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Abstract

The adsorption and aggregation properties of twenty seven anionic hydrocarbon surfactants 

have been studied in aqueous systems. They are single-chain sulfonates with sodium or TAA 

counterions (where TAA = tetraalkylammonium, i.e. tetrapropylammonium), and di-chain 

sulfosuccinates with sodium counterions. The novel surfactants introduced possess branched tail 

structures which differ by the extent and position of branching. All

surfactants were synthesised and purified to investigate the relationships between 

surfactant structure and performance. The aim of this project is to fundamentally 

improve our understanding of controlling surface tension, and consequently use this to 

improve the performance of hydrocarbon surfactants to achieve low surface energies. 

First, by evaluating the surface coverage of various effective surfactants, a new general 

property to account for low aqueous surface tension regardless of surfactant type is introduced. 

Where it is shown that all super-effective surfactants pack effciently at air-water interfaces to 

generate dense surface coverages. With this general property in mind, the adsorption and 

aggregation properties of novel surfactants are studied through tensiometry and small-angle 

neutron scattering (SANS). By making small systematic variations in the surfactant structure, 

general structure-property relationships of effective hydrocarbon surfactants have been 

distinguished. The branching position, extent, and chain length are all shown to be both highly 

sensitive, and critical to generate low surface energies. The structural characteristics of effective 

hydrocarbon surfactants are encapsulated in a new index to assess potential surfactant 

performance, based on the molecular structure of the tail alone, H-Gamma.

Novel approaches to improve packing effciency at the surface have been explored, leading to 

the lowest surface tensions for single-chain, di-chain and mixed hydrocarbon surfactant systems. 

For example, replacing carbon in the surfactant tail chain-tip with silicon leads to an increased 

molecular volume, greater packing effciency and thus, lower surface tension. The ability to 

further improve packing effciency by choice of surfactant counterion is demonstrated. By 

systematically changing the identity of the head group for various tail structures, the TPA 

(tetrapropylammonium) counterion is shown to be an effective alternative for all hydrocarbon 

surfactants. Furthermore, mixing linear and branched surfactants help to generate dense surface 

coverages, as spaces within the monolayer are effectively filled, generating lower surface energies 

than either constituent surfactant. The research presented here highlights structural 

characteristics of effective hydrocarbon surfactants, outlines design principles, developing our 

understanding and ability to control, surface tension.
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Project Overview

The main objective of this research project is to improve the performance of hydro-

carbon surfactants at air-water interfaces. Therefore fundamentally, an overall aim

of this project is to improve our understanding of controlling surface tension. The

structure of this thesis is outlined in the chapter descriptions below.

1. Introduction - A short introduction to surfactants in general, fluorosurfac-

tants and their environmental constraints (which forms the justification for

this research), finishing with a short description of the aims of this project.

2. Structure-Property Relationships of Surfactants - Covers surface ten-

sion and common surface properties to compare surfactant performance. The

general structure-property relationship of low surface tension is introduced.

3. Thermodynamics and Scattering Theory - Provides a more thorough

account of the background theory behind surfactant adsorption, aggregation

and regular solution theory (mixed systems).

4. Experimental - Details the synthetic, purification and analytical character-

isation procedures for surfactants introduced and discussed in this thesis

5. Designing Optimised Surfactant Tails - Outlines the key structural re-

quirements of effective hydrocarbon surfactants, by comparing adsorption and

aggregation results for various di-chain sulfosuccinate surfactants in water.

The effectiveness index, Hγ, is introduced which provides a simple method to

design strong performing hydrocarbon surfactants.

6. Optimising Surfactant Performance with the Head Group - Provides

a new insight into improving the performance of hydrocarbon surfactants by

controlling the identity of the head group. Surface and bulk properties are

explored for many various single-chain anionic surfactants in aqueous systems.

7. Mixed Surfactant Systems - Mixed hydrocarbon surfactant systems are

introduced which generate very low surface energies, below either constituent

surfactant. The synergistic properties of these mixtures are attributed to en-

hanced molecular packing within the mixed monolayer.
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Chapter 1

Introduction

This thesis is primarily concerned with the behaviour of surfactant molecules at

air-water interfaces, and the various structure-property relationships required to

generate low aqueous surface tensions. It is therefore important to first introduce

surfactants, their characteristic features, diverse uses, and some colloidal systems of

relevant interest.

1.1 Surfactants in colloidal systems

Surfactants are a powerful class of compounds which facilitate and improve many

diverse processes, from breathing to extracting crude oil. The term surfactant is

a contraction of the phrase, surf ace act ive agent which as implied, describes a

molecule with a propensity for interfaces (an interface simply describes the boundary

between two phases, i.e. the gas-liquid interface is commonly referred to as the

surface). The reason surfactant molecules locate at an interface is due to their

amphiphilic structure, meaning they are dual natured compounds composed of both

hydrophilic and hydrophobic sections. A typical surfactant would possess a charged

or highly polar moiety forming the hydrophilic section, commonly referred to as

the head group, and a non-polar carbon chain referred to as the surfactant tail,

example shown in Figure 1.1. It is because of their dual nature, possessing both

strong polar and non-polar characteristics in a single molecule, that surfactants

exhibit extraordinary properties and are found in an extensive and diverse range of

colloidal systems.
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Chapter 1 1.1. SURFACTANTS IN COLLOIDAL SYSTEMS

Figure 1.1: General structure of a surfactant molecule with the head and tail groups
highlighted (surfactant shown is the linear dichain hydrocarbon surfactant di-C6SS).

Colloids are generally described as mixtures composed of one substance finely dis-

persed and suspended throughout another. However, the degree of subdivision

within a colloid does not approach that found in simple molecular mixtures such as

a solution, where solute and solvent constitute one phase. A colloidal system has a

dispersed phase, the suspended particles with a size range approximately between 1

µm and 1 nm, distributed uniformly in a finely divided state throughout a dispersion

medium (or continuous phase). Either phase can be a solid, liquid, or gas. Hence,

combinations of various phases, together with the large surface areas associated with

the characteristic size of colloidal particles, give rise to a large variety of systems

and practical applications, see Table 1.1.

Dispersed
Phase

Dispersed in
Gas

Dispersed in
Liquid

Dispersed in
Solid

Gas - Foams :
deodorant, fizzy

drinks

Solid foams :
styrofoam,

marshmallow

Liquid Fogs : mist,
clouds, hairsprays

Emulsions : milk,
shampoo,

mayonnaise

Gels : butter, jelly,
hair-gel

Solid Smokes : dust,
industrial smoke

Sols : paint, ink,
cell fluids

Solid sol : pearl,
paper, certain

alloys

Table 1.1: Examples of some commonly encountered synthetic and naturally occur-
ring colloidal systems.
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Chapter 1 1.2. TYPES OF SURFACTANTS

1.2 Types of surfactants

Because of their propensity for interfaces surfactants can be used to control the prop-

erties of a colloidal system. This control is further enhanced by the variety of sur-

factants available, each possessing unique characteristics. Because the hydrophilic

part of a surfactant molecule commonly achieves solubility by either ionic interac-

tions or by hydrogen bonding, classification is based on surfactant head group type,

with further subgroups based on the nature of the hydrophobic tail. Some common

examples of different surfactant classes are shown below in Table 1.2.

The most commonly encountered surfactants are anionic, cationic, non-ionic and

zwitterionic. Anionic surfactants dissociate in water into two oppositely charged

species, a negative surfactant ion and a positive counterion. Functional groups

acting as the head group include sulfate, sulfonate, phosphate and carboxylates.

The opposite is true for cationic surfactants which dissociate into positive surfactant

ions, featuring functional groups such as amines and quarternary ammonium salts.

Class Example Structure Name

Anionic Alkylsulfates

Cationic
Alkylammonium

halides

Non-ionic
Polyoxyethylene

alcohols

Zwitterionic Carboxy betaines

Gemini
Linked

alkylammonium
halides

Bolaform
Metal

alkyldianoates

Table 1.2: Common surfactant classes encountered in colloidal systems.
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Chapter 1 1.2. TYPES OF SURFACTANTS

Non-ionic surfactants possess no charge on the head group, but include a strong polar

group such as a polyoxyethylene or polyoxypropylene chain to produce a structure

of amphiphilic nature. Zwitterionic surfactants combine both a cationic and anionic

group into a single molecule. This makes them amphoretic and able to respond to

pH, with common head groups being betaines and sulfobetaines. Gemini and bo-

laform are less common surfactant classes which have been developed more recently.

A gemini surfactant is simply two identical surfactants which is linked by a spacer

group, either close to or at the head group. A bolaform surfactant can be considered

the opposite of a gemini, being two identical surfactants but instead linked at the

end of the tail group, giving two separate head groups.

All surfactant classes can be further divided into subgroups based on the nature of

the hydrophobic tail. A variety of hydrocarbon chains are encountered, for example,

natural fatty acids, olefins, alkylbenzenes and alkylphenols (SDS and di-PhC4SS

- Table 1.3). Such surfactants are collectively referred to as hydrocarbon (HC)

surfactants. The other two most commonly encountered groups are fluorocarbon

(FC) surfactants comprising fluorocarbon chains (PFOS - Table 1.3), and silicone

or siloxane surfactants bearing siloxane chains (L77 - Table 1.3).

Group Example Structure Surfactant Name

Alkyl SDS

Alkylphenol di-PHC4SS

Fluorocarbon PFOS

Silicone/Siloxane L77

Table 1.3: Examples of common hydrophobic groups encountered in commercially
available surfactants.
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Chapter 1 1.3. CHARACTERISTIC FEATURES OF SURFACTANTS

1.3 Characteristic features of surfactants

Although a great variety of different surfactant classes exist, they all possess am-

phiphilic structures. Therefore, when present in solution, there are characteristic

features that all surfactant molecules display to accommodate for their dual nature.

1.3.1 Adsorption

When dissolved in aqueous solution, surfactant molecules will adsorb to the air-

water interface (i.e. the surface) generating an orientated monolayer of surfactant

tails. This happens because the free energy of a surfactant molecule located at the

interface is lower than that of a molecule solubilised in either bulk phase. When

present in bulk water, the hydrophobic tails will disrupt the hydrogen bonding

network between water molecules, increasing the free energy of the system. On the

other hand, the hydrophilic head group will decrease the free energy of the system by

remaining solubilised in the water phase. Therefore, to satisfy these two conditions,

surfactant molecules locate themselves at the air-water interface with the hydrophilic

head group solvated in the water phase, and the hydrophobic tails orientated into

the gas phase, see Figure 1.2. Air is by nature non-polar and by adsorbing to the

surface, both moieties are solvated in their preferred bulk phase, generating a lower

free energy of the system. Hence it takes less energy to bring a surfactant molecule

to the surface then it does a water molecule. Therefore, adsorption of amphiphiles

to an interface (liquid-liquid or gas-liquid) is a spontaneous process which alters the

interfacial (surface) tension.

Figure 1.2: Surfactant molecules spontaneously adsorb to the air-water interface
(surface) generating an orientated monolayer of surfactant tails.
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Chapter 1 1.3. CHARACTERISTIC FEATURES OF SURFACTANTS

1.3.2 Aggregation

As the concentration of surfactant in solution is increased, the surface coverage of

surfactant molecules will also increase. At a well defined concentration, the surface

is at (near) maximum coverage and surfactant molecules must adopt another config-

uration to minimise unfavourable, high energy interactions between the hydrophobic

tails and water molecules. By undergoing self-aggregation, surfactant molecules can

form structures where again both moieties are solvated in their preferred environ-

ment, generating a lower free energy. The hydrophobic tails orientate inwards, sur-

rounding themselves by neighbouring tails whilst the hydrophilic head groups form

a shell which can remain solvated in the bulk water, see Figure 1.3. By adopting this

configuration, favourable interactions are formed between both the non-polar tails

with each other and the polar head groups with water molecules, whilst also better

conserving the hydrogen bonding between water molecules. These self-aggregated

structures are called micelles, and the concentration at which they form is known as

the critical micelle concentration (cmc). A variety of micellar shapes and sizes can

be adopted with a typical micelle consisting of 50-200 surfactant molecules.

Above the cmc, the system has three states in equilibrium with each other - free

surfactant molecules, an orientated monolayer, and micellised surfactant in the bulk.

Below the cmc, the system is composed of an orientated monolayer and surfactant

molecules which are perpetually arriving at, and leaving, the surface.

Figure 1.3: Cross section of a spherical micelle.
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Chapter 1 1.4. USES OF SURFACTANTS

1.4 Uses of surfactants

Surfactants have an extremely widespread set of uses, being an integral group of

chemicals in both nature and today’s society. For example, pulmonary surfactants

present in the lungs adsorb to the air-water interface of alveoli, reducing the surface

tension to increase pulmonary compliance, prevent atelectasis (collapse of the lung)

and reduce fluid accumulation.1 The cell membrane is composed of a lipid bilayer,

formed by amphiphilic phospholipids which undergo self-assembly. Surfactants have

even shown to be crucial for effective anti-predator defence against invertebrates by

offering a base level of protection.2 However, although surfactants were clearly a

crucial chemical for the evolution of biological species, they have also had a pivotal

effect in the development of modern society.

Since the first synthetic detergents were developed in 1916 during World War I,

synthetic surfactants have now become an essential component in many industrial

formulations. Their broad applications include, but are not limited to: detergents,

paints, inks, adhesives, agrochemicals, cosmetics, pharmaceuticals, firefighting, in-

secticides, printing and petroleum.3 The greatest demand for surfactants is in per-

sonal care products, being widely used in detergents, soaps, cosmetics etc. Out

of the various classes of surfactants available, anionics account for the majority

due to the ease and low cost of manufacture. Other classifications, although more

expensive, still find specific uses for example, zwitterionics possess excellent der-

matological properties, and because of their low skin and eye irritation are used in

certain shampoos and cosmetics.

The most commonly used anionic surfactants possess a hydrocarbon tail, such

as sodium stearate. However, certain applications (such as paints, polishes and

coatings) require a more effective lowering of surface tension than typical HC sur-

factants. Fluorosurfactants, composed of a fluorocarbon tail, are more effective

at reducing the surface tension than comparable HC surfactants and are therefore

extensively used in many applications. Furthermore, FC surfactants are able to

withstand harsher conditions than HC surfactants because of the stability of the

carbon-fluorine bond (for more details see Section 2.4). Likewise, this also makes

fluorosurfactants persistent organic pollutants, detectable in humans and wildlife.4
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1.5 Environmental consequences of fluorosurfac-

tants

Carboxylated and sulfonyl-based fluorochemicals have been produced and used for

more than 50 years both industrially and commercially. These polyfluoroalkyl sub-

stances (PFSs) can degrade to persistent perfluorocarboxylates (PFCAs) and per-

fluoroalkyl sulfonates (PFSAs).5 It is widely recognised that PFCAs and PFSAs

bioaccumulate in the environment, being measured in water, fish, birds, mammals

and humans worldwide.6–8 Although some PFCAs possess a low bioaccumulation po-

tential, the presence of detectable concentrations in higher trophic level biota (polar

bears, minks and predatory birds) has generated concerns regarding the biomagni-

fication potential in food webs.9,10 Toxic effects of PFCAs/PFSAs vary depending

on the species affected, as one example in mammals, PFCAs interact with nuclear

receptor proteins which regulate the expression of genes, affecting enzymes and pro-

teins involved in lipid metabolism.11

Extensive studies determined that bioaccumulation was directly related to fluori-

nated carbon chain length, with the highest bioaccumulation potential noted for the

longest perfluorinated acids.12–14 In 2009 PFSs with a carbon chain length of eight or

more were listed as persistent organic pollutants under the Stockholm Convention.15

Short chain PFSs are the most common replacement, however, they are still envi-

ronmentally persistent or have persistent degradation products. Hence, there is now

a real need to develop environmentally friendly alternatives to FC surfactants. Hy-

drocarbon surfactants are considered more environmentally friendly and thus, could

provide an alternative. However, conventionally HC surfactants are unable to reduce

surface tension to the very low values achieved by FC surfactants, e.g. PFOS = 17.8

mN m−1.16 Recent novel HC surfactants which have a highly branched surfactant

tail have generated very low values of surface tension, comparable with certain FC

surfactants.17 This result strongly promotes the possibility of using HC surfactants

as an environmentally friendly alternative, pointing to new ways of designing 21st

century surfactants and controlling surface energy.
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1.6 Project aims

To establish a suitable and viable replacement for fluorosurfactants, the performance

of hydrocarbon surfactants must be improved beyond what is currently achieved. To

accomplish this, strong links between molecular structure and physio-chemical ac-

tion must be determined. Previous attempts, most notably the work of Nave et al.,

have created a solid foundation to help elucidate further structure-property relation-

ships of hydrocarbon surfactants. However, the need to generate very low surface

energies with hydrocarbon surfactants has remained insignificant until now. There-

fore, the structural characteristics of exceptionally strong performing hydrocarbon

surfactants is currently unknown. The main aim of this project is to understand

how the performance of hydrocarbon surfactants can be significantly improved, by

controlled design of the surfactant structure. Which in turn, will improve our funda-

mental understanding of controlling surface tension. This thesis therefore primarily

focuses on structural effects of surfactant molecules at air-water interfaces, which

are investigated through techniques such as tensiometry.

As briefly introduced towards the end of this chapter, hydrocarbon surfactants

have been highlighted as a possible alternative to environmentally hazardous flu-

orosurfactants, due to the low surface energies generated by highly branched tail

structures. Therefore, a primary objective of this work is to identify why highly

branched hydrocarbon tails are effective. By synthesising, characterising and com-

paring surface properties for a large range of anionic hydrocarbon surfactants, impor-

tant structure-property relationships required to generate low surface energies can

be distinguished. Thus, it should be possible to identify general structure-property

relationships of effective hydrocarbon surfactants, which can then be used to guide

the design of new, high performance surfactants. A secondary objective is to achieve

the lowest surface energies with all major forms of surfactants: single-chain, di-chain

and mixed surfactant systems, providing alternatives for industrial formulations.

Overall, this work aims to use and consolidate research over the last twenty years

to outline the general, necessary structural characteristics of effective hydrocarbon

surfactants. It will therefore act as a guide, or manual, to design low surface en-

ergy hydrocarbon surfactants. Establishing a secure, viable, and strong future for

designing environmentally acceptable replacements to fluorosurfactants.
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Chapter 2

Structure-Property Relationships

of Surfactants

To generate lower surface tensions then previously achieved by hydrocarbon surfac-

tants, our fundamental understanding of how we control surface tension must be

developed. In this chapter, a more thorough explanation of surface tension is given,

and common surface properties used to compare surfactant performance are intro-

duced. Relationships between surface tension and surfactant structure are discussed

for fluorocarbon, hydrocarbon, and silicone surfactants. By comparing the perfor-

mance of these three classes of surfactant a new, general property that accounts

for low aqueous surface tension is introduced. This general structure-property re-

lationship of surfactants has not been highlighted before, and points to new ways

of controlling surface tension. This chapter is adapted from a literature review

published by the author of this thesis.1

2.1 Surface tension

The area where two bulk phases meet is referred to as the interface. Because the

molecular environment of each bulk phase is different at the interface, there is a

corresponding interfacial free energy. When a gas meets a liquid, i.e. a surface, the

interfacial free energy is referred to as the surface free energy, or surface tension

- γ. Observed when pond skaters delicately move over water, γ is caused by an

imbalance of attractive intermolecular interactions at a liquid surface. Molecules
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Chapter 2 2.1. SURFACE TENSION

Figure 2.1: The forces acting on water molecules in the bulk and at the surface.

at the surface have no neighbours above, and are consequently pulled inwards by

molecules in the bulk which causes the surface to contract, giving rise to surface

tension. However, it is also possible to describe γ in terms of energy. Two molecules

neighbouring each other will be in a lower energy state than if alone, due to mutual

attractive interactions. Molecules on the surface have less neighbours compared to

molecules in the bulk, and are therefore in a higher energy state, see Figure 2.1.

This creates an excess energy on the surface, referred to as the surface free energy.

To reduce this excess energy the surface will contract to reduce the exposed surface

area (e.g. drops and bubbles are spherical because a sphere possesses the highest

volume to surface area ratio). Hence, the surface free energy (units: J m−2) and

surface tension (units: N m−1) of a liquid are equivalent, but a different definition

of the same phenomenon.

Minimisation of the contact area with the gas phase is a spontaneous process

and therefore, to create additional surface, a minimum amount of work (Wmin) is

required. This is simply a product of the surface tension γ and increase in interfacial

area ∆A, so Wmin = γ∆A. A surface-active agent (surfactant) is a substance that

will adsorb to a surface, significantly alter the surface (interfacial) tension, thereby

changing the amount of work required to expand the liquid surface. Surfactants

reduce γ by forming an orientated monolayer of tails at the surface to accommodate

for their dual-nature, as introduced in Section 1.3. The driving force for surfactant

adsorption is unfavourable hydrophobic interactions within the bulk phase. There,
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Chapter 2 2.1. SURFACE TENSION

water molecules interact strongly with each other via hydrogen bonding and van der

Waals interactions. The presence of a hydrophobic surfactant tail dissolved within

the bulk disrupts the isotropically arranged hydrogen bonding network, causing an

unfavourable increase in the free energy of the system. It therefore requires less

work to bring a surfactant molecule to the surface than a water molecule hence,

hydrophobic moieties will spontaneously be expelled from bulk water, an observed

tendency known as the hydrophobic effect.2 It should be noted that it is a loss of

entropy rather than bond energy that leads to an unfavourable free energy change for

the process.3 As surfactant molecules arrive at the surface, they form an orientated

monolayer with the hydrophobic tails partitioned into the air (which is by nature

non-polar) whilst the polar head groups remain solvated in water (Figure 1.2). The

spontaneous formation of this orientated monolayer reduces the surface tension of

pure water (72.5 mN m−1 at 298 K) because simply put, high energy polar water

molecules are replaced by a layer of lower energy non-polar surfactant tails.

2.1.1 Equilibrium and dynamic surface tension

Equilibrium surface tension - Also referred to as the static or limiting surface tension,

it represents the surface tension of a particular interface at its equilibrium state.

Equilibrium is reached when sufficient time has passed allowing complete formation

of the orientated surfactant monolayer. Dependent on conditions (i.e. temperature,

etc.), there is only one value of static surface tension for a particular interface.

Dynamic surface tension - The equilibrium surface tension is not achieved instanta-

neously because surfactant molecules must first adsorb to the surface from the bulk,

whilst also achieving the correct orientation. Eventually this dynamic surface ten-

sion will decay to the equilibrium value over a certain period of time which depends

on the surfactant type and concentration, ranging from milliseconds to days. Mea-

suring the surface tension over time (i.e. the dynamic surface tension) can provide

information on the diffusion and adsorption rates. The efficiency of certain processes

such as printing are highly dependent on these rates, attracting much attention to

understand the processes governing transport of surfactant molecules from bulk to

the interface.4,5 However, the primary concern of the research presented here is

investigating the equilibrium surface tension, and will be the focus for the chapter.
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Chapter 2 2.2. SURFACE PROPERTIES OF SURFACTANTS

2.2 Surface properties of surfactants

As surfactant is introduced into solution, the surface tension will begin to decrease

due to adsorption of surfactant molecules to the surface. As the concentration of

surfactant increases, the surface tension will continue to decrease until the surface

becomes fully saturated and is at (near) maximum coverage. To further minimise

the free energy of the system, surfactant molecules undergo self-aggregation (micel-

lisation), forming structures in the bulk phase which continue to keep the surfactant

head and tail solvated in their preferred environment. The well-defined concentra-

tion at which this happens is known as the cmc, or critical micelle concentration.

Both the concentration of the cmc, and range at which adsorption takes place, de-

pend on the molecular structure of the surfactant. A time-averaged value for the

concentration of surfactant molecules at the surface can be determined directly, or

indirectly, using thermodynamic equations. Both the thermodynamics of micellisa-

tion and adsorption, as well as details about micelle formation and structure will be

more thoroughly described in Chapter 3.

The surface excess, Γ, provides a quantitative description of surfactant adsorp-

tion, and is defined as the concentration of surfactant molecules in a surface plane,

relative to that at a similar plane in the bulk. The Gibbs equation (Eqn. 2.1) re-

lates the change in surface tension with concentration, to the amount adsorbed at

the surface:

Γ =
−1

mRT

(
d γ

d ln C

)
(2.1)

where m is the number of adsorbing species, R is the ideal gas constant, T is the

temperature, γ is the surface tension, and C is the surfactant concentration. Hence,

by application of the Gibbs analysis, measurement of γ as a function of C allows

a quantitative determination of the adsorbed amount Γ(C). Figure 2.2 shows the

typical behaviour of a surfactant in water (decreasing surface tension with increas-

ing surfactant concentration), and how the Gibbs equation is applied to quantify

adsorption at the surface. By determining the surface excess at the cmc, the area

per molecule at the cmc Acmc, that is, the average area one surfactant molecule

occupies at the interface, can be estimated.
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Figure 2.2: The surface tension (γ) is reduced as surfactant molecules adsorb to the
air-water interface, simultaneously increasing the surface excess (Γ) until the cmc is
reached, at which point there is generally a plateau. Acmc corresponds to the area
per surfactant molecule at the air-water interface at the cmc.

The surface tension remains constant after the cmc because the surface has be-

come fully saturated hence, the surface tension at the cmc, γcmc, represents a useful

reference value in surface tension for a particular surfactant. The critical micelle

concentration (cmc), the limiting surface tension at the cmc (γcmc), the area per

molecule at the cmc (Acmc) and the dynamics of adsorption, are all influenced by

the surfactant structure. For example, Figure 2.3 shows the aqueous limiting surface

tension and molecular area for a common linear fluorocarbon (FC), silicone (SiC),

and hydrocarbon (HC) surfactant. A large variation in γcmc is seen highlighting the

importance of chemical structure. Note, the common linear HC surfactant SDS is a

poor performer on this scale, suggesting such simple HC surfactants are inefficient.

Hence, by comparing important physiochemical properties such as γcmc and Acmc for

a variety of different surfactant structures, relationships between surfactant struc-

ture and surface tension are highlighted. These structure-property relationships can

then be used to help guide the design of novel surfactants for the application of

interest, i.e. to generate low surface energies with HC surfactants.

The interfacial width (i.e. thickness) of a surfactant monolayer at the air-water

interface can be determined by neutron reflectometry (NR).9 This will vary depend-
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Figure 2.3: Aqueous limiting surface tension and corresponding interfacial molecular
area for a typical linear fluorocarbon, silicone and hydrocarbon surfactant. The
column height represents γcmc, and the column width is proportional to Acmc. Data
for NaPFN,6 SS1,7 and SDS.8

ing on the surfactant structure, but for hydrocarbon surfactants, the monolayer

width generally falls in the range of 15 - 25 Å.10 However, surfactant structure does

not solely define the interfacial width, and thermal fluctuations present at the sur-

face will affect the observed monolayer thickness (i.e. capillary waves and surface

roughness).11 The Gibbs model does not account for these subtle surface effects as

the interface is assumed to be infinitely thin (see Chapter 3). However, provided

experiments are both constructed and conducted carefully, good agreement has been

found for interfacial widths determined by surface tension and NR.12

2.2.1 Surfactant efficiency and effectiveness

To help compare the performance of surfactants, Rosen et al. provided specific

definitions of the efficiency and effectiveness of surfactant molecules.13

Surfactant efficiency - “The bulk concentration of surfactant required to produce a

20 mN m−1 reduction of surface tension.”

Surfactant effectiveness - “The maximum reduction of surface tension that a par-

ticular surfactant can generate, regardless of concentration.”
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2.3 Influence of the hydrophobic tail on surface

tension

The surface tension of a liquid is intimately related to intermolecular interactions.14

Fowkes suggested that by approximating intermolecular interactions as additive,

surface tension γ may be represented by two dominant contributions, one due to

dispersion interactions γd and one accounting for all other polar interactions γp (i.e

γ = γd + γp).15 This concept can be applied directly to the solid/liquid interface to

obtain the two separate components of surface energy. By conducting contact angle

studies Pitt et al. investigated the polar and dispersive components of sulfosucci-

nate and sulfotricarballylate surfactants.16 Surface free energies were then compared

with the limiting surface tensions of aqueous solutions. For both surfactant series,

a strong correlation was seen between the dispersion component of surface free en-

ergy γd, but no correlation was seen for the polar component γp. For the first time

Pitt highlighted clearly the strong relationship between surface tension and chem-

istry of the hydrophobic tails. By comparing surface properties of fluorocarbon and

hydrocarbon surfactants, Pitt was able to identify some general structure-property

relationships of surface tension (ref. [16]), namely:

• Increasing the number of tails (i.e. going from a single-chain to di-chain sur-

factant) caused a further reduction of surface tension.

• A variety of terminal chain groups were investigated and included fluoroalkyl,

alkyl, and aryl groups, showing the following trend for γcmc: CF3 –CF2 – <

H(CF2CF2)– < branched alkyl < single-tail alkyl < phenyl

The trend of a decreasing surface tension with increasing number of tails is a con-

sequence of two effects: 1) an increase in the packing efficiency of the tail groups

versus the electrostatic repulsion between neighbouring head groups and 2) a di-

rect increase in the –CH3 to –CH2 – ratio per head group, based on the following

order of increasing energy CF3 < CF2 < CH3 < CH2.17 The effects of various tail

chemistries on limiting surface tension was extended to non-ionic surfactants. De-

spite being charge neutral, the pattern of behaviour and the effects of various tail

chemistries were of the same order as seen with the anionic surfactants, further
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reinforcing the strong relationship between surface activity and chemistry of the

hydrophobic tails.

The most common surfactants are FC, SiC, and HC surfactants, based on hy-

drophobic tails composed of fluorocarbon, siloxane or hydrocarbon chains respec-

tively. By comparing the structure-property relationships of three different classes

of surfactant, it has been possible to identify a new general property of surfactants

which accounts for a low aqueous surface tension. First though, a brief overview of

the unique properties of each class.

2.4 Fluorosurfactants

In the 1950s, an unexpected discovery at 3M highlighted the potential of fluorochem-

ical cleaning products and catalysed the development of fluorosurfactants. Fluoro-

surfactants now constitute an important class and appear in a diverse range of appli-

cations including biomedicine, firefighting applications, cosmetics, lubricants, paints,

polishes, and adhesives, representing a multibillion dollar industry.18 Furthermore,

the hydrophobic tails of fluorosurfactants display both oil and water repellency,

and because of this, fluorosurfactants are used as low-surface-energy coatings, for

example, on textiles or paper.19

In fluorinated surfactants, at least one hydrogen in the hydrophobic tail has

been replaced by fluorine. Both the extent of fluorination and position of the flu-

orine atoms affect the characteristics of the surfactants. Fluorosurfactants can be

described as perfluorinated, where all hydrogen in the hydrophobic tail has been

replaced by fluorine, or as partially fluorinated. Fluorosurfactants display greater

surface activities than their hydrocarbon counterparts and can lower surface ten-

sions effectively at very low concentrations, typically lowering the surface tension of

water from 72 to around 15-25 mN m−1. The essential reasons fluorocarbon (FC)

surfactants generate low γcmc are the following:

(1) The lower polarisability of fluorine compared to hydrogen results in weaker

attractive intermolecular forces.

(2) The greater molecular volume of perfluoroalkyl moieties over hydrocarbon moi-

eties makes fluoroalkyl chains more hydrophobic.
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(3) The larger cross section of fluorocarbon chains means the packing density per

unit area is lower and hence so are the intermolecular forces.

The greater surface activity of fluorosurfactants over that of their hydrocarbon coun-

terparts stems from the unique properties of fluorine. The cohesion of a liquid is

due to the attractive forces between molecules. Although because of the high elec-

tronegativity of fluorine a C-F bond is polarised, a perfluorocarbon chain is overall

nonpolar and has a zero dipole moment. In nonpolar liquids, only the induced-

dipole/induced-dipole dispersion interactions are of relevance. The strength of this

interaction is governed by the polarisability of the interacting atoms. Fluorine has

a lower polarisability than hydrogen therefore, the total dispersion interaction is

lower for the interaction between fluorine atoms. Hence, perfluoroalkane liquids are

expected to have weaker attractive intermolecular forces than similar hydrocarbons.

The other principal reason for the lower surface tensions exhibited by perflu-

oroalkane liquids in comparison to those of analogous hydrocarbons is the larger

volume of perfluoroalkyl moieties. The mean volumes of –CF2 – and –CF3 groups

have been estimated to be 38 and 92 Å
3
, whereas those of –CH2 – and –CH3 are

around 27 and 54 Å
3

respectively.20 Linked to these steric reasons, the average lim-

iting cross-sectional area for a fluorocarbon chain is 27-30 Å
2
, which is larger than

the range of 18-21 Å
2

typically achieved for a hydrocarbon chain (ref. [20]). It is

also instructive to examine the free energy of transfer of non-polar carbon moieties

from water, ∆G, and hence quantify the hydrophobic effect. Table 2.1 compares

the size and incremental changes in free energy of adsorption for the transfer of a

mole of –CH2 – or –CF2 – groups from water to the air-water interface. It can be

seen that a more favourable free energy of transfer is obtained for –CF2 – groups

and therefore, F chains are considerably more hydrophobic than H chains because of

their relative larger size. Hence, because of the “bulk” of fluorocarbon surfactants,

they will show an enhanced tendency to segregate, self-assemble, and collect at the

air-water interface to alter the surface free energy.

The larger cross section of a fluorocarbon chain also means that the molecular

packing density per unit area is lower than for hydrocarbon chains and therefore, so

are the intermolecular interactions. Hence, because of the unique chemistry of fluo-

rine over hydrogen, it can now be understood why fluorocarbon surfactants possess
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Group Cross-sectional
area (Å

2
)

Group volume

(Å
3
)

-∆G
(kJ mol−1)

–CH2 – 18-21 27 2.60

–CF2 – 27-30 38 5.10

Table 2.1: Comparison of the size and free energy of transfer from water to the
air/water interface at 298.15 K for one mole of –CH2 – and –CF2 – groups. Data
from ref. [20].

greater surface activities over hydrocarbon analogues and why longer fluoroalkyl

chain lengths give the lowest reported surface energies. However, as described in

Section 1.5, more recently it has been identified that fluorinated compounds with

C8-C15 chain lengths are hazardous pollutants.21 Bioconcentration and bioaccumu-

lation of perfluorinated acids are directly related to fluorination,22 and now there is

a need to develop replacements for fluorosurfactants.

2.5 Silicone surfactants

Silicone surfactants, also commonly referred to as siloxane surfactants, are composed

of permethylated siloxane hydrophobic groups coupled to one or more hydrophilic

polar groups. There are three common molecular structures for silicone surfactants:

rake-type copolymers (comb or graft copolymers),23 ABA copolymers (where B rep-

resents the silicone portion),24 and trisiloxane surfactants (Table 1.3).25 Although

the polar groups can be nonionic, anionic, cationic, or zwitterionic, nonionic groups

based on polyoxyethylene (PEO) and polyoxypropylene (PPO) are the most com-

mon. Silicone surfactants can effectively reduce aqueous surface tensions, achieving

γcmc in the range of 20-30 mN m−1 (compared to the value of ∼ 30 mN m−1 for

typical hydrocarbon surfactants) and can be surface-active in both aqueous and

nonaqueous media.26 The essential reasons silicone (SiC) surfactants generate low

γcmc are the following:

(1) the low intrinsic surface activity and lower surface energy of methyl groups.

(2) the flexibility of the siloxane backbone which can adopt conformations to

present available organic groups to their best advantage (i.e., a surface that is

dominated by methyls).
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The -O-Si-O-Si- backbone serves as a flexible framework on which to attach multiple

methyl groups. The low intrinsic surface energy of methyl groups (ref. [17]) coupled

with the unique flexibility of the siloxane backbone enables the surfactants to adopt

a variety of configurations and to present surfaces that are dominated by methyl

groups, compared to typical linear-chain HC surfactants, which promote films with

a greater proportion of higher-surface-energy –CH2 – groups (Figure 2.4).

These systems also display unique spreading properties; therefore, they are

widely used in applications such as stabilisers for polyurethane foams, emulsifiers in

cosmetics, agricultural adjuvants, textile conditioning, coating, and ink additives.27

However, the Si-O-Si linkage is susceptible to hydrolysis in the presence of mois-

ture, and the hydrolytic instability of trisiloxane surfactants is an inherent weakness

which reduces their performance as well as requiring careful handling, synthesis and

storage.28

Figure 2.4: Schematic comparison of the surface character of hydrocarbon versus
silicone surfactants.
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Chapter 2 2.6. HYDROCARBON SURFACTANTS

2.6 Hydrocarbon surfactants

Because of the unique chemistry of fluorine compared to hydrogen, and the enhanced

flexibility of a siloxane backbone, linear hydrocarbon surfactants are outperformed

by common FC and SiC surfactants. Initially, it would appear that hydrocarbon

surfactants are inferior. However, due to the environmentally hazardous nature of

FC surfactants, and the hydrolytic instability of SiC surfactants, hydrocarbon sur-

factants offer an alternative which is both stable and environmentally safe. Recently,

highly branched hydrocarbon surfactants have been synthesised which generate very

low values of γ comparable with certain FC surfactants.29 The essential reasons these

HC surfactants generate low γcmc are:

(1) the low intrinsic surface energy of methyl groups –CH3 (ref. [17])

(2) highly branched tails generate dense surface layers composed of –CH3 groups

with weaker tail-tail interactions compared to those of linear-chain HC tails.

Aerosol-OT (or AOT) is one of the most studied surfactants because of its high versa-

tility, rich aqueous-phase behavior, and ability to form cosurfactant-free microemul-

sions. Investigations of the relationship between the surfactant molecular structure

and phase behavior have previously been performed with 16 different aerosol-OT-

related surfactants.30 AOT with a limiting surface tension of γcmc = 30.8 mN m−1

and an effective area per molecule of Acmc = 75 Å
2

was shown to behave in a very

similar fashion to a range of related analogues. However, these studies revealed that

the hydrocarbon backbone structure dictates the interfacial packing. The branched-

chain compounds demonstrated a significant increase in Acmc of between 10 and 20

Å
2

over those found for equivalent carbon number linear-chain surfactants. Further-

more, slight variations in Acmc were detected, reflecting changes in packing owing

to differing extents of chain branching. It has been shown that the chain branching

of hydrocarbon surfactants, especially an increasing level of chain tip methylation,

can lead to γcmc values lower than those for linear chain analogues.31 This approach

to packing the hydrocarbon chain termini with low surface-energy –CH3 groups

mirrors the architecture of the very effective siloxane surfactants mentioned in the

previous section.
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Figure 2.5: Molecular structure of the highly branched hydrocarbon surfactant Na-
FO180.

