

on population size reduced. In contrast, rising PT values of 0.0 to 0.5 had little impact on 

population sizes, but as PT exceeded 0.5, there was a rapid drop in population size. If 40% or 

fewer of the herd were treated, risk to populations of S. stercoraria was low, regardless of EC. 
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Table 3.3 - Mean simulated final population size for varying proportions of cattle treated (PT) 
and effective dung drug concentrations (EC). PT and EC range from 0 to 1.0 in intervals of 0.1, 
so simulations were conducted for 121 scenarios, representing every PT and EC value 
combination. Results are plotted here as a heat map, intense red representing a final 
population of 0 and intense green the greatest final population size (3859), with intermediate 
values transitioning through yellow. 
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0.0 3678 3676 3701 3763 3645 3739 3770 3696 3590 3642 3608 

0.1 3675 3681 3734 3699 3652 3765 3767 3650 3574 3598 3713 

0.2 3764 3697 3692 3685 3659 3629 3741 3635 3044 1353 338 

0.3 3789 3753 3655 3777 3659 3777 3409 2950 1422 0 0 

0.4 3859 3721 3758 3722 3603 3789 2784 1756 0 0 0 

0.5 3667 3620 3705 3807 3294 3325 2112 0 3 0 0 

0.6 3658 3661 3701 3777 3783 3147 1481 85 0 0 0 

0.7 3738 3786 3816 3723 3755 2902 1385 762 0 0 0 

0.8 3750 3661 3671 3655 3660 3310 1634 744 4 0 0 

0.9 3761 3665 3689 3724 3178 2594 1586 8 0 0 0 

1 3790 3680 3754 3564 3745 2337 0 724 0 0 0 

 

The residuals of the complete data for all experimental runs were normally distributed as 

tested by Anderson-Darling test (p = 0.281), and thus no transformation was required for 

parametric analyses. A Pearson’s correlation analysis showed that final population size was 

significantly correlated with PT (-0.694, p < 0.001) and EC (-0.336, p < 0.001). A subsequent 

multiple regression calculated the total variance of final population explained by PT and EC 

together, R2, to be 67.8% (p < 0.001). Further individual regressions showed that PT explained 

54.9% (p < 0.001) and EC explained 12.9% (p < 0.001) of total variance in final population size. 
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Source of remaining variation came from randomness built into the model, meaning that no 

two simulations, even repeats, played out identically. 

The paired t-tests, for the purpose of evaluating Boxall et al. (2007), showed a statistically 

significant intra-pair difference (t = 2.43, p = 0.023) and therefore the H0 was rejected. That 

is: simulations of which the sum of PT and EC are equal, do not yield equal results. 

3.4 Discussion 

In this study, a novel simulation was used to test the hypothesis that PT had a more significant 

impact on the population size of S. stercoraria than EC. The outcomes of 605 simulations of 

121 pairings of PT and EC indeed indicate that this hypothesis can be accepted. The 

distribution of data predicted that populations of S. stercoraria were generally resilient and 

can maintain stable numbers up until a tipping point at which population extinction becomes 

probable without support from immigration. As such, our model builds upon the concept of 

the screening level index (Boxall et al., 2007), through simulation modelling using published 

data on key lifecycle parameters that could strongly influence drug-insect interactions. A new 

approach is proposed, providing a better justified mechanistic framework for impact 

assessment, which will improve recommendations on the use of veterinary medicines with 

consideration for livestock dung ecology and wider impacts on the environment. 

In addition to the immediate informative value of the results, the model provides a framework 

that is adaptable to dung-breeding insect species other than S. stercoraria. Application to 

other target species, however, would require further empirical information on the toxicity of 

various drugs, as faecal residues, on specific fauna. Moreover, lifecycle parameters specific to 

other species would be required, although the model could also be used to explore parameter 

space and identify broad characteristics of species that are likely to be vulnerable to 

anthelmintic residues in dung, and the extent to which these might be attenuated by TST. 

Currently, data to extend the model to other species is lacking within the literature and 

therefore observational work would be required to accomplish this. Since the model 

framework was developed using a bottom-up approach, by creating a model life cycle and 

then introducing variables on top of it, it lends itself to constructive adaptation and expansion. 

With sufficient observational data, there is scope for future models, within such a framework, 

to increase in complexity and realism. Expansion of the model to represent multiple 
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invertebrates at farm level would enable holistic landscape-scale impact assessments and 

attenuation strategies. The use of veterinary medicines, with non-target insecticidal 

properties, is widespread across the developed world and therefore the applicability of 

observed results may be equally wide. However, the data from the literature that provided 

the foundation for the model was predominantly derived from studies in temperate regions. 

Climatic differences between regions in the temperate zone, and regions in the tropics, may 

have a significant impact on the ecotoxicity of such medicines (Kryger et al., 2005). In addition, 

the model was based upon a set stocked system and is unlikely to accurately represent the 

ranch/range rearing of cattle seen across some areas of North America, South America, and 

Australia. Nevertheless, the model provides a framework for the development of future 

similar work and with suitable real-world data could be adapted and enhanced to apply to the 

specific characteristics of different cattle production systems across the world. 

3.4.1 Nutrient turnover 

The model demonstrates the impact that anthelmintics can have upon dung fauna, in 

particular, the potentially severe population outcomes that could arise from high levels of 

anthelmintic treatment. This might explain the significant reductions in dung fauna 

symptomatic of many grazing livestock systems throughout the UK elsewhere (Schon et al., 

2012). Loss of invertebrate activity may impact farm level nutrient turnover through the 

inhibition of degradative processes, essential for the incorporation of dung into the soil 

ecosystem. Reduced turnover may ultimately decrease pasture productivity (Goyal et al., 

1993), which consequently can limit stocking density and/or increase  dependency on costly 

external nutrient inputs, such as inorganic fertilisers. All these factors impact upon the 

economic and environmental sustainability of farming systems in the long term. 

3.4.2 Targeted selective treatment 

Results provide supporting evidence for the ecological benefits of farm management 

strategies that actively limit the use of anthelmintics and other veterinary medicines. A 

particular benefit is observed for farms that implement TST strategies that therefore rarely 

dose entire herds.  Cow pats in grazed systems without drug residues may provide a 

significant refugium of biodiversity, allowing maintenance of populations of coprophagic 

fauna, e.g. dung beetles and insect larvae, which are important for ecosystem services 
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including nutrient cycling, carbon cycling, and soil quality. Therefore, TST, as opposed to 

whole-herd treatments, is recommended in order to reduce the impacts of drug treatment 

on local ecosystems. Maintenance and enhancement of the local ecosystem can yield 

potential economic benefits through reducing the need for manual farm inputs (Charlier et 

al., 2012). However, potential gains in on-farm ecosystems (i.e. improved biological activity 

and biomass) must be considered in the context of the wider farm system. It is noted that an 

inadequate TST strategy could reduce animal health, through parasite-driven pathology, and 

subsequent performance. Therefore animal health should be central to the decision-making 

process – both the short-term health of the current animals, ensuring that they are not 

suffering from parasitic diseases, and the long-term health of the herd in terms of 

anthelmintic resistance and the farm's future capabilities to cope with to parasitic infection. 

3.4.3 Future work 

Despite the high profile of the global threat of drug resistance, the long-term impacts of drugs, 

especially antiparasitics with non-target insecticidal properties, on the environment are 

mostly unknown. The topic is a key area for future work to enable effective assessment and 

regulation of the use of veterinary medicines, with regards to their impact on all aspects of 

biodiversity (Adler et al., 2016). Future work in this area should also include economic 

analysis, in order to balance short-term production gains with longer-term environmental 

impacts. There is likely to be a utilitarian argument to use veterinary medicines in a more 

sustainable manner, including the parallel utilization of preventative and non-pharmaceutical 

methods (Kaplan and Vidyashankar, 2012; Papadopoulos, 2008; Wolstenholme et al., 2004). 

The emergence of TST is an example of a more efficiently targeted approach to chemical 

utilization in agricultural systems, which has potential long-term economic benefits, as well 

as reduced environmental impacts. The current model shows this synergy in quantitative 

terms for a model insect species and provides a framework for impact assessment and 

optimization of TST strategies across a broader range of dung fauna, including those of 

conservation relevance. 

3.5 Conclusion 

This research addresses a gap in knowledge of the environmental impact of antiparasitic drug 

use, by investigating how the herd coverage of anthelmintic treatments may impact dung 
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fauna, with potential wider implications for local ecology and productivity. The work also 

outlines a framework of model development which relies solely on published observational 

data to develop a working lifecycle, negating the need for unnecessary assumptions as seen 

in prior models in the field. There is significant veterinary support for TST, typically citing 

short-term benefits to herd health and long-term mitigation of anthelmintic resistance. This 

work complements such findings by providing supporting evidence for the environmental 

benefits of TST, compared to whole-herd dosing. This further supports the economic utility of 

TST as part of a sustainable farming system with respect to animal health, environmental 

health, and farm economics. Given the increasing body of evidence in support of TST, it is now 

essential that the tools are available for TST to be effectively and widely implemented. The 

following chapter addresses this need. 
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4 Chapter 4 

Faecal immunoassays - The quantification and detection of 

immuno-markers in cattle faeces 
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The primary work of this chapter has been published in a peer-reviewed journal. A copy has 

been provided in Appendix (7.9).  

Cooke, AS, Watt, K., Morgan, ER & Dungait, JA, 2018, ‘The latest FAD – Faecal antibody 

detection in cattle. Protocol and results from three UK beef farms naturally infected with 

gastrointestinal nematodes’. Parasitology. DOI: 10.1017/S00311820180000902. 

Summary 

Gastrointestinal mucosal membranes act as a last line of defence against ingested pathogens 

attempting to enter the body through the gut wall, such as helminths, bacteria, and viruses. 

Within livestock production systems, the consequences of diseases caused by such pathogens 

can be manifested as significant productivity losses through a variety of biological 

mechanisms. Therefore, gastrointestinal health is central to efficient and productive beef 

production. Despite this, gastrointestinal immunology is rarely assessed by veterinary 

professionals due to the lack of availability of adequate methods. The ability to do this 

efficiently and non-invasively could significantly improve animal health assessments, leading 

to more informed treatment and intervention. Faecal samples were taken from 114 cattle, 

across three UK beef farms, with matched blood samples taken from 22 of those animals. A 

novel faecal supernatant was extracted from faecal samples and serum taken from blood 

samples. Supernatants and sera were then used in modified enzyme-linked immunosorbent 

assays (ELISA) for the quantification of immunoglobulins (Ig) IgA, IgG, IgM, and lactoferrin. 

Non-quantitative ELISAs were also conducted for Teladorsagia circumcincta specific IgA, IgG, 

IgM, and IgE. All assays performed successfully, as determined by reference material and 

controls. IgA was the predominant antibody in faecal material, generating an antibody profile 

similar to that of mucosal membranes. Whilst faecal immunomarker levels generally did not 

correlate with blood levels; they did so for T. circumcincta specific IgE in numerous instances. 

Results support the reasoning that faecal ELISAs can be an effective method to gain 

representative information about the status of gastrointestinal immunology in cattle and 

potentially other species. As a non-invasive method, not requiring the animal to be present, 

the method offers significant ethical and practical advantages to the study of farmed and wild 

animals, for example, for the monitoring of animals which can be evasive or dangerous. The 

numerous benefits of the technique support the utilisation of the method as part of animal 

health assessments.  
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4.1 Introduction 

Prior chapters have highlighted the importance of cattle dung within grazing livestock 

systems. However, faecal material is not just an agricultural resource for system nutrient 

cycling and ecology but also holds the potential to provide valuable and detailed information 

about the health status of an animal. Chapter 3 investigated how targeted selective treatment 

(TST), in addition to its veterinary benefit, has the potential to mitigate the non-target and 

toxic impact of anthelmintics and other medicines on dung ecology. An effective TST program 

has the potential to yield short and long term benefits to animal health and the sustainability 

of veterinary medicines due to the mitigating effect it has on parasite resistance to 

anthelmintics (Kenyon et al., 2009; van Wyk et al., 2006). The implementation of an effective 

TST program requires a body of evidence on individual animal health. To achieve this, 

veterinarians require a toolbox of simple, efficient, and effective diagnostic tools. As it stands, 

options are limited, and therefore there is a need for the development of novel diagnostic 

methods. An effective diagnostic tool is one that meets as many of the below criteria as 

possible: 

• Minimises animal stress 

• Non-invasive 

• Quantitative and comparable 

• High-throughput 

• Cost and time efficient 

• Facilitates mass sampling 

• Allows simple sample storage and transport  

• Does not require qualification 

• Does not require regulatory licensing 

• Provides novel information (or an improvement on existing methods) 

Currently, FECs (faecal egg counts) are the most widely utilised method for the diagnosis of 

GIN infections and are central to livestock health assessments. Their popularity is 

understandable given their low demand for resources and expertise, meeting many of the 

aforementioned criteria. However, FECs have a number of critical limitations. FECs quantify 

the severity of infection by the number of eggs per gram (epg) of faeces, but this is inherently 
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inaccurate. Firstly, the number of eggs shed does not necessarily relate directly to disease 

severity. An individual with a healthy and active immune response (particularly if it has 

developed resistance to the GIN), may be able to tolerate a moderate level of infection 

without significant pathology or the need for veterinary intervention (Råberg et al., 2007, 

2009; Restif and Koella, 2004; Roy and Kirchner, 2000). Furthermore, the shedding of eggs in 

host faeces is temporally and spatially clumped, meaning that repeat FEC of the same animal, 

or even sample, may yield significantly different epg. Whilst FECs have a central place in 

veterinary medicine and animal health assessments; their stand alone value is significantly 

limited. There is, therefore, a gap in the scientific and veterinary capability to efficiently assess 

gastrointestinal health and immunology of ruminants, particularly in relation to pathogenic 

drivers, such as GINs. 

Within human medicine, faecal samples are used for the diagnosis of gastrointestinal 

diseases, through the identification of inflammatory and other markers (Røseth et al., 1992; 

Tibble et al., 2000). Recent research has provided supporting evidence that ruminant faeces 

can also be used, in a similar manner, such as for the identification and quantification of 

antibodies (Watt et al., 2015). The ability to non-invasively assess aspects of animal 

immunology could open up an entirely new field of diagnostics within veterinary medicine 

whilst simultaneously yielding significant practical benefits across the wider biological 

sciences. 

4.1.1 Immunomarkers 

Immunological responses are vital, yet costly, processes for all organisms (Bonneaud et al., 

2003; Råberg et al., 2000). Ruminants are constantly challenged by a host of pathogens which 

they must actively work to resist. They achieve this through the immune system, which relies 

on a variety of complex processes and molecules, such as immunoglobulins, to fight off 

infection and maintain health. In addition to increased health and welfare, healthy animals 

perform more efficiently and are therefore more profitable (Gerloff et al., 1986; Hawkins, 

1993; Schneider et al., 2009; Smith, 1998; Snowder et al., 2006). Improved animal 

performance has consequential benefits for improving the economic and environmental 

sustainability of livestock systems. 
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4.1.1.1 Antibodies 

Gastrointestinal mucosal membranes are an important component of mammalian immune 

systems, providing a protective barrier against pathogens, such as GINs and other helminths 

(Claerebout and Vercruysse, 2000; Smith et al., 1985). A key feature of mucosal membranes 

is antibodies/immunoglobulins which directly combat pathogens and other foreign bodies in 

an attempt to prevent their entry into host tissue. There are five primary isotypes (classes, 

which differ in structure and function) of immunoglobulins (Ig): IgA, IgD, IgE, IgG, and IgM, 

which all serve different and unique functions. Each isotype can have numerous subtypes, 

which play subtly different roles and are generally localised to specific systems or tissues. Due 

to the different function of each isotype, they each operate in distinct locations and have 

specific functions. In addition, optimised pathogen-specific antibodies can be biosynthesised 

locally (i.e. in the gut) (Janoff and Frank, 2010). Antibodies can be quantified by a range of 

techniques, the most common and fundamental being by ELISA (Enzyme-linked 

immunosorbent assays; Wide and Porath, 1966), however, more advanced techniques exist, 

such as protein microarray technology (Templin et al., 2002). Heightened antibody levels are 

often symptomatic of disease (Dong et al., 2008; Newkirk et al., 2005). However, baseline 

levels vary between individuals. Over the course of an infection, antibody levels vary greatly 

and are typically characterised by a primary and secondary response. Therefore antibody 

levels at the infection site may not necessarily correlate with disease burden. 

IgA is locally produced by plasma cells and is transported across epithelial cells where it is 

released into the external mucous secretions that line the gut (Snoeck et al., 2006). As a result, 

IgA is the most abundant antibody of mucosal membranes, typically totalling more than all 

other antibody classes combined (Brandtzaeg, 2013; Golby and Spencer, 2002; Lamm, 1988). 

The most abundant form of IgA in mucosal membranes is secretory IgA (sIgA), which has an 

additional secretory component, protecting the molecule from the proteolytic enzymes of the 

digestive system (Lindh, 1975). The primary role of IgA is to prevent the binding of pathogens 

and their antigens to epithelial (and other) cell walls (Borén et al., 1993; Mazanec et al., 1993; 

Williams and Gibbons, 1972), thus preventing their pathogenic function. IgA can limit the 

length  of nematodes, a factor directly related to their fecundity, and is therefore important 

in the immune response to gastrointestinal nematodes and other parasitic diseases (Stear et 

al., 1999; Strain et al., 2002). Whilst the full details of this mechanism are unknown there is 
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evidence suggesting that IgA may facilitate the transport of other immunological molecules 

(Kaetzel et al., 1991) and that it may activate eosinophils (Decot et al., 2005). 

IgD is by far the least studied and most enigmatic isotype. Many questions remain regarding 

its role and function in immunology, its historical origins, and its unusual interspecies 

dispersal (Chen and Cerutti, 2010). Despite its ability to bind to many viral and bacterial 

pathogens, B-cells (antibody excreted lymphocytes) often ‘choose’ not to secrete IgD during 

infections. IgD is regularly linked to IgM and may play a complementary role in that 

relationship. However, the topic is the subject of numerous debates (Chen and Cerutti, 2010; 

Ohta and Flajnik, 2006). 

IgE plays a very specific role in mammalian immunity and is directly associated with immunity 

to helminth parasites (Erb, 2007; Fitzsimmons et al., 2007; Jarrett and Bazin, 1974; Pfister et 

al., 1983; Thatcher et al., 1989; Watanabe et al., 2005), as well as to protozoan pathogens 

(Duarte et al., 2007), and allergens (Gould et al., 2003). During a helminth infection, serum 

IgE levels can increase by 100x and drop rapidly after infection has cleared (Jarrett and Bazin, 

1974). IgE plays a diverse role and has been found to, directly and indirectly, inhibit helminths. 

The antibody has been linked to the degranulation and stimulation of mast cells and basophils 

(Rosenwasser and Boyce, 2003; Stone et al., 2010), physical damage to parasites, and the 

blocking of parasites to epithelial cells. Whilst mucosal membranes are typically associated 

with IgA and IgM, up to 99% of local IgE can move into the intestines during a helminth 

infection (Bell, 1996). IgE is, therefore, a significant antibody in the study of veterinary 

parasitology. 

IgG is the most abundant antibody in blood but is also found at mucosal membranes in lower 

quantities. The antibody has the ability to actively migrate across mucosal membranes into 

the intestine and is highly abundant in colonic fluid. The primary role of IgG is opsonisation 

(binding of opsonin to pathogen membranes to attract phagocytes) of pathogens to facilitate 

phagocytosis (Groux and Gysin, 1990; Koval et al., 1998). The effect of IgG on parasitic 

nematodes is indirect through its impact on symbiotic bacteria within nematodes, such as 

Wolbachia sp. (Bazzocchi et al., 2000; De Veer et al., 2007; Morchón et al., 2004; Punkosdy et 

al., 2001; Simón et al., 2003). 
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IgM is the largest mammalian antibody and is released early in infections as a basic initial 

response. IgM is produced by B cells without the need for antigenic stimulation, as is the case 

for other antibodies, ensuring it is always available and ready to respond to pathogens. Upon 

such a response IgM can readily activate the complement cascade (molecule for molecule, 

approximately 1000x more effectively than IgG; Cooper, 1985) and therefore enhance the 

ability of antibodies and phagocytes (Charles et al., 2001). IgM deficiency has been linked to 

a reduced ability to clear parasitic nematode infections (Rajan et al., 2005). Whilst the 

mechanism is not entirely clear, IgM readily reacts with surface antigens of pathogens, 

causing impairment. IgM is, therefore, a vital component of the immune system with the 

ability to initiate a range of immunological responses necessary for the maintenance of animal 

health.  

