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Abstract 

Maintenance of myocardial homeostasis requires a stable and harmonised 

contribution from various cell types. Myocardial infarction results in a sequence of 

repair mechanisms, including a complex coordinated cellular response, that must 

be appropriate to the injury severity for effective damage control and repair. 

Intercellular communication is integral to cellular coordination, especially in 

complex tissue contexts. Extracellular vesicles provide a mechanism for 

molecular transport across extracellular space, allowing signals to be propagated 

locally and systemically during homeostasis and critically in pathological 

scenarios. Capable of carrying a wide range of lipids, proteins and nucleic acids, 

EVs can convey potent ‘messages’ resulting in physiological changes in the 

recipient cell. EVs are found in most biofluid samples and have been extensively 

studied ex vivo and in vitro, but few assessments have been made regarding 

endogenously produced EVs in vivo, especially within vertebrate models. This 

project makes use of transgenic larval zebrafish as a vertebrate model system 

that delivers optical accessibility in combination with transgenic tractability, 

permitting subcellular in vivo live-imaging of endogenous EVs. Using a 

membrane-tethered fluorophore system EVs can be fluorescently labelled and 

tracked in vivo. This has allowed endothelial cell-derived EVs to be visualised in 

the peripheral circulation and cardiomyocyte-derived EVs to be observed in the 

pericardial fluid that surrounds the heart, revealing previously unseen in vivo 

distribution and behaviour. The fluorescent reporter also allows EVs to be 

extracted from whole larvae and assessed ex vivo; in this project EVs were 

counted via a modified flow cytometry setup, revealing subtle changes in EV 

numbers in response to cardiac injury. It was also demonstrated that EVs can be 

isolated via fluorescence activated cell sorting, which opens many opportunities 

for future work describing cell type specific EV cargo and how this may change 

during cardiac repair and regeneration. 
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Chapter 1: Background 

1.1 Coronary Heart Disease  

Coronary heart disease (CHD) is often highlighted by the World Health 

Organisation as a leading cause of morbidity and mortality throughout the world 

(http://www.who.int/mediacentre/factsheets/fs317/en/). CHD is characterised by 

the progressive narrowing of one or multiple coronary arteries, the arterial 

vessels that provide the ventricular myocardium of the heart with oxygenated 

blood. This narrowing is often caused by the build-up of fatty plaques, a process 

known as atherosclerosis (1). The pathogenesis of atherosclerosis is well 

documented (1) and involves the increased risk of plaque rupture and thrombus 

formation, which can result in total or partial coronary vessel occlusion restricting 

blood flow and limiting the oxygen supplied to the downstream myocardium 

(ischaemia) (2). This process can create a severe imbalance between the oxygen 

being supplied and the cellular demand for oxygen, which causes cell death and 

myocardial infarction (MI) (2, 3). Tissue repair responses to the injured 

myocardium lead to fibrosis and scar deposition within the ventricle wall, limiting 

contractility and electrical conductance of the ischaemic region and leaving the 

myocardium functionally compromised and susceptible to future complications, 

which can ultimately lead to heart failure (4). Beyond complex scar resection 

surgeries and complete heart transplantation, there remains no cure for end 

stage heart failure leading to mortality rates around the world remaining high.  

For healthy myocardial function, several cell types (including cardiomyocytes 

(CMs), endothelial cells (ECs), fibroblasts and leukocytes) must work in concert 

to provide synchronous and sufficient contraction, ample perfusion, extracellular 

structural support and a stable immune system. Preserving the functional integrity 

of the heart is finely balanced and requires effective intercellular communication. 

When a coronary artery becomes blocked, as with the build-up or rupture of an 

atherosclerotic plaque, the blood flow and therefore oxygen supply to the 

downstream myocardium is restricted. The resulting ischaemic environment 

alters the physiology of the tissue, with cell death (apoptosis, necrosis and 

autophagy) becoming prevalent (5). The damage that ensues must be rapidly 

stabilised via complex repair mechanisms to maintain sufficient cardiac function. 

Cardiac repair processes require the concerted efforts of all constituent cell 

types, and therefore likely alters the intercellular communicatory landscape (6). 
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Secretion of soluble proteins into the extracellular space and cell-cell contact 

dependent signalling are well defined modes of intercellular communication, but 

extracellular vesicles (EVs; described below) are increasingly recognised as an 

exciting addition to these classic modes of intercellular communication and may 

prove influential in the field of cardiovascular biology (7).  

1.2 Extracellular Vesicles 

1.2.1 Introduction 

EVs collectively describe all plasma membrane-bound vesicles produced and 

released by most cell types, this process is considered evolutionarily conserved 

having been documented in animals, bacteria and plants (8-10). An assortment of 

molecules, including lipids, proteins and nucleic acids can be loaded either as 

cytosolic cargo or as a component of the EVs membrane. The relative security of 

the cargo allows for molecules that might be unable or ineffectual if secreted 

alone, to be carried through extracellular space and remain viable within the 

luminal space of the EV. EVs are capable of both local and systemic trafficking 

and have been isolated from a wide range of biological fluids, including blood 

(11) and pericardial fluid (PF) (12). Surface glycans, phospholipids and proteins 

allow regions of extracellular matrix (ECM) (13) and recipient cells to be targeted 

and EVs are widely recognised to play integral roles in various communicatory 

pathways (14). EV based communication allows for insoluble molecules to be 

transferred to a recipient cell, but also potentially a cocktail of complementary 

molecules could be offloaded to a recipient cell to deliver a more potent or 

complex signal. EVs are most often considered within pathophysiological 

contexts, having been implicated in the progression of many diseases, including 

cardiovascular disease (15, 16). However, their role in maintaining homeostasis 

has also been considered (17). Additionally, their roles in protection, repair and 

regeneration present exciting possibilities to be explored (7). Understandably, 

EVs are rousing much enthusiasm, however the ability to reliably define the 

heterogeneous spectrum of EV subtypes, and further, to ascribe functional 

significance to that specific type, is still in its infancy. Gaps in our understanding 

of EV biology need to be filled to fully appreciate and realise their functional 

applications.  
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1.2.2 Classification 

There are widely considered to be three classes of EV: apoptotic bodies, 

microvesicles and exosomes. Each class is loosely defined by size, though the 

more robust defining feature is their mode of biogenesis (14). The following 

section provides some detail on these classes, but to summarise, a table of 

general characteristics (Table 1.1) and a diagram depicting these modes of 

biogenesis (Figure 1.1) are included. 

Table 1.1. Characteristics of Exosomes, Microvesicles and Apoptotic 
Bodies.  ND = Not Determined.

Characteristic Exosomes Microvesicles Apoptotic Bodies 

Diameter 30-120 nm 100-1000 nm >1000 nm 

Density in sucrose 1.13-1.19 g/mol ND ND 

Sedimentation 100000 g 10000 g ND 

Size/Shape Homogenous Heterogenous Heterogenous 

Cellular origin Endosomal Surface budding Surface blebbing 

Membrane Impermeable Impermeable Permeable 
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Figure 1.1. Biogenesis and Release of EVs. EVs can be divided into three 
classes. (A) Exosomes are intraluminal vesicles (ILVs) that are released into 
extracellular space when the membrane of a multivesicular body (MVB) fuses 
with the cell surface membrane. MVBs can follow other pathways within the cell, 
such as the lysosomal degradation pathway. (B) Microvesicles bud directly from 
the cell surface to be released into extracellular space. (C) Apoptotic cells 
undergo a process known as blebbing, which releases apoptotic bodies into 
extracellular space as part of cellular deconstruction.  
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1.2.2.1 Exosomes 

Exosomes are commonly considered the smallest (30 – 120 nm in diameter) 

class of EV and are derived from a process of endocytic cycling (Figure 1.1) (18). 

The pathway is initiated with the invagination of the producing cells plasma 

membrane, incorporating surface molecules from the producing cell into the early 

endosome as it is formed (Figure 1.1). A number of separate mechanisms have 

been identified as driving this process of endocytosis, broadly separated as 

clathrin dependent and independent mechanisms (19). Clustering of molecules 

on the membrane, relevant as cargo or machinery for budding, initiates 

secondary invaginations into the lumen of these early endosomes, forming 

multiple ILVs (14, 20). This process can sometimes allow the cellular origin of 

exosomes to be inferred from membrane components shared with the producing 

cell (17). Although this possibility for identifying exosome origin exists, difficulties 

can arise from shared membrane characteristics between cell types, making 

certain exosome populations indistinguishable from one another (21). Relevant 

molecular components are also delivered from the Golgi apparatus, perhaps 

providing a mechanism for more specific loading of exosome cargo (18, 22). 

Formed of roughly 30 proteins, the endosomal sorting complex required for 

transport (ESCRT) complexes (-0,-I,-II,-III) are the best characterised mechanism 

for ILV formation and they are considered evolutionarily conserved (23). 

However, small interfering RNA depletion of components essential for the 

formation of each of the four ESCRT complexes in mammalian cell culture 

studies did not prevent MVB formation, revealing the involvement of other 

mechanisms (24). For example, neutral sphingomyelinase hydrolyses 

sphingomyelin into ceramide (25) and phospholipase D2 hydrolyses 

phosphatidylcholine into phosphatidic acid (26) and when this occurs at the 

limiting membrane of the early endosome it can drive the membrane bending and 

budding required to form ILVs (25, 26).   

As the endosome matures into a late endosome (27) with free ILVs within, it is 

descriptively termed a MVB (Figure 1.1) (23). MVB is a broad term, with their 

molecular components and overall function varying considerably depending on 

their intracellular role (23). The primary function for most MVBs is to enter a 

lysosomal pathway whereby fusion with a lysosome ensures degradation and 

recycling of vesicular components (28). MVBs are also thought to contribute to 
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the formation of specialised cell specific organelles, as with EC specific storage 

granules termed Weibel-Palade bodies (29), thought of primarily as a storage 

pool for von Willebrand factor (30). Azurophilic granules are another cell specific 

organelle that MVBs play a part in forming; these granules hold digestion 

enzymes within neutrophils (31). Lastly and most relevant to this project, ILVs 

can be released in a single secretory event, as the MVB fuses with the producing 

cells membrane (Figure 1.1) (20). Early evidence for this process was realised 

using immunogold labelling of the transferrin receptor in maturing reticulocytes, 

where images acquired using electron microscopy (EM) revealed labelled EVs 

being exocytosed via MVBs (32). Similar methods have since been used to 

confirm the same process in reticulocytes from different organisms (33, 34), but 

also for B lymphocytes as they secrete antigen-presenting vesicles (35). Based 

on these studies, MVBs destined to secrete their ILV contents are tentatively 

characterised by the tetraspanin CD63 and the lysosomal-associated membrane 

proteins LAMP1 and LAMP2 (35, 36). Upon release, the former ILVs, now in 

extracellular space, are termed exosomes (Figure 1.1A).  

Rab proteins are an important group of small GTPases, well known for their 

diverse roles in intracellular vesicle trafficking (37). Rab proteins are also found in 

the proteomic analysis of isolated EVs (38) and likely play their part in the 

biogenesis of exosomes (14), but the extent of their involvement is not clear, 

leaving much of the mechanism to be inferred from their roles in the endocytic 

cycle. The ability of HeLa cells to produce exosomes (CD63, CD81, and MHC 

class II marker positive subset) decreases in response to RNAi silencing of 

various Rab proteins (RAB2B, RAB5A, RAB9A, RAB27A and RAB27B) (39). 