In effect, the limiting γ that could be achieved with a HC surfactant would be that

for the parent hydrocarbon. For example, the γcmc of SDS with linear nC12 chains is

∼ 35 mN m−1 , but γair−liquid for pure n-dodecane is ∼ 26 mN m−1.32 The reason for

the difference is that the water-soluble head groups sterically hinder the surfactant

tails from achieving a dense surface, and increase the dispersion contribution γd to

the total tension by introducing dipolar interactions. Therefore, to obtain soluble

and useful low-surface-energy HC surfactants, the van der Waals dispersion inter-

actions must be maximised to promote dense surface packing of –CH3 and –CH2 –

groups while at the same time minimising dipolar head group interactions, which are

essential, and unavoidable, to promoting water solubility. Hence, the net limiting

surface tension γcmc is a result of the balance between these two opposing effects.

One approach is to replace linear hydrocarbon chains with highly branched

bulkier groups, also referred to as “hedgehog” surfactants owing to their unusual

spiky brushlike structures. In these systems, branched alkyl moieties help to gener-

ate high densities of pure liquid alkanes at the air-water interface. The molecular

structure of the effective hedgehog surfactant Na-FO180, achieving γcmc = 25.4

mN m−1, is shown in Figure 2.5. Compared to an appropriate pure alkane such as

tetradecane, where γtetradecane = 24.8 mN m−1, it’s clear to see that γcmc has reached

a natural limit of surface tension reduction. This remarkable reduction in γ is due

to both the chain tip methylation which helps to generate a surface dominated by

low surface-energy –CH3 groups, and the chain branching which increases Acmc.

This increase in Acmc reduces the number of surfactant molecules required to gen-

erate a dense surface coverage, and therefore, as a result, reduces the dispersion

contribution to surface tension.
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Hence, to develop HC surfactants with surface tensions as low as can be obtained

for FC surfactants, dense surfactant films are needed. The optimal thickness of a

surfactant layer (i.e., the optimal length of a surfactant tail) for attaining very low

γ must be considered. If the tails are too long, then the surfactant will have poor

solubility in water owing to the hydrophobic effect, and stronger tail-tail interactions

will result in surfactants that are too hydrophobic, with low cmc’s, tending towards

insolubility. On the other hand, too short a tail is insufficiently hydrophobic de-

manding impractical quantities of surfactant to generate a sufficiently dense surface

coverage.

The results presented above suggest that highly branched tail structures can

indeed generate dense surface layers, which mimic the surfaces of pure alkane liquids.

Hence, hydrocarbon surfactants could be developed to achieve equilibrium surface

tensions which match those of fluorocarbon or silicone surfactants.

2.7 General structure-property relationship of low

aqueous surface tension

Above, the effect of surfactant structure on aqueous γcmc has been reviewed for

fluorocarbon, silicone, and hydrocarbon surfactants. It has been shown that each

class of surfactant possesses chemical properties which are at the heart of notable

performance. However, by comparing widely different classes of surfactants, is it

possible to identify a general property, independent of the chemical type or structure,

which explains low γcmc? An index to assess the surface coverage at the cmc, Φcmc,

is introduced (Eqn. 2.2):

Φcmc =
Vcal
Vmeas

(2.2)

where Vcal is the total physical volume of surfactant molecular fragments (values

taken from refs33–35) and Vmeas is the total volume occupied by a molecule at the

reference air-water interface, calculated using experimental values (Eqn. 2.3):

Vmeas = Acmc × τ (2.3)
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Figure 2.6: Visual representation of surfactants at the air-water interface, showing
the different fragments and interfacial volumes used in the calculation of Φcmc. The
measured surfactant molecular volume is Vmeas, and the calculated volume based on
summation of fragments is Vcal.

Acmc corresponds to the surfactant head group area (which can be determined ten-

siometrically), and τ is an interfacial thickness which can be determined by neutron

reflectivity, or the Tanford equation (Eqn. 2.4):

τ = 1.5 + 1.256x (2.4)

where x is the carbon number of the longest alkyl chain in the tail. An illustration of

these volumes and dimensions is depicted in Figure 2.6. The part of the interfacial

layer which is not occupied by molecular fragments is free space. Hence, assuming

the layer is uniform, a high Φcmc indicates an efficiently packed surfactant monolayer

with little free space. As an example, the common surfactant AOT with aqueous

γcmc = 30.8 mN m−1 and Acmc = 75 Å
2
, has a corresponding Φcmc = 0.63. In

comparison, di-CF2, a linear dichain fluorocarbon AOT-based analogue, has γcmc =

22.4 mN m−1 and Acmc = 65 Å
2
, giving a surface coverage value of Φcmc = 0.79.36

Figure 2.7 shows an illustration of aqueous limiting surface tensions, γcmc, corre-

sponding areas per molecule at the surface, Acmc, and film-packing volume fractions,

Φcmc, for some of the most effective fluorocarbon, silicone, and hydrocarbon surfac-

tants. The column height represents γcmc, and the column width represents Acmc.

Surface coverage Φcmc is also given in each column. From Figure 2.7, it can be seen

that all classes of these superefficient surfactants generate high interfacial coverages

(i.e. Φcmc → 1).
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Figure 2.7: Comparison of the aqueous surface tension, area per molecule, and sur-
face coverage at the cmc for some of the most effective fluorocarbon (red), silicone
(grey), and hydrocarbon (cream) surfactants. The column height shows γcmc, and
the column width represents Acmc. Chains and end groups in bold represent perflu-
oroalkyl chains. Data from the literature: di-CF4,37 CF

8 C3 − 2 − C3CF
8 ,38 SS1 (ref.

[7]), L77,39 diBC6SS,40 and Na+-iC18S(FO-180) (ref. [29]).
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The values obtained for Φcmc are independent of both the surfactant geometry and

chemistry of the surfactants. Therefore, by comparing Φcmc alongside γcmc and Acmc

for three main classes of low-surface-energy surfactants, it is possible to identify a

general structure-property relationship of surfactants that accounts for low γcmc:

Low aqueous surface tensions are achieved through efficient surface packing and

hence superior coverages at the air-water interface (ref. [1]).

That is, an efficiently packed surface monolayer is required for low γcmc, consistent

with a high value of Φcmc. This has been identified by evaluating surface tension

in terms of surface coverage at the cmc, Φcmc, where the most effective surfactants

known all show high surface coverages. This general structure-property relation-

ship of surfactants has not been highlighted before, and it points to new ways of

controlling the surface energy through the design of superefficient, environmentally

acceptable, and commercially viable surfactants.
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Chapter 3

Thermodynamics and Scattering

Theory

This section outlines the various thermodynamic models which are used to char-

acterise surfactant properties which feature throughout this thesis, with particular

emphasis on adsorption at the air-water interface and aggregation within the bulk.

3.1 Surfactant adsorption

To provide a quantitative description of surfactant adsorption the surface excess was

introduced in Section 5.2, and defined as the concentration of surfactant molecules in

a surface plane relative to that at a similar plane in the bulk. The Gibbs adsorption

equation was also introduced, which is the most common thermodynamic model

relating the change in surface tension with concentration, to the amount adsorbed

at the surface.1

The first approximation with the Gibbs model is the “exact” location of the

air-water interface. Consider a surfactant aqueous phase α in equilibrium with

a vapour phase β. The interface is a region of indeterminate thickness τ across

which the properties of the system vary from values specific to phase α, to those

characteristics of β. Since properties within this real interface cannot be well defined,

a convenient assumption is to consider a mathematical plane σ, with zero thickness,

so that the properties of α and β apply right up to that dividing plane positioned

at some specific value X, Figure 3.1 illustrates this ideal system.
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Chapter 3 3.1. SURFACTANT ADSORPTION

Figure 3.1: In the Gibbs approach to defining the surface excess concentration Γ,
the two phases α and β are separated by an ideal interface which is infinitely thin.
The chemical components of the α and β bulk phases remain unchanged except
when approaching the dividing interface.

In the Gibbs model, the interface σ is ideally thin (Vσ = 0) and therefore the total

volume is

V = V α + V β (3.1)

All other extensive quantities can be written as a sum of three components: one of

the bulk phase α, one of the bulk phase β, and one of the interfacial region σ. For

example, the internal energy U :

U = Uα + Uβ + Uσ (3.2)

The internal energies of α and β are determined from the homogeneous bulk regions

of the two phases. Taking uα and uβ to be the internal energies per unit volume of

the two phases, and considering the volume phases to the total energy of the system,

the internal energy of the interface becomes

Uσ = U − uαV α − uβV β (3.3)
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The concentration of the chemical components α and β remain unchanged except

when approaching the interface. The moles of the ith component present at the

interface is the total moles of i in the system, minus the moles of i in α and β

respectively.

Nσ
i = Ni −Nα

i −N
β
i (3.4)

Nσ
i = Ni − cαi V α − cβi V β (3.5)

In the definition of the Gibbs dividing surface, X is placed in the middle of the

interfacial region so that the surface excess adsorption of the solvent is zero (it can

be positive, negative or zero depending on the location of the interface X.). From

Eqn. 3.5 it is possible to define a surface concentration, or interfacial excess:

Γσi =
Nσ
i

A
(3.6)

where A is the interfacial area. Γσi given in units of mol m−2, represents the ex-

cess of solute per unit area of the surface over what would be present if the bulk

concentration prevailed all the way to the surface.

For a two-phase system consisting of α and β with a surface σ dividing the

phases, the total internal energy U of the system can be written as shown in Eqn.

3.2, this can be expanded as follows:

U = Uα + Uβ + Uσ

Uα = TSα − PV α + Σµin
α
i

Uβ = TSβ − PV β + Σµin
β
i

(3.7)

where T is the temperature, S is the entropy, P is the pressure, V is the volume

and µi represents the chemical potential of the i-th component. The corresponding

expression for the thermodynamic energy of the interfacial region σ is

Uσ = TSσ + γA+ Σµin
σ
i (3.8)

where γ represents the surface tension and A the interfacial area. For any infinites-

imal change in T, S, A, µ, and n, differentiation of Eqn. 3.8 gives
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dUσ =
∑

(TdSσ + SσdT + Σµidn
σ
i + Σnσi dµi) + γdA+ Adγ (3.9)

For a small, reversible change, the change in total internal energy of a bulk phase is

dU = TdS − PdV + Σµidni (3.10)

similarly for the interfacial region

dUσ = TdSσ + γdA+ Σµidn
σ
i (3.11)

subtracting Eqn. 3.11 from Eqn. 3.9 gives

SσdT + Adγ + Σnσi dµi = 0 (3.12)

Then at constant temperature, with the surface excess of component i, Γσi , as defined

in Eqn. 3.6, Eqn 3.12 can be simplified to obtain the general form of the Gibbs

equation

dγ = −Σ(Γσi dµi) (3.13)

For a simple system consisting of a solvent and a solute, denoted by the subscripts

1 and 2 respectively, Eqn. 3.13 reduces to

dγ = −Γσ1dµ1 − Γσ2dµ2 (3.14)

Considering the choice of the Gibbs dividing surface position so that Γσ1 = 0, Eqn.

3.14 simplifies to

dγ = −Γσ2dµ2 (3.15)

where Γσ2 is the solute excess concentration, and µ2 is the chemical potential of the

ith component which depends on the activity and is given by

µi = µoi +RT ln ai (3.16)

where µoi is the chemical potential of the i-th component at a reference state (1 Atm,

298 K), R is the gas constant, T is the temperature, and ai is the activity of the

i-th component.
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Differentiation of Eqn. 3.16 results in

dµi = RT d lnai (3.17)

Applying to Eqn. 3.15 gives the form of the Gibbs equation for non-dissociated

materials (e.g. non-ionic surfactants)

dγ = −Γσ2 RT d lna2 (3.18)

Γσ2 = − 1

RT

dγ

d ln a2

(3.19)

For dissociating solutes, such as ionic surfactants of the form R−M+ and assuming

ideal behaviour below the cmc, Eqn. 3.18 becomes

dγ = −ΓσRdµR − ΓσMdµM (3.20)

If no electrolyte is added, electroneutrality of the interface requires that ΓσR = ΓσM .

Using the mean ionic activities so that a2 = (aRaM)
1
2 and substituting in Eqn. 3.20

gives the Gibbs equation for 1:1 dissociating compounds

Γσ2 = − 1

2RT

dγ

d ln a2

(3.21)

where Γσ2 refers to the concentration of surfactant molecules, without considering

the counter ion. If swamping electrolyte is introduced (such that electrostatic effects

are unimportant) and the same gegenion M+ as the surfactant is present, then the

activity of M+ and the pre-factor becomes unity, so that Eqn. 3.19 is valid.

The practical applicability of this relationship is that relative adsorption of a

material at an interface, its surface activity, can be determined be measuring the

interfacial tension as a function of solute concentration. By plotting the change in

surface excess as a function of surfactant concentration (C), it is possible to calculate

the area per molecule at the cmc, Acmc. The area per molecule corresponds to the

average area one surfactant molecule possesses at the air-water interface. This, along

with other surface properties such as γcmc and Φcmc can be used to provide an insight

into the relationship between surfactant structure and surface tension.
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3.2 Mixed surfactant systems

Mixing different surfactants together can often lead to surprising properties which

deviate greatly from the properties of the individual pure surfactants. Mixed sys-

tems constitute an area of great practical importance and in fact, mixed surfactant

systems are encountered in nearly all practical applications of surfactants. In Chap-

ter 7 mixtures of anionic hydrocarbon surfactants are introduced which are capable

of generating surface tensions far lower than either of the constituent surfactants.

It is therefore important to first briefly introduce mixed surfactant systems, and

the models used to help characterise surfactant mixing. There is a great variety of

different surfactant types and thus, an even greater variety of mixtures that can be

formed. To address all is beyond the scope of this thesis and the reader is referred

to relevant literature.2,3

3.2.1 Mixing in binary surfactant mixtures

A wide range of surfactant types have been studied in mixed systems, including

all combinations of anionic, cationic, non-ionic and zwitterionic.4,5 The general be-

haviour exhibited by a solution of pure surfactant molecules, i.e. adsorption to

interfaces and micellisation above a certain critical concentration, are also exhibited

by solutions of mixed surfactants. However, the properties of mixed surfactant so-

lutions will depend differently on the concentration and conditions (e.g. pH, ionic

strength, temperature etc) when compared with the pure surfactant. Therefore, by

careful choice of ingredients the behaviour of a surfactant solution can be altered,

leading to the enhancement or reduction of a desirable or undesirable property.

In an aqueous solution of an individual surfactant, the distribution between the

monomeric state, micelles and monolayers at the air-liquid interface depends only

on the solution conditions and surfactant concentration. However, for a mixture

of two different surfactants this distribution also depends on the nature of the two

surfactants. If two surfactants are mixed which possess very similar structures,

than their free energies of micellisation will be similar. Therefore, the environment

experienced by surfactant molecules within the mixed micelle will be similar to that

experienced by molecules within the single component micelle. The micellar and
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monomer composition, as well as the cmc of the mixture, could be expected to be

a simple function of the bulk concentration, composition, and individual surfactant

cmc’s. Such mixing is termed “ideal mixing”. For example, mixtures of homologous

nonionic and ionic surfactants have been shown to behave like an ideal mixture.6

If however the two surfactants that are mixed have significant differences in their

structure, the environment experienced by surfactant molecules in the mixed micelle

will differ from that in the single component micelle. The surfactant with the lower

free energy of micellisation will dominate the composition of the mixed micelle at

the cmc of the mixture. And the monomer concentrations would therefore be biased

towards the component with the higher free energy of micellisation. The distribution

of components between the monomeric and micellar forms would not be a simple

function of the free energies of micellisation of the single components, but also be

influenced by the interactions between the two surfactants. This form of mixing is

known as “non-ideal mixing”.

When mixing anionic/cationic or non-ionic/ionic systems, mixed micelle forma-

tion is enhanced compared with the ideal case. This is because the inter-molecular

electronic repulsion in the Stern layer is reduced in the mixed micelle which facili-

tates their formation. The mixed cmc would be lower than the value predicted by

ideal solution theory and the system is said to exhibit negative deviations from ide-

ality. In some cases, the mixed cmc can be lower than the cmc of either constituent

surfactant.7 Binary mixtures of fluorocarbon and hydrocarbon surfactants often are

found to have higher cmc’s than what would be predicted from ideal solution the-

ory, exhibiting positive deviations from ideality. This is because of the dissimilar

nature of fluorocarbon and hydrocarbon chains which affects packing in the mixed

micelle. Hence, the packing constraints of differently structured surfactants can

cause non-ideality, even for mixtures of surfactants with like charge.
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3.2.2 Regular Solution Theory

With the great practical importance of mixed surfactant systems, there has been

much work in developing theories and models to predict and explain the behaviour of

mixing in binary surfactant systems. In the 1970s Clint proposed a model to describe

ideal mixing based on the thermodynamics of mixing in liquids.8,9 This is still used

today to successfully predict cmc’s, as well as monomer and micelle compositions

for many mixed systems. An adaptation of Clint’s ideal-mixing model proposed

by Rubingh is the most commonly used thermodynamic approach to describe non-

ideal mixing, and generally known as Regular Solution Theory (RST).10 Models

to describe mixed surfactant systems use a simplified equilibrium thermodynamic

approach which assumes that the mixed micelle or other mixed surfactant aggregates

can be treated as separate phases. Use of this pseudophase separation approach

greatly simplifies the modeling of properties in complex mixed systems.

By considering the chemical potentials of various surfactant species in solution,

Clint derived the following formula to describe the cmc of an ideal binary mixture

of surfactants, C∗, in terms of the cmc’s of the pure surfactants, C1 and C2, and the

mole fractions of each component, α and (1-α) respectively.

1

C∗ =
α

C1

+
(1− α)

C2

(3.22)

In RST this equation is modified to include the activity coefficients of each surfac-

tant, f1 and f2.

1

C∗ =
α

f1C1

+
(1− α)

f2C2

(3.23)

Hence, for ideal mixing, the activity coefficients equal one by definition and the

model can be easily solved for any number of surfactant components in the mixed

system. For non-ideal systems, activity coefficients must first be determined. A gen-

eral form for the activity coefficients in the micellar pseudophase can be developed

by considering the thermodynamics of mixing.11 In mixtures of liquids, the excess

free energy of mixing, GM, can be expressed as

GM = RT (x1 lnf1 + (1− x1) lnf2) (3.24)
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where x1 represents the mole fraction of surfactant one in the mixed micelle. The

excess free energy of mixing itself is defined in terms of an excess enthalpy of mixing,

HM, and an excess entropy of mixing, SM.

GM = HM − TSM (3.25)

In regular solution theory, the excess entropy of mixing, SM, is assumed to be ideal

and thus zero. This allows the substitution of HM in place of GM. For binary

mixtures, this excess enthalpy of mixing can be represented by

HM = β x1(1− x1) RT (3.26)

where β is a dimensionless parameter which times RT represents a net difference

in interaction energy between the mixed and unmixed systems. Substituting HM in

place of GM in Eqn. 3.24 leads to the activity coefficients of binary mixtures:

f1 = eβ(1−x1)2
(3.27)

and

f2 = eβx1
2

(3.28)

Unfortunately, since f1 and f2 are functions of β and x1 which are both unknowns,

Eqn. 3.23 cannot be used to give a priori predictions of mixed cmc’s. However,

with the knowledge of an experimentally obtained value for the cmc of a mixture,

and cmc’s of the pure surfactant components, both β and the micelle composition at

the cmc can be obtained by iterative solutions of the following equations (obtained

by combining equations 3.23, 3.27 and 3.28):

β =
1

(1− x1)2
ln
C∗α

C1x1

(3.29)

and

β =
1

x1
2
ln
C∗(1− α)

C2(1− x1)
(3.30)

Iterative solutions of β can be calculated using appropriate software, for example a

simple computer program in BASIC. Details of the code and procedure used for the
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calculations in this thesis are included in the Supporting Information. For mixtures

that show a synergistic departure from ideality β is negative, and if the mixing is

antagonistic (i.e. a positive deviation from ideality) then β is positive. When β is

zero, f1 and f2 are both unity and the above equations revert to those derived by

Clint to describe ideal mixing (Eqn. 3.22).

The major assumption of regular solution theory is that molecules of different

types have similar packing in the micelles, i.e. the entropy of mixing is ideal and

thus zero. In this approximation, the parameter β can be formally interpreted

as a parameter representing an excess heat of mixing. However, disagreement be-

tween calorimetric measurements of excess heats of micellar mixing, and β values

determined independently from cmc measurements indicate that the regular solu-

tion approximation does not hold for many binary mixed systems.12,13 This has lead

to the suggestion that the β parameter be interpreted more generally as an excess

free energy of mixing parameter, which only meets the formal criteria of the regular

solution approximation when the excess entropy of mixing is zero. Furthermore, as-

sociated solution phase changes that accompany varying counterions or asymmetry

in packing are beyond the scope of the model. There are many examples of non-ideal

mixing which are not well described by RST, highlighting limitations in the models

assumptions.14,15 However, despite this apparent limitation RST has been success-

ful in predicting cmc’s and providing information on monomer-micelle equilibria for

a large number of mixed systems.16,17 Furthermore, small-angle neutron scattering

(SANS) studies have provided direct measurements of mixed micelle compositions

where good agreement was found with the predictions of RST.18,19

3.2.3 Adsorption at interfaces of binary surfactant mixtures

Micellisation is a process that occurs due to the entropically favourable removal

of hydrophobic surfactant tails from water. Adsorption of surfactant molecules at

the air-liquid interface is mechanistically similar and therefore, likely to be affected

by similar factors. However, there are fundamental differences between micellisa-

tion and adsorption. Firstly, adsorption occurs below the cmc. And secondly, the

interface is of a finite size whereas micelle population can continue to increase as

concentration is increased.
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In the low concentration limit the air-liquid interface will have a low concentra-

tion of adsorbed species due to the low concentration of monomers present in the

system. The composition of the adsorbed layer will simply reflect the surface activ-

ities of the two surfactants (regardless of ideal/non-ideal mixing), being dominated

by the surfactant with the greater surface activity. As the overall concentration is

increased, adsorption at the interface will also increase. In the case of ideal mix-

ing, this increase would reflect the single surfactant adsorption isotherms with the

surface excess increasing for both components. In the non-ideal case, compositional

changes at the interface will reflect any synergy between the two surfactants.

At the cmc, the first micelles to form will be enriched in the component with

the lower cmc and as a consequence, the monomer concentration becomes enriched

in the component with the higher cmc. Hence the surface mole fraction of the less

surface active (higher cmc) component might be expected to increase, reflecting the

changes in monomer concentration of the two species. In understanding the surface

composition at the high concentration limit, it is important to consider the finite

size of the air-water interface. It cannot continuously “mop up” large amounts of

surfactant in the way micelles can and therefore, the surface composition will not

necessarily reflect the bulk composition, but instead the monomer concentrations in

the high concentration limit.

Compared to a single surfactant system, the interfacial dynamics will also differ

when the system is influenced by multiple surfactants. The dynamics of surfactant

adsorption are defined by the time taken for surfactant molecules to adsorb from

the bulk to the air-water interface, and then achieve correct orientation. Surfactant

structure and the associated free energy change when removing non-polar moieties

from water will largely dominate the dynamics of a single surfactant system. How-

ever, for a multiple surfactant system, variations in chain length will influence both

adsorption and molecular packing at the air-water interface. For a binary surfac-

tant system, the surfactant with the lower cmc is by nature more hydrophobic and

will dominate the initial decrease in surface tension as surfactant molecules defuse

from bulk to the surface. The other surfactant species present in the system with

a lower cmc will possess an associated smaller free energy change and hence, show

a reduced relative tendency to adsorb from bulk to the surface. These surfactant

42



Chapter 3 3.2. MIXED SURFACTANT SYSTEMS

molecules will therefore arrive at a monolayer already partially saturated by the

other surfactant (i.e. with the lower cmc). A delay time will exist as equilibrium

is established between the two surfactants competing to pack at the surface and

achieve the lowest free energy. If the two surfactants possess similar structures and

hence cmc’s, the time taken to achieve this equilibrium will be short as there will be

minimal competition to achieve optimal packing. Hence the dynamic surface ten-

sion can provide insight into packing between different surfactant structures at the

air water interface.20 Revealing further information about the relationships between

surfactant structure, surface packing and surface tension.

Molar areas can be determined by applying the Gibbs equation to the constant

slope of surface tension versus logarithm of surfactant concentration. However, mo-

lar areas determined by tensiometry will not provide accurate estimates of surface

compositions for mixed systems. Neutron reflectivity is a direct method of pro-

viding detailed structural information about mixed monolayers, including accurate

measurements of the adsorbed amounts of individual surfactants. For example,

Hines et al. used neutron reflection to study mixtures of SDS-C12maltoside and

test predictions made by the partial phase separation model in the case of non-ideal

mixing.21 Using RST alongside tensiometric data can provide a greater insight into

the adsorption and aggregation phenomena of mixed surfactant systems. In Chapter

7, RST is used to further characterise an array of unique systems, providing further

information to help identify and explain the extraordinary properties observed.
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3.3 Small-angle neutron scattering

To study relationships between molecular structure and physical properties within a

colloidal system, the molecular organisation within the system must be determined.

The most obvious method to determine the size, shape and structure of colloidal

particles is scattering, as this provides a direct measure of the interactions between

particles and incident radiation (i.e. light, X-ray, neutron). The colloidal size range

is approximately 10 - 104 Å and hence, can be studied by scattering methods pro-

vided the incident wavelength falls within this range. Micelles or microemulsions

on the order of 102 Å in size are well characterised by X-ray (λ = 0.5 - 2.3 Å) and

neutrons (λ = 0.1 - 30 Å). For larger aggregates, light scattering (λ = 4000 - 8000

Å) is most suitable. If we consider the Bragg equation that defines the angle of

diffraction θ of radiation of wavelength λ for a separation of lattice planes d:

λ = 2d sinθ (3.31)

It’s clear to see that micelle/microemulsion droplet sized particles will scatter well at

small angles using incident radiation in the neutron wavelength range. Hence, small-

angle neutron scattering (SANS) is an excellent technique to study such systems.

The following section will summarise SANS, neutron scattering theory, and how one

would use such techniques to further characterise colloidal systems.

3.3.1 Neutrons

The neutron is a subatomic particle with no net electric charge, mass = 1.67 x

10−27 kg (slightly more than a proton), spin = 1
2
, and a magnetic moment = -1.913

nuclear magnetons. Neutrons along with protons constitute the nucleus of an atom

and since they behave similarly within the nucleus, and share an atomic mass of

approximately 1 amu, are collectively referred to as nucleons. They can be classified

according to their wavelength: “epithermal” for short wavelengths (λ ∼ 0.1 Å) and

“thermal” or “cold” for long wavelengths (λ ∼ 10 Å). The desired range of λ can

be tuned by moderation during their production.

The universe is made from 12 particles of matter, and four forces of nature.

Neutrons interact with matter via all four forces - strong, weak, electromagnetic and
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gravitational. However, it is their interaction via the strong nuclear force and their

magnetic moment, that make neutrons a unique probe for scattering experiments.

The advantages of neutrons over other forms of radiation are summarised below:

• Neutrons are uncharged so they can penetrate to the bulk of a material, where

they will interact with nuclei via the strong nuclear force.

• Because they are scattered from the nucleus of an atom, as opposed to the

electron cloud, the scattering is proportional to atomic cross section (and not

atomic number like X-ray scattering). Therefore, light atoms can be distin-

guished next to heavy atoms, such as hydrogen and deuterium, due to the

relatively large difference in atomic cross section. Hence, isotopic labelling

can be used to create contrast and selectively highlight different parts of a

molecule, e.g. the surfactant tail in a micelle. Providing an unmatched insight

into the bulk internal structure of a system.

• The wavelength of a particle can be related to its momentum via the de Broglie

equation

λ =
h

mv
(3.32)

where h is Planck’s constant (6.63 x 10−34 J s) and v the particle velocity. The

associated kinetic energy is then given by

E =
1

2
mv2 or E =

h2

2(mλ)2
(3.33)

Because the energy and wavelength of a particle depends on its velocity, it is

possible to select a specific neutron wavelength by the time-of-flight technique.

Therefore, the energy and wavelength of neutrons can be set to the appropriate

energy and length scales required for condensed matter.

• The magnetic moment of a neutron couples to the spatial variation of magneti-

sation on the atomic scale, making them ideally suited to study the magnetic

structures, fluctuations and excitations of spin systems.
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• The non-destructive nature of neutrons mean they do not significantly per-

turb the system under investigation, which also makes them well suited for

biological systems.

3.3.2 Neutron sources

Neutron beams for scattering experiments can be produced by two ways: by nuclear

fission in a reactor-based neutron source (Institut Laue-Langevin, ILL, Grenoble), or

by spallation in an accelerator-based neutron source (ISIS Facility at the Rutherford

Appleton Laboratory in Didcot, UK). A brief description of these two methods, and

the benefits of each is given below.

Reactor-based neutron source

Uranium-235 nuclei absorb thermal neutrons and split into fission fragments, pro-

ducing a very high energy (MeV) constant neutron flux (hence why reactor-based

sources are also referred to as a “continuous” source or “steady-state” source). The

initial high kinetic energy of the neutron flux is reduced by repeated collision with

the hydrogen nuclei of a hydrogenous moderator (termed thermalisation), producing

a beam with a broad band of wavelengths. Wavelength selection is then achieved

by Bragg scattering from a crystal monochromator, or by velocity selection through

a mechanical chopper. The final result is a constant stream of high-flux neutrons

with a narrow wavelength distribution.

Accelerator-based pulsed neutron source

H− ions are accelerated in a linear accelerator (Linac) and then enter a synchrotron

in ‘bunches’. As they enter the synchrotron, the H− ions pass through very thin

alumina foil which strips both electrons, producing a proton beam. This is then

accelerated further and collided with a heavy metal target (e.g. W, Ta, U) under

constant cooling to dissipate the heat from the proton beam. The collision causes

neutrons to spall off the heavy metal target (termed spallation) in bursts, which are

then guided to various instruments.

This process releases much less heat per useful neutron compared to fission, which

means that pulsed sources can deliver a higher neutron intensity than even the most
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Figure 3.2: Neutron flux as a function of time at a steady state source (green), such
as the ILL, and a pulsed source (orange), such as ISIS (not drawn to scale). Steady-
state sources have high time-averaged fluxes, whereas pulsed sources are optimised
for high brightness.

advanced steady-state source, see Figure 3.2. However, the time-averaged flux (in

neutrons per second per unit area) of a pulsed source is low in comparison with a

reactor source. Time-of-flight (TOF) techniques that exploit the high intensity in

the pulse can compensate for this, and give a direct determination of the energy and

wavelength of each neutron.

3.3.3 SANS instruments

In this work, SANS experiments were performed on the LOQ and SANS2D spectrom-

eters at ISIS, and the D33 diffractometer at ILL. Due to the different characteristics

of reactor and pulsed sources, neutron scattering experiments performed differ on

these two instruments, to briefly summarise.

On D33 a single-wavelength (monochromatic) beam is normally used where a

velocity selector and flexible system of inter-collimation apertures defines the neu-

tron beam. To examine a wide range of particle sizes, at constant λ, the scattering

intensity must be measured at various different angles. This is achieved by vary-

ing the sample-to-detector distance using a moveable detector. In contrast, at ISIS

“white” neutron beams with a wide range of wavelengths are used and so multiple

angles are not necessary. Energy analysis of the scattered beam is achieved by TOF

(i.e. the time the neutron takes to travel from the source to the sample), hence the
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Figure 3.3: Layout of D33. The neutron enters the instrument casemate (top left)
containing neutron optical elements, pass through the collimation (middle) to the
sample area (bottom left). Neutrons are recorded on four front panels, and the rear
detector of the instrument. Image taken from institute website.

detector for example on LOQ is fixed. SANS 2D offers two moveable detectors which

extends the range of particle size that can be studied. D33 also offers a TOF flight

mode which extends the particle size range that can be studied whilst providing

flexible wavelength resolution. Figure 3.3 shows the schematic layout for D33. More

technical details can be found at the institutions respective website.
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3.3.4 Scattering theory

Regardless of the type of radiation, when it interacts with and is scattered by matter,

patterns are produced which can provide information about the spatial arrangement

and/or temporal changes within a sample. There are different forms of scattering

that can be summarised as:

• Elastic - Where the kinetic energy of a particle is conserved, but its direction

of propagation is modified.

• Inelastic - The kinetic energy of a particle, and its direction of propagation are

modified. Hence, in this process the incident particle looses or gains energy.

• Coherent - When the phases of signals arising from different scattering centres

are correlated.

• Incoherent - When the phases of signals arising from different scattering centres

are uncorrelated, i.e. random.

Hence it is coherent scattering from ordered nuclei that produce constructive or

destructive interference patterns, which can be used to obtain structural information.

Whereas incoherent scattering is from unordered nuclei (perhaps due to random

motion) and thus can provide dynamic information on the system.

To understand how neutrons are scattered by matter, it is helpful to first under-

stand how a neutron is scattered by an individual fixed nucleus. Because neutrons

are uncharged they interact via nuclear forces (as opposed to electrical forces) which

are very short range, on the order of a few femtometres (∼ 10−15 m). To a neutron,

solid matter is not dense as a scattering centre (i.e. a nucleus) is approximately

100,000 times smaller than the distance between centres. The result is that the

scattering centre essentially looks like a point scatterer, and if the neutron hits this

area, it is scattered isotropically (with equal probability in any direction). This is

because the range of the nuclear interaction between the neutron and nucleus is

tiny in comparison with the wavelength of the neutron. Because the energy of the

neutron is too small to change the internal state of the nucleus, scattering occurs

without any change in the neutron energy and is thus elastic. When scattered by

matter, each nucleus acts as a point scatterer to the incident neutron beam and the
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scattering from each individual nucleus from the ensemble adds together. However,

the scattering is not necessarily elastic as it is for a single fixed nucleus because

the atoms in matter are free to move to some extent. Hence in SANS only elastic

coherent scattering is considered, and the incoherent scattering which appears as

background can be measured and subtracted from the total scattering.

The strength of the interaction between free neutrons and bound nuclei is quan-

tified by the scattering length of the atom, bi,coh, which is isotope dependent. From

known scattering lengths, it is possible to define the mean coherent scattering length

density, abbreviated as SLD, which is a measure of the scattering power of a mate-

rial, i.e. a compound. The SLD can be calculated from the sum of scattering length

contributions from all atoms, divided by the volume of the molecule:

SLD =
1

Vm

∑
i

bi,coh =
ρNa

Mw

∑
i

bi,coh (3.34)

where bi,coh is the coherent scattering length of the ith atom in the molecule, and

Vm is the molecular volume which can be estimated from the known bulk density,

ρ, and molecular weight Mw. Coherent scattering length values for selected atoms

and molecules are given in Table 3.1. The significant difference in scattering length

for hydrogen and deuterium can be exploited in the contrast-variation technique,

allowing selective regions of a molecular structure to be highlighted. For example,

a hydrocarbon surfactant dissolved in D2O will highlight the whole micelle once the

scattering from the D2O background has been removed.

Table 3.1: Values of bi,coh and SLD’s for selected atoms and molecules at 25 ◦C.22

Nucleus bi,coh (10−12 cm)

1H -0.3741
2D 0.6671
12C 0.6646
19F 0.5605

Molecule SLD (10−6 Å−2)

H2O -0.560
D2O 6.356

Heptane - C7H16 -0.548
d-heptane - C7D16 6.301
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Scattering vector - Q

When a beam of neutrons are incident upon a sample, they are scattered at an

angle θ onto a detector. This is illustrated in Figure 3.4 where the incident and

scattered neutron beam have wavevectors ki and ks respectively. When a neutron is

scattered by matter, as in all collisions, momentum and energy are conserved and

the energy lost by the neutron is gained by the sample. Hence, ki - ks corresponds

to the momentum transfer that occurs during the collision. The quantity Q, where

Q = ki - ks is known as the scattering vector, and the vector relationship between

all three is illustrated in Figure 3.5.

Figure 3.4: Schematic setup of a small-angle scattering experiment.

For coherent elastic scattering |ki| = |ks|, where the magnitude of the wavevector

(i.e. the angular wavenumber) is defined as 2π/λ. Therefore, |Q| can be obtained

by simple geometry as:

|Q| = Q = 2 |ki| sin
θ

2
=

4π

λ
sin

θ

2
(3.35)

Figure 3.5: Vector relationship of the scattering vector Q = ki - ks. The amplitude
of Q can be determined using trigonometry to obtain Q = (4π/λ)sin(θ/2).
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The magnitude of Q has dimensions of reciprocal length and units are commonly

Å−1. It relates to the spatial sample properties, with large structures scattering at

low Q (i.e. low angle) and small structures scattering at higher Q. In a small-angle

scattering experiment the scattered intensity I(Q) is measured across a q-range to

provide structural information about the sample across a length scale. That is, the

magnitude of Q could also be considered a window of observation, where at high-Q

the window is very small and vice versa. This is illustrated in Figure 3.6.

Intermediate 

Q domain

High Q domain

Low Q domain

Figure 3.6: In a scattering experiment the intensity is measured across a q-range
by varying the scattering angle. The q-range provides structural information at
different length scales:

High Q domain - The window is very small, there is only contrast at the interface
between the two media.

Intermediate Q domain - The window is on the order of the aggregate size. The
size, shape and internal structure of one aggregate can be measured (i.e. the form
factor P(Q))

Low Q domain - The window is large and multiple aggregates are measured. The
interactions within the system and structural order can be determined (i.e. the
structure factor S(Q))
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3.3.5 Scattering by micellar aggregates

For monodisperse homogeneous spherical particles of radius R, volume Vp, num-

ber density np (cm−3) and coherent scattering length density ρSLD, dispersed in a

medium of density ρm, the normalised SANS intensity I(Q) (cm−1) may be written

as:

I(Q) = np ∆ρ2 V2
p P(Q, R) S(Q) (3.36)

where ∆ρ2 = ρSLD - ρm (cm−2). The first three terms in Eqn. 3.36 are independent

of Q and account for the absolute intensity of scattering. This is referred to as the

scale factor, SF, which can be defined as:

SF = np ∆ρ2 V2
p = φp ∆ρ2 Vp (3.37)

where φp is the volume fraction of the particles. The scale factor can be easily

calculated for a system and hence provides a measure of the validity of a model

when analysing SANS data, i.e. the SF determined from the fit can be compared to

the calculated value (Eqn. 3.37).

The other two terms in Eqn. 3.36 are Q-dependent functions. P(Q, R) is the

single particle form factor which arises from intra-particle scattering (see Figure

3.6). It provides information on the individual particle size and shape. S(Q) is the

structure factor which arises from inter-particle interactions. The following sections

will briefly discuss both Q-dependent functions.

