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Abstract 

The causal pathway between modifiable lifestyle factors and obesity is complex. The 
growing obesity epidemic impacting across the lifecourse is a major public health 
concern in many countries, therefore understanding the causes and consequences of 
adiposity is important. In this thesis I investigate the role of the metabolome and 
methylome in the relationship between dietary behaviour and obesity. 

Establishing causality in observational studies is challenging due to unmeasured 
confounders and potential for reverse causation. I use Mendelian randomization (MR), 
two-sample MR and longitudinal analysis to infer causality in the relationships between 
diet, the methylome, the metabolome and body mass index (BMI). A good 
understanding of causality in these relationships is important to address the question of 
how the major public health problem of obesity should be tackled. 

Dietary behaviour is a complex trait, and hence few studies have identified genetic 
variants associated with diet. I performed a GWAS of macronutrient intake in UK 
Biobank, with the aim of identifying genetic variants that could be used to generate a 
robust genetic instrument for dietary behaviour for use in MR. 

Whilst studies have demonstrated the effect of adiposity on metabolic signatures from 
early adulthood onwards, there is a lack of published data exploring the relationship 
between adiposity and the metabolome in childhood. Using the Avon Longitudinal Study 
of Parents and Children (ALSPAC), I observed strong evidence of associations between 
BMI and several metabolite measures in childhood and adolescence in children, showing 
that the ability of BMI to influence the metabolome starts in childhood. Many BMI-
associated metabolites are also associated with dietary behaviour, so it is likely that the 
metabolome plays a key role when trying to understand the relationship between 
dietary behaviour and BMI. 

Several associations have been observed between BMI and methylation, mostly in 
adults. I investigated the relationship between BMI and methylation in childhood and 
adolescence and explored their relationship with dietary behaviour. My observations 
corroborated the prevailing evidence that DNA methylation occurs as a consequence 
(rather than a cause) of BMI. 

  



3 

Acknowledgements 

There are several people who I would like to thank for their help in completing this 

project: 

- My supervisors, Dr Tom Gaunt and Prof Caroline Relton, for their guidance and 

encouragement over the last few years. 

- Wellcome, for funding this project. 

- The ALSPAC participants and families, the midwives for their help in recruiting 

them, and the whole ALSPAC team, including interviewers, computer and 

laboratory technicians, clerical workers, research scientists, volunteers, 

managers, receptionists and nurses. 

- The UK Biobank participants. 

- My colleagues at the MRC IEU and the Bristol Medical School, including Dr 

Rebecca Richmond and Dr Gemma Sharp with whom I did the HIF3A methylation 

and BMI work, Prof Nic Timpson for his feedback in my annual reviews, Dr Kate 

Northstone for her help with the diet PCs and Sharen O’Keefe for her 

administrative assistance. 

- The many colleagues with whom I’ve shared an office over the last few years, for 

their moral support, advice and coffee breaks. 

- My friends and family, for their endless encouragement, patience and support. 

 



4 

Author’s declaration 

I declare that the work in this dissertation was carried out in accordance with the 

requirements of the University's Regulations and Code of Practice for Research Degree 

Programmes and that it has not been submitted for any other academic award. Except 

where indicated by specific reference in the text, the work is the candidate's own work. 

Work done in collaboration with, or with the assistance of, others, is indicated as such. 

Any views expressed in the dissertation are those of the author. 

 

SIGNED: .............................................................    DATE: .......................... 

  



5 

Table of contents 

Abstract .................................................................................................... 2 

Acknowledgements................................................................................... 3 

Table of contents ...................................................................................... 5 

List of tables ............................................................................................ 10 

List of figures .......................................................................................... 12 

List of appendices ................................................................................... 14 

List of acronyms ...................................................................................... 15 

Chapter 1. Introduction ........................................................................... 17 

1.1. Overview of the problem ......................................................................... 18 

1.2. Diet and adiposity ................................................................................... 19 

1.3. Dietary behaviour.................................................................................... 20 

1.3.1. Assessing dietary behaviour in cohort studies ............................................ 20 

1.3.2. Summary variables for dietary behaviour ................................................... 22 

1.3.3. Heritability of diet ........................................................................................ 22 

1.4. BMI and other measures of adiposity ...................................................... 23 

1.4.1. Heritability of BMI ........................................................................................ 24 

1.5. Mediating mechanisms ............................................................................ 24 

1.5.1. The metabolome .......................................................................................... 24 

1.5.2. The methylome ............................................................................................ 26 

1.6. Novel approaches to understanding pathways between diet and BMI ..... 28 

1.6.1. Cohort resources .......................................................................................... 28 

1.6.2. Molecular phenotyping ................................................................................ 28 



6 

1.6.3. Causal inference methods ........................................................................... 29 

1.7. Summary ................................................................................................. 29 

1.8. Overarching aims of thesis ....................................................................... 30 

Chapter 2. Methods ................................................................................ 31 

2.1. Data sources ............................................................................................ 32 

2.1.1. Avon Longitudinal Study of Parents and Children ....................................... 32 

2.1.2. UK Biobank cohort ....................................................................................... 42 

2.2. Methods .................................................................................................. 44 

2.2.1. Linear regression .......................................................................................... 44 

2.2.2. GWAS ........................................................................................................... 44 

2.2.3. EWAS ............................................................................................................ 45 

2.2.4. Mendelian randomization ........................................................................... 45 

2.2.5. Mediation ..................................................................................................... 49 

Chapter 3. Diet GWAS ............................................................................. 51 

3.1. Introduction ............................................................................................. 52 

3.1.1. Heritability of dietary intake ........................................................................ 52 

3.1.2. Previous diet GWAS ..................................................................................... 52 

3.1.3. Challenges of diet GWAS and strengths of UK Biobank .............................. 54 

3.1.4. Motivation for a diet GWAS ......................................................................... 55 

3.2. Methods .................................................................................................. 55 

3.2.1. Diet GWAS in UK Biobank ............................................................................ 56 

3.2.2. LD score regression ...................................................................................... 58 

3.3. Results ..................................................................................................... 58 

3.3.1. Diet data in UK Biobank ............................................................................... 58 

3.3.2. Diet GWAS in UK Biobank ............................................................................ 59 



7 

3.3.3. Follow up of diet-SNP associations from the literature .............................. 66 

3.3.4. Heritability and correlation .......................................................................... 66 

3.4. Discussion ............................................................................................... 69 

3.4.1. Main findings ............................................................................................... 69 

3.4.2. Strengths and limitations ............................................................................. 72 

3.4.3. Future directions .......................................................................................... 73 

Chapter 4. Diet and BMI .......................................................................... 75 

4.1. Introduction ............................................................................................ 76 

4.1.1. Observational studies of diet and adiposity ................................................ 76 

4.1.2. Dietary interventions to combat obesity ..................................................... 77 

4.1.3. Studies in UK Biobank .................................................................................. 78 

4.1.4. Studies in ALSPAC ........................................................................................ 78 

4.1.5. Motivation and objectives for these analyses ............................................. 80 

4.2. Methods ................................................................................................. 82 

4.2.1. Macronutrient intake and BMI analyses...................................................... 82 

4.2.2. Dietary patterns and BMI analyses .............................................................. 85 

4.3. Results .................................................................................................... 89 

4.3.1. Macronutrient intake and BMI results ........................................................ 89 

4.3.2. Diet PCs and BMI results .............................................................................. 98 

4.4. Discussion ............................................................................................. 103 

Chapter 5. BMI and the metabolome .................................................... 107 

5.1. Introduction .......................................................................................... 108 

5.1.1. Observational relationships between adiposity and the metabolome ..... 108 

5.1.2. Causality in the relationship between adiposity and metabolites ............ 110 

5.1.3. Aims and objectives ................................................................................... 111 



8 

5.2. Methods ................................................................................................ 112 

5.2.1. Metabolite quantification .......................................................................... 112 

5.2.2. Data preparation ........................................................................................ 112 

5.2.3. Cross-sectional analyses ............................................................................ 114 

5.2.4. Mendelian randomization analyses ........................................................... 114 

5.2.5. Longitudinal analyses ................................................................................. 115 

5.3. Results ................................................................................................... 116 

5.3.1. Cross-sectional analyses ............................................................................ 116 

5.3.2. MR analyses ............................................................................................... 117 

5.3.3. Longitudinal analyses ................................................................................. 125 

5.4. Discussion .............................................................................................. 128 

Chapter 6. Diet, Metabolome and BMI...................................................133 

6.1. Introduction ........................................................................................... 134 

6.2. Methods ................................................................................................ 136 

6.2.1. Diet and the metabolome – cross-sectional analyses ............................... 136 

6.2.2. Diet, BMI and the metabolome – analyses ................................................ 137 

6.3. Results ................................................................................................... 139 

6.3.1. Diet and metabolome – cross-sectional results ........................................ 139 

6.3.2. Diet, BMI and the metabolome – results .................................................. 142 

6.4. Discussion .............................................................................................. 149 

Chapter 7. BMI, methylation and diet ....................................................153 

7.1. Introduction ........................................................................................... 154 

7.1.1. BMI and methylation ................................................................................. 154 

7.1.2. Diet and methylation ................................................................................. 156 

7.1.3. Motivation for these analyses ................................................................... 156 



9 

7.2. Methods ............................................................................................... 157 

7.2.1. HIF3A analyses ........................................................................................... 157 

7.2.2. BMI EWAS in ALSPAC in childhood and adolescence ................................ 159 

7.2.3. Look-up of previously reported adult BMI CpGs in ALSPAC offspring ....... 159 

7.2.4. Bidirectional MR analyses .......................................................................... 160 

7.2.5. BMI-associated CpGs and diet PCs ............................................................ 160 

7.3. Results .................................................................................................. 161 

7.3.1. HIF3A results .............................................................................................. 161 

7.3.2. BMI EWAS results ....................................................................................... 163 

7.3.3. Results from look-up of previously reported adult BMI CpGs in ALSPAC 

offspring 166 

7.3.4. Results from bidirectional MR ................................................................... 171 

7.3.5. Results from look-up of age 7 BMI-associated CpGs with diet PCs ........... 172 

7.4. Discussion ............................................................................................. 173 

Chapter 8. Discussion ............................................................................ 177 

8.1. Genetic determinants of dietary intake.................................................. 178 

8.2. Implementing MR to understand diet-BMI relationship ......................... 179 

8.3. Dietary and BMI influences on the metabolome .................................... 181 

8.4. Direction of causal pathways between BMI and DNA methylation ......... 182 

8.5. Implementing MR in molecular mediation ............................................. 183 

8.6. Main conclusions ................................................................................... 184 

References ............................................................................................ 185 

Appendix A ........................................................................................... 197 

Appendix B – First author publications .................................................. 203  



10 

List of tables 

Table 1 – Metabolite measures. ........................................................................................ 40 

Table 2 – UK Biobank energy and macronutrients studied in this thesis. ......................... 43 

Table 3 - Correlation between visit group and online group diet measures. ................... 58 

Table 4 – GWAS results with p<5×10-8 in the “online” group. .......................................... 64 

Table 5 – Replication of top associations from the “online” group in the “visit” group; 

meta-analysis of results from both groups. ....................................................................... 65 

Table 6 – Gene information for the diet-SNP associations that replicated. ..................... 65 

Table 7 – Follow up of diet-SNP associations from the literature. .................................... 68 

Table 8 – Heritability and genetic correlation estimates from LD score regression ......... 68 

Table 9 – Phenotypic correlation between diet traits ....................................................... 68 

Table 10 – BMI SNPs grouped by functional category. ..................................................... 88 

Table 11 – Diet → BMI associations. ................................................................................. 91 

Table 12 – BMI → diet associations. .................................................................................. 91 

Table 13 – Results from two-sample MR analyses investigating the causal effect of diet 

on BMI. ............................................................................................................................... 93 

Table 14 – Results from diet → BMI cross-sectional analyses. ....................................... 100 

Table 15 - Results from BMI → diet cross-sectional analyses. ........................................ 100 

Table 16 – Results from two-sample bidirectional MR analyses. .................................... 144 

Table 17 – Cross-sectional results for BMI and HIF3A methylation. ............................... 161 

Table 18 – Childhood BMI to adolescent methylation. ................................................... 162 

Table 19 – Childhood methylation to adolescent BMI. ................................................... 162 

Table 20 – Results from bidirectional MR analysis of BMI and cg27146050 methylation in 

adolescence. .................................................................................................................... 162 

Table 21 – BMI EWAS results for BMI-CpG associations with p < 10-5 in childhood. ...... 164 

Table 22 – BMI EWAS results for BMI-CpG associations with p < 10-5 in adolescence. .. 164 

Table 23 – Associations between GIANT allele score at BMI-associated CpGs at age 7. 171 

Table 24 – Associations between GIANT allele score at BMI-associated CpGs at age 15-

17. .................................................................................................................................... 171 

Table 25 – Results from 2-sample MR analysis of the effect of BMI-associated CpGs on 

BMI. .................................................................................................................................. 172 



11 

Table 26 – Relationship between dietary behaviour and BMI-associated CpGs at age 7 

years. ................................................................................................................................ 172 

  



12 

List of figures 

Figure 1 – Framework representing the hypothesis explored in this thesis. .................... 30 

Figure 2 – Timeline of the data collection timepoints of the children’s diet, adiposity, 

metabolite, and methylation measures studied in this thesis. ......................................... 33 

Figure 3 – Manhattan plots and QQ plots of results from dietary intake GWAS in the 

“online” group, without adjustment for BMI. ................................................................... 61 

Figure 4 – Forest plot of the top diet-SNP associations. ................................................... 63 

Figure 5 – Flowchart of further analyses that could be conducted to explore why 

rs516246 is associated with both polyunsaturated fat intake and Crohn’s disease. ........ 71 

Figure 6 – Summary of analyses undertaken in this chapter. ........................................... 81 

Figure 7 – Forest plots of diet → BMI associations. .......................................................... 90 

Figure 8 – Forest plot of results from diet → BMI two-sample MR analyses. .................. 92 

Figure 9 – Heatmap showing the effect strengths and directions from the relationships 

between the BMI allele scores and macronutrient intake. ............................................... 95 

Figure 10 - Forest plot of diet → BMI observational analyses. ......................................... 99 

Figure 11 - Heatmap showing the strengths and effect directions of the relationships 

between the diet PCs and the BMI allele scores. ............................................................ 102 

Figure 12 – Forest plots of cross-sectional associations of metabolites and BMI in the 

ALSPAC children at age 7. ................................................................................................ 118 

Figure 13 – Forest plot comparing cross-sectional effect estimates from the ALSPAC 

children at ages 7 and 15 and the Würtz young adults. .................................................. 120 

Figure 14 – Correlation plot of effect estimates (and 95% CIs) from cross-sectional and 

MR analyses. .................................................................................................................... 122 

Figure 15 – Forest plots comparing effect estimates from cross-sectional and MR 

analyses in the ALSPAC children at age 7. ....................................................................... 123 

Figure 16 – Forest plots showing effect estimates for the relationship between change in 

metabolite z-score and change in BMI z-score between the age 7 and 15 years. .......... 126 

Figure 17 – Causal mediation model with a single mediator. ......................................... 138 

Figure 18 – Forest plots of cross-sectional relationships between metabolites and diet 

PCs in the ALSPAC children at age 7 years. ...................................................................... 140 

Figure 19 – Diagrams representing the mediation hypothesis to be explored. .............. 143 



13 

Figure 20 – Forest plot comparing BMI → metabolite MR estimates from the two-sample 

MR analysis with those from the ALSPAC MR analysis. ................................................... 145 

Figure 21 – Forest plot of results from mediation analyses exploring whether the 

metabolites mediate the effect of the diet PCs on BMI. ................................................. 147 

Figure 22 – Forest plot of results from mediation analyses exploring whether BMI 

mediates the effect of the diet PCs on the metabolites. ................................................. 147 

Figure 23 – Diet and metabolite lines of best fit by BMI quartile. .................................. 148 

Figure 24 – The triangulation approach for MR. ............................................................. 158 

Figure 25 - BMI EWAS results for BMI-CpG associations with p < 10-5 in childhood. ..... 165 

Figure 26 – BMI EWAS results for BMI-CpG associations with p < 10-5 in adolescence. . 165 

Figure 27 – BMI-associated CpGs previously identified in adults which also show an 

association of p<0.05 with BMI in childhood. ................................................................. 167 

Figure 28 – BMI-associated CpGs previously identified in adults which also show an 

association of p<0.05 with BMI in adolescence............................................................... 168 

Figure 29 – BMI-associated CpGs previously identified in adults which also show an 

association of p<0.05 with FMI in childhood. .................................................................. 169 

Figure 30 – BMI-associated CpGs previously identified in adolescence which also show 

an association of p<0.05 with FMI in childhood. ............................................................. 170 

  



14 

List of appendices 

Appendix A ............................................................................................197 

Appendix A.1 – Metabolite transformations ......................................................... 197 

Appendix A.2 – MR-Egger results table ................................................................. 198 

Appendix A.3 – Cross-sectional associations between diet PCs and metabolites .... 200 

Appendix B – First author publications ...................................................203 

 

  



15 

List of acronyms 

2SLS  Two-stage least squares 

ALSPAC Avon Longitudinal Study of Parents and Children 

ARIES  Accessible Resource for Integrated Epigenomics Studies 

BMI  Body mass index 

CLA  Conjugated linoleic acid 

DXA  Dual-energy X-ray absorptiometry 

EWAS  Epigenome-wide association study 

FMI  Fat mass index 

FFQ  Food frequency questionnaire 

GCTA  Genome-wide complex trait analysis 

GIANT  Genetic Investigation of Anthropometric Traits 

GWAS  Genome-wide association study 

HRC  Haplotype Reference Consortium 

IV  Instrumental variable 

IVW  Inverse-variance weighted 

LD  Linkage disequilibrium 

LIML  Limited information maximum likelihood 

LOO  Leave-one-out 

MAF  Minor allele frequency 

mQTL  Methylation quantitative trait locus 

MR  Mendelian randomization 

MS  Mass spectrometry 

MUFA  Monounsaturated fatty acid 

NMR  Nuclear magnetic resonance 

PC  Principal component 

PCA  Principal components analysis 

PUFA  Polyunsaturated fatty acid 

RRR  Reduced rank regression 

SNP  Single nucleotide polymorphism 

WC  Waist circumference 





17 

CHAPTER 1.  INTRODUCTION  
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1.1. Overview of the problem 

The obesity epidemic is a major public health problem today. Obesity is associated with 

a range of comorbidities including cardiovascular disease, type 2 diabetes and some 

cancers.1,2 People who are overweight or obese have lower life expectancies – studies 

have estimated reductions in life expectancy of 0-3 years, 1-6 years and 1-10 years for 

overweight, obese and very obese adults respectively, depending on the age and sex of 

the individual.3 The number of healthy life-years lost is even greater. A 2011 study 

predicted that a rise in obesity-related diseases will cost the NHS nearly an extra £2 

billion per year by 2030.4 

Obesity prevalence is increasing in adults and children, both in the UK and globally.2,5,6 

The Health Survey for England 2015 (http://digital.nhs.uk/catalogue/PUB22610) found 

that 27% of adults in England were obese, and a further 31% of women and 41% of men 

were overweight. Two of the main causes of this increasing prevalence are thought to be 

increases in sedentary behaviour and the consumption of high-energy foods.7 

Obesity as a public health issue starts in childhood, since children who are overweight 

have a greater risk of becoming overweight adults.8 Although chronic diseases such as 

cardiovascular disease and type 2 diabetes are unlikely to have already developed in 

childhood, it is possible to study risk indicators such as hypertension and cholesterol 

levels or other metabolic perturbations.9-11 Some adverse cardiovascular and metabolic 

features are already evident in children and young adults.12,13 

A range of interventions have attempted to tackle childhood obesity including school-

based interventions and family-based interventions; however, any success is often 

limited to the duration of the intervention.14 Given that there has been a relative lack of 

success in developing and implementing interventions to address diet or physical activity 

to prevent obesity, there is therefore a strong motivation to increase our understanding 

of the intermediate pathways linking known risk factors with obesity. This may provide 

new intervention targets to prevent or treat obesity or ameliorate the consequences 

through altering intermediates along the pathway. 
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Obesity is a complex issue linked to a range of lifestyle traits and socioeconomic factors. 

Untangling the causal and molecular pathways to obesity is challenging and studies 

often lack power and are beset with confounding. 

Population-based approaches are useful since obesity and overweight prevalence is high 

amongst the general population, and a wide range of small variations in lifestyle 

behaviours may be linked to excess adiposity. 

Technologies have developed over the last few years, allowing for relatively low-cost 

measurement of high-dimensional molecular phenotypes (“omics” data) such as 

metabolites and DNA methylation. This omics data is now available, along with lifestyle 

and anthropometric data, in large cohort studies such as UK Biobank.15 New statistical 

methods have also been developed which aim to attempt to deal with confounding, 

interrogate causality and investigate molecular mediation.16,17 

This thesis aims to interrogate the relationship between dietary behaviour, molecular 

intermediates and adiposity. A clearer understanding of this relationship is key to 

informing future interventions, whether that be developing novel therapeutic or lifestyle 

interventions or advising public health policy. 

1.2. Diet and adiposity 

Both cross-sectional and longitudinal studies have investigated the relationship between 

dietary habits and BMI or other measures of obesity in children and adolescents. 

Findings from these studies include evidence from a systematic review suggesting that 

dietary energy density is positively associated with increased adiposity in children and 

adolescents.18 A separate childhood study of macronutrient intake and body fat 

percentage provided more detail by showing that adiposity was positively associated 

with percentage of energy derived from fat and negatively associated with percentage 

of energy derived from carbohydrate.19 
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A study of dietary patterns and change in fat and lean mass observed that a diet high in 

fruit and vegetables but low in processed food was associated with a decrease in fat 

mass gain in girls, and, perhaps surprisingly, a diet high in sandwiches and snacks was 

also associated with a decrease in fat mass gain in girls and an increase in lean mass gain 

in boys.20 A study of fast food consumption found that teenagers who consume fast food 

more frequently tend to eat less fruit and vegetables and have higher BMIs.21 

Several studies of diet and adiposity have also been conducted in adults. A cross-

sectional study of healthy older men has linked obesity to energy intake from fat.22 

Other studies have observed associations between higher consumption of meat, refined 

grains, sweets and desserts and long-term weight gain.23,24 Changing dietary behaviour 

may have a positive effect on obesity – longitudinal studies of adults have found that 

positive changes in eating behaviour were accompanied by a decrease in BMI or a 

smaller weight gain.25,26 

1.3. Dietary behaviour 

Dietary behaviour is a complex trait. Assessing diet can be costly, and assessment 

methods suffer from a high degree of measurement error. There are many different 

aspects to dietary behaviour, and hence summarising dietary behaviour in a form that 

can be used in quantitative analysis can also be challenging. 

1.3.1. Assessing dietary behaviour in cohort studies 

Cohort studies typically assess dietary behaviour using food frequency questionnaires 

(FFQs),19,22,23,25,27-30 food diaries,31-33 or 24-hour recalls.34,35 Studies have also used a 

range of other questions such as how frequently the participant skips breakfast or visits 

fast food outlets.21,36 

FFQs are used to estimate a person’s usual intake of a set list of foods, often more than 

100 items long, which aims to encompass most of their diet.37 FFQs commonly ask about 

usual food intake over the past year, though some FFQs may stipulate a shorter time 

period such as a month. Questions are usually multiple choice (e.g. eat a food item more 
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than once a day, 4-7 times a week, 1-3 times a week, once a fortnight, or never/rarely),27 

but some questions may require a number for an answer, for example average number 

of units of alcohol per week.  

A diet diary, or food record, is a record of all food and drink consumed during a set 

period, typically between one and seven days in length.37 Ideally, participants should 

record their food and drink intake at the time at which they consume it, or at least on 

the same day, to avoid relying too much on memory. Participants are asked to include 

information on portion sizes. More detailed diet diaries may also include information on 

food brands. 

In a 24-hour diet recall, participants are asked to record their food and drink 

consumption from the last 24 hours. Data is typically collected during a face-to-face or 

phone interview with a field worker or nutritionist or via a structured web-based 

questionnaire. 

Since FFQs capture usual food intake, they are less affected by one-off events such as 

holidays or illness. Diet diaries may be less representative of usual food intake since they 

depend on the particular days over which the diary was completed, and hence are 

vulnerable to any deviation from normal food intake. 

FFQs tend to suffer from a considerable amount of measurement error due to a lack of 

detailed information on portion sizes.37,38 People may also find it hard to accurately 

report how often they eat different foods. Studies comparing FFQs, diet diaries and 24-

hour recalls have found that FFQs tend to record higher daily intakes of vegetables.39 

Diet diaries also suffer from measurement error, usually resulting in underestimation of 

total energy intake.40 People with higher BMIs are more likely to underreport their 

energy intake.41 

Dietary assessment methods are vulnerable to social desirability bias, for example a 

downward bias in overall reported food intake and an upward bias in reported fruit and 

vegetable intake.42,43 Food diaries and scheduled 24-hour recalls are also susceptible to 
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reactivity bias, where a participant alters their eating behaviour either to make it simpler 

to record the foods and quantities consumed or for social desirability reasons.37  

1.3.2. Summary variables for dietary behaviour 

FFQs, diet diaries and 24-hour diet recalls collect data on great numbers of different 

food items. It is often helpful to summarize the data to reduce the number of variables 

to analyse (“dimensionality reduction”). One approach is to use empirical methods, such 

as principal components analysis (PCA) or cluster analysis, to identify dietary patterns.44 

Such methods have been used in this thesis and are discussed in greater detail in 

Chapter 2 (Methods) and in their application later in the thesis. Alternatively, studies 

may wish to derive new composite variables that estimate different aspects of dietary 

intake, such as macronutrient intake or fast food intake.35,45 

1.3.3. Heritability of diet 

Family and twin studies have estimated that genetic effects typically account for about 

20% to 40% of variation in energy and macronutrient intake.46 However, as of yet, few 

studies have identified genetic variants associated with dietary patterns or behaviours, 

often due to the paucity of high quality specific data at scale that accurately reflects 

dietary patterns and behaviours. Heritability is a very useful parameter as it provides 

useful information regarding the determinants of variation in a phenotype. Identification 

of genetic loci associated with a trait however, requires a “clean”, unambiguous 

phenotype to be defined, which has posed a challenge in the context of diet. Functional 

insights can also be gained from characterising genetic loci that contribute to 

heritability. In addition, the use of genetic variation is hugely valuable in the application 

of causal analysis methods to strengthen inferences that can be made regarding 

observational associations which are often biased. Thus, the application of genetic 

variants in causal analysis methods is a strong motivating factor in identifying diet-

related genetic variation. 
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1.4. BMI and other measures of adiposity 

Body mass index (BMI), defined as weight (kg) divided by height squared (m2), is the 

most commonly used measure of adiposity. The categories usually used in adults are: 

underweight, <18.5 kg/m2; normal weight 18.5-24.9 kg/m2; overweight 25-29.9 kg/m2; 

and obese ≥30 kg/m2.2 

The BMI categories used in adults (for underweight, normal weight, overweight and 

obese) are not appropriate for use in children and adolescents since they have differing 

body proportions. For example, a 5-year-old and a 15-year-old may have the same BMI, 

but one could be considered a normal weight and the other overweight. To address this 

issue, age is often taken account of when studying BMI in children and adolescents, and 

reference charts are used to compare children against reference percentiles for their 

age.47,48 This is called “BMI for age”. 

Studies of BMI in adults and BMI for age in children have found that these measures 

have a high specificity (low false positive rate) for identifying excess adiposity, but a low 

to moderate sensitivity (moderate to high false negative rate).48,49 

Other easy-to-measure anthropometric measures of adiposity include variations on 

waist circumference, e.g. waist-hip ratio and waist-height ratio. Compared to BMI, waist 

circumference captures central adiposity better, but is a little less frequently measured 

and does not reflect general adiposity as well as BMI. 

A study comparing childhood BMI with childhood waist circumference and childhood fat 

mass as predictors of cardiovascular risk factors in adolescence found that all three 

childhood adiposity measures were similarly capable of predicting an adverse 

cardiovascular profile in adolescence.50 BMI is the primary focus of this thesis because of 

the ubiquity of BMI as a variable. 
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1.4.1. Heritability of BMI 

A review of the heritability of BMI found that BMI heritability estimates from twin 

studies ranged from 0.47 to 0.90 (median=0.75).51 Heritability estimates were 0.07 

higher (p=0.001) in children than adults; and increased with mean age in childhood 

studies but decreased with mean age in adult studies. A genome-wide association study 

(GWAS) of ~320,000 adults identified 97 BMI-associated genetic loci, accounting for 

~2.7% of variation in BMI.52 More recently, a larger BMI GWAS has been published 

(n~700,000) which identified 941 BMI-associated genetic loci, accounting for ~6.0% of 

variation in BMI.53 This genetic variation can be leveraged in Mendelian randomization 

(MR) analysis to understand the consequences of variation in BMI.54,55 

1.5. Mediating mechanisms 

Whilst dietary behaviour and adiposity are known to be related, less is known about the 

role of molecular intermediates in this relationship. Potential intermediates include 

various “omics”, for example the epigenome, metabolome and gene products such as 

transcriptome and proteome.17 

This thesis aims to investigate the role of the metabolome and methylome in the 

relationship between dietary behaviour and adiposity. Data for these intermediates has 

recently become available in relatively large population samples, and hence analyses in 

this thesis were able to exploit existing data. Proteomics data are now becoming more 

widely available, but were less so when this project commenced, and the availability of 

transcriptomics data is still quite unusual in large population cohorts because of the 

difficulties of sampling. 

1.5.1. The metabolome 

The metabolome is the collection of all small molecules (metabolites) in a cell or tissue 

that are involved in metabolic reactions and are needed for the growth, maintenance 

and normal function of the cell.56 Metabolite profiles have been studied in relation to a 
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range of traits and diseases, for example physical activity, hypertension and type 2 

diabetes.57 

The two main technologies used to measure the metabolite profile are nuclear magnetic 

resonance (NMR) and mass spectrometry (MS).57 Both technologies provide extensive 

metabolite coverage, though the coverage provided by MS is more extensive. However, 

NMR is cheaper and is therefore generally more suitable for large cohort studies. 

Additionally, NMR can analyse lipoproteins, but MS cannot. 

 Heritability of the metabolome 

Kettunen et al. studied the heritability of metabolite measures assayed by NMR in young 

adults from the Finnish Twin Cohort.58 Their heritability estimates ranged between 0.48-

0.62 for lipids, 0.50-0.76 for lipoproteins, and 0.23-0.55 for amino acids and other small-

molecule metabolites. As outlined above for adiposity, insights in to the genetic 

determination of metabolite traits can be useful in understanding molecular pathways 

and in fuelling MR analyses to strengthen causal inference. 

 Diet and the metabolome 

Many studies have observed associations between dietary patterns and blood 

metabolite profiles.59-65 These findings include an association between a Western diet 

and higher levels of amino acids,59 and positive associations between fruit and vegetable 

intake and phosphatidylcholines.63 Some studies have looked at metabolites individually 

or by class,60,65 whilst other studies used PCA to summarise metabolite profiles.59,61 

It is difficult to accurately assess dietary intake in populations, therefore it would be 

hugely beneficial if a clearer understanding of relationship between diet and metabolites 

could be used to accurately index an individual’s dietary pattern given their metabolic 

profile.64,66,67 
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 BMI and the metabolome 

Several studies have observed strong associations between adiposity and the human 

serum metabolome.68-78 These include studies in children which have observed 

associations between obesity status and amino acid levels,68,69 and studies of young 

adults which have observed strong links between adiposity and lipoproteins, amino acids 

and fatty acids.70,71 A young adult study of several obesity measures (including waist 

circumference, android fat (%) and subcutaneous fat) found that abdominal fat was 

overall most strongly associated with an adverse metabolite profile.71 Findings from 

studies of (or including) middle-aged and older adults include a study in women which 

found that obese women had significantly higher branched-chain amino acid levels than 

lean or overweight women.72  

Some studies have also tried to infer causality in the relationship between BMI and the 

metabolome.70,75,76 A study of young adults which found that elevated BMI was 

associated with adverse changes in the metabolite profile also conducted MR 

analysis.54,70 Their results suggest that adiposity has a causal effect on the metabolic 

profile. They also observed that change in BMI was associated with changes in the 

metabolite profile, suggesting that the metabolite profile can be modified through 

lifestyle changes. Two other studies in adults investigating the causal effect of BMI on 

metabolic traits observed evidence suggesting that BMI has a causal effect on HDL 

cholesterol levels.75,76 The literature to date in this area is largely (but not exclusively) 

confined to adults, with little evidence of the interrelationship of emerging adiposity 

with the metabolome in children. 

1.5.2. The methylome 

DNA methylation in humans is an epigenetic modification of DNA in which methyl 

groups attach to CpG dinucleotides.79,80 Methylation patterns vary between individuals, 

are tissue-specific, mitotically stable, and can change in response to lifestyle factors, for 

example smoking behaviour.81-83 Methylation profiles in large cohort studies are usually 

assayed using arrays such as the Illumina 450K HumanMethylation BeadChip array.84 An 

(epi)genome-wide approach has been widely adopted, following the example of the 
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GWAS approach. Testing associations of large numbers of methylation sites for evidence 

of association with a specific exposure or phenotype is now routine and has been 

termed an epigenome-wide association study (EWAS). 

 Diet and the methylome 

Identifying associations between dietary behaviour and DNA methylation has proved 

challenging, and few epigenome-wide association studies (EWAS) of diet have been able 

to identify robust associations.85,86 This is likely due to small sample sizes and poor 

specificity of dietary measures. 

 BMI and the methylome 

The relationship between adiposity and DNA methylation has been investigated in 

various large-scale studies.87-93 The first major EWAS to report robust associations 

between CpG sites and BMI was a study in adults by Dick et al. which identified 

associations between increased methylation at three CpGs in HIF3A and increased 

BMI.91 This finding was further explored as part of this thesis and is described in more 

detail in Chapter 7. 

Two of the largest EWAS to date were performed by Wahl et al. and Mendelson et 

al.94,95 Wahl et al. performed an EWAS of BMI in 10,261 adults and identified 187 CpGs 

associated with BMI at an epigenome-wide level (defined as p < 1 × 10-7 here).94 The 

genetic loci identified by these 187 CpGs include genes involved in lipid and lipoprotein 

metabolism. Mendelson et al. performed a BMI EWAS in 7,798 adults and identified 83 

BMI-associated CpGs.95 38 BMI-associated CpGs were common to both EWAS. 

Wahl et al. and Mendelson et al. both conducted MR to investigate causality between 

BMI and their BMI-associated CpGs. Both studies agreed that changes in methylation 

mostly appear to be a consequence of changes in BMI, rather than a cause. 
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1.6. Novel approaches to understanding 

pathways between diet and BMI 

Pre-omics approaches to understanding the causality between dietary behaviour and 

adiposity have included intervention studies and longitudinal studies. The omics era has 

led to the development of novel approaches to understanding pathways between 

dietary behaviour and adiposity. 

1.6.1. Cohort resources 

The scope to interrogate the relationship between diet and adiposity has developed 

enormously over recent years due to the increasing availability of large scale population 

level data. Not only genotype data, but reliable phenotype data with dietary factors 

measured at scale, create new opportunities to explore the pathways between diet and 

BMI. Effect sizes are often small when studying complex lifestyle-related phenotypes, 

and large sample sizes are needed to identify these small effects. Large cohorts with 

omics data such as UK Biobank and ALSPAC are key to understanding these 

relationships.15,96 

1.6.2. Molecular phenotyping 

The development and adoption of robust platforms for high throughput analysis of 

molecular phenotypes including metabolites, DNA methylation profiles etc, have 

facilitated the application of epidemiological methods to gain insights in to the pathways 

of interest here. Genome-wide association studies (GWAS) are used to identify genetic 

variants associated with phenotypes and gain better understanding of genetic 

influences. These genetic variants can be used to create genetic instruments for use in 

MR analysis to explore causality between phenotypes.54,55 In a similar way, EWAS can be 

used to identify differentially methylated CpGs across the epigenome that are associated 

with diet and BMI; and metabolome-wide association studies can identify metabolites 

associated with both diet and BMI. 
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1.6.3. Causal inference methods 

The methodological development of Mendelian randomization (MR) as a tool to 

strengthen causal inference has escalated rapidly over recent years with widespread 

adoption of the method. Furthermore, methodological refinement of statistical methods 

for molecular mediation provides new opportunities to produce robust evidence. MR is 

a form of instrumental variable analysis that uses genetic variants as instruments for the 

exposure of interest.54,55 These genetic variants should be independent of the outcome 

given the exposure, and independent of any confounders of the exposure-outcome 

relationship. 

1.7. Summary 

In summary, obesity is a major public health problem with several comorbidities, and 

prevalence of overweight and obesity is increasing. Dietary behaviour is strongly linked 

to excess adiposity; however, this relationship is not fully understood and dietary 

interventions often have limited success. Large cohort studies have collected genetic, 

epigenetic and metabolite data along with measures of dietary behaviour and adiposity. 

Statistical methods including causal inference methods and mediation analysis may be 

used to investigate the relationship between diet, adiposity and molecular 

intermediates. The recent growth in data availability has only now made it possible to 

systematically and comprehensively analyse the role of these molecular intermediates. 

In summary, through the application of state-of the-art epidemiological methods the 

aim of this thesis is to gain greater insights into the pathways linking diet and BMI with a 

view to enhancing the evidence base for future prevention and treatment of obesity and 

its comorbidities. 
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1.8. Overarching aims of thesis 

The main aims of this thesis are to use statistical methods to investigate the role of the 

metabolome and methylome in the relationship between dietary behaviour and obesity. 