Silencing of each of these Rab proteins inhibited exosome production to differing 

degrees, with RAB27A and RAB27B appearing to be the most impactful (39). The 

best defined Rab proteins (including RAB5, RAB7 and RAB11) also play roles in 

exosomes production, with differing results depending on the cell type in question 

and the method used to isolate and define the exosomes.RAB5 is a marker of 

early/sorting endosomes and is involved in appropriating ligands at the plasma 

membrane, the fusion of clathrin coated vesicles to the early endosome and the 

motility of endosomes (40). RAB5 also marks endosomal compartments that fuse 

with the plasma membrane in reticulocytes and is also found in exosomes 

produced by these cells (41), leading the authors to infer its involvement in 

exosome biogenesis. A population of exosomes produced by two melanoma cell 

lines has also been identified and is defined in this study by the presence of 
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RAB5 in combination with CD63 and caveolin-1 (42). Overexpression of a 

dominant-negative form of RAB5 decreased the number of exosomes (syndecan, 

CD63, syntenin and ALIX positive subset) produced by MCF-7 cells (43). The 

switch in endosomal expression from predominating RAB5 to RAB7 marks the 

transition from early to late endosome and RAB7 aids the transport of MVBs to 

the lysosome (44). RAB7 knockdown via RNAi also impairs the release of the 

same subset of exosomes affected by overexpression of a mutated RAB5 (43). In 

contrast, RAB7 RNAi knockdown in the HeLa B6H4 tumour cell line appears to 

have no effect on exosome production (MHC class II surface receptor, HLA-DR 

and CD81 positive subset) (39). Further studies have begun to dissect the 

intracellular interactions and molecular profile of RAB7, where ubiquitination 

levels drive the MVB towards either a fusion event with the cell surface 

membrane or lysosome (45). A reduction in RAB7 ubiquitination, achieved 

through dominant-negative protein expression, pushed MVBs towards cell 

surface fusion, as shown by increased exosome production in HEK 293 cells 

(45). RAB11 is a marker of perinuclear recycling endosomes and is involved in 

trafficking from the plasma membrane to the Golgi complex (Ullrich et al., 1996). 

RAB11 also plays a role in exosome production in the erythroleukemia cell line 

K562, where dominant-negative RAB11 expression showed a decrease in the 

release of exosomes (transferrin receptor, tyrosine kinase Lyn and heat shock 

protein Hsc70 positive subset) (46). Using an RNAi screening assay in the 

drosophila S2 cell line, also identified Rab11 as required for exosome production 

(47, 48). Again, knockdown of RAB11 in the HeLa B6H4 tumour cell line did not 

affect exosome production (MHC class II surface receptor, HLA-DR and CD81 

positive subset) (Ostrowski et al. 2010). The consistent mechanistic 

heterogeneity in exosome biogenesis means the driving mechanisms are not yet 

fully realised, though significantly more is understood when contrasted with 

microvesicle biogenesis. 

1.2.2.2 Microvesicles 

Microvesicles (typically 120 – 1000 nm in diameter) (Table 1.1) were previously 

considered to be no different to apoptotic bodies, but their biogenesis is now 

known to be an active process carried out by healthy cells. Relatively little is 

known about microvesicle biogenesis, with mechanistic evidence being 

intermittent, and the gaps filled by extrapolation from similar processes in 

exosome biogenesis and other areas of cell biology. 
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Initially, membrane lipids and proteins are generally thought to redistribute 

themselves in a non-uniform manner, forming specific microdomains on the 

plasma membrane of the producing cell (Figure 1.2A). As part of this 

microdomain clustering, ESCRT-I recruitment is thought to be key in generating 

the initial curvature or early budding of microvesicles. ESCRT-I is one of only a 

few protein complexes capable of generating curvature away from the cytoplasm 

(49) and it is also known to play a role in viral budding from the plasma 

membrane (50). Direct in vivo evidence for the involvement of ESCRT machinery 

in microvesicle biogenesis comes from a study that used RNA interference to 

screen for genes that are important in C. elegans morphogenesis (51). TAT-5, a 

conserved P4-ATPase or lipid flippase, was one of the genes identified and 

knockdown was found to dramatically increase the amount of 

phosphatidylethanolamine (PE) sequestered to the outer leaflet, leading to 

increased microvesicle shedding. Although this PE rearrangement is thought to 

develop outward curvature of the membrane, it was not thought sufficient and 

protein involvement had long been proposed (52). With further investigation, 

ESCRT-I inhibition went some way to recover the normal phenotype in TAT-5 

RNAi embryos, and the GFP::MVB-12 (MVB12 is one of the proteins that forms 

the ESCRT-I complex) fusion construct was also used to identify increased 

plasma membrane localisation of ESCRT-I in TAT-5 RNAi embryos (51). 

Phospholipid redistribution and cytoskeletal protein contraction can also initiate 

the formation of a budding protrusion on the surface of the producing cell (53). 

Ca2+-dependent enzymes such as flippases and floppases are one mechanism 

known to drive alterations in membrane asymmetry, resulting in, for example, the 

noticeable redistribution of the phospholipid phosphatidylserine (PS) from the 

inner to the outer leaflet. This kind of action is thought to be involved in inducing 

the budding process by bending the membrane and reorganising associated 

actin components (54-56). It is likely a combination of both lipid redistribution and 

protein machinery that is responsible for the primary structural formation of 

microvesicles. 

Interlinked with the formation of microvesicles is the loading of cargo; the re-

organisation that forms the early membrane lipid and protein microdomains 

(Figure 1.2A) might then initiate the necessary recruitment of cytosolic cargo 

(Figure 1.2B). For example, RNA-binding proteins are thought to be recruited as 

a likely mechanism for loading RNA molecules (21), but the exact mechanism for 

RNA loading has not been elucidated. One potential scenario has been 
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highlighted in cancer cells, where a conserved zip code RNA sequence motif in 

the 3’ untranslated region of specific mRNAs may aid such targeting to the 

appropriate microdomain at the plasma membrane (57). In contrast, the 

mechanisms responsible for recruiting protein cargo (Figure 1.2B) are better 

understood, with membrane association and higher order oligomerisation thought 

to be sufficient to target proteins to sites of EV biogenesis (58). This makes 

membrane localisation key to the process of protein loading and palmitoylation, 

prenylation and myristylation tags are well known drivers of post-translational 

modifications that form lipid anchors and associate the protein to the inner leaflet 

of the plasma membrane and their potential involvement in loading proteins into 

EVs has been demonstrated (59, 60). The small GTPase ADP-ribosylation factor 

6 (ARF6) (Figure 1.2C) has also been documented performing a role in the 

selective recruitment of protein cargo in tumour-derived microvesicles (61, 62). 

Additionally, small GTPase RAS-related protein RAB22A colocalises with 

budding microvesicles and mediates packaging and loading of cargo proteins in 

hypoxic breast cancer cells (63). 

The final step in the formation of a microvesicle requires the scission of the 

budding process, enclosing the contents and releasing the microvesicle from the 

producing cell (Figure 1.2C). The formation of ILVs also depends on a scission 

process to allow them to be released into the lumen of the MVB and the 

recruitment of ESCRT-II and ESCRT-III has been implicated in the execution and 

completion of this step (23, 64). A similar process has been suggested as 

responsible for the final budding and scission of microvesicles (21). A number of 

ESCRT protein complexes have been found as ‘cargo’ inside microvesicles, 

further supporting the suggestion that they are responsible players in 

microvesicle biogenesis (14). The overall mechanistic picture for microvesicle 

biogenesis is the least understood of the EV classes, and many aspects remain 

to be elucidated (65).  
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Figure 1.2. Biogenesis of Microvesicles. Sorting machineries involved in 
generation of microvesicles. (A) Membrane lipids and proteins are clustered into 
distinct domains. (B) These domains are involved in the recruitment of cytosolic 
proteins and RNA molecules. (C) Clustering and additional machineries promote 
membrane budding, followed by fission, releasing the microvesicle into 
extracellular space. Transmembrane proteins sorted onto microvesicles keep the 
same topology as on the producing cells membrane. Specific lipids are known to 
be flipped between leaflets of the plasma membrane upon microvesicle budding. 

Alternative Release Mechanism for Exosomes and Microvesicles 

EVs likely play a critical role in transporting protein cargo that is post-

translationally lapidated, as this process creates a hydrophobic molecule that 

localises to the plasma membrane and is therefore unable to diffuse freely 

through extracellular space. It has been shown that membrane tethering of 

proteins may promote long distance signalling capabilities by way of the resulting 

transport mechanisms that are initiated (66). This is supported in part by the 

finding that cholesterol addition to Sonic Hedgehog increased the signalling 

distances achieved for this protein (67).This is a particularly relevant 

consideration for morphogen transport, as members such as Wnt and Hedgehog 

are post-translationally lapidated (68). These morphogens are known to be 

transported over considerable distances in consistently reproducible patterns or 

concentration gradients, particularly during development, but signalling via these 

ligands is also relevant in fully developed tissues (69, 70). Interestingly, it is 

known that cells can interact over long distances via long membrane protrusions 

such as the signalling-filopodia identified as cytonemes (71-73) and in the 

instance of Hedgehog signalling cytonemes have been demonstrated as 

essential for gradient establishment (74-76). In parallel, it has also been shown in 
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vitro and in Drosophila that EVs, particularly ESCRT-dependent EV production, is 

involved in this process where they are also capable of initiating the relevant 

signalling pathways within recipient cells (47, 77-80). However, although EVs 

appear to be relevant in this process, in vitro studies suggest EV transport of Wnt 

and Hh is not independently sufficient to activate the full complement of known 

target genes (77, 79). It has also been shown that wingless gradients in 

Drosophila can be established independent of EV mediated transport (47). This 

combination of evidence has led to an understanding that morphogen transport 

likely does not work exclusively through EV release or via cytoneme signalling, 

but perhaps they work in concert together with potential EV transport along 

cytonemes as has been shown in Drosophila (77). These joint mechanisms have 

primarily been dissected within the framework of early development based on 

morphogen transport and effects relating to cell polarity (66, 81), but their 

potential role in other aspects of cell-cell communication within diverse tissue 

contexts is open for exploration. Particularly relevant to this study would be the 

idea that Wnt signalling, which is known to play an important role during cardiac 

injury in mouse (82), could also be important in zebrafish heart regeneration and 

be mediated by the mechanisms described.  

1.2.2.4 Apoptotic Bodies 

Apoptotic bodies have long been known as large (>1000 nm in diameter) vesicles 

produced in the later stages of apoptosis. As the cell membrane blebs, apoptotic 

bodies are shed from the surface of the dying cell (83). Classically, particles less 

than 4 µm in diameter were considered to be cellular debris, either remnants from 

this apoptotic process or from shedding throughout the lifetime of the cell as a 

means for packaging defective/unnecessary cell components for safe disposal 

(84). As apoptotic bodies are produced, the integrity and typical asymmetry of the 

plasma membrane is lost; it becomes more permeable, and components such as 

PS usually sequestered on the inner leaflet become exposed on the outer 

surface (85). This membrane rearrangement is thought to facilitate the ‘clear-up’, 

as these newly exposed membrane components ultimately promoting 

macrophage phagocytosis in order to avoid intracellular components causing 

‘collateral damage’ (86). There are similarities between apoptotic bodies and the 

two smaller classes of EV, but the focus for studies into intercellular 

communication potential has tended more towards microvesicles and exosomes 

and they will be the focus of this thesis. 
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1.2.3 Cargo 

EVs can carry a diverse set of cargo, determined within the producing cell but 

with some factors common to most EVs. They are generally known to be 

enriched with various cytoskeletal proteins, molecular chaperones and signalling 

molecules (Figure 1.3). Factors associated with EV biogenesis and intracellular 

trafficking are also carried in some instances (21). Alongside more general 

components are those that are cell-type specific and selected. Specific enzymes 

have been highlighted as particularly relevant cargo transported by EVs (87, 88), 

with potential for a more immediate physiological impact to be imparted on the 

recipient cell. However, most attention has fallen on the transport of RNA 

molecules, with many studies revealing a novel messenger-RNA (mRNA) (89) or 

micro-RNA (miRNA) (90, 91) within their samples. Some significance has been 

derived from studies that identify mRNA and miRNA that is proportionally highly 

expressed in EVs when compared with the producing cells, an early suggestion 

that the loading process can be to some degree selective (92). Further, specific 

miRNA motifs have been shown to control their loading into EVs (93). However, 

the relative involvement of selective vs passive processes in RNA loading have 

yet to be elucidated (94).  
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Figure 1.3. EV Composition. EVs consist of a lipid membrane enclosing a 
cytosolic compartment. The lipid and protein content of the membrane can vary 
widely, and the composition can define specific targets and is responsible for the 
ways in which the EV interacts with the extracellular environment. The cargo held 
within the cytosol also varies widely; nucleic acids, cytosolic proteins, enzymes, 
molecular chaperones and components involved in EV biogenesis are all 

identified as EV cargos.  Function 

1.2.4.1 Intercellular Interactions 

The mechanisms by which EVs are taken up by a recipient cell are not well 

understood, in part because of the difficulty in visualising these small vesicles. 