Single particle form factor P(Q)

The form factor P(Q) tells you about the shape and size of the particles. There are

various expressions of P(Q) for a wide range of shapes such as spheres, cylinders,

ellipsoids, discs and bilayers, all of which are commonly encountered in soft matter.23

To discuss the form factor for each shape would be beyond the scope of this section,

and the reader is referred to relevant literature for further details.24 The form factor

P(Q) for a sphere of radius R and uniform density is represented as:

P(Q,R) =

[
3(sin QR - QR cos QR)

(QR)3

]2

(3.38)
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An approximate representation of the form factor P(Q,R) for spheres (Eqn. 3.38)

is shown in Figure 3.7. In general, it shows a decay however, under high resolution

maxima and minima would be expected at high Q values. For certain systems, aggre-

gates of equal size are not formed and a polydispersity function must be introduced

to account for the particle-size distribution. These probability functions differ for the

type of aggregate under investigation, for example, for spherical droplets the poly-

dispersity function may be represented by a Schultz distribution function X(Ri).
25

Which itself is defined by an average radius Rav, over the width parameter Z to ob-

tain the root mean square deviation σ = Rav

(Z + 1)1/2
. P(Q,R) may then be re-expressed

as:

P(Q,R) =

[∑
i

P(Q,Ri) X(Ri)

]
(3.39)

If the particles in the system are non-interacting, than the form factor describes the

scattering profile. However, often there are interactions between the particles (i.e.

repulsion between charged head groups) and the scattering data cannot be modelled

using the form factor alone and a structure factor S(Q) is applied.

Figure 3.7: Schematic representation of the particle form factor P(Q,R) for a homo-
geneous sphere of radius R.
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Structure factor S(Q)

The structure factor S(Q) describes the types of interactions in the system i.e. at-

tractive, repulsive or excluded volume, and hence relates to inter-particle interac-

tions. It is more important at low Q values where the ‘window of observation’

measures the scattering from multiple aggregates, see Figure 3.6. The structure

factor for spherical particles with low attractive interactions can be approximated

by a hard-sphere potential, Shs(Q), which is given by:

Shs(Q) =
1

(1− np) f(Rhs φhs)
(3.40)

where Rhs is the hard-sphere radius and φhs is the hard-sphere volume fraction.

Figure 3.8 shows a representation of the attractive (Eqn. 3.40) and repulsive S(Q)

for homogeneous spheres. The intensity of scattering can then be rewritten as:

I(Q) = φp ∆ρ2 Vp

[∑
i

P(Q,Ri) X(Ri)

]
S(Q,Rhs, φhs) (3.41)

Figure 3.9 shows a representation of the final scattering profile I(Q) vs Q for a

spherical form factor with an attractive or repulsive structure factor. For example,

the orange line shows a peak which is characteristic of charged micelles. Effective

ways of reducing this structure factor is diluting the system,26 or adding salt.27

Figure 3.8: Schematic representation of the structure factor S(Q) for attractive and
repulsive homogeneous spheres.
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I(Q)

Q

I(Q) Scattering Profile

P(Q)

Q

P(Q) Form Factor

Dilute non-interacting 

homogeneous sphere

S(Q)

Q

S(Q) Structure Factor

Repulsive

S(Q)

Q

S(Q) Structure Factor

Attractive

I(Q)

Q

Figure 3.9: Schematic representation of the particle form factor P(Q,R) and struc-
ture factor S(Q) for a homogeneous sphere of radius R. The resultant scattering
profiles when combined are also shown.
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Neutron contrast variation

As previously mentioned, for neutrons the scattering power of any atom is dependent

on its atomic cross section. Therefore, deuterium and hydrogen which relatively,

have a very large difference in atomic cross section have very different scattering

powers. This can be exploited in experiments by labeling different parts of a molecule

with 1H and 2D to create contrast, allowing selective parts of a structure to be

studied. This is routinely applied in microemulsion droplets, where different regions

are highlighted by selectively varying the scattering length density of the surfactant,

oil, or aqueous phase. Hence, three contrasts are commonly studied - the core,

shell and drop - which can be fitted individually or simultaneously.28 Figure 3.10

illustrates the three contrasts for an example core-shell type particle.

• Natural contrast - The whole aggregate is highlighted. For example, a

deuterated surfactant dissolved in H2O and d-oil.

• SLDsolvent = SLDcore - The shell is highlighted. For example, a hydrogenated

surfactant dissolved in D2O and d-oil.

• SLDsolvent = SLDshell - The core is highlighted. For example, a deuterated

surfactant dissolved in D2O and h-oil.

Contrast variation is the single most powerful tool of neutron scattering which pro-

vides an unmatched insight into the internal structure of a system. Apart from a

few subtle effects, such as hydrogen bonding, isotopic exchange usually does not

affect the physiochemical properties of the system significantly.

Figure 3.10: Example of a core-shell particle where the contrast is varied to selec-
tively highlight different parts of the structure.
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3.3.6 SANS approximations

The first step to understanding SANS data involves a set of standard plots that can

be used right after data reduction, i.e. before modeling the data. These are linear

plots which are obtained by plotting the scattered intensity I(Q) against specific

functions of scattering vector Q. This analysis is used to give an early indication

about the particle shape and size.

Guinier approximation

The Guinier approximation analyses the low Q domain of the scattering profile to

obtain a slope which is related to Rg, the radius of gyration.29 Where Rg represents

the effective size of the scattering particle, whether it is a polymer chain, micelle,

part of protein etc. Furthermore, the radius of gyration obtained from the Guinier

approximation is independent of the absolute intensity and of any model. At low-Q,

the single particle form factor P(Q,R) for dilute systems simplifies to:

P(Q,R) = 1− Q2 Rg
2

3
(3.42)

If it is assumed that the particles are non-interacting, so S(Q) = 1, then the equation

for the scattering intensity (Eqn. 3.36) becomes:

I(Q) = φp ∆ρ2 Vp exp

(
− Q2 Rg

2

3

)
i.e. Ln[I(Q)] = Ln[I0]− Q2 Rg

2

3
(3.43)

Hence a plot of Ln[I(Q)] vs Q2 yields an associated slope −Rg
2

3
which can then

be solved to determine Rg for any isomeric particles. It is important that Rg is

determined from the correct Q-range. For a Guinier plot, this range corresponds

to QRg <
√

3. This is obtained when the probed range (2π/Q) is larger than the

particle size (i.e. low-Q domain on Figure 3.6). When analysing the scattering from

elongated objects, the Guinier approximation is modified and uses scattering from

the intermediate Q-domain, see Figure 3.11. For example, for a cylinder of length

L and radius R, the intermediate-Q Guinier approximation is:

I(Q) =
I0

Q
exp

(
− Q2 Rg

2

2

)
(3.44)
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The intermediate-Q Guinier plot of Ln[Q I(Q)] vs Q2 yields an associated slope −Rg
2

2
.

Hence the Guinier approximation can be used to determine different geometries

by plotting specific functions against Q2. The various geometries, and associated

dimension R that can be obtained by plotting different quantities against Q2 are

summarised below:

• ln[I(Q)] vs Q2 Associated slope = −Rg
2

3
(Low Q)

• ln[I(Q).Q] vs Q2 Associated slope = −Rg
2

2
(Intermediate Q)

• ln[I(Q).Q2] vs Q2 Associated slope = −Rg
2

1
(Intermediate Q)

Rg can then be related to the shape of the particles by:

• Spheres and cylinders Rg =

(
3

5

)1

2 R

• Thin discs Rg =
R

4
1
2

• Long rods Rg =
L

12
1
2

The most probable particle shape can be predicted by comparing the three different

I(Q).Qx vs Q2 plots and finding the one that gives a linear decay.
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Figure 3.11: Example form factor for a cylinder showing the low-Q Guinier region,
the intermediate-Q Guinier region and the high-Q porod region.

59



Chapter 3 3.3. SMALL-ANGLE NEUTRON SCATTERING

Porod Approximation

At the high-Q domain, the scattering intensity is from a region smaller than the

scattering object so hence is probing the local interfacial structure. The Porod ap-

proximation is applied to the high-Q domain for a system of non-interacting particles

to determine the fractal dimensions of the scattering object.30 The Porod law is as

follows:

I(Q) = 2π∆ρ2
( S

V

)
Q−4 (3.45)

where S/V is the surface to volume ratio (cm−1). The Porod law is only valid

for smooth interfaces and above a Q range of 1/R. If one assumes all surfactant

molecules are located at the interface, the area per molecule, A, can be estimated

from:

A =

( S
V

Ns

)
(3.46)

where Ns is the number density of surfactant molecules (i.e. surfactant concentration

x Avogadro’s number). For example, for monodisperse spheres of radius R, a plot of

[I(Q).Q4] vs Q yields a first maximum at Q ∼ 2.7/R and a minimum at Q ∼ 4.5/R,

see Figure 3.12, which can then be used to infer the spherical radius.

[I(Q).Q4] / cm-5

Q / Å-1

2.7

𝑅

4.5

𝑅

Figure 3.12: Schematic diagram of a Porod plot for near-monodisperse spheres
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The Guinier and Porod approximations offer simple relations that allow first es-

timations of the size and shape of colloidal particles. However, they can only be

applied to non-interacting (i.e. dilute) systems. This criteria can be met for other

systems by adding salt to screen interactions between charged micelles, or additional

dilution, which both would validate the assumption that S(Q) = 1 in the low-Q do-

main i.e. Guinier range. By applying these first approximations to scattering data,

information can be obtained about the size and shape of aggregates to help guide

the final fitting procedure which employ complex mathematical models.
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Chapter 4

Experimental

4.1 Introduction

This chapter describes the synthesis of the single- and di-chain anionic hydrocarbon

surfactants examined in this thesis. They are single-chain sulfonates with sodium or

TAA counterions (where TAA = tetraalkylammonium, i.e. tetrapropylammonium.),

and di-chain sulfosuccinates with sodium counterions. Table 4.1 shows the molecu-

lar structures and nomenclature used. Where appropriate, information is provided

on commonly encountered problems associated with synthesising surfactants, in an

aim to aid future syntheses. Furthermore, the various common techniques used

throughout this work and the associated experimental procedures are also outlined.

4.2 Materials

All solvents were used as purchased unless otherwise stated. Water was obtained

from a 5 L Milli-Q (18.2 MΩ cm).

• Isostearyl alcohol FO180 (Nissan Chemical Industries; 90%)

• Isostearyl alcohol FO180N (Nissan Chemical Industries; 90%)

• 2,4-Dimethyl-3-pentanol (Aldrich; 99%)

• 2,6-Dimethyl-4-heptanol (Aldrich; 80%)

• 2,2-Dimethyl-1-propanol (Aldrich; 99%)
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• 3,3-Dimethyl-1-butanol (Aldrich; 98%)

• (Trimethylsilyl)methanol (Aldrich; 98%)

• 2-(Trimethylsilyl)ethanol (Aldrich; 99%)

• 3-(Trimethylsilyl)-1-propanol (Aldrich; 97%)

• 3-Pentanol (Santa Cruz Biotechnology; 98%)

• 2-Methyl-3-pentanol (Aldrich; 99%)

• 1-Hexanol (Aldrich; 98%)

• 1-Heptanol (Aldrich; 98%)

• 1-Octanol (Aldrich; 98%)

• Glacial acetic acid (Fisher Chemical; 99%)

• Ethyl acetate (Aldrich; 99.8%+ anhydrous)

• Hydrochloric acid (Aldrich; 98%)

• Diethyl ether (VWR Chemicals; 95%)

• 1-Butanol (Aldrich; 99%)

• Methanol (Aldrich; 99.8%+ anhydrous)

• Ethanol (VWR Chemicals; 99.9%)

• Chloroform (VWR Chemicals; 99% )

• Tetrahydrofuran (Aldrich; 99%+ anhydrous)

• Hexanes (Aldrich; 98 %)

• CDCl3 (Aldrich; 99.8%)

• D2O (Aldrich; 99.9%)

• d6-DMSO (Aldrich; 99.9%)

• Tetramethylammonium (Aldrich; 40% H2O)
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• Tetraethylammonium (Aldrich; 40% H2O)

• Tetrapropylammonium (Aldrich; 1.0 M H2O)

• Chlorosulfonic acid (Aldrich; 99.9 %)

• Dimethylaniline (Aldrich; 99%)

• Fumaryl chloride (Aldrich; 95%)

• Anhydrous magnesium sulfate (VWR Chemicals; 65/70%)

• Anhydrous sodium carbonate (Fisher Scientific; 99.5%)

• Sodium hydrogen carbonate (Aldrich; 98%)

• Sodium metabisulfite (Aldrich; 98%)

• Sodium sulphite (Aldrich; 98%)

• Ethylenediaminetetraacetic acid tetrasodium salt hydrate (Aldrich; 98%)

• Amberlite IR 120 H+ ion-exchange resin

• Sodium dodecylsulfate (Aldrich; 99%)

• AOT (Dioctyl sulfosuccinate sodium, Aldrich; 98%)
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Table 4.1: Molecular structures and nomenclature of surfactants synthesised

Molecular Structure Nomenclature

Na-FO180

TMA-FO180

TEA-FO180

TPA-FO180

Na-FO180N
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Table 4.1 – continued from previous page

Molecular Structure Nomenclature

TMA-FO180N

TEA-FO180N

TPA-FO180N

Na-BC7

TMA-BC7
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Table 4.1 – continued from previous page

Molecular Structure Nomenclature

TEA-BC7

TPA-BC7

Na-BC9

TMA-BC9

TEA-BC9
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Table 4.1 – continued from previous page

Molecular Structure Nomenclature

TPA-BC9

AOTA

AOTB

AOTSiA

AOTSiB
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Table 4.1 – continued from previous page

Molecular Structure Nomenclature

AOTSiC

HS1

HS2

HS3
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Table 4.1 – continued from previous page

Molecular Structure Nomenclature

di-C6SS

di-C7SS

di-C8SS
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4.3 Synthesis of single-chain surfactants

Sulfonating alcohols with chlorosulfonic acid was established in Germany before

World War II and is still considered the most suitable method for small-scale prepa-

ration. The reaction proceeds with the evolution of hydrogen chloride and can leave

residual traces of sulfonyl chloride if not treated carefully, imparting a high apparent

viscosity to the final product. General conditions are one molar equivalent of reagent

at -5 to 25 ◦C. Higher temperatures cause chlorosulfonic acid to decompose produc-

ing appreciable amounts of hydrogen chloride.1 With liquid alcohols no solvent is

necessary, but when using solid alcohols, the reaction may be performed in suitable

solvents such as chloroform. A mixture of chlorosulfonic acid with acetic acid has

been used before to sulfonate alcohols with good yields and purity.2 The chloro-

sulfonic acid-acetic acid complex is a milder reagent than free chlorosulfonic acid,

attributed to the intermediate formation of acetyl sulfate. The procedure outlined

below is highly suitable for long chain 1◦ or 2◦ alcohols which can be separated and

removed easily from the reaction mixture, see reaction scheme Figure 4.1 (a). For

smaller alcohols, further steps are required at the end to ensure a high purity. The

TAA+ form of each single-chain surfactant was produced by counterion exchange

of the sodium equivalent, Figure 4.1 (b). The same synthetic procedure was used

for all single-chain surfactants shown in Table 4.1, as an example, the synthesis of

Na-FO180 is outlined here.

Figure 4.1: Single-chain synthetic routes: a) esterification of a 1◦ or 2◦ alcohol, b)
counterion exchange to form TAA+ equivalent.
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1) Preparation of chlorosulfonic acid/acetic acid solution

Glacial acetic acid (5.547 g, 2.5 eq.) was cooled in an ice bath for approximately

ten minutes. Chlorosulfonic acid (4.036 g, 2.460 mL, 1 eq.) was then slowly added

to the flask containing the acetic acid using a graduated pipette.

2) Reaction of chlorosulfonic acid with alcohol

Isostearyl alcohol FO180 (10 g, 1 eq.) was added dropwise to the chlorosulfonic

acid/acetic acid mixture in the ice bath whilst also being stirred. Once all alcohol

was added the reaction flask was removed from the ice bath and left to stir for a

further 15 minutes. Ice-cold water (20 mL) was then added dropwise over a period

of about 10 minutes.

3) Extraction and purification

1-Butanol (20 mL) was added and the mixture was left to stir for five minutes. After

this time, anhydrous sodium carbonate (4.308 g, 1.2 eq.) was added portion wise to

ensure a controlled neutralisation. The reaction mixture was then left to stir for the

appropriate amount of time to ensure all sodium carbonate had dissolved (add small

additional volumes of water here if necessary). The aqueous layer was then removed

with a separating funnel and the organic layer retained. The aqueous layer was then

extracted one further time with additional 1-Butanol. Organic fragments were re-

combined and rotary evaporated. The product was then dissolved in the minimum

amount of methanol and centrifuged at 4000 rpm for 45 minutes. This stage was

repeated (with careful decanting) until the reaction mixture was clear, showing the

sign of no additional salts. The solvent was removed on a rotary evaporator and

the product dried overnight in a vacuum oven (15 mbar, 40 ◦C) to yield the final

product Na-FO180 as white solid (9.658 g, 97% yield).

Sodium bearing single-chain surfactants were then converted into the surfactants

bearing different TAA+ counterions by an ion-exchange technique as follows:

3) Counterion exchange

A column (30 cm x 1 cm2) was filled with ion exchange resin Amberlite IR 120 H+.

The column was rinsed with pure water until the water passing through was clear.

Surfactant (sodium salt, 2-3 g) was dissolved in 30 mL of EtOH/H2O (1:1 v/v) and
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passed through the column. The free sulfonic acid formed was immediately neu-

tralised with an aqueous solution of tetraalkylammonium hydroxide of the desired

counterion. The solvent was then removed by evaporation. To remove excess TAA,

the product was dissolved in chloroform and centrifuged at 4000 rpm for 45 min-

utes. Once the solvent was removed by rotary evaporation the product was dried in

a vacuum oven overnight (25 mbar, 40 ◦C).

Once dried, the final products were stored in sealed vials in a desiccating cabinet

over refreshed phosphorus pentoxide. All singe-chain surfactants were investigated

with 1H NMR and EA analyses, which confirmed the desired products at >95%

purity. Selected spectra are shown in Section 4.5 along with EA analysis, all other

NMR spectra can be found in the Supporting Information.

4.3.1 Surfactant purification

The above procedures are very effective at producing high purity single-chain surfac-

tants provided the starting alcohols are of sufficient size to allow effective extraction

with 1-Butanol. Other solvents were tried for smaller chain alcohols however, the

extracted yield was often low. Therefore, the following methods were used to achieve

both high yield and purity of single-chain surfactants composed of small alcohols

(<C8). Instead of extracting with 1-Butanol, once all anhydrous sodium carbonate

had fully dissolved solvent was removed. Residual acetic acid would remain in the

product which can be removed by the following processes:

1. The product was redissolved in pure water and rotary evaporated. This would

be repeated several times until all acetic acid was removed (1H NMR).

2. If the following step above was unsuccessful, the surfactant would be passed

over ion exchange resin Amberlite IR 120 H+ following the procedure above,

but instead the free sulfonic acid formed was immediately neutralised with an

aqueous sodium carbonate solution. The solution was then rotary evaporated.

For both steps, the final product would undergo the same centrifuge purification

step as the other sodium single-chain surfactants and then be dried in a vacuum

oven overnight (25 mbar, 40 ◦C).
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4.4 Synthesis of di-chain surfactants

The ease and yield of synthesising di-chain surfactants is dependent on the structure

of the starting alcohol. Provided the alcohol is 1◦ or 2◦, reacting with fumaryl chlo-

ride as outlined below can successfully produce di-chain surfactants of high quality

and yield. The common alternative is by reaction of maleic anhydride with the ap-

propriate alcohol. The main advantages of the fumaryl chloride route is a) shorter

reaction times and b) the greater reactivity of fumaryl chloride over maleic anhy-

dride can lead to higher yields. The reaction scheme is shown in Figure 4.2. The

same synthetic procedure was used for all di-chain surfactants shown in Table 4.1,

as an example, the synthesis of AOTA is outlined here.

Figure 4.2: Di-chain synthetic routes: a) esterification of a 1◦ or 2◦ alcohol, b)
sulfonation of the diester intermediate

1) Esterification

2,2-dimethylpropanol (8.055 g, 2.2 eq.) and dimethylaniline (10.069 g, 2.0 eq.) were

dissolved in 150 mL dry tetrahydrofuran. The reaction vessel was flushed with N2

and then fumaryl chloride (6.355 g, 1.0 eq.) was added dropwise. As the fumaryl

chloride was added the internal temperature rose to approximately 65 ◦C. Once all

the fumaryl chloride was added, the reaction mixture was refluxed and TLC plates
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developed periodically (4:1 hexane:ethyl acetate eluent) to check for residual fumaryl

chloride (baseline spot). After approximately 4 hours the reaction was complete and

THF was removed by rotary evaporation. The product was dissolved in diethyl ether

and the ethereal solution was washed sequentially with 10 % hydrochloric acid (100

cm3) and saturated aqueous sodium hydrogen carbonate solution (100 cm3) until the

aqueous phase was clear. The washed ethereal solution was dried over anhydrous

magnesium sulfate, filtered, and rotary evaporated to yield the crude diester as an

oil. The crude diester was purified by column chromatography, with a petroleum

spirit (40/60):diethyl ether eluent in a 80:20 ratio (for some diesters, a pet:ether

90:10 eluent gave better separation). Fragments were checked by TLC, recombined,

and rotary evaporated to yield the pure diester bis(2,2-dimethylpropanol) fumarate

as a white solid (7.250 g, 90% yield)

2) Sulfonation

Bis(2,2-dimethylpropanol) fumarate (7.250 g, 1.0 eq.) was dissolved in a 1:1 mixture

of ethanol/water (250 mL) and refluxed. Sodium metabisulfite (9.229 g, 1.1 eq.) and

sodium sulphite (4.464 g, 0.9 eq.) were added portion-wise during the first hour of

reflux. The reaction was monitored by TLC (eluting with ethyl acetate). If some

residual diester remained after 2 hours, additional disulfite and sulphite were added.

Once complete, the reaction mixture was decanted off and rotary evaporated.

4.4.1 Surfactant purification

The properties of any interface will be affected by the presence of impurities and

hence, to accurately study the effects of surfactant molecules at an interface, the

system must be clean of surface active impurities. The most common impurities in

these surfactants are residual salts left over from sulfonation, or unreacted starting

materials. The following steps yield pure surfactants that give clean breaks in γ vs

log (conc.) plots, showing the sign of no surface active impurities.

1) Soxhlet extraction

To remove residual inorganic material left over from the sulfonation step, Soxhlet

extraction with ethyl acetate was performed for 24 hours. The ethyl acetate used
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was purchased in a dried form, otherwise the solvent would be dried with MgSO4

and distilled. After 24 hours the solvent was removed by rotary evaporation.

2) Centrifuge

Salts have a low solubility in certain solvents such as methanol or acetone. There-

fore, centrifugation is a common and simple method to easily remove excess salts

present in the system. The product from Soxhlet extraction was dissolved in the

minimum amount of methanol and centrifuged at 4000 rpm for 45 minutes. The

reaction mixture was decanted leaving any residual salt, and the process repeated

until the solution became clear. The solvent was removed by rotary evaporation,

and the product dried in a vacuum oven overnight (40 ◦C, 25 mbar).

3) Recrystallisation

A combination of Soxhlet extraction and centrifugation was appropriate to yield

pure diesters in most cases. However, it was clear to see by 1H NMR analysis that

some residual impurities still remained on occasion. The product from centrifugation

would then be then recrystallised from either methanol or ethyl acetate, followed

by drying under vacuum for at least 24 hours (40 ◦C, 25 mbar) to yield the pure

surfactant as a white solid or wax.

4) Foam fractionation

Foam fractionation is a very good technique for removing trace quantities of surface-

active impurities.3 A solution is made up slightly below the cmc, and N2 gas that

has passed through several cleaning stages is bubbled through the solution, causing

the more surface active impurities to be removed with the foam that is produced.

However, surfactant molecules adsorbed to the surface are also removed with the

foam produced and hence, foam fractionation also causes lose of product. Therefore,

foam fractionation could not be used for the surfactants discussed in this work as

they could often only be synthesised in small quantities due to the unique, and

expensive starting material alcohols. It is worth mentioning the technique and setup

used, for other studies that may benefit from foam fractionation.
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Method : A solution of surfactant in ultra-pure water was made up to 0.85 x cmc.

Nitrogen gas was passed through a calcium sulfate drying set-up and a carbon filter,

and then bubbled through aqueous solutions of HCl and NaOH, followed by several

flasks of pure water before finally reaching the surfactant solution. It was necessary

to control the gas flow and vacuum suction rates to allow sufficient drainage time

before the foam was removed. The pure surfactant was recovered by rotary evapo-

ration and dried as before.

Once dried, the final products from purification were stored in sealed vials in a

desiccating cabinet over refreshed phosphorus pentoxide. All purified surfactants

were investigated with a range of analytical methods, 1H, 13C and EA (elemental

analysis), which confirmed the desired products at >95% purity. Selected spectra

are shown in Section 4.5 along with EA analysis, all other NMR spectra can be

found in the supporting information.

4.4.2 Synthesising surfactants from tertiary alcohols

When designing novel di-chain hydrocarbon surfactants to achieve very low surface

tensions, various synthetic procedures were attempted with tertiary (3o) alcohols.

These however, proved to be unsuccessful and thus, this section is to provide guid-

ance for future chemists that may themselves attempt to synthesise surfactants from

tertiary alcohols. For all procedures described, the alcohol used was tert-Butyl al-

cohol.

The method already described for forming di-chain surfactants (fumaryl chloride

with alcohol) is insufficient for (3o) alcohols, due to the low conversion to di-ester.

Various alternative methods based on similar chemicals were attempted.4–7 A more

aggressive method of reacting with silver cyanide in benzene was also attempted.8

Due to the difficulty of forming di-chain esters from tertiary alcohols a particularly

strong reagent is possibly required. There is reported success with tert-Butyllithium

and this would perhaps be the next appropriate step.9
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4.5 Surfactant analysis

Nuclear magnetic resonance and elemental analysis were used to characterise the

purity of each surfactant shown in Table 4.1.

4.5.1 Nuclear Magnetic Resonance (NMR) spectroscopy

Proton NMR were recorded on a JOEL Lambda 400 MHz machine (NMR service,

School of Chemistry, University of Bristol). Processed spectra were further anal-

ysed using MestReNova software to provide peak positions and integration values

for chemically equivalent protons. The method used for preparing samples was as

follows: Approximately 50 mg of product was dissolved in 1 mL of deuterated sol-

vent (d6-DMSO, D2O or CDCl3). The sample was thoroughly mixed by vortex and

ran through a pipette with a cotton wool bung. Due to incomplete deuteration of

the solvents, residual proton signals are present, giving a septet at 2.46 and a singlet

at 3.51 ppm for d6-DMSO, singlet at 4.79 ppm for D2O, and a singlet at 7.26 ppm

for CDCl3. Spectra were obtained for all final products. The following section shows

selected spectra and analysis of surfactant purity is discussed.

NMR of single-chain surfactants

Following the procedure outlined in section 4.3, 1H NMR analysis shows that single-

chain surfactants are synthesised to a high purity with the presence of no unexpected

signals. Noticeable peaks which would shown the sign of impurities would be a sig-

nal between 1-5 ppm for the OH of unreacted alcohol, and a singlet at 8.5 ppm for

chlorosulfonic acid not bearing a Na+ or TAA+ counterion. For example, Figure

4.3 shows the 1H NMR for Na-BC9 and the corresponding starting alcohol (2,6-

dimethyl-4-heptanol). The 1H NMR of the final surfactant product is similar to the

original alcohol and contains no unexpected signals, i.e showing a clean synthesis

without the presence of unreacted alcohol or acid in the final product. The sig-

nal for the hydrogen environment closest to the sulfonate group (peak e on Figure

4.3) has shifted downfield compared to the pure alcohol spectrum. This is expected

because sulfur is more electronegative than hydrogen, which consequently makes

the oxygen bonded to carbon a stronger electron withdrawing group. Interestingly,
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peaks c and d on Figure 4.3 are separate environments which would perhaps not

be expected given the symmetric structure of 2,6-dimethyl-4-heptanol. To accu-

rately assign these signals 1H NMR is not sufficient alone. Homonuclear correlation

spectroscopy, or COSY, is a two-dimensional NMR technique which identifies spins

coupled to each other. Figure 4.4 shows that hydrogen environment a ∼0.82 ppm

(the four methyl groups) are only coupled to the proton signal downfield at ∼1.73

ppm, which therefore must be the C-H bond bearing the methyl groups (labelled

b). Finally, the hydrogen signal most downfield at ∼4.48 ppm labelled e shows cou-

pling to signals at ∼1.66 and 1.38 ppm which must be the two CH2 groups. Now

the proton NMR of Na-BC9 can be accurately assigned and is shown in Figure 4.5.

Selected members of the BC9 family and other single-chain surfactants are shown

in Figures 4.5-4.7. COSY analysis was required for some but not all single-chain

surfactants, these, along with 1H NMR for all other single-chain surfactants can be

found in the Supporting Information. Details of proton assignments and integration

for the selected NMR spectra are given in Table 4.2.

NMR of di-chain surfactants

Following the procedure outlined in Section 4.4, 1H NMR analysis shows that di-

chain surfactants are synthesised to a high purity. The di-ester that is formed as an

intermediate product should be of a high purity to improve the purity of the final

product, as the sulfonation step can introduce various unexpected species as seen by

1H NMR. The purification step that was chosen for all di-ester intermediate products

was column chromatography, the alternative being vacuum distillation. Figures 4.8

and 4.9 show the 1H NMR for the di-esters of AOTA and AOTSiB. As can be seen

from the figures, di-esters are synthesised to an excellent purity using the methods

outlined in Section 4.4, with 1H NMR showing exceptionally clean profiles. It should

be noted that fumarate di-esters are of trans configuration and so only one singlet

is obtained at ∼7.0 ppm. Splitting patterns in the final products after sulfonation

can be rather complex and unpredictable. This is due to asymmetry caused by the

head group, which creates a slight difference in chemical environment at the two

chain-ends. 13C NMR can be used to highlight this, for example, Figure 4.10 shows

the 13C NMR for the chain ends of AOTSiC. Although slight, the peak position of
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the same carbon environments are clearly shifted from each other. Sulfonated di-

esters dissolved in d6-DMSO often gave clearer splitting patterns and thus was the

solvent of choice for final products. For 1H spectra noticeable peaks are the absence

of any di-ester peak at ∼7.0 ppm, which is replaced by the signature doublet of

doublets (dd’s) at ∼3.5 ppm for the single hydrogen in the head group, and the

two dd’s at ∼2.8 ppm for the CH2 moiety in the head group. Other commonly

encountered peaks are residual solvents from the various purification steps if the

surfactant has not been dried at a sufficient temperature, or for sufficiently long

enough. When dissolved in d6-DMSO, final products show two peaks for residual

amounts of partially deuterated DMSO, or even undeuterated DMSO, that exists

in the solvent. Selected 1H NMR spectra for di-chain surfactants are shown in

Figures 4.11-4.13 which show clean NMR profiles with integrations that match well

with theoretical values. All other NMR spectra for final surfactant products can be

found in the supporting information. Details of proton assignments and integration

for the selected NMR spectra of di-esters and di-chain surfactants are given in Table

4.3.

4.5.2 Elemental analysis

Samples were submitted for elemental analysis of C, H, N and S where applicable

(micro-analytical laboratory, School of Chemistry, University of Bristol / Elemental

Microanalysis Ltd, Devon). From repeat measurements, the typical standard de-

viation for the percentage mass determined by elemental analysis was found to be

approximately 0.3 to 0.8 %. As shown in Table 4.4, the agreement between theoreti-

cal and experimentally determined values is generally good and in most cases within

the error. In particular, the good agreement between experimental and theoretical

amounts of sulphur indicates that the extraction, washing and recrystallisation pro-

cedures effectively removed residual inorganic material.
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Table 4.2: Data from selected 1H NMR spectra of single-chain surfactants (Figures
4.3, 4.5 and 4.6).

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

2,6-dimethyl-4-heptanol (BC9 alcohol)

0.78 - 0.90 –CH–(CH3)2 11.96 a

1.11 - 1.23 –CH–CH2CH2– 2.04 d

1.25 - 1.34 –CH–CH2CH2– 1.98 c

1.69 - 1.79 –CH–(CH3)2 1.97 b

3.68 - 3.72 –CH–(CH2)2– 1.00 e

3.76 - 3.85 HO–CH– 1.00 f

Na-BC9

0.83 - 0.94 –CH–(CH3)2 12.02 a

1.30 - 1.39 –CH–CH2CH2– 2.04 d

1.55 - 1.65 –CH–CH2CH2– 2.00 c

1.69 - 1.78 –CH–(CH3)2 2.00 b

4.45 - 4.53 –O–CH–(CH2)2– 1.00 e

TEA-BC9

0.85 - 0.93 –CH–(CH3)2 12.11 a

1.30 - 1.35 –CH–CH2CH2–
N–CH2CH3

10.02 d + f

1.58 - 1.67 –CH–CH2CH2– 2.01 c

1.74 - 1.84 –CH–(CH3)2 2.00 b

3.35 - 3.43 N–CH2CH3 12.00 g

4.37 - 4.45 –O–CH–(CH2)2– 1.00 e

TMA-FO180

0.79 - 0.90 –CH2–C(CH3)3

–CH–CH3

24.00 a

0.95 - 1.34 –CH–CH2– 8.01 b

1.35 - 1.81 –CH3–CH– 3.01 c

3.32 - 3.38 N–CH3 11.97 e

3.79 - 3.98 –O–CH2– 1.94 d
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Table 4.3: Data from selected 1H NMR spectra of di-esters (Figures 4.8 and 4.9)
and di-chain surfactants (Figures 4.11, 4.12 and 4.13).

Chemical Shift Molecular
fragment

Integration Identified proton

AOTA - diester

0.94 - 0.98 –CH2–C(CH3)3 18.00 a

3.88 - 3.90 –O–CH2– 4.00 b

6.84 - 6.92 –CO–CH2–CO– 2.00 c

AOTSiB - diester

0.061 - 0.094 –CH2–Si(CH3)3 18.01 a

3.88 - 3.90 –O–C2H4– 4.01 b

6.80 - 6.85 –CO–CH2–CO– 2.00 c

AOTB

0.84 - 0.89 –CH2–C(CH3)3 18.00 a

1.40 - 1.46 –CH2–CH2– 4.01 b

2.70 - 2.89 –CO–CH2– 2.00 d

3.57 - 3.63 NaO3S–CH– 1.00 e

3.95 - 4.03 –O–CH2– 4.00 c

AOTSiB

-0.11 - 0.057 –CH2–Si(CH3)3 18.00 a

0.79 - 0.93 –CH2–CH2– 4.01 b

2.69 - 2.91 –CO–CH2– 2.00 d

3.56 - 3.67 NaO3S–CH– 1.00 e

3.95 - 4.09 –O–CH2– 4.03 c

di-C6SS

0.80 - 0.85 –CH2–CH3 6.00 a

1.18 - 1.28 –CH2–C3H6– 4.01 b

1.44 - 1.52 –O–CH2–CH2– 4.00 c

2.71 - 2.79 –CO–CH2– 1.99 f

2.82 - 2.91 NaO3S–CH– 0.99 e

3.59 - 3.65 –O–CH2– 3.99 d
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Table 4.4: Elemental analysis results for single and di-chain surfactants.

Theoretical Experimental

Surfactant C H S N C H S N

Single-chain surfactants

Na-FO180 58.03 10.01 8.61 - 58.35 10.24 8.54 -

TMA-FO180 62.37 11.66 7.57 3.31 62.07 11.49 7.42 3.09

TEA-FO180 65.09 11.97 6.68 2.92 64.92 12.05 6.46 3.05

TPA-FO180 67.24 12.23 5.98 2.61 67.52 12.41 5.68 2.66

Na-FO180N 58.03 10.01 8.61 - 58.31 10.14 8.54 -

TMA-FO180N 62.37 11.66 7.57 3.31 62.31 11.89 7.21 3.08

TEA-FO180N 65.09 11.97 6.68 2.92 64.95 11.72 6.39 2.94

TPA-FO180N 67.24 12.23 5.98 2.61 67.22 12.36 6.69 2.36

Na-BC7 38.52 6.93 14.69 - 38.71 7.05 14.66 -

TMA-BC7 49.04 10.10 11.90 5.20 49.28 10.00 11.52 4.95

TEA-BC7 55.35 10.84 9.85 4.30 55.29 10.99 9.97 4.28

TPA-BC7 59.80 11.36 8.40 3.67 59.67 11.02 7.81 3.92

Na-BC9 43.89 7.78 13.02 - 43.74 7.82 12.75 -

TMA-BC9 52.49 10.51 10.78 4.71 52.36 10.66 10.24 4.98

TEA-BC9 57.75 11.12 9.07 3.96 57.69 11.26 9.33 4.24

TPA-BC9 61.57 11.56 7.83 3.42 61.41 11.62 8.09 3.15

SDS 54.31 9.50 12.08 - 52.28 9.69 11.56 -

Di-chain surfactants

AOTA 46.66 6.99 8.90 - 46.76 7.19 8.78 -

AOTB 49.40 7.47 8.24 - 49.89 7.34 8.17 -

AOTSiA 36.72 6.42 8.17 - 36.98 6.48 8.01 -

AOTSiB 39.98 6.95 7.62 - 40.12 6.98 7.48 -

AOTSiC 42.83 7.41 7.15 - 42.88 7.48 7.07 -

HS1 46.66 6.99 8.90 - 46.74 7.00 8.47 -

HS2 49.47 7.53 8.25 - 49.24 7.59 8.17 -

HS3 51.91 7.99 7.70 - 51.41 7.81 7.55 -

di-C6SS 49.47 7.53 8.25 - 49.26 7.32 7.94 -

di-C7SS 51.91 7.99 7.70 - 51.72 7.82 7.68 -

di-C8SS 54.04 8.39 7.21 - 54.21 8.53 7.33 -
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4.6 Techniques

4.6.1 Conductivity

To help guide surface tension experiments, novel surfactants would first have their

cmc’s determined by conductivity. Cmc’s of mixed anionic surfactant systems were

also determined using the same procedure. Measurements were made using a Jenway

4520 Conductivity Meter which was first calibrated with a 1 M KI solution following

the supplier instructions. The probe was cleaned with ultra-pure water until a

standing conductivity of < 0.15 µS cm−1 was achieved. 20 mL of water was added

to a sterile sample vial (or centrifuge tube) with a Gilson pipette. The probe was

continuously submerged in the stirred sample throughout the experiment. Once a

sufficient concentration range had been measured, and there was a noticeable drop

in conductivity between concentrations, cmc’s were determined using the procedure

outlined in Section 5.2.2.

4.6.2 Surface tension

Surface measurements were made using a K100 tensiometer at the Krüss Surface

Science centre at the University of Bristol, using the Wilhelmy plate method. Glass-

ware used must be thoroughly cleaned to ensure no surface-active contaminants are

introduced into an otherwise clean sample. This was achieved using a simple, but

effective three stage washing process. A trough was cleaned with a dilute decon

solution and then thoroughly rinsed with water. This process was repeated with

methanol, and then finally ultra pure water (Millipore, 18.2 MΩcm) to remove any

residual tap water. The cleanliness of the glassware can then be checked by con-

ducting a surface tension measurement of ultra pure water, where a surface tension

of 72.0 mN m−1 ± 0.2 mN m−1 at 25 ◦C was considered satisfactory.