4.1.1.2 Lactoferrin 

Lactoferrin is a complex and multi-functional transferrin protein present in mammalian 

immune systems. For diagnostic purposes, lactoferrin acts as a faecal inflammatory marker 

and within human medicine is used to assess intestinal health and diagnose conditions such 

as inflammatory bowel diseases and Crohn’s disease (Gisbert et al., 2009; Lamb and 

Mansfield, 2011; Lundberg et al., 2005; Tibble et al., 2000). Intestinal damage is a 

symptomatic pathological sign of chronic and severe GIN infections. This, in turn, can lead to 

inflammation for which lactoferrin may be a marker. Commercial ELISA kits are available for 

the quantification of lactoferrin in the milk of dairy cows, for the purpose of quality control 

and animal health assessment. Immune responses in GIN infections are typically localised 

(Stear et al., 1999) meaning that the response to GIN infection predominantly takes place in 

the mucosal lining of the intestines, making faeces a suitable material in which to attempt to 

detect and quantify lactoferrin. 

4.1.2 ELISA 

Enzyme-linked immunosorbent assays (ELISA) are commonly used techniques in molecular 

immunology for the detection and or quantification antibodies, antigens, and other molecules 

biological samples (Engvall and Perlmann, 1971, 1972; Wide and Porath, 1966). ELISAs work 

by capturing a target molecule using complementary antibodies (Figure 4.1). The capture 

antibodies are typically derived from rabbits or mice which have been artificially exposed to 
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the target molecules and therefore have produced an immunological response of specific 

antibodies to that target. ELISAs are now routinely used worldwide and have formed the basis 

of numerous molecular techniques that have revolutionised the way we investigate 

immunology and disease. ELISAs are generally replicable, use only a small amount of sample, 

and allow for a high throughput (potentially thousands of samples per day) at modest cost.  

 

Figure 4.1 – Main steps of a sandwich ELISA. (1) Capture antibody is added and binds to the 
plate well over night. (2) Sample is added to the well and molecules complementary to the 
capture antibody, the target molecules, are bound. (3) A detection antibody, conjugated with 
horseradish peroxidase (HRP) is added and binds to target molecules which were previously 
bound in step 2. (4) A substrate is added which reacts, facilitated by HRP, to produce diimine, 
a blue coloured substance. (5) A stop solution is added which significantly alters pH, inhibiting 
further reactions and producing a yellow colour. As each step sequentially builds upon the 
prior, the intensity of the yellow colour change is proportional to the concentration of the 
target molecules, as captured in step 2. Source: original image. 
 

Within the livestock industry, ELISAs and derived technologies are utilised for two distinct 

purposes: the first is quality and safety control of product, destined for human consumption, 

the second is to guide production interventions through the monitoring of animal health. 

Whilst blood is often used, veterinary driven ELISAs are most routinely used within the dairy 

industry where they can be used for the assessment and diagnosis of a range of diseases using 

milk samples (Aulakh et al., 2008; Hardin and Thorne, 1996; Kloosterman et al., 1996; Nielsen 

et al., 2000; Schares et al., 2004; Shafee et al., 2011). Although less universal, within the beef 

sector, the same technology has also been utilised for meat juice analysis. Charlier et al. 

(2009) aimed to develop a non-invasive method for the diagnosis of the parasitic trematode 

Fasciola hepatica (liver fluke) and the parasitic nematode Ostertagia ostertagi (brown 

stomach worm) in cattle. Given that sampling was taken post-mortem at the abattoir, the 

benefit of a non-invasive procedure was for practicality and had no direct bearing on animal 
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welfare. The study found that ELISA derived antibody concentrations from serum and meat 

juice samples correlated 90-100%. Meat juice ELISAs were also found to be significantly more 

accurate in the detection of F. hepatica when compared to more labour demanding liver 

biopsies. Similarly, Cornelissen et al. (1997) evaluated the use of ELISAs for the diagnosis of 

the parasitic nematode Dictyocaulus vivparus (lungworm) in cattle. Results from the original 

research led to ELISAs being used routinely in all Animal Health Services in the Netherlands, 

notably replacing Baermann’s faecal extractions, which required soaking of faecal samples 

and subsequent gravimetric recovery of larvae which have migrated from the faeces. This 

increased the throughput of analyses whilst also increasing their reliability. These examples 

highlight the potential and relatively unharnessed capabilities of molecular techniques within 

veterinary medicine. The ability for ELISAs to effectively utilise blood, milk and meat juices 

suggest that the technique can widely be applied across a range of biological materials. 

Successes, as outlined, can pave the way for increasing efficiency, welfare, and productivity 

of livestock industries. Although liquid samples are required, there is the potential for less 

soluble materials to be suspended in inert liquids, increasing the range of material it is 

possible to analyse. 

Whilst ELISAs are typically conducted on plasma, sera, or milk samples, a small number of 

studies have utilised animal faecal samples (Duménigo et al., 1996; Peters et al., 2004; Watt 

et al., 2015; Wedrychowicz et al., 1985), but the area is relatively unstudied. ELISAs on animal 

faecal material are therefore not well established in veterinary medicine, however, are 

commonplace in human medicine for the diagnosis of gastrointestinal disease through the 

quantification of proteins such as lactoferrin and calprotectin, which are present at mucosal 

membrane surfaces (Kok et al., 2012; Lamb and Mansfield, 2011; Lundberg et al., 2005; 

Malícková et al., 2008; Mirsepasi-Lauridsen et al., 2016; Schoepfer et al., 2007). 

Immunological results from faecal material are more likely to be representative of 

gastrointestinal mucosal membranes than other material such as plasma, due to the 

physiologically localised nature of immunity (Lamm, 1988; Wennerås et al., 1999), therefore 

providing novel information about animal health which, if used in tandem with other 

methodologies, could help to provided more rounded and comprehensive assessments. 

Watt et al. (2015) successfully adapted commercially available ELISA kits and components for 

use on ovine faecal samples collected in the field. ELISAs were also performed to detect 
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antibodies specifically developed in response to infections of the GIN Teladorsagia 

circumcincta. Successful assays were achieved by replacing the typical sample type (of blood 

serum or plasma), for a faecal supernatant, formed by mixing faeces with a protease inhibitor 

and centrifuging to produce a supernatant. The work represented a step towards a viable and 

novel addition to the toolkit available for animal health diagnostics. In addition to the novel 

information that the protocol provides, it is also logistically practical and avoids the need for 

invasive procedures on the animal, which can be time-consuming, stressful (to both the 

animal and researcher), dangerous, and often impossible. Furthermore, invasive procedures 

are more heavily regulated than non-invasive ones and require specific training, whether 

conducted for the purposes of science (Animals (Scientific Procedures) Act, 1986) or 

veterinary medicine (Veterinary Surgeons Act, 1966). Due to the fact that the physical and 

biochemical composition of cattle and sheep dung may vary, a protocol for a faecal 

supernatant and subsequent ELISAs, designed for sheep faeces, needs to be tested and 

adapted for cattle faeces.  

Bovine lactoferrin ELISA components (capture antibodies, detection antibodies, and 

reference materials) and kits are typically developed and orientated towards the dairy 

industry and milk samples, although usually are claimed to work on serum and plasma too. 

Given the high consumption levels of cow’s milk and associated products in the developed 

world, there is consequently a range of bovine ELISA products available. The extent of choice 

for other ruminants is not so broad, whilst blood antibody ELISAs are readily available for 

sheep and deer, lactoferrin is not. Therefore, non-bovine lactoferrin ELISA components are 

extremely expensive as they must be made to order. Due to the similarity in lactoferrin 

isotypes across ruminants, it has been observed that bovine-specific ELISAs are able to 

recognise lactoferrin from all ruminants (Conesa et al., 2008; Shimazaki et al., 1991). This 

poses the possibility that a bovine lactoferrin ELISA could be successfully applied to other 

ruminant species, however, the exact extent of cross-reactivity is unknown. 

4.1.3 Potential uses 

In addition to general annual health assessment, the ability to detect and quantify 

immunomarkers in faeces has the potential to feed into specific strategies for the prevention 

and mitigation of gastrointestinal parasites and other prevalent and impactful diseases within 
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the livestock industry. Increasing the efficiency of diagnostic techniques has the potential to 

facilitate positive changes in productivity, welfare, profitability, and sustainability. Enabling 

more effective health monitoring can improve animal health by highlighting problems early 

on, providing longitudinal data, and by informing veterinarians. The consequence of improved 

health is improved animal performance with regards to feed conversion and growth. In turn, 

this improves the utilisation of forage meaning that more outputs (meat, dairy, and offspring) 

are produced from reduced inputs (forages, fertilisers, land area), therefore improving overall 

profitability and economical and environmental sustainability. 

4.1.3.1 Targeted selective treatment 

A key area of opportunity for the utilisation of faecal immunomarker detection is within 

targeted selective treatment (TST) regimes, which is the recommended practice for the 

pharmaceutical control of GINs and many other helminths (Charlier et al., 2014; Cooke et al., 

2017; van Wyk et al., 2006). TST has the potential to yield long-term benefits to herd health, 

in part, due to a mitigating effect on the selection for anthelmintic resistanct parasites 

(Charlier et al., 2014; Gaba et al., 2010). Central to TST strategies is the need for novel and 

improved tools to effectively implement comprehensive animal health assessments, used to 

assess parasite burden, anthelmintic efficacies, and ultimately select individuals for treatment 

(Bentounsi et al., 2012). This screening typically involves qualitative assessment of gross 

health indicators, such as weight gain, conformation, body condition, and eye colouration (i.e. 

Faffa Malan Chart (FAMACHA) anaemia scoring), that are non-specific indicators of health. 

Faecal egg counts (FECs) can also provide relatively quick and simple diagnoses, including 

species level pathogen identification. The downside of FEC techniques is that egg counts vary 

temporally and are spatially clumped (Engels et al., 1997; Gasbarre et al., 1996) and are, 

therefore, not necessarily indicative of parasite burden, and less so of pathology. 

Consequently, the advancement of TST requires the development of new, high-throughput, 

diagnostics for rapid assessment of physiological and immunological parameters of animal 

health – specifically in relation to GINs. Faecal immunomarker quantification, using ELISA 

techniques, has the potential to become an important part of this tool-kit of techniques, 

allowing for more detailed and comprehensive evaluations of animal health, therefore 

enhancing current TST strategies.  
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4.1.3.2 Selective breeding for GIN resistance 

Resistance to GINs is predominantly driven by host genetics and acquired immune responses 

(Stear et al., 1999). This means that resistance can be selected for during the commercial 

breeding process. However, this is not common practice, with anthelmintic treatment being 

routinely favoured by many veterinarians and farmers. In contrast, within wild populations, 

this amounts to a selection pressure in favour of GIN resistant genes due to the reduced 

reproductive success of non-resistant hosts.  In such populations, where manufactured 

anthelmintics are not linked, individuals are much more likely to be able to tolerate low or 

moderate GIN levels without significant impacts upon health (Råberg et al., 2009; Roy and 

Kirchner, 2000). Increased susceptibility of domestic ruminants to GIN increases the likelihood 

of pathology up until the point of treatment. The shedding of helminth eggs is typically over-

dispersed within host populations, with a small number of individuals shedding the majority 

of eggs. Removal of these individuals, for the purpose of selective breeding, holds the 

potential as an effective strategy for the control of GIN and other faecally transmitted 

helminths (Bisset and Morris, 1996; Gasbarre et al., 2001; Sréter et al., 1994; Stear et al., 2001; 

Stear and Murray, 1994). Bisset and Morris (1996) make the point that resilience, i.e. the 

ability to cope with infection, without necessarily clearing it, is also important in combination 

with selection for resistance. In order to selectively breed animals for these traits, a breadth 

of information is needed, namely, parasite burdens, host immune response, and genetic 

drivers of host tolerance. Parasite burdens can be alluded to using FEC techniques, and 

genome sequencing of parasites is increasingly common; the missing component of such an 

assessment is, therefore, a measure of host immune responses. 

4.1.4 Research objectives 

The primary objective of the research discussed in this chapter is to assess if bovine faecal 

supernatant can be used in ELISAs for the detection and/or quantification of antibodies and 

lactoferrin.  

Hypothesis 1 – Antibodies and lactoferrin can be quantified, via ELISA, in bovine faecal 

supernatant. 

Acceptance of hypothesis 1 would lead to an array of secondary hypotheses, tested to deepen 

the understanding of the protocols. 
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Hypothesis 2 – IgA is the most predominant antibody in bovine faecal supernatant. 

Hypothesis 3 – Ovine anti-T. circumcincta antibodies can be used for the detection of bovine 

T. circumcincta specific antibodies, by ELISA. 

Hypothesis 4 – Antibody and lactoferrin levels correlate to one another in faecal supernatant 

and serum samples. 

Hypothesis 5 – Antibodies and lactoferrin concentrations in faecal supernatant do not 

correlate to those in serum. 

Hypothesis 6 – Faecal supernatant lactoferrin concentrations will be significantly different 

between ruminant species (cattle, sheep, and deer). 

Hypothesis 7 – The optical density of faecal supernatants does not correlate with lactoferrin 

concentration. 

4.2 Methods 

4.2.1 Sample collection and processing 

4.2.1.1 Sample population 

Faecal samples were taken from cattle from three UK beef farms. 

Farm #1 was at Rothamsted Research’s North Wyke Farm Platform, in Devon. The Farm 

Platform has three non-organic, pasture-fed beef herds, under typically managed rotation. 

Each herd is similar, however, grazed on distinct pasture systems which vary in their botanical 

composition. An initial sampling on 10/11/2016 collected 45 faecal samples and the second 

sampling on 07/02/2016 collected 18 faecal samples, six of which were from animals sampled 

the first time around. Both sampling instances occurred during housing when animals were 

on a silage diet.  

Farm #2 was a pasture fed beef farm in Hertfordshire. Animals were mob-grazed with 

movement approximately every three days. Sampling occurred once, on 02/02/2017, during 

housing, and resulted in 30 faecal and blood samples being taken from 21 animals. The farm 

was organic (Soil Association certified) and no anthelmintic treatment had been administered 

that season. 
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Farm #3 was a pasture fed beef farm in Angus. Cattle were mob-grazed with three daily 

movements. Sampling occurred once, on 07/12/2017, and resulted in the collection of faecal 

samples from 30 animals. Animals grazed year round with no housing time. The farm was 

organic (Soil Association certified) and no anthelmintic treatment had been administered that 

season. 

For the lactoferrin analysis, the opportunity arose to incorporate a number of faecal and 

blood samples from sheep and deer. One hundred and thirty-three faecal samples and seven 

blood samples were included from 94 wild sheep. A further 42 faecal samples from 41 semi-

wild sheep (commercial animals which are allowed to roam wild most of the year) were also 

included. One hundred and twenty-six faecal samples were included from 121 semi-wild deer. 

A blood sample was also included from a semi-wild deer of the same population, which was 

found recently dead before sampling. None of these additional animals had been recently 

subjected to any veterinary medicine or intervention. 

4.2.1.2 Serum 

Tail venepuncture was conducted, by a veterinarian, on live cattle from 22 individuals on Farm 

#2, to withdraw blood. Blood samples were only collected from animals for which matched 

dung samples were available, and blood and faecal samples were taken on the same day. 

Bloods were drawn, by sterile syringe, into labelled 10ml BD Vacutainers® and rested for > 30 

min to allow for clotting, then centrifuged at 2500rpm/1056 x g (Sorvall SLA-3000 rotor in a 

Sorvall RC-5B centrifuge) for 15 min and the supernatant serum withdrawn, using sterile 

pipette tips, into 1.5ml microcentrifuge tubes (Thermo Scientific™ 3451). Serum samples 

were immediately stored at -20°C until analysis. 

4.2.1.3 Faecal supernatant 

Fresh dung was collected upon deposition by the individual. Dung was collected using clean 

polystyrene spoons, one per sample. Dung was homogenised as thoroughly as possible before 

collection, with care taken so as not to mix in foreign matter, such as other dung and hay. 

Collected dung samples were transferred to sterile polystyrene screw-top pots. During 

sampling the samples were stored in a cool box, after which they were stored at -20° until 

being processed. 
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A dung supernatant was obtained by the dilution of cattle dung with a protease inhibitor. In 

order to create the supernatant, dung samples were allowed to defrost at room temperature 

for 3 hrs. Defrosted dung samples were thoroughly mixed using sterile inoculating needles 

(Camlab 1171525). 2-4 g of dung was then transferred to a sterile beaker and mixed with a 

protease inhibitor (Roche cOmplete™, EDTA-free Protease Inhibitor Cocktail) at a recorded 

ratio of between 1:1 and 1:2 (w/v). The resulting mixture was homogenised using sterile 

inoculating needles and then transferred to sterile 10 ml centrifuge tubes (Nalgene™ Oak 

Ridge High-Speed PPCO) and rested on ice for >10mins, until centrifugation. Samples were 

centrifuged at 3-6°C and 8400rpm/12000 x g (Sorvall SLA-3000 rotor in a Sorvall RC-5B 

centrifuge) for 5 min. The supernatant was then pipetted, using sterile pipette tips, into 1.5 

ml microcentrifuge tubes (Thermo Scientific™ 3451). Supernatants were immediately stored 

at -20°C until analysis. 

Three negative control blanks for the supernatant diluent, comprised of 100% protease 

inhibitor cocktail, were created. Each blank came from a different batch of inhibitor cocktail 

and was prepared separately. 

4.2.2 Antibody ELISA 

Seven, bovine-specific, ELISAs were conducted. Total IgA, IgG, and IgM ELISAs were conducted 

using bovine-specific commercial reagents from Bethyl Laboratories Inc. (Texas, United 

States) and a reference serum, according to the manufacturer protocol. A further three ELISAs 

were conducted using T. circumcincta antigen, measuring the responses of bovine-specific 

IgA, IgG, and IgM to the antigen. There are no bovine specific IgE components, so a fourth 

assay was completed using a sheep IgE ELISA. Given the cross-reactivity of ovine and bovine 

antibodies and the range of GINs which are able to infect both species, there was considered 

to be a distinct possibility that T. circumcincta assays could work on bovine samples. These 

latter ELISAs were conducted under the same protocol as the commercial ELISAs with the 

alteration that the commercial capture antibody was replaced with a T. circumcincta antigen, 

as per Watt et al. (2015). No IgD antibodies were readily available for inclusion. 

Each ELISA was conducted on all 114 faecal supernatants and 22 serum samples. With each 

of the Total Ig plates containing a 10 point dilution series of reference material and two or 

more blanks of TBST (Tris-buffered saline with Tween20 at 0.05%), representing the sample 
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diluent. Three ‘faecal blanks’ were also included in each assay: faecal blanks consisted of pure 

protease inhibitor. The T. circumcincta assays do not have a reference serum available, so had 

a known positive sample included twice (sourced from Watt et al., 2015), which showed the 

assay worked on that day. The positive control was serum from sheep that had been trickle 

infected with T. circumcincta and had confirmed antigens against L3 T. circumcincta, as per 

Watt et al. (2015). 

4.2.2.1 Sample dilution 

Supernatant and sera had to be diluted to ensure that ODs were within the detection limits 

outlined by top and bottom plateaus of their relative sigmoidal curves. Samples were serially 

diluted and six concentrations (later narrowed down to three) taken forward for use in assays, 

for each antibody, one dilution was chosen across all samples as the one to derive results 

from. 

4.2.2.2 Laboratory Procedure 

96-well plates (Nun-Immuno™ MicroWell™ MaxiSorp™) were coated with 50µl of the 

appropriate rabbit anti-bovine antibody, diluted to 2 µg ml-1 in 0.06M carbonate buffer. For 

the T. circumcincta assays the coat was T. circumcincta L3 somatic antigen at 2 µg ml-1 in 

0.06M carbonate buffer. Plates were then covered in clingfilm, and stored for 1-3 days at 4°C 

prior to use. Plates were removed from the refrigerator and washed 3x in TBST. Meanwhile, 

samples were defrosted at room temperature (approx. 1 hr) and then serially diluted in 2 ml 

deep-well plates. 50 µl of the appropriate sample dilutions were pipetted into the relative 

wells on the plate. TBST was used as the ELISA sample dilution negative control, Protease 

inhibitor was used as the faecal sample diluent negative control, bovine reference serum was 

used as both a plate positive control and, with a dilution curve, to work out antibody 

concentration in the sample, on the Total Ig assays only. A known positive sheep sample was 

used as a plate positive control on the four T. circumcincta assays. Plates were then covered 

in cling-film and incubated for 1hr at 37.5°C.  