The primary hypotheses proposed are that metabolites and/or DNA methylation are 

intermediate traits in the relationship between diet and BMI (Figure 1). A key method 

used to assess causality will be MR, for which genetic instruments are needed. Although 

genetic instruments have been found for BMI, there are few known genetic variants 

robustly associated with dietary behaviour, and hence in Chapter 3 I perform a GWAS of 

dietary intake with the aim of identifying suitable genetic instruments for diet. In 

Chapter 4 I investigate the relationship between dietary behaviour and BMI in UK 

Biobank and ALSPAC. In Chapter 5 I investigate the relationship between BMI and the 

metabolome. In Chapter 6 I explore the association between diet and the metabolome, 

and the role that the metabolome plays in the relationship between diet and BMI. In 

Chapter 7 I explore the relationship between BMI, methylation and diet. 

Figure 1 – Framework representing the hypothesis explored in this thesis. 
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CHAPTER 2.  METHODS  
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Analyses in this thesis use data from two UK cohorts: ALSPAC, a longitudinal birth 

cohort;96,97 and UK Biobank, a population-based prospective cohort.15,98,99 This chapter 

describes these cohorts and the variables from them that are used in this thesis. This 

chapter also describes the main statistical methods applied in this thesis: linear 

regression, GWAS, EWAS, Mendelian randomization and mediation. 

2.1. Data sources 

This section describes how the data used in this thesis were generated by other 

researchers. 

2.1.1. Avon Longitudinal Study of Parents and Children 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a longitudinal birth 

cohort study that recruited expectant mothers of 14,541 pregnancies with due dates 

between 1st April 1991 and 31st December 1992 living in the former county of Avon, 

UK.97 Avon was made up of what is now Bristol and parts of North Somerset and South 

Gloucestershire. The catchment area is comprised of three NHS District Health 

Authorities (DHAs) – Southmead DHA; Frenchay DHA; and Bristol and Weston DHA. 

14,062 children were live-born from these pregnancies, of whom 13,988 children were 

alive at 1 year of age.96 When the children were 7 years old a further recruitment drive 

was done, resulting in an additional 452 children being enrolled. Between the ages of 8 

and 18 years another 257 children were enrolled. 

Data has been collected on the children and their mothers in various ways including 

questionnaires and clinical assessments. Data was collected on the children at 68 data 

collection timepoints between birth and age 18 years: 25 questionnaires about the 

children completed by the mothers or main caregivers; 34 questionnaires that the 

children completed about themselves; and 9 “Focus” clinics.96 Phenotypes covered by 

the questionnaires include health, developmental, psychological and social measures. 

The 9 Focus clinics held between the age of 7 and 17 years collected physiological, 

cognitive, psychological and social measures. Blood samples were taken at the clinics, 
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from which genetic, epigenetic and metabolomic measures have been generated. Data 

has also been collected from education questionnaires and assessments administered in 

the children’s schools. 

Data has been collected on the mothers from questionnaires (18 questionnaires 

administered between pregnancy and 20 years postnatal), medical records (obstetric 

data) and 4 clinical assessments (held between 2008 and 2015).97 

Data from the 1991 census has been used to compare socio-demographic characteristics 

of mothers in Great Britain with those of ALSPAC mothers from the 8-month postnatal 

questionnaire.97 These comparisons found that ALSPAC mothers are more likely to live in 

owner-occupied accommodation, have a car in the household, be married, and less 

likely to be non-White. 

As is common in longitudinal studies, ALSPAC has experienced some attrition over the 

years.96 At least one data item was completed for 11,408 children during the “late 

childhood” phase (>7 and <13 years of age); 9,600 children during the “adolescence” 

phase (≥13 and ≤16 years); and 7,729 children during the “transition to adulthood” 

phase (>16 and ≤18 years). 

A timeline showing the data collection timepoints of the children’s diet, adiposity, 

metabolite, and methylation measures studied in this thesis is found in Figure 2. 

Figure 2 – Timeline of the data collection timepoints of the children’s diet, adiposity, metabolite, 
and methylation measures studied in this thesis. 

Numbers refer to approximate age in years. *Methylation data is available from blood samples taken at either 15 
years or 17 years; data from these two ages is combined to create a single timepoint, mean age 17.1 years.  
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 Diet 

Food frequency questionnaires 

Dietary intake has been measured in the ALSPAC children using food frequency 

questionnaires (FFQs) at ages 2, 3, 4, 7, 9 and 13 years and diet diaries at ages 5, 7, 10 

and 13 years.100 For the analyses in this thesis, only data collected at 7 and 13 years 

were used since these were the closest ages to when methylation and metabolite 

measures were also available (7 years, and 15 and/or 17 years).  

When their child was ~7 years old the mothers (or main carers) of the ALSPAC children 

were asked to complete a FFQ, covering 57 different food types.27 The FFQ asked the 

parents how often their child consumed each food “nowadays”. The questionnaire 

covered food provided by the parents, but not food provided by others outside the 

home such as school dinners. 8,515 questionnaires were returned, with a mean age at 

completion of 6.85 years. 

When the children/teenagers were ~13 years old, two distinct FFQs were sent to the 

mothers and teenagers.101 The mother’s FFQ asked her to record how often her 

teenager consumed different foods “nowadays”, but to only include food that she 

provided for her teenager (including packed lunches but not school dinners). The 

teenager’s FFQ asked them to record how often they consumed various different foods 

“nowadays” that were not covered by the mother’s FFQ, for example school dinners or 

foods bought outside of school and additional snacks and drinks. The foods from the 

mother’s and teenager’s FFQs were combined to make 62 food groups. The teenager’s 

and mother’s FFQs were both returned for 6,203 teenagers, at mean age 13.1 years. 

Principal components analysis (PCA) has been performed to identify dietary patterns in 

the FFQs at age 7 years and at age 13 years. For the FFQ at age 7 three principal 

components (PCs) emerged which best described the children’s dietary patterns, these 

are “junk”, “traditional” and “health conscious”.27 The “junk” PC is mainly associated 

with foods with a high fat and sugar content and processed foods; the “health 

conscious” PC with vegetarian foods, rice, pasta, salad and fruit; and the “traditional” PC 
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with a traditional British diet based on meat, potatoes and vegetables. This PC data is 

available for 8,286 children. 

Four dietary PCs were derived from the dual-source FFQ at age 13 years.101 The 

“traditional/health conscious” PC is associated with higher intakes of meat, fish, eggs, 

rice, pasta, salad, vegetables and pulses. The “processed” PC is associated with higher 

intakes of processed food such as processed meat, coated chicken and fish products, 

pizza and chips. The “snacks/sugared drinks” PC is associated with higher intakes of 

crisps, biscuits, chocolate, sweets, squash and fizzy drinks. The “vegetarian” PC is 

associated with higher intakes of meat substitutes, nuts and pulses. These PCs are 

available for 5,418 children. 

Diet diaries 

The children were invited to attend a research clinic when they were 7 years old. The 

mothers were sent a 3-day diet diary to complete prior to the visit, recording all food 

and drink consumed by their child over two weekdays and one weekend day.31,102 

The children/teenagers were also invited to attend a clinic when they were 13 years old. 

Prior to this visit the teenagers were sent a 3-day diet diary to complete themselves, 

recording their food and drink consumption across two weekdays and one weekend 

day.31,100 At the clinic a trained nutrition fieldworker interviewed the teenager and 

accompanying parent to clarify any uncertainties. 

PCA has been performed to identify dietary patterns in the data from the diet diaries at 

ages 7 years and 13 years (Northstone et al., unpublished), using the same method that 

is described for the 10-year-olds’ by Smith et al.103 The three PCs derived from the 7-

year-olds’ diet diaries were named the “health aware”, “traditional” and “packed lunch” 

PCs. The “health aware” PC is associated with higher intakes of cheese, high fibre bread, 

pasta, salad, fresh fruit and fruit juice, and lower intakes of processed meat, chips and 

diet fizzy drinks. The “traditional” PC is associated with higher intakes of poultry, red 

meat, vegetables and roast potatoes, and a lower intake of chips. The “packed lunch” PC 
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is associated with higher intakes of low fibre bread, margarine, ham, bacon, crisps and 

diet squash. 

The three PCs derived from the 13-year-olds’ diet diaries were also named “health 

aware”, “traditional” and “packed lunch”. The “health aware” PC is associated with 

higher intakes of cheese, yoghurt, high fibre bread, breakfast cereal, pasta, salad, 

legumes, nuts, fresh fruit and water, and lower intakes of coated and fried chicken, 

processed meat, chips, fizzy drinks and diet fizzy drinks. The “traditional” PC is 

associated with higher intakes of vegetables and roast potatoes, and lower intakes of 

chips and salad. The “packed lunch” PC is associated with higher intakes of low fibre 

bread, margarine, ham, bacon, sugar, biscuits, crisps, water, diet squash, tea and coffee, 

and a lower intake of rice. 

Motivation for using these diet summary variables 

Both PCA and cluster analysis have been used to summarise the main patterns in the 

FFQ data.44,101 PCA was used to study correlations between the different food groups 

measured by the FFQ and identify linear combinations (PCs) of foods that are often 

consumed together. Cluster analysis was used to group the participants into non-

overlapping clusters according to similarities in their diets. Both methods identified 

three main dietary patterns, and there are strong similarities between the patterns 

identified by PCA and those identified by cluster analysis.44 For the analyses in this 

thesis, PCs are used since they are continuous measures, unlike the clusters which are 

discrete. 

PCA has also been used to summarise the main patterns in the diet diary data.31,103 Food 

item data from diet diaries needs to be quantified to perform PCA, and the data is 

commonly quantified by food weight or as binary variables. A study of the effect of 

different forms of input variable quantification on diet diary data from the ALSPAC 10-

year-olds concluded that PCs generated using food weight data were more 

interpretable.103 Hence, for the analyses in this thesis, diet diary data was quantified 

according to the estimated weight (in grams) of each food consumed, before being 

summarised using PCA. 
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 BMI/adiposity 

The children’s height and weight were measured at the research clinics at ages 7, 9, 13, 

15 and 17 years. Height was measured to the last complete mm using a Harpenden 

Stadiometer. Weight was measured to the nearest 0.1kg using Tanita scales. These 

measures were used to calculate the child’s BMI (kg/m2) at each age. 

At the age 9, 13, 15 and 17 years clinics, fat mass (kg) was measured using a Lunar 

Prodigy dual-energy X-ray absorptiometry (DXA) scanner. Fat mass index (FMI) (kg/m2) 

was calculated as fat mass (kg) divided by height squared (m2) at each age. 

 Covariates and other variables of interest 

The mothers were asked about their highest educational qualification in a questionnaire 

administered during pregnancy. This information has been categorized as a binary 

variable of whether the mothers completed A-levels/a university degree or not. In this 

thesis, maternal education is used as a proxy for socioeconomic status. 

Teenagers were asked about their smoking status in questionnaires administered at the 

age 15 years and age 17 years clinics. This information has been categorized as 

never/less than weekly, weekly, or daily. 

 Genotyping 

Biological samples including blood samples for DNA isolation have been collected for 

approximately 10,000 ALSPAC children, from which genome-wide SNP data has been 

generated for >8,000 children. 9,912 ALSPAC children were genotyped using the Illumina 

HumanHap550 quad genome-wide SNP genotyping platform by 23andMe, who 

subcontracted the Wellcome Trust Sanger Institute (Cambridge, UK) and the Laboratory 

Corporation of America (Burlington, NC, US).104 Individuals were excluded if they had 

incorrect sex assignments; minimal or excessive heterozygosity (<0.32 and >0.345 for 

the Sanger data and <0.31 and >0.33 for the LabCorp data); disproportionate levels of 

individual missingness (>3%); evidence of cryptic relatedness (>10% IBD). The remaining 

individuals were assessed for evidence population stratification by multidimensional 
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scaling (MDS) analysis and compared with HapMap (release 22) European descent, Han 

Chinese, Japanese and Yoruba reference populations; and all individuals of non-

European ancestry were excluded to avoid population stratification.105 In total 1,547 

children were excluded leaving a sample size of 8,365 children. SNPs were removed if 

they had a minor allele frequency (MAF) <1%; a call rate of <95%; or if they were not in 

Hardy-Weinburg equilibrium. The genotype data was imputed to the 1000 Genomes 

reference panel (Version 1, Phase 3).106 

 Methylation 

The Accessible Resource for Integrated Epigenomics Studies (ARIES) project is a sub-

study of ALSPAC.107 A subset of 1018 mother-offspring pairs were selected from ALSPAC 

based on the availability of DNA samples from three time-points for the children (birth, 

childhood c.7 years old and adolescence c.15-17 years old) and two time-points for the 

mothers (during pregnancy and c.15-17 years later). The DNA samples taken at birth 

were extracted from cord blood, whereas the childhood and adolescent DNA samples 

were extracted from peripheral blood. The childhood DNA sample was taken at the 7-

year-old ALSPAC clinic visit (mean age 7.5 years) and the adolescent sample was taken at 

either the 15-year-old or 17-year-old clinic visit (mean age 17.1 years). 

DNA methylation was quantified using the Illumina Infinium HumanMethylation450K 

BeadChip assay.108 The assay measures the proportion of molecules methylated at each 

CpG site featured on the array. The methylation level at each CpG was calculated as a β-

value, which is the ratio of the methylated probe intensity to the overall intensity and 

ranges from 0 (no cytosine methylation) to 1 (complete cytosine methylation).109 

 Metabolites 

Metabolite profiles for ALSPAC participants have been generated from serum samples 

taken at the 7, 15 and 17 year clinics.110 Metabolite profiles are available from at least 

one clinic for 7176 participants, of whom 1453 have metabolite profiles from all three 

clinics. Samples from the 7 year clinic are non-fasting samples, whereas samples from 

the 15 and 17 year clinics are fasting samples. Fasting samples taken in the morning 
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followed an overnight fast. Fasting samples taken after 2pm followed a fast of least 6 

hours. 

Metabolite measures (n ≤ 233) were quantified using a high-throughput proton (1H) 

serum nuclear magnetic resonance (NMR) platform.57,110 The metabolites measured by 

the platform and used in analyses in this thesis are listed in Table 1; these include 

lipoprotein lipids and subclasses, glycerides, phospholipids, fatty acids, amino acids and 

glycolysis-related metabolites. 

NMR data were measured for three molecular windows: lipoprotein lipids (LIPO) and 

low molecular-weight metabolites (LMWM) which are acquired from native serum, and 

lipid extracts (LIPID) which is acquired from serum lipid extracts.111 

Before use, the serum samples were stored at -80°C.111,112 They were then thawed 

slowly overnight, before being prepared in a Gilson Liquid Handler 215 which performs 

automated sample preparation to 5mm outer-diameter NMR tubes, in which 300μl of 

sodium phosphate buffer are mixed with 300μl of serum. The prepared samples were 

put stored in 96-tube racks which were inserted into the robotic sample changer. The 

NMR data for the LIPO and LMWM windows were measured using a Bruker AVANCE III 

spectrometer operated at 500MHz. After these measurements, lipid extraction was 

performed and the NMR data for the LIPID window was measured using a Bruker 

AVANCE III spectrometer operated at 600MHz. 
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Table 1 – Metabolite measures. 

VLDL, very low density lipoprotein; IDL, intermediate density lipoprotein; LDL, low density lipoprotein; HDL, high 
density lipoprotein.

Category Name/subtype 

Chylomicrons and 
extremely large 
VLDL 

Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Very large VLDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Large VLDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Medium VLDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Small VLDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Very small VLDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

IDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Large LDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

 

 

Medium LDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Small LDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Very large HDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Large HDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Medium HDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Small HDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Lipoprotein 
particle sizes 

VLDL particle size 

LDL particle size 

HDL particle size 

Cholesterol Total cholesterol 

VLDL cholesterol 

Remnant cholesterol 

LDL cholesterol 

HDL cholesterol 

HDL2 cholesterol 

HDL3 cholesterol 

Esterified cholesterol 

Free cholesterol 
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Glycerides & 
phospholipids 

Triglycerides 

VLDL triglycerides 

LDL triglycerides 

HDL triglycerides 

Diacylglycerol 

Ratio of diacylglycerol to triglycerides 

Phosphoglycerides 

Ratio of triglycerides to phophoglycerides 

Phosphatidylcholine and other cholines 

Total cholines 

Apolipoproteins ApoA-I 

ApoB 

ApoB/ApoA-I 

Fatty acids & 
saturation 

Total fatty acids (FA) 

Estimated fatty acid chain length 

Estimated degree of unsaturation 

Docosahexaenoic acids (DHA) 

Linoleic acid (LA) 

Conjugated linoleic acid (CLA) 

Omega-3 fatty acids 

Omega-6 fatty acids 

Polyunsaturated fatty acids (PUFA) 

Monounsaturated fatty acids (MUFA) 

Saturated fatty acids (SFA) 

DHA to total FAs ratio 

LA to total FAs ratio 

CLA to total FAs ratio 

Omega-3 to total FAs ratio 

Omega-6 to total FAs ratio 

PUFAs to total FAs ratio 

MUFAs to total FAs ratio 

SFAs to total FAs ratio 

Glycolysis related 
metabolites 

Glucose 

Lactate 

Pyruvate 

Citrate 

Amino acids Alanine 

Glutamine 

Histidine 

Isoleucine 

Leucine 

Valine 

Phenylalanine 

Tyrosine 

Ketone bodies Acetate 

Acetoacetate 

3-hydroxybutyrate 

Fluid balance Creatinine 

Albumin (signal area) 

Inflammation Glycoprotein acetyls 
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2.1.2. UK Biobank cohort 

UK Biobank is a population-based prospective cohort of ~500,000 participants who were 

recruited from across the UK between 2006 and 2010.15,98,99 Participants were aged 40-

69 years at recruitment. Participants were required to make a baseline visit to one of 22 

assessment centres. At this initial assessment visit various data were collected by means 

of a questionnaire and a computer-assisted interview, including sociodemographic, 

lifestyle and health status data; several physical measures were also assessed, including 

anthropometric measures.15 Blood samples were also collected at this assessment visit, 

allowing for genotype data to be assayed.113 

 Genotype data 

UK Biobank participants were genotyped using the UK BiLEVE array or the UK Biobank 

axiom array, which contain ~800,000 markers.113 Genotype data was imputed to the 

Haplotype Reference Consortium (HRC) reference panel (~40 million SNPs, of which ~11 

million SNPs remain after filtering).114 

Quality control filtering of the UK Biobank data was conducted by R.Mitchell, G.Hemani, 

T.Dudding, L.Paternoster as described in the published protocol 

(doi:10.5523/bris.3074krb6t2frj29yh2b03x3wxj).115 Individuals whose reported sex did 

not match their genetic sex were excluded, as were those with sex-chromosome 

aneuploidy. The sample was restricted to individuals of white British ancestry who 

described themselves as “White British” and who have similar ancestral backgrounds.113 

Related individuals were identified using the KING toolset and removed.116 SNPs were 

restricted to autosomal SNPs within the HRC site list.114 

 Diet data 

Dietary data in UK Biobank was collected using the Oxford WebQ – a web-based 24-hour 

dietary recall questionnaire 

(http://biobank.ctsu.ox.ac.uk/crystal/docs/DietWebQ.pdf).117 Since the questionnaire is 

web-based, it provides a low-cost method for assessing dietary intake in large cohort 
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studies. The questionnaire captures data on a person’s food and drink intake the 

previous day, including portion sizes. This data is then used to calculate nutrient 

estimates automatically. 

The questionnaire was first introduced towards the end of the recruitment period, 

hence diet data from the assessment visit is only available for the last ~70,000 

participants recruited. All participants (who had provided UK Biobank with an email 

address) were invited, via email, to complete the questionnaire at four later occasions 

between February 2011 and June 2012. The dietary data was used to estimate intakes of 

various macronutrients during each 24-hour recall period. This thesis looks at 8 energy 

and macronutrient intake estimates in UK Biobank, which are listed in Table 2. 

 BMI measurement 

Participants’ height and weight were measured at the baseline assessment visit 

(http://biobank.ctsu.ox.ac.uk/crystal/docs/Anthropometry.pdf). Height was measured 

using a Seca 240cm height measure. Weight (kg) was measured using a Tanita body 

composition analyser. BMI (kg/m2) was calculated as weight (kg) divided by height 

squared (m2). 

Table 2 – UK Biobank energy and macronutrients studied in this thesis. 

Data-field numbers correspond to the UK Biobank Data Showcase (http://biobank.ctsu.ox.ac.uk/crystal/). 

Dietary intake estimate Data-field 

total energy (kJ/day) 100002 

protein (g/day) 100003 

total fat (g/day) 100004 

carbohydrate (g/day) 100005 

saturated fat (g/day) 100006 

polyunsaturated fat (g/day) 100007 

total sugars (g/day) 100008 

Englyst dietary fibre118 (g/day) 100009 
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2.2. Methods 

This section describes the core methods I used in my research. Additional detail is 

provided in the methods section of analysis chapters. 

2.2.1. Linear regression 

Linear regression analyses were performed in R (version 3.3.3) using the lm function 

from the stats package to fit Ordinary Least Squares (OLS) regression models. For 

example, if sugar intake is the exposure variable, BMI is the outcome, and the covariates 

are age and sex, then the code to fit the linear regression model is 

lm(BMI ~ sugar intake + age + sex)  

2.2.2. GWAS 

Genome-wide association studies (GWASs) are a method for identifying associations 

between traits and genetic variation in a study population. Genome-wide SNP data is 

assayed, and then statistical analysis is used to test the relationship between each of 

those SNPs and a given trait. The statistical power of a GWAS to detect associations with 

a trait depends on the sample size and the effect sizes and frequencies of the trait-

associated SNPs.119 

 UK Biobank GWAS pipeline 

GWAS were performed using a pipeline developed within the MRC-IEU developed by 

B.Elsworth, R.Mitchell, C.Raistrick, L.Paternoster, G.Hemani, T.Gaunt (doi: 

10.5523/bris.2fahpksont1zi26xosyamqo8rr).120 

Quality control of the genetic data was performed using the methods described above in 

2.1.2.1. Phenotype and covariate files were submitted to the pipeline using the 

pipeline’s submission spreadsheet. GWAS were conducted using linear regression 

implemented in PLINK v2.00.121 Models are adjusted for genotype array, sex and the first 

10 genetic PCs. 
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2.2.3. EWAS 

Epigenome-wide association studies (EWAS) are used to identify epigenetic variation 

(commonly DNA methylation) associated with a chosen trait.122 

In this thesis, EWAS were performed in R (version 3.4.1) using the meffil R package 

(https://github.com/perishky/meffil/).123 meffil provides a computationally-efficient 

approach for performing functional normalisation to separate biological variation from 

technical variation. 

EWAS regression models were fitted using Independent Surrogate Variable Analysis 

(ISVA), which models confounding factors as statistically independent surrogate 

variables.124 Analyses were conducted using methylation ß-values (2.1.1.5). Models were 

adjusted for cell counts (B-cells, CD4+ T-cells, CD8+ T-cells, granulocytes, monocytes and 

NK), which were estimated using a reference-free method developed by Houseman et 

al.125 CpG sites located on the sex chromosomes were excluded from analyses. CpG sites 

with a high detection p-value (>0.05 for >5% of samples) were also excluded. 

The meffil.ewas function from the meffil R package was used to test the association 

between the trait of interest and methylation ß-values at each CpG site. For example, if 

“meth” is a matrix of the methylation data, “pheno” is a vector of the trait data and 

“covars” is a matrix of the model covariates, the code used to perform the analysis is 

meffil.ewas(beta=meth, variable=pheno, covariates=covars, 

winsorize.pct=NA, most.variable=min(nrow(meth),20000), 

outlier.iqr.factor=3) 

 

The R script used to conduct the EWAS using meffil was compiled by Dr Gemma Sharp. 

2.2.4. Mendelian randomization 

Mendelian randomization (MR) is a form of instrumental variable (IV) analysis that uses 

genetic variants as instruments.54,55 MR is used to strengthen causal inference. 
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The following assumptions are made in MR (where G is the IV, X is the exposure, Y is the 

outcome, and U is the confounders):55 

1. G is associated with X 

2. G is independent of U 

3. G is independent of Y given X 

 

Several methods are available for conducting MR.55 One of the most common methods 

used is the two-stage least squares (2SLS) method, which derives the causal estimate by 

first performing least-squares regression of the exposure variable on the IV(s), and then 

performing least-squares regression of the outcome variable on the predicted values 

from the first least-squares regression. Other common methods used to conduct MR 

include the limited information maximum likelihood (LIML) method. 

Allele scores summarise multiple genetic variants associated with a trait as a single 

variable.126 An allele score may be unweighted (the sum of the trait-increasing alleles) or 

weighted (using the genetic effect size estimates for each allele on the trait). The 

weighted BMI allele scores used in this thesis were created using the 97 SNPs and effect 

sizes from the Genetic Investigation of Anthropometric Traits (GIANT) consortium GWAS 

of BMI conducted by Locke et al. (n~320,000 adults).52 Since the analyses in this thesis 

were performed, a larger BMI GWAS has been published (n~700,000 adults) which is a 

meta-analysis of the GIANT BMI GWAS  and a GWAS in UK Biobank.53 

A GWAS of BMI in ~48,000 children aged between 2 and 10 years identified 15 loci 

associated with childhood BMI.127 In this thesis, the GIANT 97-SNP adult BMI allele score 

is the only allele score used to instrument BMI in analyses conducted in adults and also 

in analyses conducted in children and adolescents. An alternative to using the GIANT 

adult BMI score to instrument BMI in children and adolescents would be to use the 
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childhood-specific 15-SNP BMI score. Whilst the childhood-specific BMI score explains 

more variance in childhood BMI than the adult BMI score, it is not known which BMI 

score is more suitable for instrumenting BMI in adolescents. The decision was taken to 

use the adult BMI score throughout this thesis for more consistency between analyses 

conducted in children, adolescents and adults. 

Burgess et al. conducted a simulation study to compare the use of an allele score (as the 

single genetic instrument in MR) with the use of multiple genetic instruments in 

conventional 2SLS and LIML methods.126 They concluded that allele scores are suitable 

genetic instruments for MR if each of the genetic variants that make up the allele score 

satisfy the IV assumptions. They also concluded that allele scores allow greater numbers 

of genetic variants to be reliably used in an MR analysis than conventional 2SLS and LIML 

methods do. 2SLS and LIML give identical results when an allele score is used as the 

single genetic instrument in MR. 

MR analyses were conducted in R (version 3.3.3) using the ivreg function from the AER 

package, which fit regression models using 2SLS. For example, to estimate the causal 

effect of BMI on diet, the following code could be used 

ivreg(diet ~ BMI + age + sex | BMI allele score + age + sex) 

 Two-sample Mendelian randomization 

Obtaining a large sample in which both the exposure and outcome traits are available 

can be challenging when studying traits such as dietary behaviour. Two-sample MR 

overcomes this issue by allowing the exposure and outcome to be measured in separate 

samples.16,128 Two-sample MR takes instrument-exposure coefficients from one sample 

and instrument-outcome coefficients from a separate sample and uses these 

coefficients to calculate the MR estimates. These coefficients are often taken from 

publicly-available GWAS summary data. 

In cases where the outcome trait is a continuous variable, methods commonly used to 

perform two-sample MR include inverse-variance weighted (IVW) regression and the 
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Wald ratio method. The IVW method calculates the MR estimate by combining the ratio 

estimates of the causal effects from each genetic variant using an inverse-variance 

weighted fixed-effect meta-analysis.129,130 The Wald ratio method is used when there is 

only a single genetic instrument available.55,128 The Wald ratio MR estimate is calculated 

by dividing the instrument-outcome coefficient by the instrument-exposure coefficient. 

Two-sample MR analyses undertaken in this thesis were conducted in R (version 3.3.3) 

using the mr_singlesnp function from the TwoSampleMR package.131 If results for a SNP 

were not available in the GWAS summary results then a proxy (r2>0.6) was used. If more 

than one instrumental SNP was available then IVW regression was performed. If only 

one instrumental SNP was available then the Wald ratio was used to calculate the MR 

estimates. 

 MR-Egger 

Sensitivity analysis were performed using MR-Egger regression, which is a pleiotropy-

robust method used to assess the validity of a genetic instrument.132 In MR analysis with 

multiple genetic variants, if any of the genetic variants used have a pleiotropic effect on 

the outcome then the causal estimates may be biased. MR-Egger regression is used to 

detect and correct for bias due to pleiotropy. 

MR-Egger regression analyses were conducted in R (version 3.3.3) using the mr_egger 

function from the MendelianRandomization package (https://cran.r-

project.org/package=MendelianRandomization). For example, to conduct MR-Egger 

regression with BMI as the exposure trait and a metabolite as the outcome trait, where 

“G_bmi$coef” and “G_bmi$se” are vectors of the SNP-BMI coefficients and standard 

errors and “G_metabolite$coef” and “G_metabolite$se” are vectors of the SNP-

metabolite coefficients and standard errors respectively, the following code could be 

used 

MR.input.object <- mr_input(bx=G_bmi$coef, bxse=G_bmi$se, 

                        by=G_metabolite$coef, byse=G_metabolite$se) 

mr_egger(MR.input.object) 
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2.2.5. Mediation 

A variable is a mediator of the causal relationship between an exposure and an outcome 

if it lies on the causal pathway between the exposure and the outcome.17 Mediation can 

be partial or complete. Complete mediation occurs when the exposure can only affect 

the outcome through the mediator, and partial mediation occurs when other 

mechanisms exist through which the exposure can affect the outcome. 

Mediation analyses were performed using the mediate function from the mediation 

package in R (version 3.3.3).133 The mediated effect, the direct effect and the total effect 

were estimated. For example, to investigate whether a metabolite mediates the effect 

of diet on BMI, the following code could be used 

med.fit <- lm(metabolite ~ diet + age + sex) 

out.fit <- lm(bmi ~ metabolite + diet + age + sex) 

med.out <- mediate(med.fit, out.fit, treat="diet", 

mediator="metabolite", robustSE=TRUE, sims=1000) 
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CHAPTER 3.  DIET GWAS  
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3.1. Introduction 

3.1.1. Heritability of dietary intake 

Strong evidence exists for a genetic basis for diet, though the magnitude of the role that 

genetics plays is less clear as effect estimates are heterogeneous. Family and twin 

studies estimate that genetic effects explain c. 20-40% of variation in energy and 

macronutrient intake.46 However, genome-wide complex trait analyses (GCTA) have 

estimated that only c. 6-8% of variance in fat, protein and carbohydrate intake can be 

explained by common tag-SNPs.134 Dietary behaviour is a complex trait, and hence few 

studies have identified genetic variants associated with diet. Heritability estimates from 

GCTA tend to be lower than those from twin studies since GCTA can only detect the 

additive effects of commons SNPs, but not gene-gene or gene-environment interactions, 

or other types of genetic variation such as copy number variation.135 

There are many plausible ways in which the genome could affect dietary behaviour; 

these include appetite regulation, metabolism, satiety, absorption and mental health or 

behavioural traits. For example, a twin study has estimated the genetic heritability of 

satiety responsiveness to be 63%;136 and a study of satiety responsiveness and genetic 

predisposition to obesity found that satiety responsiveness mediated the association 

between the obesity genetic risk score and adiposity.137 

3.1.2. Previous diet GWAS 

GWAS is a commonly used method for identifying genetic variants associated with a 

trait. GWAS have been successful in identifying SNP-trait associations for a wide range of 

complex traits, including traits such as educational attainment for which no replicable 

genetic associations had previously been identified.138,139 An association between a SNP 

and a trait does not imply that the SNP directly influences the trait through a biological 

mechanism, but that the SNP is likely to be in linkage disequilibrium (LD) with a causal 

variant.119 
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So far, GWAS of energy and macronutrient intake have identified two replicable genetic 

associations, which were discovered in two concurrent GWAS of dietary macronutrient 

intake published in early 2013.134,140 Tanaka et al. conducted a genome-wide meta-

analysis of macronutrient intake in 37,537 participants from the CHARGE Consortium 

and attempted to replicate their findings in 33,533 participants from the DietGen 

Consortium;140 and Chu et al. undertook a similar genome-wide meta-analysis in the 

DietGen Consortium and attempted to replicate their findings in the CHARGE 

Consortium.134 Despite the moderately large sample sizes used in these GWAS, neither 

study observed a genome-wide significant association in their discovery analysis that 

replicated in the other study. Instead, the studies also took forward their top sub-

genome-wide significant SNPs for replication and each succeeded in replicating one sub-

genome-wide significant SNP (rs838145 and rs838133; both on 19q13.33) in the parallel 

study. When the results from two studies were meta-analysed, both SNPs reached 

genome-wide significance. 

Two separate smaller GWAS were unable to detect any replicable genome-wide 

significant associations.141,142 A GWAS of fat intake in 598 adolescents from a Canadian 

study did not observe any genome-wide significant associations; the smallest p-value 

observed was for rs2281617 in OPRM1 (p=5.2×10-6).141 A GWAS of confectionery intake 

in Japanese adults observed two genome-wide significant associations (rs2839525 and 

rs1147522) in the discovery phase (N=939 adults) however these associations did not 

hold in the replication phase (N=4,491 adults).142 

The above GWASs of macronutrient intake collected diet data using either FFQs or a 24-

food recall; the data was then summarised by estimating the proportions of total energy 

intake derived from each macronutrient studied.134,140,141 Tanaka et al. observed 

genome-wide significant associations for rs838145 with carbohydrate and fat intake;140 

Chu et al. observed a genome-wide significant association between rs838133 and 

protein intake.134 Since these macronutrients are measured as proportions of total 

energy intake they are not independent of each other, and hence it is not surprising that 

nearby genetic effects were identified for different macronutrients. Both GWAS 

identified FGF21 as the top candidate gene in this region. FGF21 encodes a hormone 
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involved in glucose and lipid metabolism.140 Following these findings by Tanaka et al. 

and Chu et al., Soberg et al. investigated the relationship between FGF21 and sweet 

food intake in the Danish Inter99 cohort.143 Soberg et al. categorised sweet foods as 

either “candy” or “cake” and observed an association between rs838133 and candy 

intake but not cake intake. 

The CHARGE and DietGen consortia GWASs performed genotyping using Illumina- or 

Affymetrix arrays and imputed to ~2.6 million SNPs (HapMap release 21 or 22/NCBI 

build 35 or 36). Haghighi et al. performed genotyping using Illumina Human610-Quad 

BeadChip (~570,000 SNPs), but did not impute SNPs.141 

3.1.3. Challenges of diet GWAS and strengths of UK Biobank 

Several things influence the ability of a complex trait GWAS to identify SNP-trait 

associations, including experimental sample size, the joint distribution of SNP effect size 

and allele frequency, and trait measurement error.119 The GWAS in the CHARGE and 

DietGen consortia was conducted using a moderately large sample size, a validated 

method of macronutrient intake estimation, and a panel of ~ 2.6 million SNPs. Despite 

these assets, only two genome-wide significant associations were identified. This 

suggests that macronutrient intake is a highly heterogeneous trait influenced by many 

small genetic effects. Hence a larger sample size, a larger panel of SNPs, or a more 

precise method of dietary intake measurement will be required to identify further 

genetic variants associated with macronutrient intake. 

UK Biobank has both dietary and genetic data available for ~144,000 people, which is 

more than twice the size of the previous largest macronutrient GWAS sample size 

(~71,000 participants from the combined samples from the CHARGE and DietGen 

consortia). UK Biobank participants were genotyped using the UK BiLEVE array or the UK 

Biobank axiom array, which contain ~800,000 markers. Genotype data in UK Biobank 

was imputed to the HRC reference panel (~40 million SNPs, of which ~11 million SNPs 

remain after filtering).114 Dietary intake in UK Biobank was measured using a web-based 

24-hour recall questionnaire administered at multiple timepoints, allowing for summary 

data to be averaged across timepoints and hence reducing the impact of daily variation 
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on the data. In light of previous macronutrient GWAS findings from other studies, the 

advantages in UK Biobank of a larger sample size, repeated diet measurements, and 

more genetic markers make it reasonable to expect to identify some diet-SNP 

associations. 

3.1.4. Motivation for a diet GWAS 

Dietary behaviour is known to be associated with a wide range of adverse health 

outcomes such as diabetes and atherosclerosis. Identifying genetic variants associated 

with dietary behaviour may lead to a better understanding how these adverse health 

outcomes may be prevented or treated – this is the primary motivation for these 

analyses. A second major motivation for conducting a diet GWAS in UK Biobank is to 

identify genetic variants that could be used to generate a robust genetic instrument for 

dietary intake. This genetic instrument could be used in MR to estimate bidirectional 

causal effects of diet on BMI. 

3.2. Methods 

UK Biobank is a population-based prospective cohort consisting of ~500,000 participants 

aged between 40 and 69 years who were recruited from across the UK (2.1.2).144 

UK Biobank participants were genotyped using the UK BiLEVE array or the UK Biobank 

axiom array,113 and their genotype data was imputed to the HRC reference panel.114 

Quality control filtering of the data is described in Chapter 2 (2.1.2.1). 

Dietary data in UK Biobank was collected using a 24-hour recall questionnaire 

(http://biobank.ctsu.ox.ac.uk/crystal/docs/DietWebQ.pdf) (2.1.2.2). Diet data from the 

assessment visit is available for the last ~70,000 participants recruited; all participants 

were invited, via email, to complete the questionnaire at four later occasions. This 

dietary data was used to estimate energy and macronutrient intake during each 24-hour 

recall period. 

http://biobank.ctsu.ox.ac.uk/crystal/docs/DietWebQ.pdf
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3.2.1. Diet GWAS in UK Biobank 

GWAS were conducted to identify SNPs associated with energy and macronutrient 

intake. A GWAS involves testing the relationship between each SNP and the trait. An 

association is “genome-wide significant” if the p-value is less than 5 × 10-8. Typically, 

when conducting a GWAS, discovery analyses are performed to identify genome-wide 

significant SNPs and replication analyses are then performed in a separate unrelated 

sample to assess whether these associations hold. 