Equilibrium surface tension curves were obtained by preparing a 20 mL sample

of surfactant at 4 x cmc. The solution was then diluted from here by replacing

removed surfactant solution with pure water, which would allow greater control

over the entire concentration regime. The Wilhelmy plate was cleaned between

each repeat measurement. It is important to clean the probe between each repeat

measurement and not just between different concentrations, because when working
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with anionic surfactants, molecules remain on the plate. If not cleaned, a layer is

formed on the plate which reduces the surface tension below the accurate value.

This is also why the automatic dosing system is unsuitable for anionic surfactants.

The Wilhelmy plate was cleaned by being rinsed with methanol, and then being

placed under the blue flame of a bunsen burner. Initially it may seem appropriate

to keep the plate under the blue flame for an extensive amount of time to ensure

a clean surface. However, this can warp the plate which has a consequential effect

on the surface tension values calculated. Therefore, the plate was removed from

the blue flame as soon as the characteristic orange glow began to appear. Repeat

measurements would be made at each concentration until the surface tension was

constant within a range of ± 0.1 mN m−1. Once the surface tension was constant,

a final repeat measurement would be made with a longer time interval to ensure

equilibrium surface tension had been achieved. All measurements were made at 25

◦C using a Grant LTD6G circulating water bath.

4.6.3 Small-angle neutron scattering (SANS)

SANS measurements were performed on D33 at the Institute Laue-Langevin (ILL,

Grenoble, France) and SANS 2D or LOQ at the ISIS facility (Rutherford Appleton

Laboratory, Didcot, UK). The D33 instrument used neutrons with a wavelength of

l = 6 Å and two sample-detector positions (2 and 7.5 m) providing an accessible Q

range of 0.005-0.2 Å
−1

. On SANS 2D, a simultaneous Q range of 0.004-0.6 Å
−1

was

achieved with a neutron wavelength range of 1.75 < l < 15.5 Å and a source-sample-

detector distance L1=L2=4m. On LOQ, a simultaneous Q range of 0.008-0.254 Å
−1

was achieved with a neutron wavelength range of 1.75 < l < 15.5 Å and a source-

sample-detector distance L1=L2=8m. Samples were made in D2O, using 2 mm path

length rectangular quartz cells at a temperature of either 25 ◦C or 60 ◦C as stated.

Raw SANS data were reduced by subtracting the scattering of the empty cell and

D2O background and normalised to an appropriate standard using the instrument-

specific software. SANS data were fit using SasView. Details of the models used

can be found accompanying discussion of the data in the relevant results chapters.
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4.7 Conclusions

Sixteen single-chain sulfonates and eleven sulfosuccinates have been successfully

synthesised. NMR and elemental analyses show that all surfactants are of high

chemical purity, and there is no significant residual inorganic material present. All

surfactants are thus amenable to characterisation in aqueous systems.
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Chapter 5

Designing Optimised Surfactant

Tails

The aim of this chapter is to provide a simple method for designing effective, highly

branched anionic hydrocarbon surfactants. This has been achieved by comparing

surface properties for a wide variety of hydrocarbon surfactants, allowing structure-

property relationships of effective surfactants to be identified. First, the limit of

achievable performance is outlined. This is followed by a detailed account of var-

ious considerations and procedures which are required to determine accurate sur-

face properties. Two series of branched hydrocarbon surfactants are introduced,

and their aggregation and adsorption behaviour in aqueous solutions discussed. By

making small, systematic variations in the molecular structure of the surfactant

tail, tensiometry and small-angle neutron scattering (SANS) are used to provide an

insight into the relationship between structure and performance. Principal consider-

ations for designing highly effective hydrocarbon surfactants are outlined, which are

shown to be dependent on the alkyl chain length of the tail. By comparing surface

properties for the most effective hydrocarbon surfactants a new index, Hγ, is intro-

duced which can predict potential super-effective surfactants based on the molecular

structure of the tail. By careful design of the surfactant tail, novel hydrocarbon sur-

factants are introduced which generate the lowest surface energies currently reported

for hydrocarbon surfactants.
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5.1 The limit of γ for hydrocarbon surfactants

When designing super-effective hydrocarbon surfactants, a fundamental question to

ask is what is the lowest surface tension theoretically possible for a hydrocarbon

(HC) surfactant? This can be identified by evaluating the surface tension of pure

alkanes and alcohols. At room temperature, hydrocarbons only begin to exist as

a liquid state above a chain length of 4 i.e. pentane onwards, as below this van

der Waals interactions are insufficiently strong enough (butane boiling point = -1

◦C, 1 atm). As the chain length is increased, the total van der Waals interactions

increase and hence so does the surface tension, see Table 5.1. Therefore for all

hydrocarbons, pentane generates the lowest surface tension. Because alkanes are

non-polar molecules, the only intermolecular interactions present between molecules

at the surface and in the bulk are weak van der Waals interactions, hence why they

generate such low surface energies. When comparing an alkane to the corresponding

alcohol (i.e. heptane to heptanol), the inclusion of a –OH group on the alcohol

introduces polar interactions between molecules which are stronger than van der

Waals interactions (ρheptane = 0.684 g cm−3 / ρheptanol = 0.819 g cm−3) and therefore

raise the surface free energy, see Table 5.1.

Surfactant molecules possess a polar head group attached to a non-polar tail.

Although there are only weak van der Waals interactions between tails, the polar

head groups (which are necessary to ensure solubility) introduce strong polar inter-

actions and sterically hinder efficient packing between tails, increasing the overall

surface free energy. For example hexane, hexanol and di-C6SS all possess a six car-

bon linear alkyl chain and generate γ = 18.4, 26.4 and 29.1 mN m−1 respectively, see

Alkane γ (mN m−1)
± 0.1

Alcohol γ (mN m−1)
± 0.1

Pentane 16.1 Pentanol 25.8

Hexane 18.4 Hexanol 26.4

Heptane 20.1 Heptanol 26.9

Octane 21.6 Octanol 27.5

Nonane 22.9 Nonanol 28.3

Table 5.1: Surface tension for selected pure liquid alkanes and alcohols at 20 ◦C.1

102
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di-C6SS

γcmc = 29.1 mN m-1

Heptanol

γ = 26.4 mN m-1

Heptane

γ = 18.4 mN m-1

Figure 5.1: Molecular structures and surface tensions generated for the linear di-
chain surfactant di-C6SS and corresponding alkane / alcohol.

Figure 5.1. The linear surfactant di-C6SS could never generate γcmc below that of

hexane as polar interactions are now introduced into the surface monolayer. How-

ever, compared to hexanol where both molecules possess polar interactions, di-C6SS

generates γcmc ∼ 3 mN m−1 higher which highlights:

1. The adverse effect of the head group on generating low γcmc by sterically

hindering efficient packing between surfactant tails.

2. Linear alkyl chains make inefficient HC surfactants.

Therefore to generate low surface energies with HC surfactants, the surfactant design

must be developed to enhance packing at the interface. The first general structure-

property relationship of surface tension highlighted that low γcmc can be achieved

by an efficiently packed and hence, dense surface monolayer.2 Branching the tail has

lead to the lowest surface energies generated for HC surfactants.3–5 This is because

surface densities are generated which have been shown to effectively mimic a pure

alkane. So what is the lowest surface tension possible for a branched HC surfactant?

For liquid hydrocarbons, when only van der Waals interactions are present, γ in the

range of 16-20 mN m−1 can be achieved. Therefore, to generate a surface tension

< 20 mN m−1 when polar interactions are also present is likely unachievable for

hydrocarbon surfactants. By careful design of the surfactant tail structure, results

are presented here for novel series of hedgehog surfactants which generate the lowest

surface energies currently achieved by HC surfactants; close to the limit of achievable

performance.
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5.2 Determining accurate surface properties

To identify structure-property relationships of low surface energy hydrocarbon sur-

factants, the most effective approach is to compare surface properties for a variety of

different molecular structures. However, it is imperative that the surface properties

of the individual surfactants are determined accurately from a standard procedure

that allows an impartial comparison to other literature. This section aims to outline

important considerations when determining accurate surface properties for novel

ionic surfactants.

5.2.1 Calculating activity coefficients

In nonelectrolyte solutions, intermolecular forces are dominated by weak van der

Waals interactions and the solution can be considered to behave ideally. When

studying the surface tension-concentration behaviour of ionic surfactants, activity

should be used instead of concentration. This is because at higher concentrations

(above 1 mM) Coulombic interactions increase, which causes departure from ideal

behaviour. In a dilute solution below a concentration of 1 mM, activity coefficients

can be regarded as unity and hence, unmodified concentration can be used. The

deviation from ideal behaviour is described by the mean ionic activity coefficient of

an electrolyte solution, α±, which is calculated from Debye-Hückel theory. Only the

relevant equations are provided here and detailed explanations of the theory can be

found in the following texts.6,7

At very low concentrations the activity coefficient can be calculated from the Debye-

Hückel limiting law:

logα± = −A|z+z−|I
1
2 (5.1)

where A is a constant which = 0.509 for ionic surfactants with a sodium counterion,

z is the charge on the ion, and I is the dimensionless ionic strength of the solution:

I =
1

2

∑
i

z2
i (bi/b

−◦−) (5.2)

where z is the charge valency and bi is the molality.
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The Debye-Hückel limiting law (equation 5.1) is suitable for 1:1 electrolytes with

concentrations below approximately 0.01 mol dm−3. When the ionic strength of the

solution is too high for the limiting law to be valid, the activity coefficient may be

estimated from the extended Debye-Hückel law:

logα± =
A|z+z−|I

1
2

1 + BaI
1
2

(5.3)

where a is the mean effective ionic diameter which typically ranges from 3-9 Å,

and B is a constant which can be interpreted as a measure of the closest approach

of the ions. A value of a = 6 Å was assumed, which is approximately the diam-

eter of a hydrated sodium ion.8 For aqueous solutions at 298 K, B = 3.282 x 109

m−1 mol−1/2 kg1/2. Equation 6.1 is valid for concentrations of up to 0.1 mol dm−3,

at concentrations above 0.1 mol dm−3 the Gibbs-Duhem equation is used.

5.2.2 Determining the cmc by electrical conductivity

To accurately determine various surface properties including γcmc, Acmc and Φcmc,

the critical micelle concentration itself must be accurately known. There are various

methods for determining the cmc of ionic surfactants, with two of the most common

being electrical conductivity and fluorescence spectroscopy. All techniques exploit

a noticeable change in the chosen measured property, which is observed when sur-

factant molecules begin to micellise and the system is no longer composed of only

free surfactant molecules. Because the surfactants discussed in this thesis are all

ionic, electrical conductivity is an appropriate technique to determine the critical

micelle concentration. As the concentration of surfactant in solution is increased,

the conductivity of the solution increases regularly because the number of charge

carrying ions increases. The conductivity of the solution will continue to increase

until the cmc is reached. At this point, further surfactant molecules aggregate into

micelles and consequently the ability to carry charge through solution decreases.

Hence, as the concentration is increased past the cmc the increase in conductivity

becomes smaller. A plot of conductivity vs concentration, therefore ideally yields

two straight lines where the inflexion point denotes the onset of micelle formation,

i.e. the cmc.
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When designing straight chain surfactants, the cmc can be estimated using relation-

ships such as the Klevens equation.9

log(cmc) = A−Bnc (5.4)

where A and B are constants which vary according to the charge, type of head group

etc. However, the Klevens equation is only valid for linear alkyl chain surfactants.

To predict the cmc of branched surfactants no simple equation currently exists as

relationships between the molecular structure and cmc are not so straightforward.

However, having prior knowledge of the cmc for a novel surfactant can allow one to

plan surface tension profiles (γ vs log[activity] experiments) more effectively. For

a novel ionic surfactant, once a suitable purity has been attained, determining the

cmc by conductivity is an appropriate first experiment.

The linear di-chain surfactants di-C6SS, di-C7SS and di-C8SS have already been

reported before.10 However, they feature in mixed surfactant systems that are dis-

cussed in Chapter 7 and were synthesised following the procedure outlined in Sec-

tion 4.4. It is important to therefore check the purity of these linear surfactants

by comparing experimentally determined surface properties, with those previously

identified in the literature (ref. [10]). The conductivities of di-C6SS, di-C7SS and

di-C8SS were individually measured in deionised water (18.2 MΩ cm) whilst the con-

centration of surfactant in solution was increased. The fitting procedure for di-C7SS

is outlined here. The conductivity plots and data analysis for di-C6SS and di-C8SS

are included in the Supporting Information.

Figure 5.2 shows the raw conductivity data which were collected for di-C7SS.

From visually analysing the data at the high and low concentration domains, it is

clear to see that the cmc has been reached across this concentration scale. The most

common method of analysis to determine the break point is to apply two linear fits

across the data and solve the simultaneous equation. Figure 5.3 shows the linear

fits that were used. Following this method, the cmc of di-C7SS was determined to

be 3.50 mM. This agrees well with previous literature, where a cmc = 3.55 mM

was determined (ref. [10]). However, this method often leads to discrepancies as

it is largely based on visually choosing the most appropriate linear fits. Therefore,

accurate determination of the inflexion point was done using the following procedure.
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Figure 5.2: Conductivity data for the di-chain linear surfactant di-C7SS which was
measured as a function of concentration.
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Figure 5.3: Linear fits applied to conductivity data where the simultaneous equation
generated can be solved to estimate the inflexion point and hence, the cmc.
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By taking the double derivative of conductivity with respect to concentration, points

of inflexion are highlighted as peaks or troughs, see Figure 5.4. Because the gradient

of the linear fit decreases past the cmc (i.e. the purple line on Figure 5.3), the point

of inflexion must be identified as trough not a peak (which would signify an increase

in gradient). From the analysis shown in Figure 5.3 the local minima, i.e. the cmc,

is identified as 2.99 mM. This does not agree as well with the literature, however, as

shown in the following section, when comparing cmc’s determined by tensiometry

and conductivity, the double derivative method provides far more robust values. For

all cmc’s which have been identified by conductivity throughout this thesis, the dou-

ble derivative method was used because it provides a simple, reliable and accurate

approach.
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Figure 5.4: Double derivative of conductivity data with respect to concentration for
di-C7SS where the point of inflexion is identified by applying a Gaussian distribution.
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5.2.3 Determining the cmc by surface tension

Determining the cmc by electrical conductivity is a very effective method for ionic

surfactants. However, if the increase in conductivity with increasing concentration

is similar pre- and post-cmc, than identifying the inflexion point accurately can

prove to be difficult. The most common method for determining the cmc of a

surfactant, irregardless of surfactant class, is by tensiometry. The background theory

of tensiometry is included in the Supporting Information and so this section will just

discuss a suitable procedure for determining the cmc.

Figure 5.5 shows the variation in surface tension as a function of activity for the

linear surfactant di-C7SS. The surface tension profile shows a nice clean break at

the cmc, which shows the sign of no surface active impurities. A common method

to determine the cmc from surface tension data is to apply linear fits to the pre-

and post-cmc regions, and to then solve where the two lines meet. This method is

suitable provided the surface tension profile behaves in an expected way (i.e. without

any impurities) and that the most appropriate linear fits are selected. To provide a

more robust and simple method for determining cmc’s from surface tension data, a

similar approach to determining cmc’s from conductivity data was used.

-11 -10 -9 -8 -7 -6 -5 -4

20

30

40

50

60

70

S
u

rf
a
c
e

 t
e

n
s
io

n
 (

m
N

 m
-1

)

ln(a)

Figure 5.5: Variation in surface tension as a function of activity for the di-chain
linear surfactant di-C7SS.
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Figure 5.6: Procedure used to highlight the cmc from surface tension data. The
double derivative of γ with respect to activity is taken around the cmc. A Gaussian
distribution is than applied to accurately highlight the inflexion point, i.e. the cmc.

By taking the surface tension data around the cmc, and determining the double

derivative with respect to activity, an accurate point of inflexion can be highlighted.

Figure 5.6 shows an expansion of the surface tension data around the cmc for di-

C7SS. The double derivative of these data was determined, plotted, and then a

Gaussian distribution applied to highlight the maxima. The cmc can then be de-

termined by taking the exponential of this number. From Figure 5.6 the cmc of

di-C7SS was determined to be 3.07 mM. This agrees well with the value determined

by conductivity when using the double derivative method (2.99 mM). The literature

cmc value of di-C7SS (3.55 mM) is slightly higher however, given the variability in

surfactant purity on a batch-by-batch basis coupled with variability in procedure

used to determine the cmc, the disagreement in value is not beyond the order of

unexpected. The procedure outlined in this section was used to determine the cmc’s

of all novel surfactants discussed in this thesis.
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5.2.4 The pre-factor m in the Gibbs equation

The concentration of surfactant molecules in the surface monolayer can be described

by analysing tensiometric data with the Gibbs equation, which has the general form:

Γ =
−1

mRT

(
d γ

d ln a

)
(5.5)

where the terms have their usual meanings. For ionic surfactants, the pre-factor m

is taken to be 2, meaning there is a 1:1 ratio of surfactant anion and counter cation

present in the monolayer. However, there has been much debate over the value of 2

for ionic surfactants which is a fundamental issue in surfactant science.11,12

By analysing the effect of electrolytes on surfactant adsorption, the pre-factor

m is known to be theoretically dependent on surfactant type and structure, as well

as the presence of any extra electrolyte in the aqueous phase.13,14 For non-ionic and

zwitterionic surfactants, various experiments have confirmed the expected value of

1 for m.15–17 To verify the value of m in the Gibbs equation, a variety of comple-

mentary techniques for measuring Γ have been employed including radiotracer mea-

surements using tritiated surfactants (replacing hydrogen with tritium),18 surface

second-harmonic generation (SHG) spectroscopy (ref. [12]), and neutron reflection

(NR).19,20 Because neutron reflectivity measures the surface excess, it is an ideal

technique to complement tensiometry, which indirectly measures Γ through γ vs

ln(a) plots.

By interpreting surface tension and neutron reflectivity data for several surfac-

tants, some groups had previously identified a pre-factor less than 2 for the surfac-

tant in the absence of electrolyte.21 By measuring the surface tension and neutron

reflectivity of several perfluorooctanoic acid salts with monovalent metal cations,

Penfold et al highlighted that this result was an artifact resulting from the presence

of small amounts of divalent cation impurity (ref. [11]). Once the divalent ions

were removed, complete consistency was found between neutron and surface tension

results using a Gibbs pre-factor of 2 for ionic surfactants. Hence, it was concluded

that anionic surfactants contaminated by divalent ions was the cause for discrepancy

in determining m. Other groups have confirmed a pre-factor of 2 once the surface

monolayer is free from polyvalent ion contaminants.22
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When synthesising anionic surfactants, polyvalent metal ions Mn+ are generally the

most prevalent surface impurity. For example, studies of AOT showed that even

at ppm levels of Mn+, there can be a significant lowering of the surface tension

in the pre-cmc region.23 An effective way to remove trace levels of Mn+ ions is to

use the chelating agent ethylenediaminetetraacetic acid (EDTA), see Figure 5.7.

In neutron reflection studies of Cs+, Na+ and H+ perfluorooctanoate (ref. [11]),

as well as Na+ AOT,23 it was found that the pre-factor 2 agreed with NR data

only in the presence of EDTA. Downer et al. performed detailed experiments on

various perfluorononanoates to determine the optimum amount of EDTA (ref. [20]).

The experiments highlighted that the level of EDTA must be determined for each

surfactant separately, on a batch-by-batch basis. The following section provides the

procedure used for determining the correct level of EDTA.

Figure 5.7: Example of a metal-EDTA chelate.

112



Chapter 5 5.2. DETERMINING ACCURATE SURFACE PROPERTIES

5.2.5 The optimum level of EDTA

As highlighted in the previous section, when studying the surface monolayer formed

by ionic surfactants, the chelating agent EDTA must be used to ensure a clean

surface free from inorganic impurities. Only when this criteria is met does the pre-

factor m = 2 apply allowing the surface excess to be accurately determined. That

is because polyvalent Mn+ ions preferentially adsorb over the sodium ions, which

can significantly lower the surface tension in the pre-cmc region. To determine the

optimum level of EDTA (which must be determined for each surfactant on a batch-

by-batch basis), the surface tension of di-C7SS was measured using the Wilhelmy

plate method on a K100 tensiometer at a fixed concentration whilst varying the

amount of EDTA. The amount of EDTA was varied in the range 10−9 to 10−1 mol

dm−3 at surfactant concentrations of 1/20th and 1/10th the cmc, see Figure 5.8. For

both concentrations, a plateau of constant γ is reached at an EDTA concentration of

approximately 1 x 10−4 mol dm−3. Hence it is at this concentration that presumably

all polyvalent ion contaminants are complexed by EDTA. From the concentration

of EDTA required at the concentrations studied, a surfactant:EDTA ratio of 200:1

was chosen. The same procedure was applied to all di-chain surfactants studied.
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Figure 5.8: Effect of EDTA on surface tensions of di-C7SS solutions at various
concentrations below the cmc.
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5.2.6 Calculating Acmc from γ - ln(a) plots

With the correct level of EDTA determined, γ - ln(a) plots were measured for di-

C7SS both with and without EDTA at 25 ◦C, see Figure 5.9. The cmc was found

to be the same within experimental error for both plots. However, the surface

tension was lower without EDTA present which shows the presence of inorganic

contaminants. With the cmc determined, a 4th order polynomial fit was applied

to the pre-cmc data (lines on figure). The first derivative of the quartic function

was calculated where x = the cmc. This value of dy
dx

was than used in the Gibbs

equation to calculate the surface excess, Γ, from which Acmc can be determined.

From analysing the data in Table 5.2, the presence of EDTA significantly alters

the area per molecule. The values of Acmc for di-C7SS with EDTA shown in Table

5.2 agree well with literature data (ref. [10]). The following methods outlined

throughout these sections were used as the standard procedures, where appropriate,

for all surfactants studied in this thesis.
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Figure 5.9: Surface tension behaviour of di-C7SS with and without EDTA at 25 ◦C.
Lines represent polynomial fits used to calculate the surface excess and hence, Acmc.

di-C7SS cmc (mM)
± 0.1

γcmc (mN m−1)
± 0.1

Acmc (Å2)
± 2

no EDTA 3.09 28.9 72

EDTA 3.07 30.2 59

Table 5.2: Parameters derived from surface tension measurements of di-C7SS.
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5.2.7 Considerations when determining the packing efficiency,

Φcmc

Previously in Section 2.7 the packing efficiency of surfactant molecules at the air-

water interface, Φcmc, was introduced:

Φcmc =
Vcal
Vmeas

(5.6)

where Vcal is the total physical volume of surfactant molecular fragments and Vmeas

is the total volume occupied by a molecule at the reference air-water interface,

see Figure 5.10. Determining Vmeas requires knowledge of the head group area

(Acmc) and is thus determined experimentally either through tensiometry or neutron

reflectivity. Calculating Vcal simply requires an estimate of the molecular volume of

the surfactant tail which can be determined by summing individual fragments (i.e.

-CH2- = 27 Å3). An alternative method which should also be used is to estimate the

volume of the tail from the density of surfactant. If the density of the surfactant is

unknown, the density of the alcohol precursor can be used to give an initial estimate.

To simplify matters, the packing efficiency, Φcmc, assumes that surfactant molecules

occupy equal areas in a grid, i.e. Acmc. Furthermore, the parameters involved (i.e.

Vcal) are often inferred not directly measured, and overall this may not be repre-

sentative of an efficiently packed monolayer. Therefore where possible, the area-per

molecule and tail volume should be determined experimentally by neutron reflectiv-

ity. Variations in calculated and experimentally measured scattering length densities

of the surfactant monolayer will provide information on the relative tail densities,

and hence volumes.

Figure 5.10: Visual representation of surfactants at the air-water interface, showing
the different fragments and interfacial volumes used in the calculation of Φcmc.
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5.3 Importance of the CH3 to CH2 ratio

In this section adsorption properties for a series of novel hydrocarbon (HC) surfac-

tants are discussed, where the degree of branching is systematically increased. With

a pre-factor of 2 for ionic surfactants validated in the previous section, tensiometry

could be used with confidence to assess surface coverages and head group areas at

the cmc. The purpose of this study is to identify principal considerations when

designing hydrocarbon surfactants to achieve low surface energies.

Previous studies of effective HC surfactants have identified the relationship that

increasing the degree of chain branching helps to generate low surface tensions (refs.

[4, 5, 10]). This is because the surface becomes more populated by low surface

energy methyl groups based on the following order of increasing surface energy:

CF3 < CF2 < CH3 < CH2.24

However, this relationship does not always hold true. For example, AOT and di-

C8SS both possess eight carbons in their respective tails, see Figure 5.11. AOT

possesses more low surface energy CH3 groups yet generates a higher surface tension.

Although the difference is on the order of experimental uncertainty, it would be

expected that AOT would generate the lower surface energy. This highlights that

low surface energies are not generated by simply loading the surfactant tail with

CH3 groups, and that γcmc is both sensitively and intimately related to packing at

the interface.

AOT

γcmc = 30.8 mN m-1

di-C8SS

γcmc = 30.7 mN m-1

Figure 5.11: Molecular structures and γcmc values for AOT and di-C8SS (ref. [10]).
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Although it is a long standing idea that increasing the CH3:CH2 ratio causes a de-

crease in surface tension, this idea has never been formally demonstrated. Therefore

to consolidate this idea, a series of three hydrocarbon surfactants termed ‘HS1-3’

were synthesised following the procedure outlined in Section 4.4. Figure 5.12 shows

the molecular structures, where the blue bond highlights the additional CH3 group

that is present on the tail. Hence, as we go across the series the CH3:CH2 ratio

increases.

Figure 5.12: Molecular structures for the HC surfactants HS1, HS2 & HS3.

The critical micelle concentration, surface excess Γ, and equilibrium surface ten-

sion γcmc are characteristic of any given surfactant. Comparing these properties

provides an insight into the adsorption behaviour of different surfactants, thus al-

lowing structure-property relationships to be identified. Once a suitable purity was

established, and EDTA:surfactant ratios determined, γ-ln(a) plots were obtained

for HS1-3 at EDTA:surfactant ratios of 150:1, 200:1 and 150:1 respectively. Surface

tension measurements were conducted on a K100 tensiometer following the experi-

mental procedure outlined in Section 4.6.2. Figure 5.13 shows the change in surface

tension as a function of activity for the three surfactants, where the lines represent

the polynomial fits that were used to determine the area-per-molecule (Acmc) at

the cmc. All surface tension profiles produce nice clean breaks at the cmc which

is consistent with an absence of surface-active impurities. Following the procedures

outlined in Section 5.2 values for the cmc, γcmc, and Acmc were determined for each

surfactant and these data are shown in Table 5.3.
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Figure 5.13: Change in surface tension as a function of activity for the branched
hydrocarbon surfactants HS1, HS2 & HS3. Polynomial fits used to determine the
surface excess and area-per-molecule at the cmc are included. Corresponding ad-
sorption isotherms on a reduced concentration axes for fairer comparison (concen-
tration/cmc) are also provided.

Surfactant cmc (mM)
± 0.2

γcmc (mN m−1)
± 0.2

Acmc (Å2)
± 2

HS1 81.2 35.4 65

HS2 57.6 32.4 72

HS3 33.6 29.7 79

Table 5.3: Surface properties derived from γ-ln(a) plots for HS surfactant series.
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From the surface properties shown in Table 5.3 there is a clear decrease in surface

tension moving across the series as the branching is increased. The cmc decreases in

an expected fashion, due to additional branching which further disrupts the hydrogen

bonding network in water, creating a greater free energy of micellisation. Because

the tail length is consistent across the series, as the branching is increased the

bulkiness of the tail and hence volume of space occupied at the air-water interface

increases. This is reflected in the area per molecule, with Acmc being largest for the

bulkiest surfactant HS3. An increase in the area per molecule going hand in hand

with an increase in branching has been observed before (ref. [10]). From Acmc it is

possible to assess the surface coverage, Φcmc, introduced in Section 2.7 described as:

Φcmc =
Vcal
Vmeas

(5.7)

where Vcal is the volume of the tail based on the summation of fragments and Vmeas

is the maximum volume the tail could occupy. The surface tension generated at the

cmc, γcmc, as well as the corresponding packing efficiency, Φcmc, for each surfactant

from the HS series is shown in Figure 5.14.
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Figure 5.14: Surface tension generated at the cmc, γcmc, as well as the corresponding
packing efficiency, Φcmc, for each surfactant from the HS series.
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From Figure 5.14 there is a clear trend which shows a decreasing surface tension

with an increase in the CH3:CH2 ratio, parallel to an increased packing efficiency.

Hence this highlights that branching the tail is a suitable approach to generate lower

surface energies with HC surfactants. This is thought to be due to several reasons:

• The surface becomes more populated by low surface energy –CH3 groups

which leads to weaker intermolecular interactions between tails (order of in-

creasing surface energy: CF3 < CF2 < CH3 < CH2 - ref. [24]).

• The surface layer becomes more efficiently filled, i.e. a higher Φcmc, creating a

surface monolayer which more effectively mimics a pure alkane.

• The area per molecule is increased which reduces the amount of intermolecular

interactions between tails per unit area (it is important to point out that the

increased Acmc still maintains being filled effectively).

As highlighted at the start of this section, simply loading a surfactant tail with

–CH3 groups will not always generate low surface energies. The most effective

surfactant from the series presented here, HS3, generates a very efficiently packed

monolayer (Φcmc = 0.94), has a high CH3:CH2 ratio, and yet only generates γcmc

= 29.7 mN m−1, see Table 5.4. Given that HS3 meets the criteria of the general

property of low aqueous surface tension, i.e. high Φcmc, and also possesses a high

CH3:CH2 ratio, it would be expected that HS3 would generate very low γcmc (< 25

mN m−1). Therefore, given the small compact nature of HS3, this suggests that the

length of the alkyl tail is also of importance to generate low γcmc.

Surfactant Branching factor Φcmc γcmc (mN m−1)
± 0.2

HS1 2.00 0.74 35.4

HS2 2.67 0.85 32.4

HS3 2.67 0.94 29.7

Table 5.4: Comparison of the packing efficiency, Φcmc, surface tension at the cmc,
γcmc, and branching factor for HS1-3.
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The empirical branching factor shown in Table 5.4 accounts for contributions from

both the extent, and position, of a branch relative to the head group (ref. [10]). For

example, the branching factor of HS2 was calculated as follows: 1 methyl branch in

position 2 and 1 ethyl branch in position 3 on a C3 linear chain: [(1*2)+(2*3)]/3

= 2.67. The branching factor of HS2 and HS3 are equal, although HS3 possesses

more branches. This is because the branching factor does not account for branched

chains, and all groups are considered linear. Therefore a new method for empirically

measuring the degree of branching is required, which more accurately accounts for

all branches present on a surfactant tail.

From this study, a logical conclusion is that when designing low surface energy

HC surfactants, the tail should possess tert-butyl groups as they have the highest

CH3 ratio of any single alkyl moiety. Furthermore, all of the current most effective

hydrocarbon surfactants possess tert-butyl groups, for example AOT3 and AOT4

(ref. [10]).

5.3.1 Steric hindrance of the head group

There are various models used to predict the surface tension of a compound such as

an organic liquid,25,26 however, for branched surfactants no such model has yet been

established. One way to evaluate the final surface tension possible for a particular

surfactant is to evaluate γ for the starting alcohol. Using a K100 tensiometer surface

tension measurements were made at 25 ◦C for several alcohols used to synthesise

surfactants which feature in this thesis, see Table 5.5. The melting point of 2,2-

Dimethyl-1-propanol is 52.5 ◦C and therefore the value of γ at 25 ◦C shown in Table

5.5 was estimated, see Figure 5.15. From Table 5.5 the lowest surface tension is gen-

erated by tert-butanol. This further highlights the potential of the tert-butyl group

to generate very low surface energies for HC surfactants as suggested previously in

Section 5.3. Interestingly the three alcohols used to synthesise HS1-3 all generate

γ ∼ 24.5 mN m−1, whereas γcmc of the three di-chain surfactants decreases by ∼ 3

mN m−1 across the series. This highlights the steric hindrance caused by the head

group, and that the relationship between molecular structure and surface tension is

clearly far more sensitive for surfactants. Therefore, to design super-effective HC

surfactants, novel approaches to improve packing efficiency are required.
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Alcohol
γ (mN m−1)
± 0.1

Surfactant
γ (mN m−1)
± 0.1

3-Pentanol 24.5 HS1 35.4

2-Methyl-3-pentanol 24.3 HS2 32.4

2,4-Dimethyl-3-pentanol 24.9 HS3 29.7

2,2-Dimethyl-1-propanol 20.5 AOTA 30.2

2,6-Dimethyl-4-heptanol 23.1 Na-BC9 30.8

tert-butanol 20.3 - -

FO180 25.8 Na-FO180 27.2

FO180N 27.8 Na-FO180N 27.5

Table 5.5: Surface tension for selected alcohols which are precursors for surfactants
synthesised in this thesis, except tert-butanol. All measurements made at 25 ◦C.
The value for 2,2-Dimethyl-1-propanol was estimated, see Figure 5.15.
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Figure 5.15: Surface tension of 2,2-Dimethyl-1-propanol at various temperatures.
Data was extrapolated to estimate surface tension at 25 ◦C, shown in Table 5.5.

122



Chapter 5 5.4. TRIMETHYLSILYL (TMS) - HEDGEHOGS

5.4 Trimethylsilyl (TMS) - Hedgehogs

In Section 2.4 the essential reasons fluorocarbon (FC) surfactants display greater

surface activities over HC analogues were introduced, namely: 1) the lower polaris-

ability of fluorine over hydrogen and 2) the larger atomic radius of fluorine. Because

fluorine has a larger atomic radius compared to hydrogen, consequently a perfluo-

roalkyl moiety will have a larger molecular volume, e.g. –CF2 – and –CH2 – are

estimated to be 38 and 27 Å
3

respectively.27 A perfluoroalkyl chain will therefore

have a larger volume compared to a hydrocarbon analogue, and thus when packing

at the air-water interface, less fluorocarbon surfactant molecules will be required to

fill a ‘unit-area’, this is illustrated in Figure 5.16. Therefore there will be less inter-

molecular interactions between tails for FC surfactants, which reduces the dispersion

contribution γd to the total surface tension (γ = γd + γp). Silicon has a larger atomic

radius compared to carbon and therefore, a tail containing silicon should possess a

larger molecular volume compared to a carbon analogue, producing a lower packing

density per unit area and thus, lower γ. To test this idea, a novel series of hydro-

carbon surfactants termed TMS-hedgehogs were synthesised where carbon in the

tert-butyl group has been replaced by silicon, see Figure 5.17. The corresponding

hydrocarbon equivalents have also been synthesised to provide a comparison and

thus to investigate the effects of incorporating silicon into the chain-tip. AOTA has

Figure 5.16: Schematic representation of fluorocarbon and hydrocarbon surfactants
packing at the air-water interface. FC surfactant tails have a larger volume compared
to a HC analogue and therefore produce a lower packing density per unit area.
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AOTA AOTBAOTSiA AOTSiB AOTSiC

Figure 5.17: Molecular structures of TMS-hedgehog surfactants AOTSiA, AOTSiB
and AOTSiC, where silicon has been incorporated into the tert-butyl group, as well
as the corresponding hydrocarbon analogues AOTA and AOTB.

previously been referred to as AOT14,28 and the HC equivalent of AOTSiC could

not be synthesised in sufficient quantities due to expensive starting materials.

The performance of TMS-hedgehogs vs the hydrocarbon analogue can be com-

pared through their effectiveness, i.e. γcmc. As discussed previously, to ensure a

chemically pure surface free from polyvalent Mn+ species that are inevitably intro-

duced during synthesis, the appropriate surfactant:EDTA ratios must be determined

separately for each surfactant on a batch-by-batch basis. Equilibrium γ vs ln(a) plots

were obtained at EDTA ratios of - AOTA (275:1), AOTSiA (300:1), AOTB (425:1),

AOTSiB (500:1) and AOTSiC (250:1). The surface tension profiles are shown in

Figure 5.18. All curves show clean breaks at the cmc with no minima or shoulders

which would indicate surface-active impurities. Cmc’s were determined following

the double differential method outlined in Section 5.2.3. The pre-cmc data were

fit to quartic functions to estimate the limiting surface excess concentration at the

cmc, and thus, the area per molecule. These results are given in Table 5.6.

Comparison of the cmc data presented in Table 5.6 shows a logarithmic decrease

with increasing chain length (e.g. AOTA/AOTB), due to an increase in hydropho-

bicity. For AOTSiA, SiB and SiC, each tail possesses effectively 5, 6 and 7 carbons,

with cmc’s proportional to their linear analogues (ref. [10]). As expected, incor-

porating silicon into the chains (AOTA/AOTSiA) causes further decreases in cmc.

There is also a clear decrease in γcmc when silicon is incorporated into the surfactant

tail. This suggests a lower packing density per unit area. From the data presented

in Table 5.6 AOTSiC is the strongest performer achieving γcmc = 22.8 mN m−1,
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Figure 5.18: Equilibrium surface tension data from right to left for AOTA, AOTSiA,
AOTB, AOTSiB and AOTSiC at 25 ◦C in water at EDTA:surfactant ratios as noted
on the previous page. Polynomial lines fit to pre-cmc data are shown. Surfactant
molecular structures are also included, the colour of the tail corresponds to the
appropriate curve. Curves slightly off-set to improve clarity between surfactants
with similar cmc’s. Corresponding adsorption isotherms on a reduced concentration
axes for fairer comparison (concentration/cmc) are also provided.
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Surfactant cmc (mM)
± 0.2

γcmc (mN m−1)
± 0.1

Acmc (Å2)
± 2

AOTA 89.6 30.2 79

AOTSiA 68.1 27.0 82

AOTB 25.9 26.7 75

AOTSiB 15.9 24.3 78

AOTSiC 3.0 22.8 74

Table 5.6: Surface properties derived from γ-ln(a) plots for the TMS series.

the lowest currently reported for a HC surfactant. Interestingly, the surface tension

decreases as the tail length increases, which is perhaps counterintuitive as the CH3

to CH2 ratio decreases. The γcmc values of the HS series presented previously high-

lighted that highly branched but short tails are ineffective at generating low γcmc,

this is further validated here. The Acmc values presented in Table 5.6 decrease as

the tail length increases which suggests more tightly packed molecules, given the

increase in molecular volume. Similar trends have been found previously due to a

decrease in chain rigidity, and changes in the head group hydration structure.29

5.4.1 Surface coverage

The surface coverage at the cmc, Φcmc, is dependent on the area-per-molecule and

the longest alkyl chain length (see Section 2.7). Therefore values obtained for Φcmc

are an intrinsic property and independent of both surfactant geometry and chemistry

of the surfactants. Assuming the layer is uniform, a high Φcmc indicates an efficiently

packed monolayer with little free space. Values of γcmc for the TMS-series, as well

as calculated values of Φcmc and branching factor are shown in Table 5.7.