Three main hypotheses have been proposed with the simplest suggesting that 

EVs act much like a secreted protein, initiating a receptor-ligand interaction to 

drive molecular pathways within the recipient cell (17). A second exciting 

possibility relies on the fusion of the two membranes, allowing the EV cargo to be 

deposited directly into the cytosol of the recipient cell (95). Membrane fusion (96), 

is likely key as a mechanism for miRNA (92) and mRNA (97) transfer. 
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Lastly, and most commonly documented, EVs may be endocytosed by the 

recipient cell and dealt with internally (98). Endocytosis is a heavily studied area 

and current opinions tend to group the process into either clathrin-mediated or 

clathrin-independent mechanisms (99-101). One of the more commonly identified 

uptake mechanisms is the clathrin-independent phagocytosis (98, 102), but this is 

very much dependent on the propensity of the cell in question (99). Another cited 

clathrin-independent mechanism is macropinocytosis (96, 103, 104). 

Many of the cargos mentioned in the previous section have the potential to alter 

the physiology of a recipient cell, and this is a big driving force behind the 

increased interest in EVs. The potential for mRNA and miRNA transfer has 

sparked many people’s imaginations, with the possibility of intercellular influences 

directly altering the transcriptional landscape of a cell. In vitro studies have 

reported the transfer or mRNA via EVs and the successful translation of protein in 

the recipient cell (92), with numerous studies ongoing to confirm these findings 

(12, 97, 105, 106). 

More recent studies have begun piecing together a more complete 

communicatory pathway mediated by EVs. A recent example identified an 

important role for EV delivered NADPH oxidase 2 complexes in oxidative 

signalling processes within dorsal root ganglia, neurite outgrowth and 

regeneration of injured axons. The functional NADPH oxidase 2 complexes, 

initially found in the injured neurons, were retrospectively found to have 

originated from macrophages recruited to the injury site. The EVs delivered from 

the macrophages were incorporated into the axons via endocytosis and the novel 

downstream impacts on reactive oxygen species and their regulation of axonal 

regeneration were dissected (88). 

1.2.4.2 Extracellular Matrix Interactions  

EVs and their roles in ECM biology have not garnered the same interest and 

consideration as direct intercellular interactions, even though the ECM must be 

navigated in many instances of EV transfer. This is perhaps a direct result of the 

in vitro based foundation of our current understanding and the ECM will likely 

become more relevant in time. In vitro experiments are reductionist by design and 

necessity, with many ECM components and the 3-dimensional structure they 

provide often sacrificed in this process. In vivo studies present many challenges, 

but are by their nature more embracing of complexity, providing a native 
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environment where the role of ECM on EV biology must also be taken into 

consideration.  

EVs known as matrix vesicles have long been thought to play a role in the 

mineralisation of cartilage and bone (107), with more recent in vivo studies in 

zebrafish contributing to this picture (108). As well as carrying ECM components, 

EVs themselves have been shown to aid adhesion through receptor-ligand 

interactions (109). Specifically, EVs have been shown to carry the ECM 

components laminin (110) and fibronectin (109) and these EVs can then attach to 

substrata and promote adhesion assembly through their cargo, promoting 

efficiency in cell migration. Initially, fibronectin is thought to be targeted to 

exosomes via interactions with cognate integrins; once released to the substrata 

the fibronectin is secreted from the EVs in an adhesive form thus promoting cell 

attachment and migration (109). These experiments were primarily conducted in 

vitro, and the role in cell adhesion assembly was demonstrated by lining culture 

dishes with the EVs on which migration assays with HT1080 fibrosarcoma cells 

were conducted, it is therefore not clear exactly which components of the 

substrata the EVs would initially interact with in vivo. EV-ECM interactions have 

been investigated further, with studies demonstrating that these processes can 

allow cancer cells to manipulate the ECM at both local and distal sites, creating a 

metastatic niche for later progression (111). The key findings here are that these 

interactions between EVs and the ECM may facilitate the remodelling of the ECM 

– in this specific instance by cancer cell-derived EVs. These pioneering studies 

are particularly relevant in cancer biology, but also show the value in assessing 

the role of remote site signalling in other fields and understanding these 

processes could aid the development of innovative preventative therapeutics.  

EVs can be found in a wide range of extracellular biological fluids, which can 

often be characterised as or contain ECM components. Notably, the blood 

plasma holding blood cells in suspension is often labelled as ECM. The structural 

interactions of circulating EVs within the whole blood have been demonstrated to 

be physiologically critical, as is apparent with platelet-derived EVs and there 

procoagulant properties (112).  The mechanisms by which EVs move through the 

ECM remain to be elucidated, EVs can be carried systemically by the blood flow 

but how they penetrate more densely packed fibrous ECM is less clear. Studies 

have identified EVs containing matrix metalloproteinases amongst other 
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proteolytic factors (113), which could aid degradation and allow EVs to pass 

through ECM (13). 

1.2.5 Characterisation 

1.2.5.1 Introduction 

With the complexity and variety inherent to EV biology there are often problems 

in discerning one EV class from another, not least are the challenges presented 

in physically separating one class from another. It has been noted that mixed 

populations of EVs have often erroneously been identified as exosomes in the 

literature (14) and this has often caused confusion. The difficulties in developing 

a thorough characterisation of these vastly heterogenous entities has often been 

highlighted and the EV community are acutely aware of the need for progress in 

this area (Table 1.1 highlights current consensus). Further challenges are 

presented when considering characterisation within living organisms. 

1.2.5.2 Ex Vivo Characterisation 

1.2.5.2.1 Isolation 

To answer key questions relating to EVs there is a clear need to standardise 

isolation techniques (114), with the International Society of Extracellular Vesicles 

investing resources to meet this end (94, 115) including collaboration with 

researchers focussed on cardiovascular research (116). Effective and consistent 

isolation methods will allow for clarity in EV characterisation and the ability to 

more effectively compare results across laboratories. Standardised isolation and 

characterisation are paramount to clarify our understanding of these small 

vesicles, particularly with fundamental variation between EV subtypes becoming 

more apparent with each new study (38). EV isolation can be achieved using 

filtration, ultracentrifugation, immunoaffinity and microfluidic based platforms 

(115). Often single methods are insufficient and the current ‘gold-standard’ relies 

on a combination of differential ultracentrifugation, followed by separation of the 

particles based on a sucrose density gradient (117). Ultracentrifugation allows for 

a specific size of particle to be collected and the density gradient separation 

allows similar sized contaminants (e.g. protein aggregates) to be excluded from 

the sample. However, consideration should be given to the experiment at hand, 

as this will dictate the methods used. 
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Isolation from whole tissue is not well established and only a few methods have 

been tested, so far there is no standardisation of this procedure. The methods so 

far used include mild digestion protocols (118), mechanical separation using fine 

scissors (119, 120), mechanical homogenisation (121) and semi-culture 

conditions to allow EV release followed by standard extraction as with cell culture 

medium (122).  

1.2.5.2.2 Labelling 

The process of labelling EVs, to allow for detection and visualisation, is critical to 

most characterisation efforts. Many of the approaches detailed in the next 

sections are not unique to ex vivo work and are also used for in vitro and in vivo 

studies. The labelling technique used is often dictated by the type of experiment 

being performed and should be tailored to a planned approach. Non-specific 

labelling strategies have tended to focus on the phospholipid membrane, but 

efforts have also been made to label the luminal compartment of EVs. More 

specific approaches demand prior knowledge of EV components, but when 

afforded this can allow specific cargos to be labelled.  

1.2.5.2.2.1 Protein Markers 

There are several protein markers widely cited within the literature, none of which 

unambiguously identify EVs. Many of these markers are associated with the 

biogenesis of EVs, including some tetraspanins (CD9, CD63 and CD81), 

AIP1/Alix, TSG101 and CD326/EPCAM. Antibodies can be used to target these 

proteins and relevant labels conjugated to allow detection. Another possibility is 

the transgenic (Tg) modification of cells to express these marker proteins fused to 

a (e.g. fluorescent) labelling protein (123). 

1.2.5.2.2.2 Lipid Markers 

In many instances’ general lipid membrane fluorescent dyes, such as PKH-67, 

DiL and DiR, are the most effective pan-EV labelling strategy (124-127), as they 

indiscriminately label a known component common to all EVs. However, this also 

presents a weakness, where membrane fragments as well as other contaminants 

might also be labelled, leaving some questions regarding specificity and 

consistency when using this method (128). Labelling the extracellular surface of 

EVs may also impact downstream applications, as this method will alter the 

surface properties that are integral to EV behaviour. A final consideration must be 
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taken to remove excess dye and avoid false positives resulting from aggregating 

dye.  

Specific targeting of membrane components, such as the phospholipid PS has 

also been widely implemented for labelling EVs (114, 129). More commonly used 

to mark cells undergoing apoptosis, the sequestering of PS to the outer leaflet is 

common to EV biogenesis. Most often, labelling is achieved by way of Annexin-V 

(A5), a molecule which binds the reoriented PS with high affinity. This labelling 

method has been popular in the EV field, most likely because of early papers 

using flow cytometry (FC) to identify EVs labelled in this way (130, 131). 

1.2.5.2.2.3 Lumen Markers 

Calcein AM is an example of a membrane permeant dye that, once inside the 

luminal space of a cell or EV, is hydrolysed by esterase’s with the resulting 

Calcein form being both highly fluorescent and membrane impermeable. This 

allows non-specific labelling of intact EVs (132, 133), but the extent to which all 

EVs carry esterase’s remains to be fully evaluated. In contrast to membrane 

labelling, luminal labelling in this way will only label intact EVs, as the dye does 

not become fluorescent until it has been hydrolysed, this also makes excess dye 

less of a concern as compared with the lipid membrane dyes. 

1.2.5.2.3 Detection 

1.2.5.2.3.1 Electron Microscopy 

EM currently offers the greatest resolution of any technique, allowing the 

ultrastructure of even the smallest EVs to be revealed. EM is a relatively 

straightforward process when regarding isolated EVs and this classic 

characterisation method has been refined over the years (134, 135). EM does 

become incredibly laborious where sections of a whole organism are required 

(108). In combination with standard image acquisition, antibodies conjugated to 

colloidal gold particles can allow specific marker proteins to be to be targeted, 

adding to the phenotypic information that can be acquired (35). 
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1.2.5.2.3.2 Super Resolution Microscopy 

Super resolution microscopy allows the diffraction limits of light microscopy to be 

breached, this has been achieved in a number of ways, most notably in EV 

research is the use of stimulated emission depletion (STED) microscopy (136). 

The resolution gains (down to 10-30 nm) are substantial and multiple lasers allow 

different fluorophores to be assessed in a single sample. This allows multiple EV 

markers to be assessed in one sample, giving a greater perspective on the 

distribution of components (136), where a crude western blot for example would 

only indicate the presence of a protein across the whole sample. The limitations 

arise in relatively laborious sample preparation and the resulting lower 

throughput. 