Diet data has been collected in UK Biobank at the assessment visit and from four later 

online assessments. For these genome-wide analyses of dietary intake the UK Biobank 

cohort is split into two groups. Participants were assigned to the first group (the “visit” 

group) if they had completed the diet questionnaire at the assessment visit (n≈71,000). 

Participants were assigned to the second group (the “online” group) if they had 

completed at least one online questionnaire but had not completed a diet questionnaire 

at the assessment visit (n≈140,000). The benefit of splitting the cohort in two and 

running two parallel analyses is that it allows for any genome-wide significant SNPs 

found in one group to be “replicated” in the other group. Dietary intake was assessed in 

each group using the same 24-hour dietary recall questionnaire, however the 

questionnaire was administered in different formats – in one group the questionnaire 

was completed during the assessment centre visit and in the other group the 

questionnaire was sent out by email and completed online. 

Participants in the “online” group have diet data available from between one and four 

online questionnaires (~49,000 participants completed only one online questionnaire, 

~36,500 completed two, ~32,500 completed three, ~22,000 completed four). To reduce 

the impact of day to day variation on estimated dietary intake, average dietary intake 

variables were generated for each participant using data from all online questionnaires 

completed by that participant, and these are the dietary intake variables used in the 

GWAS. In the “visit” group, dietary intake was estimated from the diet questionnaire 

completed at the assessment visit. 
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GWAS were performed using a pipeline developed within the MRC-IEU. Quality Control 

filtering of the UK Biobank data was conducted by R.Mitchell, G.Hemani, T.Dudding, 

L.Paternoster as described in the published protocol 

(doi:10.5523/bris.3074krb6t2frj29yh2b03x3wxj).115 The MRC IEU UK Biobank GWAS 

pipeline was developed by B.Elsworth, R.Mitchell, C.Raistrick, L.Paternoster, G.Hemani, 

T.Gaunt (doi: 10.5523/bris.2fahpksont1zi26xosyamqo8rr).120 

More details about the pipeline are found in the methods chapter (2.1.2.1 and 2.2.2.1). 

In brief, GWAS were conducted using linear regression implemented in PLINK v2.00. The 

sample was restricted to individuals of white British ancestry. SNPs were restricted to 

autosomal SNPs within the HRC site list. 

GWAS were performed for each of the following dietary intake estimates in UK Biobank: 

total energy (kJ/day); protein (g/day); total fat (g/day); carbohydrate (g/day); saturated 

fat (g/day); polyunsaturated fat (g/day); total sugars (g/day); and Englyst dietary fibre 

(g/day).118 

Two models were fitted for each diet variable. The first model was adjusted for 

genotype array, sex and the first 10 genetic PCs. The second model was adjusted for BMI 

and the covariates from the first model. These models explore two slightly different 

questions about the relationship between genetic variation and dietary intake. The 

model without adjustment for BMI identifies any genetic association with diet, 

regardless of whether this relationship is mediated through BMI. The model with 

adjustment for BMI accounts for genetic effects mediated through BMI, and hence 

identifies genetic signals that may have a more direct effect on diet. 

The BMI measure used in these GWAS is BMI measured at the assessment visit since this 

is the only BMI measure available for all participants. Hence, in the “visit” group BMI is 

measured at the same timepoint as diet, but in the “online” group BMI was measured at 

an earlier timepoint than diet. 
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3.2.2. LD score regression 

LD score regression is a technique that uses GWAS summary data to estimate heritability 

and cross-trait genetic correlation.145,146 LD score regression was performed to estimate 

the SNP heritability and pairwise cross-trait genetic correlation of the dietary traits using 

summary statistics from the energy and macronutrient GWASs performed in the 

“online” group. Cross-trait genetic correlation was estimated to assess the overlap in 

genetic variation driving different traits, and to compare the genetic correlation 

estimates with phenotypic correlation. 

Analyses were run in R (version 3.0.2) using scripts based on those available at Github 

(https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation).146 SNPs were 

restricted to HapMap 3 SNPs. 

Cross-trait genetic correlation between the different diet traits and between the diet 

traits and BMI was estimated using the LD Hub online platform 

(http://ldsc.broadinstitute.org/).147 The BMI GWAS summary data used are from 

Speliotes et al. (2010).148 SNPs were restricted to HapMap 3 SNPs without the MHC 

region. 

3.3. Results 

3.3.1. Diet data in UK Biobank 

Table 3 shows correlations between the “visit” and “online” diet measures for 

participants in the “visit” group. 

Table 3 - Correlation between visit group and online group diet measures. 

Diet measure Correlation 

Energy 0.40 

Protein 0.31 

Fat 0.36 

Carbohydrates 0.43 

Saturated fat 0.38 

Polyunsaturated fat 0.25 

Total sugars 0.46 

Fibre 0.43 

https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation
http://ldsc.broadinstitute.org/


59 

3.3.2. Diet GWAS in UK Biobank 

GWAS were performed for eight dietary intake variables generated from 24-hour dietary 

recall questionnaires. Two models were fitted: the first model was adjusted for sex, 

genotype array and the first 10 genetic PCs, and the second model was adjusted for all 

the covariates in model 1 and BMI. Analyses were done in two separate samples: in the 

“online” group dietary intake was measured by averaging data from up to four online 

questionnaires; in the “visit” group daily dietary intake was measured using data from 

the questionnaire completed at the assessment centre visit. SNPs with MAF<1% were 

excluded from results. 

In the “visit” group no genome-wide significant associations were observed. In the 

“online” group 43 genome-wide significant associations were observed, and at least one 

genome-wide significant association was observed for each diet phenotype (Table 4). 

Since many of these genome-wide significant hits were in high LD, only the top SNP from 

each LD block was selected for replication. SNPs were determined to be in the same LD 

block if LD between the SNPs was R2 > 0.8 (in British population group from 1000 

Genomes Project; LD estimate from LDlink https://analysistools.nci.nih.gov/LDlink/). 

Manhattan and QQ plots for each of the diet traits in the “online” group, without 

adjustment for BMI, can be found in Figure 3. 

Replication analyses for the following diet-SNP associations identified in the “online” 

group were performed in the “visit” group: rs7957145 with energy intake; rs838133 and 

rs13447258 with protein intake; rs13111413 and rs8097589 with carbohydrate intake; 

rs72828557 with fat intake; rs72828557 with saturated fat intake; rs516246 with 

polyunsaturated fat intake; rs200553669 with fibre intake; and rs2842189 and 

rs13111413 with total sugars intake (Table 5). The only diet-SNP association to survive 

multiple testing (Bonferroni-adjusted p<0.05/11 since analysing 11 diet-SNP 

associations) and replicate was rs838133 (maps to FGF21, protein coding gene) with 

protein intake. Four other diet-SNP associations also produced low p-values: rs72828557 

(maps to LOC107986574, uncharacterised gene) with fat intake and saturated fat intake; 

rs516246 (maps to FUT2, protein coding gene) with polyunsaturated fat intake; and 
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rs2842189 (maps to PTPRF, protein coding gene) with total sugars intake. The LD 

between SNPs rs838133 and rs516246 is R2 = 0.364 (in British population group from 

1000 Genomes Project; LD estimate from LDlink 

https://analysistools.nci.nih.gov/LDlink/). Information on the genes to which these SNPs 

map can be found in Table 6. 

A fixed effect, inverse-variance weighted meta-analysis of the “online” and “visit” group 

diet-SNP results was performed for each of the SNPs taken forward for replication (Table 

5). 

The forest plot in Figure 4 shows the results from this meta-analysis, along with results 

from the “online” and “visit” groups separately. Several of the diet-SNP effect estimates 

are highly concordant between the “online” and “visit” groups: protein and rs838133; 

fat and rs72828557; saturated fat and rs72828557; polyunsaturated fat and rs516246; 

total sugars and rs2842189. Some diet-SNP effect estimates are discordant: energy and 

rs7957145; carbohydrates and rs13111413; total sugars and rs13111413; fibre and 

rs200553669. BMI adjustment has a negligible influence on the effect sizes. 
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Figure 3 – Manhattan plots and QQ plots of results from dietary intake GWAS in the “online” 
group, without adjustment for BMI. 
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Figure 4 – Forest plot of the top diet-SNP associations. 

Effect sizes are the macronutrient (g/day) increase per copy of the effect allele. Energy results are not included in this 
plot since the scale is different – (kJ/day) not (g/day).
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Table 4 – GWAS results with p<5×10-8 in the “online” group. 

Chr, chromosome; BP, base position; MAF, minor allele frequency; MA, minor allele; Info, imputation information 
score; EA, effect allele. In models without adjustment for BMI, N=97,464-97,535. In models with adjustment for BMI, 
N=96,402-96,470. 

        Not adjusting for BMI Adjusting for BMI 

Trait SNP Chr BP MAF MA Info EA Beta 95% CI p-value Beta 95% CI p-value 

Energy 

(kJ/d) 

rs7957145 12 57302120 0.11 T 1.00 C 91.87 59.02, 124.73 4.25 × 10-8 94.21 61.19, 127.23 2.24 × 10-8 

rs34285886 12 57302520 0.11 G 1.00 A 89.97 57.36, 122.59 6.43 × 10-8 92.10 59.32, 124.87 3.64 × 10-8 

rs1391708 12 57305580 0.11 G 1.00 A 89.56 56.93, 122.19 7.48 × 10-8 91.71 58.92, 124.50 4.21 × 10-8 

Protein 

(g/d) 

rs838133 19 49259529 0.45 A 0.94 A -0.68 -0.88, -0.47 1.68 × 10-10 -0.66 -0.87, -0.46 4.00 × 10-10 

rs13447258 22 19494074 0.07 A 0.91 G 1.17 0.75, 1.59 3.91 × 10-8 1.18 0.76, 1.60 3.39 × 10-8 

Carb. 

(g/d) 

rs13111413 4 129862368 0.21 T 0.99 C -2.35 -3.17, -1.53 2.30 × 10-8 -2.32 -3.15, -1.49 3.77 × 10-8 

rs11736731 4 129863332 0.21 C 0.99 T -2.32 -3.15, -1.50 3.30 × 10-8 -2.29 -3.12, -1.47 5.47 × 10-8 

rs8097589 18 40991505 0.23 A 0.98 G -2.23 -3.03, -1.43 4.34 × 10-8 -2.24 -3.05, -1.44 4.15 × 10-8 

Fat 

(g/d) 

rs72828545 6 19108497 0.18 G 0.99 A -0.88 -1.20, -0.56 5.52 × 10-8 -0.90 -1.22, -0.58 3.58 × 10-8 

rs112172280 6 19118597 0.18 C 0.99 T -0.88 -1.20, -0.56 5.35 × 10-8 -0.90 -1.22, -0.58 3.49 × 10-8 

rs72828557 6 19128366 0.18 T 0.99 G -0.90 -1.22, -0.59 2.69 × 10-8 -0.92 -1.24, -0.60 1.73 × 10-8 

rs72828558 6 19128832 0.18 C 0.99 T -0.90 -1.21, -0.58 3.51 × 10-8 -0.91 -1.23, -0.59 2.28 × 10-8 

Sat. fat 

(g/d) 
rs72828557 6 19128366 0.18 T 0.99 G -0.38 -0.52, -0.24 5.99 × 10-8 -0.38 -0.52, -0.25 5.00 × 10-8 

Polyun. 

fat 

(g/d) 

rs679574 19 49206108 0.49 C 1.00 C 0.17 0.11, 0.23 4.49 × 10-8 0.16 0.10, 0.22 6.79 × 10-8 

rs516316 19 49206145 0.49 G 1.00 G 0.17 0.11, 0.23 4.52 × 10-8 0.16 0.10, 0.22 6.85 × 10-8 

rs516246 19 49206172 0.49 C 1.00 C 0.17 0.11, 0.23 4.25 × 10-8 0.16 0.11, 0.22 6.54 × 10-8 

Fibre 

(g/d) 
rs200553669 7 73872749 0.04 G 0.48 A 0.57 0.37, 0.76 1.25 × 10-8 0.55 0.35, 0.75 3.66 × 10-8 

Total 

sugars 

(g/d) 

rs2152113 1 43983569 0.38 T 1.00 T 1.14 0.73, 1.55 4.54 × 10-8 1.12 0.71, 1.53 8.97 × 10-8 

rs11577403 1 43989773 0.38 A 0.99 G -1.14 -1.55, -0.73 4.50 × 10-8 -1.12 -1.53, -0.71 8.68 × 10-8 

rs2842189 1 44007648 0.38 T 1.00 T 1.17 0.76, 1.58 2.64 × 10-8 1.15 0.73, 1.56 5.22 × 10-8 

rs2782640 1 44009033 0.38 C 1.00 C 1.16 0.75, 1.57 3.37 × 10-8 1.13 0.72, 1.55 7.10 × 10-8 

rs951740 1 44011737 0.38 G 1.00 G 1.15 0.74, 1.56 3.72 × 10-8 1.13 0.72, 1.54 7.73 × 10-8 

rs2782641 1 44013355 0.39 G 0.99 G 1.16 0.75, 1.57 2.87 × 10-8 1.13 0.72, 1.54 7.66 × 10-8 

rs13114904 4 129785512 0.20 A 0.99 G -1.47 -1.97, -0.96 1.18 × 10-8 -1.45 -1.96, -0.95 1.75 × 10-8 

rs13125643 4 129789981 0.20 C 0.99 T -1.42 -1.92, -0.91 3.28 × 10-8 -1.40 -1.91, -0.9 5.06 × 10-8 

rs11933240 4 129793559 0.20 G 0.99 A -1.41 -1.91, -0.91 3.60 × 10-8 -1.40 -1.9, -0.89 5.55 × 10-8 

rs11730068 4 129796469 0.20 A 1.00 C -1.40 -1.9, -0.9 4.80 × 10-8 -1.38 -1.88, -0.88 7.49 × 10-8 

rs13110952 4 129797144 0.20 T 0.99 C -1.47 -1.97, -0.96 1.14 × 10-8 -1.45 -1.96, -0.95 1.71 × 10-8 

rs13139971 4 129801118 0.21 G 1.00 A -1.40 -1.89, -0.91 2.57 × 10-8 -1.38 -1.87, -0.89 4.16 × 10-8 

rs11940298 4 129803970 0.21 G 1.00 A -1.44 -1.94, -0.95 9.24 × 10-9 -1.43 -1.92, -0.93 1.51 × 10-8 

rs11945441 4 129811178 0.21 G 1.00 C -1.45 -1.94, -0.95 8.61 × 10-9 -1.43 -1.93, -0.94 1.34 × 10-8 

rs13146706 4 129812702 0.20 G 1.00 A -1.47 -1.97, -0.96 1.11 × 10-8 -1.46 -1.96, -0.96 1.43 × 10-8 

rs10518538 4 129813710 0.20 A 1.00 T -1.47 -1.97, -0.96 1.09 × 10-8 -1.46 -1.96, -0.96 1.41 × 10-8 

rs13135764 4 129813937 0.20 G 1.00 T -1.47 -1.97, -0.96 1.10 × 10-8 -1.46 -1.96, -0.96 1.41 × 10-8 

rs11098991 4 129814440 0.20 G 1.00 A -1.47 -1.97, -0.96 1.09 × 10-8 -1.46 -1.97, -0.96 1.40 × 10-8 

rs10857133 4 129828601 0.20 C 1.00 G -1.47 -1.97, -0.97 9.97 × 10-9 -1.47 -1.97, -0.96 1.25 × 10-8 

rs11735343 4 129837470 0.20 C 1.00 T -1.45 -1.95, -0.94 1.65 × 10-8 -1.44 -1.95, -0.94 2.02 × 10-8 

rs11722253 4 129840234 0.20 C 1.00 T -1.45 -1.95, -0.95 1.53 × 10-8 -1.45 -1.95, -0.94 1.88 × 10-8 

rs11735359 4 129846496 0.20 A 1.00 G -1.44 -1.95, -0.94 1.78 × 10-8 -1.44 -1.94, -0.94 2.19 × 10-8 

rs13133798 4 129858318 0.20 T 1.00 A -1.44 -1.94, -0.94 2.00 × 10-8 -1.43 -1.94, -0.93 2.56 × 10-8 

rs13149221 4 129860709 0.20 T 0.99 C -1.43 -1.94, -0.93 2.70 × 10-8 -1.42 -1.93, -0.92 3.61 × 10-8 

rs13111413 4 129862368 0.21 T 0.99 C -1.48 -1.97, -0.98 4.19 × 10-9 -1.49 -1.98, -0.99 3.51 × 10-9 

rs11736731 4 129863332 0.21 C 0.99 T -1.46 -1.95, -0.97 6.31 × 10-9 -1.47 -1.96, -0.98 5.39 × 10-9 
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Table 5 – Replication of top associations from the “online” group in the “visit” group; meta-
analysis of results from both groups. 

MA, minor allele; EA, effect allele. In models without adjustment for BMI, N = 47,134 – 47,197. In models with 
adjustment for BMI, N = 46,618 – 46,679. 

   “Visit” group 
Meta-analysis of “online” and 

“visit” groups 

   Without adjusting for BMI With adjusting for BMI Without adjusting for BMI 

Trait SNP EA Beta 95% CI p-value Beta 95% CI p-value Beta 95% CI p-value 

Energy 

(kJ/d) 
rs7957145 T -2.99 -60.71, 54.73 0.919 -4.78 -62.73, 53.17 0.872 68.66 40.10, 97.21 2.45 × 10-6 

Protein 

(g/d) 

rs838133 G -0.78 -1.14, -0.41 2.96 × 10-5 -0.78 -1.15, -0.41 3.04 × 10-5 -0.70 -0.88, -0.52 2.58 × 10-14 

rs13447258 A 0.39 -0.34, 1.12 0.299 0.42 -0.32, 1.15 0.263 0.98 0.62, 1.34 1.23 × 10-7 

Carbs 

(g/d) 

rs13111413 T 0.10 -1.34, 1.53 0.895 0.36 -1.08, 1.80 0.626 -1.74 -2.46, -1.03 1.77 × 10-6 

rs8097589 A -0.38 -1.77, 1.02 0.598 -0.26 -1.66, 1.14 0.715 -1.77 -2.47, -1.08 5.35 × 10-7 

Fat (g/d) rs72828557 T -0.72 -1.27, -0.18 0.010 -0.71 -1.26, -0.17 0.011 -0.86 -1.13, -0.58 9.92 × 10-10 

Sat. fat 

(g/d) 
rs72828557 T -0.27 -0.50, -0.03 0.025 -0.27 -0.50, -0.03 0.026 -0.35 -0.47, -0.23 6.38 × 10-9 

Polyun. 

fat (g/d) 
rs516246 T 0.10 -0.01, 0.20 0.064 0.11 0.00, 0.21 0.047 0.15 0.10, 0.20 1.36 × 10-8 

Fibre 

(g/d) 

rs20055366

9 
G -0.01 -0.35, 0.33 0.962 0.02 -0.32, 0.36 0.915 0.42 0.25, 0.59 9.05 × 10-7 

Total sug. 

(g/d) 

rs2842189 C 0.98 0.27, 1.69 0.007 0.95 0.24, 1.67 0.009 1.12 0.76, 1.48 6.79 × 10-10 

rs13111413 T 0.02 -0.83, 0.87 0.967 0.13 -0.72, 0.98 0.767 -1.10 -1.53, -0.67 4.13 × 10-7 

 

Table 6 – Gene information for the diet-SNP associations that replicated. 

The dbSNP database (https://www.ncbi.nlm.nih.gov/snp/) was used to identify the nearest gene to each SNP. The 
GWAS catalog (https://www.ebi.ac.uk/gwas/) was used to find published associations between the SNP/gene and any 
traits (traits in bold below if also appeared when searching for that particular SNP). GeneCards 
(http://www.genecards.org/) was used to look-up the molecular function of each gene.  

SNP Associated 

macronutrient(s) 

Mapped gene GWAS catalog trait Molecular function 

(GeneCards) 

rs838133 protein FGF21 bipolar disorder,149 dietary macronutrient intake,134,140 

homocysteine levels,150 resting metabolic rate,151 retinal 

vascular caliber152  

stimulates glucose 

uptake in differentiated 

adipocytes153,154 

rs72828557 fat, saturated fat LOC107986574 none - 

rs516246 polyunsaturated 

fat 

FUT2 bipolar disorder,149 blood metabolite levels,155 childhood 

ear infection,156 cholesterol,157 Crohn’s disease,158-161 

diarrhoeal disease at age 1,162 dietary macronutrient 

intake,134 elevated serum carcinoembryonic antigen 

levels,163 folate pathway vitamin levels,164,165 

homocysteine levels,150 inflammatory bowel disease,161 

liver enzyme levels,166 lung adenocarcinoma,167 

metabolic traits,168 obesity-related traits,169 paediatric 

autoimmune diseases,170 primary sclerosing 

cholangitis,171 psoriasis,172,173 resting metabolic rate,151 

retinal vascular caliber,152 serum lipase activity,174 tumour 

biomarkers,175 urinary metabolites,176 vitamin B levels in 

ischemic stroke,177 vitamin B12 levels178-180 

influences secretor 

status and intestinal 

microbiota 

composition,181,182 

interacts with Crohn’s 

Disease to influence 

colonic mucosa-

associated microbiota183 

 

rs2842189 total sugars PTPRF amyotrophic lateral sclerosis (age of onset),184 autism 

spectrum disorder or schizophrenia,185 educational 

attainment,186 schizophrenia187 

involved in cell 

signalling 

  

https://www.ncbi.nlm.nih.gov/snp/
https://www.ebi.ac.uk/gwas/
http://www.genecards.org/
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3.3.3. Follow up of diet-SNP associations from the literature 

SNP look-ups of these GWAS results were done for the following SNP-diet associations 

from the literature: rs838145 with carbohydrate intake and fat intake (Tanaka et al., 

proportions of energy derived from carbohydrate and fat intake); rs838133 with protein 

intake (Chu et al., proportion of energy derived from protein intake); and rs2839525 and 

rs1147522 with total sugar intake (Wakai et al., confectionary intake frequency) (Table 

7).134,140,142 

The only association to replicate in both the “online” and the “visit” groups was 

rs838133 with protein intake. The associations between rs838145 and carbohydrate and 

fat intake replicated in the “online” group but not the “visit” group, however the effect 

direction was consistent in both groups. The associations between rs1147522, 

rs2839525 and total sugars intake did not replicate. 

In UK Biobank protein intake is defined as grams per day (g/d), whereas in the analyses 

by Chu et al. they quantified protein intake as percentage of total caloric intake from 

protein, so the effect sizes cannot be compared, however the direction of effect here is 

consistent with that reported by Chu et al.134 Similarly, the UK Biobank effect sizes and 

the Tanaka et al. effect sizes cannot be compared, though they are directionally 

consistent. 

3.3.4. Heritability and correlation 

LD score regression was performed to estimate the heritability of the diet traits and 

explore the shared genetic architecture of gene variants between diet traits and with 

BMI (Table 8). The heritability estimates are low (~3-6%), though only a little lower than 

the GCTA heritability estimates from Chu et al. (~6-8%).134 

The genetic correlation between diet traits is high (~25-96%), especially between energy 

and fat, and energy and carbohydrate. All genetic correlations between diet traits are 

positive. Genetic correlation is weakest between total sugars and protein, total sugars 

and polyunsaturated fat, and between fibre and fat. Saturated fat correlates more 
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strongly than polyunsaturated fat with all other diet traits except fibre. Overall, total 

sugars and fibre correlate least strongly with all the other diet traits. 

Genetic correlations with BMI are weaker. Each of the diet traits is positively correlated 

with BMI, except for protein which is negatively correlated with BMI. 

Table 9 shows the phenotypic correlation estimates between each of the diet traits (in 

the “online” group). When comparing the phenotypic correlations with the genetic 

correlations, in most cases the genetic correlations are stronger. This difference is 

greatest for saturated fat and polyunsaturated fat, where the genetic correlation 

between them is 0.76 and the phenotypic correlation between them is only 0.45. 
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Table 7 – Follow up of diet-SNP associations from the literature. 

Direction of effect; 

effect allele; p-value 
Literature 

“Online” group 

(without adj. BMI) 

“Online” group 

(with adj. BMI) 

“Visit” group 

(without adj. BMI) 

“Visit” group 

(with adj. BMI) 

rs838145 with 

carbohydrate intake 

+ve; G; p=1.68×10-8 

(Tanaka et al.140) 
+ve; G; p=0.004 +ve; G; p=0.007 +ve; G; p=0.634 +ve; G; p=0.648 

rs838145 with 

fat intake 

-ve; G; p=1.57×10-9 

(Tanaka et al.140) 
-ve; G; p=0.003 -ve; G; p=0.002 -ve; G; p=0.246 -ve; G; p=0.228 

rs838133 with 

protein intake 

-ve; A; 7.9×10-9 

(Chu et al.134) 
-ve; A; p=1.68×10-10 -ve; A; p=4.00×10-10 -ve; A; p=2.96×10-5 -ve; A; p=3.04×10-5 

rs1147522 with 

total sugars intake 

+ve; T; 4.3×10-8 

(Wakai et al.142) 
+ve; C; p=0.240 +ve; C; p=0.239 -ve; C; p=0.338 -ve; C; p=0.428 

rs2839525 with 

total sugars intake 

+ve; G; 5.5×10-9 

(Wakai et al.142) 
-ve; T; p=0.841 -ve; T; p=0.861 +ve; T; p=0.393 +ve; T; p=0.135 

 

Table 8 – Heritability and genetic correlation estimates from LD score regression 

rg Heritability Energy Protein Carb. Total fat Sat. fat Polyun. fat Total sugars Fibre BMI 

Energy 5.1% 1 0.67 0.86 0.91 0.90 0.78 0.66 0.46 0.14 

Protein 3.3% 0.67 1 0.51 0.64 0.62 0.54 0.31 0.50 -0.15 

Carb. 5.0% 0.86 0.51 1 0.68 0.68 0.58 0.90 0.63 0.13 

Total fat 5.3% 0.91 0.64 0.68 1 0.96 0.89 0.38 0.31 0.18 

Sat. fat 4.4% 0.90 0.62 0.68 0.96 1 0.76 0.39 0.25 0.09 

Polyun. fat 3.9% 0.78 0.54 0.58 0.89 0.76 1 0.27 0.34 0.19 

Total sugars 4.7% 0.66 0.31 0.90 0.38 0.39 0.27 1 0.60 0.11 

Fibre 5.9% 0.46 0.50 0.63 0.31 0.25 0.34 0.60 1 0.02 

 

Table 9 – Phenotypic correlation between diet traits 

correlation Energy Protein Carb. Total fat Sat fat Polyun. fat Total sugars Fibre 

Energy 1 0.71 0.83 0.84 0.77 0.63 0.62 0.47 

Protein 0.71 1 0.50 0.60 0.53 0.44 0.36 0.38 

Carb. 0.83 0.50 1 0.55 0.53 0.42 0.81 0.55 

Total fat 0.84 0.60 0.55 1 0.89 0.75 0.35 0.32 

Sat. fat 0.77 0.53 0.53 0.89 1 0.45 0.37 0.21 

Polyun. fat 0.63 0.44 0.42 0.75 0.45 1 0.22 0.39 

Total sugars 0.62 0.36 0.81 0.35 0.37 0.22 1 0.45 

Fibre 0.47 0.38 0.55 0.32 0.21 0.39 0.45 1 
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3.4. Discussion 

3.4.1. Main findings 

This GWAS of dietary intake identified 11 genome-wide significant diet-SNP associations 

(43 including those in LD), of which 5 replicated, including rs516246 (in FUT2) with 

polyunsaturated fat intake, rs838133 (in FGF21) with protein intake and rs2842189 (in 

PTPRF) with total sugars intake. 

The association between rs516246 and polyunsaturated fat intake is a novel GWAS 

finding. This SNP has been previously reported in GWAS of other traits, including Crohn’s 

disease159,161 and liver enzyme levels.166 rs516246 is located in the FUT2 gene, which 

influences secretor status and intestinal microbiota composition.181,182 A study of 47 

individuals (29 with Crohn’s disease, 18 controls) observed several disease-by-genotype 

associations with intestinal microbiota.183 Evidence for an effect of a dietary factor on 

risk of Crohn’s disease is limited and conflicting,188 whilst people with Crohn’s disease 

are often advised that altering their diet may help their Crohn’s symptoms. Further 

analysis will be needed to establish causality in these relationships (Figure 5). 

An association between rs838133 (located in the FGF21 gene) and protein intake has 

been previously reported in a GWAS meta-analysis by the DietGen and CHARGE 

consortia (beta=-0.11, p=7.9 × 10-9).134 FGF21 encodes a hormone involved in glucose 

and lipid metabolism. The association observed in this GWAS in UK Biobank is stronger 

(beta=-0.70, p=2.58 × 10-14) and directionally consistent with the finding by the DietGen 

and CHARGE consortia, thus further strengthening the evidence. As stated earlier, the 

effect sizes cannot be directly compared since in UK Biobank protein intake is defined as 

grams per day, whereas in the previous GWAS it was quantified as percentage of total 

caloric intake from protein, however, it is possible to do a more approximate 

comparison. A 2008-09 study of adults aged 19-64 years observed the following median 

protein intakes: protein (g/d) = 88.8 in men and 65.6 in women; protein (% food energy) 

= 16.8 in men and 17.1 in women.189 So, a crude conversion of the UK Biobank beta from 

-0.70g/d to % energy intake would be beta = -0.70 ÷ 0.5(88.8 + 65.6) × 0.5(16.8 + 17.1) = 
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-0.15 % energy intake, which is fairly comparable considering the crude method used 

here. 

SNPs rs516246 and rs838133 are located ~53,000 base pairs apart on chromosome 19. 

The LD between the two SNPs is R2 = 0.364 (in British population group from 1000 

Genomes Project; LD estimate from LDlink https://analysistools.nci.nih.gov/LDlink/). 

Therefore, it is highly possible that both SNPs are tagging the same causal variant. 

The association between rs2842189 (PTPRF) and total sugars intake is a novel GWAS 

finding. Previous GWAS which have observed associations with SNPs mapped to PTPRF 

include educational attainment,186 schizophrenia185,187 and age of onset amyotrophic 

lateral sclerosis (ALS).184 A study of energy homeostasis in transgenic ALS mice observed 

an energetic deficit.190 Compensating this deficit with a high-energy diet resulted in a 

20% increase in mean survival, which suggests that energy intake may play a role in ALS. 

Few studies have identified and replicated genome-wide significant diet-SNP 

associations. SNP look-ups in these GWAS results were performed for five SNP-diet 

associations from the literature (Table 7). The three diet-SNP associations which have 

replicated elsewhere also replicated in UK Biobank: rs838133 with protein intake, and 

rs838145 with carbohydrate and fat intake.134,140 The associations between rs1147522, 

rs2839525 and total sugars intake have not been replicated previously, and did not 

replicate in UK Biobank.142 

LD score regression was used to estimate pairwise genetic correlation between each of 

the diet traits. Both the pairwise genetic correlations and phenotypic correlations are 

high. This is to be expected given the complex composition of food and that, for 

example, saturated fat and polyunsaturated fat often co-occur, as do protein and fat, in 

same food stuff and hence genetic determinants of intake of one will correlate with the 

other. 

When comparing the phenotypic correlations with the genetic correlations, in most 

cases the genetic correlations are stronger. A GWAS of 717 traits in UK Biobank that 
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estimated genetic and environmental correlations between pairs of traits found that for 

many of the pairs of traits the genetic and environmental correlation changes sign or the 

environmental correlation is stronger than the genetic correlation.191 They concluded 

that the phenotypic covariance between many of the traits was many driven by 

environmental factors and not genetics. 

 

Figure 5 – Flowchart of further analyses that could be conducted to explore why rs516246 is 
associated with both polyunsaturated fat intake and Crohn’s disease. 

The idea for this flowchart came from Richardson et al. (2017).192 Colocalization is discussed in Fortune et al. (2015).193 
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3.4.2. Strengths and limitations 

Identifying genetic variants associated with dietary behaviour is challenging since it is a 

complex phenotype that is hard to quantify. It is also difficult to differentiate between 

SNPs that are only associated with diet through their link with another phenotype such 

as BMI, and SNPs that have a more direct effect on diet. 

The genome-wide significance threshold is usually defined as 5 × 10-8. Since eight diet 

phenotypes are studied here, an alternative more conservative approach could be to 

apply a Bonferroni correction and set the threshold to be 6.25 × 10-9 (=5 × 10-8 / 8), 

however this would be overly conservative due to the high correlation between the 

phenotypes. A less conservative approach would be to conduct PCA to calculate how 

many PCs are needed to account for ≥95% of variation in the eight diet phenotypes, and 

set the significance threshold as 5 × 10-8 divided by that number of PCs. This approach is 

used in chapter 5 on the metabolites since many are highly correlated. 

Macronutrient intake was measured in g/day, rather than proportion of total energy 

intake. This allowed for consistency across the macronutrients since, whilst it is easy to 

comprehend fat intake as % energy intake, it is less common to measure of fibre intake 

in this way. 

Quantifying dietary behaviour by estimated macronutrient intake has pros and cons. 

Macronutrient intake is an objective measure that many people are familiar with since 

food packaging often includes this information. However, the macronutrients included in 

this study do not fully describe a person’s dietary choices, such as how often they 

consume processed food. 

In this GWAS, dietary behaviour was recorded using 24-hour diet recall questionnaires. A 

limitation of such questionnaires is that dietary intake can vary considerably from day to 

day. This limitation was partially overcome in the “online” group administering the 

questionnaire multiple times and averaging the results. However, if a participant knows 

in advance that they need to complete a 24-hour recall questionnaire (this was the case 

for the UK Biobank online questionnaires, where participants were allowed at least 



73 

three days to complete the questionnaire), then this might influence their food choices 

in that 24-hour period so that they can record a smaller or “healthier” food intake. 

An alternative approach to measuring dietary behaviour could be to use metabolites as 

a biological proxy for macronutrient intake, for example amino acids as a proxy for 

protein intake. This is explored in Chapter 6. The advantage of using a biological proxy is 

that it does not rely on self-report, and therefore provides a more objective measure. It 

also represents the bioavailable proportion of the macronutrient rather than quantity 

eaten, and thus reflects absorption efficiency and other components of the digestive 

process over and above dietary intake. 

3.4.3. Future directions 

These findings provide motivation for future research. One area is to investigate the 

causal pathways that macronutrient genetic variants may play a part in, such as in Figure 

5. Genetic variants robustly associated with specific macronutrients can be used in MR 

analysis to explore the long-term consequences of differences in intake of these 

factors.194 For example, there is considerable interest in the influence of specific 

nutrients on risk of complex diseases such as cancer,195 cardiovascular disease,196,197 and 

mental health.198 MR could help to strengthen causal inference with respect to the 

contribution that these dietary factors make to disease risk (or, in theory, disease 

progression199). This, in turn, could help to inform future interventions and help to 

overcome the often conflicting dietary advice that arises from more conventional 

observational epidemiology studies. 

A major limitation of dietary studies is the blunt tools available for measuring dietary 

intake. Even the application of relatively advanced methods such as GWAS and MR is 

limited by reliance on the often biased self-report of dietary intake. Innovations that 

might improve this include the use of digital technologies, such as cameras and software 

to estimate food groups and portion size, or the use of more objective measures of 

dietary factors such as metabolites. These innovations are often time-consuming and/or 

expensive and hence studies have tended to rely on more traditional methods such as 

FFQs and diet diaries.
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CHAPTER 4.  DIET AND BMI  
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4.1. Introduction 

4.1.1. Observational studies of diet and adiposity 

Dietary behaviour and BMI are known to be strongly linked. However, the finer details of 

this relationship are less clear. Several studies have investigated the relationship 

between dietary behaviours and BMI or other measures of adiposity (e.g. body fat 

percentage and waist circumference). Most of these studies either observed 

associations between an “unhealthy” diet and increased adiposity or did not see any 

association, and a few studies found inverse associations. As discussed previously, 

dietary behaviour is complex and hence assessing the relationship between dietary 

behaviour and other phenotypes is often challenging. 

Evidence from a systematic review of dietary energy density and body weight suggests 

that dietary energy density is positively associated with increased adiposity in children 

and adolescents.18 A study of fast food consumption found that children who ate fast 

food during a typical day consumed more total energy and more energy per gram of 

food than those who did not; they also consumed less fibre and fewer fruits and non-

starchy vegetables.45 The authors hypothesised that fast food consumption may affect 

body weight through children replacing healthier food options with more energy-dense 

fast food. 

A cross-sectional study of the relationship between macronutrient intake and body fat 

percentage in children aged 9 and 10 years old observed that adiposity was positively 

associated with percentage of energy derived from fat and negatively associated with 

percentage of energy derived from carbohydrate.19 

Other studies observed inconsistent or weak evidence for a relationship between diet 

and adiposity measures in childhood and adolescence.34,200,201 Some studies observed 

unexpected results, including inverse associations between consumption of ‘unhealthy’ 

snacks and adiposity.29,200 
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Several studies of diet and adiposity have been carried out in adults. A cross-sectional 

study of healthy older men found that obesity was associated with total energy intake 

and energy intake from fat.22 A different study, also in males, found higher fibre intake 

levels to be associated with smaller increases in BMI and waist circumference but did 

not observe an association between fat or sugar intake and subsequent BMI or waist 

circumference.28 A study in women observed associations between dietary patterns and 

weight change, including associations between high intakes of red and processed meats, 

refined grains, sweets and desserts and long-term weight gain.23 

A systematic review of the role of dietary patterns in predicting weight change found 

evidence that a high intake of fibre and nuts predicts less weight gain, and a high meat 

intake predicts more weight gain.24 A systematic review of dietary energy density and 

body weight found that low energy density dietary patterns aide weight maintenance 

and weight loss in adults.18 

There is evidence that changing dietary behaviour may have a positive effect on obesity, 

including two longitudinal studies of adults which found that positive changes in eating 

behaviour (i.e. to a more “healthy” diet) were accompanied by a decrease in BMI or a 

smaller weight gain.25,26 

In summary, these observational studies have identified links between increased 

adiposity and energy density, in particular fat intake. In contrast, a high fibre intake has 

been linked to a lower increase in adiposity. 