The first general-structure property relationship of surface tension suggests that

low surface tensions are generated by efficient monolayer packing, regardless of sur-

factant type (ref. [2]). From the data presented in Table 5.7, the TMS-hedgehog

series all pack efficiently at the surface, producing high Φcmc values which are com-

parable with the super-efficient FC surfactant di-CF4 (γcmc = 17.7 mN m−1 Φcmc

= 0.97).30 Furthermore, if the TMS-hedgehog is compared to the purely HC ana-

logue, for example AOTA versus AOTSiA, from the Acmc data shown in Table 1,

one might expect AOTSiA to produce a lower Φcmc given the larger Acmc and hence
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Surfactant Branching factor Φcmc γcmc (mN m−1) ± 0.1

AOTA 1.33 0.87 30.2

AOTSiA 1.33 0.96 27.0

AOTB 1.00 0.82 26.7

AOTSiB 1.00 0.93 24.3

AOTSiC 0.80 0.92 22.8

Table 5.7: Comparison of the packing efficiency, Φcmc, surface tension at the cmc,
γcmc, and branching factor for TMS-hedgehogs and pure hydrocarbon analogues.

Vmeas. However, it is clear that the presence of silicon in the chain in place of carbon

improves packing efficiency and surface coverage (i.e. Φcmc → 1). Thus, the lower

γcmc and higher Φcmc generated by AOTSiA over AOTA, can be attributed to the

larger size of silicon (rSi = 1.1 Å) compared to carbon (rC = 0.7 Å) which helps

fill the space between surfactant tails, due to the increased molecular volume of the

chain tips. As the tail length increases, the branching factor decreases, due to a con-

sistent chain-tip. The surface tension decreases as the branching factor decreases,

where the opposite was true for the HS series. This highlights that the branching

factor which is based on the molecular structure of the tail, is poorly equipped to

predict the effectiveness of a HC surfactant.

By comparing the surface tension data, there is no evidence to suggest silicon

induces strong dipoles in the chain tips, due the lower surface energies achieved by

the trimethylsilyl analogues. Therefore, the low surface energies achieved by these

TMS-hedgehogs can be attributed to an increased molecular volume which improves

packing efficiency between surfactant tails in the surface monolayers leading to a

higher surface coverage. Furthermore, these are not conventional hydrocarbon sur-

factants as they contain silicon (not to be confused with silicone surfactants, which

are a distinctively different class). A characteristic of silicone surfactants is a highly

flexible –O–Si–O–Si– backbone. However, the Si–O–Si linkage is susceptible to

hydrolysis in the presence of moisture,31 and the hydrolytic instability of silicone

surfactants is an inherent weakness. Therefore, the TMS-hedgehogs introduced here

have been designed to circumvent both the hydrolytic instability of silicone surfac-

tants, as well as the environmentally hazardous nature of fluorosurfactants, whilst

generating the lowest surface energies currently achieved by HC surfactants.
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5.4.2 Small-angle neutron scattering (SANS)

It is of interest to see if the subtle changes in molecular structure affect surfac-

tant aggregation and preferred micellar shape, hence, small-angle neutron scatter-

ing (SANS) data were collected as a function of concentration. Measurements were

made at 60 ◦C for all surfactants to ensure complete solubility in D2O. Concentra-

tions were kept consistent at multiples above the cmc (i.e. 40x, 20x etc). Scattering

profiles with corresponding fits are shown in Figure 5.19. For AOTA/AOTSiA, the

most dilute concentration did not scatter strongly enough and these data are not

included.

The scattering profiles for AOTB, AOTSiA and AOTSiB are well described as

oblate ellipsoid form factors with charged structure factors to account for repulsion.

The parameters used to model the charged oblate ellipsoids - equatorial radius [Req

/ Å], polar radius [Rpol / Å], aspect ratio [X = Req / Rpol] and effective micellar

charge (Z). For AOTA and AOTSiC the shape of the aggregates change with varying

concentration. Oblate charged ellipsoids are still formed, but at low concentrations,

a more spherical shape is observed and interestingly, for AOTSiC at the highest

concentration, a lamella structure is formed. To model the lower concentrations of

AOTA and AOTSiC a spherical model was used for the radius - [Rsphere / Å], and to

model the the lamellar structures present at the highest concentration of AOTSiC,

a paracrystal lamellar model was used,32 with the following parameters - bilayer

thickness [D - Å], average distance between two adjacent layers [L - Å], distribution

of layer distance [P], and number of layers [Nlayers]. These data are shown in Table

5.8.

From Figure 5.19 all surfactants show an intermediate-Q peak which is charac-

teristic of charged micelles. As the concentration increases this intermediate peak

becomes more pronounced and moves to higher Q. For each surfactant, the sizes of

the ellipsoids determined from the fits follows the expected trend, with the smallest

surfactants forming the smallest micelles (e.g. AOTA ≈ 10 Å). The charge is also

seen to decrease in accordance with decreasing micelle size. AOTSiA, AOTB and

AOTSiB only form oblate ellipsoids which display common behaviour for charged

anisotropic micelles when concentration is varied. Similar trends have been re-

ported before for other surfactant systems including the common linear HC surfac-
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tant SDS.33–36 For AOTA and AOTSiC, charged oblate ellipsoids are formed in the

intermediate concentration regime which follow the expected trend.

The sizes and shapes of micelles depend on a balance of interactions between

molecular structure of the surfactant tail, and repulsion between head groups. At low

concentrations of AOTA, the intermediate-Q peak is lost, due to weaker repulsion

between neighbouring micelles. From the aspect ratio values in Table 5.8, there is a

shape transition from ellipsoidal to spherical as concentration decreases. The same

is true for AOTSiC in the low concentration regime, forming spherical micelles with

radii ≈ 19 Å. This transition in shape is possibly due to the weaker charge on the

micelles, reducing repulsion between neighbouring head groups.

For AOTSiC the intermediate-Q peak moves to lower Q as concentration is in-

creased, showing the presence of larger aggregates. At the highest concentration (40

x cmc) a clear Bragg peak can be seen which is characteristic of d-spacing between

lamellae. The average number of layers is around 11, indicating a large structure

formed from many stacks of lamellar sheets with an average bilayer thickness of 22.1

Å. The average distance between layers obtained by the model agrees well with the

estimated distance from the Q-value of the highest peak. Previous SANS studies of

large, bulky hedgehog surfactants reported the formation of lamellar structures (ref.

[4]). The transition to lamellar structures at high concentration has been reported

before,37 and is due to significant interactions between micelles that become over

packed above a certain concentration.

Overall the subtle differences in molecular architecture of the surfactants dis-

cussed here do not seem to greatly affect the shapes of the micellar aggregates

formed. The effect of concentration and micellar charge play bigger roles. Incorpo-

rating silicon into the chain tip only causes a slight increase in the micelle size. High-

lighting that when nearing the limit of performance achievable with hydrocarbon

surfactants, the relationship between molecular structure and packing is extremely

sensitive in the surface monolayer, compared to micellar packing in solution.
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5.5 Designing an effective surfactant tail

As outlined at the start in Section 5.1, the lowest surface tension possible for a

hydrocarbon surfactant is suggested to be ∼ 20 mN m−1. With the HC surfactants

introduced in this chapter, surface tensions as low as 22.8 mN m−1 (AOTSiC) have

been achieved, which is very near the limit of achievable performance. Compared

to simple linear surfactants such as SDS or di-C7SS (γcmc = 31.2 and 29.8 mN m−1

respectively) branching the surfactant tail clearly generates a much more effective

reduction of aqueous γ. As highlighted in Section 5.3, an imperative structure-

property relationship shared by all effective HC surfactants is a high CH3:CH2 ratio

in the chain-tip, i.e. a tert-butyl group. By comparing structure-property relation-

ships of low surface energy HC surfactants, is it possible to predict the effectiveness

of a HC surfactant based on the molecular architecture of the alkyl tail alone? In

this section a new index, Hγ, is introduced which determines whether the molecular

structure of a hydrocarbon tail is likely to generate γcmc < 25 mN m−1, i.e. it could

be considered an identifier of super-effective HC surfactants. First though, the main

principles of highly effective HC surfactants must be outlined, where it becomes

clear that the rules are dependent on the alkyl chain length.

5.5.1 Generating low γcmc with short tails

There are very few studies which report surface properties for short HC surfactants.

In the context of Hγ, short is defined as a surfactant tail where the longest alkyl chain

length≤ 3. In this chapter, several short hedgehog surfactants have been introduced,

all of which generate high γcmc ∼ 30 mN m−1. At first short hedgehog surfactants

would appear poorly equipped to generate low aqueous surface tensions. However,

Sagisaka et al. conducted experiments relating the surfactant-tail layer density to

surface tension for several novel hedgehog surfactants (ref. [5]). The short, highly

branched hedgehog surfactant di-BC6SS was introduced which generates γcmc = 23.8

mN m−1 (at 35 ◦C). This is substantially lower than γcmc achieved by other short

HC surfactants discussed in this chapter. Molecular structures and values of γcmc

generated for di-BC6SS and a few other select short hedgehog surfactants are shown

in Figure 5.20. All structures are highly branched and yet only di-BC6SS generates
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AOTA di-BC6SS HS2

γcmc = 30.2 mN m-1 γcmc = 23.8 mN m-1 γcmc = 32.4 mN m-1

Figure 5.20: Molecular structures and respective γcmc values for the short hedge-
hog surfactants AOTA, di-BC6SS (ref. [5]) and HS2. They are considered ‘short’
surfactants because the longest alkyl chain length is ≤ 3.

low γcmc. Furthermore, the tail structures of AOTA and di-BC6SS are extremely

similar (one methyl group on each tail being the difference) yet di-BC6SS generates

γcmc ∼ 6 mN m−1 lower than AOTA. Such a large difference in surface tension

for such a small difference in molecular structure is remarkable. This result alone

highlights that short highly branched hydrocarbon surfactants can be designed to be

super-effective, generating very low values of γcmc. However, by comparing γcmc for

AOTA and di-BC6SS, the relationship between tail structure and low surface tension

is clearly extremely sensitive for small highly branched surfactants. As highlighted

in Section 5.4, for the TMS-hedgehogs, when the tail structure was kept constant

and only the alkyl chain length was increased, a greater reduction of aqueous surface

tension was achieved. This was suggested to be because of the increased flexibility

of the tail, accompanied by a greater distance between the polar head group and

low surface energy tert-butyl chain tip. By nature short hydrocarbon surfactants

cannot generate low γcmc due to the benefits of an increased alkyl chain length.

Therefore, for hydrocarbon surfactants with small alkyl chain lengths (≤ 3), these

results suggest the approach to generate low γcmc is to use a tail that is nearly fully

saturated (i.e. maximum number of CH3 groups). And to design a short-tail super-

effective HC surfactant which achieves γcmc < 25 mN m−1, a certain number of CH3

groups are required, relative to the longest alkyl chain length.
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5.5.2 Generating low γcmc with long tails

With regards to Hγ, a long tail is defined as a surfactant tail where the longest

alkyl chain length ≥ 4. The most effective HC surfactant is currently AOTSiC

generating γcmc = 22.8 mN m−1 with a chain length 5 carbons long. In Section 5.4

where the TMS surfactant series was first introduced, a longer chain length was

shown to be more effective at generating lower γcmc. However, it is possible to

find examples where this structure-property relationship is not obeyed. Figure 5.21

shows the molecular structures and respective γcmc values for the branched di-chain

surfactants AOTSiC, AOT1, 3 and 4, as well as the di-chain linear surfactant di-

C6SS (ref. [10]). AOT4 has an identical tail structure to AOT3 except for a single

additional CH2 group, i.e. it is one carbon longer. However, AOT4 with the longer

alkyl chain length generates a higher surface tension. This highlights the structure-

property relationship of a lower surface tension generated by a longer alkyl chain

length is sensitive to branching away from the chain tip. AOT3 could be considered

the purely hydrocarbon equivalent of AOTSiC, with an additional CH3 group present

along the tail. When comparing γcmc for AOTSiC and AOT3, a substantially higher

surface tension is generated for AOT3. Although AOT3 is a pure hydrocarbon and

AOTSiC a TMS-hedgehog and therefore not directly comparable, the purely HC

equivalent surfactant AOTB with a smaller alkyl chain length (hence less effective)

still generates γcmc lower than AOT3 (26.7 mN m−1). Therefore, clearly the presence

of this additional CH3 group on AOT3 has adverse effects on packing between tails,

generating a higher surface tension. This is perhaps not as would be expected, given

AOTSiC AOT3 AOT4

γcmc = 22.8 mN m-1 γcmc = 27.3 mN m-1 γcmc = 28.1 mN m-1

AOT1

γcmc = 30.8 mN m-1

di-C6SS

γcmc = 29.1 mN m-1

Figure 5.21: Molecular structures and respective γcmc values for the long hedgehog
surfactants AOTSiC, AOT3 and AOT4 (ref. [10]).
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that the number of low surface energy methyl groups is increased. Furthermore, this

does not agree with the structure-property relationship identified for small effective

hedgehog surfactants, where a higher CH3:CH2 ratio generates lower γcmc. A similar

effect is seen for AOT1 and di-C6SS (see Figure 5.21) which both possess a 6 carbon

alkyl chain. AOT1 is branched near the head group and therefore possesses more low

surface energy CH3 groups, but generates γcmc ∼ 2 mN m−1 higher than di-C6SS.

This suggests that for longer alkyl chain lengths (i.e. ≥ 4), branching away from the

chain-tip hinders efficient surface packing and hence reduces the effectiveness of the

surfactant. Therefore, to promote efficient packing between surfactant molecules,

the branching should be localised to (or near) the chain-tip.

5.5.3 The effectiveness of a hydrocarbon surfactant - Hγ

By comparing the surface properties of various hydrocarbon surfactants in the previ-

ous section, structure-property relationships of effective surfactants have been identi-

fied. The relationships are not general to all hydrocarbon surfactants, but dependent

on the alkyl chain length. These are summarised below:

1. Short tail hydrocarbon surfactants - Longest alkyl chain length ≤ 3

• The tail should be at near maximum saturation (i.e. maximum number

of CH3 groups).

2. Long tail hydrocarbon surfactants - Longest alkyl chain length ≥ 4

• The branching should be localised to (or near) the chain-tip.

• Branching near the head group reduces efficient packing.

• A longer alkyl chain length helps to generate lower γcmc provided the

branching is localised only at the chain-tip.

Table 5.9 shows surface properties for several HC surfactants arranged in order

of decreasing surface tension. Where all super-effective surfactants (γcmc = < 25

mN m−1) obey the structure-property relationships outlined above. Surface proper-

ties are also given for the common linear surfactants SDS and di-C7SS to provide

comparison. Molecular structures for all surfactants are provided in Figure 5.22.
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Surfactant
γcmc (mN m−1)

± 0.2
Acmc (Å2)
± 2

Φcmc

Branching
Factor

Tail length ≤ 3

HS1 35.4 65 0.74 2.00

HS2 32.4 72 0.85 2.67

AOTA 30.2 79 0.87 1.33

HS3 29.7 79 0.94 3.67

AOTSiA 27.0 82 0.96 1.33

di-BC6SS 23.8 73 0.97 2.33

Tail length ≥ 4

SDS 31.2 47 0.59 0

AOT1 30.8 75 0.66 1.67

AOT5 30.3 80 0.94 2.80

di-C7SS 29.8 59 0.71 0

AOT2 29.7 77 0.85 2.40

AOT6 29.1 70 0.92 1.33

AOT4 28.1 70 0.94 1.33

Na-FO180N 27.5 69 0.60 6.70

AOT3 27.3 73 0.95 1.60

Na-FO180 27.2 86 0.64 7.10

AOTB 26.7 75 0.82 1.00

di-BC12SS 26.3 171 0.58 5.00

di-BC9SS 24.5 120 0.87 4.50

AOTSiB 24.3 78 0.93 1.00

AOTSiC 22.8 74 0.92 0.80

Table 5.9: Surface properties for the most effective branched surfactants, and two
linear surfactants (SDS & di-C7SS) to provide comparison. Properties obtained
from surfactants already introduced in this thesis or from literature: di-BC6SS /
di-BC9SS / di-BC12SS (ref. [5]), SDS,38 AOT 1-6 (ref. [10]), di-C7SS (ref. [10]),
Na-FO180 & Na-FO180N from Chapter 6
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AOTA AOTSiA di-BC6SS

HS1

HS2

HS3

SDS

AOTB AOTSiB AOTSiC

AOT1

AOT2 AOT3 AOT4

AOT5

AOT6 FO180

FO180-N

di-C7SS

di-BC9SS

di-BC12SS

Figure 5.22: Molecular structures of hydrocarbon surfactants that feature in Table
5.9
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In Table 5.9, the equilibrium surface tension (γcmc), area-per-molecule at the cmc

(Acmc), surface coverage at the cmc (Φcmc), and branching factor are shown for

each surfactant. The area-per-molecule and surface coverage are two of the most

common surface properties used to evaluate the structure-property relationships of

effective HC surfactants. However, as we look down Table 5.9 there is no general

trend that identifies effective HC surfactants from the area-per-molecule alone. Fur-

thermore, the same can be said about the surface coverage values shown in Table

5.9. Although the first general structure-property relationship of low aqueous sur-

face tension highlighted that effective surfactants are ones that pack efficiently to

generate a high surface coverage. This is certainly true for the most effective sur-

factants shown in Table 5.9, but equally, there are less effective surfactants which

also generate high Φcmc (i.e. AOT6 γcmc = 29.1 mN m−1 Φcmc = 0.92, AOTSiC

γcmc = 22.8 mN m−1 Φcmc = 0.92). Furthermore, Φcmc requires knowledge of an

experimentally determined Acmc therefore, it can not be used to predict whether a

particular tail structure could generate a super-effective HC surfactant. A simple

method to evaluate the branching present for a particular tail is the branching fac-

tor. However, as shown in Table 5.9 again there is no clear trend that relates low

γcmc to the branching factor.

Therefore, to evaluate the potential effectiveness of a hydrocarbon surfactant and

thus guide the design of super-effective HC surfactants, a new index is required. One

that is independent of surface properties and simply assesses the molecular structure

of the tail. This takes a similar approach to the branching factor, except is must

take into account the structure-property relationships of effective HC surfactants.

The index, Hγ, is introduced which determines whether the molecular structure

of a hydrocarbon tail is likely to generate γcmc < 25 mN m−1, i.e. an identifier

of potential super-effective HC surfactants. As highlighted in Sections 5.5.1 and

5.5.2, the structure-property relationships of effective hydrocarbon surfactants differ

depending on the longest alkyl chain length of the surfactant tail. Therefore, the

index Hγ must also differ depending on the alkyl chain length, and can be split

into two calculations one for short, and one for long tails. To begin with, Hγ is

introduced for hydrocarbon surfactants with a short alkyl tail.

138



Chapter 5 5.5. DESIGNING AN EFFECTIVE SURFACTANT TAIL

Hγ - Short tails

To clarify, here a short tail is defined as one where the longest alkyl chain length

is ≤ 3. The surfactants meeting this criterion are summarised at the top of Table

5.9. As identified in Section 5.5.1, short tail HC surfactants are effective if the tail

is at near maximum saturation. By comparing γcmc for AOTA and di-BC6SS, this

relationship was shown to be extremely sensitive. From these results, Hγ can be

defined for short tail HC surfactants as:

Hγ =
Total number of CH3 branches along the longest alkyl chain

Longest alkyl chain length
(5.8)

where for super-effective HC surfactants, Hγ ≥ 0.70. The longest alkyl chain length

should be measured from the carbon nearest to the head group, and in one direction.

Methyl groups are than counted along this chain. This is illustrated in the example

calculations which are shown in Figure 5.23.

HS1

AOTA

di-BC6SS

Hγ = 
Total CH3 groups

Longest chain length
=
2

3
= 0.67

c1

c2

c3

c1

c2

c3

Hγ = 
Total CH3 groups

Longest chain length
=
3

3
= 1.00

c1

c2

c3

Hγ = 
Total CH3 groups

Longest chain length
=
0

3
= 0

Figure 5.23: Example calculations of Hγ for short hydrocarbon surfactants. The
longest alkyl chain length is highlighted in red.
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For surfactants such as AOTA and di-BC6SS, calculating Hγ is straightforward as

the longest alkyl chain length is easy to identify. For HS1, the longest alkyl chain

length could be misinterpreted as 5. Therefore, it is important to count from the

head group, and in one direction. Because of the symmetrical tail structure of

HS1, the degree of branching could also be misinterpreted when calculating Hγ. To

clarify, only methyl groups attached to the alkyl chain are considered. For a tail

structure such as HS1, Hγ should be determined separately for each tail, and then

the summed total divided by two (irregardless of the number of chains considered).

This is clarified in the illustrated calculations shown in Figure 5.24.

HSX

c1

c2

c3

Hγ = 
Total CH3 groups

Longest chain length
=
1

3
= 0.33

HS1

c1

c2

c3 Hγ = 
0

3
= 0c1

c2

c3

Hγ = 
0

3
= 0

0+0

2
= 0

HS2

c1c2

c3 Hγ = 
1

3
= 0.33c1

c2

Hγ = 
0

3
= 0

0.33+0

2
= 0.17

c3

HS3

c1c2
c3

Hγ = 
1

3
= 0.33

Hγ = 
1

3
= 0.33

0.33+0.33

2
= 0.33

c1

c2

c3

Figure 5.24: Example calculations of Hγ for short hydrocarbon surfactants. The
longest alkyl chain length is highlighted in red.
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Hγ - Long tails

For long alkyl tails, where the longest chain length is ≥ 4, all super-effective sur-

factants shown in Table 5.9 share the following structural properties: a) a highly

branched chain-tip, b) reduced branching away from the chain-tip, c) a longer alkyl

chain length (provided (a) and (b) are met). To encapsulate the structure-property

relationships of super-effective HC surfactants, for long tails Hγ is defined as:

Hγ =
β
3
(x− α)

Total carbon number of tail
(5.9)

where β is the number of CH3 groups in the chain tip, x is the longest alkyl chain

length, and α corresponds to branching away from the chain tip. The various pa-

rameters are illustrated in the example calculation shown below in Figure 5.25.

2. Identify how many CH3 groups in 

the chain tip  

1. Identify the longest alkyl chain 

length

Hγ = 
β

3
(𝑥 − 𝛼) = 

𝛽

3
(5 − 𝛼)

3. Identify any branches away from 

the chain-tip, where α = carbon 

number

Hγ = 
β

3
(𝑥 − α) = 

3

3
5 − 3 = 2

c1

c2

c3

c4

Hγ = 
β

3
(𝑥−α)

Total carbon number
= 
2

8
= 0.25

Hγ = 
β

3
(𝑥 − 𝛼) = 

3

3
(5 − 𝛼)

Figure 5.25: An example of each stage of the calculation used to determine Hγ for
AOT3.
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For super-effective HC surfactants that are predicted to generate γcmc = < 25

mN m−1, Hγ should be ≥ 0.70. As shown in Figure 5.25, for AOT3 Hγ = 0.25

and therefore is predicted not to be super-effective which agrees with the surface

activity observed, AOT3 γcmc = 27.3 mN m−1. Because of the wide variety of struc-

tures possible for an alkyl chain length ≥ 4, the following pages provide several

illustrated calculations to ensure clarity on each parameter when determining Hγ.

Figure 5.26 highlights how to accurately identify β, as well as calculating α for a

variety of different linear branch lengths present on one tail. The important consid-

eration when calculating α is that the length of the linear chain is not considered,

but instead how far away from the chain-end it is. Carbon one (C1) is denoted by

bearing the chain-tip, and branching at C1 is not included in α, see Figure 5.26.

AOT5 AOTX

Where β is taken to be the number of CH3 groups attached
to the penultimate carbon on the longest alkyl chain.

AOT5, β = 1
AOTX, β = 2

1. Identify the longest alkyl chain length - 𝑥

Starting from the carbon nearest the headgroup and in one direction.

3. Identify any branching away from the chain-tip - α

For linear branches regardless of length 𝛼 =
1×𝐶𝑥 + 1×𝐶𝑥 𝑒𝑡𝑐.

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠
, where C𝑥

corresponds to the carbon number, with carbon 1 (C1) bearing the chain-tip.

2. Identify how many CH3 groups in the chain tip - β

c1

c2

c3

c4

𝛼 =
(1×3)(1×4)

2
= 3.5

c1

c2

c3

c4

𝛼 =
(1×3)(1×4)

2
= 3.5

Hγ = 
1

3
(5−3.5)

8
= 0.063 Hγ = 

2

3
(5−3.5)

8
= 0.13

Figure 5.26: An illustrated calculation of Hγ for AOT5 and a hypothetical equivalent
AOTX, highlighting how α is determined.
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Figure 5.27 illustrates Hγ calculations for more complicated tail structures, where

multiple highly branched groups may be present on a single tail. In this situation,

Hγ is calculated for the longest alkyl tail, and linear branches along the chain are

taken into account to calculate α, as shown previously in Figure 5.26. Branched

chains are excluded from α, and instead Hγ is calculated for each branch separately,

ignoring any linear branches already accounted for, see Figure 5.27. The values of

Hγ for the branches are positive or negative depending on the chain length of the

branch, relative to the longest chain length of the whole tail. The final value of Hγ

is then calculated by summing all individual values, and dividing this summed total

by the total carbon number of the whole tail. If an individual tail is symmetrical,

such as di-BC9SS, the individual combinations of Hγ are multiplied, not summed.

Further examples for various structures shown in Figure 5.28.

1. Identify 𝑥 and β

For the structure shown here 𝑥 = 6 and β = 1

Hγ = 
β

3
(𝑥 − 𝛼) = 

1

3
(6 − 𝛼)

3. Repeat for other branched groups

The process is repeated for the other branched groups, excluding any linear 
branches that have already been accounted for. 

𝛼 =
1 × 4 + 1 × 4

2 Hγ = 
1

3
6 − 4 = 0.67

c1
c2

c3
c4

c5

2. Determine α

Only linear branches are considered

Hγ = 
3

3
6 − 0 = 6

Hγ = 
2

3
3 − 0 = 2

4. Calculate total Hγ

If the chain length of the branched group is ± 2 the longest chain length of 
the tail, than the contribution of Hγ is additive, otherwise deductive.

Hγ =  
Combined Hγ

𝑇𝑜𝑡𝑎𝑙 𝑡𝑎𝑖𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
=

0.67+6 −2

15
= 0.31

Figure 5.27: Illustrated calculation of Hγ for an example tail where multiple linear
and non-linear branches are present.
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Branched side-
chain length is 
within ± 2 of 
longest alkyl 

chain in the tail 
so positive 

contribution

Hγ = 
2

3
(6 − 3) = 2

𝛼 =
(1×3)

1
= 3

c1

c2

c3

c4

c5

𝛼 = 0

Hγ = 
2

3
(4 − 0) = 2.67

Hγ =  
2+2.67

12
= 0.39

𝛼 =
(1×3)

1
= 3

c1

c2 c3

c4

c5

c6

c7

c1

c2 c3

c8

c9

Hγ = 
1

3
(10 − 3) = 2.33

𝛼 =
(1×3)

1
= 3

c1

c2

c3

c4
c5

c6

Hγ = 
1

3
(7 − 3) = 1.33

Branched side-
chain length is 

not within ± 2 of 
longest alkyl 

chain in the tail 
so negative 

contribution

Hγ =  
2.33−1.33

18
= 0.056

c1

c2

c3

c4

c5

c6

c1 c2

c3

c4

c5

𝛼 =
(1×5)

1
= 5

Hγ = 
3

3
(7 − 5) = 2

𝛼 = 0

Hγ = 
3

3
(6) =6

Hγ =  
2+6

14
= 0.57

𝛼 = 0

Hγ = 
3

3
(5−0)

7
= 0.71

c1

c2

c3

c4

Figure 5.28: Illustrated calculations of Hγ for various different tail structures.
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5.5.4 Predicting potential super-effective hydrocarbon sur-

factants

From the tail structures Hγ was calculated for all surfactants shown in Table 5.9.

These data, along with corresponding γcmc are shown in Table 5.10. From the values

shown in Table 5.10, super-effective hydrocarbon surfactants are generated when:

- Short tail surfactants = Hγ ≥ 0.70

- Long tail surfactants = Hγ ≥ 0.70

Surfactant γcmc (mN m−1) Hγ

Tail length ≤ 3

HS1 35.4 0

HS2 32.4 0.17

AOTA 30.2 0.67

HS3 29.7 0.33

AOTSiA 27.0 0.67

di-BC6SS 23.8 1.00

Tail length ≥ 4

SDS 31.2 0.33

AOT1 30.8 0.083

AOT5 30.3 0.063

di-C7SS 29.8 0.33

AOT2 29.7 0.074

AOT6 29.1 0.083

AOT4 28.1 0.33

Na-FO180N 27.5 0.056

AOT3 27.3 0.25

Na-FO180 27.2 0.44

AOTB 26.7 0.67

di-BC12SS 26.3 0.39

di-BC9SS 24.5 0.79

AOTSiB 24.3 0.67

AOTSiC 22.8 0.71

Table 5.10: Values of γcmc and Hγ for the most effective branched surfactants, and
two linear surfactants for comparison (SDS & di-C7SS).

145



Chapter 5 5.5. DESIGNING AN EFFECTIVE SURFACTANT TAIL

Figure 5.29 shows the relationship between Hγ and γcmc for all surfactants from Table

5.10. A clear trend is illustrated, low γcmc is achieved by tail structures that generate

high Hγ. However, it is important to remember that Hγ does not compare the

performance of hydrocarbon surfactants, but instead predicts whether a particular

tail structure is likely to produce a super-effective hydrocarbon surfactant which

could generate γcmc < 25 mN m−1. From all of the surfactants shown in Table 5.10

very few are super-effective, generating γcmc < 25 mN m−1. However, the ones that

are super-effective share the same structure-property relationships. For example,

for long alkyl tails this corresponds to a highly branched chain tip, attached to a

long flexible tail with no branching down the chain (which reduces efficient packing).

Figure 5.30 shows suggested structures that could generate very low values of γcmc

based on predictions made by Hγ. Several of the structures predicted in Figure

5.30 would be synthesised from tertiary (3◦) alcohols. As highlighted in Section

4.4.2, to synthesise surfactants from tertiary alcohols alternatives to the standard

procedures are required. And thus, to push the limit of performance achieved by

HC surfactants further, for these examples, extensive practical skills are required.

Another alternative is to synthesise tri-chain surfactants from predicted effective 2◦
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Figure 5.29: Relationship between Hγ and γcmc for selected branched surfactants.
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and 1◦alcohols. However, synthesising tri-chain surfactants is both time consuming

and expensive. Synthesing single-chain surfactants is an option, but often display

high cmc’s requiring impractical amounts to generate γcmc. Hγ has been mainly

devised from data for di-chain surfactants, however, because it evaluates only the

tail structure is equally equipped for single and tri-chain surfactants. Furthermore,

Hγ has been constructed from data for anionic HC surfactants and therefore is

most suitable for predicting super-effective anionic surfactants. However, anionic

surfactants dominate colloidal chemistry and also produce the lowest surface energies

for HC surfactants, and thus are the most suitable class for Hγ to predict.

A level of care and intuition should be applied when evaluating predictions made

by Hγ. For example, AOTB and AOTSiB both produce Hγ = 0.67. However,

AOTSiB is a super-effective surfactant generating γcmc = 24.3 mN m−1. Given the

increased volume of the chain-tip for AOTSiB over AOTB, it would be expected

that AOTSiB would produce a slightly higher value of Hγ. The equation is not

equipped to include this increased volume of the chain tip, however, it would be

similar to β/3 being slightly larger than 1, producing a value of Hγ over the 0.70

requirement of super-effective HC surfactants.

By comparing surface properties for the most effective hydrocarbon surfactants,

for the first time it has been possible to identify general structure property relation-

ships shared by all effective HC surfactants. Hγ is a simple, empirical measure which

encapsulates these structure-property relationships, allowing an initial assessment

of surfactant structure and potential performance. This will provide a useful tool to

help guide the design of novel, low surface energy hydrocarbon surfactants. In this

chapter, the potential of hydrocarbon surfactants to rival and replace conventional

fluorocarbon surfactants has been established. Now with the introduction of Hγ, a

secured future lies ahead for generating low surface tensions in a environmentally

friendly, 21st century manner.
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Short tails – Longest chain length ≤ 3

Single alkyl chain Multiple alkyl chains

Hγ = 
Total CH3 groups

Longest chain length Hγ = 
Total H𝛾 for each alkyl chain

2

Hγ = 1.33 Hγ = 1.00 Hγ = 0.83 Hγ = 1.00

Long tails – Longest chain length ≥ 4

𝛼 =
1 × 𝐶𝑥 + 1 × 𝐶𝑥 𝑒𝑡𝑐.

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠
Hγ = 

β

3
(𝑥 − 𝛼)

Total tail carbon number

If multiple branches present on one tail, the contribution to Hγ is additive if 
the branched group is ± 2 the chain length of the tail, otherwise deductive. 
If symmetrical, the individual values of Hγ are multiplied, not summed.

Hγ = 0.75 Hγ = 1.45Hγ = 0.91 Hγ = 0.81

Figure 5.30: Predicted tail structures that could generate γcmc < 25 mN m−1 based
on Hγ for long and short alkyl tails.
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5.6 Conclusions

In this chapter the structure-property relationships of effective hydrocarbon surfac-

tants have been outlined. Two novel series of hydrocarbon surfactants have been in-

troduced, generating the lowest surface energies currently reported for hydrocarbon

surfactants (AOTSiC γcmc = 22.8 mN m−1). These surface energies outperform cer-

tain fluorocarbon surfactants (di-HCF6 γcmc = 24.1 mN m−1),39 and are approaching

the surface tensions of pure liquid alkanes (γoctane = 21.6 mN m−1, γnonane = 22.9

mN m−1). This has been achieved by identifying structure-property relationships of

effective surfactants by making small systematic variations in the molecular structure

of the tail, whilst studying adsorption and aggregation phenomena by tensiometry

and small-angle neutron scattering (SANS). Previous investigations have identified

structure-property relationships by studying an assorted variety of structures, as

opposed to a systematic collection (refs. [4, 5, 10]). By adopting the systematic

approach, the subtle relationships between structure and performance are revealed,

allowing general structure-property relationships to be identified for HC surfactants.

All super-effective hydrocarbon surfactants which generate surface tensions < 25

mN m−1 have been shown to share structural characteristics in the surfactant tail.

These can be summarised as: a) a highly branched chain-tip, b) reduced branching

away from the chain-tip, c) a long alkyl chain length (provided (a) and (b) are met).

By comparing the most common surface properties for over 20 effective hydrocarbon

surfactants, no trend was found which could relate low γcmc to the molecular struc-

ture of the surfactant tail. Based on the structure-property relationships of highly

effective hydrocarbon surfactants, a new index to assess surfactant effectiveness, Hγ,

is introduced. This predicts whether a particular tail structure is likely to generate

a super-effective hydrocarbon surfactant (γcmc < 25 mN m−1) based on simply the

structure of the tail, where super-effective surfactants generate Hγ ≥ 0.70. Using

the effectiveness index Hγ, predicted tail structures that could generate γcmc < 25

mN m−1 are highlighted. Thus, a method to guide the design of super-effective hy-

drocarbon surfactants has been established. This provides a new outlook on how to

generate the lowest surface energies with novel, highly branched, hydrocarbon sur-

factants. Defining a strong future for hydrocarbon surfactants to rival and replace

effective, but environmentally hazardous fluorocarbon surfactants.
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Chapter 6

Optimising Surfactant

Performance with the Head Group

This chapter aims to improve the performance of hydrocarbon surfactants by vary-

ing the head group. The vast majority of studies which relate surface tension to

surfactant structure are predominantly concerned with surfactant tails. Methods

for designing super-effective hydrocarbon surfactant tails which generate very low

surface energies have been outlined in the previous chapter. Here, the study aims to

provide insight into fine tuning the properties of hydrocarbon surfactants to generate

surface densities to more effectively mimic a pure alkane, which is achieved by vary-

ing the head group, not the tail. Surface and bulk properties are explored through

tensiometry and small-angle neutron scattering (SANS) for a variety of single-chain

anionic surfactants. The tail structure is kept constant, whilst a variety of different

counterions (sodium and tetraalkylammonium (TAA) ions) are studied. This high-

lights structure-property relationships for surface tension which are dependent on

the head group. By making small, systematic variations in the head group struc-

ture, with a wide variety of different tail structures, the potential to improve surface

effectiveness with TAA counterions is demonstrated. This potential has remained

unnoticed until now, and provides a useful insight to design a new generation of

super-effective hydrocarbon surfactants.
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6.1 Introduction

It is commonly understood that the surface tension generated by surfactant molecules

is strongly influenced by interfacial packing between the tails. As highlighted pre-

viously in Chapter 5, for hydrocarbon (HC) surfactants low surface energies can be

achieved by careful design of the surfactant tail to generate dense surface coverages.

However, a surfactant molecule is composed of both a head group (counterion) and

a tail. Therefore by varying the counterion, is it possible to further improve the

performance of an effective hydrocarbon surfactant?

By varying the counterion the degree of binding between surfactant and coun-

terion will be altered, which will consequently affect the bulk and surface structure

formed in aqueous systems. The effect of counterion binding on anionic surfactants

has been largely focused on micellisation,1–3 and aggregation in bulk.4,5 Only a few

studies have investigated the structure of the surfactant monolayer adsorbed at the

air-water interface and hence, the change in surface tension.6,7 Penfold et al. studied

the adsorption of dodecylsulfate surfactants (DS) with various monovalent counte-

rions, by tensiometry. Interestingly, a notable difference in γcmc was observed with

changing counterion, summarised in Figure 6.1. The surface tension increases by

3 mN m−1 when Li+ is replaced by Na+, and a further 5 mN m−1 when replaced

by Cs+. Even combined with neutron reflection experiments for these aqueous sys-

Counterion (R) γcmc (mN m-1)

Li+ 28.1

Na+ 31.2

K+ 35.7

Rb+ 36.0

Cs+ 36.3

Cs+Rb+K+Li+ Na+

Increasing atomic radius

(not to scale)

Figure 6.1: Variation in the equilibrium surface tension (γcmc) for dodecylsulfate
(DS) surfactants bearing various monovalent metal counterions (R). Measurements
made at 25 ◦C, data from ref. [7].
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tems, Penfold et al. could not confidently rationalise the variation in surface tension.

However from these results it is clear that the performance of surfactants is affected,

and thus can be improved by varying the identity of the head group.

Surfactant counterions are commonly simple inorganic species such as sodium or

potassium. Alternatives that are encountered are organic ions such as ethylsulfonate

or tetramethylammonium. These are typically larger than inorganic metal ions

and lower the cmc and solubility of ionic surfactants.8 Bonilha et al. determined

that tetraalkylammonium (TAA+) counterions bind more strongly than sodium to

dodecylsulfate micelles.9 Brown et al. showed that TAA+ ions can induce different

aggregation structures, as well as controlling the phase behaviour for a variety of

HC surfactants, as well as surfactant ionic liquids SAILS (i.e. ionic liquids which

also show aggregation in aqueous solution).10,11 SAILS are an alternative ionic liquid

(IL) which help to address the practical and environmental implications of common

imidazolium based ILs. Although they have become more common in recent times,

hydrophobic counterions (i.e. TAA+) are encountered less in the literature than

inorganic ions. As highlighted previously in Figure 6.1, changing the counterion

could provide a useful approach to tune the properties of a particular surfactant,

and TAA+ ions offer properties that can outcompete certain simple metal ions.