1.2.5.2.3.3 Total Internal Reflection Microscopy 

Total internal reflection (TIRF) microscopy has been employed to great effect in 

imaging dynamics at the cell surface where processes such as endocytosis can 

be observed (137) thanks to the high signal to noise ratio permitted with this 

method. The process is physically limited by the evanescent field used to 

illuminate the sample, which must be no further than 250 nm from the cover 

glass. This makes it an ideal option when imaging EVs ex vivo for high sensitivity 

and the possibility to stain the EVs with luminal and membrane dyes as well as 

fluorescent antibodies for multiparameter assessment. This method is not 

currently used widely, but does significantly increase resolution and sensitivity 

when demonstrated (138, 139).  

1.2.5.2.3.4 Nanoparticle Tracking Analysis 

Nanoparticle Tracking Analysis (NTA) brings high-throughput capabilities not 

available with standard microscopy, and is often used in conjunction with EM to 

add information on the concentration of the different sized particles within a fluid 

sample (140). This method works by passing laser light through the sample as it 

is pumped at a constant pressure through a chamber, the light scattered by 

individual particles is received by an objective and tracked using in-built software 

and size can be calculated based on the Brownian motion of these particles. This 

method is limited in its inability to discriminate EVs from particles of a similar size, 

such as lipoproteins and large protein aggregates. 
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1.2.5.2.3.5 Flow Cytometry 

FC is an established technique that is readily available in many laboratories 

around the world. Optimised for the assessment of multiple parameters of cells 

and particles, it is not possible to reliably detect EVs with a conventional setup. 

Detection of particles is achieved as they are passed through a laser beam, 

scattering light and emitting fluorescence, which can be detected and if sufficient 

signal is received, determined by threshold settings, then the measurement is 

recorded. This method imposes limitations on detection and based on light 

scatter alone 300-500 nm would be the size below which you could not reliably 

detect a particle (141). However, efforts have been made to modify commercially 

available machines and optimise them for EV scale detection (142). Optimising 

the BD Influx machine for high-resolution detection by fluorescence, for example, 

has presented the potential for detecting particles down to ~150 nm in diameter 

(142). 

1.2.5.3 In Vitro Characterisation 

EVs are produced by most cell types preventing the cellular origin from being 

easily ascertained when fluid samples are taken from a whole organism. 

Monoculture of cells in vitro negates this problem and this system is where much 

of the knowledge surrounding EVs originates. EVs isolated from cell culture 

medium are the primary source for much of the ex vivo approaches described 

above (see section 1.2.5.2), with most of the isolation and labelling methods 

described in the earlier sections focused on an in vitro starting point. 

Cell culture experiments also allow for EVs that have been previously isolated 

(either from cell culture medium, or fluid samples) to be used as an exposure 

agent for recipient cell focussed experiments. Like the simplicity benefits derived 

for experiments assessing the production of EVs, cell culture studies allow for 

simpler readouts of cellular responses to an exogenous EV sample. In its 

simplest form, the readout is the ability of the specific cell type cultured to take-up 

the EVs used in the exposure experiment. Uptake assays are usually achieved 

through fluorescent labelling of EVs followed by confocal microscopy or FC 

based assessments (12). Uptake mechanisms can also be determined by 

knockdown of protein components known to be necessary for these processes, 

for example by use of endocytosis inhibitors (88). For EVs that are shown to be 

internalised, the intracellular pathway by which these EVs are processed and the 
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effect of their cargo is a clear point of interest. In most instances it is thought that 

endocytosed EVs are targeted to a MVB/lysosomal compartment, where it is 

assumed they are destined for degradation (143). It has been proposed, 

however, that there is a possibility that EVs can undergo a back-fusion step, 

where their membrane fuses with that of the MVB and the cargo can be released 

into the cytosol of the recipient cell (144-146). Understanding this process is at 

the leading edge of EV research and in vitro studies are the most direct route for 

greater detail to be uncovered.  

Further to this, relatively standard and verified cell culture assays can be 

performed to assess the functional responses to EV-cell interactions. For 

example, angiogenic responses of human umbilical vein ECs (HUVECs) can be 

assessed by determining the degree of network formation after EV treatment 

(12). Additionally, EVs have been shown through standard assays to impact 

migration of ECs after exposure to cardiac progenitor cell-derived EVs (147) and 

enhanced survival of CMs can be seen if exposed to cardiac progenitor cell-

derived EVs, through inhibition of apoptosis (148). 

1.2.5.4 In Vivo Characterisation 

A limitation of in vivo studies has been the inability to identify the cellular origin of 

EVs found in extracellular space as mixed populations from various cell types 

prevent precise identification (149). This limitation often restricted studies to in 

vitro experiments, where a single cell type is cultured and EVs assessed 

accordingly. In vivo studies fall into two categories, those which take exogenously 

prepared EVs and introduce these into an in vivo system and those which look to 

assess endogenously produced EVs with minimal interference to the system 

being used. 

1.2.5.4.1 Labelling 

EVs isolated from cell culture medium or other samples can be labelled in the 

same ways as described for ex vivo characterisations (see section 1.2.5.2.2) and 

then reintroduced into an in vivo system. A key consideration here is to avoid the 

EV label interfering with relevant surface molecules and thereby disrupting 

behaviour. Membrane dyes can allow single vesicles to be detected and to some 

extent allow for tracking in vivo (150) whereas others have used bioluminescent 

(151) and radioactive (152) labels to detect EVs at the global scale. These 
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studies have allowed EV behaviour to be understood from the angle of tissue 

distribution after injection into a living organism. 

To allow the detection of a single EV in vivo a Tg approach is best pursued. 

Fluorophores can be expressed fused to a domain which drives lipidation of the 

molecule which results in tethering to the plasma membrane. This method has 

been used in vivo to label EVs derived from a tumour implanted into a mouse 

(153). A second Tg approach is to label EVs using fluorophores fused to EV 

markers, achieved in drosophila using CD63-GFP fusion protein expression 

(154). 

1.2.5.4.2 Microscopy and Imaging 

Confocal microscopy is the mainstay to most in vivo imaging efforts and has been 

used to image EVs in vivo (145). On initial consideration for EV tracking, confocal 

microscopy is limited by the diffraction limit of light, giving theoretical resolving 

capacities of ~250 nm. Although this is a limitation, it does not mean EVs smaller 

than this will not be detected, with sufficient signal from the label used and 

sensitivity in detection methods, EVs much smaller could be detected, but not 

resolved to determine if it’s one or more EVs occupying close proximity to one 

another. Intravital multiphoton microscopy has also been used to visualise EVs in 

vivo, specifically to allow greater working distances needed when working with 

mouse (143).  

1.2.5.4.2.1 Image Enhancement 

Post-acquisition image representation can take some consideration, image data 

used for quantification efforts should essentially remain unaltered, whereas visual 

representations of data should not mislead the viewer but should allow for 

unhindered interpretation. The transfer is from quantitative to qualitative data, 

where a degree of subjective bias is inherent in the process. Contrast stretching, 

cropping and look up table changes are modifications that are widely acceptable 

but can have profound effects on interpretation, further manipulations tend to 

demand greater justification. Different scientific journals have their different rules 

regarding image modifications, but the key point is to make clear where any 

modifications have been used and make raw data readily available. 
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1.2.5.4.2.2 Non-linear Transformation 

Unlike standard contrast-stretching which allows each value in the intensity range 

to be made use of by linear stretching of the intensity values to fill the full range 

available, non-linear transformations use a range of formulas to transform the 

data in a way that affects intensity values along the grey scale in an uneven way. 

The power-law transformation is one of the more commonly used in biology and 

has been used to aid EV visualisation in vivo (146). This process transforms the 

pixel values according to a logarithmic formula which can be used to visualise 

dim objects in the same image as brighter objects. If you’re hoping to draw 

comparisons between brighter and dimer objects this process is not appropriate, 

and even if the brighter objects are only relevant as landmarks it is important to 

highlight the non-linear relationship between those objects, whilst taking care to 

apply the same transformation to all associated images (147). 

1.2.5.4.2.3 Deconvolution 

Deconvolution can greatly enhance appropriately acquired images, when carried 

out correctly it is perhaps more accurately described as image restoration. 

Deconvolution methods can increase contrast, decrease noise and recover 

resolution, these attributes are particularly useful when attempting to visualise 

EVs in cell culture studies (148) and even more so in vivo (145, 149). Confocal 

image acquisition is not perfect, excitation of objects outside the focal plane, 

imperfections in the optical detection process and mismatched refractive indices 

(150) result in excess noise and decreased resolution. This process can be 

mathematically understood by the convolution operation, understanding this 

operation and the contributing variables makes it possible to begin reversing 

some of these processes, leading some to favour the term restoration over 

enhancement of the image by deconvolution (151). Key to this mathematical 

understanding is the concept of the point spread function (PSF), where the ‘point’ 

is the source of the emitted light and the actual object dimensions are hidden by 

the detection of the optical spread of this light, which is noticeable axially as an 

elongation of the point. By taking dimensional measurements of the PSF and 

having dimensional measurements from your image acquisition you can 

theoretically reveal the dimensions of the actual object. This can be seen with the 

following equation:  



36 
 

F{recorded image(x, y, z, t)} = F{actual object(x, y, z, t)} x F{point spread 

function(x, y, z, t)} 

Where taking a Fourier transformation of each of our three variables allows the 

equation to be reduced to a simple multiplication relationship between the actual 

object and the PSF. Which then allow the division of the Fourier transformation of 

the recorded image by the Fourier transformation of the point spread function to 

reveal the Fourier transformation of the actual object. This process is theoretically 

simple but there are many inconsistent variables to contend with, making this 

process much more complex – a complexity that is only amplified with in vivo 

contexts. Extracellular Vesicles in Coronary Heart Disease 

1.3 Extracellular Vesicles in Coronary Heart Disease 

1.3.1 Introduction 

Over recent years, the study of EVs and their diverse roles within the 

cardiovascular system has intensified. The relevance of EVs in CHD has been 

suggested for many years, with changes in EV numbers and composition 

correlating with various stages of atherosclerosis and on to acute coronary 

syndromes such as MI (16). More recent efforts have focussed on the effects 

these EVs might impart, with roles in modulating the immune system (119), 

enhancing angiogenic capacity (12) and promoting cellular senescence 

described (155). Importantly, elucidation of EV profiles at different disease stages 

will strengthen their potential as diagnostic biomarkers, an idea that has 

progressed rapidly for some cancers (97) and shows promise for cardiovascular 

diseases (156). EVs also hold promise as therapeutics themselves, either 

synthetically loaded to deliver a desired cargo or by manipulation of the 

endogenous EV profile (157) to strategically promote/inhibit the release and/or 

uptake of EVs with known effects. The key to progress with these biomedical 

approaches is a greater understanding of the fundamental biology of EVs; most 

importantly we need to determine EV function and the true mechanisms 

mediating that function in vivo. In this way, therapeutic approaches can be made 

more precise, avoiding undesirable side-effects. 

As is often mentioned, most if not all cell types are thought to produce EVs and 

the cells that form the cardiovascular system are no exception. CMs (158), ECs 
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(159), cardiac fibroblasts (160) and leukocytes (161) have all been shown to be 

capable of EV production. The EV-based interplay between these cell types and 

how this changes from a homeostatic to a diseased state is of great interest. For 

the purposes of this study, the focus is simplified to CMs and ECs, two of the 

major constituent cell types, but the interactions between all the relevant cell 

types will need to be deconstructed to make sense of a complex and nuanced 

picture. 

1.3.2 Communication In Vitro 

Building from the initial evidence base, numerous studies have been carried out 

in vitro, where various stimuli that might promote EV release could be tested and 

EVs of known cellular origin could be biochemically deconstructed, with a focus 

on cargo that might be relevant to disease states (see Table 1.2). For example, 

exposing primary rat CMs to hypoxic conditions in culture results in the 

production of EVs enriched for tumour necrosis factor-α (TNF-α) (162). Elevated 

levels of TNF-α have been documented in the blood serum of human patients 

with chronic heart failure (163), where its impact is considered detrimental as it 

contributes towards myocardial damage (164). These results together suggest 

EVs may be the mechanism by which TNF-α is transported systemically, but this 

remains to be shown in vivo. It remains unclear where these CM-derived EVs 

(CM-EVs), if relevant in vivo, are destined to end up and the response they might 

elicit, if any. Another cargo of CM-EVs highlighted in the literature is heat shock 

protein (HSP) 20. Increased levels of HSP20 have been observed in the 

circulation of an established cardiomyopathy hamster model (165) and later 

studies, using cardiac-specific overexpression in Tg mice, identified CMs as a 

potential origin for these elevated levels of HSP20 (166). Further to this, cell 

culture studies found CM-EVs to contain HSP20, highlighting a potential transfer 

mechanism. HSPs are widely appreciated to have cardioprotective functions 

(167) as shown for HSP20 following ischaemia/reperfusion injury in vivo (168). 