4.1.2. Dietary interventions to combat obesity 

Systematic reviews have been performed to study the effectiveness of weight loss 

interventions. A systematic review of RCTs investigating the effectiveness of dietary 

interventions of varying macronutrient distributions on weight loss in overweight or 

obese children and adolescents concluded that macronutrient distribution did not seem 

to affect weight loss (which contrasts with observational evidence above19), but instead 

dietary interventions should focus on reducing total energy intake.202  
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Another systematic review examined evidence for an association between sugar intake 

and body weight in children and adults.203 Results from trials in adults comparing a trial 

arm in which participants were asked to reduce their sugar intake against a control arm 

provide evidence for a positive association between reduced sugar intake and weight 

loss. Intervention trials in which children were advised to reduce their sugar intake did 

not provide evidence for an association with BMI, however three of the five studies 

reported poor compliance. 

4.1.3. Studies in UK Biobank 

A study of the association between macronutrient intake and adiposity in UK Biobank 

participants found that fat was the largest contributor to overall energy intake, and that 

obesity was most strongly associated with total energy intake (from all macronutrients 

combined) rather than energy intake from any individual macronutrient.35 When 

adjusting for total energy intake, fat intake was positively associated with obesity, 

whereas sugar intake was negatively associated with obesity. They used a categorical 

approach to perform their analyses: they calculated the average macronutrient intake 

for each BMI group (normal, overweight, etc.); and they calculated the average BMI for 

each quintile of macronutrient intake. 

Another study in UK Biobank investigated whether macronutrient intake modifies the 

relationship between a BMI allele score and adiposity, and found evidence that the 

relationship is modified by total energy intake, total fat intake and, most strongly, by 

total saturated fat intake.204 This relationship with fat and saturated fat intake remained 

even when models were adjusted for total energy intake, suggesting that the association 

is independent of total energy intake. 

4.1.4. Studies in ALSPAC 

Dietary data in ALSPAC has predominantly been collected in the form of food frequency 

questionnaires (FFQs) and diet diaries. These methods of data collection gather 

information on large numbers of different food items, so in order to identify dietary 
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patterns empirical methods, such as principal components analysis (PCA) or cluster 

analysis, may be used.44 

An ALSPAC study of early life risk factors for childhood obesity looking at 25 putative risk 

factors including dietary behaviour did not find conclusive evidence for an association 

between dietary patterns (identified using PCA) at age 3 and obesity risk at age 7, but 

did observe a weak association between the junk food dietary pattern and risk of 

obesity.205 

A study of the relationship between dietary behaviour and changes in body composition 

between the ages of 9 and 11 years in ALSPAC observed small associations between 

dietary pattern scores (from PCA) and changes in body composition.20 A ‘health aware’ 

dietary pattern, in which there was a high intake of fruits and vegetables, high-fibre 

bread, cheese and fish and a low intake of fizzy drinks and processed foods including 

processed meat, was associated with a decrease in fat mass gain in girls between the 

ages of 9 and 11 years. A ‘packed lunch’ dietary pattern, characterised by high intakes of 

sandwiches and snacks, was associated with a decrease in fat mass gain in the girls and 

an increase in lean mass gain in the boys. 

Another statistical method that has been used to extract diet patterns from ALSPAC diet 

data is reduced rank regression (RRR). RRR is used to identify patterns in a set of 

predictor variables that explain the maximum variation in a set of variables known as the 

“response” variables.206 The response variables are hypothesised to be intermediate 

variables between the predictor variables and an outcome of interest and hence RRR 

makes use of prior knowledge, unlike PCA which is purely exploratory. For example, 

Ambrosini et al. defined their predictor variables to be food group intakes, their 

response variables to be dietary energy density and % energy from fat and fibre, and 

their outcome to be adiposity.206 Studies implementing RRR in the ALSPAC participants 

across childhood and adolescence found that an energy-dense, low-fibre, high-fat diet 

was prospectively associated with greater fat mass and higher odds of excess 

adiposity.206,207 
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A study assessing the association between the consumption of fast food and BMI in 

ALSPAC found that teenagers who visited fast food outlets more frequently tended to be 

exposed to more unhealthy foods at home and have higher BMIs.21 Teenagers who 

visited fast food outlets more frequently also consumed less fruit and vegetables, which 

is a further negative effect on their diet since in addition to consuming more saturated 

fat in unhealthy foods their consumption of important nutrients from fruit and 

vegetables is lower. 

A study exploring the role of dietary intake in the relationship between FTO region BMI-

associated SNPs and BMI in the ALSPAC children observed associations between FTO 

alleles and energy and fat intake, both before and after BMI adjustment.208 Their results 

suggest that the association between FTO alleles and dietary behaviour is not solely due 

to the FTO-BMI association. 

4.1.5. Motivation and objectives for these analyses 

The relationship between dietary behaviour and adiposity is complex, and a better 

understanding of causality in this relationship is needed to improve public health policies 

aimed at tackling the obesity epidemic. The growing number of BMI-associated SNPs, 

and the discovery of some diet-associated SNPs (Chapter 3), may be applied to gain a 

clearer understanding this relationship. 

Although Anderson et al. investigated the observational relationship between 

macronutrients and BMI, they did not explore causality.35 They also only studied fat 

intake, and not saturated fat intake and polyunsaturated fat intake separately. They 

presented their results by BMI category (e.g. overweight) or quintile. Since the 

associations they observed are mainly linear, the analyses in this chapter will fit linear 

regression models (for all BMI categories together, not individually by category) for ease 

of interpretability and comparison with these previous findings. 

Celis-Morales et al. found that the association between the GIANT BMI score and BMI is 

modified by fat intake. However, they did not explore the possibility that the GIANT BMI 

score may be partially exerting its effect on BMI through diet.204 



81 

The main objectives for the analyses in this chapter are to explore the relationship 

between various measures of dietary intake and BMI; and to investigate causality 

bidirectionally in any observed associations. Dietary intake is summarised in two main 

ways: in UK Biobank dietary intake is summarised as macronutrient intake and in ALSPAC 

dietary intake is summarized using PCA. A summary of the analyses conducted in this 

chapter is shown in Figure 6. 

Figure 6 – Summary of analyses undertaken in this chapter. 
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4.2. Methods 

4.2.1. Macronutrient intake and BMI analyses 

Since both diet and BMI can fluctuate greatly over months or years, more stringent data 

cleaning was performed for these analyses (compared to the GWAS in the previous 

chapter). 

A participant’s data from a particular questionnaire was excluded if: 

- any of their energy or macronutrient intake values were in the top or bottom 1% 

of all participants energy and macronutrient intake data from that questionnaire 

- their dietary data from that questionnaire was coded by UK Biobank as “not 

credible” based on their energy intake 

- their energy intake was less than 1.1 × their basal metabolic rate35 

- they said that their diet yesterday wasn’t typical for them 

A participant’s data from all diet questionnaires was excluded if, when asked at the 

baseline clinic visit or the first repeat visit: 

- they said that they’d made a major change to their diet in the last 5 years 

- they said that their diet varies much from week to week (or said that they did not 

know or preferred not to answer)  

- they said that they were current smokers (or said that they preferred not to 

answer) 

Participants were also excluded unless their BMI was between 19.5 and 34.5kg/m2. 

These cut-offs were chosen since there were less than 500 participants in each 0.5kg/m2 

interval outside of this range, and this could increase uncertainty in any diet-BMI models 

fitted in later analyses. 

The remaining energy and macronutrient data from the baseline visit questionnaire and 

each of the online questionnaires was averaged to create estimated average dietary 

intake variables for each participant. 
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 Observational analyses in UK Biobank 

The relationship between dietary intake and BMI in UK Biobank was explored. 14 energy 

and macronutrient variables were studied: total energy intake (kJ/d), protein intake (g/d 

and % total energy intake), fat intake (g/d and % total energy intake), carbohydrate 

intake (g/d and % total energy intake), saturated fat intake (g/d and % total energy 

intake), polyunsaturated fat intake (g/d and % total energy intake), total sugar intake 

(g/d and % total energy intake) and fibre intake (g/d). 

Linear regression models were fitted to explore the relationship between macronutrient 

intake and BMI in UK Biobank. Models were adjusted for age (at the baseline assessment 

visit) and sex. Analyses were performed in R (version 3.3.3) using the lm function from 

the stats package. Models were fitted for diet → BMI since this is the more intuitive 

relationship between diet and BMI. Models were also fitted for BMI → diet to enable 

comparison later with results from BMI allele score → diet analyses.  

lm(BMI ~ diet + age + sex) 

lm(diet ~ BMI + age + sex) 

Separate models for females and males were also fitted. 

 Macronutrient intake to BMI analyses – two-sample MR 

As discussed in the previous chapter, some genetic instruments for macronutrient intake 

have been identified in UK Biobank. Heritability estimates from the UK Biobank 

macronutrient data are low (c.3-6%, Table 8). Therefore, a large sample size is needed 

when using these macronutrient SNPs as instruments for diet in MR analyses. 

In situations, such as this, where it is labour-intensive and expensive to obtain a sample 

in which both the exposure and outcome variables are available, two-sample MR can be 

used to investigate causality between the exposure and outcome (2.2.4.1).16,128 In two-

sample MR, the instrument-exposure and instrument-outcome coefficients are obtained 
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from summary data from a GWAS of the exposure variable and a GWAS (in a different 

sample) of the outcome variable respectively. 

Two-sample MR analyses were performed to estimate the causal effect of various 

macronutrients on BMI. The instrument-exposure coefficients are taken from the UK 

Biobank macronutrient GWAS in the previous chapter (Table 4; results from models 

without adjustment for BMI), and the instrument-outcome coefficients are from a BMI 

GWAS conducted in c.320,000 individuals of European descent (2.2.4).52 

These two-sample MR analyses were conducted in R (version 3.3.3) using the 

mr_singlesnp function from the TwoSampleMR package.131 SNPs that reached genome-

wide significance in the “online group” of the diet GWAS were used as genetic 

instruments, regardless of whether they replicated in the “visit” group (3.3.2). If results 

for a SNP were not available in the BMI GWAS summary results, then a proxy (r2>0.6) 

was used. No suitable proxies were available for rs13447258 or rs200553669. Most of 

the macronutrients only had a single SNP available to use as an instrument, so the Wald 

ratio was used to calculate the MR estimates.55 If there was more than one instrumental 

SNP for a macronutrient then IVW regression was also performed.129,130 

 BMI to macronutrient intake analyses in UK Biobank 

The next objective was to explore the causal effect of BMI on dietary behaviour. The 97-

SNP BMI score from Locke et al., which is often used as a genetic instrument for BMI, is 

not suitable for MR analyses of BMI on diet, since several of the 97 SNPs are thought to 

influence BMI through dietary choices.52 For example, the association observed between 

FTO SNPs and BMI appears to be, in part, due to the association between FTO SNPs and 

appetite.208 This violates the requirement that, in MR analysis, the genetic instrument 

should only be associated with the outcome variable through its relationship with the 

exposure variable (2.2.4). 

Locke et al. reviewed literature on 405 genes that are within 500 kB and r2>0.2 of their 

97 SNPs, and used this information to classify the genes into one or more biological 

categories (Locke et al. Supplementary Table 22).52 25 of the categories contained at 
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least three genes. Each gene (and hence each SNP) could appear in more than one of 

these biological categories, so there is some overlap between the categories (Table 10). 

A leave-one-out (LOO) weighted allele score was created for each category to explore 

whether the association between the 97 SNP BMI score and diet in UK Biobank is driven 

purely by a single aspect of the score (e.g. SNPs in the hypothalamic expression and 

regulatory function category). For each category, the LOO weighted allele score was 

created using all the SNPs (from the 97 SNPs) except for SNPs in that category. The 

weights for these allele scores were taken from the European sex-combined analysis 

(Locke et al. Supplementary Table 4). 

The association between each of the LOO allele scores and the UK Biobank 

macronutrient intake variables was tested by fitting the model: 

lm(macronutrient intake ~ LOO allele score + age + sex) 

Separate models for females and males were also fitted. Analyses were performed in R 

(version 3.3.3) using the lm function from the stats package (2.2.1). 

4.2.2. Dietary patterns and BMI analyses 

 Observational analyses in ALSPAC 

Dietary behaviour was measured using PCs previously generated from FFQs and diet 

diaries (2.1.1.1).27,101,209 

Multivariable linear regression was performed for each of the diet PCs separately on 

BMI in the ALSPAC children at ages 7 and 13 years. Three different models were fitted: a 

model adjusted for age at BMI measurement and sex; a model adjusted for age, sex and 

maternal education; and (for the diet diary PCs only) a model adjusted for total energy 

intake, age and sex. Maternal education was summarised as a binary variable indicating 

whether the mother had completed A Levels (and/or university) or not. Daily energy 

intake (estimated from the diet diaries) was included as a covariate in the third model as 
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studies have suggested that body weight is most affected by total energy consumption 

rather than proportions of different macronutrients consumed.202 

lm(BMI ~ diet PC + age + sex) 

lm(BMI ~ diet PC + age + sex + maternal education) 

lm(BMI ~ diet PC + age + sex + energy intake) 

Models were also fitted for BMI → diet to enable comparison later with results from BMI 

allele score → diet analyses. 

lm(diet PC ~ BMI + age + sex) 

lm(diet PC ~ BMI + age + sex + maternal education) 

lm(diet PC ~ BMI + age + sex + energy intake) 

Participants were excluded from the analyses at age 7 if their BMI at that age was not 

between 13 and 21.5kg/m2. Participants were excluded from the analyses at age 15 if 

their BMI at that age was not between 15 and 28kg/m2. These cut-offs were chosen 

since there were less than 50 participants in each 0.5kg/m2 interval outside of these 

ranges. 

 Diet PCs to BMI 

Investigating the causal effect of diet on BMI is challenging as a suitable genetic 

instrument for diet is needed to perform MR. The diet PCs used in the cross-sectional 

analyses above are unique to the FFQ and diet diary data used to generate those PCs, 

and no genetic instruments have been identified for them. To avoid overfitting, genetic 

variants should be obtained from a different sample to the sample in which MR is 

performed.210,211 Sometimes samples are split in two to facilitate this,212 however this 

would not be practical here since a large sample size is needed to identify genetic 

variants for complex traits such as dietary behaviour. 
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 BMI allele scores to diet PCs analyses in ALSPAC 

The association between each of the LOO allele scores and the ALSPAC diet PCs was 

examined by fitting the model: 

lm(diet PC ~ LOO allele score + age + sex) 

Diet PCs were only studied if there was suggestive evidence of an association with BMI 

in the cross-sectional analyses. 
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Table 10 – BMI SNPs grouped by functional category. 

SNPs are in bold if they explained at least 0.05% variance in BMI in the European sex-combined analysis in the Locke 
et al. GWAS. 

Biological subcategory SNPs 

Neuronal Developmental 
processes 

rs3101336, rs7138803, rs3888190, rs2287019, rs16951275, rs3810291, rs7141420, 
rs13078960, rs12286929, rs11165643, rs4256980, rs17094222, rs2820292, rs12885454, 
rs6804842, rs4740619, rs492400, rs13191362, rs3736485, rs2080454, rs2033529, rs7239883, 
rs2836754, rs9400239, rs10733682, rs11057405, rs29941, rs4787491, rs13201877 

Neurotransmission 
rs10938397, rs10132280, rs1167827, rs9925964, rs13191362, rs3736485, rs9914578, 
rs4787491, rs7899106, rs9540493 

Hypothalamic expression and 
regulatory function 

rs1558902, rs6567160, rs13021737, rs10938397, rs11030104, rs10182181, rs3888190, 
rs1516725, rs17405819, rs4256980, rs7164727, rs3736485, rs7243357 

Neuronal Expression 
rs10182181, rs12446632, rs10968576, rs12401738, rs7599312, rs11126666, rs13191362, 
rs2075650, rs11583200, rs9914578, rs3849570, rs1808579 

Lipid biosynthesis and 
metabolism 

rs3817334, rs2112347, rs1928295, rs2650492, rs7164727, rs492400, rs11191560, rs2075650, 
rs4787491, rs1808579 

Bone Development 
rs16951275, rs6091540, rs205262, rs9641123, rs16851483, rs1167827, rs6804842, 
rs11727676, rs17724992 

Signalling (includes 
subcategories) 

rs6567160, rs11030104, rs10182181, rs3888190, rs12446632, rs2287019, rs16951275, 
rs3817334, rs12566985, rs17024393, rs7903146, rs4256980, rs17094222, rs12401738, 
rs7599312, rs9641123, rs16851483, rs12940622, rs7239883, rs4787491, rs17203016, 
rs7243357 

GPCR rs6091540, rs205262, rs492400, rs3736485, rs17724992 

Mitochondrial 
rs3888190, rs3817334, rs3810291, rs13107325, rs17094222, rs12016871, rs9925964, 
rs2075650 

Retinoic Acid Receptors rs12446632, rs3817334, rs12429545, rs17094222, rs6804842, rs492400 

Endocytosis/Exocytosis 
rs543874, rs10132280, rs17094222, rs1167827, rs9925964, rs13191362, rs3736485, 
rs17001654, rs1000940, rs7239883, rs11688816, rs11057405, rs2121279, rs1808579 

Eye-related rs17024393, rs17094222, rs2820292, rs7164727, rs10733682 

Tumorigenesis 
rs7138803, rs3817334, rs12429545, rs4256980, rs7599312, rs16851483, rs3736485, 
rs2836754, rs11688816, rs2121279, rs4787491 

Apoptosis 
rs3817334, rs17094222, rs2365389, rs1167827, rs758747, rs9925964, rs2650492, rs4740619, 
rs13191362, rs1000940, rs2033529, rs2836754, rs11057405 

Membrane Proteins 
rs6567160, rs13021737, rs3817334, rs2112347, rs3810291, rs7599312, rs1167827, 
rs2075650, rs1000940, rs2033529, rs29941 

Hormone 
metabolism/regulation 

rs10182181, rs3888190, rs2176598, rs17203016 

Purine/Pyrimidine rs17024393, rs2365389, rs11191560, rs977747 

Monogenic Obesity and/or 
Energy Homeostasis 

rs1558902, rs6567160, rs11030104, rs10182181, rs3888190, rs4256980, rs7164727, 
rs3736485, rs6465468 

Immune system 
rs3817334, rs2112347, rs13078960, rs12286929, rs17094222, rs12401738, rs12885454, 
rs9641123, rs758747, rs1928295, rs9925964, rs11847697, rs2075650, rs9374842, 
rs13201877 

Limb development rs2207139, rs6804842, rs10733682 

Ubiquitin pathways rs1016287, rs12401738, rs205262, rs9925964, rs13191362, rs1528435 

Glucose homeostasis and/or 
diabetes 

rs6567160, rs2287019, rs3817334, rs7903146, rs12940622, rs7164727, rs2176040, 
rs11583200, rs9400239, rs3849570, rs17203016 

Cell cycle 
rs1558902, rs10182181, rs2112347, rs657452, rs1016287, rs4256980, rs12401738, 
rs12885454, rs1167827, rs758747, rs9925964, rs7164727, rs11847697, rs492400, rs1000940, 
rs11057405, rs9914578, rs977747, rs9374842, rs4787491, rs2245368, rs1808579, rs1460676 

DNA repair (nuclear trafficking) rs4256980, rs2820292, rs1167827, rs17001654 

Muscle biology rs10938397, rs3888190, rs3817334, rs9925964, rs3849570, rs4787491 
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4.3. Results 

4.3.1. Macronutrient intake and BMI results 

 Results from observational analyses in UK Biobank 

Strong positive associations were observed between BMI and g/d intake of protein, fat, 

carbohydrates, saturated fat and polyunsaturated fat (Figure 7a; Table 11; Table 12). 

The effect sizes were larger in men than women. A positive association was also 

observed between BMI and g/d intake of sugar in men but not women. Fibre intake 

(g/d) was negatively associated with BMI. 

In analyses where macronutrients were quantified as percentage of total energy intake, 

BMI was positively associated with fat, saturated fat and polyunsaturated fat intake, and 

effect estimates were similar in men and women (Figure 7b; Table 11; Table 12;). BMI 

was negatively associated with carbohydrate and total sugar intake, and these effect 

estimates were much larger in men than women. BMI was positively associated with 

protein intake in women but not men.  
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Figure 7 – Forest plots of diet → BMI associations. 

Using average (from all five questionnaires) diet variables. BMI is measured in kg/m2. 

(a) Macronutrients quantified as g/day 

 

(b) Macronutrients quantified as % energy intake. 
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Table 11 – Diet → BMI associations. 

Using average (from all five questionnaires) diet variables. BMI is measured in kg/m2. N=54,100 in analyses with both 
sexes, N=31,169 in female only analyses and N=22,931 in male only analyses. 

 Both sexes Female only Male only 

 Beta 95% CI p-value Beta 95% CI p-value Beta 95% CI p-value 

Energy (kJ/d) 2.60 × 10-4 
2.44 × 10-4, 
2.75 × 10-4 

1.43 × 10-234 1.77 × 10-4 
1.56 × 10-4, 
1.99 × 10-4 

3.38 × 10-57 3.56 × 10-4 
3.35 × 10-4, 
3.78 × 10-4 

4.30 × 10-223 

Protein (g/d) 0.020 0.019, 0.022 2.77 × 10-194 0.018 0.016, 0.02 3.63 × 10-76 0.022 0.02, 0.024 9.13 × 10-126 

Fat (g/d) 0.015 0.014, 0.016 1.00 × 10-157 0.012 0.01, 0.013 1.32 × 10-49 0.019 0.017, 0.02 3.54 × 10-124 

Carbohydrates 
(g/d) 

0.002 0.002, 0.003 1.46 × 10-28 0.002 0.002, 0.003 6.09 × 10-15 0.002 0.002, 0.003 3.23 × 10-14 

Saturated fat (g/d) 0.033 0.031, 0.036 2.46 × 10-160 0.029 0.026, 0.033 5.33 × 10-60 0.037 0.034, 0.04 3.69 × 10-109 

Polyunsat. fat (g/d) 0.037 0.033, 0.041 1.28 × 10-69 0.031 0.025, 0.037 2.10 × 10-25 0.042 0.037, 0.048 4.36 × 10-49 

Total sugars (g/d) 0.001 0.0002, 0.001 0.01 0.0004 -0.001, 0.001 0.38 0.001 0.0003, 0.002 0.01 

Fibre (g/d) -0.018 -0.023, -0.014 1.29 × 10-14 -0.020 -0.026, -0.013 3.86 × 10-9 -0.017 -0.024, -0.011 2.36 × 10-7 

Protein (%) 0.024 0.015, 0.032 5.02 × 10-8 0.035 0.024, 0.047 6.32 × 10-10 0.003 -0.01, 0.016 0.642248 

Fat (%) 0.022 0.017, 0.026 2.36 × 10-23 0.022 0.016, 0.028 6.28 × 10-14 0.021 0.014, 0.027 1.10 × 10-10 

Carbohydrates (%) -0.036 -0.039, -0.032 4.25 × 10-90 -0.019 -0.024, -0.015 1.80 × 10-15 -0.057 -0.062, -0.052 1.83 × 10-112 

Saturated fat (%) 0.056 0.047, 0.064 4.04 × 10-40 0.060 0.049, 0.071 1.22 × 10-25 0.049 0.037, 0.061 6.24 × 10-16 

Polyunsat. fat (%) 0.030 0.018, 0.042 9.46 × 10-7 0.036 0.019, 0.052 1.72 × 10-5 0.022 0.004, 0.04 0.02 

Total sugars (%) -0.037 -0.041, -0.033 2.59 × 10-69 -0.029 -0.034, -0.023 2.90 × 10-25 -0.049 -0.055, -0.043 1.31 × 10-55 

 

 

Table 12 – BMI → diet associations. 

Using average (from all five questionnaires) diet variables. BMI is measured in kg/m2. N=54,100 in analyses with both 
sexes, N=31,169 in female only analyses and N=22,931 in male only analyses. 

 Both sexes Female only Male only 

 Beta 95% CI p-value Beta 95% CI p-value Beta 95% CI p-value 

Energy (kJ/d) 75.3 70.8, 79.8 1.4 × 10-234 45.8 40.1, 51.4 3.4 × 10-57 121.7 114.3, 129.1 4.3 × 10-223 

Protein (g/d) 0.80 0.75, 0.85 2.8 × 10-194 0.60 0.54, 0.67 3.6 × 10-76 1.10 1.01, 1.19 9.1 × 10-126 

Fat (g/d) 0.87 0.80, 0.93 1.0 × 10-157 0.59 0.51, 0.67 1.3 × 10-49 1.30 1.19, 1.41 3.5 × 10-124 

Carbohydrates 
(g/d) 

0.96 0.79, 1.12 1.5 × 10-28 0.82 0.62, 1.03 6.1 × 10-15 1.11 0.83, 1.40 3.2 × 10-14 

Saturated fat (g/d) 0.40 0.37, 0.43 2.5 × 10-160 0.29 0.26, 0.33 5.3 × 10-60 0.57 0.52, 0.62 3.7 × 10-109 

Polyunsat. fat (g/d) 0.16 0.14, 0.17 1.3 × 10-69 0.11 0.09, 0.13 2.1 × 10-25 0.22 0.19, 0.25 4.4 × 10-49 

Total sugars (g/d) 0.14 0.03, 0.26 0.01 0.06 -0.07, 0.20 0.38 0.25 0.06, 0.44 0.01 

Fibre (g/d) -0.06 -0.08, -0.04 1.3 × 10-14 -0.06 -0.08, -0.04 3.9 × 10-9 -0.07 -0.09, -0.04 2.4 × 10-7 

Protein (%) 0.02 0.01, 0.03 5.0 × 10-8 0.03 0.02, 0.05 6.3 × 10-10 0.00 -0.01, 0.02 0.64 

Fat (%) 0.08 0.07, 0.10 2.4 × 10-23 0.08 0.06, 0.10 6.3 × 10-14 0.09 0.06, 0.11 1.1 × 10-10 

Carbohydrates (%) -0.21 -0.23, -0.19 4.2 × 10-90 -0.11 -0.13, -0.08 1.8 × 10-15 -0.38 -0.42, -0.35 1.8 × 10-112 

Saturated fat (%) 0.06 0.05, 0.07 4.0 × 10-40 0.06 0.05, 0.07 1.2 × 10-25 0.06 0.04, 0.07 6.2 × 10-16 

Polyunsat. fat (%) 0.01 0.01, 0.02 9.5 × 10-7 0.02 0.01, 0.02 1.7 × 10-5 0.01 0.002, 0.02 0.02 

Total sugars (%) -0.16 -0.17, -0.14 2.6 × 10-69 -0.12 -0.14, -0.10 2.9 × 10-25 -0.22 -0.25, -0.19 1.3 × 10-55 
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 Macronutrient intake to BMI - two-sample MR results 

Two-sample MR analyses were conducted to investigate the causal effect of dietary 

intake on BMI. Results of these analyses are given in Figure 8 and Table 13. These results 

suggest that a 1g/d increase in protein intake leads to a decrease in BMI of 0.014kg/m2 

(95% CI 0.002, 0.026), and a 1g/d increase in polyunsaturated fat intake leads to a 

decrease in BMI of 0.043kg/m2 (95% CI 0.004, 0.082). There is also weaker evidence 

suggesting that a 1g/d increase in fat intake leads to a 0.009kg/m2 (-0.003, 0.021) 

decrease in BMI, and a 1g/d increase in saturated fat intake leads to a 0.021kg/m2 (-

0.008, 0.050) decrease in BMI. 

 

Figure 8 – Forest plot of results from diet → BMI two-sample MR analyses. 

Effect sizes are the increase in BMI (kg/m2) per 1g/d increase in macronutrient intake. 
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Table 13 – Results from two-sample MR analyses investigating the causal effect of diet on BMI. 

MR estimates are calculated using the Wald ratio for single SNPs, and IVW where there is more than one SNP. Energy 
is measured in kJ/d, macronutrients are measured in g/d, BMI is measured in kg/m2. LD estimates from 1000 
Genomes European populations. *SNPs that replicated in diet GWAS in previous chapter. 

Trait SNP EA SNP available in GIANT GWAS? Beta 95% CI p-value 

Energy rs7957145 T Yes. -6.53 × 10-6 -1.45 × 10-4, 1.32 × 10-4 0.926 

Protein 
rs838133* G Yes. -0.014 -0.026, -0.002 0.022 

rs13447258 A No. No suitable proxy. - - - 

Carbs 

rs13111413 T Yes. -0.001 -0.005, 0.003 0.640 

rs8097589 A Yes. 0.003 -0.001, 0.007 0.209 

  IVW MR 0.001 -0.003, 0.004 0.670 

Fat rs72828557* T No. Used rs17568354 as a proxy (R2=0.663). -0.009 -0.021, 0.003 0.158 

Saturated fat rs72828557* T No. Used rs17568354 as a proxy (R2=0.663). -0.021 -0.050, 0.008 0.158 

Polyunsaturated fat rs516246* T Yes. -0.043 -0.082, -0.004 0.029 

Fibre rs200553669 G No. No suitable proxy. - - - 

Total sugars 

rs13111413 T Yes. -0.001 -0.008, 0.005 0.640 

rs2842189* C No. Used rs2782640 as a proxy (LD=0.974). -8.57 × 10-5 -0.006, 0.006 0.979 

  IVW MR -0.001 -0.005, 0.004 0.724 
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 BMI allele score and macronutrient intake results from UK 

Biobank 

The relationship between macronutrient intake and the GIANT BMI score and each of 

the LOO weighted allele scores was explored (both sexes, women only, men only) 

(Figure 9 a, b, c respectively). The strongest associations observed were positive 

associations between the allele scores and fibre intake (g/d), mainly driven by the men. 

The allele scores were positively associated with protein intake (g/d and % energy 

intake) in the women. Weak suggestive evidence of positive associations between the 

allele scores and intake of energy (kJ/d), fat (g/d), carbohydrates (g/d) and 

polyunsaturated fat (g/d) was observed in the men. 

The observed effect estimates were mostly directionally consistent with those between 

BMI and the macronutrients, except for fibre intake (g/d) which was negatively 

associated with BMI, but positively associated with the allele scores. 

Generally, the strengths of associations between a macronutrient and the allele scores 

were fairly consistent. However, associations tended to be weaker for the allele scores 

without SNPs in the neuronal developmental processes, hypothalamic expression and 

regulatory function, and endocytosis/exocytosis categories.  
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Figure 9 – Heatmap showing the effect strengths and directions from the relationships between 
the BMI allele scores and macronutrient intake. 

p-values and effect directions are from the model: macronutrient intake ~ BMI allele score + age + sex; N=27,459 for 
both sexes, N=15,847 for women, N=11,612 for men. The relationship between BMI and macronutrient intake is also 
provided for comparison with the allele scores; p-values and effect directions are from the model: macronutrient 
intake ~ BMI + age + sex. Only people with BMIs between 19.5kg/m2 and 34.5kg/m2 were included in the analyses. 
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BMI 0 0 0 0 0 0 0 -0 0 0 -0 0 0 -0

GIANT BMI allele score (97 SNPs) 0.1 0 0.2 0.3 0.8 0.2 0.9 0 0.1 0.9 -0.6 -0.4 0.4 -0.3

w/o Neuronal developmental processes 0.6 0.1 -0.8 0.4 -0.2 0.5 0.6 0 0.1 -0.3 0.8 -0.1 0.7 0.9

w/o Neurotransmission 0.1 0 0.2 0.2 0.7 0.2 0.9 0 0.1 0.8 -0.7 -0.4 0.5 -0.2

w/o Hypothalamic expression & regulatory function 0.1 0 0.6 0.1 0.8 0.4 0.7 0 0.2 -0.4 0.8 -0.3 0.7 -0.5

w/o Neuronal expression 0.1 0 0.1 0.3 0.5 0.1 0.8 0 0.1 0.4 -0.5 -0.7 0.2 -0.2

w/o Lipid biosynthesis and metabolism 0 0 0.1 0.2 0.6 0.1 0.8 0 0.1 0.9 -0.4 -0.4 0.4 -0.2

w/o Bone development 0.1 0 0.3 0.1 0.7 0.2 0.8 0 0.2 0.9 -1 -0.5 0.6 -0.4

w/o Signalling 0.2 0 0.1 0.3 0.5 0.2 1 0 0.2 0.4 -0.8 -0.8 0.3 -0.3

w/o GPCR 0.1 0 0.2 0.2 0.7 0.1 0.8 0 0.1 0.9 -0.6 -0.5 0.4 -0.3

w/o Mitochondrial 0.1 0 0.1 0.5 0.7 0.1 -0.7 0 0.1 0.6 -0.3 -0.5 0.3 -0.1

w/o Retinoic acid receptors 0.2 0 0.2 0.6 0.8 0.3 -0.8 0 0.1 0.7 -0.4 -0.6 0.6 -0.2

w/o Endocytosis/exocytosis 0.1 0 0.1 0.4 0.6 0.3 0.7 0 0.2 0.5 -0.4 -0.7 0.6 -0.4

w/o Eye-related 0.1 0 0.1 0.2 0.7 0.1 0.9 0 0.1 0.8 -0.6 -0.4 0.3 -0.2

w/o Tumorigenesis 0.1 0 0.2 0.6 0.9 0.3 -0.7 0 0.1 0.8 -0.2 -0.4 0.6 -0.1

w/o Apoptosis 0.1 0.1 0.2 0.4 0.8 0.2 0.8 0 0.4 0.7 -0.7 -0.5 0.5 -0.5

w/o Membrane proteins 0.2 0 0.2 0.4 0.8 0.2 -0.9 0 0.2 0.7 -0.7 -0.4 0.3 -0.3

w/o Hormone metabolism/regulation 0.1 0 0.1 0.3 0.7 0.1 0.9 0 0.1 0.7 -0.5 -0.5 0.3 -0.2

w/o Purine/pyrimidine 0.1 0 0.2 0.2 0.8 0.1 1 0 0.1 0.9 -0.6 -0.3 0.3 -0.2

w/o Monogenic obesity and/or energy homeostasis 0 0 0.4 0 0.8 0.2 0.4 0 0.2 -0.4 0.8 -0.2 0.6 -0.5

w/o Immune system 0.2 0 0.4 0.4 -0.7 0.2 -1 0 0.1 1 -0.7 -0.2 0.4 -0.3

w/o Limb development 0.2 0 0.3 0.3 0.9 0.2 0.9 0 0.1 0.8 -0.7 -0.4 0.4 -0.3

w/o Ubiquitin pathways 0.1 0 0.2 0.3 0.9 0.1 0.8 0 0 0.8 -0.6 -0.4 0.4 -0.4

w/o Glucose homeostasis and/or diabetes 0.1 0 0.2 0.3 -0.9 0.1 0.8 0 0.3 0.9 -0.6 -0.2 0.2 -0.4

w/o Cell cycle 0.1 0 0.6 0.2 -0.7 0.2 0.7 0 0 -0.3 -0.7 -0.1 0.7 -0.4

w/o DNA repair 0 0 0.2 0.2 0.8 0.1 0.6 0 0.1 1 -0.6 -0.3 0.4 -0.4

w/o Muscle biology 0.1 0 0.2 0.3 1 0.1 -0.9 0 0.2 0.9 -0.5 -0.2 0.3 -0.2

blank cell

Pos i tive beta  estimates  with p<0.001; p<0.01; p<0.1

blank cel l

Negative beta  estimates  with p<0.001; p<0.01; p<0.1
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(b) Women only 
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BMI 0 0 0 0 0 0 0.4 -0 0 0 -0 0 0 -0