Tetraalkylammonium counterions have been explored with a wide variety of sur-

factants which includes fluorocarbon,12 hydrocarbon,13 and silicone surfactants.14

Aggregation within the bulk and the critical micelle concentration are the most

commonly measured properties. Surface tension has been used to characterise sur-

factants with TAA+ counterions,15 but is often only a secondary feature in the

investigation. To date there are very few studies that investigate and compare the

change in surface tension for anionic hydrocarbon surfactants with TAA+ counteri-

ons. Brown et al. introduced a new series of SAILs which were based on common

organic surfactant anions with substituted TAA+ cations (ref. [6]). Figure 6.2 shows

an overview of the surface tension data from this investigation collected for AOT-

based surfactants. The equilibrium surface tension γcmc decreases by ∼ 4 mN m−1

when Na+ is replaced by TPA+, achieving γcmc = 26.1 mN m−1 which is approaching

the super-effective surfactant domain (γcmc < 25 mN m−1). This was suggested to

be because the packing efficiency between tails was balanced against electrostatic
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head group repulsions, as well as an increase in the number of low surface energy

methyl groups.

Organic counterions add additional complexity to surfactant-counterion interac-

tions, with purely electrostatic interactions of simple metal ions being replaced by a

thermodynamically complex balance between electrostatic and hydrophobic forces.16

From the data shown in Figure 6.2, this additional complexity can clearly act in a

synergistic manner, further reducing γcmc for a particular surfactant. However, the

reasons as to why this is remain unclear. The molecular volume of a TAA+ counte-

rion is intrinsically larger than common simple inorganic metal ions. Perhaps this

additional volume helps to generate a surfactant which can pack more efficiently at

the surface, i.e simply put - the head group is a better ‘fit’ for the tail which allows

a greater packing efficiency. To explore this idea, 16 single-chain anionic surfactants

have been synthesised with a variety of TAA+ counterions to generate a systematic

logical nature of surfactant structures. Surface tension and small-angle neutron scat-

tering (SANS) data were collected, allowing structure-property relationships to be

observed in the bulk, and at the surface. By keeping the tail constant whilst varying

the head group, any improvements in surfactant effectiveness will be directly related

to the head group. This is the approach that has been adopted in this study, where

the tetrapropylammonium (TPA) counterion is highlighted as a suitable alternative

for HC surfactants, able to reduce the surface tension below that of the alcohol

precursor.

Counterion (R) γcmc (mN m-1)

Na+ 30.6

NH4
+ 28.3

TMA+ 29.4

TEA+ 28.7

TPA+ 26.1

TMA TEA TPA

Figure 6.2: Variation in the equilibrium surface tension (γcmc) for AOT bearing
various counterions (R). Measurements made at 25 ◦C, data from ref. [6].
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6.1.1 Surfactants investigated

Sixteen single-chain anionic hydrocarbon surfactants were synthesised following the

experimental procedure outlined in Section 4.3, molecular structures are shown in

Figure 6.3. Each surfactant tail was synthesised with each of the four head groups

(hence 16 surfactants total). The tails were selected to investigate the structure-

property relationships of both large and small tails, allowing further comparison.

FO180 and FO180N are both C18 tails and therefore only differ by their degree

of branching. BC9 and BC7 have identical tails except BC9 possesses two extra

CH2 groups and thus is essentially a slightly elongated version of BC7 (BC7 is the

single-chain version of HS3 introduced in the previous chapter). The TAA+ head

groups selected allow small, systematic variations in the structure to be examined.

Furthermore, the Na+ counterion provides a reference structure which allows the

effects of incorporating TAA+ counterions to be investigated. The analytical tech-

niques NMR and EA show high purity for all surfactants, included in the Supporting

Information.

Sodium

FO180 FO180N BC9 BC7

Headgroup (R)

Na+

Tetramethylammonium

(TMA) Tetraethylammonium

(TEA)

Tetrapropylammonium

(TPA)

Surfactant tail

Figure 6.3: Molecular structures of surfactants investigated in this chapter. Each
surfactant tail is synthesised with each of the four head groups
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6.1.2 Determining surface properties of single-chain surfac-

tants

To identify structure-property relationships of surfactants, an effective method is to

compare physiochemical properties for a variety of different molecular structures.

When trying to identify how the packing efficiency (and hence surface tension) is

affected by varying the head group, suitable properties to compare are the cmc,

γcmc, and Acmc. These are fundamental properties for surfactants which can provide

an insight into structural effects at the air-water interface. An overview of suitable

methods and procedures for determining accurate surface properties has already

been outlined in Section 5.2. The same methods, where appropriate, were applied

to the single-chain surfactants discussed in this chapter. Because many of these

surfactants do not possess simple inorganic metal counterions, minor variations are

required to accurately account for the TAA+ counterions.

As highlighted in Section 5.2.1, with ionic surfactant solutions, activity should

be used in place of concentration to account for the deviation from ideality. The

mean activity coefficient can be estimated from the extended Debye-Hückel law:

logα± =
A|z+z−|I

1
2

1 + BaI
1
2

(6.1)

where A and B are constants, a is the mean effective ionic diameter, z is the ion

charge and I is ionic strength. For surfactants with a Na counterion, a can be taken

to equal 6 Å.17 For the TAA+ counterions that feature in this chapter, a was esti-

mated as TMA = 6 Å, TEA = 4.5 Å, and TPA = 3 Å.18 To accurately determine

both γcmc and Acmc, it is important that the surface is free from any polyvalent

Mn+ ions. This can be achieved using the chelating agent EDTA (see Section 5.2.5).

The surfactants discussed here were originally sulfonated, and then the correspond-

ing TAA+ analogues formed by ion-exchange. Following the procedure outlined in

Section 5.2.5, EDTA experiments performed on the TAA+ analogues observed no

dramatic effect on the surface tension. This suggests that the ion-exchange process

adequately removes polyvalent Mn+ ions and hence, EDTA experiments do not need

to be performed on these surfactants. However, it is important to still determine the

optimum level of EDTA for all single-chain surfactants bearing a sodium counterion.
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6.2 Surface properties

Using a K100 tensiometer, the surface tension as a function of activity was measured

for each single-chain surfactant. The optimum EDTA:surfactant ratio was deter-

mined as 450:1, 250:1, 250:1 and 100:1 for Na-FO180, Na-FO180N, Na-BC9 and

Na-BC7 respectively. Using the procedure described previously in Section 5.2.3,

the cmc of each surfactant was determined from a Gaussian distribution applied

over the double derivative of the surface tension data at the visual break point, an

example for TMA-FO180 is shown in Figure 6.4. With the critical micelle concen-

tration determined, both γcmc and Acmc can be estimated following the procedures

outlined in Section 5.2. The area per molecule is estimated from the surface excess

Γ, determined from the Gibbs equation:

Γ =
−1

mRT

(
d γ

d ln C

)
(6.2)

where m is the number of adsorbing species, R is the ideal gas constant, T is the

temperature, γ is the surface tension, and C is the surfactant concentration. The

γ-ln(a) plots for each single-chain surfactant are shown in Figures 6.5 and 6.6. Corre-

sponding adsorption isotherms on a reduced concentration axes for fairer comparison

(concentration/cmc) are also provided. Surface properties derived from the γ-ln(a)

plots are shown in Table 6.1.
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Figure 6.4: Procedure used to find the cmc from surface tension data. The dou-
ble derivative of γ with respect to activity is taken around the cmc. A Gaussian
distribution is than applied to accurately highlight the inflexion point, i.e. the cmc.
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Figure 6.5: γ-ln(a) plots shown on the left for the FO180 and FO180N surfactant
series at 25 ◦C (EDTA ratios noted in the text). Lines offset by ± 0.5 ln(a) to
improve clarity. Polynomial lines fitted to pre-cmc data are shown. Corresponding
Γ vs reduced concentration (conc/cmc) adsorption isotherms for each surfactant
shown on the right. Tensiometric parameters are listed in Table 6.1.
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Figure 6.6: γ-ln(a) plots shown on the left for the BC9 and BC7 surfactant series
at 25 ◦C (EDTA ratios noted in the text). Lines offset by ± 1 ln(a) to improve
clarity. Polynomial lines fitted to pre-cmc data are shown. Corresponding Γ vs
reduced concentration (conc/cmc) adsorption isotherms for each surfactant shown
on the right. Tensiometric parameters are listed in Table 6.1.
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6.2.1 Critical micelle concentration

Previous studies with surfactants bearing TAA+ counterions suggest a greater nega-

tive free energy of micellisation upon increasing counterion size (ref. [8]). The work

presented here agrees with this, where the cmc decreases in the order: Na+ > TMA+

> TEA+ > TPA+ for each surfactant series. This trend is highlighted in Figure 6.7.

For ionic surfactants, as the hydration radius of the counterion decreases so should

the degree of dissociation, which overall promotes micellisation. However, this ef-

fect is weak, and for organic counterions this can be overshadowed by hydrophobic

interactions. Bonilha et al. showed that the binding strength of the TAA+ ion is

dominated by their hydrophobicity, independent of the spatial distribution of the

alkyl groups attached to nitrogen (ref. [9]). Furthermore, the binding affinities were

considerably lower than expected, given the total chain hydrophobicity. Hence, it

Surfactant cmc (mM) γcmc (mN m−1)
± 0.2

Acmc (Å2)
± 2

Na-FO180 2.63 ± 0.03 27.2 92

TMA-FO180 1.50 ± 0.03 26.1 104

TEA-FO180 1.03 ± 0.03 25.7 110

TPA-FO180 0.891 ± 0.03 26.3 134

Na-FO180N 1.08 ± 0.03 27.5 69

TMA-FO180N 0.623 ± 0.03 27.8 82

TEA-FO180N 0.586 ± 0.03 26.9 102

TPA-FO180N 0.382 ± 0.03 26.8 110

Na-BC9 50.5 ± 0.3 30.8 56

TMA-BC9 40.3 ± 0.3 26.7 82

TEA-BC9 32.5 ± 0.3 28.1 92

TPA-BC9 9.91 ± 0.03 26.0 72

Na-BC7 408 ± 3 34.9 56

TMA-BC7 157 ± 3 38.1 65

TEA-BC7 67.4 ± 0.3 29.9 70

TPA-BC7 12.7 ± 0.3 26.9 69

Table 6.1: Surface properties derived from γ-ln(a) plots for the FO180, FO180N,
BC9 and BC7 surfactant series.
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Figure 6.7: Variation in the critical micelle concentration for each single-chain sur-
factant series as the counterion is varied. Linear fits highlight the decreasing cmc
with increasing counterion size.

would be expected that the decrease in cmc with increasing TAA+ counterion size

will not be substantial, as is observed here. From the linear fits shown in Figure 6.7,

the smaller the surfactant tail, the greater the decrease in cmc with increasing coun-

terion size. This would be expected, as FO180/FO180N are C18 chains and therefore

intrinsically hydrophobic. BC7 and BC9 being C7 and C9 chains respectively, could

experience a greater increase in hydrophobicity with increasing counterion size. Fur-

thermore, because the difference in cmc is smaller from Na-FO180 to TPA-FO180,

compared to for example Na-BC9 to TPA-BC9, this highlights that for the more

hydrophobic tails not all carbons are thermodynamically equivalent. For these sys-

tems, methylene groups added to the TAA+ counterion exhibit a weaker influence

on the cmc; similar observations have been reported before for di-chain anionic sur-

factants (ref. [6]). It should also be highlighted that TPA-FO180/FO180N are at

the limit of solubility. As TBA (tetrabutylammonium) equivalents were synthesised,

but found to be insoluble in aqueous systems at room temperature.
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6.2.2 Surface tension

From the γcmc values shown in Table 6.1, the surface activity is clearly altered as the

counterion is changed. This is more pronounced for the smaller surfactant tails with

BC7 showing a decrease of ∼ 10 mN m−1 as the counterion is changed from Na+ to

TPA+, whereas for FO180 the difference is ∼ 1 mN m−1. This can be explained by

the relative hydrophobicity of the surfactant anion. Na-BC9 and Na-BC7 possess

9 and 7 carbons respectively in the molecular structure and are thus weakly hy-

drophobic, with cmc’s = 50.5 and 408 mM respectively. Therefore, such surfactants

would perhaps expect to be insufficiently hydrophobic to strongly associate at the

air-water interface producing a dense surface coverage. This is reflected in their

γcmc values, 30.8 and 34.9 mN m−1 for Na-BC9 and Na-BC7 respectively. As the

size of the counterion increases, the surfactant molecule will begin to possess suffi-

cient hydrophobicity to promote dense surface coverages and hence higher surface

activity. For both the BC9 and BC7 single-chain surfactant series, the lowest γcmc is

generated by the TPA form of the surfactant. This highlights that for all surfactant

molecules, to generate low γcmc a sufficient hydrophobicity is required to promote

dense surface coverages. For single-chain surfactants with a small surfactant tail (<

C10), a sodium counterion is likely to produce an ineffective surfactant. However,

increasing hydrophobicity through large organic counterions is a suitable method to

greatly improve surface activity.

The BC7 and BC9 single-chain surfactant series introduced here possess surfac-

tant tails which have been introduced in the previous chapter as di-chain surfactants

di-BC9SS and HS3 (BC7). It is of interest to compare the properties of these surfac-

tant anions when in single-chain and di-chain surfactant form. In Section 5.3.1, sur-

face tension values for alcohol precursors were provided. Table 6.2 provides similar

data but for alcohol precursors of surfactants that feature in this chapter. As single-

chain surfactants, the lowest surface energies generated are 26.0 and 26.9 mN m−1

for TPA-BC9 and TPA-BC7 respectively. In comparison, the di-chain surfactants

di-BC9SS and HS3 generate γcmc = 24.5 and 29.7 mN m−1 respectively. Interest-

ingly the anion of BC9 generates lower γcmc as a di-chain surfactant, but BC7 as a

single-chain surfactant. This is perhaps due to the enhanced flexibility of BC9 over

BC7, possessing two further CH2 groups along the tail. Therefore, when present as
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di-chain surfactants with two tails closely neighbouring each other, BC9 will be able

to more readily adopt conformations generating high surface densities. BC7 with its

short, bulky tail structure struggles to mimic pure alkane densities at the surface as a

di-chain surfactant (HS3 γcmc = 29.7 mN m−1). As a single-chain surfactant there is

more conformational freedom between neighbouring tails by not being bound to the

same head group, which you would expect to be more suitable for a short, bulky tail

structure. As a single-chain surfactant, BC7 lacks sufficient hydrophobicity to pro-

mote adequate adsorption, which can be addressed by a bulky organic head group.

From the surface tension values of the parent alcohols provided in Table 6.2, it is

clear that TPA-BC7 is close to the limit of achievable performance, achieving γcmc

= 26.9 mN m−1, compared to the parent alcohol 2,4-Dimethyl-3-pentanol generating

γ = 24.9 mN m−1.

Surface properties for select members of the FO180 and FO180N surfactant series

have been presented previously (ref. [19]). The cmc values shown in Table 6.1

compare well with the literature values however, γcmc and Acmc values do not, with

noticeably higher γcmc values being quoted in Table 6.1. The synthetic procedure

outlined in ref. [19] does not involve glacial acetic acid and therefore does not

eliminate common contaminants when reacting with chlorosulfonic acid, evident by

respective 1H NMR of equivalent surfactants. Comparing γ for the alcohol precursors

in Table 6.2 of FO180 and FO180N, to the lowest γcmc generated by these single-chain

surfactants (TEA-FO180 & TPA-FO180N) an interesting observation can be made.

The surface tension of these particular single-chain surfactants is below that of the

parent alcohols. This suggests that the surfactant is more effective than the alcohol

at generating the surface density of a pure alkane. This observation has knowingly,

never been made before for anionic HC surfactants. From the surface properties

Alcohol γ (mN m−1) ± 0.1

2,4-Dimethyl-3-pentanol (HS3/BC7) 24.9

2,6-Dimethyl-4-heptanol (di-BC9SS/BC9) 23.1

FO180 25.8

FO180N 27.8

Table 6.2: Surface tension for select alcohols which are precursors for surfactants
synthesised in this chapter. All measurements made at 25 ◦C.
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shown in Table 6.1, as the head group is varied from Na+ → TPA+, for both the

FO180 and FO180N surfactant series, the variation in γcmc is small. FO180 generates

lower surface energies than all FO180N equivalents, likely due to the greater number

of low surface energy CH3 groups.20 TEA-FO180 generates γcmc = 25.7 mN m−1,

which is approaching surface energies of super-effective hydrocarbon surfactants (<

25 mN m−1). This is very low for a single-chain hydrocarbon surfactant. Due to the

hydrophobic nature of FO180/FO180N tails, being C18 chains, surfactant molecules

will strongly adsorb to the air-water interface. This is highlighted by the small

variation in γcmc as counterion size is increased. Therefore, the variation in γcmc is

due to a variation in packing efficiency brought on by a change in the head group.

An interesting question arises; “Is it possible to identify a particular head group

which more suitably accommodates a particular tail, improving packing efficiency?”

This cannot be confidently assessed from γcmc alone.

6.2.3 Area occupied at the air-water interface

The area per molecule, or Acmc, represents the average area that a surfactant

molecule occupies at the air-water interface. It therefore provides a measure into

how surfactant molecules are packing at the surface, highlighting structure-property

relationships of surface tension. For all surfactants shown in Table 6.1, the area per

molecule increases as the counterion is varied from Na+ to TAA+. This is what

would be expected, given the increased size of the head group. Similar trends have

been found previously for several other TAA+ hydrocarbon surfactant series (refs.

[6, 19, 21]). Figure 6.8 shows the variation in γcmc and corresponding Acmc with

changing counterion for each surfactant series. The lowest γcmc generated by each

surfactant series is highlighted by a dashed circle, as is the corresponding area per

molecule. From evaluating the data shown in Figure 6.8, there appears to be an

interesting observation relating γcmc and Acmc for the most effective surfactants.

Namely, the area per molecule shows an unexpected decrease for the counterion

that generates the lowest surface tension. A smaller value for Acmc suggests a more

tightly packed surface film. This therefore suggests that for a particular tail, a

certain TAA+ counterion helps to further accommodate efficient packing between

surfactant molecules. A similar trend was found for AOT bearing the same TAA+
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counterions, with the most effective surfactant TPA-AOT showing a lower than ex-

pected Acmc given the trend from Na+ → TEA+ (ref. [6]). Interestingly for all

surfactant series studied, including AOT, the lowest surface energies are generated

by the TPA form of the surfactant, except FO180 where this is true for TEA. Pre-

vious studies have suggested that for larger TAA+ counterions (TPA+ and TBA+),

a single alkyl chain may penetrate into micelles (ref. [8]). Also, a study of TMADS

concluded a penetration of part of the TMA+ ions at the air-water interface.22 Per-

haps penetration of the counterion helps to generate densities which mimic a pure

alkane surface. Small-angle neutron scattering (SANS) studies of the bulk aggre-

gates formed could allow observations of this effect.
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Figure 6.8: The surface tension at the cmc, as well as corresponding area per
molecule (Acmc) for each single-chain surfactant. Lines represent linear fits applied
to Acmc data. Lowest surface tension and corresponding area per molecule high-
lighted by a dashed circle for each surfactant series.
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6.3 Small-angle neutron scattering

Small-angle neutron scattering (SANS) data were collected as consistent fractions

above the cmc for all single-chain surfactants except the BC7 series. Scattering

profiles for the FO180 and FO180N series are well described by a lamellar form

factor with bilayer thickness D, and a distribution of thicknesses σ. The lowest

concentration of Na-FO180 showed the formation of cylindrical aggregates with a

cylinder radius Cr, and cylinder length Cl. The BC9 family produced scattering

profiles which are consistent with charged spherical micelles, described by a spherical

form factor with sphere radius Rsphere, polydispersity σ, multiplied by a Hayter-

Penfold structure factor with charge z. The BC7 series could not be studied by

SANS, due to weak scattering from small aggregates.

Scattering profiles for the FO180 and FO180N series are shown in Figures 6.9

and 6.10 respectively, where the lines represent fits to a lamellar form factor. The

SANS parameters obtained from the fitted functions are included in Tables 6.3 and

6.4 for FO180 and FO180N respectively. Select members of the FO180/FO180N

surfactant series presented here have been studied by SANS previously (ref. [19])

Aggregates of Na-FO180, TPA-FO180 and Na-FO180N were shown to form lamellar

aggregates, which is consistent with the scattering profiles presented here. However,

there was no change in the aggregate structure from cylinder to lamellar as observed

here. The SANS parameters shown in Tables 6.3 and 6.4 agree well with that found

previously in the literature. As the concentration is increased, for both surfactant

series the lamellar bilayer thickness increases, although only subtly. Furthermore,

as the counterion size is increased, the bilayer thickness appears to increase but

again, only subtly. When comparing SANS parameters for the Na and TPA form

of FO180/FO180N, the bilayer thickness shows a slight increase. This suggests ion

association in these systems. However, if there was penetration of the TAA+ alkyl

chain into the micelles, a larger increase in bilayer thickness would be expected.

Previous SANS studies of TAA+ surfactants showed no penetration into the mi-

celle for DS (dodecylsulfate) or AOT equivalents (ref. [6]). Studies of TAA+-AOT

showed rich structural variation, forming a variety of different aggregate shapes with

changing counterion. That is not what is observed here, with a lamellar structure

dominating the aggregates formed. This highlights the greater effect of the surfac-
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tant anion over the cation for these systems. Where overall, the organic head groups

have little to no effect on the aggregates formed in both shape and size. This is per-

haps due to the greater carbon number of the anion over even the largest cation,

which will hence therefore dominate packing driven by the hydrophobic effect.

Scattering profiles for the BC9 series are shown in Figure 6.11, corresponding

model fit parameters are included in Table 6.5. All surfactants in the BC9 surfactant

series are well described by a spherical form factor with sphere radius Rsphere, and

polydispersity σ. Na-BC9 through to TEA-BC9 show a mid-Q peak which is char-

acteristic of charged micelles. The scattering profiles for these particular surfactants

were multiplied by a Hayter-Penfold structure factor with charge z. Interestingly

TPA-BC9 was more adequately described as uncharged spherical micelles. This

suggests the larger TPA organic counterion helps to reduce repulsive interactions

between micelles. From the radii shown in Table 6.5, there is a clear increase as the

counterion is changed from Na+ and TPA+. This suggests there is ion association

between the cation and anion in TPA-BC9. Therefore, perhaps the long alkyl chains

present on TPA help to overcome repulsion between neighbouring micelles. For the

other members of this surfactant series, the sphere radius shows a subtle increase

with increasing cation size, similar to the FO180/N series. The charge follows an

expected increase as the concentration of surfactant in solution is increased.

It is apparent from the SANS data that the TAA+ counterions have only a

secondary effect on packing within the bulk. For the systems studied here, both the

shape and size of the aggregates show no drastic effects when sodium is replaced. For

all surfactant series studied, the greatest structural effects were seen when changing

from Na+ to TPA+. This would suggest that the TPA ions bind more strongly to

the surfactant anion, consequently having a greater effect on surfactant molecules

packing in the bulk. This agrees well with the work of Bonilha et al. (ref. [9]), which

highlighted that the binding strength of alkylammonium ions is dominated by their

hydrophobicity. As highlighted in the previous section, the most effective surfactant

from each series presented here possesses a TPA counterion (except TEA-FO180).

SANS studies suggest that this ion binds most strongly to the anion. Therefore,

perhaps the increased molecular volume of the TAA+ counterion is not responsible

for enhanced surface packing, and it is the increased counterion binding strength.
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Figure 6.9: SANS profiles for Na-FO180, TMA-FO180, TEA-FO180 and TPA-
FO180 in D2O over a range of concentrations which are consistent multiples of the
cmc. Measurements were made at 25 ◦C. The lines are fitted functions for scattering
laws as described in the text. Data for all surfactants are from LOQ, ISIS.

Table 6.3: SANS model fit parameters to the Lamellar and Cylinder Structure mod-
els for the FO180 hedgehog surfactant series in D2O. Parameters: bilayer thickness
- D, polydispersity - σ, cylinder radius - Cr, cylinder length - Cl.

Parameter Na-FO180 TMA-FO180 TEA-FO180 TPA-FO180

Conc x cmc 40x 20x 10x 40x 20x 10x 40x 20x 10x 40x 20x 10x

D (Å) ± 0.1 19.3 17.6 - 20.2 19.9 19.3 21.8 20.6 22.8 24.3 21.3 22.8

σ - - - - - - 0.44 0.44 0.10 0.68 0.59 0.70

Cr (Å) ± 0.1 - - 16.1 - - - - - - - - -

Cl (Å) ± 0.1 - - 7.07 - - - - - - - - -
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Figure 6.10: SANS model fit parameters for Na-FO180N, TMA-FO180N, TEA-
FO180N and TPA-FO180N in D2O over a range of concentrations which are consis-
tent multiples of the cmc. Measurements were made at 25 ◦C. The lines are fitted
functions for scattering laws as described in the text. Data for Na-FO180N and
TMA-FO180N are from LOQ, ISIS. Data for TEA-FO180N and TPA-FO180N are
from SANS 2D, ISIS.

Table 6.4: SANS model fit parameters for the Lamellar Structure model for the
FO180N hedgehog surfactant series in D2O. Parameters: bilayer thickness - D,
polydispersity - σ.

Parameter Na-FO180N TMA-FO180N TEA-FO180N TPA-FO180N

Conc x cmc 40x 20x 10x 40x 20x 10x 40x 20x 10x 40x 20x 10x

D (Å) ± 0.1 21.1 19.3 17.0 19.8 21.4 20.5 20.3 19.2 24.0 22.9 21.3 19.2

σ - - - 0.81 0.63 0.47 0.71 0.71 0.52 0.57 0.71 0.81
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Figure 6.11: SANS profiles for Na-BC9, TMA-BC9, TEA-BC9 and TPA-BC9 in
D2O over a range of concentrations which are consistent multiples of the cmc. Mea-
surements were made at 25 ◦C. The lines are fitted functions for scattering laws
as described in the text. Data for TEA-BC9 is from LOQ, ISIS. Data for Na-BC9,
TMA-BC9 and TPA-BC9 are from SANS 2D, ISIS.

Table 6.5: SANS model fit parameters for the Spherical Structure model for the
BC9 hedgehog surfactant series in D2O. Parameters: sphere radius - Rsphere, poly-
dispersity - σ.

Parameter Na-BC9 TMA-BC9 TEA-BC9 TPA-BC9

Conc x cmc 20x 10x 5x 20x 10x 5x 20x 10x 5x 20x 10x 5x

Rsphere (Å) ± 0.1 10.9 8.06 6.61 10.8 7.33 7.01 10.5 10.7 9.48 13.9 12.5 10.3

σ 0.53 0.57 - 0.22 0.49 0.48 - - - - - -

z 14 12 10 10 6 5 11 8 6 - - -
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6.4 The tetrapropylammonium head group

The equilibrium surface tension, γcmc, area per molecule, Acmc, and cmc have been

evaluated for sixteen single-chain anionic HC surfactants. The surface coverage,

Φcmc, is not equipped to account for a variable area per molecule dependent on

the head group and therefore was not evaluated for these surfactants. From these

data, for a particular tail is it possible to predict a TAA+ head group which will

further improve packing efficiency and generate lower γcmc? The only other HC

surfactant to be studied by tensiometry with a variety of TAA+ counterions is AOT

(ref. [6]). The surface tension generated by the TAA+-AOT analogues, along with

the single-chain surfactants introduced in this chapter are shown in Figure 6.12. An

average surface tension generated for each TAA+ counterion has also been included,

highlighted on the figure. Interestingly, the lowest surface tensions are generated

for the TPA analogue for a wide variety of structures. It should be highlighted

that the same decreasing average is also seen if surface tension data for the BC7

series is ignored. Because such a wide variety of tail structures and sizes, single and

di-chain, all generate lower surface energies when equipped with a TPA head group,

this suggests that it is not the size of the head group that helps to promote efficient

surface packing. But instead the TPA head group is simply a suitable head group

for all HC surfactants to generate low γcmc. This is suggested to be due to strong

counterion ion binding which helps to promote adsorption, thus increasing surface

activity. Furthermore, the long alkyl chains were shown to reduce repulsion between

neighbouring micelles of TPA-BC9. Therefore, it could expected that the long alkyl

chains present on TPA+ help to screen polar interactions between neighbouring

head groups at the air water interface, generating a surface monolayer dominated by

low surface energy non-polar interactions. Other smaller TAA+ cations will show a

greater degree of dissociation and hence remove such benefits which help to generate

low γcmc. The TPA head group is identified as a promising alternative to the sodium

counterion which is commonly observed for anionic surfactants. The performance of

conventionally ineffective HC surfactants can be drastically improved, for example,

a TPA-tri-chain equivalent of di-C6SS (6 carbon linear chain) can generate γcmc =

25.4 mN m−1.23 Providing an alternative approach to generate low surface energies

with hydrocarbon surfactants.
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Chapter 6 6.5. CONCLUSIONS

6.5 Conclusions

The ability to improve the equilibrium surface tension by changing the surfactant

counterion has been highlighted. Here, conventional monovalent metal ions are

replaced by organic tetraalkylammonium (TAA) counterions. Previous studies have

highlighted the potential of TAA counterions which as lead to unique classes of

surfactants (ref. [15]), and greater control over certain surface properties (ref. [21]).

Never before has the surface tension been evaluated for such a wide array of TAA-HC

surfactants.

By keeping the surfactant tail constant and varying the head group, structure-

property relationships have been identified which are dependent on the head group

alone. With this approach, the tetrapropylammonium (TPA) counterion has shown

to be an effective replacement to the sodium counterion commonly seen for an-

ionic HC surfactants. This is because lower surface energies are generated with a

TPA counterion, almost seemingly independent of the tail structure. This has been

highlighted to be due to 1) the greater binding strength of the TPA head group

increasing surfactant surface activity (ref. [9]) and 2) the long alkyl chains help

to reduce polar interactions between neighbouring head groups. Although the TPA

head group is not unknown in surfactant science (refs. [4, 8]), its enhanced ability to

reduce surface tension has gone largely unnoticed. Hence, this study promotes the

special properties that the TPA head group can offer to improve the effectiveness of

HC surfactants. Providing a useful insight to fine tune the properties of an already

effective surfactant, establishing a new generation of highly-effective hydrocarbon

surfactants.
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Chapter 7

Mixed Surfactant Systems

7.1 Introduction

When humans first added copper to tin and made what became known as bronze,

the potential of mixing was identified. Since then, humans have not stopped ex-

perimenting by mixing different components. Mixing different surfactants together

was a natural step to develop our understanding of colloidal chemistry and indeed,

mixed surfactant systems now account for nearly all practical applications of surfac-

tants. But practically, what great advantages do mixed systems possess over single

component systems?

1. Due to impurities in starting materials and therefore the variability in reaction

products, it is less expensive to produce a mixture of surfactants than an

isomerically pure surfactant.

2. Mixed surfactant systems often provide better performance because they ex-

ploit synergistic behaviour between different surfactants, or they provide qual-

itatively different types of performance in a single formulation (e.g. cleaning

plus fabric softening).

Because of their superior performance, mixtures of surfactants have been a topic of

great interest in recent years.1,2 Many different surfactant mixtures have been stud-

ied, the most extensive being fluorocarbon-hydrocarbon (FC-HC) mixtures which

include anionic-anionic,3 anionic-cationic,4 anionic-nonionic,5 cationic-cationic etc.6

Mixed systems formed from surfactants with the same hydrophobic group (FC-FC,
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Chapter 7 7.1. INTRODUCTION

HC-HC) have also been studied, but far less extensively. The surface tension gener-

ated by binary surfactant systems is a well explored area,7,8 but to date there have

been no published studies that investigate the effect on surface tension when mixing

straight and branched chain HC surfactants. Here, a series of anionic-anionic hy-

drocarbon mixed systems are introduced which generate surface energies lower than

either constituent surfactant, comparable with a typical alkane e.g. γn-dodecane = 25.4

mN m−1. Synergistic effects on surface tension have been shown previously for mix-

tures of different surfactants due to couloumbic interactions i.e. ionic/non-ionic.9

Previous groups have studied anionic-anionic HC systems,10 although not reporting

synergistic surface tension effects and therefore, this appears to be the first report

which shows a synergistic reduction of γ when mixing hydrocarbon surfactants of

like charge.

The critical micelle concentration (cmc), interaction parameter (β) and micellar

composition (x1) have been evaluated using Rubingh’s regular solution theory which

was introduced in Chapter 3. The interaction parameter β is a qualitative measure

of the interaction between the different surfactant species. A positive value suggests

an antagonistic interaction whereas a negative value suggests synergistic mixing. A

value of zero indicates ideal mixing. For example, negative deviations from ide-

ality have been observed for mixed cmc’s of cationic-anionic systems, where head

group interactions are capable of overcoming mutual phobicity of the hydrophobic

chains in the mixed micelles.11 When mixing surfactants with like charge, evidence

of demixing has been observed and many of the systems discussed here show demix-

ing according to RST. For FC-HC surfactant mixtures, this can often be explained

due to the immisibility of surfactant hydrophobic groups in the core of the micelle.

For mixtures with the same hydrophobic group (HC-HC), demixing is likely due to

steric effects which restrict mixing based on geometries of the surfactants.

The general property of low aqueous surface tension introduced in Chapter 2

states that low surface energies are generated when surfactant molecules efficiently

pack, generating dense surface layers. Previous studies have exploited electrostatic

effects between different head groups to generate lower surface tensions (ref. [9]).

However, when mixing surfactants together with the same head group, effects ob-

served at the air-water interface are exclusively dependent on the surfactant tails.
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Hence, this study directly shows how low surface energies can be generated by sim-

ply exploiting packing efficiency, to generate surface monolayers which more closely

resemble a pure alkane. By making small systematic variations in the tail struc-

ture and measuring the change in surface tension, structure-property relationships

of effective HC-HC systems have been identified. This will help guide the design

of future super-effective HC-HC mixed systems. This work has provided an un-

explored insight into generating low surface energies, improving our fundamental

understanding of controlling surface tension and providing practical solutions to

using HC surfactants industrially, for low surface energy applications.

7.1.1 Surfactants investigated

To investigate the relationships between molecular structure and surface tension for

mixed surfactant systems, it is sensible to choose a systematic series of systems where

the structures do not differ too greatly. This then allows a genuine insight into how

minor changes in the structure affect surface tension and hence, highlights possible

general structure-property relationships. The investigation is primarily concerned

with studying the effects on surface tension when mixing branched and linear chain

hydrocarbon surfactants. To do this, common linear di-chain surfactants di-C6SS,

di-C7SS and di-C8SS were selected, and mixed with the novel hedgehog surfac-

tants AOTA and AOTB introduced in Chapter 5. To extend this investigation,

two branched surfactants HS3 and AOT, with total tail carbon numbers of 7 and 8

respectively were also mixed with AOTA and AOTB. Finally, the most successful

mixed system, i.e. the one that generated the lowest surface energies, was mixed

with TMS-hedgehogs AOTSiA and AOTSiB to see if the packing efficiency at the

surface could be improved even further. Figure 7.1 shows all surfactant mixtures

studied in this investigation. The cmc’s and surface tensions generated by the indi-

vidual surfactant components has been discussed in Chapter 5. All surfactants used

in this investigation were shown to be pure, producing clean systems without the

presence of surface-active impurities as detailed in Section 4.5.
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7.2 Determining cmc’s of mixed systems

For a pure surfactant system at the cmc, the area per molecule, packing efficiency,

and surface composition, are all dependent on one molecular structure. Therefore,

relationships between surface tension and surfactant structure are often straightfor-

ward to identify. To study the effects of packing between surfactant molecules at

the air-water interface for a binary surfactant system, the surface composition is

no longer dependent on one surfactant. In order to identify relationships between

surface tension and surfactant structure for a mixed system, it is important to mea-

sure the surface tension at a variety of surface compositions, which can be achieved

by varying the molar ratios of each surfactant present in solution. For this investi-

gation, the mole fractions selected for all systems were: 0.1:0.9, 0.25:0.75, 0.5:0.5,

0.75:0.25 and 0.9:0.1. For the linear-branched mixed systems (e.g. di-C6SS : AOTB)

two further ratios were investigated - 0.01:0.99 and 0.99:0.01.

The critical micelle concentration depends on the extent to which a hydrophobic

tail disrupts the isotropically arranged hydrogen bonding network of water. For a

mixed system, this will be related to the amount of each surfactant present. There-

fore, the cmc for each molar ratio must be determined separately. For the systems

investigated here, only anionic surfactants are present and therefore, measuring the

electrical conductivity of an aqueous solution over a suitable concentration range is

an appropriate technique to determine the cmc. From these data, the critical mi-

celle concentrations are identified as the concentration where the gradient noticeably

decreases, which signifies the formation of micelles hence, reducing the ability for

further surfactant molecules to carry charge through the solution. The experimental

procedure for determining cmc’s by conductivity was outlined in Section 4.6.1, and

the data analysis has been thoroughly described in Section 5.2.2. Conductivity data

and analysis is shown for select molar ratios of the di-C7SS:AOTB mixed system in

Figure 7.2. For all other mixed systems, cmc analysis can be found in the Supporting

Information.
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Figure 7.2: Conductivity data for di-C7SS:AOTB mixed system at molar ratios
shown at the top of the figure. Gaussian distribution applied over double derivative
of conductivity data to more accurately assign the break point.
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Figure 7.2a: Conductivity data for di-C7SS:AOTB mixed system at molar ratios
shown at the top of the figure. Gaussian distribution applied over double derivative
of conductivity data to more accurately assign the break point.
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7.3 Analysis of cmc data using Regular Solution

Theory

With cmc values for a mixed system and each pure surfactant, it is possible to

model surfactant mixtures according to regular solution theory and determine the

interaction parameter β, as well as estimating the micellar composition x1 (see

Section 3.2.2). This data is shown in Tables 7.1-7.3 for all mixed systems.

The critical micelle concentration C∗
id estimates the ideal cmc, that is, the cmc

of a mixed system if it exhibits ideal behaviour. The values of C∗
id are a qualitative

indicator of the interaction taking place between the two anionic surfactants. For

example, if the experimentally obtained cmc value is lower than that calculated

assuming ideal mixing, a synergistic interaction is indicated. Figure 7.3 shows the

variation of cmc with mole fraction of AOTB for the three linear mixtures, where

experimentally determined cmc’s are higher, indicating an antagonistic interaction.

Also, small variations in structure clearly make a noticeable difference to packing

between molecules within the micelle.