Plates were removed from the incubator and washed 5x in TBST. 50 µl of the appropriate 

rabbit anti-bovine HRP conjugated antibody was added to each plate (excluding for the T. 

circumcincta IgE assay). No direct HRP-conjugated antibody was available for the T. 

circumcincta IgE assay and instead 50 µl of mouse anti-ovine IgE (monoclonal IgG1) at 10 µl 
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ml-1 with TBST was added. T. circumcincta IgE plates were then incubated for 1hr at 37.5°C, 

washed 5x with TBST and then 50µl of goat anti-mouse IgG1- HRP detection, at 0.125 µg ml-1 

with TBST, was added. All plates were then covered in cling-film and incubated for 1hr at 

37.5°C. 

After incubation plates were washed 5x in TBST. 100µl of TMB substrate (KPL SureBlue™ TMB 

Microwell Peroxidase Substrate – single component) was added to each well, plates were 

then incubated, in darkness, for 5 minutes at 37.5°C. Plates were removed from the incubator 

and 100 µl of the stop solution, 1.0M HCl, was added to each well (the addition of HCl inhibits 

enzyme activity and changes the wells from blue to yellow). Plates were immediately read by 

a plate-reader at 450 nm, providing the optical density (OD) for each well. 

4.2.2.3 Interpolation and adjustment 

For each total antibody assay, a 10-point dilution series was plotted as a sigmoidal curve of 

OD and reference serum antibody concentration. Optical densities were interpolated onto 

this curve to generate an antibody concentration for each sample of faecal supernatant and 

serum. These concentrations were then adjusted to account for two instances of in vitro 

sample dilution which occurred initially when faecal supernatants were formed and again 

during serial dilutions. This generated the final concentration of antibody in each original 

(unprocessed) sample. 

Due to the lack of available reference material for T. circumcincta-specific antibodies, it was 

not possible to interpolate results to generate an exact concentration. Instead a relative and 

arbitrary scale was created, using the positive control, to allow for simple comparison of 

samples relative to one another. The value given to each sample was derived from Equation 

4.1. As per total antibody assays, results were then adjusted to account for in vitro dilution. 

In the event that negative values were obtained (i.e. if sample OD was less than TBST OD), 

values were converted to zero.  

 𝑥 =
𝑠𝑎𝑚𝑝𝑙𝑒 𝑂𝐷 − 𝑇𝐵𝑆𝑇 𝑂𝐷

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑂𝐷 − 𝑇𝐵𝑆𝑇 𝑂𝐷
  

Equation 4.1 - Formula used to generate a relative and arbitrary scale for T. circumcincta 
antibody levels. 
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4.2.2.4 Validation 

Reference material was essential to confirm the validity of assays and to quantify antibody 

levels. Total IgA, IgG, and IgM reference material was present on each plate of that antibody 

type. Reference material stock concentrations were: 0.11, 24.0, and 1.8 µg µl-1, respectively.  

Twenty-six dilutions of reference materials were formed using halving serial dilutions. The 

initial dilution wash 80 µl of reference material with 920µl of TBST. 700 µl of that solution was 

then withdrawn and added to 700 µl of TBST and the process repeated to form a series of up 

to 26 dilutions, of which 10 were chosen for each assay. Chosen dilutions were based upon 

past experience of similar assays, which were then tested to ensure suitability. Before 

experimental assays were conducted, plates were run with the specified dilutions of 

reference materials to confirm that the generated curves were suitable and within the 

detection limits of the assay and plate reader, each assay was repeated five times and plates 

included two blanks of TBST. No IgE reference material was available and, therefore, IgE could 

not be quantified, only measured in relation to other samples of the same type, however, 

known IgE positive serum samples were available and used to confirm that the assay worked. 

4.2.3 Lactoferrin ELISA 

ELISAs were conducted using a commercially available bovine lactoferrin ELISA set (Bethyl 

Laboratories Inc., E10-126), which is produced primarily for use on bovine milk samples.  

The plate coat was made by mixing affinity purified antibody (Bethly Laboratories Inc. A10-

126A) with carbonate buffer at a ratio of 1:100 (v:v). 100 µl of the formed coat was added to 

each well and plates were covered with clingfilm and incubated at 20°C for 1 hr.  

Plates were washed 5x with TBST (Tris-buffer saline with 0.05% Tween™ 20), by an automated 

plate washer. 200 µl of TBST was added to each well as a blocking solution and plates were 

covered in clingfilm and incubated at 20°C for 30 min. 

Plates were washed 5x and 100 µl of sample was added to each well (except blanks). Plates 

were covered in clingfilm and incubated at 20°C for 1 hr. 
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Plates were washed 5x. 100 µl of HRP detection (0.5% with carbonate buffer) antibody was 

added to each well and plates were covered in clingfilm and incubated at 20°C for 1 hr. 

Plates were washed 5x. 100 µl of enzyme substrate (SureBlue™ TMB Microwell Peroxidase 

Substrate Kit) was added to each well and plates were placed in opaque boxes and incubated 

at 20°C for 15mins. 100µl of stop solution, 0.18m H2SO4, was added to each well and plates 

were immediately read for optical density at 450nm by a plate reader. 

4.2.3.1 Assay refinement 

A test plate was conducted to determine the optimum concentration of faecal supernatants 

and serum/plasmas (diluted with TBST) in order to achieve ODs within the detection limits of 

the plate reader and to be able to observe variation in the datasets. The optimum dilution 

was qualitatively determined as the dilution at which no notable plateauing or data clustering 

had begun, which can both be features of more dilute samples. If two dilutions were relatively 

even on this metric, the less concentrated was chosen in order to ensure capture of lactoferrin 

samples higher than those on the trial plates and to preserve sample. Test plates were 

conducted on 63 cattle faecal samples at concentrations of 1/1, 1/2, 1/8, and 1/32 and on 25 

cattle serum samples at concentrations of 1/5, 1/10, 1/20, and 1/40.  This stage was also used 

to validate the assay itself, through the yielding of positive results and associated curves. 

4.2.3.2 Interpolation and adjustment  

Each plate contained a 7 point dilution series of bovine lactoferrin reference material, with 

known concentrations of lactoferrin, along with a TBST blank. Using GraphPad Prism 6.01, 

sigmoidal curves were plotted for each reference material dilution series. OD values for 

samples were then interpolated onto these curves to calculate total lactoferrin within each 

sample. These concentrations were then adjusted to account for two instances of in vitro 

sample dilution which occurred initially when faecal supernatants were formed and again 

during serial dilutions. 
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4.2.4 Faecal egg counts  

Quantitative FECs were conducted on all faecal samples used in the ELISA assays. In addition 

each farm had FECs conducted in the grazing season leading up to sampling with 10 randomly 

sampled FECs conducted on each of the four to seven sampling visits per farm. 

FECs were completed in duplicate, using mini-FLOTAC and fill-FLOTAC devices (University of 

Naples Federico II, Italy), in accordance with manufacturer’s methods. The system works by 

homogenising the faeces with a floatation solution, allowing it to rest and eggs to float to the 

top, before skimming off the top layer for microscopic examination. A 1.34 g ml-1 flotation 

solution of zinc sulphate and deionised water (1:1) was created. 45 ml of flotation solution 

was then mixed with 5.0 g of faeces, in the fill-FLOTAC device. This mixture was then 

transferred to the two wells of the mini-FLOTAC and rested for ten minutes. The top of the 

mini-FLOTAC device was then rotated 90°, skimming off any eggs that floated to the top. Eggs 

were then identified and counted under a microscope. Total counted eggs across both wells 

of the mini-FLOTAC plate were multiplied by 5x to determine epg. 

4.2.5 Dry matter and optical density relationship  

Fresh faeces is predominantly made up of water, resulting from the animal’s dietary intake. 

The state of an animal’s hydration varies temporally and may significantly influence the water 

content of its faeces and consequently the concentrations of components, including 

lactoferrin, within the faeces; essentially in vivo dilution of what will later become faecal 

supernatants.  

For the majority of fresh cattle faecal samples, a sub-sample was taken and dry matter 

content determined by oven drying at 65°C until constant weight. Final lactoferrin results 

were then multiplied by their dry matter proportion in an attempt to account for the water 

content of faeces. 

Faecal supernatants, all at 1:2 (w/v) ratio of faeces to protease inhibitor, were measured to 

determine OD, this was conducted twice, on 100 µl and 50 µl of supernatant. Blank 96-well 

plates were initially read to determine background. Portions of each supernatant were 

pipetted into individual wells, avoiding the outer two rows and columns, to avoid potential 
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edge effect. Plates were then read using a plate reader, to determine OD, from which the 

background value was subtracted. Supernatant ODs were then correlated to lactoferrin 

concentration and significantly correlated data sets subjected to regression analysis. 

4.2.6 Statistical analysis 

4.2.6.1 ELISAs 

A Grubb’s outlier test was conducted to identify any statistically significant outliers which 

were subsequently removed. 

ELISA validity was confirmed through reference material results.  For total IgA, IgG, IgM, and 

lactoferrin, ODs from the 10-point reference material dilution curves were plotted and assays 

considered valid if sigmoidal curves were produced by the data plots.  To assess the validity 

faecal supernatant as a suitable medium for assays to be conducted on, for each assay, ODs 

of faecal supernatants must be higher than those of blanks. This was determined through 

individual 2-sample t-tests for each assay. These statistical tests were used to test Hypothesis 

1. For all T. circumcincta assays (for which no reference material was available), an assay was 

considered valid if the positive controls were significantly higher than TBST blanks, as 

determined by a 2-sample t-test. This test was used for the acceptance/rejection of 

Hypothesis 3. 

A one-way ANOVA with a post-hoc Tukey test was conducted on total antibody 

concentrations grouped by antibody isotype and by sample type (faecal or serum). This was 

used to show how antibody concentrations varied between one another and if they were 

significantly different between faecal and serum samples. This statistical testing was also 

conducted on the data set for levels of T. circumcincta antibodies. A 2-sample t-test was 

conducted to compare lactoferrin concentrations of faecal and serum samples. These tests 

were used to test Hypothesis 2. 

Pearson’s correlations were conducted to identify any associative relationships between the 

different immunomarkers in the different materials. Pearson’s correlations were conducted 

to assess if antibody and lactoferrin levels correlated with one another. This was conducted 
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twice, once for the results from faecal samples and again for results from serum samples. To 

mitigate for type I errors, a Bonferroni correction was applied to each of these correlation 

sets, reducing the critical p-value from 0.05 to 0.018. A second set of 64 correlations were 

conducted to investigate if any faecal immunomarkers correlated with any serum 

immunomarkers. A Bonferroni adjustment set the critical value at 0.001 for these tests. Each 

of the eight immunomarkers in faeces underwent a Pearson’s correlation against each of the 

eight immunomarkers in serum. This was conducted for the 22 instances where paired faecal, 

and serum samples were available, both taken on the same day from the same individual. 

These statistical analyses tested Hypotheses 4 and 5. 

A one-way ANOVA was used to compare reported lactoferrin concentrations of cattle, sheep, 

and deer faeces. A post-hoc Tukey test was used to identify between which groups any 

variation lay. A 2-sample t-test was used to calculate if serum lactoferrin concentrations of 

cattle and sheep were significantly different. These tests were used to provide evidence as to 

whether there may be immunological differences between the groups and to allude to any 

possibility of sub-optimal cross-reactivity between bovine lactoferrin antigens and those from 

other ruminants. This statistical test tested Hypothesis 6. 

4.2.6.2 Dry matter and optical density 

A Pearson’s correlation was conducted to determine the association between sample dry 

matter and faecal supernatant OD. A second correlation was then conducted to determine if 

faecal supernatant OD correlated with lactoferrin concentration, this was then followed by a 

regression analysis of the same factors, with OD as the determining variable. These tests were 

used to test Hypothesis 7. 

4.3 Results 

4.3.1 Assay validations 

All assays were successfully validated for both their functionality and their ability to work 

effectively with faecal supernatant. These results led to the acceptance of Hypothesis 1. 
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4.3.1.1 Antibody assay validations 

Ten-point dilution series for total IgA, IgG, and IgM all produced sigmoidal curves (Figure 

4.2). These were taken forward and used for the interpolation of ODs from all samples.

 

Figure 4.2 - Sigmoidal curves generated from 10-point dilution series of reference material for 
total IgA, IgG, and IgM assays. 

Positive controls for the T. circumcincta assays yielded consistent and significantly higher 

optical densities than the negative controls (Figure 4.3). These differences were confirmed by 

2-sample t-tests for each T. circumcincta antibody, IgA (t = 25.29, p < 0.0005), IgG (t = 16.44, 

p < 0.0005), IgM (t = 17.79, p < 0.0005), and IgE (t = 35.39, p < 0.0005).

 

Figure 4.3 - Boxplots comparing negative and positive controls for all T. circumcincta assays, 
for purpose of validating the ELISA. 
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Faecal supernatant OD values were significantly greater than those of TBST and protease 

inhibitor negative controls (Figure 4.4; F = 92.77, p < 0.0005). The exceptions were T. 

circumcincta IgA which was not significantly higher than its protease inhibitor control, and T. 

circumcincta IgE, which was not significantly higher than either of its blanks. Standard errors 

of faecal supernatatants, and particularly of negative controls, were low. These results mean 

that Hypothesis 1 was accepted. 

  

Figure 4.4 - Unadjusted, “raw” optical densities for faecal supernatant, protease inhibitor 

negative controls, and TBST negative controls, across all assays. Less than symbols (<) above 

control columns signify that their ODs are statistically significantly less than the faecal 

supernatant ODs for the same antibody, as determined by a 2-sample t-test. Error bars 

represent standard error. 
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4.3.1.2 Lactoferrin assay validation 

Assays conducted on reference serum produced sigmoidal curves (Figure 4.5). Based on the 

results of three initial test plates, it was determined that a concentration of 1/2 (50%) was 

optimum for faecal assays. 

 

Figure 4.5 - Sigmoidal curve of mean values of assay optical densities, generated from 
increasing dilutions of reference serum. 

A Grubbs’ outlier test found one outlier, within the cattle data set, of a recorded lactoferrin 

concentration 1.94 µg ml-1. This was removed for all statistical analyses and graphing. All 

faecal samples yielded optical densities significantly above background level as determined 

of 2-sample t-tests comparing background levels to faecal supernatants of cattle (t = 11.99, p 

<  0.0005), sheep (t = 4.72, p < 0.0005), and deer (t = 8.80, p < 0.0005). These results accept 

Hypothesis 1. 
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4.3.2 Concentrations 

4.3.2.1 Antibody concentrations 

For both total and T. circumcincta faecal antibodies, IgA was the most abundant and therefore 

Hypothesis 2 was accepted. 

Total antibody concentrations of all positive samples varied considerably (Figure 4.6). A one-

way ANOVA, with a post hoc Tukey test, found that serum antibody concentrations were 

significantly higher than faecal antibody concentrations (F = 162.21, p < 0.0005). A second 

one-way ANOVA and Tukey test, comparing just faecal antibody concentrations, found faecal 

IgA concentrations (mean of 59.7µg ml-1) to be significantly greater than serum IgG and IgM 

(means of 0.3 and 3.7µl ml-1  respectively), which themselves were not significantly different 

to one another (F = 50.60, p < 0.0005). A third one-way ANOVA and Tukey test, solely 

comparing serum total antibody concentrations, found that serum IgG concentrations were 

significantly greater (mean of 10304.4µg ml-1) than serum IgA (mean of 5576.3µg ml-1) and 

that both were significantly greater than serum IgM (mean of 1684.3µg ml-1) (F = 18.97, p < 

0.0005). 

 

Figure 4.6 - Boxplots of total antibody concentrations (log µg ml-1 +1) measured across all 
cattle faecal and serum samples.  
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Due to the lack of reference serum and unknown avidities, truly accurate comparisons of T. 

circumcincta antibody assay results were not possible. Nevertheless, comparisons did yield 

results similar to those for total antibody concentrations (Figure 4.7). As with total antibody 

levels, when comparing T. circumcincta antibody levels in positive faecal samples, T. 

circumcincta IgA levels were significantly greater than T. circumcincta IgG, IgM, and IgE 

(means 0.39, 0.18, 0.20, and 0.18 respectively) (F = 4.00, p = 0.008). Similarly, serum T. 

circumcincta IgG levels were higher than levels of T. circumcincta IgA, IgM, and IgE (6075.2, 

34.3, 9.18, and 2.9 respectively). 

 

Figure 4.7 - Boxplots of T. circumcincta specific antibody levels (arbitrary units) measured 
across all faecal and serum sample. Y-axis is a log scale. 
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4.3.2.2 Lactoferrin concentrations 

Cattle faecal samples yielded significantly higher concentrations of lactoferrin than sheep and 

deer (means of 0.26, 0.040, 0.036µg ml-1 respectively). A one-way ANOVA found statistically 

significant differences in faecal lactoferrin concentrations between species (F = 58.25, p < 

0.0005) and a post-hoc Tukey test confirmed that cattle samples varied significantly from 

sheep and deer, which themselves were not significantly different from each other. Such 

results are visible in the distribution of data for each species (Figure 4.8). As a result, 

Hypothesis 6 was accepted. 

 

Figure 4.8 - Kite graph showing the distribution of faecal lactoferrin concentrations (µg ml-1) 
of faecal samples from cattle, sheep, and deer. Note: X-axis is different for each data set. 
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A Grubbs’ outlier test found one outlier, within the sheep serum data set, of a recorded 

lactoferrin concentration 0.659 µg ml-1. This was removed for all statistical analyses and 

graphing. As only one deer blood sample was available it was not included in the analysis; the 

sample had a lactoferrin concentration of 0.097 µg ml-1. A 2-sample t-test showed no 

statistically significant difference between the lactoferrin concentrations derived from cattle 

or sheep (means: 0.008 and 0.006 µg ml-1 respectively) blood serum/plasma (t = 1.64, p = 

0.146; Figure 4.9).  

 

Figure 4.9 - Kite graph showing the distribution of serum and plasma lactoferrin 
concentrations (µg ml-1) of faeces taken from cattle and sheep. 

No statistically significant correlation was found between faecal and serum lactoferrin 

concentrations taken from the same individuals on the same day (0.069, p = 0.767). 
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4.3.3 Faecal egg counts 

On Farm #1 29.2% of animals had GIN eggs in their faeces, of these animals the mean epg was 

17 (s.e. 7.7).  

On Farm #2 16.7% of animals were positive, with a mean epg of 139 (s.e. 82.6), however, with 

the removal of one outlier, with 450 epg, this fell to an average epg of 61 (s.e. 36.1).  

Farm #3 had 26.7% of animals recorded as positive, of which the mean epg was 9 (s.e. 1.8). 

Whilst differences in faecal egg count levels were observed between sample farms (Figure 

4.10), the low number of positive samples made the FEC data inappropriate for further 

statistical analysis. 

 

Figure 4.10 - Faecal egg count results from the three farms samples. Results are shown for 
the positive animals only and extrapolated to also give a whole farm average. Error bars 
represent standard error. 
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4.3.4 Correlations 

4.3.4.1 Immunomarker correlations 

The majority of immunomarker pairings correlated significantly (Table 4.1), however, T. 

circumcincta IgE and lactoferrin were notable exceptions to this. T. circumcincta IgE only 

correlated significantly with T. circumcincta IgM and lactoferrin did not correlate with any 

other immunomarkers analysed. 

Table 4.1 – Pearson’s correlation results of antibody and lactoferrin levels/concentrations 
from faecal samples only.  “Lfn” = lactoferrin. Top and right side: Pearson’s correlation 
coefficient for each pairing. Bottom and left side: p –value for each pairing. Cells highlighted 
in green are statistically significant at a p-value, with a Bonferroni correction, of 0.00179. 