GIANT BMI allele score (97 SNPs) 0.6 0 0.8 -0.8 0.9 0.8 -0.5 0.2 0 1 -0.2 -0.9 0.8 -0.2

w/o Neuronal developmental processes -0.9 0 -0.3 -0.9 -0.3 -0.7 -1 0.3 0 -0.2 -0.8 -0.2 -0.7 -0.8

w/o Neurotransmission 0.7 0 1 -0.9 -1 0.9 -0.5 0.1 0 -0.9 -0.4 -0.7 0.9 -0.2

w/o Hypothalamic expression & regulatory function 0.5 0.1 0.9 0.9 0.7 0.7 -0.5 0.3 0.2 -0.6 -0.5 -0.8 0.7 -0.2

w/o Neuronal expression 0.5 0 0.6 -0.9 0.6 0.5 -0.6 0 0 0.7 -0.2 0.9 0.6 -0.2

w/o Lipid biosynthesis and metabolism 0.2 0 0.5 0.9 0.7 0.5 -0.8 0 0 1 -0.1 -0.7 0.6 -0.2

w/o Bone development 0.8 0 1 -0.9 0.9 -1 -0.6 0.1 0 -1 -0.4 1 -1 -0.3

w/o Signalling -1 0 -0.8 -0.7 -0.8 -0.9 -0.6 0.3 0 -0.8 -0.6 -0.7 0.9 -0.4

w/o GPCR 0.5 0 0.7 -0.9 0.7 0.8 -0.6 0.1 0 1 -0.2 -1 0.9 -0.2

w/o Mitochondrial 0.7 0 0.8 -0.5 1 0.6 -0.3 0.2 0 0.9 -0.1 -0.8 0.6 -0.1

w/o Retinoic acid receptors 0.7 0 0.7 -0.7 0.8 1 -0.5 0.2 0 0.7 -0.2 0.8 -1 -0.2

w/o Endocytosis/exocytosis 0.9 0 0.9 -0.7 0.8 -0.8 -0.4 0.2 0 0.7 -0.3 0.9 -1 -0.2

w/o Eye-related 0.4 0 0.6 1 0.7 0.6 -0.5 0.1 0 1 -0.2 -0.8 0.8 -0.1

w/o Tumorigenesis 0.7 0 -0.8 -0.7 -0.8 -0.8 -0.6 0.3 0 -0.6 -0.2 -0.6 -0.8 -0.2

w/o Apoptosis 0.8 0 1 -1 1 -0.9 -0.7 0.1 0 1 -0.5 -0.9 -0.9 -0.3

w/o Membrane proteins 0.9 0 1 -0.8 -0.9 0.8 -0.7 0.1 0 -1 -0.5 -0.7 0.7 -0.4

w/o Hormone metabolism/regulation 0.5 0 0.7 -0.8 0.8 0.6 -0.5 0.2 0 0.9 -0.2 -1 0.7 -0.1

w/o Purine/pyrimidine 0.4 0 0.5 -0.9 0.6 0.6 -0.5 0.2 0 0.8 -0.2 -1 0.7 -0.1

w/o Monogenic obesity and/or energy homeostasis 0.4 0 -1 0.9 0.9 0.7 -0.6 0.3 0 -0.4 -0.4 -0.5 0.8 -0.2

w/o Immune system 1 0 0.9 -0.5 -0.9 0.8 -0.4 0.2 0 0.7 -0.2 -0.8 0.6 -0.2

w/o Limb development 0.8 0 0.9 -0.6 1 0.8 -0.4 0.4 0 0.9 -0.2 -0.9 0.7 -0.2

w/o Ubiquitin pathways 0.8 0 1 -0.8 1 0.9 -0.6 0.2 0 -0.9 -0.3 -0.9 0.9 -0.3

w/o Glucose homeostasis and/or diabetes 0.9 0 -1 -0.8 -0.7 0.7 -0.7 0.3 0 -0.9 -0.4 -0.5 0.6 -0.5

w/o Cell cycle 0.9 0 -0.6 -0.6 -0.5 0.9 -0.3 0.1 0 -0.5 -0.2 -0.4 0.9 -0.1

w/o DNA repair 0.5 0 0.8 0.9 0.8 0.9 -0.8 0.1 0 -0.9 -0.3 -0.9 -1 -0.3

w/o Muscle biology 0.7 0 0.8 -0.7 -0.8 0.6 -0.4 0.1 0 -0.9 -0.2 -0.5 0.6 -0.1

blank cell

Pos i tive beta  estimates  with p<0.001; p<0.01; p<0.1

blank cel l

Negative beta  estimates  with p<0.001; p<0.01; p<0.1
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(c) Men only 
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BMI 0 0 0 0 0 0 0 -0 0.6 0 -0 0 0 -0

GIANT BMI allele score (97 SNPs) 0 0.4 0.2 0.1 0.9 0.1 0.3 0 -0.4 0.9 0.5 -0.2 0.3 1

w/o Neuronal developmental processes 0.4 -0.9 0.6 0.2 -0.6 0.2 0.4 0 -0.3 -0.8 0.5 -0.2 0.3 0.6

w/o Neurotransmission 0 0.2 0.1 0.1 0.6 0.1 0.4 0 -0.6 0.5 0.7 -0.4 0.4 -0.9

w/o Hypothalamic expression & regulatory function 0.1 0.1 0.5 0 -1 0.4 0.2 0 0.8 -0.5 0.2 -0.2 0.9 0.6

w/o Neuronal expression 0 0.5 0.1 0.1 0.6 0.1 0.4 0 -0.3 0.4 0.7 -0.5 0.2 -0.8

w/o Lipid biosynthesis and metabolism 0.1 0.7 0.1 0.1 0.8 0.1 0.5 0 -0.2 0.8 0.7 -0.3 0.4 -0.8

w/o Bone development 0 0.5 0.1 0 0.7 0.1 0.3 0 -0.2 0.9 0.4 -0.3 0.4 -1

w/o Signalling 0 0.5 0 0.1 0.2 0 0.5 0 -0.3 0.1 0.8 1 0.2 -0.5

w/o GPCR 0.1 0.4 0.1 0.1 0.9 0.1 0.4 0 -0.5 0.8 0.5 -0.3 0.3 -1

w/o Mitochondrial 0 0.3 0.1 0.1 0.6 0 0.5 0 -0.4 0.5 0.9 -0.4 0.3 -0.6

w/o Retinoic acid receptors 0.1 0.7 0.2 0.2 0.9 0.1 0.7 0 -0.2 0.8 0.9 -0.3 0.3 -0.6

w/o Endocytosis/exocytosis 0 0.3 0.1 0.1 0.5 0.1 0.2 0 -0.4 0.6 1 -0.4 0.5 0.7

w/o Eye-related 0.1 0.5 0.1 0.1 0.9 0 0.4 0 -0.3 0.7 0.5 -0.3 0.2 1

w/o Tumorigenesis 0 0.4 0 0.3 0.6 0.1 1 0 -0.3 0.3 -0.7 -0.5 0.2 -0.4

w/o Apoptosis 0.1 1 0.1 0.2 0.8 0.1 0.4 0 -0.1 0.5 1 -0.4 0.3 -1

w/o Membrane proteins 0 0.4 0.1 0.1 0.6 0.1 0.7 0 -0.3 0.5 0.9 -0.4 0.3 -0.5

w/o Hormone metabolism/regulation 0 0.5 0.1 0.1 0.8 0.1 0.4 0 -0.3 0.6 0.6 -0.3 0.2 -1

w/o Purine/pyrimidine 0.1 0.4 0.2 0.1 -0.9 0.1 0.5 0 -0.4 -1 0.4 -0.1 0.3 -0.9

w/o Monogenic obesity and/or energy homeostasis 0 0.2 0.2 0 0.8 0.2 0.1 0 -0.5 -0.7 0.2 -0.2 0.7 0.5

w/o Immune system 0 0.4 0.3 0 -0.7 0.1 0.4 0 -0.4 -0.7 0.4 -0.1 0.4 -0.9

w/o Limb development 0.1 0.9 0.2 0.1 0.9 0.1 0.3 0 -0.1 0.9 0.4 -0.3 0.4 0.8

w/o Ubiquitin pathways 0 0.3 0.1 0.1 0.9 0.1 0.3 0 -0.4 0.7 0.7 -0.3 0.3 0.9

w/o Glucose homeostasis and/or diabetes 0 0.5 0.1 0.1 0.7 0 0.5 0 -0.2 0.8 0.8 -0.2 0.2 -0.6

w/o Cell cycle 0 0.1 0.3 0 -1 0.1 0.1 0 -0.5 -0.4 0.5 -0.1 0.7 0.6

w/o DNA repair 0 0.4 0.1 0.1 1 0 0.3 0 -0.4 0.9 0.6 -0.1 0.2 0.9

w/o Muscle biology 0 0.5 0.1 0.1 0.9 0.1 0.5 0 -0.3 0.8 0.7 -0.3 0.3 -0.7

blank cell

Pos i tive beta  estimates  with p<0.001; p<0.01; p<0.1

blank cel l

Negative beta  estimates  with p<0.001; p<0.01; p<0.1
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4.3.2. Diet PCs and BMI results 

 Results from dietary patterns and BMI analyses in ALSPAC 

Cross-sectional analyses were performed to explore the relationship between the diet 

PCs and BMI at ages 7 and 13 years. Three models were fitted: model 1 was adjusted for 

age and sex; model 2 was adjusted for age, sex and maternal education; and model 3 

was adjusted for age, sex and energy intake (Figure 10; Table 14; Table 15). 

Several of the PCs showed evidence of an association with BMI. The strongest 

associations were a positive association with the age 7 diet diary “packed lunch” PC, and 

negative associations with the age 13 FFQ “snack/sugared drinks” PC, the age 13 diet 

diary “traditional” PC, and the age 7 diet diary “health aware” PC. 

The age 13 FFQ “traditional/health conscious” PC showed a suggestive negative 

association with BMI, which attenuated after adjustment for maternal education. The 

age 13 diet diary “packed lunch” PC was positively associated with BMI in the model 

adjusted for energy intake. 
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Figure 10 - Forest plot of diet → BMI observational analyses. 

Model 1 is adjusted for age and sex; model 2 is adjusted for age, sex and maternal education; model 3 is adjusted for 
age, sex and energy intake. Effect sizes are the increase in BMI per unit increase in diet PC score. DD, diet diary. 
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Table 14 – Results from diet → BMI cross-sectional analyses. 

DD, diet diary. 

 
Adjusted for age and sex Adjusted for age, sex and mat. ed. 

Adjusted for age, sex and 
energy intake 

Beta 95% CI p-value Beta 95% CI p-value Beta 95% CI p-value 

Age 7 – FFQs (N=6,171) (N=6,058)  

FFQ PC 1 “junk” 0.029 -0.013, 0.072 0.179 0.018 -0.026, 0.062 0.430 - - - 

FFQ PC 2 “traditional” 0.027 -0.014, 0.068 0.194 0.026 -0.015, 0.068 0.215 - - - 

FFQ PC 3 “health conscious” -0.016 -0.057, 0.025 0.437 -0.013 -0.055, 0.029 0.535 - - - 

Age 7 – diet diaries (N=6,862) (N=6,308) (N=6,862) 

DD PC 1 “health aware” -0.035 -0.061, -0.01 0.006 -0.028 -0.055, -0.0001 0.049 -0.048 -0.073, -0.022 2.11 × 10-4 

DD PC 2 “traditional” 0.012 -0.015, 0.039 0.382 0.011 -0.016, 0.039 0.413 0.003 -0.023, 0.03 0.799 

DD PC 3 “packed lunch” 0.089 0.061, 0.118 6.26 × 10-10 0.088 0.058, 0.117 6.15 × 10-9 0.078 0.05, 0.106 6.27 × 10-8 

Age 13 – FFQs (N=3,898) (N=3,661)  

FFQ PC 1 “traditional/health 
conscious” 

-0.055 -0.098, -0.012 0.013 -0.038 -0.084, 0.008 0.102 - - - 

FFQ PC 2 “processed” 0.005 -0.041, 0.05 0.832 -0.016 -0.064, 0.032 0.512 - - - 

FFQ PC 3 “snacks/sugared 
drinks” 

-0.157 -0.211, -0.103 1.20 × 10-8 -0.180 -0.236, -0.123 5.49 × 10-10 - - - 

FFQ PC 4 “vegetarian” 0.033 -0.022, 0.089 0.241 0.036 -0.022, 0.094 0.220 - - - 

Age 13 – diet diaries (N=5,691) (N=5,269) (N=5,691) 

DD PC 1 “health aware” -0.011 -0.059, 0.037 0.664 0.025 -0.027, 0.076 0.350 0.002 -0.046, 0.05 0.927 

DD PC 2 “traditional” -0.085 -0.133, -0.036 0.001 -0.086 -0.136, -0.036 0.001 -0.069 -0.117, -0.02 0.006 

DD PC 3 “packed lunch” 0.022 -0.033, 0.076 0.434 0.008 -0.049, 0.066 0.772 0.081 0.024, 0.138 0.005 

 

Table 15 - Results from BMI → diet cross-sectional analyses. 

DD, diet diary. 

 
Adjusted for age and sex 

Adjusted for age, sex and mat. 
ed. 

Adjusted for age, sex and energy 
intake 

Beta 95% CI p-value Beta 95% CI p-value Beta 95% CI p-value 

Age 7 – FFQs (N=6,171) (N=6,058)  

FFQ PC 1 “junk” 0.010 -0.005, 0.025 0.179 0.006 -0.009, 0.02 0.430 - - - 

FFQ PC 2 “traditional” 0.010 -0.005, 0.025 0.194 0.010 -0.006, 0.025 0.215 - - - 

FFQ PC 3 “health conscious” -0.006 -0.021, 0.009 0.437 -0.005 -0.02, 0.01 0.535 - - - 

Age 7 – diet diaries (N=6,862) (N=6,308) (N=6,862) 

DD PC 1 “health aware” -0.031 -0.053, -0.009 0.006 -0.022 -0.044, 0 0.049 -0.042 -0.064, -0.02 2.11 × 10-4 

DD PC 2 “traditional” 0.009 -0.012, 0.03 0.382 0.009 -0.013, 0.031 0.413 0.003 -0.018, 0.024 0.799 

DD PC 3 “packed lunch” 0.062 0.043, 0.082 6.26 × 10-10 0.061 0.04, 0.081 6.15 × 10-9 0.055 0.035, 0.074 6.27 × 10-8 

Age 13 – FFQs (N=3,898) (N=3,661)  

FFQ PC 1 “traditional/health 
conscious” 

-0.029 -0.052, -0.006 0.013 -0.019 -0.042, 0.004 0.102 - - - 

FFQ PC 2 “processed” 0.002 -0.019, 0.024 0.832 -0.007 -0.029, 0.015 0.512 - - - 

FFQ PC 3 “snacks/sugared 
drinks” 

-0.053 -0.071, -0.035 1.20 × 10-8 -0.058 -0.077, -0.04 5.49 × 10-10 - - - 

FFQ PC 4 “vegetarian” 0.011 -0.007, 0.028 0.241 0.011 -0.007, 0.03 0.220 - - - 

Age 13 – diet diaries (N=5,691) (N=5,269) (N=5,691) 

DD PC 1 “health aware” -0.003 -0.017, 0.011 0.664 0.007 -0.007, 0.021 0.350 0.001 -0.013, 0.015 0.927 

DD PC 2 “traditional” -0.024 -0.038, -0.01 6.38 × 10-4 -0.025 -0.04, -0.01 7.71 × 10-4 -0.019 -0.033, -0.006 0.006 

DD PC 3 “packed lunch” 0.005 -0.007, 0.017 0.434 0.002 -0.011, 0.015 0.772 0.017 0.005, 0.029 0.005 
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 BMI allele scores to diet PCs results in ALSPAC 

The 97 SNPs from Locke et al. were divided into overlapping subcategories based on the 

biological role of nearby genes, and LOO weighted allele scores were generated for each 

biological subcategory. Linear regression was performed to test the association between 

each of the 25 allele scores and the 6 diet PCs. Linear regression models were also fitted 

to test the association between the 97-SNP weighted allele score and the diet PCs. 

Models were adjusted for age and sex. 

The heatmap in Figure 11 shows the strength and direction of the relationships between 

the allele scores and the diet PCs. 

Where there is suggestive evidence of associations between the LOO allele scores and 

diet PCs, the effect estimates of the allele scores on the diet PCs are directionally 

consistent with the effect estimates of BMI on the diet PCs. The age 7 diet diary “packed 

lunch” PC associated strongly with all the allele scores, though the association was 

weaker for the LOO neuronal development processes score and the LOO mitochondrial 

score. The age 13 FFQ “snacks/sugared drinks” PC displayed weak negative associations 

with the LOO bone development score and the LOO endocytosis/exocytosis allele score.  
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Figure 11 - Heatmap showing the strengths and effect directions of the relationships between 
the diet PCs and the BMI allele scores. 

P-values and effect directions are from the model: diet PC ~ BMI allele score + age + sex. N=3,152-5,239. The first row 
of the heatmap shows the strengths and effect directions of the relationships between the diet PCs and BMI; p-values 
and effect directions are from the “diet ~ BMI + age + sex” model in Table 12. 
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GIANT BMI allele score (97 SNPs) #### #### #### #### #### ####

w/o Neuronal developmental processes #### #### #### #### #### ####

w/o Neurotransmission #### #### #### #### #### ####

w/o Hypothalamic expression & regulatory function #### #### #### #### #### ####

w/o Neuronal expression #### #### #### #### #### ####

w/o Lipid biosynthesis and metabolism #### #### #### #### #### ####

w/o Bone development #### #### #### #### #### ####

w/o Signalling #### #### #### #### #### ####

w/o GPCR #### #### #### #### #### ####

w/o Mitochondrial #### #### #### #### #### ####

w/o Retinoic acid receptors #### #### #### #### #### ####

w/o Endocytosis/exocytosis #### #### #### #### #### ####

w/o Eye-related #### #### #### #### #### ####

w/o Tumorigenesis #### #### #### #### #### ####

w/o Apoptosis #### #### #### #### #### ####

w/o Membrane proteins #### #### #### #### #### ####

w/o Hormone metabolism/regulation #### #### #### #### #### ####

w/o Purine/pyrimidine #### #### #### #### #### ####

w/o Monogenic obesity and/or energy homeostasis #### #### #### #### #### ####

w/o Immune system #### #### #### #### #### ####

w/o Limb development #### #### #### #### #### ####

w/o Ubiquitin pathways #### #### #### #### #### ####

w/o Glucose homeostasis and/or diabetes #### #### #### #### #### ####

w/o Cell cycle #### #### #### #### #### ####

w/o DNA repair #### #### #### #### #### ####

w/o Muscle biology #### #### #### #### #### ####
blank cell

Pos i tive beta  estimates  with p<10-4; p<0.01; p<0.1

Negative beta  estimates  with p<10-4; p<0.01; p<0.1
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4.4. Discussion 

Using data from two major cohort studies (UK Biobank and ALSPAC), the analyses 

presented in this chapter sought to characterise the relationship between dietary 

behaviours and BMI. This involved both observational associations which highlighted 

links and the application of MR, where possible, to attribute direction of a causal 

pathway. 

Observational analysis 

Observational analyses identified several strong links between dietary behaviours and 

BMI. Associations observed in UK Biobank between macronutrient intake and BMI 

tended to be stronger than those observed in ALSPAC between the diet PCs and BMI, 

though this may, in part, be due to the far greater sample size available in UK Biobank. 

Analyses in UK Biobank and ALSPAC both observed a negative association between 

adiposity and fibre intake, captured as g/day in UK Biobank and as a dietary pattern 

characterised by intake of high fibre foods such as fresh fruit and high fibre bread in 

ALSPAC. Previous studies have also observed negative associations between fibre intake 

and adiposity.24,28 

Analysis of the relationship between the “snacks/sugared drink” intake PC (characterised 

by higher intakes of crisps, biscuits, chocolate, sweets, squash and fizzy drinks) and BMI 

in the ALSPAC teenagers at age 13 found that this dietary pattern was associated with a 

lower BMI, which is surprising. A possible explanation for this is that the teenagers are 

snacking rather than eating proper meals. Many of the foods in this dietary pattern are 

high in sugar, hence the negative association between this dietary pattern and BMI fits 

with the observed negative association between percentage sugar intake and BMI in UK 

Biobank. 

Causal analysis 

MR analyses were conducted to assess the causal effect of macronutrient intake on BMI. 

Macronutrients were instrumented using the SNPs identified in the UK Biobank diet 
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GWAS in Chapter 3, hence one-sample MR could not be conducted in UK Biobank as this 

would lead to overfitting.210,211 Instead, two-sample MR was conducted using SNP-

macronutrient coefficients from the UK Biobank GWAS and SNP-BMI coefficients from a 

large published BMI GWAS.52 

MR, however, is limited by the availability of genetic instruments, which was 

problematic here since few genetic instruments exist for macronutrient intake, and none 

have been identified for the ALSPAC diet PCs. MR requires the instrument not to be 

associated with any confounders.55 Three of the SNPs used as genetic instruments in the 

2-sample MR diet to BMI analysis have been previously reported to be associated with 

several other traits (Table 6). Some of these reported traits may confound the 

relationship between diet and BMI, for example resting metabolic rate which was 

associated with rs838133 and rs516246.151 

MR requires the outcome to only be associated with the instrument through the 

exposure.55 However, this condition does not hold for the 97-SNP BMI score from Locke 

et al.52 in MR analyses of BMI on diet since some of the loci are thought to influence 

appetite.208,213 Instead, analyses were performed using LOO allele scores. The heatmaps 

of the associations in UK Biobank between the LOO allele scores and macronutrient 

intake show that the associations were weaker for allele scores without SNPs in the 

neuronal developmental processes, hypothalamic expression and regulatory function, 

and endocytosis/exocytosis categories. The association between the age 7 “packed 

lunch” PC and the LOO neuronal developmental processes allele score in ALSPAC was 

also weaker than other scores. This suggests that some of the BMI SNPs may influence 

dietary choices, and hence BMI. 

The evidence observed from the analyses undertaken in this chapter is not strong 

enough to come to a definitive conclusion on the causal relationship between dietary 

behaviour and BMI. Results from the causal analyses suggest that the relationship 

between diet and BMI is bidirectional. This is highly plausible since basal energy 

demands vary by BMI. The two-sample MR analysis results suggest that macronutrient 

intake (in particular, protein intake and polyunsaturated fat intake) may have a causal 
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effect on BMI. However, these results are based on single SNPs, and hence further 

investigation is needed for clarification. Results from analyses exploring the relationship 

between BMI allele scores and dietary behaviour imply that BMI also influences diet, 

since the LOO analyses suggest that the association between the BMI allele score and 

macronutrient intake is not fully explained by the BMI SNPs exerting an effect on BMI 

through dietary behaviour. 

Future directions 

Future analyses would benefit from the use of better dietary measures to identify robust 

genetic instruments for dietary behaviour that could be implemented in an MR 

framework (3.4.3). More refined measures of body composition, such as DXA 

assessments, could also be used since BMI alone does not give an adequate measure of 

health and wellbeing, as is illustrated by the association observed between a higher 

snacks/sugared drink intake and lower BMI. 
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CHAPTER 5.  BMI AND THE 

METABOLOME  
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5.1. Introduction 

Numerous studies have observed strong associations between adiposity and the human 

serum metabolome.68-78 Most of these studies are cross-sectional and hence did not 

investigate the direction of causality. Some studies attempted to establish the direction 

of causality using genetic methods such as MR or by longitudinal analysis. Studies have 

used various adiposity measures, including BMI,70,73,74 waist circumference,71 android fat 

(%) and fat mass.72 Two studies did an obese case-control analysis.68,69 The following 

subsections review the literature describing the relationship between the human 

serum/plasma metabolome and adiposity. 

5.1.1. Observational relationships between adiposity and the 

metabolome 

 Children 

Wahl et al. and Perng et al. both used mass-spectrometry based approaches to compare 

the metabolite profiles of normal-weight children with those of obese children.68,69 Wahl 

et al. compared serum metabolite profiles of normal-weight children (n=40) against 

obese children (n=80) and observed significant differences for 14 metabolite 

concentrations, including some amino acids (glutamine, methionine and proline) and 

phosphatidylcholines, and 69 metabolite ratios.68 Compared to normal-weight children, 

amino acid concentrations in obese children were 20%, 22% and 30% lower for 

glutamine, methionine and proline respectively. 

Rather than studying individual metabolites, Perng et al. used PCA to consolidate 345 

metabolites (from plasma) into 18 factors and then compared the factor scores of ‘lean’ 

children (n=150) and ‘obese’ children (n=84).69 These metabolite factors capture 

patterns based on correlations between the individual metabolites. Perng et al. 

observed significant differences for two of the factors: one characterised by positive 

loadings of amino acids phenylalanine, valine, leucine and isoleucine, and the other by 

positive loadings of androgen hormones. Both factors were higher in obese children 
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than lean children. The advantages of using PCA in this context are that it reduces the 

total number of variables to be studied in relation to adiposity, and that it enables 

identification of the metabolite patterns that are most strongly associated with 

adiposity. However, the use of PCA here results in a loss of information compared to 

using the individual metabolites. 

 Young adults 

Studies of young adults have also observed strong links between adiposity and the 

metabolome including lipoproteins, amino acids and fatty acids.70,71 Würtz et al. studied 

the relationship between BMI and the serum metabolite profile in >12,000 adolescents 

and young adults from four population-based cohorts in Finland.70 They used an NMR 

platform to quantify 67 serum metabolic measures. They also assayed 15 plasma 

metabolic measures including inflammatory markers and hormones. Würtz et al. 

observed cross-sectional associations between BMI and 68 of the 82 metabolites they 

studied. These included positive associations with phenylalanine, valine, leucine and 

isoleucine, consistent with findings by Perng et al.69 Würtz found that elevated BMI was 

associated with adverse changes in the metabolite profile. 

Bogl et al., in their study of young adults (n=1368, mean age 24.3 ± 0.1 years), used an 

NMR platform to quantify serum metabolites and found that waist circumference (WC) 

was associated with 50 of the 56 metabolites they studied.71 Their findings included 

positive correlations with VLDLs, LDLs, small HDLs, total cholesterol and ApoB, and 

negative correlations with large HDLs. Their findings also included associations with 

some fatty acids, amino acids and glycolysis-related metabolites. They did not observe 

associations with lactate, histidine, acetate or creatinine. Their findings are mostly 

consistent with those by Würtz et al.,70 though for some metabolites one of the studies 

detected an association where the other did not. In a smaller sample (n=286, mean age 

28.7 ± 0.2 years), they studied other obesity measures, including android fat (%) and 

subcutaneous fat, and found that abdominal fat is overall most strongly associated with 

an adverse metabolite profile. 
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 Middle-aged and older adults 

There have also been studies of (or including) middle-aged and older adults.72-74 Boulet 

et al. studied women between the ages of 37 and 59 years.72 Their analyses are detailed, 

however their sample size is quite small (59 adults). They used mass-spectrometry to 

quantify 138 plasma metabolites and then performed PCA to reduce the dimensionality 

of the metabolite data. They found that obese women had significantly higher branched-

chain amino acid levels than lean or overweight women; this is consistent with findings 

described above in children and young adults.69-71 

Ho et al. also observed associations between BMI and several metabolites including 

positive associations with branched-chain amino acids.73 They studied 2,383 adults 

(mean age 55 ± 10 years) from the Framingham Offspring cohort and used mass 

spectrometry to measure levels of 217 plasma metabolites, of which 69 were associated 

with BMI. 

Moore et al. performed a meta-analysis of three studies examining the cross-sectional 

associations between metabolite levels and BMI and identified 37 metabolites 

associated with BMI.74 Consistent with Würtz et al.,70 they observed positive 

associations with lactate, glycerol and the amino acids valine, tyrosine, leucine and 

phenylalanine. The studies (in the Moore et al. meta-analysis) used mass spectrometry 

to measure levels of 317 metabolites from blood samples. 

5.1.2. Causality in the relationship between adiposity and 

metabolites 

Würtz et al. found that elevated BMI was associated with adverse changes in the 

metabolite profile in young adults.70 Having made this observation, they then used MR 

to investigate causality.54 Their genetic-predisposition score for elevated BMI was 

associated with multiple metabolites, which suggests that adiposity has a causal effect 

on the metabolic profile. They also followed-up c.1,500 young adults over a 6-year 

period and found that the change in BMI was associated with changes in the metabolite 

profile, suggesting that the metabolite profile is modifiable. 
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Whereas Würtz et al. studied a detailed metabolite profile made up of more than 80 

metabolites, Holmes et al. and Freathy et al. focused on a small number of metabolic 

traits.75,76 Holmes et al. conducted MR analyses to investigate the effect of BMI on 14 

cardiometabolic traits in adults.75 Their results suggest that BMI has a causal effect on 

some of these traits including fasting glucose and HDL cholesterol, but not LDL 

cholesterol where the instrumental variable (IV) analysis estimate was directionally 

opposite to the observational estimate. The observational effect estimate of BMI on HDL 

cholesterol was -0.02 (-0.02, -0.02) mmol/l per 1kg/m2 increase in BMI, and the IV 

estimate of BMI on HDL cholesterol was -0.02 (-0.03, -0.01) mmol/l per 1kg/m2 increase 

in BMI. 

Freathy et al. tested the association between genetic variants in FTO and 10 metabolic 

traits in adults and observed associations for 4 of them: triglycerides, HDL cholesterol, 

fasting glucose and fasting insulin.76 They used a triangulation approach76 to investigate 

causality and found that the effect sizes for the pairwise associations between FTO, BMI 

and the metabolic traits are consistent with BMI having a causal effect on the metabolic 

traits. The observational and IV estimates for the effect of BMI on HDL cholesterol were 

both negative, which is consistent with the findings of Würtz et al. and Holmes et al.70,75 

5.1.3. Aims and objectives 

Whilst the work of Würtz et al. has demonstrated the effect of adiposity on metabolic 

signatures from early adulthood onwards, there is no published data exploring the 

relationship between adiposity and the metabolome in childhood. The growing obesity 

epidemic impacting across the lifecourse is a major public health concern in many 

countries, therefore understanding the causes and consequences of adiposity is 

important at all ages. The aim of these analyses is to explore the relationship between 

adiposity and the metabolome during childhood and adolescence and to determine 

whether the relationships during this crucial developmental period are consistent with 

or differ from those in adulthood. Adiposity is measured by BMI. 
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Chapter objectives: 

i) Assess the cross-sectional relationship between BMI and the metabolome in the 

ALSPAC participants at ages 7 and 15 years 

ii) Conduct MR analyses to explore the causal effect of BMI on the metabolome at 

age 7 years 

iii) Conduct longitudinal analyses to test whether change in BMI between age 7 and 

15 is associated with changes in the metabolome between age 7 and 15 

5.2. Methods 

5.2.1. Metabolite quantification 

Metabolite profiles for ALSPAC participants have been generated from serum samples 

taken at age 7 and 15 years.110 Samples from the 7-year-olds are non-fasting samples, 

whereas samples from the 15-year-olds are fasting samples. The metabolic measures 

were quantified using a high-throughput serum nuclear magnetic resonance (NMR) 

platform, which measures levels of >200 metabolites.57,110 

5.2.2. Data preparation 

 7-year-olds’ metabolites 

Metabolites with skewed distributions (skewness > 2) were normalized by applying a 

log-transformation prior to analysis, like in the analyses by Würtz et al.214 All metabolite 

concentrations were scaled to standard deviation units, allowing for easy comparison of 

effect sizes in later analyses. 

PCA could be used to generate metabolite patterns from the individual metabolites. This 

would reduce the number of variables to analyse, however it would also result in a loss 

of information. The decision of whether to use metabolite patterns or individual 

metabolites depends on the question of interest, so for these analyses individual 

metabolite data was used. A major aim of these analyses is to compare the effect sizes 

of BMI on metabolites in childhood and adolescence with previously observed effect 
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sizes from the literature, and principal components would not be comparable across 

studies. 

 15-year-olds’ metabolites 

In order to be able to compare metabolite data from age 15 with that from age 7, similar 

transformations were applied to the 15-year-olds’ metabolite data. Specifically, 

metabolite measures in the 15-year-olds were log-transformed if (and only if) that 

metabolite measure had a skewed distribution in the 7-year-olds. The 15-year-olds’ 

metabolite data was then scaled to 15-year-olds’ metabolite standard deviation units. 

Although this means that the 15-year-olds’ metabolite data does not have the same 

scale as the 7-year-olds, scaling the data to standard deviation units from the 15-year-

olds rather than the 7-year-olds was more appropriate because the metabolite 

distributions at age 15 are different to those at age 7. Scaling the data this way enables 

detection of differences in metabolite profiles between individuals, rather than typical 

within-individual changes in metabolite levels as the children grow older. 

 Correction for multiple testing 

Since most of the metabolic measures are strongly correlated, use of a Bonferroni 

correction would be overly conservative. A similar approach to Würtz et al. was taken: 

principal components analysis (PCA) was performed to consolidate the metabolic 

measures and calculate how many principal components (PCs) are needed to account 

for at least 95% of the variance.70 It was calculated that for the 7-year-olds’ metabolite 

data the top 18 PCs are needed to account for 95% of the variance. Since cross-sectional, 

longitudinal and MR analyses are being performed, 3×18=54 was taken to be the 

number of tests for the Bonferroni correction, which resulted in defining 

p<0.05/54≈0.001 to be the statistical significance threshold, based on the arbitrary p-

value threshold of p<0.05. PCA was performed in R (version 3.3.3) using the pca function 

from the pcaMethods package. 
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5.2.3. Cross-sectional analyses 

Cross-sectional analyses were performed at ages 7 and 15 years. First, the cross-

sectional relationship between BMI and the metabolome at age 7 was investigated. For 

each metabolic measure, linear regression was performed (using the lm function from 

the stats package), with BMI as the explanatory variable and the metabolic measure as 

the outcome variable, adjusting for age and sex. 

Metabolite ~ BMI + age + sex 

(ALSPAC children at age 7 years) 

To be able to compare these results from the 7-year-olds with the Würtz et al. young 

adults’ results (mean age 26 years) and results from the ALSPAC children at age 15, the 

analyses were repeated at 15 years for the metabolites for which strong associations 

had been observed at age 7 years and for which cross-sectional results were available 

from the Würtz et al. young adults.70 

Metabolite ~ BMI + age + sex 

(ALSPAC children at age 15 years) 

Since Würtz et al. applied log-transformations to their metabolites according to the 

skewness of their data, the metabolites that they transformed differ a little to those that 

are transformed in these analyses. To be consistent with these analysis models, log-

transformations or inverse log-transformations were applied to their results according to 

the log-transformations that were applied to the ALSPAC metabolite variables. 

5.2.4. Mendelian randomization analyses 

Having observed cross-sectional associations between BMI and several of the metabolite 

measures, MR analyses were performed in R (version 3.3.3) using the two-stage least 

squares method (using the ivreg function from the AER package) to assess whether the 

observed cross-sectional associations between BMI and metabolites at age 7 years 
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represent a causal effect of BMI on the metabolome. The GIANT BMI score was used as 

the genetic instrument for BMI (2.2.4).52 MR-Egger regression was performed (using the 

mr_egger function from the MendelianRandomization package) (2.2.4.2), which is a 

pleiotropy-robust method, to assess the validity of using the GIANT BMI score as a 

genetic instrument in these analyses. 

5.2.5. Longitudinal analyses 

Longitudinal analyses were performed to investigate whether change in BMI between 

the ages of 7 and 15 years is associated with the change in metabolite levels across the 

same period. 

One approach could be to use the raw changes in BMI and metabolites between the 

ages of 7 and 15 years. That is, defining change in BMI as the difference in kg/m2 

between their absolute BMI at age 7 and age 15. However, using the raw change in BMI 

between these ages may not be a good representation of change in adiposity because of 

the normal physical development a child undergoes throughout childhood and 

adolescence. For example, a child with BMI of 20kg/m2 at age 7 years is usually 

considered to be overweight, but a 15-year-old with the same BMI is a healthy weight. 

Instead, to gain a better understanding of how a child’s BMI changes over time 

compared to their contemporaries, z-scores were used. BMI z-scores were generated in 

the 7-year-olds and 15-year-olds separately and then for each child the difference 

between their two z-scores was calculated. For example, if a child’s BMI is much lower 

than average at age 7 but by the age of 15 their BMI is only slightly below average then 

they will have a positive increase in z-score. The change in z-scores for the metabolites 

was also calculated. 

For each of the metabolites, linear regression was performed (using the lm function 

from the stats package), with change in metabolite z-score between 7 and 15 years as 

the outcome variable and change in BMI z-score between 7 and 15 years as the 

explanatory variable, adjusting for age at baseline (7 years) and sex. 
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(Change in metabolite z-score) ~ (Change in BMI z-score) + (age at baseline) + sex 

5.3. Results 

5.3.1. Cross-sectional analyses 

At age 7 years associations were observed between BMI and 108 of the 160 metabolite 

measures studied, using p-value threshold p < 0.001 (Figure 12). Associations were 

observed for all but one of the VLDL concentration measures, the majority of the HDL 

concentration measures, and several other measures including apolipoproteins, fatty 

acids and amino acids. The VLDLs were positively associated with BMI and the HDLs 

were negatively associated with BMI. 

The forest plot in Figure 13 shows how the age 7 results compare with the age 15 results 

and the Würtz young adult results (plot only includes metabolites that were associated 

at age 7 and have results available at age 15 and in Würtz young adults). The Würtz 

metabolites were log-transformed so that they are on the same scale as the ALSPAC 

metabolites. The effect estimates are mostly in the same direction in all three samples, 

the exceptions being for estimated fatty acid chain length (effect estimates are positive 

at age 7 and 15 and negative in the young adults) and lactate (effect estimates are 

negative at age 7 and positive at age 15 and in the young adults). 

If the magnitude of the effect of BMI on metabolites changes with age and this change is 

consistent from childhood into young adulthood, then one would expect the age 15 

effect estimates to lie between (or at least overlap with both of) the age 7 and young 

adult effect estimates. This is most clearly observed for creatinine where the age 15 

effect estimate lies between the age 7 and young adult effect estimates and the 

confidence intervals do not overlap. 
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5.3.2. MR analyses 

The causal effect estimates from MR analyses were mostly directionally consistent with 

the observational estimates, however the confidence intervals of the causal effect 

estimates were wide and, for 77 (out of 106) metabolites, spanned zero. 

For most of the metabolites the cross-sectional effect estimate confidence interval falls 

completely within the MR effect estimate confidence interval. The only exceptions are 

three amino acids (histidine, valine and tyrosine) though there is still some overlap. The 

MR effect estimates for valine and tyrosine are directionally consistent with but larger 

than the cross-sectional effect estimates. The cross-sectional and MR effect estimates 

for histidine are directionally inconsistent – the cross-sectional estimate is positive 

whereas the MR estimate is negative (though its confidence interval spans zero). 

Metabolites with MR confidence intervals that did not span zero include: cholesterol and 

cholesterol esters for most of the VLDL sub-classes; all the particle types for the medium 

and small VLDL sub-classes; HDL triglycerides; some amino acids; creatinine; and 

glycoprotein acetyls.  
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Figure 12 – Forest plots of cross-sectional associations of metabolites and BMI in the ALSPAC 
children at age 7. 