Figure 7.3: Variation of cmc (C∗) with mole fraction of AOTB (α) for three mixtures:
a) di-C6SS + AOTB, b) di-C7SS + AOTB and c) di-C8SS + AOTB.
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Interaction parameter - β

In order to describe the interaction taking place between the two surfactants in a

quantitative manner, the interaction parameter β is used. The β values shown in

Tables 7.1-7.3 are positive for nearly all mixed systems studied, with many values

being > 10. This shows strong antagonistic interactions between the two anionic

surfactants. For a mixture of similarly charged surfactants, previous studies have

identified behaviour close to that of an ideal mixture (ref. [11]). However, the mix-

tures were formed from two anionic surfactants that share similar structures and

therefore, steric constraints between the two surfactants will be minimal. For the

systems studied here, the structures involved are sterically very different. From

examining the data in Tables 7.1-7.3 more closely, for nearly all systems, the mag-

nitude of β decreases as the molar ratio of AOTA or AOTB increases. In fact, for

the highest molar ratios of AOTA/B, the β parameter decreases close to 0, or even

becomes negative. Showing that the interaction between the two surfactants be-

comes less antagonistic, or even synergistic. Therefore, it is clear that at low molar

ratios (< 0.5), the presence of AOTA/AOTB hinders the formation of micelles. The

linear di-chain surfactants possess long alkyl chains with a good degree of flexibility

that will allow close packing between surfactant molecules, reflected in the area per

molecules e.g. di-C6SS Acmc = 62 Å2, di-C8SS Acmc = 55 Å2.12 When mixed with

AOTA/AOTB or AOTSiA/SiB, the bulky volume of the chain tips will reduce the

degree of freedom and hence packing efficiency between the long alkyl chains in the

micelle. Therefore, a higher concentration will be required in order to overcome the

electrostatic repulsive forces between the charged head groups. As the molar ratio

of AOTA/B increases (> 0.75) we begin to see a decrease in β. Perhaps as the

micelle becomes more heavily composed of AOTA/B, the space between surfactant

molecules in the micelle can be efficiently filled by the flexible long alkyl chains of

the other di-chain component. This would increase the van der Waals interactions

within the micelle creating a more hydrophobic core. Interestingly, the mixed sys-

tems HS3 : AOTA / AOTB show synergistic micelle formation, with β being < 0

for most molar ratios. Although the chemical structures of HS3 and AOTA/B differ,

they share similar area per molecules (HS3 Acmc = 79 Å2, AOTA/B Acmc = 79/75

Å2 respectively) and therefore, it could be expected that when packing together
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they sterically accommodate each other, increasing the van der Waals interactions

between tails and thus the free energy change of micellisation.

Micellar mole fraction - x1

With a knowledge of calculated β parameter values and using equation 3.29 in

Section 3.2.2, the micellar mole fractions of the mixed systems (x1) can be estimated

(values shown in Tables 7.1-7.3). It is clear that the values of x1 deviate depending

on the bulk mole fraction value (α), and the hydrophobic chain length of surfactant

1 participating within the mixed micelle (see Figure 7.1). From analysing the data

shown in Tables 7.1-7.3, all systems which mix antagonistically show very low values

of x1 for low mole ratios of AOTA/B (i.e. rich in surfactant 1). This is likely due

to the large difference in cmc of each pure component. For example, di-C7SS and

AOTA possess cmc’s = 3.07 mM and 89.6 mM respectively, when mixed at a 50:50

ratio, mixed micelles are formed at a concentration of 7.43 mM. This value of C∗

is ∼ 2.5x the cmc of pure di-C7SS, and 0.08x the cmc of pure AOTA. Therefore,

at this concentration, perhaps the majority of AOTA molecules are involved in the

surface monolayer, with only a small proportion being involved in the mixed micelle.

As the value of α increases, and the value of x1 increases, it is interesting to note

that the two values never become equal i.e., the composition of the mixed micelle

is always shifted towards the component being surfactant 1. Again, this could be

due to the values of C∗ nearly always being above the cmc of pure surfactant 1,

but below that of pure surfactant 2. Hence the onset of micelle formation will be

brought on by surfactant 1. For certain systems such as di-C8SS:AOTSiA/AOTSiB,

the values of x1 predicted by RST suggest a minimal incorporation of surfactant 2

into the mixed micelle, even at high values of α. This seems unlikely, given the

values of C∗ are not similar to pure di-C8SS, which one would expect if the mixed

micelles were composed purely of di-C8SS. This is perhaps more a manifestation of

the limitations of RST, which assumes that the molecules in the mixed system are of

comparable volume i.e., share similar structures, which is not true of these systems.

However, the values predicted by RST in Tables 7.1-7.3 still give an insight about

the interactions between surfactant molecules in the micelle. Which is important to

help fully characterise the structure-performance relationships of mixed systems.
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Table 7.1: Mole fraction of AOTA or AOTB in bulk (α), in mixed micelles (x1),
experimental mixed cmc (C∗), ideal value of mixed cmc (C∗

id) and interaction pa-
rameter (β) for the di-C6SS and di-C7SS : AOTA / AOTB mixed systems.

α C∗
id C∗ β x1

di-C6SS : AOTA

0 12.70 - - -

0.10 13.92 16.73 13.40 3.0x10−8

0.25 16.22 18.31 14.40 2.85x10−8

0.50 22.31 22.63 0.14 0.113

0.75 35.72 35.94 0.03 0.298

0.90 55.89 45.83 -0.80 0.544

1 89.60 - - -

di-C6SS : AOTB

0 12.70 - - -

0.10 13.42 16.07 14.60 2.95x10−8

0.25 14.59 17.29 15.50 2.95x10−8

0.50 17.08 20.97 1.12 0.196

0.75 20.58 23.30 0.55 0.624

0.90 23.48 24.70 0.39 0.851

1 25.90 - - -

di-C7SS : AOTA

0 3.07 - - -

0.10 3.40 6.04 12.30 2.98x10−8

0.25 4.05 6.30 13.30 2.86x10−8

0.50 5.94 7.43 14.20 2.82x10−8

0.75 11.14 17.75 15.40 2.93x10−8

0.90 23.46 23.95 0.12 0.224

1 89.60 - - -

di-C7SS : AOTB

0 3.07 - - -

0.10 3.37 4.60 13.30 2.98x10−8

0.25 3.94 5.82 14.50 2.98x10−8

0.50 5.49 6.65 15.30 2.91x10−8

0.75 9.06 9.73 0.39 0.223

0.90 14.85 16.71 0.47 0.521

1 25.90 - - -
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Table 7.2: Mole fraction of AOTA or AOTB in bulk (α), in mixed micelles (x1),
experimental mixed cmc (C∗), ideal value of mixed cmc (C∗

id) and interaction pa-
rameter (β) for the di-C8SS : AOTA/AOTB and AOTSiA/AOTSiB mixed systems.

α C∗
id C∗ β x1

di-C8SS : AOTA

0 0.93 - - -

0.10 1.03 2.93 11.61 2.97x10−8

0.10 1.03 7.48 12.54 2.99x10−8

0.25 1.24 1.65 11.95 2.97x10−8

0.25 1.24 6.66 13.34 2.99x10−8

0.50 1.84 3.51 13.40 2.97x10−8

0.75 3.61 13.95 15.18 2.98x10−8

0.90 8.51 5.40 -3.05 0.273

1 89.60 - - -

di-C8SS : AOTB

0 0.93 - - -

0.10 1.03 4.31 13.23 2.99x10−8

0.25 1.23 5.23 14.34 2.99x10−8

0.50 1.80 6.74 15.29 2.98x10−8

0.75 3.36 23.32 17.12 2.48x10−8

0.90 7.03 25.57 17.21 2.98x10−8

1 25.90 - - -

di-C8SS : AOTSiA

0 0.93 - - -

0.10 1.03 2.66 11.78 2.99x10−8

0.25 1.23 5.66 13.45 2.99x10−8

0.50 1.84 6.92 14.35 2.98x10−8

0.75 3.57 12.51 15.53 2.48x10−8

0.90 8.28 11.82 15.47 2.99x10−8

1 68.10 - - -

di-C8SS : AOTSiB

0 0.93 - - -

0.10 1.03 1.47 12.65 2.97x10−8

0.25 1.22 1.85 13.79 2.98x10−8

0.50 1.76 3.83 15.21 2.99x10−8

0.75 3.16 11.69 16.73 2.99x10−8

0.90 6.09 11.91 16.93 2.99x10−8

1 15.90 - - -
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Table 7.3: Mole fraction of AOTA or AOTB in bulk (α), in mixed micelles (x1),
experimental mixed cmc (C∗), ideal value of mixed cmc (C∗

id) and interaction pa-
rameter (β) for the HS3 : AOTA/AOTB and AOT : AOTA/AOTB mixed systems.

α C∗
id C∗ β x1

HS3 : AOTA

0 33.60 - - -

0.10 35.81 34.62 -0.68 0.0697

0.25 39.79 33.62 1.26 0.0285

0.50 48.84 36.31 -1.37 0.357

0.75 63.25 68.14 0.30 0.535

0.90 76.78 62.57 -1.04 0.693

1 89.60 - - -

HS3 : AOTB

0 33.60 - - -

0.10 32.60 25.21 -1.68 0.250

0.25 31.26 24.93 -1.02 0.364

0.50 29.24 25.44 -0.57 0.551

0.75 27.47 31.44 1.06 0.901

0.90 26.51 19.49 -2.35 0.768

1 25.90 - - -

AOT : AOTA

0 2.60 - - -

0.10 2.88 6.39 12.39 2.97x10−8

0.25 3.43 6.74 13.36 2.96x10−8

0.50 5.05 6.87 14.07 2.97x10−8

0.75 9.57 18.46 15.46 2.98x10−8

0.90 20.62 16.09 -1.29 0.303

1 89.60 - - -

AOT : AOTB

0 2.60 - - -

0.10 2.86 7.16 13.74 2.98x10−8

0.25 3.35 7.13 14.65 2.99x10−8

0.50 4.73 7.12 15.34 2.99x10−8

0.75 7.99 10.15 2.57 2.99x10−8

0.90 13.66 14.93 0.36 0.0256

1 25.90 - - -
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7.4 Linear-branched mixed systems

With cmc’s estimated, the surface tension generated at each mole fraction was de-

termined using a K100 tensiometer following the experimental procedure outlined in

Section 4.6.2. For all systems studied, the surface tension was recorded at 1.1x the

cmc to ensure a fully saturated surfactant monolayer. First, the synergistic effects

of mixing straight and branched chain surfactants are discussed.

7.4.1 Surface tension results

Table 7.4 shows the surface tension generated at each mole fraction for the di-C6SS,

di-C7SS and di-C8SS systems mixed with AOTA/B.

Table 7.4: Mixed cmc’s (C∗) and surface tension values (γcmc) at mole fractions of
AOTA / AOTB (α), for the di-C6SS, di-C7SS and di-C8SS mixed systems.

α C∗ γcmc (mN m−1)
± 0.1

C∗ γcmc (mN m−1)
± 0.1

di-C6SS : AOTA di-C6SS : AOTB

0 12.7 29.0 12.7 29.0

0.10 16.7 28.5 16.1 26.7

0.25 18.3 28.3 17.3 28.3

0.50 22.6 27.9 21.0 27.9

0.75 35.9 26.4 23.3 27.3

0.90 45.8 28.7 24.7 28.7

1 89.6 30.2 25.9 26.7

di-C7SS : AOTA di-C7SS : AOTB

0 3.04 30.2 3.04 30.2

0.10 6.04 27.3 4.60 28.0

0.25 6.30 27.9 5.82 27.5

0.50 7.43 26.2 6.65 27.0

0.75 17.8 25.4 9.73 26.7

0.90 24.0 25.2 16.7 26.9

1 89.6 30.2 25.9 26.7

di-C8SS : AOTA di-C8SS : AOTB

0 0.93 30.4 0.93 30.4

0.10 2.93 24.4 4.31 25.6

0.25 1.65 24.8 5.23 26.2

0.50 3.51 25.1 6.74 26.8

0.75 14.0 24.5 23.3 25.1

0.90 5.40 25.0 25.6 25.6

1 89.6 30.2 25.9 26.7
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To help examine and compare the surface energies generated by each mixed system

to that of the pure surfactants, the data from Table 7.4 can be visualised more easily

by being plotted as a column figure, see Figure 7.4. The surface tension generated

at a particular mole fraction is represented by column height, and the dashed lines

represent γcmc of the pure surfactants. From Figure 7.4 it is clear that many of the

mixed systems generate lower surface energies than either of the constituent surfac-

tants. Interestingly, for all three linear surfactants, when mixed with AOTA a lower

surface tension is formed at every mole fraction studied. For AOTB, a lower surface

energy is formed only when mixed with di-C8SS. Furthermore, when comparing the

three linear surfactants, di-C8SS forms mixtures that can most effectively reduce

the surface tension of water, with some mixtures capable of reducing the surface

tension 6 mN m−1 lower than the most effective pure surfactant component. The

di-C8SS:AOTA system at a 25:75 molar ratio generates γcmc = 25.1 mN m−1, compa-

rable to pure alkanes e.g. γn-dodecane = 25.4 mN m−1. This is a remarkable reduction

in surface tension. Given that both surfactants are anionic and share the same polar

head group, the synergistic effect that is clearly observed at the air-water interface

cannot be due to a coulombic interaction between the two surfactants. It must

be due to a synergistic interaction between the surfactant tails, i.e. an improved

packing efficiency generating a surface that more closely resembles a pure alkane.

When comparing AOTA and AOTB within a single system, at essentially all mole

fractions the AOTB systems generate higher surface tensions. This is interesting

as AOTB is a noticeably more effective pure surfactant than AOTA (γAOTA = 30.2

mN m−1 and γAOTB = 26.7 mN m−1). Therefore, clearly the addition of a single CH2

group present within the tail of AOTB has an adverse effect on packing within the

mixed monolayer. Given that AOTA and AOTB share the same chain-tip structure,

for the linear-branched mixed systems studied here, the slightly smaller volume of

AOTA seems critical to help generate very low surface energies.

From the information presented in Figure 7.4, the synergistic effect of mixing

these particular linear and branched surfactants is clear. However, the reasons as

to why are not. To explain these results, further experiments are necessary to

highlight the underlying structure-property relationships that make these super-

effective systems successful.
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Figure 7.4: Surface tension at each mole fraction where column height represents
the surface tension generated, and the dashed lines represent γcmc of the pure sur-
factants.
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7.4.2 Effect of chain length

When linear surfactants di-C6SS, di-C7SS and di-C8SS are mixed with the branched

hedgehog AOTA, the only variation in structure between the systems is an additional

CH2 group present on the linear tail. To more easily compare how the surface tension

changes with increasing linear chain length, Figure 7.5 shows surface tension data

for these systems (from Table 7.4) plotted as a column figure. It is clear that

at each mole fraction, the surface tension decreases with increasing chain length.

Hence, when mixed with AOTA a longer linear chain forms mixed systems that

more effectively mimics the density of a pure alkane, thus generating a lower surface

free energy. This is perhaps a surprising relationship as the longer the linear chain,

the more the surface becomes populated by higher surface energy –CH2 groups.13

To further investigate this relationship, AOTA was mixed with sodium dode-

cylsulfate (SDS). The common linear anionic surfactant SDS is a heavily investi-

gated, understood, and widely available twelve carbon long single-chain surfactant.

There have been several studies investigating the surface tension of SDS mixed with

cationic surfactants,14,15 but far fewer with anionic surfactants,16 and to date none

with branched anionic HC surfactants. Although it is a single-chain surfactant,
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Figure 7.5: Surface tension at each mole fraction of AOTA for the di-C6SS, di-C7SS
and di-C8SS mixed systems.
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AOTA SDS cmc (mM) γcmc (mN m-1)

0 1 8.71 35.7

0.10 0.90 6.65 37.8

0.50 0.50 12.8 35.7

0.90 0.10 29.6 34.1

1 0 89.6 30.2
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Figure 7.6: Surface tension at varying mole fractions of SDS mixed with AOTA,
dashed line represents γcmc of pure SDS and AOTA.

and thus not directly comparable to the di-chain linear surfactants, it does provide

an insight into mixing longer linear alkyl chains with AOTA. SDS was mixed with

AOTA at 0.1, 0.5 and 0.9 mole fractions. The critical micelle concentration at each

mole fraction was determined (see Supporting Info.), and the surface tension mea-

sured, see Figure 7.6. None of the systems presented in Figure 7.6 form lower surface

tensions than either of the constituent surfactants. The mixed system with a mole

fraction of 0.1 SDS does form a lower surface tension than SDS itself, however, this

is possibly just due to the bulk phase being heavily composed of AOTA which has

γcmc = 30.2 mN m−1. From these results, it is clear that AOTA will not generate

low surface energies when simply mixed with another anionic surfactant possessing

a long linear alkyl chain. This also suggests that both surfactants mixed should

possess the same number of tails, i.e. both single-chains, di-chains etc.

A longer linear chain may generate low surface energies when mixed with AOTA

because it is more effective at reducing polar interactions between the two head

groups by keeping them further apart. If this was true, comparatively higher surface

energies would be expected when mixed with AOTB, as the two head groups would

be brought closer together. From Figure 7.4, this is exactly what is seen for the vast

majority of systems.
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7.4.3 Importance of the linear component

If one examines γ between mole fractions for the various systems presented in Figure

7.4, there appears to be no trend highlighting which of the two surfactant compo-

nents dominate the low surface energies generated. To further explain why some of

the mixed systems introduced here are so highly effective, in particular di-C8SS :

AOTA, it is important to understand mixing within the monolayer to help explain

the synergistic effect observed. One way this can be investigated is to study the

surface properties of mixtures formed from compositions heavily weighted to each

surfactant component. Surface energies generated can than be compared to surface

properties of the pure components, where the degree of variation will identify the

surfactant with the greatest influence. The surface tension of each linear-branched

mixed system was measured at mole fractions of 0.01/0.99 AOTA and 0.01 AOTB.

The conductivity of each system was first determined (see Supporting Info.). The

cmc’s and surface tensions generated for each mixed system are shown in Table 7.5.

Figure 7.7 shows a visual representation of the surface tension data from Table

7.5 for 0.01 mole fractions of AOTA and AOTB. Interestingly, when the linear di-

chain surfactant is in excess, only a tiny proportion of AOTA/B is required to reduce

γ below what di-C6SS, di-C7SS or di-C8SS can generate. The tert-butyl chain-tip

Table 7.5: Mixed cmc’s (C∗) and surface tension values (γcmc) at mole fractions of
AOTA / AOTB (α), for the di-C6SS, di-C7SS and di-C8SS mixed systems.

α C∗ γcmc (mN m−1)
± 0.1

C∗ γcmc (mN m−1)
± 0.1

di-C6SS : AOTA di-C6SS : AOTB

0 12.7 29.0 12.7 29.0

0.01 12.9 28.9 13.7 28.4

0.99 69.9 28.4 - -

1 89.6 30.2 25.9 26.7

di-C7SS : AOTA di-C7SS : AOTB

0 3.04 30.2 3.04 30.2

0.01 4.56 28.2 4.58 29.6

0.99 68.2 26.6 - -

1 89.6 30.2 25.9 26.7

di-C8SS : AOTA di-C8SS : AOTB

0 0.93 30.4 0.93 30.4

0.01 1.71 29.6 1.93 28.1

0.99 65.8 25.7 - -

1 89.6 30.2 25.9 26.7
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Figure 7.7: Surface tension at 0.01 mole fractions of AOTA or AOTB mixed with
C6SS, C7SS or C8SS. Dashed line represents γcmc of the pure linear di-chain surfac-
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structure of AOTA/B appears to be very effective at space-filling the monolayer with

low surface energy CH3 groups, having a strong influence on the system. However, to

quantitatively compare the influence of each surfactant within these binary mixed

systems, surface properties must be compared to systems where AOTA/B is the

component in excess.

Figure 7.8 compares surface tension data for linear-branched systems at mole

fractions of 0.01 and 0.99 AOTA. For each mixed system investigated, a lower γ is

formed at the higher mole fraction of AOTA, as shown in Figure 7.8. Given that

for pure AOTA γcmc = 30.2 mN m−1, the surface tensions generated at the cmc’s

of these 0.99 AOTA mixtures are substantially lower. The di-C8SS : AOTA system

with 1 % di-C8SS generates a surface tension 5 mN m−1 lower than pure AOTA.

Comparatively, when the system involves 1 % AOTA a surface tension is generated

only 1 mN m−1 lower (than pure AOTA). The same trend is seen for the other

linear-branched mixed systems. Therefore, this suggests that the linear surfactant

more effectively fills the space between AOTA molecules, generating a surface which

closely resembles a pure alkane, rather than the opposite being true. Simply put,

linear chains seem to be more effective at filling the space between bulky highly

branched chains, rather than the other way round. However, for this to be true,

the highly branched surfactant should itself generate an efficiently filled monolayer

(i.e. a high Φcmc). This way, there will not be a unachievable amount of space to

be filled by the linear surfactant which will possess a –CH3 chain tip and –CH2 –

chain body with volumes of 54 and 27 Å3 respectively.17 AOTA and AOTB both

meet this criteria, achieving Φcmc = 0.87 and 0.82 respectively.
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7.4.4 Packing efficiency at the surface

In Chapter 5, one way to reduce γ which was introduced was to increase the molecu-

lar volume of the surfactant chain-tips. Subsequently, this leads to a more efficiently

filled area per molecule for the surfactant (i.e. a high Φcmc), generating a lower sur-

face free energy. The results presented in this chapter have shown how low surface

energies can also be generated by mixing short highly branched surfactants with long

linear surfactants. Provided the linear surfactant is of sufficient length to effectively

reduce polar interactions between the head groups, and the branched surfactant can

generate an efficiently packed monolayer. To further investigate the subtleties of sur-

factant packing in binary mixed systems, the linear di-chain surfactant di-C8SS was

mixed with AOTSiA and AOTSiB. The surface properties of the TMS-hedgehogs

AOTSiA/SiB have already been discussed in Section 5.4. The linear di-chain sur-

factant di-C8SS was selected as it generates the lowest surface energies when mixed

with AOTA/B. The experimentally determined cmc’s of the di-C8SS : AOTSiA/SiB

systems were first introduced in Table 7.2, and the micellar properties predicted by

RST in Section 7.3. Therefore, only the surface properties of these systems will be

discussed here.

Table 7.6 provides experimentally determined cmc’s and surface tensions gener-

ated for the di-C8SS : AOTSiA/SiB mixed systems. This data is visually represented

in Figure 7.9. The surface energies generated by the di-C8SS : AOTSiA system are

lower than γcmc for each pure component at every mole fraction studied. However,

for AOTSiB, mixed systems are formed which generate γcmc higher than γcmc of

the most effective component, for every mole fraction. This is not the same trend

Table 7.6: Mixed cmc’s (C∗) and surface tension values (γcmc) at mole fractions of
AOTSiA / AOTSiB (α), for the di-C8SS mixed systems.

α C∗ γcmc (mN m−1)
± 0.1

C∗ γcmc (mN m−1)
± 0.1

di-C8SS : AOTSiA di-C8SS : AOTSiB

0 0.93 29.0 0.93 29.0

0.10 2.66 25.9 1.47 25.5

0.25 5.66 25.8 1.85 25.3

0.50 6.92 25.5 3.83 25.4

0.75 12.5 25.6 11.7 25.9

0.90 11.8 26.0 11.9 26.2

1 68.1 27.0 15.9 24.3
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Figure 7.9: Surface tension at each mole fraction where column height represents
the surface tension generated, and the dashed lines represent γcmc of each pure
surfactant.

that was seen for di-C8SS : AOTA/B, where every mixture generated lower sur-

face energies than its constituent components. Furthermore, the values of γcmc are

lower for di-C8SS : AOTA than di-C8SS : AOTSiA. Given that for AOTA γcmc =

30.2 mN m−1 and for AOTSiA γcmc = 27.0 mN m−1, this is perhaps not what one

would expect. Clearly when mixing AOTSiA with di-C8SS, the slight increase in

molecular volume of the chain tip has adverse effects on packing within the mixed

monolayer. Highlighting the sensitive relationship between molecular structure and

surface tension for binary anionic systems.

As suggested in Section 7.4.2, for the systems studied here, a longer linear chain

is more effective because it reduces polar interactions between the two head groups.

Therefore, we might expect di-C8SS : AOTSiB to not generate surface energies

substantially lower than di-C8SS : AOTB, which is indeed the case. However, given

the success of di-C8SS : AOTA, and the relatively lower γcmc of AOTSiA, it is

plausible for di-C8SS : AOTSiA to generate even lower surface energies, which is

not what is observed. This might be explained following the arguments laid out

in the previous section, i.e. the lowest surface energies generated by these mixed

systems are a product of the branched surfactants packing efficiently, and the small
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amount of space present in the monolayer being filled by the linear surfactant. But

what if the branched surfactant already packs too efficiently?

The packing efficiency, Φcmc, of a surfactant is calculated from Vcal divided by

Vmeas (see Section 2.7). Where Vcal is the molecular volume of the surfactant tail

based on the summation of the individual fragments, and Vmeas is the largest volume

the tail could occupy, based on its area per molecule (Acmc) and tail length (τ).

Vfree is the amount of space left, calculated from Vmeas - Vcal. From a knowledge

of experimentally determined values of Acmc and Φcmc for AOTA/AOTSiA,18 Vfree

can be calculated. A depiction of the volumes used to calculated Φcmc, as well as

calculated values of Vfree for AOTA and AOTSiA are shown in Figure 7.10. It is clear

to see that AOTSiA is nearer limit of efficient packing, with a value of Vfree = 17

Å3 compared to 54 Å3 for AOTA . Therefore, when both are mixed with a di-chain

linear surfactant, the volume of space within a monolayer of AOTSiA surfactant

molecules will perhaps not be sufficiently large enough to easily accommodate the

additional volume of the linear tail ( –CH3 / –CH2 – = 54 / 27 Å3 respectively, ref.

[17]). Interestingly, a monolayer of AOTA surfactant molecules has an estimated 54

Å3 volume of free space per surfactant molecule, which is the same as the volume

of a –CH3 group. Perhaps this is further reason why AOTA forms such low surface

energies when mixed with linear counterparts.

Air

Water

Vmeas

Vcal

AOTA

Φcmc = 0.87

Vfree = 54 Å3

AOTSiA

Φcmc = 0.96

Vfree = 17 Å3

(Vfree = Vmeas – Vcal)

τ

Acmc

Figure 7.10: A representation of the volumes Vcal and Vmeas which are used to
calculated Φcmc. Values of Vfree calculated for AOTA and AOTSiA are also shown.
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7.5 Branched-branched mixed systems

When mixing anionic hydrocarbon surfactants, one approach to form low surface

energies is to mix linear and branched surfactants. Because, spaces present within

the monolayer are filled, generating a denser surface layer than what the pure con-

stituent surfactants can achieve, thus further reducing γ. However, as highlighted in

Section 7.4, this is not true for all mixtures of branched-linear anionic hydrocarbon

surfactants. The lowest surface energies were formed by mixtures that obeyed the

following criteria:

• Both surfactants should possess the same number of tails, i.e. di-chain, single-

chain etc.

• The tail of the linear component should be sufficiently long enough, and like-

wise the tail of the branched component short enough, to reduce polar inter-

actions between head groups of each constituent surfactant.

• The branched surfactant should pack efficiently at the air-water interface (high

Φcmc), to present a suitably small amount of free space that can be effectively

filled by the linear surfactant.

To further explore the relationship between surface tension and packing efficiency

for mixed hydrocarbon systems, as well as the generality of these criteria above, the

hedgehog surfactants AOTA and AOTB were individually mixed with two branched

surfactants, HS3 and AOT. Aerosol-OT could be considered the di-chain equivalent

of SDS, being a readily available, heavily explored and widely understood surfac-

tant.19–21 Previous studies have explored structure-property relationships of mixed

systems involving AOT,22 but there have been very few which involve AOT with

other anionic hydrocarbon surfactants. AOT was also selected because it has a tail

which is 6 carbons long, see Figure 7.1, and thus provides a branched comparison

to di-C6SS. HS3 is a hedgehog surfactant that was introduced in Chapter 5. It

was selected for this study due to its highly saturated, compact tail, which provides

many low surface energy –CH3 groups, in a similar fashion to AOTA and AOTB.
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7.5.1 Surface tension results

With cmc’s estimated, the surface tension generated at each mole fraction was de-

termined using a K100 tensiometer following the experimental procedure outlined in

Section 4.6.2. For all systems studied, the surface tension was recorded at 1.1x the

cmc to ensure a fully saturated surfactant monolayer. These data are recorded in

Table 7.7, and the surface tension data visually represented in Figure 7.11. From ex-

amining Figure 7.11, there is a noticeable effect on γcmc when the linear component

is replaced by a branched surfactant.

For AOT, there are some similarities to the mixed systems formed with its linear

equivalent di-C6SS. Both systems generate lower surface energies than either con-

stituent surfactant when AOTA is involved, but not AOTB. Interestingly, AOT :

AOTA generates lower surface energies than di-C6SS : AOTA at all mole fractions

studied. The lowest surface energies generated by AOT : AOTA are a remarkable 5

mN m−1 lower than either pure surfactant, similar to the super-effective di-C8SS :

AOTA system. Therefore, the slightly branched nature of AOT is clearly beneficial.

From Figure 7.11, the lowest surface energies are formed at the higher mole fractions

of AOTA/B. This is similar to what was seen with the linear systems, and therefore,

Table 7.7: Mixed cmc’s (C∗) and surface tension values (γcmc) at mole fractions of
AOTA / AOTB (α), for the HS3 and AOT mixed systems.

α C∗ γcmc (mN m−1)
± 0.1

C∗ γcmc (mN m−1)
± 0.1

HS3 : AOTA HS3 : AOTB

0 33.6 29.7 33.6 29.7

0.10 35.8 32.4 32.6 29.7

0.25 39.8 30.6 31.3 28.5

0.50 48.8 31.1 29.2 27.8

0.75 63.2 28.8 27.5 27.5

0.90 76.8 28.8 26.5 31.8

1 89.6 30.2 25.9 26.7

AOT : AOTA AOT : AOTB

0 2.60 30.4 2.60 30.4

0.10 6.39 28.0 2.86 28.4

0.25 6.74 27.5 3.35 27.6

0.50 6.87 26.4 4.73 27.5

0.75 18.5 25.5 7.99 27.2

0.90 16.1 25.6 13.7 26.7

1 89.6 30.2 25.9 26.7
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this also suggests that the lowest surface energies are formed when AOT effectively

fills the space present in a monolayer of AOTA or AOTB. So why does AOTA mix

more effectively with AOT than di-C6SS?

AOT does share a similar area per molecule with AOTA, 75 and 79 Å2 respec-

tively, compared to di-C6SS where Acmc = 62 Å2. Therefore perhaps AOTA and

AOT can more easily pack together as they occupy geometrically similar areas. How-

ever, this is unlikely as di-C8SS Acmc = 55 Å2 which is not similar to AOTA’s Acmc,

but when mixed clearly display synergistic packing. As was suggested in Section

7.4.2, when mixing with a longer linear chain, lower surface energies are generated

due to the distance between head groups of each linear/branched surfactant being

increased, reducing polar interactions within the monolayer. The branched ethyl

group present on the tail of AOT sits close to the head group. Therefore, when

mixing with AOTA perhaps this branched ethyl group acts to further shield the

head groups of AOTA and AOT from each other. Which compared to a linear C6

chain will more effectively reduce polar interactions between the two.

When mixed with AOTA/B, HS3 shows signs of antagonistic mixing within the

monolayer, generating surface energies higher than either constituent surfactant.

This is true for all mixtures at all mole fractions except HS3 : AOTA at α = 0.1

and 0.25. Interestingly, lower surface energies are generated when HS3 is mixed with

AOTB, not AOTA like all other systems studied in this chapter.

One of the criteria outlined at the start of Section 7.5 was that when mixing

anionic hydrocarbon surfactants, one component should possess a long alkyl tail to

reduce polar interactions with the head group of the other component. HS3 does not

meet this requirement, and similar to AOTA/B, possesses a tail with a bulky chain-

tip presenting many –CH3 groups. Therefore, because of their bulky nature, when

mixed the tails will not be able to pack efficiently together to fill spaces present in the

monolayer. Furthermore, because HS3, AOTA and AOTB are all small surfactants,

when packing together neighbouring head groups will be close to each other, similar

to a monolayer of each pure component. When mixing with AOTB, which has a

longer tail than AOTA, one would expect lower surface energies due to an increased

distance between head groups, which is seen in Figure 7.11.
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7.6 Generating low surface energies

Throughout this chapter a variety of linear-branched / branched-branched hydro-

carbon mixtures have been studied. All of the mixtures are composed from anionic

surfactants, which has allowed a closer look at only the synergistic effects between

differing surfactant tails. Synergistic effects between the head groups can be dis-

regarded as they are all sulfosuccinate surfactants with sodium counterions, and

therefore, the synergistic surface properties observed are due to interactions between

tails. This section aims to consolidate the general structure-property relationships

which have been identified, and can thus guide future designs when selecting anionic

hydrocarbon surfactants to mix and achieve very low surface energies.

1. Surfactants should possess the same number of tails.

That is, they should both be di-chain or single-chain surfactants. This was

shown to allow surfactants to pack much more efficiently at the surface to

generate low surface energies.

2. The effective chain length of each surfactant should be different.

To generate dense surface layers and hence low surface energies, polar inter-

actions between head groups of different surfactants must be reduced. This

can be achieved by mixing long and short chain surfactants. Or similarly,

branching the long tail to shield polar interactions between head groups

3. The branched surfactant should pack efficiently at the surface.

The lowest surface energies were generated by mixing short highly branched,

and long linear surfactants. The branched surfactants were shown to give high

values of Φcmc, leaving a small amount of space which appropriately accom-

modates the volume of the linear tail chain-tip. However, this relationship

was also shown to be sensitive and for the small branched surfactant, the free

volume of space per surfactant molecule should be evaluated first, to identify

possible synergistic mixing within the monolayer.
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7.7 Conclusions

Over sixty mixtures of anionic hydrocarbon surfactants have been studied, where

branched and linear tails have been combined to enhance packing within the sur-

factant monolayer at the air-water interface. Many mixtures generate lower surface

tensions than either constituent component, with some generating γcmc as low as 24

mN m−1. These very low surface energies are comparable with certain pure liquid

alkanes, γn-dodecane = 25.4 mN m−1. By making small systematic variations in the

molecular structure of the surfactant tail, it has been possible to identify structure-

property relationships for these effective binary systems. Furthermore, by keeping

the head group of each surfactant the same (sulfosuccinate), the structure-property

relationships identified are dependent on the surfactant tail. Hence, this provides a

genuine insight into the relationship between packing efficiency and surface tension.

Although other studies have investigated mixing hydrocarbon surfactants (ref. [10]),

none have explored mixing branched and straight tail surfactants, or produced such

low surface energies from mixed hydrocarbon surfactant systems. The low surface

energies generated by these binary mixtures has been attributed to efficient space-

filling within the mixed monolayer (ref. [23]), whilst also effectively reducing polar

interactions between head groups. However, this relationship is shown to be sensi-

tive, as minor changes in the tail structure can greatly increase the surface tensions

generated. The most effective systems follow a simple set of criteria, namely: 1)

surfactants possess the same number of tails 2) the effective chain length of each

surfactant is noticeably different and 3) the branched surfactant can pack efficiently

at the surface. Previous studies have highlighted synergistic surface tension effects

due to coulombic interactions (ref. [9]). Overall, the results presented here highlight

a novel approach to generating low surface energies, which is to improve packing effi-

ciency at the surface by mixing appropriately selected surfactants. This guides new

ways of employing hydrocarbon surfactants in practical applications that require

low surface energies, reducing the use of more conventional, but environmentally

hazardous fluorocarbon surfactants.
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Project Conclusions

The structure-property relationships of hydrocarbon surfactants have been explored

through single-chain sulfonates and di-chain sulfosuccinates. Relationships between

structure and performance have been examined through surface and bulk techniques,

including tensiometry and small-angle neutron scattering (SANS). Here, the proper-

ties of effective hydrocarbon surfactants have been outlined by studying systematic

series, where small variations in structure have allowed greater insight into the un-

derlying structure-property relationships of hydrocarbon surfactants.

The first, and perhaps most significant issue to address is the purity of each

surfactant studied. As all surfactants investigated in this research were synthesised

and not purchased (except AOT and SDS), it was critical to establish, and maintain

a high purity for all systems. Rigorous cleaning procedures, further surface exper-

iments (EDTA), and various purification methods were found to be necessary to

establish a high purity. 1 Previous work has highlighted the importance of removing

excess salts to measure and study accurate adsorption isotherms. 2 Once the desired

surfactant purity was confirmed, it is equally imperative that the surface properties

of the surfactant are determined accurately from a standard procedure that allows

an impartial comparison to other surfactants and literature. Therefore, important

considerations when determining accurate surface properties for novel ionic surfac-

tants were first outlined.

To develop the surface performance of hydrocarbon surfactants, relationships

between structure and surface tension must be developed beyond our current under-

standing. 3 Which fundamentally, improves our understanding of controlling surface

tension. By evaluating the surface coverage, Φcmc, of the most effective fluorocarbon,

hydrocarbon and silicone surfactants, the first general structure-property relation-

ship of low aqueous surface tension has been identified. 4 Namely, for all surfactants,

low aqueous surface tensions are generated through efficient surface packing which

helps to generate dense surface coverages. Therefore, to improve the performance

of hydrocarbon surfactants, the surfactant structure must be developed to generate

surface densities which effectively mimic a pure alkane.
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Branching the tail is an effective approach to reduce the surface energies generated

by hydrocarbon surfactants due to an increase in the number of low surface energy

CH3 groups. 5 This idea has been further reinforced by the introduction of highly

branched hydrocarbon surfactants termed hedgehog surfactants, achieving surface

energies ∼ 25 mN m−1, down from ∼ 30 mN m−1 generated by conventional linear

hydrocarbon surfactants. 6 A series of hedgehog surfactants were introduced where

the CH3 : CH2 ratio was systematically increased. As the ratio was increased,

lower surface energies were generated parallel to an increase in the surface coverage,

Φcmc. This highlighted the important of the tert-butyl group to generate low surface

tensions, possessing the highest methyl content of any alkyl moiety. A novel series

of surfactants were introduced where carbon in the tert-butyl group was replaced

with silicon. This was shown to be an effective method to increase the surface

coverage, leading to the lowest surface tensions currently generated by hydrocarbon

surfactants (AOTSiC γcmc = 22.8 mN m−1). By comparing surface properties for

several novel series of hydrocarbon surfactant introduced with previous literature, it

was possible to identify structural characteristics shared by all effective hydrocarbon

surfactants. This was shown to be dependent on a) the alkyl chain length of the

surfactant tail, b) the degree of branching at the chain-tip and c) the degree of

branching away from the chain tip. Based on these properties, a new index to assess

potential performance and help guide the design of super-effective surfactant tails

has been introduced, Hγ.