Consistent with these findings, the HSP20 loaded CM-EVs were found to elicit 

pro-angiogenic effects on cultured ECs (166). By contrast, cultured CMs isolated 

from a diabetic rat model produce EVs containing miR-320, which can be 

delivered to cardiac ECs (169) and this interaction imparts an anti-angiogenic 

effect by down regulating the target genes IGF-1 (170), HSP20 (171) and Ets2 (a 

transcription factor required for EC survival) (172). Again, in vivo evidence for this 

kind of communication is needed. 
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As well as being identified as putative recipients of CM-EVs, ECs have also been 

highlighted as producers of EVs (159, 173-176). Rat ECs, for example, have 

been shown to increase production of EVs that carry more HSP70 when the ECs 

are exposed to oxidised low-density lipoprotein (ox-LDL) (174). These EVs were 

then shown to be capable of activating monocytes and increasing their adhesion 

to ECs. Increased extracellular levels of HSP70, particularly in the blood serum of 

the peripheral circulation, are correlated to lower rates of progression for various 

vascular disorders including CHD (177). In contrast, higher levels of HSP70 have 

been shown to correlate with myocardial damage and progression of heart failure 

after acute MI (178-180). HUVECs stimulated by exposure to ox-LDL also 

produce EVs enriched for miR-155 (181), which appears to impart a shift in 

human monocytic THP1 cells from the M2 anti-inflammatory phenotype to the M1 

inflammatory phenotype. These studies highlight the importance of EC/immune 

cell interactions, but also the impact EC-derived EVs (EC-EVs) can have on other 

ECs. EC-EVs isolated from the culture medium of human microvascular ECs 

(HMECs) have been found to carry miR-214, which was shown to impart its 

known effect on EC function via EV transfer to other ECs (175).The effects seen 

when exposing ECs to these EC-EVs included increased migration and 

angiogenesis in recipient cells, effects that were abrogated in cells that had been 

transfected with siRNA for both pre-miR-214 and mature miR-214 (175). 
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Table 1.2. Examples of Cardiovascular Models to Study EVs and their Cargo. sEVs = small EVs.  

Model Condition Producing Cell EV Type Cargo Reference 

Adult Rat Primary Cells Diabetic CM Microvesicles miR-320 (169) 

Adult Rat Primary Cells Homeostatic CM Exosomes HSP20 (166) 

Neonatal Rat Primary Cells Hypoxic CM Exosomes TNF-α (162) 

Mouse HL-1 Cell Line Growth Factor Treatment CM Exosomes Transcriptomics Data (182) 

HMECs Homeostatic EC Exosomes miR-214 (175) 

HUVECs ox-LDL-treated  EC Exosomes miR-155 (181) 

Mouse Blood Plasma Sample Coronary Artery Ligation Unknown sEVs miRNA-126-3p and 5p (176) 

Human PF Aortic Valve Surgery Unknown Exosomes Let-7b-5p (12) 

Human Arterial Explants Heart Valve Surgery Cardiac Progenitor Exosomes miR-210 & miR-132 (148) 

Human Organ Donation Homeostatic Cardiosphere-Derived Exosomes Transcriptomics Data (183) 
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1.3.3 Communication In Vivo 

The initial studies that highlighted ultrastructural evidence for CM-EVs in vivo 

(149, 184) were based on transmission EM (TEM) analysis. TEM of cardiac 

progenitor cells in the mouse myocardium revealed double-membrane-bound 

vesicles, identified as exosomes and microvesicles based on size (184). The 

same study suggested these EVs were being targeted to CMs via cytoplasmic 

processes that appear to envelop the EVs, which were proposed as an uptake 

mechanism (184). Similar data were later presented identifying EVs in mouse 

cells as well as multivesicular bodies within human CMs (149). These studies 

prompted further steps to isolate EVs from relevant samples. As mentioned in 

section 1.2.5.2.1, isolation techniques are constantly developing rendering 

comparisons between different studies difficult. The  eventual standardisation of 

techniques will make this easier in the future. However, CM-EVs and EC-EVs 

have been isolated successfully from various sample types including blood and 

PF. 

1.3.3.1 Peripheral Circulation 

One of the early biofluids found to contain EVs was the blood (11) and a renewed 

focus on these systemically present EVs has ensued (104, 185-187). EVs in the 

blood are known to contribute towards coagulation and inflammatory events; 

actions that are dictated primarily by surface molecules including PS (17, 188, 

189). Importantly, increases in EV concentration within the blood have been 

associated with certain pathological processes and disease states (156, 176, 

190-192). This puts blood plasma EVs at the centre of biomedical research 

efforts as our developed understanding holds potential for biomarker discovery 

(156) and systemic delivery for therapeutics (157). Significant effort has therefore 

gone into characterising blood plasma EVs (115, 193, 194), with comprehensive 

studies using cryo-EM with immunogold labelling to assess morphology, size, 

molecular phenotypes and concentration, to provide the most accurate 

characterisation possible with current technologies (195). EVs sampled from the 

blood can potentially have originated from a wide range of cell types, the majority 

are thought to be platelet-derived (195, 196), but erythrocytes (197), EC (198) 

and leukocytes (199) also contribute making characterisation efforts particularly 

challenging but with far reaching biomedical implications. 
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1.3.3.2 Pericardial Fluid 

Populations of EVs have also been isolated from human PF samples (12, 200, 

201) with attention on their relevance to cardiac interventions. The PF is an 

ultrafiltrate plasma that fills the pericardial space between the pericardium as it 

encloses the heart and the roots of the great vessels. This anatomical structure, 

as a protective sac surrounding the heart, is relevant by proximity to the heart 

itself. During cardiopulmonary bypass surgery bleeding from cut blood vessels is 

expected and will contaminate the PF, which is also breached in the process. 

‘Pericardial blood’ samples taken from these patients is known to contain high 

concentrations of coagulation factors (202, 203). Further, is has been shown that 

EVs may mediate the transfer of signals that stimulate this clotting process (201).  

Epicardial progenitor cells are thought to play a role in the repair phase following 

MI, where extracellular paracrine signalling would be required to elicit the 

necessary responses from distant cells (204-206). Gene expression studies in a 

mouse model of MI found the PF could initiate epicardial cell activation (206) and 

further, a epithelial-to-mesenchymal transition was shown to be responsible for 

repair in mouse (200, 207, 208). EVs isolated from human patients with acute MI 

were characterised by proteomic analysis revealing Clusterin expression 

compared to an absence in controls (200). Clusterin has been shown, by 

hemodynamic force assessment, to improve myocardial performance post MI in 

mouse (200). This improvement is suggested to be achieved through the 

observed activation of epicardium (including epithelial-mesenchymal-transition), 

arterial growth and reduced CM apoptosis (200). 

EVs have also been isolated from human PF samples taken from patients that 

were undergoing aortic valve surgery, where the characterisation efforts focussed 

on small non-coding RNAs (12). The miRNAs found in the PF EVs were 

compared with EVs from blood plasma and they were found to have greater 

shared expression with the patients myocardium and vasculature (12). When the 

isolated PF EVs were used as an exposure agent, they were found to be capable 

of increasing proliferation rates, cell survival and network formation in HUVECs 

(12). One of the driving forces behind this proangiogenic response appeared to 

be the miRNA let-7b-5p acting on the target gene TGFBR1 and decreasing its 

expression (12). 
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EVs carrying cardiovascular specific cargo appear to be abundant in the PF 

especially after myocardial insult and they also appear to drive relevant 

reparative and regenerative processes. However, there is currently limited 

understanding of the mechanisms driving the production of these EVs and even 

of the cell types responsible for their production. On top of this, there is no 

understanding of the spatial and temporal mechanisms dictating the pathways of 

these EVs through extracellular space in vivo and therefore no clarity on the 

accessibility of different cells types in which to illicit potential functional 

responses. 

1.4 Zebrafish 

This project aims to characterise endogenous EVs in the vertebrate model Danio 

rerio (zebrafish). Zebrafish offer an ideal model system for this study, thanks to 

several key attributes. Their relatively low housing and husbandry costs, both in 

terms of money and more directly space, allow for large numbers of individuals to 

be maintained within a single aquarium. Combining this with the high fecundity 

the species was specifically selected for, means that experiments using larval fish 

can be conducted on a larger scale, allowing for the experimental repetition 

required to derive statistical confidence in data interpretation. The accessibility of 

the embryonic and larval stages is also a key strength of the model system. Ex-

utero development and optical transparency permit sub-cellular imaging and 

allow for in vivo observations of cellular events and interactions, using relatively 

non-invasive methods when compared to the methods used for intravital 

microscopy in mouse models. This level of unfettered optical access is essential 

for maximum coverage and detail to be gained from observational studies of 

cellular interactions in vivo. 

The strengths so far outlined are what led to this species being developed for 

sophisticated genetic manipulations. Initial efforts were focussed on forward 

genetics approaches, with cloning (209), mutagenesis (210-213), transgenesis 

(214) and classic gene mapping efforts (215) driving the model forward, 

particularly within developmental biology as thousands of mutants were identified 

that directly impacted embryogenesis (216-218). This history and the genetic 

understanding that come with it makes the zebrafish a genetically tractable model 

system. Key to this study is the widespread use of genetically modified zebrafish 
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that express fluorescent reporters under the control of cell type specific 

promoters. Combining this precise fluorescent labelling with optical accessibility 

makes for powerful vertebrate system with unrivalled observational possibilities. 

As a direct result of these many attributes, zebrafish are now an established 

model for many human diseases (219) and their ability to repair and regenerate 

cardiac tissue after injury has been thoroughly investigated for its potential to 

reveal novel therapeutic approaches (220).  

EV production and release is considered an evolutionary conserved process, 

however very little work has been published with regards to EV biology in 

zebrafish. EVs/matrix vesicles as well as MVB type structures have been 

identified using a combination of scanning and transmission EM on vertebral 

tissue sampled from adult zebrafish (108). Transient expression of HuC:CD63-

GFP has been used to visualise neuronal EVs in the brain of larval zebrafish 

(221). Additionally, inhibition of neutral sphingomyelinase 2, often highlighted as 

a key component in EV budding, significantly decreased the neuronal EV 

numbers observed (221). Although these studies hint at the potential of the 

zebrafish model for EV research, they have by no means been fully characterised 

and their role following cardiac injury has not been determined, despite the 

promise for a concise in vivo analysis of endogenous EV dynamics. This project 

aims specifically to answer questions within a cardiovascular framework, but 

there are broader challenges in EV research that the project will address. 

Explicitly, the study will allow the cellular origin of released EVs to be defined and 

elucidate bio-distribution mechanisms by way of real-time spatial and temporal 

observation. 

  



44 
 

 

1.5 Hypothesis and Aims 

The main hypotheses of this work are as follows: 

Hypothesis 1: Tg zebrafish allow visualisation and isolation of endogenous CM 

and EC-derived EVs from a vertebrate in vivo model system.  

Hypothesis 2: CMs and ECs show a dynamic alteration in release of EVs as a 

result of cardiac injury. 

To address these two hypotheses, the specific aims of the project are as follows: 

1) Develop live imaging techniques to visualise transgenically-labelled CM- 

and EC-EV dynamics, including release and uptake, in the peripheral 

circulation and pericardial space of larval zebrafish. 