  

Total T. circumcincta 

Lfn 

  

IgA IgG IgM IgA IgG IgM IgE 

To
ta

l 

IgA 

         correl. 
 

p-value 

0.562 0.700 0.300 0.651 0.514 -0.050 
0.031 

IgG 
0.000  0.453 0.161 0.345 0.248 -0.203 

0.095 

IgM 
0.000 0.000  0.485 0.640 0.530 -0.180 

-0.034 

T.
 c

ir
cu

m
ci

n
ct

a
 

IgA 
0.001 0.085 0.000  0.781 0.622 0.079 

0.021 

IgG 
0.000 0.000 0.000 0.000  0.654 0.011 

-0.023 

IgM 
0.000 0.007 0.000 0.000 0.000  0.364 

0.075 

IgE 
0.593 0.028 0.053 0.402 0.905 0.000  

-0.064 

Lfn 
0.744 0.312 0.715 0.826 0.805 0.429 0.498 
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Only one antibody pairing correlated significantly within the serum samples, total IgM vs. T. 

circumcincta IgM. Prior to the Bonferroni adjustment, which reduced the significance level 

from 0.05 to 0.00179, nine pairings correlated significantly. 

Table 4.2 - Pearson’s correlation results of antibody and lactoferrin levels/concentrations from 
serum samples only.  “Lfn” = lactoferrin. Top and right side: Pearson’s correlation coefficient 
for each pairing. Bottom and left side: p –value for each pairing. Cells highlighted in green are 
statistically significant at a p-value, with a Bonferroni correction, of 0.00179. 

  

Total T. circumcincta 

Lfn 

  

IgA IgG IgM IgA IgG IgM IgE 

To
ta

l 

IgA 

         correl. 
 

p-value 

0.487 0.418 0.161 -0.138 0.103 0.359 0.011 

IgG 
0.021  0.500 0.530 0.352 0.324 0.332 0.042 

IgM 
0.053 0.018  0.439 0.268 0.669 0.445 -0.267 

T.
 c

ir
cu

m
ci

n
ct

a
 

IgA 
0.473 0.011 0.041  0.235 0.370 0.155 -0.276 

IgG 
0.541 0.108 0.227 0.291  0.545 -0.110 -0.005 

IgM 
0.650 0.141 0.001 0.090 0.009  0.014 -0.452 

IgE 
0.101 0.131 0.038 0.490 0.625 0.952  0.053 

Lfn 
0.963 0.854 0.229 0.213 0.982 0.035 0.816 

 

 

The results of the different correlation analysis, comparing antibody and lactoferrin 

concentrations, led to the partial acceptance of Hypothesis 4. 
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4.3.4.2 Faecal and serum correlations 

Results of a Pearson’s correlations, for the comparison of faecal antibody and lactoferrin 

levels to those in serum, did not yield any statistically significant results. Consequently, 

Hypothesis 5 was accepted. 

4.3.5 Dry matter and optical density 

Dry matter content of faeces correlated negatively with lactoferrin concentration (-0.148) 

however this was non-significant (p = 0.161). Optical density of faecal supernatants correlated 

significantly with lactoferrin concentration at 100 µl (0.377, p = 0.004) but not 50 µl (0.135, p 

= 0.135; Figure 4.11). Subsequent regression analysis of lactoferrin concentration as a 

response to OD at 100 µl yielded an R2 of 14.23%. These results support hypothesis 7. 

 

Figure 4.11 - Scatter plot, with an associated trendline, of sample optical density, at 50µl and 
100µl volume, and lactoferrin concentration. Black crosses represent 50µl, with a solid black 
trendline. Blue circles represent 100µl with a dashed blue trendline. 
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4.4 Discussion 

The experiments achieved their primary objective – to detect and quantify antibodies and 

lactoferrin in faecal samples of cattle, using ELISA protocols. This represents a potential 

advancement in the field of veterinary diagnostics and creates an opportunity for the 

development of new diagnostic techniques and products for mainstream adoption in 

veterinary medicine. 

4.4.1 Assay and supernatant validity 

The sigmoidal curves produced by reference serum, at varying concentrations, provided 

evidence that the commercial ELISA products worked effectively and in line with 

manufacturer descriptions and design. This provided a stable foundation from which to test 

Hypothesis 1, that antibodies and lactoferrin can be detected and quantified, via ELISA, in 

bovine faecal supernatant. For all antibody assays, apart from T. circumcincta IgE, ODs of 

faecal supernatants were significantly greater than TBST negative controls. An analogous 

result was obtained for lactoferrin. These results mean that Hypothesis 1 was accepted and 

that faecal supernatants, created as per the outlined protocol, are suitable for the detection 

and quantification of antibodies and lactoferrin, using ELISAs. 

The faecal supernatant ODs observed for T. circumcincta IgA, IgG, and IgM, were all 

significantly above control levels, supporting the acceptance of Hypothesis 3, that ovine anti-

T. circumcincta antibodies can be used for the detection of T. circumcincta specific antibodies, 

by ELISA. This highlights the homology and cross-reactivity of ovine and bovine antibodies, as 

described by Lewin et al. (1985). Given that T. circumcincta is an ovine specific parasite, results 

supportthe suggestion that anti-T. circumcincta antibodies have avidity for other GIN species. 

This has been observed for T. circumcincta antibodies previously (Hayward et al., 2014) and 

for other species (Molina et al., 1999), however typically for parasites derived from the same 

host species. The exact avidity of the T. circumcincta antibodies to different species remains 

unknown. 

The success of the assay protocols means that results derived from them can also be 

considered as valid. T. circumcincta IgE results for faecal supernatant were not significantly 

above background, whilst it may simply be the case that the antibody wasn’t abundant in 

samples, it may also highlight a lower detection limit of the protocol. The higher antibody and 
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lactoferrin concentrations found in serum samples, when compared to faecal samples, 

supports the latter. Whilst there is still significant advancement necessary to fully understand 

what results from these methods can show, it is possible to draw certain conclusions. 

4.4.2 Concentrations 

4.4.2.1 Antibodies 

Concentrations of total faecal IgA were 197x that of IgG and 16x that of IgM. Levels of T. 

circumcincta antibodies had a similar but less variable trend with IgA levels being 2.2x that of 

IgG and IgE and 2.0x that of IgM. These results meant that Hypothesis 2, that IgA is the most 

predominant antibody in bovine faecal samples, was accepted. This is consistent with the 

literature, that IgA is the most abundant antibody in mucosal membranes (Hughes et al., 

1981; Lamm, 1988; Macpherson et al., 2008). This result supports the hypothesis that bovine 

faecal antibody levels are indicative of mucosal membrane antibody levels. Whilst, from 

current research, it is not possible to pinpoint the exact mucosal source of these antibodies, 

given the formation and passage of faeces, it is proposed that results represent 

gastrointestinal mucosal membrane status, which would be concurrent with the literature on 

human faecal antibodies (Baklien and Brandtzaeg, 1975; Bjerke et al., 1986; Crabbé and 

Heremans, 1968; Tomasi, 1970). A possible mechanism for this is that during gut transit, 

organic material may accumulate biomarkers from mucosal membranes up until the point it 

is excreted as faeces. Testing such a hypothesis could be achieved by taking post-mortem 

tissue samples and washes throughout the digestive tract and subjecting them to similar ELISA 

analysis and seeing if antibody profiles correlated with those found in faecal material from 

the same animals. Post-mortem intestinal washes have been utilised in animal model studies 

to recover antibodies and other biomarkers (Negrão-Corrêa et al., 1996),  showing that they 

can be liberated from mucosal membranes. This work could be further supported by the 

specific quantification of secretory IgA (sIgA) in faecal material, which would be highly 

abundant if antibodies were from a mucosal source. The most abundant antibody in serum 

was IgG, this result is concurrent with the literature (Fahey and McKelvey, 1965; Hughes et 

al., 1981). The high IgA levels in faeces, compared high IgG levels in serum, was also observed 

by Watt et al. (2015), providing further reassurance. 
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4.4.2.2 Lactoferrin 

Whilst the research’s primary focus was on cattle, the opportunity was taken to complete the 

lactoferrin assays on samples from sheep and deer. Higher lactoferrin concentrations were 

found in bovine faecal samples (0.26µg ml-1), compared to sheep (0.040µg ml-1) and deer 

(0.036 µg ml-1), and meant that Hypothesis 6 was accepted. These differences were 

potentially driven by host factors such as immunity and disease exposure, however, may be 

indicative of sub-optimal cross-reactivity of non-bovine lactoferrin to bovine lactoferrin 

ELISAs. The observation in the similarity in serum lactoferrin concentrations between cattle 

and sheep, provide support for the argument that the observed differences are, at least in 

part, truly representative. Whilst bovine lactoferrin is not identical to isotypes from other 

ruminants, the molecules are structurally similar when contrasted against different 

interspecies isotypes of other immunological molecules (Shimazaki et al., 1991). The 

unavailability of lactoferrin reference material for non-bovine ruminants means it is not 

currently practical to assess the cross-reactivity of non-bovine lactoferrin to a bovine 

lactoferrin assay. Mass-spectroscopy is an option for addressing this question (Janin-Bussat 

et al., 2010; Zhang et al., 2014, 2009), however, the initial work to do so would be extremely 

costly and risky with respect to the cost and time investment it would require. Despite this 

current uncertainty, the assay can still be used for non-bovine ruminants, so long as results 

are considered relatively and in the context of the individual species.  

The positive skew of lactoferrin concentrations, towards the lower end of their scale, suggests 

a potential baseline or ‘typical’ concentration that is being observed. Results outside of this 

grouping may be considered to have elevated lactoferrin levels, however, if it is not clear as 

to if those levels are due to innate biological differences or due to disease. As with the 

antibody results, it is not possible to determine precisely where the detected lactoferrin 

originated from within the animal, however, this could potentially be achieved through post-

mortem study as described above. Given the antibody results, the role of lactoferrin at 

mucosal membranes, and the use of lactoferrin in human medicine, therefore, a potential 

source of faecal lactoferrin is gastrointestinal mucosal membranes. 

4.4.2.3 Correlations 

The majority of immunomarkers correlated to one-another within faecal samples, but not 

within serum samples. This meant that Hypothesis 4 was not accepted. More importantly, it 
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suggests the possibility that sample composition may be confounding. Individual differences 

in faecal composition may, in vivo, concentrate or dilute faecal samples. This is somewhat 

supported by the correlation found between sample optical density of faecal supernatants at 

100µl with lactoferrin concentration and subsequent rejection of Hypothesis 7, that faecal 

supernatant optical density does not correlate with lactoferrin concentrations. However, 

serum samples also yielded a number of significant correlations, supporting the use of faecal 

supernatant. Immune responses do not happen in isolation and it is therefore not unexpected 

to for antibody levels to rise and fall with one another. 

Hypothesis 5 was that antibody and lactoferrin levels in faecal samples do not correlate to 

those in serum samples. This hypothesis was accepted because of the general lack of 

correlation between immunomarker levels in blood and faeces show that the method is not 

a replacement or proxy for measurements of systemic antibody levels. Instead, results 

support the utility of the assay to derive specific information about animal health that cannot 

easily be obtained otherwise. This information may prove to be of greater use and relevance 

for the assessment of GIN derived, and other, gut damage. As a result faecal immunomarker, 

ELISA methods could best be implemented as part of comprehensive health assessments for 

the purpose of informing TST strategies and selective breeding in situations where GIN and 

other gastrointestinal infections are a primary driver of system loses.  

Only 15% of faecal samples were returned as positive after FEC, providing an inadequate 

amount of positive data to determine with any certainty, if a correlation exists between 

nematode egg counts and faecal antibody levels. The negative correlations observed 

(although non-significant) are concurrent with observations by Watt et al. (2015). The lower 

faecal antibody levels and lack of correlation with FECs may stem from hypobiosis as samples 

were taken during late autumn and early winter (Capitini et al., 1990). A longitudinal study, 

tracking seasonal faecal antibody levels would clarify this. 

4.4.3 Benefits 

The outlined methods are entirely non-invasive, providing an immediate welfare benefit to 

the animal, but also provide practical and financial benefits. It is not necessary to arrange and 

pay for a veterinarian to take blood samples, saving money and allowing for greater flexibility. 

There is therefore also no need to put the animals through a run or crush, reducing stress 

and, therefore, welfare. These benefits also facilitate repeat sampling. In a research context, 

invasive procedures in the UK require Home Office licensing, which can be a lengthy process 
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and may place limitations on sample numbers and other aspects of experimental design. The 

outlined methodologies do not require such licensing and therefore can be conducted more 

liberally and by unqualified individuals such as students and farm staff. Benefits extend 

beyond their use in agriculture, the study and health assessment of animals can be difficult 

for species which are evasive, elusive, or dangerous. In these situations, drawing blood 

samples may not be practical or safe and, therefore, the ability to utilise faecal diagnostic 

tools would be of great value. 

4.4.4 Future development potential 

Molecular diagnostics tools, such as ELISAs and similar technologies, have the potential to be 

significantly advanced for use in veterinary medicine, as has been achieved in human 

medicine. The technology to accomplish this already exists and is routinely utilised in other 

areas of human and veterinary medicine. With adequate resources and demand, this could 

be realistically achieved and rolled out. 

Similar recent advances have seen the development and adoption of salivary antibody tests, 

for the study of GINs in sheep (Shaw et al., 2012). Carla® antibodies bind to Carla® molecules 

found on the surface of all internal parasite larvae of livestock. The Carla® Saliva Test detects 

Carla® antibodies (Harrison et al., 2003) in sheep saliva, however, these antibodies are also 

present in gastrointestinal mucus, meaning that faecal antibody detection may be a suitable 

approach for measuring Carla® antibodies. The primary disadvantage of a salivary test is the 

necessity to restrain and perform an invasive procedure on the animal, however, it highlights 

a progressive adaptation of known techniques and the principles could be applied to faecal 

material. Research and development of the outlined methodologies and associated 

technologies, using advancements on salivary antibody tests as a template, has the potential 

to create a highly practical and informative diagnostic method. 

One of the most common diagnostic methods for the parasitic disease schistosomiasis is a 

circulating cathodic antigen test (CCA), which is based on the principles of ELISA methods. A 

CCA is a simple device, similar to a pregnancy test in both design and function. Antigens in the 

urine of patients are administered to the device, as the urine is absorbed the antigens move 

through the device and are captured on strips of complementary capture antigens, which 

produce colour upon reaction, indicating a positive sample. The success of faecal 
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immunomarker detection in this research highlights the possibility of the development of 

rapid molecular diagnostic tools, such as a CCA, for mainstream adoption in veterinary 

medicine. Such tests could be used for rapid and cheap on-farm diagnostics, which could 

easily be implemented by farm staff. The main scientific hurdle to this is the identification and 

isolation of parasite antigens, the results of which would influence how specific such a test 

could be in identification or GIN species. Once that is achieved the antigens could be produced 

as part of a CCA-style device and used with a faecal dilatant in the place of urine, in order to 

pick up markers of GINs. As with schistosomiasis, the method could be more effective and 

rapid than FEC techniques (Sousa-Figueiredo et al., 2013), whilst simultaneously requiring 

fewer resources and expertise.  

4.5 Conclusion 

This work complements and furthers that of Watt et al. (2015) through the adaptation and 

application of faecal immune marker protocols to cover cattle. Consistent positive results, 

above background levels, combined with the range and distribution of results, support the 

methodology as a valid immunological tool. Results indicated that faecal antibody levels are 

representative of gastrointestinal immunology and therefore the outlined methodology has 

the potential to provide novel and unique information about gastrointestinal health and 

immunology of cattle and other ruminants. 

This advancement represents a promising new tool to assess immunological aspects of 

ruminant gut health in a timely and cost-effective manner. The method is highly ethical as it 

is non-invasive, which harbours the additional benefit of not requiring trained veterinarians 

or licensing. In addition, the method has a high throughput and is applicable to all individuals. 

For more comprehensive interpretation of faecal antibody levels, further work needs to be 

performed to determine the drivers of faecal antibody concentrations, most notably the role 

of pathogens. The successful protocols within this study and by Watt et al. (2015), suggest 

that the methods would be more widely applicable to other mammals, particularly ruminants. 

Further advancements in the detection of faecal immuno-markers could, in the future, 

become part of a comprehensive tool-kit for the assessment of animal health and 

development of disease prevention strategies. 
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5 Chapter 5 

Mob mentality – A case study assessing system metrics of 

mob-grazing farms 
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Summary 

Mob-grazing is a method of rotational grazing management which is characterised by rapidly 

moving cattle through small grazing ‘cells’ at a high stocking density. There are numerous 

reported benefits of mob-grazing and, whilst they are founded on scientific principles, are 

mostly anecdotal. Such benefits include increased pasture productivity, improved soil quality 

and herd health. Despite its increasing implementation, there is very little scientific 

information about mob-grazing or other similar forms of rapid rotational grazing. A season-

long case-study was conducted investigating three UK mob-grazing farms in South West 

England and Scotland to assess metrics of soil quality, forage quality, pasture performance, 

and parasite burdens under different climate scenarios. All results were either neutral or in 

favour of mob-grazing when compared to a control farm. Notably, there was a trend towards 

improved pasture performance and lower parasite burdens on the mob-grazing farms. Results 

indicate that mob-grazing holds the potential to be a useful grazing strategy to effectively 

utilise the underlying biological potential of grazing livestock systems. Specific system aspects 

are discussed and the necessity for further specific research into these are outlined.  
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5.1 Introduction 

Chapters 2 and 3 have explored the impact of various management decisions on the 

environment and local ecosystem, achieved through a combination of computer modelling 

and controlled field studies. This research has highlighted the system-level impact that 

seemingly minor management decisions can have on a wide range of factors such as soil 

quality, biodiversity, and animal health. The control of the use of anthelmintics, along with 

the benefits it can yield, have been outlined and supported through Chapters 1-4. However, 

an effective parasite management strategy must not solely focus on veterinary intervention, 

as is far too often the case, but must also consider ‘natural’ or integrated control methods. 

This can include a range of factors, such as managing cattle in relation to epidemiological 

(often climate-based) forecasts, ensuring hygienic housing, and the movement of cattle on 

farm in relation to parasite life-cycles. Whilst the approaches taken in Chapters 1-4 hold merit, 

to further understand system-level impacts of management it is necessary to scale research 

up one more level and generate case study evidence from independent farms practicing 

relatively novel and unconventional management. 

Mob-grazing (also known as “pulse grazing” and “strip grazing”) is a method of managing 

pasture-fed livestock through rotational grazing. The oldest literary mentions of mob-grazing 

were by Levy (1950, 1949) who, having talked to over 10,000 farmers throughout the 

Commonwealth, suggested that mob-grazing was the best practice for ‘hill country’ farming 

(the farming of deforested hillsides). The passing nature of the mention, with limited 

description, suggests that the method was common knowledge at this point, particularly in 

Levy’s home country of New Zealand. 

The technique has been gradually increasing in popularity over the last few years – 

particularly within the organic sector. Mob-grazing is characterised by the sub-division of 

grazing fields into smaller units, known as ‘cells’, through which livestock graze for short 

periods before being moved to the next cell (Figure 5.1). The result is that cells are grazed 

intensively for very short periods before having a prolonged fallow period. This is somewhat 

analogous to how wild bovines naturally graze and roam, moving continuously on a route, 

never returning back to the same pasture in that season. One of the core principles of mob-

grazing is that the increased rest periods promote herbage growth when compared to 
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conventional grazing systems, allowing plants to complete more of their life-cycle and 

‘harvest’ more sunlight due to an increased leaf area for photosynthesis. This supposedly 

mitigates the lack of external nutrient inputs and also yields a number of indirect benefits.  

 

Figure 5.1 - Diagram of three sequential stages of a mob-grazing rotation. Field 1 represents 
a field undergoing grazing of its first cell. Field 2 represents a field undergoing grazing in its 
second cell, with the first having been grazed. Field 2 represents a field where the third cell is 
being grazed. Source: original. 