With the properties of an effective hydrocarbon tail outlined through Hγ, at-

tempts were made to improve surfactant effectiveness by controlling the identity

of the head group. Utilising tetraalkylammonium (TAA) counterions, the lowest

surface energies have been reported for single-chain surfactants, some being below

that of their respective parent alcohol. However, the head group was shown to have

only minor effects on aggregation within the bulk through SANS. 7 By comparing a

range of different tails with the same variety of head groups, the tetrapropylammo-

nium counterion was shown to be an effective replacement to generate lower surface

energies than the common sodium counterion. This is thought to be due to weaker

polar interactions between neighbouring head groups. 8

With the structural characteristics of effective hydrocarbon surfactants estab-
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lished, final developments were focused on more practical applications of hydrocar-

bon surfactants, i.e. mixed systems. Forming binary systems was shown to be an

effective method to improve surface coverage and generate very low surface energies

< 25 mN m−1, approaching that of certain pure alkanes (γn-dodecane = 25.4 mN m−1).

Linear surfactants can effectively fill the ‘spaces’ present within a monolayer of

branched surfactant molecule, with many linear-branched systems generating lower

surface energies than either constituent surfactant. By forming mixed systems from

a large variety of structures, it was possible to identify structure-property relation-

ships of effective systems helping guide the design of future possible combinations:

1) surfactants should possess the same number of tails, 2) the effective chain length

of each surfactant should be different, and 3) the branched surfactant should pack

efficiently at the surface.

This research highlights the subtle nature of generating surface energies close

to the limit of achievable performance with hydrocarbon surfactants. Furthermore,

it consolidates structure-property relationships at the air-water interface to high-

light structural characteristics of effective hydrocarbon surfactants. Now, a guide

has been established to design effective hydrocarbon surfactants, where the lowest

surface energies for single-chain, di-chain and mixed surfactants systems have been

achieved through the principles outlined. The future for hydrocarbon surfactants

as alternatives to fluorosurfactants looks strong with the hydrocarbon guide to con-

structing, surfactants at the design limit.
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Future Outlook

There are various avenues that can be explored to continue and extend the work

presented here, which would both complement and enhance the results which have

been gained so far.

1. Thermodynamic studies

To gain a deeper insight into relationships between structure and performance,

future work should consider studying the associated free energy changes (i.e.

micellisation) for hydrocarbon surfactants presented in this work. The di-

chain series (i.e. HS/TMS) are suitable candidates because: 1) the free energy

changes would be associated with systematic structural changes, and 2) there

is also great variation in γcmc with each systematic structural change.

2. Tertiary alcohol surfactants

The main principles of effective hydrocarbon surfactants outlined in this work

are all dependent on surfactants synthesised from primary and secondary al-

cohols. To synthesise hydrocarbon surfactants from tertiary alcohols would

not only likely generate the lowest surface energies achieved to date, it would

provide the final link to bind all current structure-property relationships.

3. Reflectometry of mixed surfactants systems

The mixed systems chapter introduced many successful combinations of linear-

branched hydrocarbon surfactants. Although it is a struggle to deuterate

branched surfactants, linear surfactants can be deuterated with relative ease.

Studying the surface compositions of these systems by reflectometry would pro-

vide unmatched insight into structure-packing relationships within the mono-

layer. Further explaining the extraordinary properties observed.

4. Lower surface energies

A few suggestions are outlined here to generate potentially even lower surface

energies, which are perhaps more suitable as masters project: mixing anionic-

cationic linear-branched surfactants, TPA head group with super-effective sur-

factants.
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Chapter 8 8.1. NMR AND EA ANALYSIS

8.1 NMR and EA analysis

The following pages provide the NMR and EA analysis for all surfactants synthe-

sised in this thesis. Peak assignments and integrations are provided, where good

agreement is found between experimentally and theoretically determined values.

8.1.1 AOTA

Table 8.1: Data from 1H NMR spectrum of AOTA with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

AOTA

0.80 - 0.87 –CH2–C(CH3)3 18.00 a

2.78 - 2.97 –CO–CH2– 2.00 d

3.58 - 3.72 NaO3S–CH– 4.32 b

4.02 - 4.07 –O–CH2– 0.94 c

Theoretical - Experimental
C H S

46.66 - 46.76 6.99 - 7.19 8.90 - 8.78
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8.1.2 AOTB

Table 8.2: Data from 1H NMR spectrum of AOTB with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

AOTB

0.84 - 0.89 –CH2–C(CH3)3 18.00 a

1.40 - 1.46 –CH2–CH2– 4.01 b

2.70 - 2.89 –CO–CH2– 2.00 d

3.57 - 3.63 NaO3S–CH– 1.00 e

3.95 - 4.03 –O–CH2– 4.00 c

Theoretical - Experimental
C H S

49.40 - 49.89 7.47 - 7.34 8.24 - 8.17
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8.1.3 AOTSiA

Table 8.3: Data from 1H NMR spectrum of AOTSiA with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

AOTSiA

-0.21 - 0.17 –CH2–(SiCH3)3 18.00 a

2.71 - 2.94 –CO–CH2– 1.98 c

3.60 - 3.75 –O–CH2–
NaO3S–CH–

4.98 b + d

Theoretical - Experimental
C H S

36.72 - 36.98 6.42 - 6.48 8.17 - 8.01
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8.1.4 AOTSiB

Table 8.4: Data from 1H NMR spectrum of AOTSiB di-ester with corresponding
elemental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

AOTSiB

0.061 - 0.094 –CH2–Si(CH3)3 18.01 a

3.88 - 3.90 –O–C2H4– 4.01 b

6.80 - 6.85 –CO–CH2–CO– 2.00 c

Theoretical - Experimental
C H

53.07 - 54.04 8.85 - 8.77
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Table 8.5: Data from 1H NMR spectrum of AOTSiB with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

AOTSiB

-0.11 - 0.057 –CH2–Si(CH3)3 18.00 a

0.79 - 0.93 –CH2–CH2– 4.01 b

2.69 - 2.91 –CO–CH2– 2.00 d

3.56 - 3.67 NaO3S–CH– 1.00 e

3.95 - 4.09 –O–CH2– 4.03 c

Theoretical - Experimental
C H S

39.98 - 40.12 6.98 - 6.98 7.62 - 7.48

222



Chapter 8 8.1. NMR AND EA ANALYSIS

8.1.5 AOTSiC

Table 8.6: Data from 1H NMR spectrum of AOTSiC with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

AOTSiC

-0.13 - -0.010 –CH2–Si(CH3)3 18.00 a

0.33 - 0.51 –CH2–Si(CH3)3 4.01 b

1.41 - 1.55 –O–CH2–CH2– 4.02 c

2.72 - 2.94 –CO–CH2– 2.02 e

3.59 - 3.70 NaO3S–CH– 1.00 f

3.84 - 3.95 –O–CH2– 4.03 d

Theoretical - Experimental
C H S

42.83 - 42.88 7.41 - 7.48 7.15 - 7.07
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8.1.6 HS1

Table 8.7: Data from 1H NMR spectrum of HS1 with corresponding elemental anal-
ysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

HS1

0.71 - 0.84 –CH2–CH3 12.00 a

1.35 - 1.54 –CH–CH2–CH3 8.04 b

2.73 - 2.96 –CO–CH2– 2.02 d

3.56 - 3.69 NaO3S–CH– 1.00 e

4.50 - 4.63 –O–CH–(CH2)2 2.02 c

Theoretical - Experimental
C H S

46.66 - 46.74 6.99 - 7.00 8.90 - 8.47
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8.1.7 HS2

Table 8.8: Data from 1H NMR spectrum of HS2 with corresponding elemental anal-
ysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

HS2

0.82 - 0.89 –CH2–CH3

–CH–(CH3)2

18.17 a

1.49 - 1.57 –CH–CH2–CH3 3.99 b

1.78 - 1.86 –CH–CH–(CH3)2 2.00 c

3.13 - 3.21 –CO–CH2– 1.99 d

4.28 - 4.33 NaO3S–CH– 1.00 e

4.60 - 4.78 –O–CH– 2.15 f

Theoretical - Experimental
C H S

49.47 - 49.24 7.53 - 7.59 8.25 - 8.17
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8.1.8 HS3

Table 8.9: Data from 1H NMR spectrum of HS3 with corresponding elemental anal-
ysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

HS3

0.70 - 0.84 –CH–(CH3)2 24.00 a

1.70 - 1.84 –CH–CH–(CH3)2 4.00 b

2.79 - 3.01 –CO–CH2– 2.01 d

3.62 - 3.74 NaO3S–CH– 1.01 e

4.35 - 4.46 –O–CH– 2.04 c

Theoretical - Experimental
C H S

51.91 - 51.41 7.99 - 7.81 7.70 - 7.55
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8.1.9 di-C6SS

Table 8.10: Data from 1H NMR spectrum of di-C6SS with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

di-C6SS

0.80 - 0.85 –CH2–CH3 6.00 a

1.18 - 1.28 –CH2–C3H6– 12.02 b

1.45 - 1.52 –O–CH2–CH2– 4.00 c

2.72 - 2.91 –CO–CH2– 2.00 f

3.59 - 3.65 NaO3S–CH– 0.99 e

3.90 - 3.96 –O–CH2– 3.99 d

Theoretical - Experimental
C H S

49.47 - 49.26 7.53 - 7.32 8.25 - 7.94
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8.1.10 di-C7SS

Table 8.11: Data from 1H NMR spectrum of di-C7SS with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

di-C7SS

0.84 - 0.89 –CH2–CH3 6.04 a

1.22 - 1.31 –CH2–C4H8– 16.06 b

1.54 - 1.63 –O–CH2–CH2– 4.08 c

3.07 - 3.21 –CO–CH2– 2.12 f

3.98 - 4.04 –O–CH2– 2.00 g

4.12 - 4.17 –O–CH2– 2.00 d

4.28 - 4.32 NaO3S–CH– 1.00 e

Theoretical - Experimental
C H S

51.91 - 51.72 7.99 - 7.82 7.70 - 7.68

228



Chapter 8 8.1. NMR AND EA ANALYSIS

8.1.11 di-C8SS

Table 8.12: Data from 1H NMR spectrum of di-C8SS with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

di-C8SS

0.83 - 0.89 –CH2–CH3 6.00 a

1.20 - 1.31 –CH2–C4H8– 20.00 b

1.52 - 1.63 –O–CH2–CH2– 4.00 c

3.08 - 3.19 –CO–CH2– 2.01 e

3.97 - 4.05 –O–CH2– 1.95 g

4.11 - 4.18 –O–CH2– 2.00 d

4.27 - 4.33 NaO3S–CH– 1.00 f

Theoretical - Experimental
C H S

54.04 - 54.21 8.39 - 8.53 7.21 - 7.33
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8.1.12 Na-FO180

Table 8.13: Data from 1H NMR spectrum of Na-FO180 with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

Na-FO180

0.80 - 0.94 –CH2–C(CH3)3

–CH–CH3

24.00 a

0.97 - 1.33 –CH–CH2– 8.00 b

1.36 - 1.82 –CH3–CH– 3.03 c

3.83 - 4.05 –O–CH2– 1.94 d

Theoretical - Experimental
C H S

58.03 - 58.35 10.01 - 10.24 8.61 - 8.54
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8.1.13 TMA-FO180

Table 8.14: Data from 1H NMR spectrum of TMA-FO180 with corresponding el-
emental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

TMA-FO180

0.79 - 0.90 –CH2–C(CH3)3

–CH–CH3

24.00 a

0.95 - 1.34 –CH–CH2– 8.01 b

1.35 - 1.81 –CH3–CH– 3.01 c

3.32 - 3.38 N–CH3 11.97 e

3.79 - 3.98 –O–CH2– 1.94 d

Theoretical - Experimental
C H S N

62.37 - 62.07 11.66 - 11.49 7.57 - 7.42 3.31 - 3.09
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8.1.14 TEA-FO180

Table 8.15: Data from 1H NMR spectrum of TEA-FO180 with corresponding el-
emental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

TEA-FO180

0.77 - 0.88 –CH2–C(CH3)3

–CH–CH3

24.01 a

0.89 - 1.28 –CH–CH2– 8.00 b

1.31 - 1.34 N–CH2–CH3 11.90 f

1.38 - 1.84 –CH3–CH– 3.01 c

3.35 - 3.40 N–CH2–CH3 8.05 e

3.76 - 3.96 –O–CH2– 2.00 d

Theoretical - Experimental
C H S N

65.09 - 64.92 11.97 - 12.05 6.68 - 6.46 2.92 - 3.05
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8.1.15 TPA-FO180

Table 8.16: Data from 1H NMR spectrum of TPA-FO180 with corresponding el-
emental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular fragment Integration Identified proton

TPA-FO180

0.81 - 0.90 –CH2–C(CH3)3

–CH–CH3

24.02 a

1.01 - 3.05 N–CH2–CH2–CH3 12.00 f

1.06 - 1.67 –CH–CH2–
–CH3–CH–

10.64 b

1.67 - 1.76 N–CH2–CH2–CH3 8.02 e

3.23 - 3.27 N–CH2–CH2–CH3 8.12 d

3.45-3.61, 3.80-4.01 –O–CH2– 2.00 c

Theoretical - Experimental
C H S N

67.24 - 67.52 12.23 - 12.41 5.98 - 5.68 2.61 - 2.66
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8.1.16 Na-FO180N

Table 8.17: Data from 1H NMR spectrum of Na-FO180N with corresponding el-
emental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

Na-FO180N

0.76 - 0.88 –CH2–CH3 11.99 a

0.96 - 1.80 –CH3–CH2–
–CH2–CH2–
–CH2–CH–

22.99 b

3.87 - 3.96 –O–CH2– 2.00 c

Theoretical - Experimental
C H S

58.03 - 58.13 10.01 - 10.14 8.61 - 8.54
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8.1.17 TMA-FO180N

Table 8.18: Data from 1H NMR spectrum of TMA-FO180N with corresponding
elemental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

TMA-FO180N

0.68 - 0.90 –CH2–CH3 11.80 a

0.91 - 1.73 –CH3–CH2–
–CH2–CH2–
–CH2–CH–

22.89 b

3.35 - 3.44 N–CH3 13.54 d

3.83 - 3.90 –O–CH2– 2.04 c

Theoretical - Experimental
C H S N

62.37 - 62.31 11.66 - 11.89 7.57 - 7.21 3.31 - 3.08
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8.1.18 TEA-FO180N

Table 8.19: Data from 1H NMR spectrum of TEA-FO180N with corresponding
elemental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

TEA-FO180N

0.66 - 0.85 –CH2–CH3 12.00 a

0.87 - 1.75 –CH3–CH2–
–CH2–CH2–
–CH2–CH–

N–CH2–CH3

35.00 b + e

3.36 - 3.42 N–CH2–CH3 8.04 d

3.76 - 3.87 –O–CH2– 2.02 c

Theoretical - Experimental
C H S N

65.09 - 64.95 11.97 - 11.72 6.68 - 6.39 2.92 - 2.94
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8.1.19 TPA-FO180N

Table 8.20: Data from 1H NMR spectrum of TPA-FO180N with corresponding
elemental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular fragment Integration Identified proton

TPA-FO180N

0.61 - 0.89 –CH2–CH3 11.89 a

0.94 - 1.03 N–CH2–CH2–CH3 11.94 f

1.06 - 1.50 –CH3–CH2–
–CH2–CH2–
–CH2–CH–

23.17 b

1.63 - 1.77 N–CH2–CH2–CH3 8.04 e

3.16 - 3.34 N–CH2–CH2–CH3 8.00 d

3.73 - 3.94 –O–CH2– 1.90 c

Theoretical - Experimental
C H S N

67.24 - 67.22 12.23 - 12.36 5.98 - 6.69 2.61 - 2.36
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8.1.20 Na-BC9

Table 8.21: Data from 1H NMR spectrum of Na-BC9 with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

Na-BC9

0.83 - 0.94 –CH–(CH3)2 12.02 a

1.30 - 1.39 –CH–CH2CH2– 2.04 d

1.55 - 1.65 –CH–CH2CH2– 2.00 c

1.69 - 1.78 –CH–(CH3)2 2.00 b

4.45 - 4.53 –O–CH–(CH2)2– 1.00 e

Theoretical - Experimental
C H S

43.89 - 43.74 7.78 - 7.82 13.02 - 12.75
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8.1.21 TMA-BC9

Table 8.22: Data from 1H NMR spectrum of TMA-BC9 with corresponding ele-
mental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular fragment Integration Identified proton

TMA-BC9

0.85 - 0.91 –CH–(CH3)2 12.01 a

1.27 - 1.34 –CH–CH2CH2– 2.04 d

1.56 - 1.64 –CH–CH2CH2– 2.00 c

1.71 - 1.81 –CH–(CH3)2 2.00 b

3.37 - 3.38 N–CH3 12.13 f

4.38 - 4.46 –O–CH–(CH2)2– 0.95 e

Theoretical - Experimental
C H S N

52.49 - 52.36 10.51 - 10.66 10.78 - 10.24 4.71 - 4.98
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8.1.22 TEA-BC9

Table 8.23: Data from 1H NMR spectrum of TEA-BC9 with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular fragment Integration Identified proton

TEA-BC9

0.85 - 0.93 –CH–(CH3)2 12.11 a

1.30 - 1.35 –CH–CH2CH2–
N–CH2CH3

10.02 d + f

1.58 - 1.67 –CH–CH2CH2– 2.01 c

1.74 - 1.84 –CH–(CH3)2 2.00 b

3.35 - 3.43 N–CH2CH3 12.00 g

4.37 - 4.45 –O–CH–(CH2)2– 1.00 e

Theoretical - Experimental
C H S N

57.75 - 57.69 11.12 - 11.26 9.07 - 9.33 3.96 - 4.24
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8.1.23 TPA-BC9

Table 8.24: Data from 1H NMR spectrum of TPA-BC9 with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular fragment Integration Identified proton

TPA-BC9

0.80 - 1.03 –CH–(CH3)2

N–CH2CH2CH3

20.00 a + f

1.24 - 1.38 –CH–CH2CH2– 10.02 d

1.60 - 1.81 –CH–(CH3)2

–CH–CH2CH2–
N–CH2CH2CH3

12.00 b + c + g

3.12 - 3.29 N–CH2CH2CH3 12.00 h

4.38 - 4.45 –O–CH–(CH2)2– 1.02 e

Theoretical - Experimental
C H S N

61.57 - 61.41 11.56 - 11.62 7.83 - 8.09 3.42 - 3.15
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8.1.24 Na-BC7

Table 8.25: Data from 1H NMR spectrum of Na-BC7 with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

Na-BC7

0.85 - 0.94 –CH–(CH3)2 12.00 a

1.84 - 1.96 –CH–(CH3)2 2.00 b

3.87 - 3.97 –O–CH–(CH)2– 1.00 c

Theoretical - Experimental
C H S

38.52 - 38.71 6.93 - 7.05 14.69 - 14.66
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8.1.25 TMA-BC7

Table 8.26: Data from 1H NMR spectrum of TMA-BC7 with corresponding ele-
mental analysis shown below where experimentally obtained values are shown in
blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

TMA-BC7

0.93 - 1.00 –CH–(CH3)2 11.80 a

1.88 - 1.99 –CH–(CH3)2 2.00 b

3.38 - 3.39 N–CH3 12.47 d

3.97 - 4.00 –O–CH–(CH)2– 1.00 c

Theoretical - Experimental
C H S N

49.04 - 49.28 10.10 - 10.00 11.90 - 11.52 5.20 - 4.95
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8.1.26 TEA-BC7

Table 8.27: Data from 1H NMR spectrum of TEA-BC7 with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

TEA-BC7

0.92 - 0.98 –CH–(CH3)2 11.96 a

1.27 - 1.35 N–CH2CH3 12.01 e

1.86 - 1.99 –CH–(CH3)2 1.99 b

3.27 - 3.38 N–CH2CH3 8.04 d

3.97 - 4.05 –O–CH–(CH)2– 1.00 c

Theoretical - Experimental
C H S N

55.35 - 55.29 10.84 - 10.99 9.85 - 9.97 4.30 - 4.28
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8.1.27 TPA-BC7

Table 8.28: Data from 1H NMR spectrum of TPA-BC7 with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

TPA-BC7

0.95 - 1.04 –CH–(CH3)2

N–CH2CH2CH3

24.00 a + f

1.69 - 1.75 N–CH2CH2CH3 8.67 e

1.87 - 1.97 –CH–(CH3)2 1.48 b

3.25 - 3.30 N–CH2CH2CH3 8.37 d

3.95 - 4.00 –O–CH–(CH)2– 0.71 c

Theoretical - Experimental
C H S N

59.80 - 59.67 11.36 - 11.02 8.40 - 7.81 3.67 - 3.92
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8.1.28 SDS

Table 8.29: Data from 1H NMR spectrum of SDS with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

SDS

0.85 - 0.94 –CH2–CH3 2.93 a

1.84 - 1.96 –(CH2)9– 18.00 b

3.87 - 3.97 –O–CH2–CH2– 1.97 c

3.87 - 3.97 –O–CH2–CH2– 2.00 d

Theoretical - Experimental
C H S

54.31 - 52.28 9.50 - 9.69 12.08 - 11.56
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8.1.29 AOT

Table 8.30: Data from 1H NMR spectrum of AOT with corresponding elemental
analysis shown below where experimentally obtained values are shown in blue.

Chemical Shift
(ppm)

Molecular
fragment

Integration Identified proton

AOT

0.78 - 0.94 –CH2–CH3 11.82 a

1.15 - 1.43 CH3–(CH2)3–
CH3–CH2–CH–

15.88 b

1.47 - 1.65 CH3–CH2–CH– 2.02 c

3.09 - 3.21 –O–CH2– 4.00 d

3.88 - 4.13 NaO3S–CH– 1.00 e

4.27 - 4.33 –CO–CH2– 2.00 f

Theoretical - Experimental
C H S

54.31 - 52.28 9.50 - 9.69 12.08 - 11.56
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8.2 Conductivity data and cmc analysis - Mixed

systems

The following pages provide the conductivity data and analysis that was used to

determine the cmc of each mixed surfactant system discussed in this thesis. The

experimental procedure is described in Section 4.6.1 (all measurements were made

at 295 K).

8.2.1 di-C6SS : AOTA / AOTB

di-C6SSAOTA

AOTA di-C6SS cmc (mM) ± 0.1

0.01 0.99 12.9

0.10 0.90 16.7

0.25 0.75 18.3

0.50 0.50 22.6

0.75 0.25 35.9

0.90 0.10 45.8

0.99 0.01 69.9

AOTB di-C6SS

AOTB di-C6SS cmc (mM) ± 0.1

0.01 0.99 13.7

0.10 0.90 16.1

0.25 0.75 17.3

0.50 0.50 21.0

0.75 0.25 23.3

0.90 0.10 24.7

Figure 8.1a: Summary of the cmc values for di-C6SS : AOTA / AOTB mixed
surfactant systems at varying molar ratios.
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Figure 8.1b: Conductivity data used to determined cmcs of di-C6SS mixed system
at a molar ratio of 0.01 X, where X is either AOTA / AOTB.
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Figure 8.1c: Conductivity data used to determined cmcs of di-C6SS mixed system
at a molar ratio of 0.1 X, where X is either AOTA / AOTB.
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Figure 8.1d: Conductivity data used to determined cmcs of di-C6SS mixed system
at a molar ratio of 0.25 X, where X is either AOTA / AOTB.
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Figure 8.1e: Conductivity data used to determined cmcs of di-C6SS mixed system
at a molar ratio of 0.5 X, where X is either AOTA / AOTB.
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Figure 8.1f: Conductivity data used to determined cmcs of di-C6SS mixed system
at a molar ratio of 0.75 X, where X is either AOTA / AOTB.
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Figure 8.1g: Conductivity data used to determined cmcs of di-C6SS mixed system
at a molar ratio of 0.9 X, where X is either AOTA / AOTB.
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Figure 8.1h: Conductivity data used to determined cmc of di-C6SS mixed system
at a molar ratio of 0.99 AOTA.
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8.2.2 di-C7SS : AOTA / AOTB

di-C7SSAOTA

AOTA di-C7SS cmc (mM) ± 0.1

0.01 0.99 4.56

0.10 0.90 6.04

0.25 0.75 6.30

0.50 0.50 7.43

0.75 0.25 17.8

0.90 0.10 24.0

0.99 0.01 68.2

AOTB di-C7SS

AOTB di-C7SS cmc (mM) ± 0.1

0.01 0.99 4.58

0.10 0.90 4.60

0.25 0.75 5.82

0.50 0.50 6.65

0.75 0.25 9.73

0.90 0.10 16.7

Figure 8.2a: Summary of the cmc values for di-C7SS : AOTA / AOTB mixed
surfactant systems at varying molar ratios.
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Figure 8.2b: Conductivity data used to determined cmcs of di-C7SS mixed system
at a molar ratio of 0.01 X, where X is either AOTA / AOTB.

257



Chapter 8 8.2. CONDUCTIVITY DATA AND CMC ANALYSIS - MIXED SYSTEMS

Figure 8.2c: Conductivity data used to determined cmcs of di-C7SS mixed system
at a molar ratio of 0.1 X, where X is either AOTA / AOTB.
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Figure 8.2d: Conductivity data used to determined cmcs of di-C7SS mixed system
at a molar ratio of 0.25 X, where X is either AOTA / AOTB.
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Figure 8.2e: Conductivity data used to determined cmcs of di-C7SS mixed system
at a molar ratio of 0.5 X, where X is either AOTA / AOTB.
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Figure 8.2f: Conductivity data used to determined cmcs of di-C7SS mixed system
at a molar ratio of 0.75 X, where X is either AOTA / AOTB.
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Figure 8.2g: Conductivity data used to determined cmcs of di-C7SS mixed system
at a molar ratio of 0.9 X, where X is either AOTA / AOTB.
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Figure 8.2h: Conductivity data used to determined cmc of di-C7SS mixed system
at a molar ratio of 0.99 AOTA.
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8.2.3 di-C8SS : AOTA / AOTB

di-C8SSAOTA

AOTA di-C8SS cmc (mM) ± 0.1

0.01 0.99 1.71

0.10 0.90 2.93 + 7.48

0.25 0.75 1.65 + 6.66

0.50 0.50 3.51

0.75 0.25 14.0

0.90 0.10 5.40

0.99 0.01 65.8

AOTB di-C8SS

AOTB di-C8SS cmc (mM) ± 0.1

0.01 0.99 1.93

0.10 0.90 4.31

0.25 0.75 5.23

0.50 0.50 6.74

0.75 0.25 23.2

0.90 0.10 25.6

Figure 8.3a: Summary of the cmc values for di-C8SS : AOTA / AOTB mixed
surfactant systems at varying molar ratios.
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Figure 8.3b: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.01 X, where X is either AOTA / AOTB.
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Figure 8.3c: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.1 X, where X is either AOTA / AOTB.
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Figure 8.3d: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.25 X, where X is either AOTA / AOTB.
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Figure 8.3e: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.5 X, where X is either AOTA / AOTB.
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Figure 8.3f: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.75 X, where X is either AOTA / AOTB.

269



Chapter 8 8.2. CONDUCTIVITY DATA AND CMC ANALYSIS - MIXED SYSTEMS

Figure 8.3g: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.9 X, where X is either AOTA / AOTB.
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Figure 8.3h: Conductivity data used to determined cmc of di-C8SS mixed system
at a molar ratio of 0.99 AOTA.
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8.2.4 di-C8SS : AOTSiA / AOTSiB

di-C8SSAOTSiA

AOTSiA di-C8SS cmc (mM) ± 0.1

0.10 0.90 2.66

0.25 0.75 5.66

0.50 0.50 6.92

0.75 0.25 12.5

0.90 0.10 11.8

AOTSiB di-C8SS

AOTSiB di-C8SS cmc (mM) ± 0.1

0.10 0.90 1.47

0.25 0.75 1.85

0.50 0.50 3.83

0.75 0.25 11.7

0.90 0.10 11.9

Figure 8.4a: Summary of the cmc values for di-C8SS : AOTSiA / AOTSiB mixed
surfactant systems at varying molar ratios.
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Figure 8.4b: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.1 X, where X is either AOTSiA / AOTSiB.
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Figure 8.4c: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.25 X, where X is either AOTSiA / AOTSiB.
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Figure 8.4d: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.5 X, where X is either AOTSiA / AOTSiB.
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Figure 8.4e: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.75 X, where X is either AOTSiA / AOTSiB.
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Figure 8.4f: Conductivity data used to determined cmcs of di-C8SS mixed system
at a molar ratio of 0.9 X, where X is either AOTSiA / AOTSiB.
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8.2.5 HS3 : AOTA / AOTB

HS3AOTA

AOTA HS3 cmc (mM) ± 0.1

0.10 0.90 34.6

0.25 0.75 33.6

0.50 0.50 36.3

0.75 0.25 68.1

0.90 0.10 62.6

AOTB HS3

AOTB HS3 cmc (mM) ± 0.1

0.10 0.90 25.2

0.25 0.75 24.9

0.50 0.50 25.4

0.75 0.25 31.4

0.90 0.10 19.5

Figure 8.5a: Summary of the cmc values for HS3 : AOTA / AOTB mixed surfactant
systems at varying molar ratios.
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Figure 8.5b: Conductivity data used to determined cmcs of HS3 mixed system at a
molar ratio of 0.1 X, where X is either AOTA / AOTB.
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Figure 8.5c: Conductivity data used to determined cmcs of HS3 mixed system at a
molar ratio of 0.25 X, where X is either AOTA / AOTB.
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Figure 8.5d: Conductivity data used to determined cmcs of HS3 mixed system at a
molar ratio of 0.5 X, where X is either AOTA / AOTB.
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Figure 8.5e: Conductivity data used to determined cmcs of HS3 mixed system at a
molar ratio of 0.75 X, where X is either AOTA / AOTB.
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Figure 8.5f: Conductivity data used to determined cmcs of HS3 mixed system at a
molar ratio of 0.9 X, where X is either AOTA / AOTB.
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8.2.6 AOT : AOTA / AOTB

AOTAOTA

AOTA AOT cmc (mM) ± 0.1

0.10 0.90 6.39

0.25 0.75 6.74

0.50 0.50 6.87

0.75 0.25 18.5

0.90 0.10 16.1

AOTB AOT

AOTB AOT cmc (mM) ± 0.1

0.10 0.90 7.16

0.25 0.75 7.13

0.50 0.50 7.12

0.75 0.25 10.2

0.90 0.10 14.9

Figure 8.6a: Summary of the cmc values for AOT : AOTA / AOTB mixed surfactant
systems at varying molar ratios.
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Figure 8.6b: Conductivity data used to determined cmcs of AOT mixed system at
a molar ratio of 0.1 X, where X is either AOTA / AOTB.
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Figure 8.6c: Conductivity data used to determined cmcs of AOT mixed system at
a molar ratio of 0.25 X, where X is either AOTA / AOTB.
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Figure 8.6d: Conductivity data used to determined cmcs of AOT mixed system at
a molar ratio of 0.5 X, where X is either AOTA / AOTB.
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Figure 8.6e: Conductivity data used to determined cmcs of AOT mixed system at
a molar ratio of 0.75 X, where X is either AOTA / AOTB.

288



Chapter 8 8.2. CONDUCTIVITY DATA AND CMC ANALYSIS - MIXED SYSTEMS

Figure 8.6f: Conductivity data used to determined cmcs of AOT mixed system at a
molar ratio of 0.9 X, where X is either AOTA / AOTB.
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8.2.7 SDS : AOTA

AOTA SDS cmc (mM) ± 0.1

0.1 0.9 6.65

0.5 0.5 12.8

0.9 0.1 29.6

AOTA SDS

AOTA 0.1
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Figure 8.7a: Summary of the cmc values for SDS : AOTA mixed surfactant systems
at varying molar ratios.
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Figure 8.7b: Conductivity data used to determined cmcs of SDS mixed system at a
molar ratio of 0.5 & 0.9 X, where X is AOTA.
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8.3 Conductivity data and cmc analysis - Surfac-

tants

The following pages provide the conductivity data and analysis that was used to

determine the cmc of various surfactants discussed in this thesis. The experimental

procedure is described in Section 4.6.1 (all measurements were made at 295 K).

8.3.1 SDS

SDS
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Figure 8.8: Conductivity data and analysis used to determine the cmc of SDS.
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8.3.2 AOT

AOT
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2.60

0 2 4 6

-30

-20

-10

0

10

20

S
e
c
o
n
d
 d

e
ri
v
a
ti
v
e

Concentration (mM)

Local minima = 2.60 mM

1 2 3 4 5 6

0

50

100

150

200

250

300

C
o
n
d
u
c
ti
v
it
y
 (
m

S
 c

m
-1

)

Concentration (mM)

1 2 3 4 5 6

0

50

100

150

200

250

300

C
o
n
d
u
c
ti
v
it
y
 (
m

S
 c

m
-1

)

Concentration (mM)

Figure 8.9: Conductivity data and analysis used to determine the cmc of AOT.
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8.3.3 di-C6SS

di-C6SS

cmc (mM) ± 0.1
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Figure 8.10: Conductivity data and analysis used to determine the cmc of di-C6SS.
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8.3.4 di-C7SS

di-C7SS

cmc (mM) ± 0.1

2.99

0 1 2 3 4 5 6 7

100

200

300

400

500

C
o
n
d
u
c
ti
v
it
y
 (
m

S
 c

m
-1

)

Concentration (mM)

0 1 2 3 4 5 6 7

100

200

300

400

500

C
o
n
d
u
c
ti
v
it
y
 (
m

S
 c

m
-1

)

Concentration (mM)

0 1 2 3 4 5 6

-10

-5

0

5

10

S
e
c
o
n
d
 d

e
ri
v
a
ti
v
e

Concentration (mM)

Local minima = 2.99 mM

Figure 8.11: Conductivity data and analysis used to determine the cmc of di-C7SS.
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8.3.5 di-C8SS
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Figure 8.12: Conductivity data and analysis used to determine the cmc of di-C8SS.
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8.4 BASIC code - Mixed systems

In Section 3.2.2 a simplified account of Regular solution theory (RST) for mixed

systems was provided. With knowledge of an experimentally determined mixed cmc,

as well as the cmc for the pure surfactant components, it is possible to estimate the

mixed cmc if behaving ideally, C∗
id, and to calculate the deviation from ideality,

i.e. the interaction parameter β. Both C∗
id and β can be calculated from iterative

solutions of Equations 3.29 and 3.30. There are several feasible approaches to doing

this. Here, a simple program was made using BASIC, where the various parameters

(cmc of pure components, cmc of mixture etc.) can be typed in and the iterative

solution found. Below all details are provided to aid future scientists that themselves

may wish to adopt a similar approach.

Program - JustBASIC v1.01 (downloaded from www.justbasic.com)

Code -Interaction parameter, β

REM - CALCULATE MICELLAR BETA FROM BINARY MIXED CMC

input ”Input A1, CMC1, CMC2, CMCM ”; A1, CMC1, CMC2, CMCM

A2 = 1 - A1: G1 = CMCM * A1/CMC1: G2 = CMCM * A2/CMC2

X1 = 0: X2 = 1

FOR I = 1 TO 25

XM1 = 0.5 * (X1 + X2): XM2 = 1 - XM1

F1 = XM1*XM1 * LOG(G1/XM1): F2 = XM2*XM2 * LOG(G2/XM2)

F = F1 - F2

IF F > 0 THEN X1 = XM1 ELSE IF F < 0 THEN X2 = XM1 ELSE GOTO 110

NEXT I

BETA = LOG (G1/XM1) / (XM2 * XM2): print ”MICELLAR BETA = ”; BETA

A1 = mole fraction of surfactant one

CMC1 = cmc of surfactant one

CMC2 = cmc of surfactant two

CMCM = cmc of surfactant mixture
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Code -Ideal mixed cmc, C∗
id (i.e. set β = 0)

REM - CALCULATE IDEAL BINARY MIXED CMC

input “Input BETA, A1, CMC1, CMC2 ”; BETA, A1, CMC1, CMC2

A2 = 1 - A1: X1 = 0: X2 = 1: G = A1*CMC2 / (A2*CMC1)

FOR I = 1 TO 25

XM1 = 0.5 * (X1 + X2): XM2 = 1 - XM1

F1 = EXP(BETA*XM2*XM2): F2 = EXP(BETA*XM1*XM1)

F = G * F2*XM2 / (F1*XM1)

IF F > 1 THEN X1 = XM1 ELSE IF F < 1 THEN X2 = XM1 ELSE GOTO 100

NEXT I

CMCM = 1/(A1/(F1*CMC1)+A2/(F2*CMC2)): print “MIXED CMC = ”; CMCM
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8.5 Techniques - Wilhelmy plate

The Wilhelmy plate method is a surface technique for measuring either the surface tension

of a liquid, the interfacial tension between two liquids, or the contact angle between a

liquid and solid. In this research the Wilhelmy plate method has been used to measure

the surface tension of various surfactant solutions and therefore, this section will focus on

measuring the equilibrium (static) surface tension.

As well as the Wilhelmy plate, the other, and more common method to measure surface

tension is using a Du Noüy ring tensiometer. What advantages does the Wilhelmy plate

offer over the Du Noüy ring? When measuring the surface tension with a Du Noüy ring

tensiometer, the ring is pulled through the surface during the measurement. Whereas

with the Wilhelmy plate, the plate is not moved during the measurement and instead the

surface tension is inferred from a meniscus formed on the plates perimeter. The plate

is not in motion and thus, the entire surface is in equilibrium. However, using the ring

technique causes a non-equilibrium state in the liquid as the ring is pulled through the

surface. Because of this, only the Wilhelmy plate can allow accurate determination of

surface kinetics, and also does not require correction factors to calculate surface tensions.

In a typical experiment to measure the equilibrium surface tension, the plate is lowered

to the liquid surface, a meniscus is formed, and then the plate is raised so that the bottom

edge of the plate lies on the plane of the surface, see Figure 8.13.

Figure 8.13: Illustration of the Wilhelmy plate method (from www.dataphysics.de).

299



Chapter 8 8.5. TECHNIQUES - WILHELMY PLATE

At the three-phase contact line, highlighted on the figure, a tension force F tens acts tangen-

tially to the liquid surface. This force can be split into its parallel (F 2) and perpendicular

(F 1) components:

F1 = Ftens cos θc (8.1)

F2 = Ftens sin θc (8.2)

The tensiometric balance only experiences the perpendicular part of the tension force

(F 1), which matches the gravitational force FG of the formed meniscus. With the surface

tension (γ) of a liquid defined as the force per unit length, it is possible to obtain the

Wilhelmy equation:

γ =
Ftens

L
=

F1

L cos θc
=

FG

L cos θc
(8.3)

where L equals the wetted length (i.e. L = 2b + 2l), and θ is the contact angle between

the liquid phase and the plate. In practice, the contact angle is rarely measured and

instead, complete wetting is assumed so θ = 0 and the equation simplifies (i.e. cos 0 =

1). Hence, by knowledge of the plate dimensions and measured gravitational force, the

surface tension can be determined. The plate is made from a iridium-platinum material

which helps to ensure complete wetting. Furthermore, common practice is to clean the

plate under the blue flame of a Bunsen burner between measurements and therefore, the

material should be both inert and heat resistant.
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