2) Develop fluorescence activated cell sorting (FACS) techniques to isolate 

fluorescently-labelled CM- and EC-EVs from whole zebrafish larvae. 

3) Quantify the CM- and EC-EV response to cardiac injury in larval 

zebrafish. 
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Chapter 2: Materials and Methods 

2.1 Zebrafish Strains and Maintenance 

Previously published Tg lines: Tg(actin:mem-GFP) (222), 

Tg(TBP:G4m);(UAS:secA5-YFP) (223), Tg(kdrl:mCherry-CAAX) (224), 

Tg(myl7:GFP) (225), Tg(myl7:HRAS-mCherry) (226) and the enhancer trap line 

ET37 (227) were used in this project. All of these lines are maintained according 

to standard procedures (228) and used in accordance with UK Home Office and 

local University of Bristol regulations. Specifically, adult fish were maintained at a 

stocking density of 1.2 fish per litre, on a 14-hour day/10-hour night light cycle. 

The water was maintained at 28.5⁰C, pH 7.0 and a conductivity of 450 µS. 

Ammonia and nitrite were kept at 0 mg/ml and nitrate between 40 and 80 mg/ml. 

Fish breeding was carried out in plastic chambers, with 3 females and two males’ 

setup as a breeding group the afternoon before collection. Eggs were collected 

the next morning and 50 fertilised eggs were selected at the shield stage of 

development at approximately 6 hours post fertilisation (hpf) (229), and 

maintained in 10 cm petri dishes in 40 ml Danieau’s solution (1740 mM NaCl, 21 

mM KCl, 12 mM MgSO4.7H2O, 18 mM Ca(NO3)2 and 150 mM HEPES buffer) 

which was changed once every two days prior to experimental procedures. 

2.2 Laser Injury 

For laser-induced injury, 3 days post fertilisation (dpf) zebrafish were 

anaesthetised in 1.3 mM ethyl 3-aminobenzoate methanesulfonate (Tricaine/MS-

222) (Sigma: E10521). Molten 1% (weight/volume) low gelling point agarose 

(Sigma: A4018) in Danieau’s solution, was maintained at 40 ⁰C until needed. A 

thin layer was added to a 35 mm glass bottom dish (Mattek: P35G-1.5-14-C) 

containing the fish, which were then orientated laterally (anterior to the right, such 

that the ventricle is orientated towards the objective lens) before the agarose 

solidified (Figure 2.1A). Once the agarose was completely set, Danieau’s 

solution containing 1.3 mM MS-222 was then added to the dish to keep the fish 

anaesthetised throughout the laser injury process (Figure 2.1A). A Micropoint 

CO2 laser (Spectra Physics) connected to a Zeiss Axioplan II microscope (Zeiss 

Microimaging) was used for injuring as previously described (230). A 40X water 



46 
 

immersion objective and a double laser pulse at a wavelength of 435 nm was 

used to damage the surface of the apex of the ventricle (Figure 2.1B). The fish 

were then removed from the agarose and left in fresh Danieau’s solution at 28 ⁰C 

until the desired timepoint post injury (Figure 2.1C) 

2.3 Live Imaging 

2-4 dpf zebrafish were anaesthetised in 1.3 mM MS-222 and mounted as 

described in section 2.2 (Figure 2.1A). Images were acquired using either a 

Leica SP8 confocal scanning light microscope (including a high-speed (8 KHz) 

resonant scanning option) (Figure 2.1D) or a Leica SP8X system using a white 

light tuneable laser with Leica’s HyVolution 2 upgrade. Specific details for image 

acquisition are given in Table 2.1. 

 

Figure 2.1. Workflow for Laser-Induced Cardiac Injury and Imaging. (A) 
Larvae are anaesthetised, mounted in agarose and placed under the microscope. 
(B) The graticule is placed over the apex of the ventricle and the focal plane 
adjusted accordingly. Two pulses of laser light are used to damage the tissue. 
White dashed line demarks the ventricle. (C) The larvae are released from the 
agarose and maintained in fresh Danieau’s solution until the desired timepoint 
post injury. (D) The larvae are anaesthetised and remounted in agarose to be 
imaged using fluorescent microscopy. 
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Table 2.1. Examples for Image Acquisition Settings. N/A= Not Applicable.

 Figure 3.3B Figure 3.5B Figure 3.10B Figure 3.11A-C Figure 3.11A'-C' 

Microscope HyVolution2 Confocal Confocal Confocal Confocal 

Scanner Speed (Hz) 8000 8000 8000 400 400 

Objective Lens 20x Dry 25x Water 25x Water 25x Water 25x Water 

Numerical Aperture 0.75 0.95 0.95 0.95 0.95 

Width, µm (pixels) 78.68 (592) 48.68 (512) 88.79 (512) 110.82 (1024) 51.91 (1024) 

Height, µm (pixels) 78.68 (592) 48.68 (512) 44.40 (256) 110.82 (1024) 51.91 (1024) 

Depth, µm (pixels) N/A N/A N/A 50.160 (100) 20.277 (100) 

Resolution, pixels/µm 7.52 10.52 5.77 9.24 19.73 

Pixel Size, µm^2 0.14 0.95 0.17 0.11 0.05 

Voxel Depth, µm 1 1 1 0.51 0.51 

Z Slices 1 1 1 100 100 

Frame Interval, sec 0.08 0.04 0.02 N/A N/A 
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2.4 Post-Acquisition Adjustments 

Appropriate images have been deconvolved using Huygens Professional version 

16.10 (Scientific Volume Imaging, The Netherlands) using the CMLE algorithm 

(231-234). To achieve optimal results images were acquired at a sampling 

density that satisfied Nyquist-Shannon sampling theorem (235) such that all 

available information was captured within the constraints of the microscope 

settings. 

Gamma adjustments were applied to images (where indicated) using the power-

law transformation (γ = 0.65) to show smaller and dimmer EVs in the same image 

as larger and brighter cells (236, 237). 

2.5 Larval Fish Dissociation and EV Isolation 

16 pooled zebrafish larvae (4 dpf) were dissociated in 500 µl digestion buffer 

(described below) for 1 hour and 45 minutes in a Thermomixer set to 32 ⁰C and 

800 rotations per minute. 500 µl stopping buffer (described below) was added 

and mixed by pipetting. Samples were then sequentially centrifuged (10 min at 

300 g (2X) and 10 min at 1200 g (2X) at 4 ⁰C) with the supernatant transferred to 

a new 1.5 ml Eppendorf tube and carried to the next centrifugation step. The 

supernatant was then collected in a 1 ml sterile syringe and passed through a 0.8 

µm sterile filter (Whatman: 1046224) to a new 1.5 ml Eppendorf tube. Samples 

were then centrifuged at 21000 g and 4 ⁰C and the supernatant discarded. The 

pellet containing isolated EVs was then fluorescently labelled with Calcein 450 

(Violet) AM Viability Dye (eBioscience; 65-0854-39) (referred to as Calcein from 

this point forward) (132). The pellet was resuspended in 300 µl of 10 µM Calcein 

solution and incubated for 20 minutes at 37 ⁰C. Detergent treated negative 

controls were resuspended in 300 µl of 10 µM Calcein and 0.05% Triton X-100 

(Sigma: T8787). Calcein negative controls were resuspended in 300 µl sterile 0.2 

µm filtered PBS. 

• Perfusion Buffer consists of 1X PBS plus 10 mM HEPES, 30 mM taurine 

and 5.5 mM glucose and was stored for up to three months at 4 ⁰C. 
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• Digestion Buffer consists of perfusion buffer plus 0.25% Trypsin, 12.5 

µM CaCl2 and 5 mg/ml Collagenase II and was freshly prepared on the 

morning of the experiment. 

• Stopping Buffer consists of perfusion buffer plus 10% (vol/vol) FBS and 

12.5 µM CaCl2 and was freshly prepared on the morning of the 

experiment. 

2.6 Flow Cytometry/Fluorescence Activated Cell Sorting 

Analysis was carried out on a BD Influx flow cytometer with previously described 

methods considered to optimise the machine for the detection of nano-sized cell-

derived vesicles (142) plus further modifications as described. High power 200 

mW 488 nm laser was used for optimal excitation of small particles. In 

combination with the high-power, a small-particle detector allowed for high 

sensitivity in detecting forward scatter (FCS). Threshold triggering was based on 

FCS rather than fluorescence as noise generated by the flow cytometer was 

minimal in comparison with similar systems used by other laboratories (142), 

threshold triggering on a single fluorescent channel would also prevent 

multichannel analysis. Laser alignment and optimisation was carried out with 

Spherotech Rainbow calibration 8 peak beads and Biocytex Megamix beads. A 4 

mm obscuration bar was used to optimally detect submicron particles. For FC a 

100 µm nozzle at a pressure of 21 PSI was used, but to optimise for the FACS of 

nano-sized vesicles a 70 µm nozzle and 42.9 PSI was used. 

2.7 Ex Vivo Imaging 

EVs isolated via FACS experiments as well as from unsorted samples were used. 

0.06 µm far-red labelled carboxylate-modified microspheres (Sigma: T8870) were 

added to the samples for a final concentration of 1:10000. For TIRF microscopy, 

50 µl of sample was applied to 35 mm glass bottom dish (Mattek: P35G-1.5-14-

C) and allowed to settle. For HyVolution based imaging, samples were applied to 

clean coverslips (Menzel-Glaser: 6776325) allowed to adhere to the slip, then 

Mowiol was added on top and a glass slide gently lowered onto the slip and the 

samples were then left in the dark for 24 hours at room temperature. Images 

were acquired using either a Leica AM TIRF multi-colour system attached to a 

Leica DMI 6000 inverted epifluorescence microscope or a Leica SP8X system 



50 
 

using a white light tuneable laser with Leica’s HyVolution 2 upgrade. Briefly this 

includes automated narrowing of the confocal pinhole, with the acquired images 

then processed using custom deconvolution algorithms on Huygens Professional 

version 16.10 (Scientific Volume Imaging, The Netherlands). 
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Chapter 3: Characterising Extracellular Vesicle 

Labelling Strategies in Larval Zebrafish 

3.1 Introduction 

The main aim of this project is to develop strategies to allow in vivo imaging of 

endogenous cardiovascular EV dynamics. Two anatomical regions that have 

been described in humans and mammalian models to contain EVs of 

cardiovascular origin, are the peripheral circulation (156, 176) (see section 

1.3.3.1) and the pericardial space (12, 156) (see section 1.3.3.2). To visualise 

EVs in these regions, several different Tg zebrafish lines were used 

corresponding to two broad approaches; global labelling of all endogenous EVs 

and cell-type specific labelling of EVs. Initially the global approach (see section 

3.2.2 for detailed justification) was used to identify EVs in the regions of interest, 

test the general feasibility of the project, and assess the suitability of the 

approaches for labelling endogenously produced and cardiovascular relevant 

EVs. To do this confocal microscopy of the optically translucent larval stage 

zebrafish was used (Figure 3.1A), but without visualising EV release there was 

no way to discern cellular origin of those EVs identified. Larval zebrafish at 2-4 

dpf have a fully functional cardiovascular system, with the ventricle and atrium of 

the heart already defined (238), and blood being pumped through an extensive 

vascular network including arteries and veins (Figure 3.1A) (239). Focussing on 

the aim to investigate the in vivo dynamics of cardiovascular EVs led to a second 

cell-type specific labelling approach, which allows EVs of CM and EC origin to be 

tracked in the pericardial space (Figure 3.1B) and peripheral circulation (Figure 

3.1C) (see section 1.3.3.2 and 1.3.3.2 respectively) (12, 156, 176)). 
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Figure 3.1. Larval Zebrafish Anatomical Regions of Interest. (A) Orientation 
image of a whole larvae at 3 dpf, anterior to the left, the boxed regions highlight 
the regions of interest in B and C. (B) Higher magnification image of the 
pericardial space. Yellow dashed line demarks the ventricular myocardium and 
the green dashed line demarks the pericardium. (C) Higher magnification image 
of the dorsal aorta (DA). Blue lines demark the vessel wall. Scale bars: A = 100 

µm; B,C = 10 µm.Extracellular Vesicles in the Peripheral 

Circulation 

3.2.1 Peripheral Circulation 

Initially, EVs present in the peripheral circulation were investigated, as this would 

be the primary route by which systemic distribution would occur (156, 176, 195). 