Whilst there has been a lot of academic research into rotational grazing in general (Barger et 

al., 1994; Barrett et al., 2001; Briske et al., 2008, 2011; Eysker et al., 1993; Marley et al., 2007; 

Stobbs, 1969; Walton et al., 1981), there is a distinct lack of research specifically into mob-

grazing or variants thereof. This is significant for a number of reasons, firstly, mob-grazing is 

becoming increasingly popular and there is, therefore, a need to understand the economic 

and environmental consequences of this. Secondly, mob-grazing is one of, if not the, most 

extreme example of rotational grazing in terms of the fast rate at which cattle are moved 

between fields. Given the debates surrounding rotational grazing, investigating this extreme 

has the potential to draw impacts and generate a more rounded and comprehensive 

understanding of rotational grazing systems. A range of farmer orientated newspapers, 

magazines, and online articles outline the supposed benefits of mob-grazing. Whilst these are 

by no means academic pieces, they are a valuable resource – agricultural research is most 

effective when considered in respect to the end user and thus views and trends within the 

farming community are equally important as scientific evidence.  
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Although currently in a state of growth (Soil Association, 2017), the organic sector is 

particularly turbulent and highly subject to external drivers, such as economic turmoil. From 

2007 to 2009, the height of the world economic crisis, UK land use for organic farming fell by 

nearly 25% (DEFRA, 2017), as farmers wanted to secure their income sources in fear that 

consumers would no longer be willing to pay the premium that organic produce demands. 

This highlights some of the insecurities that can be associated with organic farming and, 

therefore, any way in which these systems can be more secure would improve a farm’s long 

term sustainability and resilience. As a management technique, mob-grazing may harbour the 

ability to address these concerns and provide farms with added security with regards to their 

economic sustainability through economic cycles. 

5.1.1 Potential advantages 

There are hypothetical potentials for mob-grazing to yield a variety of benefits within grazing 

livestock systems, however, this has not been investigated in a scientific context, and 

therefore the reported benefits of mob-grazing are mostly anecdotal. Some of these 

anecdotal benefits are described and explained below, however, they have not been 

scientifically studied in the context of mob-grazing. Core to the ethos of mob-grazing is the 

enhancement and utilisation of natural biological processes within the farming system and 

the associated benefits of enhancing biological activity. 

5.1.1.1 Parasite epidemiology 

Farmers who use mob-grazing often state that their animals are healthier, citing a reduction 

in veterinary intervention. One claim is that cattle are consuming healthier and more 

nutritious parts of the plants, not being forced to consume indigestible stems (Chapman, 

2012). A farmer from Colorado claimed that mob-grazing had led to his cattle grazing healthier 

plants, nearly eliminating the need for mineral supplementation. Furthermore,  the burden 

of parasitic horn fly (Haematobia irritans) has reduced as the eggs deposited in cattle faeces 

take two weeks to hatch, at which point cattle are “a mile away” and, without a blood meal, 

the flies die (Thomas, 2012). This example highlights how pathogen life-cycles can be ‘broken’, 

as described in Chapter 1 (1.2.1.2), which is particular relevant to the control of  GINs and 

other helminth parasites. Gastrointestinal nematode diseases of cattle are a major cause of 

losses and negatively impact animal health, however, there are reports of mob-grazing 
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mitigating against parasitic diseases (Youngs, 2012). Indeed, there is a scientific basis 

supporting the potential for mob-grazing to mitigate that impact. A typical GIN life-cycle 

requires eggs to be deposited in faeces, onto pasture. After deposition eggs take a number of 

weeks to hatch and moult through larval stages to become infective – this is the point of peak 

pasture infectivity. Conventional grazing systems typically require cattle to graze on the same 

pasture for weeks at a time, meaning that cattle are exposed to pasture with the highest risk 

of infectivity. As mob-grazing systems typically move cattle at least once every few days and 

leave months between returning cattle to the same pasture, cattle miss the point of peak 

infectivity. Therefore, the life-cycle is partially ‘broken’, reducing overall incidence and 

associated losses (Stromberg and Averbeck, 1999). Whilst trematode and cestode lifecycles 

are more complex, they still require similar extended periods for maturation, therefore, the 

benefits could extend beyond the control of GIN parasites, but potentially other species of 

helminths. A number of experiments investigating rotational grazing as a method of parasite 

control have found supporting evidence. Larsson et al. (2006) found that rotational grazing of 

cattle can be almost as effective as regular anthelmintic treatment for parasite control. This 

is supported by Marley et al. (2007), who found that rotationally grazed lambs had lower 

parasite burdens and higher live weights than conventionally reared lambs, and also by Barger 

et al. (1994), who found that rotationally grazed goats had FEC results of less than half that of 

set-stocked goats. However, other experiments have found no significant difference in 

parasite burdens between set-stocked and rotationally grazed animals (Eysker et al., 1993; 

Kunkel and Murphy, 1988). 

5.1.1.2 Pasture productivity 

The primary reported benefit of mob-grazing is an increase in pasture productivity as a result 

of prolonged rest periods and shorter grazing periods. A short grazing period ensures that 

herbage is not grazed down to a low level as conventional systems (cattle typically graze to a 

height of approximately 4-5cm above ground level (Grant et al., 1996; Hoz and Wilman, 1981) 

and,  therefore, leaving significant above ground biomass. The consequence of this is that the 

proportional re-growth required by herbage is diminished in respect to the plant's total 

biomass and photosynthetic area. The Angus Beef Bulletin and associated Angus Journal 

reported on a rancher in Missouri (USA) who made a switch to mob-grazing and subsequently 

reported substantial benefits. Stocking rate increased as cattle were moved twice per day on 
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a 140-180 day rotation. The prior system of management-intensive grazing required a $5000 

annual spend on clover seed and used considerable quantities of hay, both of which were 

eliminated entirely after the shift to mob-grazing. Land productivity increased from 0.22 

animal units per hectare to 0.45, whilst labour requirements decreased (Kidwell, 2010). 

Similarly, a farmer in Canada has claimed that changing to mob-grazing has increased his 

stocking density four-fold (Chapman, 2012). The Angus Beef Bulletin also interviewed an 

“educator in holistic management” in South Africa who described benefits of mob-grazing to 

soil and flora. He claimed that the trampling of herbage protects the soil from erosion and 

sun damage, helping to maintain a more consistent soil environment. He also suggests that 

as mob-grazing typically removes less of the plant material in one go, the plant's ability to 

regrow is increased due to a high remaining surface area for photosynthesis (Thomas, 2013a, 

2013b). Whilst these claims may sound extreme and are not necessarily supported by direct 

scientific evidence, they do highlight mob-grazing’s potential and deserve further 

investigation.  

There is scientific evidence supporting the reasoning that increased plant mass and leaf area 

lead to increases in gross plant growth, however, the relationship is not necessarily linear with 

relative growth rate decreasing over time (Koyama et al., 2009; Weraduwage et al., 2015). 

However, a decrease in relative growth rate does not necessarily mean a decrease in total 

productivity. According to a meta-analysis of rangeland rotational grazing by Briske et al. 

(2008), 87% of studies reported that rotational systems produced more herbage than 

conventional systems and 92% found higher levels of animal production.  

There are also a variety of potential secondary benefits of improving pasture productivity as 

a result of increasing herbage productivity. A high cover of herbage can trap moisture, create 

shade, and act as a habitat for a host of organisms. Moisture is positively associated with soil 

microbial activity (Barros et al., 1995; Cook and Orchard, 2008) which, in turn, is positively 

associated with soil health (Arias et al., 2010). Grazing livestock can have a significant impact 

upon invertebrate species that live on and just above the soil surface, by a negative influence 

on habitat space, shelter, and temperatures (Hutchinson and King, 1980). Maintaining a high 

herbage cover can mitigate these effects and enhance invertebrate populations. Such 

invertebrates play vital roles in the turnover of organic matter and nutrients deposited in 

dung, incorporating them into the soil where they become readily available for a range of 
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biological process (Edwards et al., 1973; Lavelle et al., 2006), including herbage production. 

Increased biodiversity of flora and fauna is something that is widely reported across mob-

grazing farms (Gordon, 2010; Kidwell, 2010). However, Briske et al. (2011) found that 

rotational grazing strategies may not always be ecologically effective, highlighting the benefits 

of informed and contextual management.  

Larger plants require more complex and substantial root systems, this leads to an increase in 

soil organic matter (SOM), which itself enhances soil biological activity (Hamilton and Frank, 

2001; Helal and Sauerbeck, 1986; Rasse et al., 2005); widely regarded as a direct indicator of 

soil quality. Enhanced root structures also improve soil structure (Kell, 2011), providing 

resilience in the event of flooding events and alike. Improved pasture productivity and soil 

quality can reduce the dependency on external inputs such as fertilisers and bought-in silage 

(Maeder et al., 2002). Furthermore, this can yield the potential to prolong grazing seasons by 

ensuring more herbage biomass is available leading into periods of slower growth, allowing 

for larger herds and increased system resilience to adverse events (Helgadóttir et al., 2016). 

Combined, this could improve the environmental and economic sustainability of mob-grazing 

farms. A subsequent effect of the aforementioned benefits is an enhancement of local 

ecology, particularly system biomass and biodiversity (Bengtsson et al., 2005; Stockdale et al., 

2001). Such benefits are commonly observed across organic farming systems, however, mob-

grazing may be able to further enhance these additional benefits.  

5.1.1.3 Dung distribution 

Another key impact of mob-grazing and similar intensive rotational strategies is on the 

distribution of dung and urine. A herd rapidly moving through grazing cells will spatially 

distribute excreta very evenly, meaning that each area of the farm will receive similar 

amounts of excreted nutrients as there will not be the ‘hot-spots’ that are characteristic of 

less intensive systems. This was found by White et al. (2001) who observed that, within 

intensive systems, dung was evenly distributed on pasture and that this necessitated less 

expenditure on manure management. Whilst the exact impact of this is unknown, it is likely 

to be significant, given the importance of dung in the recycling of nutrients and pasture 

productivity. Williams and Haynes (1995) found that soil nitrate, phosphate, and organic 

carbon levels were higher where dung was deposited, even a year later. Similarly, Aarons et 

al. (2009) found that dung deposition increased soil levels of phosphorous, nitrogen, and 



149 

 

microbial biomass carbon in the immediate area around and under the dung. The even 

distribution of these impacts across a farm would likely produce a net benefit by improving 

the utilisation of these nutrients and reduced losses into the wider environment. 

5.1.2 Potential disadvantages 

The reported disadvantages to mob-grazing are predominantly based around practicality and 

have received little attention anecdotally or scientifically. One of the major current 

disadvantages of the technique is the lack of scientific evidence available, meaning that there 

is a significant risk involved if farms wish to change their management technique to mob-

grazing. 

5.1.2.1 Labour and resources 

The regularity of livestock movement can require significant hands-on management. The 

predominant downside of this is the time it takes, however, it also reduces the flexibility that 

a farmer may have with their time. This issue is can be partially addresses by the use of ‘smart’ 

fencing systems. Automated gates are becoming more common, these are typically spring 

loaded gates which are manually closed but unlatch on a timer, and as a result they do not 

require electricity. More sophisticated gates are available that can open and close through 

remote control, but they are more costly and require a power source. Another system than 

could be utilised are ‘virtual fences’ which require no physical barriers, but instead each 

animal is fitted with a GPS-enabled collar which provides a negative stimulus to the animal if 

it begins to stray outside of an area digitally mapped by the farmer. 

A second infrastructure related issue is the need for cattle to be able to access water. The 

small size of cells mean that the total number of grazing areas on mob-grazing farms is high. 

Therefore, having a water supply in each cell is not practical. One solution for this is by 

installing ram pumps, which do not have motors and utilise flowing water or gravity to provide 

energy for the distribution of water. It is also possible to manage the locations of cells and 

troughs so that one trough can be utilised by numerous cells or to use a portable trough 

system mounted on a trailer (Figure 5.2). 
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Figure 5.2 - Organisation of grazing cells and troughs so that multiple cells have access to one 
trough. Field 1 and 2 represent the same field on consecutive livestock movements. 

5.1.2.2 Cattle health and welfare 

Whilst the rotational nature of mob-grazing may hold benefits for parasite control, the 

distribution of dung within sub-systems could have a negative impact on disease in general. 

The high stocking densities mean that dung is distributed relatively evenly across a small area 

with a large number of cattle. This means that cattle are more likely to come into contact with 

dung and that their movement may be impeded by the proximity of other cattle. Both of these 

factors may reduce the ability for animals to practice their natural grazing selection 

behaviour, which often includes the avoidance of forage adjacent to dung patches (Bao et al., 

1998; Forbes and Hodgson, 1985). In addition to helminths, a range of other livestock 

pathogens can be transmitted through dung, most notably Mycobacterium bovis, the 

causative bacteria of tuberculosis (TB) (Duffield and Young, 1985; Phillips et al., 2003), which 

is a devastating disease to UK and worldwide livestock production. However, a primary 

mechanism for reducing the TB infection potential of cattle dung is through the degradation 

of dung by invertebrates (Phillips et al., 2003). Chapters 1-3 outline evidence surrounding the 

impact of livestock management, such as the use of anthelmintics and pasture management, 

on invertebrate activity and dung degradation. Consequently, an organic, holistic, mob-

grazing system could produce dung that degrades quicker than conventional systems, 

therefore, shortening the time that M. bovis and other pathogen contaminated dung is of risk 

to cattle. 
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The relatively high stocking densities of mob-grazing cells may act as a stressor to individuals 

by limiting their behaviour. Within herds, certain individuals will exert social dominance over 

others through using physical force to control space, instilling fear and stress (Beilharz and 

Zeeb, 1982; Friend and Polan, 1978; Schein and Fohrman, 1955; Wierenga, 1990). The impact 

of this on the sub-ordinate individual is two-fold. The impact of stress has the potential to 

reduce individual health and performance, whilst they may also have restricted access to 

better resources (forage, water, etc.) due to the dominance of others (Grant and Albright, 

2001; Phillips and Rind, 2002). However, the majority of this research has been conducted on 

housed dairy cattle and, therefore, is not necessarily applicable to mob-grazing or other 

grazing systems. 

5.1.3 Research objectives 

This research aims to take a broad look at mob-grazing within the UK through case-study 

research of practicing mob-grazing farms. The objective is to generate a baseline assessment 

of these farms with respected to the primary reported and potential benefits of intensive 

rotational grazing. Results will go towards determining if mob-grazing systems may have a 

practical potential for wider use and if there is a necessity for further research into such 

systems. 

Hypothesis 1 – Cattle from mob-grazing farms have a lower parasite burden than those from 

a conventional control farm. 

Hypothesis 2 – Fields of mob-grazing farms have a greater mass of dry matter herbage (per 

area) than a control conventional farm. 

Hypothesis 3 – The nutritional composition of forage from mob-grazing farms will differ from 

that of the control farm. 

Hypothesis 4 – Soils from mob-grazing farms have more organic matter than soils from a 

control conventional farm. 
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5.2 Methods 

5.2.1 Case study farms 

Three mob-grazing farms were chosen to be part of the case study, along with one 

conventionally managemed farm. Each farm was visited multiple times for the collection of 

forage, soil, and dung samples. 

5.2.1.1 Farm A 

Farm A was an organic beef farm (Soil Association certified) in Cornwall, UK. The farm had 

two herds of beef cattle. The herd which was observed comprised of 36 cows and 18 calves, 

predominantly Aberdeen Angus crosses, with three Belgian Blue/Holstein crosses and three 

Herefords. The other herd grazed the same land, but were never adjacent to the study herd, 

and comprised of 32 months old, and 12 months old, Aberdeen Angus. Pasture is a species-

rich ley comprising of chicory, rushes, sweet vernal, Yorkshire fog, crested dog’s-tail, marsh 

foxtail, dock, thistles, various wildflowers, and more. The ley had been in place for more than 

five years. The rotational system comprised movement of cattle once daily through half acre 

cells on a 70-day cycle. This was a refinement on the previous year in which a 120 day cycle 

was practiced. Cattle were typically on pasture from March until mid-November and housed 

the rest of the time. Calving primarily occurs in spring, with some later calving in June. Calves 

are weaned at nine months, which typically falls over December or January. 

The farm practices minimal intervention. The only supplement is rock salt which is readily 

available to the cattle. There is no medicinal prophylaxis or vaccination in use and medicines 

are only used when infirmary is observed (anecdotally or formally). However, medicinally 

induced ovulation is practiced. Since beginning mob-grazing, the only notable disease 

incidence was the death of one individual from an unidentified viral infection. Sampling took 

place on 16/06/16, 14/07/16, 22/08/16, 12/09/16, and 07/10/16. 

5.2.1.2 Farm B 

This farm is in Hertfordshire, UK, and is an organic beef farm (Soil Association certified). The 

herd is comprised of approximately 220 cattle, 120 of which were calves. The overwhelming 

majority of the cattle were of the Sussex breed. The sward is predominantly perennial rye-

grass, however, has timothy-grass, meadow foxtail, bentgrass, and other species, mixed in. 

This lay has been present for more than five years. Cattle are typically moved daily, however, 
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this rotation was slowed to approximately one week when bulls were introduced into the 

herd for mating towards the end of summer. It typically takes around 60 days for cattle to 

return to pasture which they had previously grazed. 

The farm practices minimal intervention, in line with Soil Association guidelines and uses no 

fertilisers or supplements. Calving occurs in spring with weaning in November/December, 

which is when the animals are housed until May. A vet visits at the beginning of each year to 

take blood samples for health monitoring purposes. Cattle are also vaccinated against Bovine 

Viral Diarrhoea and receive anthelmintic treatment in the autumn. There had been no notable 

diseases or animal health incidences during the past five years. The farm was sampled on 

06/06/16, 28/06/16, 21/07/16, 11/08/16, 31/08/16, and 24/09/16. 

5.2.1.3 Farm C 

An organic beef and lamb farm (Soil Association certified) in Angus, UK. The cattle were 

Aberdeen Angus crossed with Hereford and Galloway bulls. The rotation system sees cattle 

moved one to three times per day, typically three, on a 90-day rotation cycle. The farm's 

sheep graze the same land as the cattle, but not at the same time. The ley is a predominantly 

ryegrass, with the addition of clover and cocksfoot, however, a number of other naturally 

occurring species are present including thistles and docks.  

Minimal intervention is practiced, with no veterinary medicines having been administered 

during the lifetime of the animals within the study. Additionally, cattle are not housed for any 

part of the year and calves are allowed to wean naturally. Calving typically occurs during late 

spring. The farm was sampled on 04/07/16, 18/08/16, 04/10/16 and 07/12/16. 

5.2.1.4 Farm X 

Farm X is an intensively managed beef and lamb farm in Devon, UK, and is Rothamsted 

Research’s North Wyke Farm Platform. Sampling covered three herds of cattle, although 

results were pooled as one dataset. Each of the three herds graze in independent systems 

which differ in pasture, but are otherwise alike (Hatch et al., 2011; Orr et al., 2016), as outlined 

in Chapter 3. The farm was sampled on 18/07/16, 19/08/16, 21/09/16, and 10/11/16. 
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5.2.2 Sample collection and analysis 

5.2.2.1 Faecal egg counts  

On each farm visit ten fresh faecal samples were taken from each herd. Samples were 

obtained by monitoring cattle until they defecated, at which point samples were immediately 

collected using a clean plastic spoon, with care taken not to inadvertently incorporate any 

foreign material into the sample. Samples were stored in screw-top plastic containers in a 

refrigerated cool box, before being stored at 4°C until being sampled (within 48hrs). No 

animal was sampled twice during the same visit. Faecal egg counts (FECs) were completed in 

triplicate, using mini-FLOTAC and fill-FLOTAC devices, in accordance with manufacturer’s 

methods. A 1.34g ml-1 flotation solution of zinc sulphate and deionised water (1:1) was 

created. 45ml of flotation solution was then mixed with 5.0g of faeces, in the fill-FLOTAC 

device. This mixture was then transferred to the two wells of the mini-FLOTAC and rested for 

ten minutes. The top of the mini-FLOTAC device was then rotated 90°, skimming off any eggs 

that floated to the top. Gastrointestinal nematode eggs were then identified and counted 

under a microscope. Total counted GIN eggs across both wells of the mini-FLOTAC plate were 

multiplied by 5x to determine epg. Mean FECs across each farm’s herd were compared using 

a Kruskal-Wallis test. This was followed by another Kruskal-Wallis test to determine 

differences in the burdens of infected animals only. These tests were used to test Hypothesis 

1. Egg counts were considered as ‘high’ if they were above a treatment threshold of 150epg 

(Soil Association, 2015). 