Effect estimates are the 1-SD increase in metabolite concentration per unit increase in BMI (kg/m2). The point 
estimates are represented by a square p<0.001, and a circle otherwise. The lines though the points are the 95% CIs. 
The metabolites have been divided into two plots. The first plot (below) shows the results for the fourteen lipoprotein 
subclasses and their lipid measures, and the second plot (following page) shows results for the remaining metabolite 
measures. N=5,414. 
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Figure 13 – Forest plot comparing cross-sectional effect estimates from the ALSPAC children at 
ages 7 and 15 and the Würtz young adults. 

Effect estimates are the 1-SD increase in metabolite concentration per unit increase in BMI (kg/m2). The lines though 
the points are the 95% CIs. N=5,305-5,416 at age 7. N=3,094-3,286 at age 15. N=12,664 in adults. 
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Figure 14 shows a correlation plot of the cross-sectional and MR analyses, showing the 

line of best fit (gradient=0.84; intercept=0.01), the effect estimates and confidence 

intervals, and R2 = 0.84. Hence overall the cross-sectional and MR effect estimates are 

similar. 

Figure 15 shows forest plots comparing MR and cross-sectional results. 

For each metabolite, a classic z-statistic was calculated to compare the cross-sectional 

and MR effect estimates. Evidence was not observed for differences between the 

estimates – out of the 106 metabolites the smallest p-values were p=0.052 (histidine) 

and p=0.087 (valine). Although some of the beta estimates differ a lot between the 

cross-sectional and MR analyses, the MR confidence intervals are wide which makes it 

hard to rule out or confirm a causal effect of BMI on metabolites. 

The results of the MR-Egger sensitivity analyses (in appendix) suggest that pleiotropy 

may be an issue for the MR analyses of BMI with tyrosine and creatinine since the MR-

Egger intercepts have small p-values. 

Overall, these MR analyses give evidence of a causal effect of BMI in childhood on 

several metabolites, including VLDLs, HDL triglycerides, amino acids and creatinine. 
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Figure 14 – Correlation plot of effect estimates (and 95% CIs) from cross-sectional and MR 
analyses. 

The effect estimates are 1-SD increase in metabolite concentration per unit increase in BMI (kg/m2). The data points 
are the effect estimates, and the error bars are the 95% CIs. The diagonal grey dotted line is the y=x line, and the red 
dotted line is the line of best fit. 
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Figure 15 – Forest plots comparing effect estimates from cross-sectional and MR analyses in the 
ALSPAC children at age 7. 

Effect estimates are the 1-SD increase in metabolite concentration per unit increase in BMI (kg/m2). The lines though 
the points are the 95% CIs. Metabolites are only included if they were cross-sectionally associated with BMI at age 7 
years. The metabolites have been divided into two plots. The first plot (below) shows the results for the fourteen 
lipoprotein subclasses and their lipid measures, and the second plot (following page) shows results for the remaining 
metabolite measures. N=5,305-5,416 for cross-sectional analyses. N=4,380-4,469 for MR analyses. 
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5.3.3. Longitudinal analyses 

All the VLDL measures show positive longitudinal associations between change in level 

and change in BMI. Phospholipids in LDLs also show positive associations. Most of the 

very large and large HDL measures show negative longitudinal associations, except for 

the triglycerides. Overall, the triglyceride effect estimates differ most from the other 

particles in the LDL and HDL categories, and the triglyceride effect estimates tend to be 

in the opposite direction. 

Change in VLDL particle size is positively associated with change in BMI. LDL and HDL 

particle sizes are negatively associated with BMI. In the cholesterol category of 

metabolite measures, change in VLDL and remnant cholesterol are positively associated 

with change in BMI, and change in HDL cholesterol is negatively associated. In the 

glycerides and phospholipids category, triglycerides (except LDL triglycerides) are 

positively longitudinally associated with BMI. 

Change in ApoA-I is negatively associated with change in BMI, whereas change in ApoB is 

positively associated. Change in some fatty acids, including MUFA, are associated with 

change in BMI. Most of the amino acids are positively longitudinally associated with 

BMI, as are some other metabolites including pyruvate, creatinine and glycoprotein 

acetyls. 

Figure 16 shows forest plots of the longitudinal results. 

  



126 

Figure 16 – Forest plots showing effect estimates for the relationship between change in 
metabolite z-score and change in BMI z-score between the age 7 and 15 years. 

Effect estimates are the 1-SD increase in metabolite concentration per unit increase in BMI z-score. The point 
estimates are represented by a square p<0.001, and a circle otherwise. The lines though the points are the 95% CIs. 
The metabolites have been divided into two plots. The first plot (below) shows the results for the fourteen lipoprotein 
subclasses and their lipid measures, and the second plot (following page) shows results for the remaining metabolite 
measures. N=2,049-2,181. 
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5.4. Discussion 

These analyses show strong evidence of associations between BMI and several 

metabolite measures in childhood and adolescence. The results of the MR analyses 

indicate that a genetic predisposition to higher BMI is associated with metabolite levels 

in childhood, which suggests that adiposity has a causal effect on the childhood 

metabolic profile, however for several of the metabolites the evidence is not conclusive. 

Cross-sectional findings 

Overall, these cross-sectional results in childhood and adolescence are similar to 

previously published results in adult population samples by Würtz et al. and Bogl et 

al.70,71 Consistent with those studies, BMI is positively associated with VLDLs and 

triglycerides and negatively associated with large HDLs. Also consistent with those 

studies, BMI is positively associated with ApoB, the MUFAs to total FAs ratio, isoleucine, 

leucine, valine, phenylalanine, tyrosine and glycoprotein; and negatively associated with 

HDL cholesterol, the omega-6 to total FAs ratio, the PUFAs to total FAs ratio and 

glutamine. 

The cross-sectional effect estimates from the ALSPAC 7- and 15-year-olds are mostly 

directionally consistent with results by Moore et al.74 However the ALSPAC 7-year-olds’ 

cross-sectional effect estimates are directionally inconsistent with Moore et al. for 

lactate and histidine. The cross-sectional effect estimate for lactate is negative in the 

ALSPAC 7-year-olds, but positive in the ALSPAC 15-year-olds, the Würtz young adults, 

the Moore adults, and also the Ho et al. adults.73 The cross-sectional effect estimate for 

histidine is negative in the Moore adults, but positive in the ALSPAC 7- and 15-year-olds 

and the Würtz young adults (though the CIs for the 15-year-olds and the Würtz young 

adults span zero). 

Figure 13 shows the cross-sectional effect estimates for the relationships between BMI 

and metabolome observed in the ALSPAC 7-year-olds, the ALSPAC 15-year-olds, and the 

Würtz young adults. For most of the metabolites, the cross-sectional effect sizes are 

similar between the groups and the confidence intervals overlap. This suggests that the 
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cross-sectional associations between BMI and these metabolites are consistent in 

direction and magnitude between from childhood, throughout adolescence and into 

young adulthood. The most notable exceptions to this are for estimated fatty acid chain 

length, lactate and creatinine. In all three of these exceptions, the age 15 cross-sectional 

effect estimate lies between the age 7 cross-sectional estimate and the young adult 

cross-sectional estimate, which suggests that the cross-sectional relationship between 

BMI and these metabolites changes with age. 

Serum creatinine is a commonly used index of renal function due to its inverse 

relationship with glomerular filtration rate (GFR).215 Glomerular filtration is the process 

by which the kidneys clear excess waste products (such as creatinine and urea) and 

fluids from the blood. Other factors known to be associated with GFR include age, sex, 

ethnicity, albumin concentration and urea nitrogen concentration.216 Since GFR is lower 

in older adults, one could expect serum creatinine concentration to be higher in older 

adults. Obesity, along with diabetes and hypertension, is a known risk factor for chronic 

kidney disease.217 Therefore, it is reasonable to expect creatinine levels to be higher in 

people with higher BMIs, which is consistent with the cross-sectional findings in the 

ALSPAC children (Figure 13). 

These results show that the cross-sectional effect magnitude of BMI on creatinine 

decreases with age (Figure 13). A possible explanation for this could be that since kidney 

function tends to decrease with age anyway, the effect of BMI on kidney function 

becomes less pronounced with age. 

Mendelian randomization findings in the 7-year-olds 

The results of the MR analyses suggest that adiposity may have a causal effect on the 

metabolite levels in childhood, however for several of the metabolites the evidence is 

not conclusive since confidence intervals are wide and several span zero. The 

observational and MR estimates for the effect of BMI on HDL cholesterol were both 

negative, consistent with previous findings.70,75,76 Strong evidence of causal effects was 

observed for isoleucine, leucine, valine and tyrosine both in these analyses and in 

analyses by Würtz et al.70 



130 

The 7-year-olds’ causal effect estimates and observational effect estimates were mostly 

directionally consistent, or if not then the observational point estimate was contained 

within the causal estimate’s confidence interval. The exception to this was for histidine, 

where the observational effect estimate was positive and the causal effect estimate was 

negative. These conflicting results for histidine are not surprising, since the cross-

sectional association with BMI was not observed in the ALSPAC 15-year-olds, and since 

Moore et al. observed a negative cross-sectional effect estimate in adults.74 

Longitudinal results 

The longitudinal results are broadly consistent with results from longitudinal analyses by 

Würtz et al., including positive associations of BMI with VLDL, VLDL cholesterol, total 

fatty acids, omega-3 fatty acids, MUFA, saturated fatty acids and branched-chain and 

aromatic amino acids, and negative associations of BMI with HDL and HDL cholesterol.70 

Application and interpretation of findings 

Hivert et al. 2015 discuss the potential for metabolites to be used as markers for 

complex phenotypes such as dietary intake; this is explored in Chapter 6.218 They also 

discuss how metabolomics can be used to help refine phenotypes associated with 

obesity, for example, insulin resistance and type 2 diabetes risk. Chen et al. compared 

the metabolic profiles of people with metabolic healthy obesity (MHO) and metabolic 

abnormal obesity (MAO).77 MHO is defined as obesity without hyperglycaemia, 

hypertension or dyslipidaemia, whilst MAO is defined as having at least one metabolic 

abnormality. Identifying metabolites that differ between people with MHO and MAO 

may help the discovery of underlying mechanisms that lead to metabolic dysregulation. 

Metabolite profiles are strongly associated with BMI. Metabolite profiling can be used to 

improve identification of groups of people that are at high risk of developing life-

threatening and largely preventable diseases such as coronary heart disease. Using 

metabolomics to spot early warning signs of such diseases could help healthcare 

professionals to introduce interventions earlier and potentially save lives. 
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Previous studies in both young adults and older adults have applied Mendelian 

randomization and found evidence that points to BMI having a causal effect on the 

metabolome.70,75 A longitudinal study observed associations between change in BMI and 

changes in the metabolome.70 This suggests that lifestyle changes aimed at lowering (or 

increasing) BMI may also have a positive impact on the metabolite profile. 

The above findings in ALSPAC children show that the ability of BMI to influence the 

metabolome starts in childhood (Figure 15 and Figure 16). Therefore, healthy weight 

interventions should start in childhood, not only to put in place good lifestyle habits at a 

young age, but also to establish a healthy metabolite profile. 
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CHAPTER 6.  DIET, METABOLOME 

AND BMI  
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6.1. Introduction 

Many studies have observed associations between dietary patterns and blood 

metabolite profiles.59-65 One application of understanding the relationship between diet 

and metabolites could be to predict an individual’s dietary pattern given their metabolic 

profile.64,66,67 This would be beneficial since it is difficult to accurately assess dietary 

intake in populations. 

In order to investigate the relationship between dietary patterns and metabolite profiles 

some studies looked at habitual dietary patterns. For example, a cross-sectional analysis 

in adults identified an association between a Western dietary pattern (refined grains, 

sweet food and processed meat) and increased levels of amino acids, including xleucine 

(combined leucine and isoleucine) and phenylalanine.59 Metabolites were quantified 

using mass spectrometry. 

Some studies of habitual dietary patterns tried to summarise an individual’s overall 

dietary pattern using principal components (PCs) or other summary methods,59-61,63 

whereas other studies looked at intakes of individual food groups.65 A study in women of 

metabolites (measured using mass spectrometry) and dietary intake patterns (PCs 

derived from FFQs) identified positive associations between fruit and vegetable intake 

and several phosphatidylcholines.63 Some studies looked at metabolites individually or 

by class,60,65 whilst other studies used principal components to summarise metabolite 

profiles.59,61 

A study conducted in the European Prospective Investigation into Cancer and Nutrition 

aimed to identify serum metabolites that may relate red meat intake to type 2 diabetes 

(T2D) risk.219 They observed associations between red meat intake and 21 metabolites 

(glycine, 17 phosphatidylcholines, 2 sphingomyelins and ferritin). 13 of these 

metabolites were also associated with T2D risk, and, of those 13, the direction of effect 

for 6 of them was consistent with the red meat-metabolite association. Further analysis 

was performed to investigate whether these 6 metabolites (glycine, 3 

phosphatidylcholines, 1 sphingomyelin and ferritin) mediate the relationship between 
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red meat intake and T2D risk. For each of these 6 metabolites, the association between 

red meat intake and T2D risk was largely attenuated after adjustment for them, which is 

consistent with the hypothesis that they mediate the relationship between red meat 

intake and T2D risk. 

Other studies of the relationship between diet and metabolites required participants to 

follow specific diets for the study.62,220 A randomized clinical trial compared serum 

amino acids between infants fed a lower protein formula and infants fed a higher 

protein formula.62 They observed that, compared to the lower protein group, infants in 

the higher protein group had higher serum concentrations of several amino acids 

including isoleucine, leucine, valine, phenylalanine and tyrosine. 

Short-term dietary intervention studies have identified several biomarkers of food 

intake, however these have mostly been conducted using urine, and the biomarkers 

identified are often short-term and rapidly excreted.220 

In summary, several studies have observed associations between dietary intake and 

metabolite levels, including associations with amino acids and phosphatidylcholines. 

Most studies investigating the relationship between habitual diet and a broad range of 

blood metabolites have used mass spectrometry, not NMR, to measure metabolite 

levels. NMR-based metabolomics studies of diet have tended to use metabolite levels 

measured in urine or have focussed on an individual metabolite.221 

Many strong associations between BMI and the metabolome in the ALSPAC children 

were observed in the previous chapter. It is likely that some of these BMI-associated 

metabolites are also associated with dietary behaviour. It is also plausible that some 

metabolites may mediate the relationship between diet and BMI, or that BMI may 

mediate the relationship between diet and metabolites. This chapter aims to explore 

these hypotheses. 
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6.2. Methods 

6.2.1. Diet and the metabolome – cross-sectional analyses 

The cross-sectional relationship between dietary behaviour and metabolites was 

explored in the ALSPAC children. Analyses were performed in the ALSPAC children at age 

7 years, but not at age 15 years since diet data are not available at age 15. 

Dietary behaviour was measured using PCs generated from FFQs and diet diaries 

(2.1.1.1). Of the six PCs generated from diet data at age 7 years (three PCs from FFQs 

and three PCs from diet diaries), only two were associated with BMI (4.3.2.1). These 

were the “health aware” PC and the “packed lunch” PC, both generated from the diet 

diary data. 

Metabolite profiles were generated from serum samples and quantified using a NMR 

platform (2.1.1.6). Metabolite data was prepared as described in Chapter 5: metabolites 

with skewed distributions were normalized, and all metabolites were scaled to standard 

deviation units. 

The main motivation for these analyses is to explore whether the metabolome mediates 

the effect of dietary intake on BMI, hence the relationship between diet and metabolites 

was only explored for diet PCs and metabolites known to be associated with BMI in the 

ALSPAC 7-year-olds. 

Linear regression was performed to test the associations between each of the diet PCs 

and metabolites. Models were adjusted for age at serum sampling for metabolite 

measurement (clinic visit) and sex. 

lm(metabolite ~ diet + age + sex) 

When detecting associations between diet and metabolites, a p-value threshold of 

p<0.001 was used since this threshold was also used in the BMI and metabolome 

analyses in Chapter 5. 
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6.2.2. Diet, BMI and the metabolome – analyses 

The original question posed in this thesis is whether the metabolome (and the 

methylome) mediates the effect of diet on BMI. This hypothesis is represented in the 

following diagram: 

 

However, analyses investigating whether BMI has a causal effect on the metabolome 

have found evidence suggesting that BMI has a causal effect on several metabolites 

(5.4). Würtz et al. performed MR analyses and found evidence suggesting the BMI has a 

causal effect on multiple metabolites.70 The MR analyses in Chapter 5 also suggest that 

BMI has a causal effect on several metabolites. Therefore, the hypothesis represented in 

the following diagram is also plausible: 

 

 Identifying potential mediators 

A mediation model with a single mediator can be represented by the diagram in Figure 

17, where ab is the mediated effect, c’ is the direct effect, and the total effect is c = ab + 

c’.222 A mediation model is described as “consistent” if the mediated effect (ab) has the 

same sign as the direct effect (c’), and “inconsistent” if the mediated effect has an 

opposite sign to the direct effect.223 For simplicity, this chapter focuses on consistent 

mediation models. 

The total effect is the sum of the mediated effect and the direct effect. Hence, if the 

total effect has an opposite sign to the mediated effect, then the mediated effect must 

have an opposite sign to the direct effect, and therefore the mediation model is 

inconsistent. 
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Figure 17 – Causal mediation model with a single mediator. 

The mediated effect is ab and the direct effect is c’. The total effect is c = ab + c’. 

 

 Bidirectional MR – BMI and metabolites 

The causal effect of BMI on metabolites in ALSPAC 7-year-olds was explored in Chapter 

5, but the causal effect of metabolites on BMI was not explored due to a likely lack of 

power for that analysis. To investigate the hypotheses above (6.2.2.1), it is helpful to 

gain a clearer picture of causality in the relationships between BMI and metabolites. 

Causality is only investigated here for metabolites which are potential mediators 

between diet PCs and BMI. 

Since a bidirectional MR analysis between BMI and metabolites in ALSPAC is likely to lack 

power, a two-sample bidirectional MR analysis was performed instead. Two-sample MR 

analyses were performed in the MR-base web-app (http://www.mrbase.org)131 using 

the IVW method.129,130 BMI GWAS summary results used were from a GWAS conducted 

in c.320,000 individuals of European descent by Locke et al.52 Metabolite GWAS 

summary results used were from a GWAS conducted in c.25,000 individuals from 

European cohorts by Kettunen et al.224  

 Mediation analyses 

Mediation analyses were performed to investigate whether metabolites mediate the 

relationship between diet and BMI, and whether BMI mediates the relationship 

between diet and metabolites.17 These analyses were performed using the mediate 

function from the mediation package in R (version 3.3.3), which estimates the mediated 

effect, the direct effect and the total effect of the exposure on the outcome (2.2.5).133 

Analyses were adjusted for age and sex. 
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 Diet, amino acids and BMI 

The effect directions of the pairwise associations between the diet PCs, amino acids and 

BMI fit with an inconsistent mediation model rather than a consistent mediation model 

(described in 6.2.2.1). However, it is interesting that three of the amino acids showed 

strong associations with both diet PCs. To explore how BMI relates to these associations, 

the children were split into groups according to their BMI quartile, and simple linear 

regression models (amino acid ~ diet PC) were fitted and plotted. 

6.3. Results 

6.3.1. Diet and metabolome – cross-sectional results 

Cross-sectional analyses were performed to investigate the relationship between the 

diet PCs and metabolites at age 7 years. The results of these analyses are presented as a 

forest plot in Figure 18 for the BMI-associated metabolites, and as a table in the 

appendix for all metabolites. 

Using a p-value threshold of 0.001 (since this threshold was used in analyses of BMI and 

the metabolome in Chapter 4), the health aware PC was positively associated with some 

large HDL triglycerides, HDL particle diameter, CLA, omega-3, histidine, isoleucine, 

leucine, valine, phenylalanine and tyrosine. It was negatively associated with MUFA, 

citrate, 3-hydroxybutyrate and creatinine. 

The packed lunch PC was negatively associated with medium LDL phospholipids, very 

large HDL cholesterol and cholesterol esters, CLA, omega-3, isoleucine, leucine and 

valine. 
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Figure 18 – Forest plots of cross-sectional relationships between metabolites and diet PCs in the 
ALSPAC children at age 7 years. 

Effect estimates are the 1-SD increase in metabolite concentration per unit increase in diet PC. The lines though the 
points are the 95% CIs. The metabolites have been divided into two plots. The first plot (below) shows the results for 
the fourteen lipoprotein subclasses and their lipid measures, and the second plot (following page) shows results for 
the remaining metabolite measures. 
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6.3.2. Diet, BMI and the metabolome – results 

 Potential mediators 

Observed cross-sectional associations for five of the metabolites meet the conditions for 

consistent mediation models described in 6.2.2.1 and Figure 17 above. For the health 

aware PC these metabolites are HDL particle size, MUFA and creatinine. For the packed 

lunch PC these are very large HDL cholesterol and cholesterol esters. The diagrams in 

Figure 19 represent the mediation hypothesis to be explored for these five metabolites. 

The diagrams on the left-hand side of this figure represent the hypothesis that the 

metabolites mediate the effect of diet on BMI, and the diagrams on the right-hand side 

represent the hypothesis that BMI mediates the effect of diet on the metabolites. 

For the mediation analyses conducted in this chapter, it is assumed that the diet PCs 

have causal effects on both BMI and metabolites. Causal effects between BMI and the 

metabolites are explored in 6.3.2.2. 
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Figure 19 – Diagrams representing the mediation hypothesis to be explored. 
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 Two-sample bidirectional MR of metabolites and BMI in MR-

base 

Two-sample bidirectional MR analyses were performed to investigate causality between 

BMI and the five metabolites identified as potential mediators in 6.3.2.1. Results of 

these analyses are reported in Table 16. The aim of these analyses was to assess 

whether it seems more likely that the metabolites mediate the effect of diet on BMI or 

that BMI mediates the effect of diet on the metabolites. 

MR results suggest a causal effect of BMI on HDL particle size – a unit increase in BMI is 

associated with a 0.314 SD decrease in mean diameter of HDL particles (p=6.32 × 10-6). 

Weak evidence (given multiple testing) was observed for a causal effect of BMI on very 

large HDL (XLHDL) cholesterol and XLHDL cholesterol esters – a unit increase in BMI is 

associated with a 0.159 SD decrease in XLHDL cholesterol (p=0.011) and a 0.155 SD 

decrease in XLHDL cholesterol esters (p=0.015). These effects estimates are directionally 

consistent with the observational estimates (Figure 15). MR did not detect a causal 

effect of the metabolites on BMI. 

This contrasts with the BMI to metabolite MR analysis in the ALSPAC children (Figure 

20), which suggested that BMI has a causal effect on creatinine but did not detect a 

causal effect of BMI on very large HDL cholesterol and cholesterol esters. The very large 

HDL cholesterol and cholesterol esters confidence intervals observed here, however, do 

overlap with the confidence intervals observed in the ALSPAC children. 

Table 16 – Results from two-sample bidirectional MR analyses. 

Effect estimates for the metabolite to BMI MR analyses are the increase in BMI (kg/m2) per 1-SD increase in 
metabolite concentration. Effect estimates for the BMI to metabolite MR analyses are the increase in metabolite 
concentration (SD) per unit increase in BMI (kg/m2). XLHDL, very large HDL. 

Exposure No. SNPs Outcome Beta 95% CI p-value 

HDL particle size 10 BMI 0.002 -0.021, 0.025 0.869 

MUFA 5 BMI -0.031 -0.103, 0.042 0.406 

Creatinine 5 BMI 0.022 -0.037, 0.082 0.464 

XLHDL cholesterol 8 BMI -0.005 -0.036, 0.026 0.752 

XLHDL cholesterol esters 7 BMI -0.014 -0.042, 0.014 0.330 

BMI 68 HDL particle size -0.314 -0.451, -0.178 6.32 × 10-6 

BMI 68 MUFA 0.012 -0.113, 0.137 0.848 

BMI 68 Creatinine 0.048 -0.070, 0.167 0.426 

BMI 68 XLHDL cholesterol -0.159 -0.281, -0.036 0.011 

BMI 68 XLHDL cholesterol esters -0.155 -0.281, -0.030 0.015 
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Figure 20 – Forest plot comparing BMI → metabolite MR estimates from the two-sample MR 
analysis with those from the ALSPAC MR analysis. 

ALSPAC results are from the single sample MR analysis conducted in the ALSPAC children at age 7. Effect estimates are 
the increase in metabolite concentration (SD) per unit increase in BMI (kg/m2). XLHDL, very large HDL. 

 

 

 Diet, BMI and metabolites – mediation analysis results 

Mediation analyses were conducted to investigated whether the metabolites mediate 

the relationship between the diet PCs and BMI, and whether BMI mediates the 

relationship between the diet PCs and the metabolites. The mediated effect (ab in 

Figure 17), the direct effect (c’ in Figure 17) and the total effect (the sum of the 

mediated effect and the direct effect) were estimated. 

Results from the mediation analyses investigating whether the metabolites mediate the 

effect of the diet PCs on BMI are presented in Figure 21. These results suggest that HDL 

particle size, MUFA and creatinine mediate the relationship between the health aware 

PC and BMI and that very large HDL cholesterol and cholesterol esters mediate the 

relationship between the packed lunch PC and BMI. 

Results from the mediation analyses investigating whether BMI mediates the effect of 

the diet PCs on metabolites are presented in Figure 22. These results suggest that BMI 

mediates the relationship of the health aware PCs with very large HDL cholesterol and 
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cholesterol esters. Weaker evidence was observed for BMI as a mediator between the 

health aware PC and HDL particle size, MUFA and creatinine. 

In most of these analyses the magnitude of mediated effect estimate is much less than 

the magnitude of the direct effect estimate. The exception to this is the analysis of 

creatine as a mediator between the health aware PC and BMI, in which the mediated 

effect estimate is c. twice the size of the direct effect estimate. 
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Figure 21 – Forest plot of results from mediation analyses exploring whether the metabolites 
mediate the effect of the diet PCs on BMI. 

Each row represents a mediation analysis and shows the effect estimates for the mediated, direct and total effects 
calculated in that mediation analysis. The effect estimate units are the increase in BMI (kg/m2) per unit increase in 
diet PC score. Rows labels are the particular diet PC and metabolite that were studied in that mediation analysis. P-
values for the mediated effects estimates are all <0.01. HDLD, HDL particle diameter; MUFA, monounsaturated fatty 
acids; Crea, Creatine; XLHDLC, very large HDL cholesterol; XLHDLC, very large HDL cholesterol esters. 

 

Figure 22 – Forest plot of results from mediation analyses exploring whether BMI mediates the 
effect of the diet PCs on the metabolites. 

Each row represents a mediation analysis and shows the effect estimates for the mediated, direct and total effects 
calculated in that mediation analysis. The effect estimate units are the increase in diet PC score per unit increase in 
BMI (kg/m2). Rows labels are the particular diet PC and metabolite that were studied in that mediation analysis. P-
values for the mediated effects estimates are ~0.05-0.06 in the analyses using the health aware PC and <0.01 in the 
analyses using the packed lunch PC. 
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 Diet and metabolite relationship by BMI quartile 

The role of BMI in the relationship between three amino acids (isoleucine, leucine and 

valine) and diet PCs was explored by splitting the children into groups according to their 

BMI quartile and fitting linear regression models (amino acid ~ diet PC) for each amino 

acid and diet PC pair. The results of these analyses are plotted in Figure 23. In these 

analyses, as amino acid levels increase, the health aware PC increases and the packed 

lunch PC decreases. Also, as amino acid levels increase, BMI increases. 

Figure 23 – Diet and metabolite lines of best fit by BMI quartile. 

Black line for quartile with BMI between 13 and 14.9, turquoise line for BMI between 14.9 and 15.8, orange line for 
BMI between 15.8 and 17, blue line for BMI between 17 and 21.5 kg/m2. Shaded areas are the 95% confidence 
intervals. 
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6.4. Discussion 

This chapter explored mediation in the relationships between dietary behaviour, 

metabolites and BMI. 

Metabolites and diet 

Analyses in the previous chapter identified BMI-associated metabolites in the ALSPAC 

children. Analyses conducted in this chapter found that several of the BMI-associated 

metabolites are also associated with dietary behaviour. 

As described in Chapter 2 (2.1.1.1), the health aware and packed lunch PCs were derived 

from diet diary data from the ALSPAC children at age 7 years. The health aware PC has 

positive loadings for intake of cheese, high fibre bread, pasta, salad, fresh fruit and fruit 

juice, and negative loadings for intake of processed meat, chips and diet fizzy drinks; the 

packed lunch PC has positive loadings for intake of low fibre bread, margarine, ham, 

bacon, crisps and diet squash (Northstone et al., unpublished). 

Conjugated linoleic acid (CLA) and omega-3 fatty acids were positively associated with 

the health aware PC and negatively associated with the packed lunch PC. The main 

sources of omega-3 fatty acids are fish and seafood;225 dietary sources of CLA include 

dairy products and beef.226 The health aware PC is associated with a higher intake of 

cheese (a source of CLA) (Northstone et al., unpublished). 

The health aware PC displayed positive associations with several amino acids (histidine, 

isoleucine, leucine, valine, phenylalanine and tyrosine). The packed lunch PC was 

negatively associated with branched-chain amino acids (isoleucine, leucine and valine). 

Histidine, isoleucine, leucine, valine and phenylalanine are essential amino acids, and 

hence must come from diet since they cannot be synthesized de novo in humans. 

Previous studies have observed positive associations of amino acids with a Western 

dietary pattern (high in refined grains, sweet food, processed meat) and a dietary 

pattern high in potatoes, dairy products, vegetables and cornflakes.59,60 In ALSPAC, the 

health aware PC is associated with higher intakes of cheese and lower intakes of 
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processed meat and the packed lunch PC is associated with higher intakes of ham and 

bacon (Northstone et al., unpublished). 

The health aware PC was also positively associated with some large HDL triglycerides 

and HDL particle diameter and negatively associated with MUFA, citrate, 3-

hydroxybutyrate and creatinine. The packed lunch PC was negatively associated with 

very large HDL cholesterol and cholesterol esters. 

Mendelian randomization 

Two-sample MR analyses exploring the effect of BMI on metabolites observed evidence 

of a negative causal effect of BMI on HDL particle size and very large HDL cholesterol and 

cholesterol esters but did not detect a causal effect of BMI on MUFA or creatinine (Table 

16). This is mostly consistent with Würtz et al. who observed a negative causal effect of 

BMI on HDL particle size, a weak negative causal effect of BMI on MUFA, and no causal 

effect of BMI on creatinine.70 In contrast, the single sample MR analysis in Chapter 5 

(5.3.2) observed a positive causal effect of BMI on creatinine, but did not detect a causal 

effect of BMI on HDL particle size, MUFA or very large HDL cholesterol or cholesterol 

esters. This inconsistency in identifying a causal effect of BMI on creatinine may be due 

to differing observational associations between creatinine and BMI in different age 

groups. Strong positive associations were observed between creatinine and BMI in the 

ALSPAC children and teenagers, but no association was found in the Würtz young adults 

(Figure 13). 

Two-sample MR analyses exploring the effects of five metabolites (HDL particle size, 

MUFA, creatinine and very large HDL cholesterol and cholesterol esters) on BMI did not 

detect any causal effects (Table 16). This lack of evidence may be due to an absence of 

causality, or it may be due to the genetic instruments lacking the strength to identify 

these effects. 

Mediation 

Based on observed pairwise associations between the diet PCs, metabolites and BMI, 

five metabolites were identified as potential mediators in the relationship between diet 
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and BMI (or that the relationship between diet and those metabolites may be mediated 

by BMI). These metabolites were HDL particle size, MUFA and creatinine for the health 

aware PC, and very large HDL cholesterol and cholesterol esters for the packed lunch PC. 

Mediation analyses were performed to investigate whether metabolites mediate the 

relationship between diet and BMI, and whether BMI mediates the relationship 

between diet and metabolites. Results for the packed lunch PC suggest that very large 

HDL cholesterol and cholesterol esters mediate the relationship between the packed 

lunch PC and BMI. The results also suggest that BMI mediates the relationship between 

the packed lunch PC and very large HDL cholesterol and cholesterol esters. In both cases 

the mediated effect estimate is much smaller than the direct effect. 

Weak evidence was observed for BMI as mediator between the health aware PC and 

HDL particle size, MUFA and creatinine (p≈0.05-0.06). Results suggest that HDL particle 

size, MUFA and creatinine mediate the relationship of the health aware PC with BMI. 

Amino acids 

Isoleucine, leucine and valine were positively associated with the health aware PC and 

negatively associated with the packed lunch PC, which suggests that they are strongly 

linked to a range of dietary behaviour. However, the pairwise effect directions between 

these metabolites, the diet PCs and BMI did not fit the hypothesis of a consistent 

mediation model (6.2.2.1). 

Suppose a child scores highly for the health aware PC. Then, according to the findings in 

this chapter, one would expect them to have higher levels of valine and hence a higher 

BMI. However, according to findings in Chapter 4, one would expect them to have a 

lower BMI. One explanation for this could be that diet influences BMI through two 

pathways. A child may have a high health aware score because a large proportion of 

their diet consists of healthy foods, or a child may have a high health aware score 

because they consume large quantities of food, including healthy food and less healthy 

food. If a child has a high health aware score because much of their diet consists of 

healthy food, then one would expect them to have a high valine intake but a low energy 
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intake, and hence a lower BMI. If a child has a high health aware score because they 

have a high overall food intake, then one would expect them to have a high valine intake 

and a high energy intake, and hence a higher BMI. 

Conclusions 

Bringing together findings from the MR analyses and mediation analyses, the results 

suggest that BMI mediates the effect of the packed lunch PC on very large HDL 

cholesterol and cholesterol esters (assuming the packed lunch PC has a causal effect on 

BMI and these metabolites). Results also suggest that BMI mediates the effect of the 

health aware PC on HDL particle size and creatinine (assuming the health aware PC has a 

causal effect on BMI and HDL particle size). Causal inference in these mediation analyses 

is limited by the lack of genetic instruments for the diet PCs, hence causal effects of the 

diet PCs on BMI are assumed but not tested. 

Strong links have been observed between dietary patterns, the metabolome and BMI. 

The metabolome plays a key role when trying to understand the relationship between 

dietary behaviour and BMI. Some of these relationships may change across the 

lifecourse, for example the association between creatinine and BMI. 
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CHAPTER 7.  BMI, METHYLATION 

AND DIET  
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7.1. Introduction 

Variation in DNA methylation has been linked to adiposity and (less strongly) to dietary 

behaviour. This chapter explores whether previously identified association between 

methylation and BMI in adults also hold in the ALSPAC children and adolescents. This 

chapter also seeks to identify novel associations for methylation with diet and BMI in the 

ALSPAC children and adolescents. 

7.1.1. BMI and methylation 

The first major EWAS to report robust associations between CpG sites and BMI was a 

study by Dick et al. in 2014.91 They identified an association between increased 

methylation at three CpGs (cg22891070, cg27146050 and cg16672562) in HIF3A and 

increased BMI in their study of adults of European origin. This widely cited paper made 

an initial foray in to deciphering the direction of the causal relationship between DNA 

methylation variation at the HIF3A locus but fell short of formally applying Mendelian 

randomization to strengthen causal inference. We subsequently pursued this line of 

enquiry to show that the direction of the causal pathway was most likely to go from BMI 

to DNA methylation. The study in ALSPAC of HIF3A methylation and BMI in this chapter 

describes work published in Diabetes in which I was joint first author (Richmond RC, 

Sharp GC, Ward ME, et al. DNA Methylation and BMI: Investigating Identified 

Methylation Sites at HIF3A in a Causal Framework. Diabetes 2016; 65(5): 1231-44.). 

Analyses were performed by myself, Dr Gemma Sharp and Dr Rebecca Richmond. The 

full manuscript can be found in Appendix B of this thesis. 

More recently, Wahl et al. performed an EWAS of BMI in 10,261 adults and identified 

187 CpGs associated with BMI at an epigenome-wide level (defined as p < 1 × 10-7 

here).94 In their discovery analyses they studied 5,387 adults of European (n = 2,707) and 

Indian Asian (n = 2,680) ancestry and identified 287 BMI-associated CpGs (p < 1 × 10-7) 

across 207 genetic loci. They adjusted their analyses for age, sex, smoking status, 

physical activity index, alcohol consumption. They took the top CpG at each locus (the 

CpG with the lowest p-value) forward for replication in 4,874 European and Indian Asian 
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adults. They found that 187 of the 207 CpGs replicated, defining replication criteria as a 

directionally consistent effect estimate and p < 0.05 in the replication samples and p < 1 

× 10-7 in the meta-analysis of the discovery and replication cohorts. The genetic loci 

identified by these 187 CpGs include genes involved in lipid and lipoprotein metabolism. 

Mendelson et al. performed a BMI EWAS in 7,798 adults and identified 83 BMI-

associated CpGs.95 In their discovery analyses they studied 3,743 adults from three 

American and Scottish cohorts; and in their replication analyses they studied 4,055 

adults of African and European ancestry. They identified 135 BMI-associated CpGs in 

their discovery analyses (Bonferroni-corrected threshold of p < 1.2 × 10-7), of which 83 

replicated (p < 0.05/135 in the meta-analysis of the replication cohorts). They adjusted 

their analyses for age and sex. Mendelson et al. studied whole blood gene expression 

and identified associations between expression of genes in lipid metabolism pathways 

and BMI-associated CpGs. 

Both Wahl et al. and Mendelson et al. measured DNA methylation from blood samples 

using the Illumina Infinium HumanMethylation450 BeadChip. Out of the 187 and 83 

BMI-associated CpGs identified in their respective EWAS, 38 CpGs were common to both 

analyses. 