The peripheral circulation provides an easily accessible region of extracellular 

space in the larval zebrafish, with flowing blood cells easily identifiable (Figure 

3.1C, Movie 1) (240). The DA is a major trunk vessel that carries the blood from 

the aortic arches towards the posterior end of the fish; once past the cloaca, it is 

termed the caudal artery (CA) (241). Early investigations focused on the arterial 

flow of the CA, as this blood vessel is relatively uniform, symmetrical and linear in 

structure compared with the tortuous venous vessels of the caudal vein plexus, at 

the developmental stages examined. This difference in structure allowed for a 

representative optical slice to be acquired through the centre of the blood vessel, 

which is of particular importance for experimental designs that constrained 

acquisition to a single focal plane. The caudal section of this vessel was initially 
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selected as it is situated within the thinnest region of larval fish tissue, reducing 

optical interference and optimising detection capabilities. 

3.2.2 Broad Labelling of Extracellular Vesicles 

For the broader labelling approach, a near-ubiquitous (TBP) promoter was used 

to drive the expression of a modified Gal4 (G4m) which activates an upstream 

activation sequence (UAS) which in turn drives the expression of A5 which is 

fused to YFP and includes a short signal peptide to promote its secretion (secA5-

YFP) (Tg(TBP:G4m);(UAS:secA5-YFP) (Figure 3.2A) (223). A5 binds PS  (a 

relevant phospholipid in EV biogenesis and often identified as an EV membrane 

component – see section 1.2.5.2.2.2) with high affinity (242) thereby marking this 

membrane component with YFP (Figure 3.2B). This labelling strategy is 

necessarily driven by a ubiquitous promoter, aiming to achieve consistent base 

levels of extracellular A5-YFP throughout the fish (Figure 3.2C). It was designed 

to allow in vivo labelling of apoptotic cells (223) but also allows EVs (termed A5-

EVs) to be visualised. Indeed, this Tg system allowed the visualisation of 

apoptotic cells in the peripheral circulation of Tg(TBP:G4m);(UAS:secA5-YFP) Tg 

fish at 3 dpf as expected (Figure 3.2D). This ubiquitous extracellular labelling 

approach, however,  means it is not possible to discern the cellular origin of the 

EVs labelled.  
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Figure 3.2. Orientation and Description of Live Imaging Approach Using A5 
Labelling. (A) Schematic of the Tg construct used to stably label externalised PS 
in vivo. (B) Schematic of the expressed reporter A5-YFP binding PS. Adapted 
from a published diagram (153). (C) Fluorescent image of a 3 dpf larval 
Tg(TBP:G4m);(UAS:secA5-YFP) zebrafish. White box highlights the region of 
interest shown in D. (D) Example of a labelled apoptotic cell in the peripheral 
circulation. (D’) The same image as in D but with only the fluorescent channel 
shown. Scale bars: C = 100 µm; D = 5 µm.  
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3.2.3 AnnexinV-Positive Extracellular Vesicles in the Peripheral 

Circulation 

Live imaging was carried out in 3 dpf larval zebrafish using the 

Tg(TBP:G4m);(UAS:secA5-YFP) line (Figure 3.3). The posterior end of the CA 

was targeted (Figure 3.3A) as this is a narrow, flat section of the fish that would 

allow for optical access with high resolution systems that have smaller working 

distances (e.g. HyVolution 63x objective lens with a 0.65 mm working distance). 

A5-EVs were observed in the peripheral circulation (n=4/4) using the 

Confocal/HyVolution2 system (see section 2.3; Figure 3.3B).  

To assess the difference between the signal being recorded in the Tg fish and in 

non-Tg fish, average intensity measurements were taken for each frame of a 2-

minute recording of the luminal space of the CA in Tg(TBP:G4m);(UAS:secA5-

YFP) larval fish (n=4) and in non-Tg wildtype larval fish (n=2) (Figure 3.3C). 

Measurements were taken from the fluorescent channel within a region of 

interest, with an average value calculated for each frame and all frames from a 

time course analysed in turn and plotted on the graph (Figure 3.3C). Clear 

separation was observed between the average fluorescence intensity of the non-

Tg and the Tg fish demonstrating that A5-EVs could be distinguished from 

background auto-fluorescent signal (Figure 3.3C). This analysis allowed a 

threshold to be set to ensure that fluorescent particles were distinguishable from 

background noise (Figure 3.3C). This analysis using a ubiquitous, extracellular 

labelling techniques demonstrates that EVs can be visualised in vivo in the 

peripheral circulation of Tg zebrafish. 



56 
 

 

Figure 3.3. Live Imaging Sequence of A5-EVs in the Peripheral Circulation. 
(A) Orientation image with magenta box highlighting the focal region for this 
figure at the most caudal end of the CA. (B) Image sequence of a single EV 
passing through the CA, white arrows highlight the EV, blue lines demark the 
vessel walls. (C) Schematic representation of workflow used to acquire the 
average intensity of each frame from a 2-minute (882 frame) recording of the 
peripheral circulation as it passes through the CA. (D) The average intensity of 
each frame from a two-minute movie of the peripheral circulation of the DA for 
YFP signal in four Tg(TBP:G4m);(UAS:secA5-YFP) Tg fish and two non-Tg fish 
are shown. The black dashed line demarks the threshold below which is non-Tg 
background signal. Scale bars: A = 100 µm; B = 10 µm.  
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3.2.4 Specific Labelling of Endothelial Cell-Derived 

Extracellular Vesicles 

To investigate cell-type specific EVs in the peripheral circulation, the kdrl 

promoter driving a fluorophore fused to a CAAX box motif (Tg(kdrl:mCherry-

CAAX)) (Figure 3.4A) was used to specifically label the plasma membrane of 

ECs (Figure 3.4) (224). The CAAX box consists of the last 20 amino acids of c-

Ha-Ras, which presents farnesylation and palmitoylation signals, along with a 

substrate for enzymatic action and lipidation of the molecule (243). This forces 

the fluorophore to tether to the inner leaflet of the plasma membrane (Figure 

3.4B) under a cell-type specific (in this case endothelial cell) promoter (Figure 

3.4C). EV biogenesis occurs either by an endosomal pathway, initiated by the 

invagination of the plasma membrane (exosomes) or ectocytosis direct from the 

plasma membrane of the producing cell (microvesicles). These modes of 

biogenesis mean that fluorophores anchored to the plasma membrane are 

incorporated into EVs produced by that cell. A similar method has verified this 

approach, where palmitoylated-fluorophore labelled tumour cells were implanted 

into a mouse model and fluorescent EVs released by the tumour were imaged via 

intravital microscopy (153).  
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Figure 3.4. Orientation and Description of Live Imaging Approach Using EC 
Specific Labelling. (A) Schematic of the Tg construct used to label the inner 
leaflet of EC plasma membranes. (B) Schematic of the expressed reporter 
mCherry-CAAX tethered to the inner leaflet of the plasma membrane. Adapted 
from a published diagram (153). (C) Fluorescent image of a 2 dpf larval 

Tg(kdrl:mCherry-CAAX) zebrafish. Scale bar: C = 100 µm.Endothelial Cell-

Derived Extracellular Vesicles in the Peripheral Circulation 

3.2.5.1 Endothelial Cell-Derived Extracellular Vesicles in the Dorsal 

Aorta 

ECs play key roles in various cardiovascular related pathophysiological and 

physiological scenarios and EC-derived EVs (EC-EVs) have been highlighted as 

potential mediators of endothelial communications (244) (see section 1.3.2). Live 

imaging was carried out in 3 dpf larval zebrafish using the Tg(kdrl:mCherry-

CAAX) line (Figure 3.4). After assessing the capabilities of the HyVolution 

system and standard confocal (Table 2.1) the image acquisition results were 

similar but the 25x 0.95NA objective on the standard system allowed for a greater 

working distance and therefore provided the freedom to acquire images in deeper 

tissues, which led to this system being chosen to acquire images of the 

peripheral circulation in the DA. For consistency the DA of Tg(kdrl:mCherry-

CAAX) fish at 2 dpf was imaged at the site where it passes the cloaca as a 
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morphological landmark (Figure 3.5A). Due to high blood flow velocities the 

resonant scanners on the confocal setup was used to increase the acquisition 

rate up to 50.08 frames per second in a single plane of focus. Endogenous EC-

EVs were observed in the lumen of the DA in the majority of the fish imaged 

(n=26/27) (Figure 3.5B,C; Movie 2). To assess the difference between the signal 

being recorded in the Tg fish and in non-Tg fish, average intensity measurements 

were taken for each frame of a 2-minute recording of the luminal space of the DA 

in Tg(kdrl:mCherry-CAAX) larval fish (N=4) and in non-Tg wildtype larval fish 

(N=2) for comparison (Figure 3.5D) in the same way as described above (Figure 

3.3C). This analysis using an EC specific, intracellular labelling technique 

demonstrates that EC-EVs can be visualised in vivo in the peripheral circulation 

of Tg zebrafish. 
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Figure 3.5. Live Imaging Sequence of EC-EVs in the Peripheral Circulation. 
(A) Orientation image with white box highlighting the focal region for this figure, a 
section of the DA aligned with the cloaca. (B) Image sequence of two EVs 
passing through the DA, white arrows highlight one and the black arrows highlight 
the other EV. (C) Image sequence of a single EV rolling along the ECs lining the 
DA, black arrows highlight the EV. (D) The average intensity for mCherry signal 
in four Tg fish and two non-Tg fish are shown. The black dashed line demarks the 
threshold below which is non-Tg background signal. Scale bars: A = 100 µm; B,C 
= 5 µm.   



61 
 

 

3.2.5.2 Endothelial Cell-Derived Extracellular Vesicles in the Caudal 

Haematopoietic Tissue 

To investigate endothelial-derived EVs in venous vessels as well as arterial 

vessels, endogenous EC-EVs were imaged in the CHT region of larval 

Tg(kdrl:mCherry-CAAX) fish at 3 dpf (Figure 3.6A,B). When the arterial blood 

flow turns 180⁰ at the most caudal end of the larvae, it enters the caudal vein 

plexus, a region refered to as the caudal haematopoietic tissue (CHT) ( 

Figure 3.4C) (241). The vasculature of the CHT provides a highly branched and 

interconnected venous environment, in contrast to the arterial environment of the 

DA.Endogenous EC-EVs were observed in the lumen of vessels in the CHT in 

the majority of the fish imaged (n=20/21). In the CHT, EC-EV release into the 

peripheral circulation from a filopodial-like projection was also observed (n=1) 

(Figure 3.6; Movie 3). Together, these data demonstrate that this promoter 

driven membrane-tethered fluorophore system can be used to visualise cell-type 

specific EVs in vivo in the peripheral circulation. 
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Figure 3.6. Live Imaging Sequence of EC-EV Release. (A) Orientation image 
with white box highlighting the focal region for this figure, a vessel in the most 
anterior region of the CHT. (B) Image sequence of a single EV at the tip of a 
filopodial-like protrusion and then being released into the peripheral circulation. 
White arrows highlight the EV and white arrow heads highlight the filopodial-like 

protrusion. Scale bars: A = 100 µm; B = 5 µm.Extracellular Vesicles in 

the Pericardial Region 

As well as human EVs being identified in the peripheral circulation, a population 

of EVs has also been identified in human PF samples from patients with 

cardiovascular disease and, importantly, these EVs were found to mediate the 

transfer of proangiogenic cargo (12). However, the cellular origin of these EVs 

remains uncertain and nothing of their in vivo behaviour is known. The 

pericardium forms an insulating sac that encloses the heart and the roots of the 

great blood vessels (245, 246). The space between the pericardial wall and the 

epicardium of the heart is filled with an ultrafiltrate fluid, known as the PF (247) 

(see section 1.3.3.2). The techniques outlined in this project could allow the origin 

and behavioural dynamics of these pericardial space EVs to be dissected in an in 

vivo model system. 
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3.3.1 Pericardial Fluid/Space 

The zebrafish pericardial space (Figure 3.1B; Figure 3.7A,B) is a relatively large 

extracellular space allowing easy initial identification and examination. However, 

its volumetric size combined with the movements generated by the beating heart 

can make imaging technically challenging. To clearly define the extent of the 

pericardial space in larval zebrafish at 2 dpf, dextran (molecular weight = 

500,000) was microinjected through the skin into the space surrounding the heart 

(Figure 3.7B; Movie 4). 