5.2.2.2 Pasture performance 

Herbage samples were taken from six fields on each farm visit, providing three replicates of 

two field types. Three of the fields sampled were those that cattle were to be moved on to 

for grazing within the next three days, these fields were named as ‘return’ fields. The other 

three fields were called ‘recent’ and were fields that cattle had been grazing within the last 

three days but had been moved on from. In each field, four herbage samples were taken, 

sample locations were chosen using a controlled random strategy. Each field was split into 

quadrants using a laser rangefinder (Shotsaver SLR500) and a random number generator. The 

length and width of the field were measured and quadrants divided by bisecting lines halfway 

along each of the measured dimensions. Knowing the size of each quadrant, a random 

number generator was used to pick X and Y coordinates at which samples were taken. In the 
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event that coordinates were within five metres of a field boundary or object of significance 

(such as a tree or trough), a new coordinate would be chosen using the same process. At each 

sampling location, a 40x40cm quadrat was placed and all herbage above 4 cm removed using 

horse shears. Collected herbage was placed in a plastic bag, labelled, zip tied, and refrigerated 

at 4°C. Within one week, samples were oven dried at 65°C until a constant weight. Mean 

values were taken for each field status (return or recent) of each farm. Total forage dry matter 

(above 4 cm) of each field status were compared across the study farms using a Kruskal-Wallis 

test and post-hoc Mann-Whitney U tests. These tests were used to test Hypothesis 1.  

5.2.3 Pasture composition 

Intra-field replicates of dried herbage samples (as per 5.2.2.2) were composited, providing 

one sample for each of the six fields sampled on each visit. The composite samples were then 

ground to < 2mm using a herbage grinder (Retsch SM 300). The composition of herbage 

samples was analysed by near-infrared spectroscopy (NIRS) using a FOSS NIRS DS2500. Crude 

protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), and ash were 

quantified as a proportion of sample dry matter (g kg-1). From those results, it was possible to 

calculate organic matter concentration as the remainder after the removal ash. Limitations of 

the equipment meant that directly measuring non-fibre carbohydrates (NFC) and crude lipids 

(CL) was not possible, however a combined concentration for them both could be calculated 

(Equation 5.1). 

𝑁𝐹𝐶 + 𝐶𝐿 (𝑔 𝑘𝑔−1) = 1000 − 𝑁𝐷𝐹 − 𝐶𝑃 − 𝑎𝑠ℎ 

Equation 5.1 - Calculation of non-fibre carbohydrates (NFC) and crude lipid (CL) concentration. 

Results from NIRS were compared in two different manners. The first was a direct comparison 

of nutritional components between farms, from each farm’s pooled data set. This was 

conducted by comparing each nutritional component, between farms, using one-way 

ANOVAs with post-hoc Tukey tests. A second analysis was conducted for each mob-grazing 

farm (Farms A-C), to compare if the nutritional value of herbage varied between forage on 

‘return’ and ‘recent’ fields. Initially, results from the three farms were pooled into two groups, 

a ‘return’ group and a ‘recent’ group. These were compared using a two-sample t-test. If 

different trends were observed between the farms (for example, one farm saw an increase 
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whilst others a decrease), then further individual t-tests were conducted to investigate these 

more specifically. These results went towards assessing Hypothesis 3. 

5.2.3.1 Soil organic matter 

On the final field visit to each farm, soil samples were taken to determine SOM content (% of 

DM). Four samples were taken from each field, one from each quadrant. Herbage was 

removed from above the soil using horse shears. Soil cores were then taken to a depth of 

8.5cm and stored in sealed plastic bags. Samples were refrigerated during transport (< 24 hr) 

and then frozen and -20°C until analysis. Soil samples were then oven dried at 65°C to a 

constant weight (typically 3-5 days), after which stones were removed and samples were 

ground to a fine power <1mm. Organic matter content (as a percentage of dry matter) was 

then determined by loss on ignition. Clean porcelain crucibles were furnaced at 450°C for > 3 

hr and then cooled in a desiccator. Crucibles were then weighed and 1.0g of dried and ground 

soil sample was then added, before being placed in a furnace at 360°C for > 6 hr (Salehi et al., 

2011). Soil organic matter (% of DM) was calculated as the loss in weight of the crucible and 

sample, as a proportion of the original 1.0 g sample weight. Soil organic matter content was 

plotted against FAO definitions for reference (Table 5.1) (Fraters et al., 1993). Soil organic 

matter contents of each farm were compared using a one-way ANOVA, with a post-hoc Tukey 

test to identify any differences found. These tests were used to assess Hypothesis 4. 

Table 5.1 - Classification of topsoil organic matter content (Fraters et al., 1993). 

Topsoil OM (% DM) Classification 

1 Very low 

2 Low 

3 Low/moderate 

4 Moderate 

5 Moderate/high 

8 High 

10 High/very high 

14 Very high 

30 Organic soils 
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5.3 Results 

5.3.1 Faecal egg counts (GIN) 

Faecal egg count results (epg) varied between farms, however, mean values for all farms were 

below the treatment threshold of 150 epg. 

Mob-grazing farms (A-C) tended to have lower GIN burdens than the control farm (X) but this 

was not significant, likely because of the large variation on the control farm (X). Mean FEC 

epgs  of GIN eggs for the entire herds, across the sampling seasons, were lower on farms A-C 

(1.75, 0.67, and 1.25) than on farm X (2.82; Figure 5.3). Despite the scale of difference (131% 

when comparing the mean of means of A-C to X), there was no statistically significant 

difference between farms, as determined by a Kruskal-Wallis test (H = 6.45, p = 0.092). 

 

Figure 5.3 - Interval plot of faecal egg count (FEC) results, as GIN eggs per gram (epg). Results 
represent the entire herd data for each farm. Intervals are standard deviation. 
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The prevalence of infection varied between farms and was highest on farm A, with 25.0% of 

faecal samples testing positive for GIN eggs, compared to 8.3%, 13.3%, and 19.3% on farms 

B, C, and X, respectively. Despite the higher prevalence on farm A, infected animals had the 

lowest FEC results compared to the other farms. When examining the egg counts only of 

animals with positive faecal samples (Figure 5.4), this trend persisted (7.00, 8.00, 9.38, and 

14.64), however, was still non-significant (H = 3.44, p = 0.328). 

 

Figure 5.4 - Interval plot of faecal egg count (FEC) results, as GIN eggs per gram (epg). Results 
represent data for infected individuals only, for each farm. Intervals are standard deviations. 
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5.3.2 Pasture performance 

Fields on farms A-C had higher total masses of dry matter than on farm X, both prior to being 

grazed and after being grazed (Figure 5.5). A Kruskal-Wallis test found that dry matter (kg ha-

1) levels of fields which were about to be grazed were significantly different (H = 74.92, p < 

0.0005). Post-hoc Mann-Whitney tests found that ‘return’ fields on farms A-C had significantly 

greater forage dry matter than farm X (W = 2351, p = 0.0077, W = 2525, p < 0.0005, W = 1094, 

p < 0.0005, respectively). The same trend was present for fields which had recently been 

grazed, with a Kruskal-Wallis test finding a significant difference between farms (H = 19.00, p 

< 0.0005). Similarly, post-hoc Mann-Whitney tests found that recently grazed fields on farms 

B and C had significantly greater forage dry matter than on farm X (W = 3259, p = 0.0056, W 

= 1002,  p = 0.0022, respectively). Whilst farm A had a greater mean (9397 vs. 7880) and 

median (8922 vs. 7813) than farm X, no significant difference was identified by the Mann-

Whitney test (W = 2257, p = 0.1575). 

 

Figure 5.5 - Forage dry matter mass (kg per hectare) for the four farms. “Return” refers to 
fields which are at the end of a fallow period, between grazing. “Recent” refers to fields which 
cattle were grazing, but have come off, within the last three days. Asterisks represent means. 
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5.3.3 Forage nutrition 

5.3.3.1 Direct farm comparisons 

ANOVA and Tukey test results found statistically significant differences, between farms, for 

every nutritional component analysed.  

Organic matter concentrations were relatively similar between farms (Figure 5.6), but Farm B 

having a significantly higher concentration than Farms A, C, and X (F = 8.92, p < 0.0005). 

Despite not being significantly different, Farm X had the lowest mean of 905.6 g kg-1, 

compared to Farms A and C, which had similar concentrations of 927.7 and 928.7 g kg-1 

respectively. 

 

Figure 5.6 - Boxplots showing the distribution of organic matter (OM) content (g kg-1) of 
forages recovered from each farm. Boxplots that do not share one or more similar number 
above them are significantly different. Asterisks represent mean values. 
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Ash concentrations are calculated as the inverse to organic matter concentrations and thus 

showed inverse trends (Figure 5.7) with Farm B have significantly lower ash concentrations 

than the other farms (F  = 8.92, p < 0.0005). As with OM results, there is notable overlap 

between farms both, between quartiles 1 and 3 (box) and the data range (whiskers). 

 

Figure 5.7 - Boxplots showing the distribution of ash content (g kg-1) of forages recovered from 
each farm. Boxplots that do not share one or more similar number above them are 
significantly different. Asterisks represent mean values. 
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Neutral detergent fibre concentrations varied significantly between farms (Figure 5.8; F = 

12.11, p < 0.0005) with Farm B having the highest mean concentration (627.2 g kg-1), Farms A 

and C lying in the middle with similar concentrations (570.2 and 567.7 g kg-1, respectively), 

and with Farm X having the lowest mean (477.0 g kg-1). Notably, Farm A had a very high spread 

of results with a standard deviation of 74.3, compared to 56.4, 45.4, and 28.6, as observed in 

farms B, C, and X respectively. This spread also included both the highest and lowest values 

of all data sets. 

 

Figure 5.8 - Boxplots showing the distribution of neutral detergent fibre (NDF) content (g kg-1) 
of forages recovered from each farm. Boxplots that do not share one or more similar number 
above them are significantly different. Asterisks represent mean values. 
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Acid detergent fibre, a component of NDF also varied significantly between farms (Figure 5.9) 

(F = 48.13, p < 0.0005) with a clear grouping visible for Farms A, B, and C with average values 

around 375 to 400 g kg-1 and the range boxes considerably overlapping. This is in contrast to 

Farm X where ADF concentrations were significantly lower than on Farms A to C, averaging at 

approximately 250 g kg-1 and with the greatest variety of all samples, but one which is 

relatively evenly spread as represented by the large range box and small whiskers. 

 

Figure 5.9 - Boxplots showing the distribution of acid detergent fibre (ADF) content (g kg-1) of 
forages recovered from each farm. Boxplots that do not share one or more similar number 
above them are significantly different. Asterisks represent mean values. 
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Crude protein concentrations of forage from the different farms yielded the most complex of 

the nutritional results (Figure 5.10) with three levels of statistical difference (F = 7.50, p < 

0.0005). Concentrations varied greatly from examples of less than 30 g kg-1 on Farm B to over 

250 g kg-1 on Farm A.  This pattern was similar to that observed for organic matter content 

(and thus inverse to that observed for ash). 

 

Figure 5.10 - Boxplots showing the distribution of protein (CP) content (g kg-1) of forages 
recovered from each farm. Boxplots that do not share one or more similar number above them 
are significantly different. Asterisks represent mean values. 
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Combined concentrations of NFC and CL were significantly different between farms (Figure 

5.11) (F = 4.80, p = 0.005). Whilst farms A and X were significantly different to one another, 

Farms B and C were both not significantly different to any of the other farms. Despite the 

seemingly minor differences seen here, compared to the other nutritional components 

analysed, mean concentrations from Farm X (275.4 g kg-1) were 39.4% greater than the mean 

of Farm A (197.6 g kg-1). 

 

Figure 5.11 - Boxplots showing the distribution of combined non-fibre carbohydrate (NFC) and 
crude lipid (CL) content (g kg-1) of forages recovered from each farm. Boxplots that do not 
share one or more similar number above them are significantly different. Asterisks represent 
mean values. 
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5.3.3.2 Field status comparison 

Comparisons of forage from fields which cattle were returning to, with those which had been 

recently grazed, found significant differences in a number of components. 

Forage organic matter (Figure 5.12) concentrations did not significantly differ between 

‘return’ and ‘recent’ fields (t = 0.03, p = 0.979). Farm A saw a relatively minor decrease in OM 

between ‘return’ and ‘recent’ fields, from 930.6 to 924.8 g kg-1, whilst Farm B saw a larger 

decrease (959.3 to 945.3 g kg-1) and Farm C saw an increase (922.9 to 939.3 g kg-1), the largest 

observed difference.  

 

Figure 5.12 - Differences in organic matter (OM) concentration (g kg-1) between ‘return’ and 
‘recent’ fields on mob-grazing farms (Farms A-C). Asterisks represent mean. 

 

 

 

 

 

CBA

RecentReturnRecentReturnRecentReturn

980

960

940

920

900

880

O
rg

a
n

ic
 m

a
tt

e
r 

(g
 k

g
-1

)

     Farm

Field status



167 

 

No significant difference was found between forage NDF concentrations on fields that cattle 

were returning to (Figure 5.13), compared to fields that cattle had recently grazed (t = 1.08, 

p = 0.287). Whilst both field types yielded relatively similar concentrations for Farms A and B, 

this was not the case for Farm C, where ‘return’ fields had mean NDF concentrations 540.5 g 

kg-1 compared to 616.4 g kg-1 on recently grazed fields. When analysing Farm C alone, the 

difference was significant (t = 5.50, p < 0.0005). 

 

Figure 5.13 - Differences in neutral detergent fibre (NDF) concentration (g kg-1) between 
‘return’ and ‘recent’ fields on mob-grazing farms (Farms A-C). Asterisks represent mean. 
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Whilst NDF concentrations were not significantly different between field types, ADF 

concentrations were (Figure 5.14; t = 2.87, p = 0.007). However, whilst increases in the 

proportion of forage ADF after grazing were seen on all farms, this was minor for Farm A, and 

moderate for Farm B. Farm C showed a far greater increase, from a mean of 373.2 to 437.8 g 

kg-1. When looking at farms in isolation, the significant difference remains for Farm C (t = 5.08, 

p = 0.004), but is not present for Farms A and B (respectively: t = 0.18, p = 0.857, t = 1.40, p = 

0.198). 

 

Figure 5.14 - Differences in acid detergent fibre (ADF) concentration (g kg-1) between ‘return’ 
and ‘recent’ fields on mob-grazing farms (Farms A-C). Asterisks represent mean. 
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Crude protein concentrations varied significantly between field types (Figure 5.15; t = 1.96, p 

= 0.029). Differences, between field types, were statistically significant for Farm B (t = 2.80, p 

= 0.021) but not for Farm A (t = 1.36, p = 0.098) (although close) and Farm C (t = 0.10, p = 

0.920). In all instances the proportion of CP in forage was lower in pastures that had recently 

been grazed, in comparison to those which had just finished a fallow period. 

 

Figure 5.15 - Differences in crude protein (CP) concentration (g kg-1) between ‘return’ and 
‘recent’ fields on mob-grazing farms (Farms A-C). Asterisks represent mean. 
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Statistically significant differences were found, between field types, for combined 

concentrations of non-fibre carbohydrates and lipids (t = 3.19, p = 0.003; Figure 5.16). Across 

the three farms, concentrations of combined carbohydrates and lipids were greater in fields 

where cattle were returning to, compared to those recently grazed. 

 

Figure 5.16 - Differences in combined carbohydrate and lipid concentration (g kg-1) between 
‘return’ and ‘recent’ fields on mob-grazing farms (Farms A-C). Asterisks represent mean. 
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5.3.4 Soil organic matter 

A Grubb’s outlier test found one outlying result (p = 0.004) across all farms, taken from Farm 

C, with a recorded organic matter content of 33.4%. This outlier was removed prior to 

analysis. Soil organic matter, for all farms, was classified as high/very high (Figure 5.17). The 

highest being found on Farm A, with a mean of 13.4%, followed by C, X, and B (11.5, 10.2, and 

10.0%, respectively). The variation was particularly high in Farm C, with a difference between 

Q1 and Q3 of 5.8 percentage points and total range of 21.1 percentage points. A one-way 

ANOVA found statistically significant differences between soil organic matter content across 

the four farms (F = 13.55, p < 0.0005). A post-hoc Tukey test identified those differences 

(Figure 5.17) showing that levels on Farm A were significantly higher than on all other farms 

and that those on Farm C were significantly higher than on Farm X.  

 

Figure 5.17 - Boxplots of soil organic matter (as a percentage of soil dry matter) across the 
four farm sites. Asterisks represent sample mean. Numbers above boxplots represent 
statistical groupings, as defined by a Tukey test. Groups sharing the same number are not 
significantly different. Reference lines on soil organic matter classification are providing in line 
with FAO definitions (Fraters et al., 1993). 
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5.4 Discussion 

The conceptual justification for mob-grazing and its benefits are founded on basic scientific 

principles. However, there is very little applied research to support this. The evidence found 

throughout this experiment is, in all instances, either supportive or neutral to those 

justifications.  

5.4.1 Faecal egg counts 

Faecal egg count results found parasite burdens to be lower on mob-grazing farms than on 

the control. It is also notable that Farm X had high variability in results. Within agricultural 

systems, variation and inconsistencies can be problematic and mean that developing an 

effective parasite control strategy is more difficult. These results go some way to supporting 

the hypothesis that the rotational nature of mob-grazing can be used as a method of GIN 

control.  The grazing rotations implemented on Farms A-C, with cattle being moved every 

three days or less, mean that GIN eggs deposited in faeces will become infective after cattle 

have moved to new pasture. The length of the rotation cycles (60-90 days) mean that cattle 

are also not on the pasture during times of peak infectivity (typically 1-3 weeks). Between 

that time and the time cattle return to pasture, the infectivity of the pasture will have 

continually decreased as GINs die or are removed. This potential ‘breaking’ of the GIN life-

cycle may be part of the reason why such low egg counts were observed. 

Although not measured, the apparent high biodiversity of Farms A-C, facilitated by the lack of 

anthelmintics, sward diversity, and soil quality may also have contributed to the low egg 

counts. Organisms, such as soil invertebrates, fungi, bacteria, and predatory nematodes, are 

known to act as biological controls for GINs (Bryan, 1976; Fincher, 1973, 1975; Larsen et al., 

1994; Larsen, 2000; Waller, 2006; Waller and Faedo, 1996; Waller and Larsen, 1993).  If this 

is the case, the system may be self-perpetuating as a reduction in GINs, due to these biological 

process, which lessens the need for anthelmintics by reducing the risk of outbreaks. 

Whilst Farm A had the greatest proportion of infected animals, the mean epg of those animals 

was the lowest of all farms. This suggests the possibility that the animals are resilient and able 

to tolerate low or moderate levels of infection. Farm A also had the least variation in FEC 

results between infected individuals. The location of farm A (Cornwall, UK) is particularly high 

risk for GIN infections due to the relatively warmer and wetter climate. Combining these 
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strands of evidence suggests that individuals on Farm A have a relatively high GIN challenge, 

but have consequently developed tolerance mechanisms. The practical benefit of this would 

be that, whilst GIN risk is persistent, the chance of losses from GIN infections is relatively low. 

A herd level resistance or resilience to GINs and other parasites could yield long-term benefits 

to herd health and farm sustainability. The lack of anthelmintics used on the mob-grazing 

farms means that the local GIN population is likely to be susceptible to anthelmintics, 

providing the farms with the confidence that anthelmintics can be effectively applied in the 

event of an outbreak.  

The complexity of the topic means it is unlikely that one factor is the driver of the observed 

egg counts. A more realistic scenario is that all of such factors over time have had a cumulative 

impact on local epidemiology by exerting pressures on GINs throughout all stages of their life-

cycle. This is in stark contrast to anthelmintic-orientated controls, which consistently use one 

method of control that focuses on one part of the life-cycle. Such a precise selection pressure 

can drive the rapid development of resistance. The potential of mob-grazing for GIN control 

highlights the need for comprehensive integrated control strategies that utilise all of the 

resources available, including natural biological controls and our knowledge of GIN lifecycles. 

Whilst the evidence supports mob-grazing as a method of livestock management, further 

work is needed to investigate epidemiological factors in more detail, specifically to identify 

the drivers and mechanisms involved.  

The principles of anthelmintic control are not unique, and many are broadly applicable to the 

control of other prevalent diseases. For example, the degradation of dung by invertebrates 

has been linked to the removal of TB (Phillips et al., 2003). This is a prime example of the 

ethos of holistic farming, promoting the underlying biological process of a system and 

employing those benefits for agricultural gain. 

5.4.2 Pasture performance 

There was a notable and statistically significant difference in dry matter (kg ha-1) between the 

farms, particularly between Farms A-C and Farm X. The mob-grazing farms had greater dry 

matter on pasture when cattle were put onto it and when they were taken off, leaving a 

greater residual. In between being grazed, herbage on Farms A-C had significant growth of 

67%, 112%, and 207%, respectively, whilst Farm X had growth of just 29%. Even if percentage 
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increases were the same, the greater residual herbage levels of Farms A-C would result in a 

greater total herbage gain than Farm X. These results support the idea that mob-grazing can 

be used to control foraging behaviour to the benefit of pasture productivity.  