Wahl et al. used MR to investigate causality between BMI and their 187 BMI-associated 

CpGs. One CpG (cg2666590 at the NFATC2IP gene locus) appeared to have a causal 

effect on BMI, whilst BMI appeared to have a causal effect on three CpGs (cg00138407, 

cg06500161 and cg09613192 at the KLHL18, ABCG1 and FTH1P20 gene loci respectively). 

Mendelson et al. also conducted MR to investigate causality between BMI and 

methylation. Out of their 83 BMI-associated CpGs, their results suggest that one CpG 

(cg11024682 at the SREBF1 gene locus) has a causal effect on BMI and that BMI has a 

causal effect on 16 CpGs (including cg06500161 that was also identified in the BMI → 

methylation MR analysis by Wahl et al.), though they used less stringent p-value 

thresholds than Wahl et al. to infer causality. Both studies agreed that the prevailing 

weight of evidence supported the hypothesis that changes in methylation mostly seem 



156 

to be a consequence of changes in BMI, rather than a cause. This is consistent with our 

own previous analyses investigating causality between HIF3A methylation and BMI.109  

7.1.2. Diet and methylation 

Few EWAS have been able to identify robust associations between dietary behaviour 

and DNA methylation. 

An EWAS of tea and coffee consumption in 3,096 adults from four European cohorts 

identified two CpGs associated with tea consumption in women, however these 

associations did not hold in the men-only or sex-combined analyses.85 No epigenome-

wide significant associations were identified in the men-only or sex-combined analyses. 

An EWAS of a Mediterranean-style dietary pattern in 3,563 Framingham Heart Study 

participants identified an association between a single CpG (cg05575921 in the AHRR 

gene) and the dietary pattern.86 However, this CpG site has been very widely and 

robustly associated with exposure to tobacco smoke227,228 and therefore the association 

is highly likely to be explained by residual confounding. They also studied the 

relationship between cg05575921 and components of the dietary pattern and observed 

an association with fruit and whole grain intake. 

An earlier study of global DNA methylation observed evidence of an association for a 

high fruit and vegetable intake with a lower prevalence of global hypomethylation.229 

7.1.3. Motivation for these analyses 

Previous epigenome-wide studies of the relationship between BMI and methylation 

have identified several BMI-associated CpGs in adulthood but have not investigated 

whether these associations were also present in childhood and adolescence. These 

analyses therefore aim to identify cross-sectional associations between BMI and 

methylation in childhood and adolescence. These analyses also aim to investigate 

whether previously identified associations between BMI and methylation in adults can 

be detected earlier in life in children and adolescents. 
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Analyses will also be performed to investigate the relationship between BMI-associated 

CpGs and diet, since dietary behaviour may play a role in the relationship between 

methylation and BMI. 

7.2. Methods 

7.2.1. HIF3A analyses 

The relationship between adiposity and methylation at the HIF3A loci (cg22891070, 

cg27146050 and cg16672562) identified by Dick et al. in adults was followed up in 

ALSPAC in childhood and adolescence.91 BMI was log-transformed for these analyses so 

that results could be more easily compared with those of Dick et al. 

 Cross-sectional analyses 

Linear regression models were fitted to test the cross-sectional relationships between 

BMI and methylation at each of the HIF3A CpGs in childhood (age 7 years) and 

adolescence (age 15-17 years). Models were adjusted for age, sex and bisulphite 

conversion batch in the childhood analyses, and additionally for smoking status in the 

adolescence analyses: 

lm(log(BMI) ~ methylation + age + sex + batch) (age 7) 

lm(log(BMI) ~ methylation + age + sex + batch + smoking) (age 15-17) 

 Longitudinal analyses 

Linear regression models were fitted to test the association between BMI at age 7 and 

each of the HIF3A CpGs at age 15-17, and between BMI at age 15-17 and each of the 

HIF3A CpGs at age 7. Models were adjusted for age, sex and bisulphite conversion batch: 

lm(log(15-17y BMI) ~ 7y methylation + age + sex + batch) 

lm(15-17y methylation ~ log(7y BMI) + age + sex + batch) 
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Models were also fitted with additional adjustment for baseline methylation/BMI: 

lm(log(15-17y BMI) ~ 7y methylation + age + sex + batch + 7y BMI) 

lm(15-17y methylation ~ log(7y BMI) + age + sex + batch + 7y methylation) 

 Bidirectional MR analyses 

Bidirectional MR analyses were performed to explore the causal relationship between 

BMI and HIF3A methylation. For the MR analysis of methylation → BMI, methylation was 

instrumented using previously identified cis-SNPs (rs8102595 and rs3826795), combined 

in a weighted allele score.91 For the MR analysis of BMI → methylation, BMI was 

instrumented using the GIANT BMI allele score.52 

MR was implemented using the “triangulation” instrumental variable (IV) approach to 

determine the direction and magnitude of causal effects in the observed associations 

between BMI and HIF3A methylation. The triangulation approach estimates the effect of 

the IV-outcome association based on the effect estimates for the IV-exposure and 

exposure-outcome associations.76 This is compared with the observed effect estimates 

for the IV-outcome association and a test for difference between the observed and 

expected estimates is performed (Figure 24). The expected effect estimate is calculated 

by multiplying together the IV-exposure effect estimate and the exposure-outcome 

association. The standard error for the effect estimate is calculated using a second-order 

Taylor series expansion of the product of two means.230 

Figure 24 – The triangulation approach for MR. 

The observed effect estimate (a) is compared with the expected effect estimate (b × c). 
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7.2.2. BMI EWAS in ALSPAC in childhood and adolescence 

EWAS analyses were performed in R (version 3.4.1) using the meffil R package (2.2.3).123 

EWAS regression models were fitted using Independent Surrogate Variable Analysis 

(ISVA), which models confounding factors as statistically independent surrogate 

variables.124 The R script used to conduct the EWAS using meffil was compiled by Dr 

Gemma Sharp. Methylation was calculated as β-values (2.1.1.5).109 

EWAS analyses were performed to investigate the cross-sectional relationship between 

BMI and methylation at ages 7 and 15-17 years. In these analyses methylation was 

modelled as the outcome variable, and BMI as the exposure variable. Analyses were 

adjusted for age, sex, maternal education and Houseman-estimated cell counts (B-cells, 

CD4+ T-cells, CD8+ T-cells, granulocytes, monocytes and NK).125 The age 15-17 years 

analysis was also adjusted for smoking behaviour. 

7.2.3. Look-up of previously reported adult BMI CpGs in 

ALSPAC offspring 

EWAS by Wahl et al. and Mendelson et al. have identified 232 CpGs associated with BMI 

in adults.94,95 However, they did not investigate whether these associations are also 

present in children and adolescents. Wahl et al. replicated their findings in the ALSPAC 

mothers, but not the children. 

Results for the 232 adult BMI-associated CpGs were looked up in the results from the 

EWAS of BMI in childhood and adolescence in ALSPAC. 

The relationship between the 232 CpGs and FMI (fat mass index) was also investigated in 

childhood and adolescence in ALSPAC. Since meffil uses data from all available CpGs 

concurrently to perform functional normalization, the simplest way to calculate the 

effect estimates for the associations between the 232 CpGs and FMI was to perform an 

EWAS of FMI and obtain the 232 FMI-CpG effect estimates from the EWAS results. These 

analyses were adjusted for the same covariates as the BMI EWAS, i.e. for age, sex, 
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maternal education and Houseman-estimated cell counts in the childhood EWAS, and 

additionally for smoking behaviour in the adolescent EWAS 

7.2.4. Bidirectional MR analyses 

Bidirectional MR analyses were performed to investigate causality between BMI and the 

CpGs that were most strongly associated with BMI in the above EWAS in ALSPAC. 

 BMI to methylation 

The causal effect of BMI on BMI-associated CpGs was estimated by modelling the 

relationship between each of these CpGs and the GIANT BMI allele score.52 

The effect estimates of the BMI allele score on the BMI-associated CpGs were calculated 

by performing an EWAS of the BMI allele score at ages 7 and 15-17 years and obtaining 

from them results for the BMI-associated CpGs. These EWAS were adjusted for the same 

covariates as in the BMI EWAS above, and also for the first 10 genetic PCs. 

 Methylation to BMI 

Two-sample MR analyses were conducted to assess the causal effect of methylation on 

BMI. Analyses were performed in R (version 3.3.3) using the mr_singlesnp function from 

the TwoSampleMR package.131 

Analyses were performed for each BMI-associated CpG separately. CpGs were 

instrumented by methylation quantitative trait loci (mQTLs) identified by Gaunt et al.231 

7.2.5. BMI-associated CpGs and diet PCs 

Previous analyses in chapter 4 (4.3.2.1) identified associations between BMI and 

“packed lunch” and “health aware” diet PCs in the ALSPAC children at age 7 years. It was 

postulated that these BMI-associated dietary behaviours may also be associated with 

variation in DNA methylation at sites shown to be linked to BMI. 
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Analyses were conducted to investigate the cross-sectional relationship between BMI-

associated CpGs and the “packed lunch” and “health aware” diet PCs in the 7-year-olds. 

The effect estimates of the diet PCs on the BMI-associated CpGs were calculated by 

performing separate EWAS of the “packed lunch” PC and the “health aware” PC and 

obtaining from them results for the BMI-associated CpGs. These EWAS were adjusted 

age, sex, maternal education and Houseman-estimated cell counts. 

7.3. Results 

7.3.1. HIF3A results 

 Cross-sectional results 

A 0.1 unit increase in methylation ß-value at cg27146050 was associated with a 4.66% 

increase in BMI in adolescence. Methylation at cg27146050 was not associated with BMI 

in childhood, and methylation at cg22891070 and cg16672562 were not associated with 

BMI in childhood or adolescence. 

Table 17 – Cross-sectional results for BMI and HIF3A methylation. 

Childhood analyses are adjusted for age, sex and batch. Adolescent analyses are adjusted for age, sex, smoking and 
batch. Effect sizes are the percentage change in BMI for every 0.1 unit increase in methylation β-value. 

CpG 
Childhood (N=970) Adolescence (N=845) 

% change in BMI 95% CI p-value % change in BMI  95% CI p-value 

cg22891070 0.44 -0.35, 1.23 0.27 0.66 -0.31, 1.63 0.19 

cg27146050 0.62 -1.69, 2.93 0.60 4.66 1.04, 8.29 0.01 

cg16672562 0.31 -0.32, 0.93 0.34 0.40 -0.41, 1.20 0.34 

 

 Longitudinal results 

Longitudinal analyses identified a positive association between childhood BMI and 

cg27146050 methylation in adolescence – a 10% increase in BMI was associated with a 

0.003 increase in methylation (Table 18). However, no associations were identified 

between childhood methylation and adolescent BMI (Table 19). 
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Table 18 – Childhood BMI to adolescent methylation. 

Coefficients are change in methylation per 10% increase in BMI. 

CpG 
Model adjusted for age, sex and batch Model adjusted for age, sex, batch and childhood methylation 

Change in methylation 95% CI p-value Change in methylation 95% CI p-value 

cg22891070 0.005 -0.002, 0.011 0.17 0.001 -0.004, 0.005 0.78 

cg27146050 0.003 0.001, 0.005 0.001 0.003 0.001, 0.004 0.001 

cg16672562 0.005 -0.003, 0.013 0.21 0.002 -0.004, 0.008 0.60 

 

Table 19 – Childhood methylation to adolescent BMI. 

Coefficients have been converted into percentage change in BMI for every 0.1 unit increase in methylation β-value. 

CpG 
Model adjusted for age, sex and batch Model adjusted for age, sex, batch and childhood BMI 

% change in BMI 95% CI p-value % change in BMI 95% CI p-value 

cg22891070 0.68 -0.40, 1.76 0.22 0.14 -0.64, 0.91 0.73 

cg27146050 2.30 -0.83, 5.43 0.15 1.33 -0.91, 3.57 0.24 

cg16672562 0.31 -0.54, 1.15 0.48 -0.04 -0.64, 0.57 0.90 

 

 Bidirectional MR results 

Bidirectional MR analysis was performed to explore causality in the cross-sectional 

association between cg27146050 methylation and BMI in adolescence (Table 20). The 

causal effect estimates were directionally consistent with those expected if BMI has 

causal effect on cg27146050 methylation but not with those expected if cg27146050 

methylation as a causal effect on BMI. However, the confidence intervals were wide and 

spanned zero. 

Table 20 – Results from bidirectional MR analysis of BMI and cg27146050 methylation in 
adolescence. 

*Analyses are adjusted for bisulphite conversion batch only. 

IV Exposure Outcome 
Observed association* Expected association 

Difference between observed 

and expected estimates? 

β (95% CI) β (95% CI) p-value 

cis-SNP score methylation log BMI -0.0381 (-0.2937, 0.2176) 0.1027 (0.0315, 0.1739) 0.30 

Standardised 

BMI allele score 
log BMI methylation 0.0014 (-0.0009, 0.0037) 0.0008 (0.0002, 0.0013) 0.55 
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7.3.2. BMI EWAS results 

EWAS of BMI in ALSPAC at ages 7 and 15-17 years were performed. The sample size at 

age 7 was 913 children, and the sample size at age 15-17 was 784 adolescents. 

No BMI-associated CpGs were identified with p-values below the epigenome-wide 

Bonferroni corrected threshold p < 1.06 × 10-7. Using a weaker suggestive p-value 

threshold, arbitrarily set at p < 10-5, weak evidence was observed for associations 

between BMI and 8 CpGs at age 7 years and 6 CpGs at ages 15-17 years. EWAS results 

for these top associations between BMI and methylation are presented in Table 21, 

Table 22, Figure 25 and Figure 26. Analyses were adjusted for age, sex, maternal 

education and cell counts at age 7 years, and additionally for smoking behaviour at age 

15-17 years. 

After taking account of multiple testing (8 look-ups were performed in the adolescents’ 

results; 6 look-ups were performed in the children’s results), none of the BMI-CpG 

associations held in both childhood and adolescence. Out of the 14 CpGs, effect 

estimate directions were consistent across the two age groups for 9 CpGs: cg11836587, 

cg14965639, cg27205928, cg09797334, cg07285953, cg17820871, cg21698718, 

cg25110857 and cg27229251. 
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Table 21 – BMI EWAS results for BMI-CpG associations with p < 10-5 in childhood. 

Effect estimates are the change in methylation per 1kg/m2 increase in BMI. Models adjusted for age, sex, maternal 
education and cell counts at age 7 years, and additionally for smoking behaviour at age 15-17 years. Chr, 
chromosome. 

 Age 7 Age 15-17 

CpG Chr Gene Beta 95% CI p-value Beta 95% CI p-value 

cg11836587 11  -6.65 × 10-3 -9.12 × 10-3, -4.17 × 10-3 1.75 × 10-7 -1.59 × 10-3 -3.42 × 10-3, 2.47 × 10-4 0.09 

cg22027865 8  5.90 × 10-3 3.67 × 10-3, 8.12 × 10-3 2.60 × 10-7 -3.28 × 10-4 -1.88 × 10-3, 1.23 × 10-3 0.68 

cg14965639 2 
STON1- 

GTF2A1L 
6.50 × 10-3 3.91 × 10-3, 9.09 × 10-3 1.07 × 10-6 1.08 × 10-3 -8.89 × 10-4, 3.04 × 10-3 0.28 

cg27205928 7 
C7orf50; 

MIR339 
4.65 × 10-3 2.77 × 10-3, 6.52 × 10-3 1.45 × 10-6 8.89 × 10-4 -1.93 × 10-4, 1.97 × 10-3 0.11 

cg09797334 11  -5.73 × 10-3 -8.09 × 10-3, -3.36 × 10-3 2.45 × 10-6 -1.87 × 10-3 -3.54 × 10-3, -2.06 × 10-4 0.03 

cg00244267 19 SEMA6B 2.72 × 10-3 1.56 × 10-3, 3.88 × 10-3 4.64 × 10-6 -3.63 × 10-4 -1.15 × 10-3, 4.29 × 10-4 0.37 

cg25693302 18 NEDD4L 2.91 × 10-4 1.67 × 10-4, 4.16 × 10-4 5.41 × 10-6 -6.19 × 10-5 -1.57 × 10-4, 3.34 × 10-5 0.20 

cg07285953 17 CRYBA1 3.75 × 10-3 2.11 × 10-3, 5.39 × 10-3 8.18 × 10-6 2.45 × 10-4 -9.03 × 10-4, 1.39 × 10-3 0.68 

 

Table 22 – BMI EWAS results for BMI-CpG associations with p < 10-5 in adolescence. 

Effect estimates are the change in methylation per 1kg/m2 increase in BMI. Models adjusted for age, sex, maternal 
education and cell counts at age 7 years, and additionally for smoking behaviour at age 15-17 years. Chr, 
chromosome. 

 Age 15-17 Age 7 

CpG Chr Gene Beta 95% CI p-value Beta 95% CI p-value 

cg00498089 6  2.77 × 10-3 1.66 × 10-3, 3.88 × 10-3 1.34 × 10-6 -8.01 × 10-4 -2.65 × 10-3, 1.05 × 10-3 0.40 

cg10220806 22 DNAL4 1.70 × 10-4 9.97 × 10-5, 2.40 × 10-4 2.47 × 10-6 -2.80 × 10-5 -1.25 × 10-4, 6.85 × 10-5 0.57 

cg17820871 12 TESC 1.78 × 10-3 1.04 × 10-3, 2.53 × 10-3 3.27 × 10-6 6.94 × 10-4 -3.85 × 10-4, 1.77 × 10-3 0.21 

cg21698718 17 CCDC57 2.29 × 10-3 1.32 × 10-3, 3.27 × 10-3 4.55 × 10-6 7.78 × 10-4 -6.95 × 10-4, 2.25 × 10-3 0.30 

cg25110857 2  1.60 × 10-3 9.23 × 10-4, 2.28 × 10-3 4.58 × 10-6 5.15 × 10-5 -1.02 × 10-3, 1.12 × 10-3 0.92 

cg27229251 7 TTYH3 2.80 × 10-3 1.58 × 10-3, 4.02 × 10-3 7.98 × 10-6 2.00 × 10-4 -1.52 × 10-3, 1.92 × 10-3 0.82 
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Figure 25 - BMI EWAS results for BMI-CpG associations with p < 10-5 in childhood. 

Effect estimates are the change in methylation per 1kg/m2 increase in BMI. Models adjusted for age, sex, maternal 
education and cell counts at age 7 years, and additionally for smoking behaviour at age 15-17 years. Chr, 
chromosome. 

 

Figure 26 – BMI EWAS results for BMI-CpG associations with p < 10-5 in adolescence. 

Effect estimates are the change in methylation per 1kg/m2 increase in BMI. Models adjusted for age, sex, maternal 
education and cell counts at age 7 years, and additionally for smoking behaviour at age 15-17 years. Chr, 
chromosome. 
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7.3.3. Results from look-up of previously reported adult BMI 

CpGs in ALSPAC offspring 

Wahl et al. and Mendelson et al. identified replicable epigenome-wide associations 

between BMI and 232 CpGs in adulthood.94,95 

The association between BMI and the 232 CpGs was looked up in the results from the 

EWAS in ALSPAC in childhood and adolescence. 30 CpGs were associated at p < 0.05 

(without correction for multiple testing) in childhood, and for 21 of these 30 CpGs the 

effect directions in childhood were consistent with those previously observed in adults 

(Figure 27). 33 CpGs were associated p < 0.05 in adolescence, of which 30 were 

directionally consistent with effects identified in adults (Figure 28). 

The relationship between FMI and the 232 CpGs were also investigated. 22 CpGs were 

associated with FMI at p < 0.05 in childhood, of which 15 were directionally consistent 

with BMI-CpG associations in adults (Figure 29). 48 CpGs were associated with FMI at p < 

0.05 in adolescence, and the effect directions for all 48 of these CpGs were consistent 

with the effect directions previously observed in adults (Figure 30). 

Effect magnitudes observed in ALSPAC are not directly comparable with those observed 

by Wahl et al. and Mendelson et al. since they fitted different models or performed 

different transformations. Therefore only the effect directions between the studies were 

compared. 
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Figure 27 – BMI-associated CpGs previously identified in adults which also show an association 
of p<0.05 with BMI in childhood. 

Effect estimates are the change in methylation per 1kg/m2 increase in BMI. Models adjusted for age, sex, maternal 
education and cell counts at age 7 years, and additionally for smoking behaviour at age 15-17 years. The +/- signs on 
the right-hand side of the plot represent the effect directions observed in adults by Wahl et al. and Mendelson et al. 
respectively; if they did not report an association this is represented by a “.” 
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Figure 28 – BMI-associated CpGs previously identified in adults which also show an association 
of p<0.05 with BMI in adolescence. 

Effect estimates are the change in methylation per 1kg/m2 increase in BMI. Models adjusted for age, sex, maternal 
education and cell counts at age 7 years, and additionally for smoking behaviour at age 15-17 years. The +/- signs on 
the right-hand side of the plot represent the effect directions observed in adults by Wahl et al. and Mendelson et al. 
respectively; if they did not report an association this is represented by a “.” 
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Figure 29 – BMI-associated CpGs previously identified in adults which also show an association 
of p<0.05 with FMI in childhood. 

Effect estimates are the change in methylation per 1kg/m2 increase in FMI. Models adjusted for age, sex, maternal 
education and cell counts at age 7 years, and additionally for smoking behaviour at age 15-17 years. The +/- signs on 
the right-hand side of the plot represent the effect directions observed in adults by Wahl et al. and Mendelson et al. 
respectively; if they did not report an association this is represented by a “.” 

 

  



170 

Figure 30 – BMI-associated CpGs previously identified in adolescence which also show an 
association of p<0.05 with FMI in childhood. 

Effect estimates are the change in methylation per 1kg/m2 increase in FMI. Models adjusted for age, sex, maternal 
education and cell counts at age 7 years, and additionally for smoking behaviour at age 15-17 years. The +/- signs on 
the right-hand side of the plot represent the effect directions observed in adults by Wahl et al. and Mendelson et al. 
respectively; if they did not report an association this is represented by a “.” 
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7.3.4. Results from bidirectional MR 

 Results from BMI to methylation analyses 

Weak associations have been identified between BMI and DNA methylation levels at 14 

CpGs in the ALSPAC children and adolescents. To investigate whether BMI has a causal 

effect on these CpGs, the relationships between the GIANT BMI allele score and the 8 

BMI-associated CpGs in childhood and 6 BMI-associated CpGs in adolescence were 

investigated. After taking account of multiple testing, none of the CpGs showed 

evidence of association with the allele score. The estimate directions of effect for 11 of 

the CpGs, however, were consistent with the effect estimate directions between those 

CpGs and BMI. 

Table 23 – Associations between GIANT allele score at BMI-associated CpGs at age 7. 

Effect estimates are the change in methylation per unit increase in BMI allele score. Models adjusted for age, sex, 
maternal education and cell counts. 

CpG Chr Gene Beta 95% CI p-value 
Effect direction consistent with 

BMI-CpG effect direction? 

cg11836587 11  1.18 × 10-4 -5.55 × 10-4, 7.92 × 10-4 0.731 No 

cg22027865 8  2.01 × 10-4 -4.49 × 10-4, 8.51 × 10-4 0.545 Yes 

cg14965639 2 STON1-GTF2A1L 6.80 × 10-5 -6.27 × 10-4, 7.63 × 10-4 0.848 Yes 

cg27205928 7 C7orf50; MIR339 3.15 × 10-4 -2.28 × 10-4, 8.57 × 10-4 0.256 Yes 

cg09797334 11  -2.59 × 10-4 -9.25 × 10-4, 4.07 × 10-4 0.446 Yes 

cg00244267 19 SEMA6B 1.23 × 10-4 -2.25 × 10-4, 4.70 × 10-4 0.490 Yes 

cg25693302 18 NEDD4L -1.87 × 10-6 -3.84 × 10-5, 3.46 × 10-5 0.920 No 

cg07285953 17 CRYBA1 5.59 × 10-4 8.34 × 10-5, 1.03 × 10-3 0.022 Yes 

 

Table 24 – Associations between GIANT allele score at BMI-associated CpGs at age 15-17. 

Effect estimates are the change in methylation per unit increase in BMI allele score. Models adjusted for age, sex, 
maternal education, cell counts and smoking behaviour. 

CpG Chr Gene Beta 95% CI p-value 
Effect direction consistent with 

BMI-CpG effect direction? 

cg00498089 6  2.14 × 10-4 -3.16 × 10-4, 7.44 × 10-4 0.429 Yes 

cg10220806 22 DNAL4 3.08 × 10-5 -3.60 × 10-6, 6.52 × 10-5 0.080 Yes 

cg17820871 12 TESC -1.19 × 10-4 -5.02 × 10-4, 2.65 × 10-4 0.544 No 

cg21698718 17 CCDC57 3.13 × 10-4 -1.50 × 10-4, 7.75 × 10-4 0.186 Yes 

cg25110857 2  3.41 × 10-4 1.36 × 10-5, 6.68 × 10-4 0.042 Yes 

cg27229251 7 TTYH3 2.91 × 10-5 -5.77 × 10-4, 6.35 × 10-4 0.925 Yes 
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 Results from methylation to BMI MR 

Only two of the 14 CpGs (cg11836587 and cg14965639) had mQTL available, and hence 

MR analysis was only performed for these two CpGs. Results from the 2-sample MR 

analysis are presented below in Table 25. These results do not provide evidence for 

causal effects of these CpGs on BMI. 

Table 25 – Results from 2-sample MR analysis of the effect of BMI-associated CpGs on BMI. 

CpG SNP Beta 95% CI p-value 
Effect direction consistent with 

BMI-CpG effect direction? 

cg11836587 rs7938259 0.014 -0.007, 0.035 0.188 No 

cg14965639 rs17397707 0.003 -0.016, 0.022 0.747 Yes 

 

7.3.5. Results from look-up of age 7 BMI-associated CpGs with 

diet PCs 

The relationship between dietary behaviour and the 8 BMI-associated CpGs at age 7 

years was investigated, and the results are presented in Table 26. Analyses were 

adjusted for age, sex, maternal education and estimated cell counts. No robust evidence 

of association between the CpGs and diet PCs was observed. 

Table 26 – Relationship between dietary behaviour and BMI-associated CpGs at age 7 years. 
 “health aware” PC “packed lunch” PC 

CpG Beta 95% CI p-value Beta 95% CI p-value 

cg11836587 -2.75 × 10-4 -3.03 × 10-3, 2.48 × 10-3 0.845 -9.56 × 10-4 -4.01 × 10-3, 2.10 × 10-3 0.539 

cg22027865 -1.74 × 10-4 -2.60 × 10-3, 2.25 × 10-3 0.888 -6.89 × 10-4 -3.43 × 10-3, 2.05 × 10-3 0.623 

cg14965639 1.30 × 10-3 -1.51 × 10-3, 4.11 × 10-3 0.364 1.28 × 10-3 -1.80 × 10-3, 4.36 × 10-3 0.415 

cg27205928 2.16 × 10-4 -1.88 × 10-3, 2.31 × 10-3 0.839 1.47 × 10-3 -8.58 × 10-4, 3.81 × 10-3 0.216 

cg09797334 -1.60 × 10-4 -2.72 × 10-3, 2.40 × 10-3 0.902 -3.20 × 10-3 -6.04 × 10-3, -3.64 × 10-4 0.027 

cg00244267 -3.05 × 10-4 -1.65 × 10-3, 1.04 × 10-3 0.658 -9.75 × 10-4 -2.44 × 10-3, 4.93 × 10-4 0.193 

cg25693302 9.13 × 10-5 -4.84 × 10-5, 2.31 × 10-4 0.201 -5.83 × 10-6 -1.61 × 10-4, 1.50 × 10-4 0.941 

cg07285953 -4.50 × 10-4 -2.25 × 10-3, 1.35 × 10-3 0.625 5.07 × 10-4 -1.49 × 10-3, 2.51 × 10-3 0.620 
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7.4. Discussion 

HIF3A methylation and BMI in childhood and adolescence 

Analyses were performed to investigate whether associations between HIF3A 

methylation and BMI, previously identified in a separate study of adults,91 are also 

present in childhood and adolescence in ALSPAC. Cross-sectional analysis observed an 

association between methylation at cg27146050 and BMI in adolescence but not 

childhood. This association was of a similar magnitude to that previously observed in 

adults.91 The cross-sectional analysis of cg27146050 and BMI in adolescence was 

repeated with adjustment for estimated cell composition, and the results of this analysis 

did not differ from results from the original model without cell-type correction.109 

Results from the longitudinal and MR analyses in ALSPAC suggest that, in a causal 

relationship between BMI and HIF3A methylation, the direction of effect is more likely to 

be from BMI to HIF3A methylation than the reverse direction. The full manuscript of this 

work can be found in Appendix B of this thesis. 

Epigenome-wide analyses of BMI and methylation 

These analyses investigated the relationship between BMI and methylation in childhood 

and adolescence. None of the BMI-CpG associations reached epigenome-wide 

significance, but 14 CpGs showed suggestive evidence of association with BMI with p < 

10-5. Of these 14 associations, 8 were identified in childhood and 6 were identified in 

adolescence. 

The available sample sizes for this chapter’s analyses in childhood (n=913) and 

adolescence (n=784) are far smaller than those used in the EWAS discovery analyses by 

Wahl et al. (n=5,387) and Mendelson et al. (n=3,743).94,95 This may partly explain why 

the above analyses in ALSPAC were not able to detect robust associations between BMI 

and methylation, though a more recent smaller BMI EWAS in 374 pre-school children 

was able to detect several BMI-associated CpGs.232 

232 previously identified BMI-CpG associations in adults were followed up in ALSPAC in 

childhood and adolescence. 30 of those CpGs showed some evidence of association in 
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childhood and 33 of those CpGs showed some evidence of association in adolescence. 

Most of the effect estimates for these associations were consistent in effect direction 

with those in adults. Associations in adolescence tended to be more directionally 

consistent with the adult associations than the childhood associations were with the 

adult associations (30 out of 33 CpGs in adolescence compared to 21 out of 30 CpGs in 

childhood). Four of the CpGs showed some evidence of association in both childhood 

and adolescence – these were cg16611584 (nearest gene AKAP10), cg03159676 (nearest 

gene GSE1), cg25435714 (nearest gene RN7SL142P) and cg22012981 (nearest gene 

ACOX2). 

GWAS have identified links for AKAP10 with mean platelet volume (MPV), platelet count 

and reticulocyte count, and GSE1 with platelet count.233,234 A literature review of the 

relationship between MPV and cardiovascular diseases found several links, including 

links with obesity, diabetes and myocardial infarction.235 Thus a plausible biological 

pathway may link BMI with methylation variation at the AKAP10 locus and subsequent 

cardiovascular disease, although this would require much more detailed investigation 

before concrete inferences could be made. 

Causal inference analyses were performed to investigate whether any of the 

suggestively BMI-associated CpGs had a causal effect on BMI, or vice versa. These 

analyses provided little evidence for or against causal effects in either direction. 

Associations between the GIANT BMI allele score and BMI-associated CpGs were 

weak/lacking but mainly consistent in direction with the BMI-CpG effect estimates. 

Suitable genetic instruments to assess the causal effect of methylation on BMI were only 

available for two CpGs, and, after removing SNPs in LD, only one mQTL SNP was 

available for each of those CpGs. The capacity to execute MR using mQTLs as 

instrumental variables for site specific DNA methylation will improve as the catalogue of 

available mQTLs increases. Large scale GWAS of methylation are underway which should 

make this type of analysis more tractable in the near future. 

Analyses investigating the relationship between BMI-associated diet PCs and 

suggestively BMI-associated CpGs did not identify any associations. Since diet is a 
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complex phenotype and the CpGs were not robustly associated with BMI, this lack of 

identifiable associations between the diet PCs and these CpGs is not surprising and does 

not rule out the possibility that diet may indeed play a role in the relationship between 

BMI and methylation. 

A limitation of the analyses in this chapter is that the only tissue studied is blood. 

However, when studying associations with BMI, it may be more appropriate to study 

adipose tissue since methylation patterns are tissue-specific.81,109 BMI-CpG associations 

may be greater in adipose tissue, as was found to be the case for HIF3A methylation 

where the observed percentage change in BMI per 0.1 unit increase in methylation ß-

value was greater in adipose tissue than blood.91
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CHAPTER 8.  DISCUSSION  
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This thesis explored the role of the metabolome and the methylome in the relationship 

between dietary behaviour and BMI. Analyses conducted to achieve this aim included a 

GWAS to identify genetic instruments for diet; analyses to assess the diet-BMI 

relationship; analyses to identify aspects of the metabolome and methylation that may 

mediate the diet-BMI relationship; and MR and mediation analyses to investigate these 

potential mediators. 

 

8.1. Genetic determinants of dietary intake 

Main findings 

The GWAS of macronutrient intake identified five diet-SNP associations that replicated 

within UK Biobank. These included an association between rs516246 and 

polyunsaturated fat intake, which was novel in this GWAS, and an association between 

rs838133 and protein intake, which was identified in a previous diet GWAS.134 These two 

SNPs are in nearby genes – rs516246 is in FUT2, and rs838133 is in FGF21. The LD 

between rs516246 and rs838133 is R2=0.364, hence they may be tagging the same 

causal effect. FUT2 influences secretor status and intestinal microbiota 

composition,181,182 and previous GWAS have linked FUT2 SNPs to Crohn’s disease,158-161 

cholesterol,157 vitamin B12 levels,178-180 folate pathway vitamin levels164,165 and serum 

lipase activity.174 

Strengths and limitations 

The macronutrient intake GWAS in UK Biobank was carried out in a sample twice the 

size of any previous diet GWAS (~144,000 people, compared to the previous largest diet 

GWAS sample of ~71,000 people in the CHARGE and DietGen consortia134,140). UK 

Biobank has a panel of ~11 million SNPs, compared to ~2.6 million SNPs in previous 
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macronutrient GWAS elsewhere.134,140 This large panel of SNPs is needed since 

macronutrient intake appears to be a highly heterogeneous trait influenced by many 

small genetic effects.  

A major limitation in studies of dietary behaviour is measurement error for diet. This is 

an issue in UK Biobank, though slightly less so since dietary intake was measured 

multiple times and averaged across the various repeat measures, which hopefully 

reduced measurement error through reducing the impact of daily variation on the data.  

Future directions 

Conducting a diet GWAS with an even larger sample may identify further diet-SNP 

associations, however I think it would be more fruitful to focus effort on using dietary 

measures that are less reliant on the (often biased) self-report of dietary intake, for 

example cameras and software to digitally capture and estimate food groups and 

portion size. Alternatively, more objective measures of dietary constituents, such as 

metabolites, could be used. 

8.2. Implementing MR to understand diet-BMI 

relationship 

Main findings 

After observing strong links between dietary behaviour and BMI, these links were then 

explored within a causal inference framework. Two-sample MR analyses, conducted to 

estimate the causal effect of macronutrient intake on BMI, observed weak evidence 

suggesting that increases in protein and polyunsaturated fat intake lead to decreases in 

BMI, whereas increases in fat and saturated fat intake lead to increases in BMI. 

The 97-SNP BMI allele score from Locke et al.52 is not suitable for use in an MR 

framework to assess the causal effect of BMI on dietary behaviour since some of the loci 

are thought to influence appetite,208,213 and this violates the MR requirement for the 

outcome variable to only be associated with the genetic instrument through the 
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exposure variable.55 Instead, leave-one-out (LOO) weighted allele scores were created 

for each of 25 functional categories (4.2.1.3) to explore whether associations between 

dietary behaviour and the BMI allele scores were driven by a single aspect of the allele 

score, for example SNPs in the hypothalamic expression and regulatory function 

category. Dietary behaviour was captured using macronutrient intake in UK Biobank and 

the diet PCs in ALSPAC. The associations between the LOO allele scores and dietary 

behaviour were weaker for allele scores without SNPs in the neuronal developmental 

processes category and the hypothalamic expression and regulatory function category, 

which suggests that some BMI SNPs may exert their effect on BMI through dietary 

behaviour. 

Strengths and limitations 

A strength of these analyses is the implementation of a two-sample MR framework as 

this enabled use of GWAS summary data from a large published BMI GWAS.52 The 

macronutrient genetic instruments used in these causal analyses were identified in UK 

Biobank, hence one-sample MR could not be conducted in UK Biobank as this would 

have led to overfitting.210,211 However, using MR to explore the causal effect of diet on 

BMI was challenging because few diet-associated SNPs have been identified. For each 

macronutrient no more than two SNPs were available as genetic instruments for use in 

MR analysis of macronutrient intake on BMI. 

Conducting causal analyses to explore the effect of BMI on diet also proved challenging. 

Some BMI SNPs are thought to influence BMI through diet-related traits such as appetite 

regulation, and hence these SNPs do not meet the requirement in MR for the instrument 

to be independent of the outcome given the exposure.55 

Future directions 

If better genetic instruments for dietary behaviour are available for future analyses, this 

should help to the clarify causal relationship between diet and BMI, and more 

specifically which components of diet are most detrimental in causing accrual of body 

weight. A more detailed knowledge of the biological functions of SNPs in the BMI allele 
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score would hopefully identify some SNPs that, given BMI, are independent of dietary 

behaviour. 

8.3. Dietary and BMI influences on the 

metabolome 

Main findings 

Strong links were observed between diet, BMI and the metabolome. Cross-sectional 

associations were observed in ALSPAC in childhood and adolescence between BMI and 

several metabolites, including VLDL and HDL concentration measures, apolipoproteins, 

fatty acids and amino acids. Effect directions were mostly consistent with those 

previously observed in adults, indicating that the link between BMI and the metabolome 

starts in childhood.70,71,74 Results from MR analyses of BMI on metabolites in the ALSPAC 

children and adolescents suggest that BMI has a causal effect on several metabolites. 