5.4.3 Forage nutrition 

5.4.3.1 Direct farm comparisons 

The multi-factorial nature of forage nutrition analysis means it is generally not possible to say 

if any particular forage is ‘better’ than any other. OM results are a broad indicator as it 

represents the portion of forage which can potentially be utilised by the animal. OM 

concentrations were significantly greater on Farm B than on Farms A, C, and X, which were all 

statistically similar. However, a closer look at the composition of that OM component reveals 

a much more complex picture. 

NDF and ADF yielded particularly interesting results. NDF is typically associated with forage 

digestibility and is therefore considered a beneficial trait (Mertens and Ely, 1979; Oba and 

Allen, 1999). Farms A-C had significantly greater NDF concentrations than Farm X. Whilst this 

may seem like an obvious benefit in favour of the mob-grazing farms when looking deeper 

into the nutritional quality, this is not necessarily the case. A primary component of NDF is 

ADF, which is considered highly indigestible and, therefore, has a negative association with 

nutritional quality. ADF levels were significantly higher in Farms A-C than in Farm X. It is also 

important to consider that lower levels of a particular nutrient can mean that another 

nutrient is more abundant. Farm X had the highest levels of NFC and lipids. However, this was 

only significantly greater than Farm A and not B, and C. NFC is a highly valuable nutrient, which 

is energy-rich and can aid digestibility of NDF (Arroquy et al., 2005; Haddad and Grant, 2000). 

Whilst NFC and lipids were combined due to the limitations of NIRS technology, from results 

gathered in Chapter 3 we can estimate the lipids values would likely range from 10-70 g kg-1. 

Protein concentrations yielded complex results and werenoticeably highest on Farm A, 

despite not being significantly different to Farm X. Protein is important and relates positively 

with growth and final carcass weight, it is also especially important during times of stress 

(Beaty et al., 1994). The lowest protein concentrations were found on Farm B, which also does 

not house cattle over winter, this has the potential to cause problems during particularly 

harsh winters and could reduce animal performance. Nevertheless, this is not a characteristic 
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of mob-grazing itself. It should also be noted that legumes are particularly protein-rich and 

can also fix nitrogen from the environment, this may be particularly important to organic 

farming which does not rely on external animal nutrient and fertiliser inputs. 

The composition of forages could be considered of similar quality between the farms. Whilst 

significant differences were found for certain components, the true implication of these is 

unknown and circumstantial. For example, dry matter consumption can be variable on 

different pastures and could not be considered within this study.  

5.4.3.2 Field status comparison 

Comparing the forage nutritional composition of different statuses of fields yielded a number 

of interesting results. The statistically significant differences seen could be down to a number 

of different factors (1) That cattle are selectively grazing in favour of forage with particular 

nutrients (2) As forage grows, the proportions of nutrients within it alter, for example, more 

lignin to provide stability (3) The nutritional composition of taller forages varies from those 

lower down, meaning that cattle are grazing nutrients disproportionately to the fields average 

composition. In reality, it is likely that all of these factors were at play. During field visits, cattle 

were observed to be actively selecting particular plants, such as flower heads from chicory. 

Equally, cattle typically graze the top portion of herbage. 

One of the most notable differences was for combined carbohydrate and lipid concentrations 

which, in all instances were higher in ‘return’ fields than in ‘recent’ fields. Whilst, from the 

data, it is not possible to determine what the precise ratio of carbohydrates to lipids are, from 

evidence gathered in Chapter 2 it could be inferred that this is overwhelmingly carbohydrate. 

Therefore, cattle entering a fresh grazing cell are disproportionately consuming carbohydrate, 

which is a highly digestible and energy-rich resource (Hoover and Stokes, 1991). This result 

also infers that, during the fallow period between grazing, the proportion of carbohydrate in 

the forage is increasing. Whilst more specific evidence would be needed to confirm this 

observation, this is likely to be beneficial for cattle performance, and therefore this may 

represent a production benefit of mob-grazing, compared to conventional systems which 

have shorter fallow periods. However, Farms A-C had lower concentrations of carbohydrates 

in general, and the highest mean level of those farms at any point (Farm C, return, 269.4 g kg-

1) was slightly less than the mean for Farm X (275.4 g kg-1). Carbohydrate results tie in well 
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with ADF results, which showed an increase in concentrations from ‘return’ to ‘recent’ fields. 

ADF is highly indigestible and, as a result, is inversely linked to forage digestibility. The 

increases seen suggest that ADF-rich feeds are not being consumed. Whilst this is beneficial 

on the mob-grazing farms, it is noted that the forages on these farms had a higher proportion 

of ADF than Farm X in the first place. Without further specific research into this one factor, it 

is not possible to assess if the ADF consumption varies between any of the study farms. 

The evidence that pasture growth changes in the nutritional composition of forages is very 

important when considering mob-grazing as a grazing technique. This importance stems from 

the large differences in dry matter levels seen between fields that are about to be grazed and 

those that have recently been grazed, differences far greater than those on the control farm 

(Farm X). As a result, greater fluctuations in the nutritional profiles of forages would be 

expected on mob-grazing farms and is a key consideration for the weight gain and health of 

cattle. 

5.4.4 Soil organic matter 

All farms had soil organic matter contents classified as high/very high (Fraters et al., 1993), 

but showed significant differences between each other. Within the studied farms, Farm A had 

the highest soil organic matter content. Climate is one potential driver of this, with Farm A 

being the warmer and wetter than Farms B and C. Findings by Burke et al. (1989) showed that 

precipitation was positively linked with soil organic matter, however, the author also 

commented that high soil clay content could also lead to high soil organic matter. Farm A sits 

on mudstone, which has a high clay content and therefore may be somewhat responsible for 

the high organic matter observed. However, Farm X is also based on mudstone, yet had the 

lowest soil organic matter content, although that clay is deeper (British Geological Survey, 

n.d.). The higher forage biomass of Farms A-C, compared to X, may promote soil organic 

matter content due to the more extensive and diverse root systems required to support this 

flora. This high biomass could also have a stabilising effect on the O-horizon and topsoil by 

creating a microclimate, trapping moisture and reducing temperature fluctuations, creating a 

more stable soil environment; this is a key area for future research. Whilst the significant 

differences observed are not dramatic their importance should not be understated. Soil is the 
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biological foundation of pasture systems and is essential for their long-term productivity and 

resilience.  

5.4.5 Confounding factors 

It is important to note a number of confounding factors which may have influenced results. 

Firstly, the farms that volunteered within this study run by very conscientious farmers who 

engage with the advances in agricultural science. Observed differences or perceived ‘benefits’ 

may be relatively difficult for a typical individual to achieve. Secondly, Farms A-C were organic; 

Farm X was not. This means that any differences shown may be more indicative of organic 

farms, as opposed to mob-grazing farms. Notably, there are strategies utilised by many mob-

grazing and organic farms, but which are not a requirement of either management style. Such 

strategies may have indirect impacts on the metrics covered in this study. Examples of this 

include high pasture diversity and wildlife refugia through diverse sward compositions. 

Forage analysis utilised employed technology, which utilised calibrations based on wet 

chemistry values. The NIRS calibrations used were not specifically designed for the diverse 

forages collected within this study, and therefore true values might vary slightly from those 

gathered here. Nevertheless, the true relative values would likely be comparable in terms of 

scale and variation. 

5.4.6 Future research 

Results support and justify further research into mob-grazing. Whilst a number of striking 

differences can be observed, the precise drivers and mechanisms of these differences are 

unknown, as is the influence of confounding factors. It is also necessary to gain a more 

detailed understanding of how the method can be applied and the benefits and risks that may 

be associated with it. This study was somewhat limited in resources, and therefore there is 

scope to expand the variables considered and to look at them in significantly more detail. A 

key aspect of this would be to conduct a more longitudinal study with more regular sampling, 

perhaps with remote automated sampling equipment.  

Soil characteristics could be looked at in far more detail, especially given the high organic 

matter levels observed in this study. More detailed study would allow for the assessment of 

factors generating high soil organic matter levels and the benefits it is having to the system. 
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Microbial biomass and community structure would be an important measurement and would 

provide information regarding the different processes within the soil; it could also identify 

species of nematophagous fungi which may be contributing to the low parasite egg counts. 

Compaction is another important factor. The nature of mob-grazing means that the regularity 

and distribution of hoof-fall is greatly varied. Whilst cattle are within a cell compaction is high 

for a very short period, but then a long rest period is allowed. The net impact of this is 

unknown in relation to this grazing practice.  

A striking characteristic of the mob-grazing farms was the species diversity and richness of 

pasture, albeit anecdotal. However, this is not necessarily due to the practice of mob-grazing, 

but may be down to other management decisions, although the two may be somewhat 

related.  Pasture diversity has the potential to increase system stability and enhance local 

biological communities, such as those in the soil. Self-medication of herbivorous hosts is often 

overlooked, but can significantly influence parasite epidemiology and, in these species-rich 

environments, could be a driver of low parasite burdens. (Villalba and Landau, 2012). Another 

key aspect of forage that needs examination is plant biomass in relation to the length that 

herbage is allowed to grow to. As grasses and other flora grow, their productivity changes 

over time, as does their nutritional composition. The impacts of these differences need 

assessment and should be considered in the context of the other benefits of high herbage 

biomass, such as soil moisture retention and health. These differences could manifest 

themselves across various aspects of both system and animal health. 

There are three primary ways through which evidence could be gained to further investigate 

mob-grazing, addressing the points outlined. Similar to this study, gaining evidence from farm 

case-studies would allow for realistic insights to be made into the technique. This would come 

from farms already practising mob-grazing, analogous farms not practising mob-grazing (as a 

control) and from farms who are switching to mob-grazing. Controlled field trials could be 

used to compliment this work, by removing confounding factors which may have been 

present in case studies. Not only would this back up any case study findings, but it would also 

highlight areas where future research may be needed. A final method is through computer 

modelling, such as pasture productivity models and epidemiological models. An example of 

this is the Gloworm-FL model (Rose et al., 2015), which could be adapted to assess the impact 

of different rotational grazing strategies towards parasite development and infection-risk. 
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Modelling would provide a theoretical backing to findings, whilst also enabling the study of 

factors which may be too complex or impractical to assess in a case study or field trial 

scenario. 

5.5 Conclusion 

This research supports the justification of furthering research into mob-grazing as a method 

for pasture-based beef production systems and potentially for the production of other grazing 

livestock. In particular, positive impacts have been observed towards soil organic matter 

content, parasite burdens, and pasture performance. These findings are line with anecdotal 

reports on the topic. Long fallow periods between grazing seem to be beneficial for the 

improvement of pasture composition, increasing the proportion of NFC available for 

consumption, whilst decreasing ADF. However, the levels observed in the mob-grazing farms 

cannot be considered any better than those in the control farm, without significant further 

study focused on this individual factor. The benefits observed are at a system level and 

support the idea of a self-propagating system that utilises and exploits the underlying biotic 

processes of the system. Whilst the evidence broadly supports mob-grazing, the precise 

drivers are unknown and therefore confounding factors may be an influence. Nevertheless, 

results provide baseline evidence supporting mob-grazing, however, substantial further work 

is necessary to deepen and broaden our understanding of the technique, its implications, and 

how it can best be applied. Such work requires a multi-disciplinary approach in both real and 

controlled settings. Included within this should be an in-depth analysis of the economic 

impact and sustainability of mob-grazing systems. If mob-grazing can yield benefits towards 

system productivity and if the underlying mechanisms can be understood, mob-grazing and 

other intensive rotational techniques have the potential to become valuable strategies for 

the improvement of livestock farming in the UK and worldwide.  
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6 Conclusion 
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The outcomes and conclusions of this thesis represent an original contribution to the field of 

veterinary and agricultural science. The original research presented, supported by the 

reviewed literature, expands the understanding of the dynamics of beef production systems 

in the UK. In particular, how this related to scientific capabilities can be more effectively 

applied in an agricultural context. This was achieved through the utilisation and adaptation of 

existing methodologies and the development of new and original techniques. This multi-

disciplinary approach has brought together broad system factors to investigate how they 

interact and can be managed more effectively. In addition to the novel findings, the research 

highlights areas where further research is necessary and how that can be achieved. 

The results gathered through this study accept the overarching hypothesis that intentional 

management of dung as a critical resource on-farm has multiple benefits that improve the 

resilience of beef production systems. 

6.1 A hypothetical farm 

The evidence gathered can be utilised to form a hypothetical picture of a more efficient and 

sustainable beef production system, based on the studied strategies and system factors.  

6.1.1 Sward diversity 

A high-diversity sward can yield both long- and short-term benefits to grazing systems. Such 

sward may include high-yielding grasses (e.g. ryegrass), whilst including a mix of legumes and 

herbs (e.g. clover and chicory). The nitrogen-fixing capabilities of legumes will help to reduce 

the need for external fertiliser inputs (Groffman et al., 1987; Ledgard and Steele, 1992), whilst 

herbs will diversify cattle nutrients. Bioactive herbs can reduce the need for external feeds 

during finishing, can be high yielding, and can also act medicinally, reducing the need for 

anthelmintics (Githiori et al., 2006; Peña-Espinoza et al., 2016; Sandoval-Castro et al., 2012; 

Williams et al., 2016). A less immediately noticeable impact of a diverse sward is system 

stability, through ensuring that species are present which are able to flourish in different 

conditions (Brougham, 1960). This diversity also provides a wider variety of resources for 

organisms, such as invertebrates and fungi, improving ecosystem diversity and richness. This, 

in turn, can facilitate the nutrient cycle and dung degradation process, yielding benefits to soil 

quality, further supporting pasture productivity. 
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6.1.2 Veterinary intervention 

Veterinary recommendations for TST were, in Chapter 3, supported by research showing how 

the technique can not only be beneficial to animal health but to dung fauna and the 

ecosystem services that they support. The implementation of TST could be used to yield 

benefits to animal health by providing refugia for anthelmintic-susceptible parasites (Cooke 

et al., 2017; Kenyon et al., 2009). This could reduce the development of anthelmintic 

resistance within the system, improving the long-term efficacy and sustainable use of 

anthelmintics as and when they are necessary (Charlier et al., 2014). Such a TST program could 

be effectively implemented through the implementation of general health checks, similar to 

the “Five Point Check” (Bath and van Wyk, 2009), with the inclusion of FECs. Information from 

these checks could then be used to select animals which need treatment or to undergo 

further, more specific, diagnostics to assess pathology. TST would also inhibit the insecticidal 

impact of anthelmintics on dung fauna, therefore facilitating invertebrate activity. The 

consequence of this might be an increase in dung degradation rate and nutrient turnover, in 

turn, improving soil fertility and organic matter content (Barth et al., 1993, 1994a). In 

addition, improved invertebrate activity may lead to the biological control of gastrointestinal 

nematodes, which can be consumed or buried by dung fauna (Bryan, 1976; Fincher, 1973).  

This ‘hypothetical farm’ system is by no means claiming to be a perfect or superior system. Its 

purpose is to highlight how it is possible to better utilise biological mechanisms within 

agricultural systems, as opposed to the over-reliance on ‘quick-fix’ external inputs, in the form 

of fertilisers and anthelmintics, which has become endemic across the industry. Agricultural 

systems host an incredible diversity of biology, in the form of microbes, invertebrates, plants, 

fungi, and much more. We only understand a fraction of the capabilities of these organisms 

and even those alone are immense. Therefore, expanding this diversity has the potential to 

yield system-wide benefits far in excess of what one could predict.  

6.1.3 Grazing rotation 

Rotational grazing can potentially enhance pasture productivity whilst simultaneously 

controlling GINs and providing refugia for anthelmintic susceptible genes.  A rotation with 

rapid cattle movement, but a long return time, such as mob-grazing can significantly increase 

pasture productivity (Campbell, 1969). Parasite control occurs through reducing exposure of 
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cattle to infective L3 larvae, by moving cattle onto new pasture before parasites are at peak 

infectivity (Barger et al., 1994; Marley et al., 2007; Stromberg and Averbeck, 1999).  This was 

reflected by the mob-grazing case study which found low parasite burdens across all sites. 

The rate of parasite development can vary seasonally due to climatic variation (Hsu and 

Levine, 1977; Smith, 1990; Veglia, 1916). Therefore, a five day grazing period might be 

suitable in May, but be highly risky during June. This problem could be addressed by changing 

rotations in relation to climate, or by applying shorter grazing periods all year around. The 

prior of these options is most complex but could be most beneficial if achieved, whereas the 

second is simplest yet may not be as efficient in parasite control. Monitoring of GIN larval risk 

to cattle is possible, although resource intensive, and instead can be modelled to provide 

individual farm forecasts. The potential benefits of such a rotational grazing strategy are 

particularly pertinent to organic beef systems, however, are still highly relevant to non-

organic farming, which could use external fertiliser inputs to further support pasture 

productivity if needed. 

6.2 Future research 

Whilst our understanding of beef production systems has been rapidly growing there are still 

numerous areas where research could yield significant benefits. It is essential to address these 

gaps in our knowledge in order to advance the industry so that it is resilient to current and 

future challenges. This is a significant challenge which requires multi-disciplinary scientific 

investigation and, most importantly, the drawing together of seemingly disparate lines of 

evidence. It is important to understand that no factor sits in isolation and that they are part 

of a complex and dynamic network. For example, improvements in soil quality, herbage 

composition, and biodiversity all influence one another. Three key areas for advancement are 

described below. 

6.2.1 Dung composition 

Dung is fundamental to nutrient recycling within beef systems, acting as a natural fertiliser. 

Whilst dung is highly valued in this regard; there is very little focus placed upon the exact 

composition and nutrient value of that dung. A factor which is driven by farm management 

decisions such as pasture composition and dietary supplementation. In contrast, the 

composition of artificial fertilisers is very precise. Whilst managing a farm to change the 
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nutritional composition of dung would be highly complex and impractical, it is important that 

we understand these differences. This is especially true for scientific studies that investigate 

nutrient dynamics with the goal of improving farm efficiency and sustainability. A study that 

takes great care to consider external inputs and system outputs would be fundamentally 

flawed if it were to not appropriately assess the characteristics of dung within that system. 

Chapter 2 highlights the significant differences that exist between dungs from different 

pastures, the extent of which is potentially far less than would have been seen if examining 

more diverse systems. Chapter 2 also describes a number of adapted and novel 

methodologies which can be used for the assessment of cattle dung in order to facilitate this 

advancement.  

6.2.2 Disease and health assessment 

A key area for advancement is the assessment of animal health and disease. Whilst the 

scientific capabilities exist, the application of these capabilities in a practical manner is lagging 

far behind what is seen in human medicine. Whilst this is somewhat to be expected, it still 

represents a clear area in which improvements can be made. This is particularly true for the 

diagnosis of GINs and other endoparasitic diseases. Whilst FECs are a highly practical and 

useful tool, they do not give the whole picture, reducing the effectiveness and sustainability 

of treatment programs. Chapter 4 provides a novel example of how faecal samples can 

provide significant information on animal health and immunology. Evidence from human 

medicine supports the utilisation of faeces as a diagnostic tool and tools such as CCA tests are 

examples of how these principles can be applied in a resource-efficient manner.  

6.2.2.1 Mob-grazing 

Chapter 5 provides scientific evidence supporting the reported benefits of mob-grazing. In 

particular, high levels of soil organic matter, high pasture productivity, and low burdens of 

GINs. This broad case study provides a platform to justify and inform future research into the 

practice, which could be a useful strategy for many farms, particularly organic ones. To truly 

assess this system a number of diverse and multi-disciplinary experiments must be 

conducted. This includes gathering case study evidence, conducting controlled field studies, 

and utilising computer modelling capabilities. A more thorough understanding of the 

implications of mob-grazing would allow for the more effective implementation of the 
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technique and give an understanding as to the situations in which it is appropriate and those 

in which it is not.   

6.3 Concluding statement 

The novel findings and outcomes of this study represent a progressive step towards further 

optimising pasture-fed beef production systems. Portions of the research are directly 

applicable to stakeholders at a farm level, whilst others outcomes yield a benefit to the 

scientific study of these systems. Further research into these topics and others within the field 

have the potential to advance the way in which we understand and manage livestock systems. 