Previous studies in adults have also observed evidence indicating a causal effect of BMI 

on the metabolome.70,75,76 Several BMI-associated metabolites were also associated with 

dietary behaviour in the ALSPAC children, including branched-chain amino acids. 

Strengths and limitations 

Previous studies have identified strong links between adiposity and the metabolome, 

however these studies were mostly conducted in adults.68-78 Two studies were carried 

out in children, but the sample sizes were small (n<250) and neither investigated 

causality.68,69 In contrast, the analyses of adiposity and the metabolome in this thesis 

were conducted in far greater sample sizes (n=5414 in childhood and n=3286 in 

adolescence). 

Future directions 

Further analyses are needed to clarify the directions of causality between BMI and 

metabolites and between dietary behaviour and the metabolites. Although this study 

was larger than previous studies of children, even bigger studies are needed for the 

power to detect smaller effects. 
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8.4. Direction of causal pathways between BMI 

and DNA methylation 

Main findings 

Several associations between BMI and methylation, previously identified in adult studies 

elsewhere, are also present in childhood and adolescence in ALSPAC. The associations in 

ALSPAC tended to be weaker, probably due to using a smaller sample size than the 

previous studies in adults.91,94,95 

Causal inference analyses were unable to, with any degree of certainty, identify or rule 

out a causal effect of BMI on methylation or methylation on BMI. However, results from 

longitudinal and MR analyses suggest that the direction of effect between BMI and 

HIF3A methylation is more likely to be from BMI to HIF3A methylation than the reverse 

direction. 

Strengths and limitations 

EWAS are susceptible to confounding since the epigenetic patterns vary across the life 

course, and epigenetic variation can be a cause or a consequence of trait. BMI EWAS 

conducted in ALSPAC lacked power – larger samples will be required to identify 

epigenome-wide significant BMI-associated CpGs. 

Future directions 

Further EWAS using larger samples are needed to identify BMI-associated CpGs in 

children and adolescents. BMI-associated methylation variation has been applied to 

predict downstream consequences of BMI including type 2 diabetes,94 so although the 

association studies to date have shed little light on the causal role of DNA methylation in 

this context, there is merit in utilising methylation as a predictor of future comorbidities. 

The use of methylation variation in children as a predictor of later adverse health 

outcomes warrants further study. 
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8.5. Implementing MR in molecular mediation 

Main findings 

Analyses in the ALSPAC children found that several BMI-associated metabolites were 

also associated with diet. In contrast, no associations were identified between BMI-

associated CpGs and dietary behaviour. 

The relationships between diet, BMI and the metabolites suggest that five of the 

metabolites (HDL particle size, MUFA, creatinine, and very large HDL cholesterol and 

cholesterol esters) may be potential mediators in the relationship between diet and BMI 

(or that the relationship between diet and those metabolites may be mediated by BMI). 

2-sample MR analyses performed to investigate the causal relationships between these 

metabolites and BMI observed evidence suggesting that BMI has a causal effect on HDL 

particle size and very large HDL cholesterol and cholesterol esters. Results from single 

sample MR analysis conducted in the ALSPAC children suggest that BMI also has a causal 

effect on creatine levels. 2-sample MR analyses were unable to detect any causal effects 

of the metabolites on BMI, perhaps due to a lack of power. 

Bringing together findings from the MR analyses and mediation analyses, the results 

suggest that BMI mediates the effect of dietary behaviour on very large HDL cholesterol 

and cholesterol esters, HDL particle size and creatinine.  

Strengths and limitations 

A limitation of these analyses is that the causal effect of diet on BMI and metabolites 

was assumed but not assessed as there are no known genetic instruments for the diet 

PCs (4.2.2.2). PCs are unique to the dataset from which they are generated, and hence 

comparing PCs from one study with those from different study (or the same study at a 

different timepoint) is not straightforward. However, when dealing with complex dietary 

data, PCA is helpful for the identification of dietary behaviours that are worthy of more 

detailed scrutiny. 
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Future directions 

The relationships between diet, BMI and the metabolome and methylome are complex 

and warrant further investigation. Larger sample sizes and more refined measures of 

dietary behaviour and adiposity are needed. 

8.6. Main conclusions 

The work presented here confirms that a healthy diet is important in reducing obesity 

and identifies some potential molecular mechanisms by which this may occur. 

Importantly, my results indicate that the molecular mechanisms underpinning this 

relationship become established in childhood, emphasising the importance of early 

intervention to reduce risk of later cardiometabolic disease. Furthermore, the data 

presented in this thesis suggest that obesity influences molecular profiles, in particular 

DNA methylation. These changes may be informative in predicting adverse 

consequences of obesity, potentially for stratifying groups of individuals for targeted 

intervention. 

This thesis helps to improve our understanding of the relationship between molecular 

intermediates and obesity. Molecular intermediates such as the metabolome and 

methylome provide additional opportunities for intervention, with the aim of either the 

prevention and treatment of obesity itself, or of its comorbidities. 

My results emphasise the importance of a healthy lifestyle from an early age. This 

supports current public health strategies and augments the evidence for the importance 

of childhood lifestyle and dietary interventions. 
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Appendix A 

 

Appendix A.1 – Metabolite transformations 

List of metabolites that were log-transformed in the ALSPAC children and adolescents. 

Category Name etc. 

Chylomicrons and extremely large VLDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Very large VLDL Particle 

Lipid 

Phospholipids 

Cholesterol 

Cholesterol esters 

Free cholesterol 

Triglycerides 

Large VLDL Free cholesterol 

Medium LDL Triglycerides 

Small LDL Triglycerides 

Glycerides & phospholipids Diacylglycerol 

Ratio of diacylglycerol to triglycerides 

Fatty acids & saturation Conjugated linoleic acid (CLA) 

CLA to total FAs ratio 

Amino acids Histidine 

Ketone bodies Acetoacetate 

3-hydroxybutyrate 
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Appendix A.2 – MR-Egger results table 

Results from MR-Egger analyses performed to investigate the validity of using the GIANT BMI 
score to assess the causal effect of BMI on the metabolome in the ALSPAC children at age 7 
years (5.2.4). Effect estimates are the 1-SD increase in metabolite concentration per 1kg/m2 
increase in BMI. 

 

Category Metabolite Beta 95% CI p-value 

Chylomicrons 
and extremely 
large VLDL 

Particle -6.46 × 10-4 -1.90 × 10-3, 6.07 × 10-4 0.312 

Lipid -6.31 × 10-4 -1.88 × 10-3, 6.16 × 10-4 0.321 

Phospholipids -6.49 × 10-4 -1.88 × 10-3, 5.85 × 10-4 0.302 

Cholesterol -7.37 × 10-4 -2.02 × 10-3, 5.45 × 10-4 0.260 

Cholesterol esters -7.48 × 10-4 -2.06 × 10-3, 5.66 × 10-4 0.265 

Free cholesterol -6.94 × 10-4 -1.93 × 10-3, 5.45 × 10-4 0.272 

Triglycerides -6.10 × 10-4 -1.85 × 10-3, 6.29 × 10-4 0.335 

Very large VLDL Particle -6.98 × 10-4 -1.92 × 10-3, 5.27 × 10-4 0.264 

Lipid -6.74 × 10-4 -1.91 × 10-3, 5.58 × 10-4 0.284 

Phospholipids -7.26 × 10-4 -1.95 × 10-3, 5.00 × 10-4 0.246 

Cholesterol -7.11 × 10-4 -1.99 × 10-3, 5.64 × 10-4 0.274 

Cholesterol esters -7.13 × 10-4 -2.00 × 10-3, 5.75 × 10-4 0.278 

Free cholesterol -7.10 × 10-4 -1.97 × 10-3, 5.50 × 10-4 0.269 

Triglycerides -6.70 × 10-4 -1.89 × 10-3, 5.50 × 10-4 0.282 

Large VLDL Particle -7.36 × 10-4 -1.96 × 10-3, 4.91 × 10-4 0.240 

Lipid -7.52 × 10-4 -1.98 × 10-3, 4.81 × 10-4 0.232 

Phospholipids -7.72 × 10-4 -2.00 × 10-3, 4.60 × 10-4 0.219 

Cholesterol -8.01 × 10-4 -2.06 × 10-3, 4.58 × 10-4 0.212 

Cholesterol esters -8.19 × 10-4 -2.11 × 10-3, 4.71 × 10-4 0.213 

Free cholesterol -7.62 × 10-4 -1.99 × 10-3, 4.69 × 10-4 0.225 

Triglycerides -7.24 × 10-4 -1.95 × 10-3, 5.00 × 10-4 0.246 

Medium VLDL Particle -7.87 × 10-4 -2.05 × 10-3, 4.72 × 10-4 0.221 

Lipid -8.01 × 10-4 -2.07 × 10-3, 4.72 × 10-4 0.218 

Phospholipids -8.33 × 10-4 -2.11 × 10-3, 4.42 × 10-4 0.200 

Cholesterol -8.13 × 10-4 -2.14 × 10-3, 5.14 × 10-4 0.230 

Cholesterol esters -7.12 × 10-4 -2.08 × 10-3, 6.52 × 10-4 0.307 

Free cholesterol -8.53 × 10-4 -2.12 × 10-3, 4.10 × 10-4 0.186 

Triglycerides -7.66 × 10-4 -2.02 × 10-3, 4.85 × 10-4 0.230 

Small VLDL Particle -8.24 × 10-4 -2.15 × 10-3, 5.05 × 10-4 0.224 

Lipid -7.92 × 10-4 -2.18 × 10-3, 6.00 × 10-4 0.265 

Phospholipids -8.44 × 10-4 -2.19 × 10-3, 5.05 × 10-4 0.220 

Cholesterol -5.45 × 10-4 -2.13 × 10-3, 1.03 × 10-3 0.499 

Cholesterol esters -3.45 × 10-4 -1.99 × 10-3, 1.30 × 10-3 0.681 

Free cholesterol -8.34 × 10-4 -2.23 × 10-3, 5.64 × 10-4 0.242 

Triglycerides -8.45 × 10-4 -2.11 × 10-3, 4.23 × 10-4 0.192 

Very small VLDL Particle -5.54 × 10-4 -2.10 × 10-3, 9.94 × 10-4 0.483 

Lipid -2.70 × 10-4 -1.89 × 10-3, 1.35 × 10-3 0.744 

Phospholipids -4.04 × 10-4 -2.01 × 10-3, 1.20 × 10-3 0.621 

Cholesterol 2.17 × 10-4 -1.30 × 10-3, 1.74 × 10-3 0.780 

Cholesterol esters 2.92 × 10-4 -1.29 × 10-3, 1.87 × 10-3 0.717 

Triglycerides -9.76 × 10-4 -2.27 × 10-3, 3.17 × 10-4 0.139 

IDL Cholesterol -1.99 × 10-4 -1.87 × 10-3, 1.47 × 10-3 0.815 

Cholesterol esters -2.23 × 10-4 -1.91 × 10-3, 1.47 × 10-3 0.796 

Medium LDL Phospholipids -7.83 × 10-4 -2.39 × 10-3, 8.27 × 10-4 0.341 

Small LDL Phospholipids -7.54 × 10-4 -2.29 × 10-3, 7.81 × 10-4 0.335 

Very large HDL Particle -3.62 × 10-4 -1.54 × 10-3, 8.19 × 10-4 0.548 

Lipid -3.19 × 10-4 -1.48 × 10-3, 8.42 × 10-4 0.590 

Phospholipids -4.02 × 10-4 -1.59 × 10-3, 7.90 × 10-4 0.509 

Cholesterol -1.66 × 10-4 -1.29 × 10-3, 9.61 × 10-4 0.773 

Cholesterol esters -9.58 × 10-5 -1.22 × 10-3, 1.03 × 10-3 0.867 

Free cholesterol -3.39 × 10-4 -1.48 × 10-3, 8.05 × 10-4 0.561 

Large HDL Particle -3.95 × 10-4 -1.70 × 10-3, 9.08 × 10-4 0.552 

Lipid -4.45 × 10-4 -1.74 × 10-3, 8.49 × 10-4 0.500 

Phospholipids -5.19 × 10-4 -1.79 × 10-3, 7.55 × 10-4 0.425 

Cholesterol -3.67 × 10-4 -1.68 × 10-3, 9.44 × 10-4 0.583 

Cholesterol esters -3.73 × 10-4 -1.69 × 10-3, 9.46 × 10-4 0.580 

Free cholesterol -3.57 × 10-4 -1.64 × 10-3, 9.24 × 10-4 0.585 
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Medium HDL Cholesterol -8.68 × 10-4 -2.13 × 10-3, 3.97 × 10-4 0.179 

Cholesterol esters -8.06 × 10-4 -2.10 × 10-3, 4.89 × 10-4 0.222 

Free cholesterol -1.07 × 10-3 -2.23 × 10-3, 9.60 × 10-5 0.072 

Small HDL Particle -9.43 × 10-4 -2.11 × 10-3, 2.25 × 10-4 0.114 

Lipid -1.04 × 10-3 -2.21 × 10-3, 1.21 × 10-4 0.079 

Phospholipids -7.47 × 10-4 -2.01 × 10-3, 5.12 × 10-4 0.245 

Cholesterol -7.61 × 10-4 -2.00 × 10-3, 4.81 × 10-4 0.230 

Cholesterol esters -6.73 × 10-4 -1.97 × 10-3, 6.19 × 10-4 0.307 

Triglycerides -7.40 × 10-4 -1.91 × 10-3, 4.34 × 10-4 0.217 

Lipoprotein 
particle sizes 

VLDL particle size -4.12 × 10-4 -1.64 × 10-3, 8.19 × 10-4 0.512 

HDL particle size -2.06 × 10-4 -1.45 × 10-3, 1.03 × 10-3 0.744 

Cholesterol VLDL cholesterol -6.13 × 10-4 -2.10 × 10-3, 8.73 × 10-4 0.419 

Remnant cholesterol -5.08 × 10-4 -2.16 × 10-3, 1.14 × 10-3 0.547 

HDL cholesterol -5.53 × 10-4 -1.80 × 10-3, 6.97 × 10-4 0.386 

HDL2 cholesterol -3.86 × 10-4 -1.66 × 10-3, 8.90 × 10-4 0.553 

HDL3 cholesterol -8.26 × 10-4 -2.03 × 10-3, 3.79 × 10-4 0.179 

Glycerides & 
phospholipids 

Triglycerides -8.60 × 10-4 -2.11 × 10-3, 3.85 × 10-4 0.176 

VLDL triglycerides -7.81 × 10-4 -2.03 × 10-3, 4.66 × 10-4 0.220 

HDL triglycerides -9.03 × 10-4 -2.09 × 10-3, 2.82 × 10-4 0.135 

Diacylglycerol -1.18 × 10-3 -2.49 × 10-3, 1.38 × 10-4 0.079 

Ratio of diacylglycerol to triglycerides -8.72 × 10-4 -2.14 × 10-3, 4.01 × 10-4 0.179 

Apolipoproteins ApoA-I -9.28 × 10-4 -2.13 × 10-3, 2.74 × 10-4 0.130 

ApoB -7.15 × 10-4 -2.29 × 10-3, 8.55 × 10-4 0.372 

ApoB/ApoA-I -2.80 × 10-4 -1.84 × 10-3, 1.28 × 10-3 0.725 

Fatty acids & 
saturation 

Total fatty acids (FA) -1.26 × 10-3 -2.59 × 10-3, 7.49 × 10-5 0.064 

Estimated fatty acid chain length -3.38 × 10-5 -1.10 × 10-3, 1.04 × 10-3 0.951 

Docosahexaenoic acids (DHA) -1.17 × 10-3 -2.43 × 10-3, 8.84 × 10-5 0.068 

Conjugated linoleic acid (CLA) -6.53 × 10-4 -1.95 × 10-3, 6.43 × 10-4 0.323 

Omega-3 fatty acids -1.24 × 10-3 -2.51 × 10-3, 2.85 × 10-5 0.055 

Omega-6 fatty acids -1.06 × 10-3 -2.48 × 10-3, 3.59 × 10-4 0.143 

PUFA -1.13 × 10-3 -2.54 × 10-3, 2.74 × 10-4 0.115 

MUFA -1.25 × 10-3 -2.51 × 10-3, 1.22 × 10-5 0.052 

Saturated fatty acids (SFA) -1.03 × 10-3 -2.30 × 10-3, 2.42 × 10-4 0.112 

LA to total FAs ratio 4.77 × 10-4 -7.95 × 10-4, 1.75 × 10-3 0.463 

CLA to total FAs ratio -6.02 × 10-4 -1.88 × 10-3, 6.72 × 10-4 0.355 

Omega-6 to total FAs ratio 4.22 × 10-4 -7.67 × 10-4, 1.61 × 10-3 0.486 

PUFAs to total FAs ratio 2.88 × 10-4 -8.98 × 10-4, 1.47 × 10-3 0.634 

MUFAs to total FAs ratio -5.99 × 10-4 -1.79 × 10-3, 5.91 × 10-4 0.324 

Glycolysis related 
metabolites 

Glucose -1.30 × 10-4 -1.37 × 10-3, 1.11 × 10-3 0.837 

Lactate -5.01 × 10-4 -1.66 × 10-3, 6.57 × 10-4 0.397 

Citrate 2.01 × 10-4 -8.43 × 10-4, 1.24 × 10-3 0.706 

Amino acids Glutamine -9.89 × 10-4 -2.08 × 10-3, 1.03 × 10-4 0.076 

Histidine -6.48 × 10-4 -1.70 × 10-3, 4.00 × 10-4 0.226 

Isoleucine -3.02 × 10-4 -1.34 × 10-3, 7.41 × 10-4 0.570 

Leucine 7.58 × 10-5 -9.46 × 10-4, 1.10 × 10-3 0.884 

Valine 2.66 × 10-4 -8.01 × 10-4, 1.33 × 10-3 0.625 

Phenylalanine -2.89 × 10-4 -1.39 × 10-3, 8.11 × 10-4 0.606 

Tyrosine 1.10 × 10-3 4.27 × 10-5, 2.15 × 10-3 0.041 

Ketone bodies 3-hydroxybutyrate -9.88 × 10-4 -2.07 × 10-3, 9.51 × 10-5 0.074 

Fluid balance Creatinine -1.57 × 10-3 -2.68 × 10-3, -4.61 × 10-4 0.006 

Inflammation Glycoprotein acetyls -9.56 × 10-4 -2.25 × 10-3, 3.32 × 10-4 0.146 
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Appendix A.3 – Cross-sectional associations between diet PCs and 

metabolites 

Results from cross-sectional analyses of the relationships between the diet PCs and metabolites 
in the ALSPAC children at age 7 years (6.2.1). Effect estimates are the 1-SD increase in 
metabolite concentration per unit increase in diet PC. 

 

Category Metabolite 
Health aware PC Packed lunch PC 

Beta 95% CI p-value Beta 95% CI p-value 

Chylomicrons 

and extremely 

large VLDL 

Particle -0.002 -0.02, 0.015 0.799 -0.025 -0.046, -0.005 0.013 

Lipid -0.002 -0.02, 0.015 0.795 -0.025 -0.045, -0.004 0.017 

Phospholipids -0.003 -0.02, 0.015 0.759 -0.026 -0.046, -0.005 0.013 

Cholesterol -0.006 -0.024, 0.011 0.489 -0.022 -0.042, -0.002 0.034 

Cholesterol esters -0.010 -0.027, 0.008 0.282 -0.017 -0.037, 0.003 0.097 

Free cholesterol -0.003 -0.02, 0.015 0.767 -0.025 -0.046, -0.005 0.014 

Triglycerides -0.002 -0.019, 0.016 0.865 -0.025 -0.045, -0.005 0.016 

Very large VLDL Particle -0.001 -0.019, 0.016 0.872 -0.020 -0.041, 0 0.049 

Lipid -0.002 -0.019, 0.016 0.857 -0.020 -0.041, 0 0.050 

Phospholipids -0.002 -0.02, 0.015 0.787 -0.023 -0.043, -0.003 0.027 

Cholesterol -0.003 -0.021, 0.015 0.739 -0.022 -0.042, -0.002 0.033 

Cholesterol esters -0.003 -0.02, 0.015 0.758 -0.019 -0.039, 0.001 0.064 

Free cholesterol -0.003 -0.021, 0.014 0.718 -0.025 -0.045, -0.004 0.017 

Triglycerides -0.001 -0.019, 0.017 0.890 -0.019 -0.039, 0.002 0.070 

Large VLDL Particle -0.004 -0.021, 0.014 0.696 -0.014 -0.034, 0.006 0.175 

Lipid -0.003 -0.021, 0.014 0.699 -0.014 -0.034, 0.006 0.166 

Phospholipids -0.003 -0.021, 0.014 0.713 -0.016 -0.036, 0.004 0.122 

Cholesterol -0.003 -0.021, 0.014 0.699 -0.016 -0.036, 0.005 0.130 

Cholesterol esters -0.004 -0.022, 0.013 0.640 -0.013 -0.033, 0.007 0.205 

Free cholesterol -0.003 -0.02, 0.015 0.766 -0.018 -0.038, 0.003 0.086 

Triglycerides -0.004 -0.021, 0.014 0.697 -0.013 -0.033, 0.007 0.198 

Medium VLDL Particle -0.003 -0.021, 0.015 0.732 -0.011 -0.032, 0.009 0.267 

Lipid -0.003 -0.02, 0.015 0.749 -0.011 -0.031, 0.009 0.282 

Phospholipids -0.003 -0.02, 0.015 0.755 -0.013 -0.033, 0.007 0.205 

Cholesterol 0.000 -0.018, 0.017 0.990 -0.012 -0.032, 0.008 0.251 

Cholesterol esters 0.002 -0.015, 0.02 0.797 -0.009 -0.029, 0.011 0.374 

Free cholesterol -0.003 -0.02, 0.015 0.768 -0.014 -0.034, 0.006 0.182 

Triglycerides -0.004 -0.022, 0.014 0.653 -0.010 -0.03, 0.01 0.343 

Small VLDL Particle -0.009 -0.027, 0.008 0.306 -0.011 -0.031, 0.009 0.289 

Lipid -0.012 -0.029, 0.005 0.179 -0.011 -0.031, 0.009 0.278 

Phospholipids -0.020 -0.037, -0.002 0.026 -0.005 -0.025, 0.015 0.601 

Cholesterol -0.014 -0.031, 0.004 0.125 -0.017 -0.037, 0.003 0.099 

Cholesterol esters -0.013 -0.031, 0.004 0.138 -0.019 -0.039, 0.001 0.066 

Free cholesterol -0.013 -0.03, 0.005 0.159 -0.011 -0.031, 0.009 0.279 

Triglycerides -0.006 -0.024, 0.012 0.504 -0.008 -0.028, 0.012 0.454 

Very small VLDL Particle 0.001 -0.016, 0.019 0.869 -0.018 -0.038, 0.002 0.077 

Lipid -0.001 -0.018, 0.017 0.954 -0.020 -0.04, 0 0.051 

Phospholipids 0.007 -0.01, 0.025 0.415 -0.029 -0.049, -0.009 0.005 

Cholesterol 0.000 -0.017, 0.018 0.966 -0.011 -0.031, 0.01 0.303 

Cholesterol esters -0.003 -0.02, 0.015 0.772 -0.015 -0.035, 0.006 0.158 

Free cholesterol 0.006 -0.012, 0.024 0.489 -0.002 -0.022, 0.019 0.860 

Triglycerides -0.012 -0.029, 0.006 0.193 -0.014 -0.034, 0.006 0.168 
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IDL Particle 0.015 -0.003, 0.032 0.109 -0.043 -0.064, -0.023 3.21 × 10-5 

Lipid 0.012 -0.006, 0.029 0.202 -0.037 -0.058, -0.017 3.38 × 10-4 

Phospholipids 0.013 -0.005, 0.031 0.151 -0.041 -0.061, -0.02 8.91 × 10-5 

Cholesterol 0.014 -0.004, 0.032 0.123 -0.034 -0.054, -0.014 0.001 

Cholesterol esters 0.012 -0.006, 0.03 0.180 -0.032 -0.052, -0.011 0.002 

Free cholesterol 0.017 -0.001, 0.035 0.057 -0.037 -0.058, -0.017 4.08 × 10-4 

Triglycerides -0.012 -0.03, 0.006 0.186 -0.027 -0.048, -0.007 0.009 

Large LDL Particle 0.006 -0.012, 0.024 0.505 -0.042 -0.063, -0.022 5.47 × 10-5 

Lipid 0.006 -0.011, 0.024 0.482 -0.040 -0.061, -0.02 1.18 × 10-4 

Phospholipids 0.004 -0.014, 0.022 0.660 -0.038 -0.059, -0.018 2.20 × 10-4 

Cholesterol 0.010 -0.008, 0.027 0.294 -0.039 -0.06, -0.019 1.69 × 10-4 

Cholesterol esters 0.009 -0.008, 0.027 0.304 -0.040 -0.06, -0.019 1.41 × 10-4 

Free cholesterol 0.010 -0.008, 0.028 0.268 -0.038 -0.058, -0.017 3.36 × 10-4 

Triglycerides -0.014 -0.032, 0.004 0.135 -0.036 -0.057, -0.015 0.001 

Medium LDL Particle 0.003 -0.015, 0.021 0.739 -0.042 -0.063, -0.022 4.87 × 10-5 

Lipid 0.004 -0.014, 0.022 0.657 -0.041 -0.061, -0.02 8.72 × 10-5 

Phospholipids -0.010 -0.028, 0.008 0.265 -0.034 -0.055, -0.014 0.001 

Cholesterol 0.010 -0.008, 0.028 0.257 -0.041 -0.061, -0.02 9.09 × 10-5 

Cholesterol esters 0.013 -0.005, 0.03 0.168 -0.041 -0.062, -0.021 7.18 × 10-5 

Free cholesterol 0.000 -0.018, 0.018 0.961 -0.036 -0.057, -0.016 0.001 

Triglycerides -0.016 -0.034, 0.002 0.085 -0.036 -0.056, -0.015 0.001 

Small LDL Particle -0.001 -0.019, 0.017 0.914 -0.043 -0.063, -0.022 4.21 × 10-5 

Lipid 0.003 -0.015, 0.021 0.736 -0.041 -0.061, -0.02 9.91 × 10-5 

Phospholipids -0.007 -0.025, 0.011 0.464 -0.038 -0.058, -0.017 3.09 × 10-4 

Cholesterol 0.008 -0.01, 0.026 0.361 -0.040 -0.06, -0.019 1.46 × 10-4 

Cholesterol esters 0.011 -0.007, 0.029 0.221 -0.041 -0.061, -0.02 9.30 × 10-5 

Free cholesterol -0.006 -0.025, 0.012 0.480 -0.027 -0.048, -0.006 0.010 

Triglycerides -0.016 -0.034, 0.002 0.075 -0.033 -0.054, -0.013 0.001 

Very large HDL Particle 0.022 0.003, 0.04 0.020 -0.032 -0.053, -0.011 0.002 

Lipid 0.020 0.002, 0.038 0.031 -0.035 -0.056, -0.014 0.001 

Phospholipids 0.025 0.007, 0.044 0.007 -0.027 -0.048, -0.006 0.011 

Cholesterol 0.011 -0.007, 0.029 0.233 -0.039 -0.06, -0.019 2.23 × 10-4 

Cholesterol esters 0.007 -0.011, 0.025 0.463 -0.041 -0.062, -0.02 1.49 × 10-4 

Free cholesterol 0.021 0.003, 0.04 0.022 -0.035 -0.056, -0.014 0.001 

Triglycerides 0.032 0.014, 0.05 0.001 -0.040 -0.061, -0.019 1.69 × 10-4 

Large HDL Particle 0.016 -0.002, 0.034 0.081 -0.013 -0.034, 0.008 0.213 

Lipid 0.017 -0.001, 0.035 0.063 -0.011 -0.032, 0.009 0.284 

Phospholipids 0.015 -0.003, 0.033 0.098 -0.015 -0.036, 0.006 0.153 

Cholesterol 0.017 -0.001, 0.035 0.069 -0.008 -0.028, 0.013 0.473 

Cholesterol esters 0.016 -0.002, 0.034 0.085 -0.007 -0.028, 0.014 0.505 

Free cholesterol 0.020 0.002, 0.038 0.032 -0.010 -0.03, 0.011 0.367 

Triglycerides 0.054 0.036, 0.073 5.47 × 10-9 -0.024 -0.044, -0.003 0.027 

Medium HDL Particle -0.039 -0.057, -0.021 2.16 × 10-5 0.015 -0.006, 0.036 0.153 

Lipid -0.038 -0.056, -0.02 4.55 × 10-5 0.016 -0.005, 0.036 0.139 

Phospholipids -0.044 -0.062, -0.026 2.24 × 10-6 0.011 -0.01, 0.032 0.298 

Cholesterol -0.026 -0.044, -0.008 0.005 0.021 0, 0.042 0.048 

Cholesterol esters -0.028 -0.046, -0.01 0.003 0.023 0.002, 0.044 0.030 

Free cholesterol -0.017 -0.036, 0.001 0.063 0.012 -0.009, 0.033 0.256 

Triglycerides -0.015 -0.033, 0.003 0.094 -0.005 -0.025, 0.016 0.644 

Small HDL Particle -0.067 -0.085, -0.049 6.10 × 10-13 0.015 -0.006, 0.036 0.162 

Lipid -0.070 -0.088, -0.052 5.57 × 10-14 0.016 -0.005, 0.036 0.141 

Phospholipids -0.052 -0.071, -0.034 1.68 × 10-8 0.014 -0.007, 0.035 0.190 

Cholesterol -0.053 -0.072, -0.035 7.89 × 10-9 0.014 -0.007, 0.035 0.185 

Cholesterol esters -0.047 -0.065, -0.029 4.00 × 10-7 0.012 -0.009, 0.032 0.278 

Free cholesterol -0.052 -0.07, -0.034 1.40 × 10-8 0.017 -0.003, 0.038 0.102 

Triglycerides -0.023 -0.041, -0.005 0.012 -0.017 -0.037, 0.004 0.107 

Lipoprotein 

particle sizes 

VLDL particle size -0.003 -0.021, 0.015 0.711 -0.010 -0.031, 0.01 0.332 

LDL particle size 0.035 0.017, 0.054 1.48 × 10-4 0.017 -0.004, 0.038 0.112 

HDL particle size 0.034 0.016, 0.052 2.22 × 10-4 -0.023 -0.043, -0.002 0.033 
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Cholesterol Total cholesterol 0.005 -0.013, 0.023 0.581 -0.036 -0.057, -0.016 0.001 

VLDL cholesterol -0.005 -0.022, 0.012 0.584 -0.017 -0.037, 0.003 0.089 

Remnant cholesterol 0.004 -0.014, 0.021 0.671 -0.028 -0.048, -0.008 0.006 

LDL cholesterol 0.010 -0.008, 0.027 0.293 -0.040 -0.06, -0.02 1.29 × 10-4 

HDL cholesterol -0.005 -0.023, 0.013 0.578 -0.009 -0.03, 0.012 0.405 

HDL2 cholesterol -0.008 -0.026, 0.01 0.365 -0.006 -0.026, 0.015 0.592 

HDL3 cholesterol 0.001 -0.017, 0.02 0.901 -0.014 -0.035, 0.007 0.187 

Esterified cholesterol 0.009 -0.009, 0.027 0.316 -0.035 -0.056, -0.015 0.001 

Free cholesterol -0.005 -0.023, 0.013 0.572 -0.036 -0.057, -0.016 0.001 

Glycerides & 

phospholipids 

Triglycerides -0.006 -0.024, 0.011 0.488 -0.018 -0.038, 0.002 0.080 

VLDL triglycerides -0.004 -0.022, 0.013 0.625 -0.013 -0.033, 0.008 0.222 

LDL triglycerides -0.015 -0.033, 0.003 0.102 -0.036 -0.057, -0.015 0.001 

HDL triglycerides 0.002 -0.016, 0.02 0.849 -0.023 -0.043, -0.002 0.029 

Diacylglycerol 0.014 -0.005, 0.032 0.144 -0.011 -0.032, 0.01 0.310 

Ratio of diacylglycerol to triglycerides 0.010 -0.008, 0.029 0.262 -0.002 -0.023, 0.019 0.827 

Phosphoglycerides 0.019 0.001, 0.038 0.038 -0.022 -0.043, -0.001 0.039 

Ratio of triglycerides to phophoglycerides 0.006 -0.012, 0.024 0.501 -0.009 -0.029, 0.012 0.413 

Phosphatidylcholine and other cholines 0.025 0.007, 0.044 0.007 -0.025 -0.046, -0.004 0.022 

Total cholines 0.019 0.001, 0.038 0.039 -0.024 -0.045, -0.003 0.023 

Apolipoproteins ApoA-I -0.005 -0.024, 0.013 0.581 -0.018 -0.039, 0.003 0.100 

ApoB 0.003 -0.014, 0.02 0.737 -0.031 -0.051, -0.011 0.002 

ApoB/ApoA-I 0.005 -0.013, 0.022 0.589 -0.023 -0.043, -0.003 0.024 

Fatty acids & 

saturation 

Total fatty acids (FA) 0.014 -0.004, 0.032 0.126 -0.024 -0.045, -0.004 0.019 

Estimated fatty acid chain length -0.008 -0.026, 0.011 0.411 -0.002 -0.023, 0.018 0.817 

Estimated degree of unsaturation 0.083 0.065, 0.101 7.59 × 10-19 0.001 -0.02, 0.022 0.912 

Docosahexaenoic acids (DHA) 0.127 0.109, 0.145 2.86 × 10-43 -0.110 -0.131, -0.09 1.70 × 10-25 

Linoleic acid (LA) 0.038 0.02, 0.056 4.20 × 10-5 0.023 0.003, 0.044 0.027 

Conjugated linoleic acid (CLA) 0.045 0.027, 0.063 1.21 × 10-6 -0.069 -0.09, -0.048 7.61 × 10-11 

Omega-3 fatty acids 0.099 0.081, 0.117 5.19 × 10-27 -0.099 -0.119, -0.078 6.50 × 10-21 

Omega-6 fatty acids 0.047 0.029, 0.065 2.74 × 10-7 0.003 -0.018, 0.024 0.780 

PUFA 0.056 0.038, 0.074 1.06 × 10-9 -0.010 -0.03, 0.011 0.346 

MUFA -0.042 -0.059, -0.024 3.23 × 10-6 -0.020 -0.04, 0 0.050 

Saturated fatty acids (SFA) 0.024 0.006, 0.042 0.010 -0.033 -0.054, -0.013 0.002 

DHA to total FAs ratio 0.140 0.122, 0.158 4.62 × 10-51 -0.115 -0.135, -0.094 8.78 × 10-27 

LA to total FAs ratio 0.042 0.023, 0.06 7.75 × 10-6 0.086 0.065, 0.106 6.33 × 10-16 

CLA to total FAs ratio 0.043 0.025, 0.062 3.49 × 10-6 -0.074 -0.095, -0.053 4.70 × 10-12 

Omega-3 to total FAs ratio 0.114 0.096, 0.132 2.70 × 10-34 -0.105 -0.126, -0.084 1.44 × 10-22 

Omega-6 to total FAs ratio 0.060 0.042, 0.078 1.00 × 10-10 0.053 0.033, 0.074 4.28 × 10-7 

PUFAs to total FAs ratio 0.078 0.06, 0.096 2.03 × 10-17 0.031 0.01, 0.052 0.003 

MUFAs to total FAs ratio -0.105 -0.123, -0.088 3.49 × 10-31 -0.009 -0.03, 0.011 0.388 

SFAs to total FAs ratio 0.039 0.02, 0.057 3.14 × 10-5 -0.034 -0.055, -0.013 0.001 

Glycolysis 

related 

metabolites 

Glucose -0.011 -0.029, 0.008 0.258 0.013 -0.008, 0.034 0.213 

Lactate -0.011 -0.029, 0.008 0.264 -0.018 -0.039, 0.003 0.093 

Pyruvate -0.004 -0.022, 0.015 0.699 -0.017 -0.038, 0.004 0.112 

Citrate -0.046 -0.064, -0.028 6.26 × 10-7 0.013 -0.008, 0.034 0.221 

Amino acids Alanine 0.027 0.008, 0.045 0.004 -0.019 -0.04, 0.002 0.079 

Glutamine -0.011 -0.029, 0.007 0.243 0.000 -0.021, 0.02 0.993 

Histidine 0.039 0.02, 0.057 3.59 × 10-5 -0.008 -0.029, 0.013 0.460 

Isoleucine 0.055 0.036, 0.073 4.16 × 10-9 -0.044 -0.065, -0.023 4.11 × 10-5 

Leucine 0.066 0.048, 0.084 9.67 × 10-13 -0.039 -0.06, -0.018 2.79 × 10-4 

Valine 0.075 0.057, 0.093 8.23 × 10-16 -0.050 -0.071, -0.029 2.80 × 10-6 

Phenylalanine 0.070 0.052, 0.088 8.09 × 10-14 -0.021 -0.042, 0 0.055 

Tyrosine 0.061 0.042, 0.079 6.92 × 10-11 -0.028 -0.049, -0.007 0.009 

Ketone bodies Acetate 0.029 0.011, 0.048 0.002 -0.032 -0.053, -0.011 0.003 

Acetoacetate -0.029 -0.047, -0.011 0.001 -0.009 -0.029, 0.012 0.413 

3-hydroxybutyrate -0.041 -0.06, -0.023 1.12 × 10-5 -0.008 -0.029, 0.013 0.446 

Fluid balance Creatinine -0.057 -0.074, -0.039 5.57 × 10-10 0.013 -0.008, 0.033 0.219 

Albumin (signal area) -0.017 -0.035, 0.001 0.066 0.016 -0.005, 0.036 0.144 

Inflammation Glycoprotein acetyls -0.013 -0.031, 0.005 0.157 0.012 -0.009, 0.032 0.256 
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