The consequence of deepening our understanding is more efficient systems in terms of 

performance, profitability, and sustainability. This is not just desirable, but essential for 

livestock systems to be able to effectively respond to the challenges which they face and will 

continue to face in a changing world. 
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8 Appendices 

8.1 Weather data over degradation experiment 

An on-site Met Office station recorded mean humidity (%), total rainfall (mm) and mean 

temperature each day (Figure 8.1). These factors are likely to have been one of the drivers of 

degradation through abiotic mechanisms such as physical breakdown by rain droplets, or by 

influencing biotic mechanisms such as aiding or inhibiting invertebrate activity. Nevertheless, 

these factors were consistent across the three field plots. 
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Figure 8.1 - Mean humidity (%), total rainfall (mm) and mean air temperature (˚C) of 
Rothamsted Research’s North Wyke Farm Platform for each day of the study period and 
7 days prior. Data gathered from an on-site Met Office station. 

           Samples out                      Collection 1/3                      Collection 2/3                  Collection 3/3 
               Day 0                                     Day 28                                  Day 56                                   Day 84 
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8.2 Randomised block design for degradation experiment 

Randomised block design for the dung degradation experiment described in Chapter 2 (Figure 

8.2). 

  

  

Figure 8.2 - Field plot designs. Clockwise from top left: Dimensions, grid references, and 
format of field plots. Field plot on the blue farmlet. Field plot on the green farmlet. Field 
plots on the red farmlet. Letters B, G, and R represent dung types blue, green, and red 
respectively. Not to scale. 



223 

 

8.3 Topographic map of field plots 

Topgraphic map of field plots for the dung degradation experiment in Chapter 2 (Figure 8.3) 
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Figure 8.3 - Top: A map of each field plot showing 0.1m contours and plot corners. Below: 
Farm platform map including contour lines, and values, field boundaries, and location of field 
plots. 

8.4 Full data of dung degradation 

Table 2 - Full data for all measured biochemical components of all dung pats on the 
degradation of cattle dung on pasture. OM = organic matter, CLi = crude lipids, NDF = neutral 
detergent fibre, ADF = acid detergent fibre, ADL = acid detergent lignin, CP = crude protein/ 

Dung 
location 
(farmlet) 

Dung 
source 

(farmlet) 
Days on 
pasture 

Nutrient values (%, dry matter basis) 

Ash OM Cli NDF ADF ADL CP 

n/a Blue 0 21.0 79.0 4.9 47.4 35.6 16.7 17.9 

n/a Blue 0 21.0 79.0 7.2 46.9 35.3 16.9 17.4 

n/a Blue 0 22.4 77.6 3.6 46.1 37.1 18.1 17.5 

n/a Green 0 21.0 79.0 7.1 42.0 30.8 10.0 17.1 

n/a Green 0 21.0 79.0 6.6 44.8 32.2 16.4 17.1 

n/a Green 0 21.2 78.8 6.9 42.7 31.6 14.2 17.3 

n/a Red 0 19.1 80.9 7.4 43.7 32.0 10.3 19.3 

n/a Red 0 19.0 81.0 7.2 42.2 32.0 12.0 18.8 

n/a Red 0 18.4 81.6 7.4 42.1 32.5 11.8 18.7 

Blue Blue 28 23.1 76.9 2.0 48.5 39.9 16.5 16.7 

Blue Blue 28 27.5 72.5 3.3 48.0 40.1 17.3 16.6 

Blue Blue 28 22.5 77.5 2.7 49.4 37.7 18.7 17.4 

Blue Blue 28 23.4 76.6 2.9 56.1 39.1 16.9 17.7 

Blue Green 28 25.2 74.8 1.6 48.5 37.2 10.8 14.7 

Blue Green 28 24.5 75.5 2.5 81.0 38.2 12.4 16.4 

Blue Green 28 24.2 75.8 1.7 51.6 39.4 13.1 15.9 

Blue Green 28 27.0 73.0 3.8 48.2 38.4 12.0 15.4 

Blue Red 28 23.6 76.4 4.1 50.4 39.4 14.0 17.3 

Blue Red 28 23.3 76.7 3.0 51.6 40.1 16.3 16.9 

Blue Red 28 22.3 77.7 3.7 51.1 40.1 25.6 18.2 

Blue Red 28 22.6 77.4 4.0 54.6 38.7 15.3 17.1 

Green Blue 28 24.9 75.1 2.1 57.2 39.2 18.7 16.7 

Green Blue 28 25.0 75.0 2.6 49.2 39.7 17.4 17.1 

Green Blue 28 23.8 76.2 2.8 48.0 37.5 18.6 17.2 

Green Blue 28 24.8 75.2 1.7 48.4 40.0 18.3 16.4 

Green Green 28 23.0 77.0 3.6 49.3 36.9 18.0 17.0 

Green Green 28 22.9 77.1 3.8 29.1 36.4 18.5 18.5 

Green Green 28 23.9 76.1 2.6 54.6 37.2 12.0 17.1 

Green Green 28 25.8 74.2 3.4 49.8 34.8 14.0 17.6 

Green Red 28 41.1 58.9 2.3 46.4 37.7 16.8 18.9 

Green Red 28 21.0 79.0 3.2 46.7 36.9 14.1 18.6 

Green Red 28 22.9 77.1 2.5 52.5 38.2 16.9 17.5 
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Green Red 28 22.3 77.7 3.0 49.7 36.2 14.0 18.9 

Red Blue 28 22.8 77.2 2.8 49.2 40.4 17.2 17.9 

Red Blue 28 24.2 75.8 2.2 49.0 41.6 18.8 16.6 

Red Blue 28 28.0 72.0 1.6 48.1 39.7 19.9 17.1 

Red Blue 28 24.6 75.4 2.0 46.2 40.2 19.5 18.3 

Red Green 28 23.3 76.7 2.8 58.9 37.3 16.0 18.2 

Red Green 28 23.6 76.4 2.6 51.1 36.4 12.1 16.7 

Red Green 28 23.4 76.6 2.9 49.2 53.6 15.1 17.3 

Red Green 28 24.5 75.5 3.4 51.5 37.6 12.9 16.8 

Red Red 28 21.3 78.7 4.4 48.4 37.5 13.3 18.5 

Red Red 28 22.0 78.0 2.8 49.3 38.2 14.1 18.0 

Red Red 28 20.6 79.4 3.1 50.2 40.5 15.2 18.0 

Red Red 28 26.9 73.1 2.6 51.1 37.8 12.6 16.9 

Blue Blue 56 25.2 74.8 2.6 62.4 41.9 19.6 18.7 

Blue Blue 56 26.7 73.3 2.7 49.9 39.4 21.2 18.0 

Blue Blue 56 26.0 74.0 2.4 50.3 38.5 10.1 18.0 

Blue Blue 56 33.6 66.4 3.2 54.5 44.7 21.7 17.0 

Blue Green 56 37.6 62.4 3.8 59.6 45.6 11.7 15.9 

Blue Green 56 44.0 56.0 4.1 50.8 49.9 9.5 13.6 

Blue Green 56 32.3 67.7 2.6 51.6 42.7 12.8 16.4 

Blue Green 56 30.3 69.7 2.2 48.1 42.3 13.1 17.0 

Blue Red 56 32.5 67.5 2.7 57.1 42.6 14.0 16.6 

Blue Red 56 Sample completely degraded before collection time 

Blue Red 56 51.0 49.0 2.9 64.6  15.4 13.6 

Blue Red 56 21.7 78.3 2.6 48.2 36.2 13.8 20.3 

Green Blue 56 23.3 76.7 2.9 56.3 37.6 14.8 17.5 

Green Blue 56 25.4 74.6 2.5 54.9 38.1 18.9 19.1 

Green Blue 56 21.7 78.3 1.9 48.4 40.2 20.0 20.3 

Green Blue 56 24.9 75.1 2.5 52.0 39.7 17.6 18.5 

Green Green 56 26.5 73.5 2.8 53.9 40.7 21.0 18.0 

Green Green 56 26.2 73.8 3.9 50.8 40.8 14.1 15.8 

Green Green 56 26.1 73.9 3.2 48.8 37.1 11.7 18.6 

Green Green 56 11.0 89.0 2.1 49.4 37.4 13.9 19.1 

Green Red 56 25.7 74.3 3.4 58.7 41.8 17.6 17.7 

Green Red 56 20.5 79.5 2.3 49.1 36.7 16.0 19.7 

Green Red 56 23.4 76.6 1.5 49.0 42.2 18.4 19.2 

Green Red 56 22.3 77.7 1.6 48.0 40.6 17.7 18.7 

Red Blue 56 30.1 69.9 1.9 47.1 41.3 17.6 17.0 

Red Blue 56 31.8 68.2 2.0 59.2 44.7 17.7 17.1 

Red Blue 56 29.8 70.2 1.0 51.6 43.0 18.5 18.3 

Red Blue 56 35.1 64.9 1.2 54.3 46.2 17.4 16.4 

Red Green 56 49.1 50.9 2.6 67.8 53.0 10.7 13.0 

Red Green 56 23.3 76.7 1.5 57.5 36.1 12.4 18.3 

Red Green 56 31.9 68.1 1.7 55.5 45.7 15.9 16.5 
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Red Green 56 36.7 63.3 1.8 52.6 47.4 13.1 15.3 

Red Red 56 23.0 77.0 1.9 53.3 40.1 15.2 19.5 

Red Red 56 28.7 71.3 2.7 61.2 44.8 21.6 18.8 

Red Red 56 44.9 55.1 2.1 54.9 56.2 13.6 13.8 

Red Red 56 26.5 73.5 3.3 48.1 39.3 13.2 19.7 

Blue Blue 84 30.9 69.1 1.4 53.1 45.5 19.9 20.0 

Blue Blue 84 32.3 67.7 2.0 49.2 44.4 17.2 18.5 

Blue Blue 84 31.0 69.0 1.9 49.0 44.1 18.0 18.0 

Blue Blue 84 74.1 25.9 0.0 72.0 71.3 8.1 6.3 

Blue Green 84 45.4 54.6 1.8 59.5 53.7 18.1 14.1 

Blue Green 84 41.6 58.4 2.3 56.0 51.8 12.3 13.5 

Blue Green 84 61.8 38.2 2.6 62.3 64.1 10.7 10.1 

Blue Green 84 67.5 32.5 1.7 66.5 67.5 9.2 7.4 

Blue Red 84 52.4 47.6 2.0 48.5 59.2 12.6 12.7 

Blue Red 84 62.0 38.0 2.9 79.1 46.3 13.8 13.9 

Blue Red 84 58.9 41.1 2.0 62.3 64.8 10.9 9.7 

Blue Red 84 70.9 29.1 0.2 67.9 70.4 9.1 8.2 

Green Blue 84 47.7 52.3 1.5 57.7 56.0 14.1 13.5 

Green Blue 84 47.1 52.9 3.1 55.2 55.9 17.8 15.0 

Green Blue 84 27.8 72.2 2.2 55.3 0.0 0.0 18.7 

Green Blue 84 47.2 52.8 1.3 52.0 56.9 14.0 13.6 

Green Green 84 42.8 57.2 2.3 51.7 51.7 11.9 14.5 

Green Green 84 26.7 73.3 2.6 42.3 39.6 15.6 18.7 

Green Green 84 56.4 43.6 1.9 74.5 34.6 14.0 11.1 

Green Green 84 36.6 63.4 0.3 52.2 48.0 14.6 15.9 

Green Red 84 37.1 62.9 1.6 55.1 48.6 16.6 18.4 

Green Red 84 61.2 38.8 0.6 49.1 65.9 11.1 10.8 

Green Red 84 50.4 49.6 2.8 62.7 56.6 10.8 13.8 

Green Red 84 23.0 77.0 2.8 49.7 32.1 16.1 19.7 

Red Blue 84 54.7 45.3 1.2 51.3 64.8 11.8 10.9 

Red Blue 84 56.0 44.0 1.1 73.4 60.4 14.3 13.8 

Red Blue 84 82.9 17.1 0.5 56.5 79.9 6.7 4.7 

Red Blue 84 72.6 27.4 0.0 89.5 71.9 9.2 6.8 

Red Green 84 83.9 16.1 1.0 66.5 79.6 6.6 4.4 

Red Green 84 64.0 36.0 1.5 56.7 66.7 14.3 8.8 

Red Green 84 70.0 30.0 0.0 56.9 70.4 10.0 8.3 

Red Green 84 78.5 21.5 1.3 49.4 77.2 7.4 6.8 

Red Red 84 70.9 29.1 0.7 54.2 71.5 9.0 8.0 

Red Red 84 68.8 31.2 1.3 57.9 71.8 11.3 9.3 

Red Red 84 76.3 23.7 0.9 86.7 74.8 6.9 6.2 

Red Red 84 77.7 22.3 1.2 73.8 78.7 7.6 6.1 
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8.5 Error table for micronutrient analysis 

XRF analysis yielded a wide range of errors (ppm) between the different elements quantified 

(Table 8.3),  

Table 8.3 - Error of micronutrient concentrations (ppm). 

 Error of concentration of element in material (ppm) 

 Feed Dung 

 Silage Herbage Silage diet Herbage diet 

 B G R B G R B G R B G R 

Al 310 325 344 311 321 347 351 357 347 304 309 345 

As 1 1 1 1 1 1 1 1 1 1 1 1 

Br 1 1 1 1 1 1 1 1 1 1 1 1 

Ca 674 607 1104 686 991 779 1230 812 1210 1265 811 1125 

Co 1 1 1 1 1 1 2 1 2 1 1 2 

Cr 22 18 35 20 27 18 23 21 31 25 15 29 

Cu 13 11 36 13 24 16 34 12 27 23 11 22 

Fe 29 26 76 42 38 24 76 72 93 62 41 93 

K 1903 1711 3311 1581 2564 2183 1216 1265 2231 1881 984 1762 

Mg 999 1035 998 963 1048 1061 1203 1151 1136 1054 1106 1046 

Mn 28 24 41 26 33 25 42 34 54 57 34 50 

Na 13148 13376 12808 13254 13009 13754 13778 13040 12793 12945 13430 12916 

Ni 0 0 0 0 0 0 0 0 0 0 0 0 

P 60 67 63 63 68 74 103 97 94 87 107 86 

S 41 47 45 47 48 54 54 52 53 48 55 49 

Se 1 1 1 1 1 1 1 1 1 1 1 1 

Zn 11 10 19 11 16 12 18 13 18 19 14 18 

 

8.6 Comparison of Kjeldahl and Dumas methods  

8.6.1 Introduction 

Crude protein cannot easily be quantified directly, and therefore it is standard practice for 

nitrogen to be used as a proxy. Quantified nitrogen is multiplied by 6.25 in order to provide 

an estimation of crude protein. There is significant debate in how nitrogen, for crude protein 

analysis, should be quantified - the historical Kjeldahl method, or the more modern Dumas 

technique. The Kjeldahl method is often favoured due to its long-standing use in forage 

science; it is also the technique that the nitrogen-protein conversion factor was based on. 

However, the technique is incredibly resource costly, requiring a wide array of reagents and 

multiple steps (Bellomonte et al., 1986). With each step in the process the potential errors 
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compound, therefore results may not be consistently reliable. In contrast, the Dumas 

technique is much simpler and quicker, samples undergo flash combustion at approximately 

900°C, and an automated process quantifies nitrogen based on thermal conductivity. Results 

from the two methods are generally comparable (Bellomonte et al., 1986; Simonne et al., 

1997; Wiles et al., 1997), with Dumas often yielding marginally higher nitrogen results 

(Thompson et al., 2002; Wiles et al., 1997). Studies typically focus on foodstuffs with little 

work conducted on dung. However, findings by Stitcher et al. (1969), on dung samples, were 

concurrent with work on foodstuffs. While these are the two most common methods used 

for CP quantification, other techniques are available, such as NIRS (near infrared 

spectroscopy) which works by measuring the absorption of near infrared radiation and 

applying results to a model which associates absorption with different compounds (Barton 

and Windham, 1988). 

8.6.2 Method 

In order to determine which method of crude protein quantification, Kjeldahl or Dumas, was 

to be used, a comparison was conducted. Twenty-two of the dung samples collected from the 

degradation analyses underwent protein determination by both Kjeldahl and Dumas 

techniques.  

Quantification by Dumas was conducted as per above (2.2.3.6 Crude protein). The procedure 

for Kjeldahl analysis was as follows. 0.5g of sample was weighed into digestion tubes along 

with two Kjeldahl catalyst tablets (Kjeltab CK) and 15ml of 98% sulphuric acid. Digestion tubes 

were added to a centrifugal scrubber unit (Gerhardt TURBOSOG) to remove acid fumes. The 

scrubber was prepared with 1L of 20% sodium hydroxide. Digestion tubes were fitted into the 

scrubber unit, with spare spaces filled with empty digestion tubes. The exhaust head was then 

fitted to the racked tubes, and the scrubber was then initiated. Simultaneously the distillation 

unit (Gerhardt Vapodest 40) was purged to remove trapped air and older chemical residues. 

The unit was connected to reservoirs of 40% sodium hydroxide, 4% boric acid, and deionised 

water. The connected tubes were then rinsed through with their relevant liquid. The digestion 

tubes were then removed from the scrubber unit and, one by one fitted to the distillation unit 

along with a clean 250ml receiving beaker. During distillation the released nitrogen 

compounds and incorporated into the boric acid receiving solution, thus changing its pH. 
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Nitrogen was then determined by titration (Equation 8.1) and converted to protein using a 

conversion factor of 6.25. 

%𝑁 = (𝑡𝑖𝑡𝑟𝑎𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙) 𝑥 𝑎𝑐𝑖𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑡𝑦 𝑥 1.40067) ÷ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)  

Equation 8.1 - Titration equation for the Kjeldahl protocol. 

A paired t-test and a Pearson’s correlation was conducted on the data to determine the 

presence of significant differences in the results gained from each method and to determine 

if the results correlate significantly.  

8.6.3 Results 

The paired t-test between nitrogen values determined by the Kjeldahl method and 

determined by Dumas method showed a statistically significant difference between results (n 

= 22, t = 3.34, p = 0.003). The Dumas data set had a higher mean value of 2.585, compared to 

2.385 by Kjeldahl and also had a lower standard deviation of 0.538 compared to Kjeldahl’s 

0.638. The Pearson’s correlation (Figure 8.4) between the two data sets was 0.900 (p < 

0.0005), which is low when considering that both methods aim to quantify the same 

compound. This trend is concurrent with trends in the literature, however the majority of the 

literature compares Kjeldahl and Dumas for foodstuffs and animal feed and there is a notable 

variation in results of comparisons between different sample types (Jung et al., 2003; Miller 

et al., 2007; Simonne et al., 1997). Results support Hypothesis 5. 
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Figure 8.4 - Scatterplot of N content of samples for both Kjeldahl and Dumas methods (n = 22). 

8.6.4 Discussion 

Results favoured the Dumas method, as opposed to Kjeldahl, for the quantification of protein 

in agricultural samples, particularly of dung, which had received little attention in the past. 

Results between the two methods correlated significantly, however, were typically slightly 

higher for Dumas. At this stage, there is no saying which is more accurate, and there may be 

a need to adjust the conversion factor in the future if Dumas overestimates. Overall Dumas 

was far cheaper, quicker, and safer than Kjeldahl. In concurrence with the literature, it is 

recommended that Dumas should be used as the standard method for protein quantification 

(Bellomonte et al., 1986; Jung et al., 2003; Miller et al., 2007; Simonne et al., 1997; Stitcher 

et al., 1969; Thompson et al., 2002; Wiles et al., 1997). The use of Kjeldahl for historical 

purposes is not justifiable given the low efficiency of the technique and the increasing body 

of evidence favouring Dumas combustion. 

8.7 Cold carcass weights 

Cattle from the green farmlet had both highest cold carcass sale price (£GBP) at slaughter and 

the highest price paid per kilo of carcass weight (a factor based upon conformity and carcass 
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fat content), making them the most financially valuable animals, although the difference was 

not significant, as determined by a one-way ANOVA (F = 1.43, p = 0.246) (Figure 8.5). 

 

Figure 8.5 – Boxplots of total cold carcass sale price (£GBP) of cattle, from the three different 
farmlets, at slaughter (Winter 2015/16). Asterisks represent mean. 
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8.8 Modelling paper  
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8.9 Faecal antibody detection (FAD) paper
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