 

Figure 3.7. Defining the Pericardial Space in the Larval Zebrafish. (A) 
Brightfield orientation image of the heart and the immediate surrounding area.(B) 
Fluorescent maximum intensity projection of 100 stacked images in the same XY 
region as in A. CMs are marked in green and the pericardial space marked by 

dextran in red. Scale bars: A,B = 50 µm.AnnexinV-Positive Extracellular 

Vesicles in the Pericardial Space 

To determine if EVs could be located in the zebrafish pericardial space, a broad 

live imaging approach was initially performed in 3 dpf larval zebrafish using the 

Tg(TBP:G4m);(UAS:secA5-YFP) line in accordance with the initial assessments 

made in the peripheral circulation (Figure 3.2) (see section 3.2.2). The working 

distance required to image within the pericardial space precluded the use of the 

Leica HyVolution2 system. The beating heart and a defined region of the 

pericardial space adjacent to the ventricle was imaged. A5-EVs were observed in 

the pericardial space (n=4/4) using the confocal system with the resonant 

scanner verifying that EVs can be imaged in this region using the zebrafish model 

(see section 2.3; Figure 3.8B; Movie 5). 



64 
 

 

Figure 3.8. Live Imaging Sequence of A5-EVs in the Pericardial Space. (A) 
Orientation image with magenta box highlighting the focal region for this figure. 
(B) Image sequence of three EVs as they come into focus in the pericardial 
space, black arrows highlight the EVs. Green line demarks the ventricular 
myocardium and the blue dashed line demarks the pericardium. Scale bars: A = 

100 µm; B = 5 µm.Specific Labelling of Cardiomyocyte-Derived 

Extracellular Vesicles 

To determine if CM-specific EVs could be observed in the pericardial space, a 

cell-type specific membrane-tethered fluorophore system was used. Similar to the 

method used for EC-EV labelling in the previous section, a CAAX box motif 

driven by the myl7 promoter (Tg(myl7:HRAS-mCherry)) (Figure 3.9A) allows the 

plasma membrane (Figure 3.9B) of CMs to be specifically labelled (Figure 3.9C-

D’) (226). The HRAS (Figure 3.9A) system also includes a CAAX box motif (248) 

and is essentially identical to the previous system, labelling the inner leaflet of 

CMs (Figure 3.9B).  
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Figure 3.9. Orientation and Description of Live Imaging Approach Using CM 
Specific Labelling. (A) Schematic of the Tg construct used to label the inner 
leaflet of the CM plasma membrane. (B) Schematic of the reporter HRAS-
mCherry tethered to the inner leaflet of the plasma membrane. Adapted from a 
published diagram (153). (C) Brightfield orientation image of the anterior end of a 
Tg(myl7:HRAS-mCherry) larvae at 2 dpf. The boxed region highlights the region 
of interest shown in D. (D) Fluorescent channel image from focal region. (D’) 
Higher magnification of CMs allows the plasma membrane labelling to be seen 

clearly. Scale bars: C = 100 µm; D,D’ = 25 µm.Cardiomyocyte-Derived 

Extracellular Vesicles in the Pericardial Space 

Imaging was carried out in 4 dpf larval zebrafish using the Tg(myl7:HRAS-

mCherry) line (Figure 3.9; Figure 3.10A). To assess the difference between the 

signal being recorded in the Tg fish and in non-Tg fish, average intensity 

measurements were taken for each frame of a 2-minute recording of the luminal 

space of the pericardial space adjacent to the ventricular myocardium in 

Tg(myl7:HRAS-mCherry) larval fish (n=4) and in non-Tg wildtype larval fish (n=2) 

for comparison (Figure 3.10B) in the same way as described above (Figure 

3.3C). Endogenously produced EVs in the pericardial space were then imaged 
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and identified moving stochastically in the pericardial space (Figure 3.10C; Movie 

6). CM-EVs were observed in the pericardial space of all the fish assessed 

(n=6/6). This analysis using a CM specific, intracellular labelling technique 

demonstrates that CM-EVs can be visualised in vivo in the PF of Tg zebrafish. 

 

Figure 3.10. Live Imaging Sequence of CM-EVs in the Pericardial Space. (A) 
Brightfield orientation image of Tg(myl7:HRAS-mCherry), with CMs labelled in 
red. The boxed region highlights the region of interest used in analysis for B and 
shown in C. (B) Average intensity of each frame from a 2-minute (3000 frame) 
recording of the pericardial space of Tg(myl7:HRAS-mCherry) Tg and non-Tg 
fish. The black dashed line demarks the threshold below which is non-Tg 
background signal. (C) Image sequence of a CM-EV moving in the pericardial 
space, blue dashed line demarks the pericardium and white arrows highlight the 
EV. The initial frame includes the brightfield image for perspective and the 
subsequent two only the fluorescent image for clarity. Scale bars: A = 100 µm; C 
= 5 µm.  
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3.3.3.2 Cardiomyocyte-Derived Extracellular Vesicles Associated 

with the Pericardial Wall 

During examinations of endogenous CM-EVs in the PF of Tg(myl7-HRAS-

mCherry); Tg(actin:mem-GFP) fish, static mCherry positive EVs were often 

observed associated with the internal surface of the pericardial wall (Figure 

3.11A-C; n=21/21). The stationary nature of these EVs allowed the use of the 

standard confocal microscope scanners, increasing the resolution of the acquired 

images (e.g. from pixel size of 0.173 µm2 to 0.108 µm2) and to take a z-series 

through the region of interest (see Table 2.1) (Figure 3.11A-C; Movie 7). Imaging 

in this way, sampling optimally by the Nyquist-Shannon theorem, also permitted 

deconvolution of the acquired data (Huygens Essentials) to restore the images 

(Figure 3.11A’-C’), allowing for an increase in the signal to noise ratio and 

subsequent gains in resolution, particularly in axial resolution (see section 2.4). 

  



68 
 

 



69 
 

Figure 3.11. Visualising CM-EVs Associating with the Pericardial Wall. (A) 
Low magnification convolved orientation image. CMs are marked in red and the 
cells of the pericardial wall are marked in grey, with the boxed region highlighting 
the region of interest shown in B and C. (B) Digital magnification image of the 
region of interest, showing CM-EVs (arrows) associating with the pericardial wall. 
(C) Fluorescent image of EV patch digitally magnified with a 5 µm positioning line 
indicated across the image. (A’-C’) Corresponding deconvolved images of A-C. 
(D) Line graph showing the intensity values corresponding to the position along 
the line highlighted in C. (E) Quantification and comparison of measurements 
taken from convolved and deconvolved data, demonstrates the significant 
difference in the size of objects between the data. Matched colours represent 
paired observations, before and after deconvolution. For statistical analysis in E, 
a paired t-test was performed (n=18). The two groups differed significantly from 
each other with t(17) = 4.722, p = 0.0002. Scale bars: A,A’ = 10 µm; B,B’ = 5 µm; 
C,C’ = 1 µm. Taking intensity measurements along a line drawn across a region 

of interest, in this case a cluster of static EVs on the pericardial wall, in the same 

place on both convolved and deconvolved data (Figure 3.11C,C’) allows a 

numerical assessment of gains in resolution to be made. Graphical 

representation of example data shows clear gains in peak intensity values and a 

lessening of noise following deconvolution (Figure 3.11C-C’). In the intensity 

profile given as an example there are two resolvable peaks, where the full width 

of half maximum (FWHM) can be measured to give an estimate of the object size 

(Figure 3.11D).  Comparing the FWHM on both convolved and deconvolved data 

at multiple regions of interest (n=18) clearly shows the gains achieved with this 

process (Figure 3.11E), however the actual size of the object is still unknown. 

This analysis as a whole, using a CM specific intracellular labelling technique, 

demonstrates that CM-EVs can be visualised in vivo associating with the 

pericardial wall of Tg zebrafish. 

3.3.3.3 Pericardial Wall 

To determine which cells these EVs are interacting with on the pericardial wall 

requires further investigation as little has been described for this pericardial 

region in zebrafish other than during the development of the epicardium (249).  

The pericardium is thought to be formed of a superficial fibrous pericardium 

composed of connective tissue and the serous pericardium formed of mesothelial 

cells. Therefore, a potential cell type that might be present as part of the 

pericardium are fibroblast-like cells although this has not been investigated in 

zebrafish. 

To determine if fibroblasts are located in the pericardial wall, imaging was carried 

out in 4 dpf larval zebrafish using the Tg(ET37:GFP) line with similar acquisition 
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settings and anatomical focus to the images acquired of CM-EVs associating with 

the pericardium in the previous section (Figure 3.12A,B). Clear localisation of 

GFP positive fibroblasts was observed in the pericardial wall at this stage in 

development suggesting that the observed CM-EVs may be interacting with these 

cells (Figure 3.12C). 

 

Figure 3.12. Defining the Pericardial Wall in Larval Zebrafish. (A) Orientation 
brightfield image. CMs are marked in red.(B) Brightfield image to orientate 
combined with fluorescent maximum intensity projection of 134 stacks. 
Fibroblasts are marked in green. (C) Fluorescent 3D reconstruction of 134 
stacks, 0⁰, 45⁰ and 90⁰ angles are shown for perspective. Fibroblasts are marked 

in green. (D) Digital magnification image of the region of interest in indicated in C. 
Scale bars: A = 100 µm; B-D = 50 µm.  
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Chapter 4: Extracellular Vesicle Response to 

Cardiac Injury in Larval Zebrafish  

4.1 Introduction 

The initial characterisation of total and cell-type specific EV populations outlined 

in the previous chapter provide a homeostatic baseline from which to explore 

changes in the EV profile as a response to cardiac injury. Previous studies in 

human patients and mammalian models have revealed increases in EV numbers 

in response to various pathologies, including cardiac surgery and cardiovascular 

disease (156, 176). This chapter describes the live imaging, quantification from 

imaging data and establishment of FACS techniques to quantify and extract cell-

type specific EVs following a laser induced model of cardiac injury (see section 

2.2) in larval zebrafish. 

4.2 Endothelial Cell-Derived Extracellular Vesicles in the 

Peripheral Circulation 

Mammalian cardiac injury models have revealed an increase in endothelium-

derived circulating EVs (176) and human patients undergoing coronary artery-

bypass-graft surgery show increased concentrations of blood plasma EVs 

although the cellular origin of these EVs is not known (156). Therefore, EC-EVs 

released following cardiac injury were first investigated in the peripheral 

circulation. 

4.2.1 Endothelial Cell-Derived Extracellular Vesicles in the 

Dorsal Aorta 

To determine if numbers of EC-EVs are altered in the DA following laser induced 

injury of the larval ventricle, live recording of the circulation passing through the 

DA was repeated at different time-points post-injury in Tg(kdrl:mCherry-CAAX) 

fish (Figure 4.1A,B). 25 minutes post injury (mpi) was chosen to look at the early 

EV number profile and 5 hpi as a later timepoint. The resulting sequence of 8-bit 

fluorescent images were adjusted using an iterative procedure based on the 

IsoData algorithm (Figure 4.1C) (250) and the threshold boundaries of 101-255 

were applied to exclude false positive signals determined by identical acquisition 
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in non-Tg larval zebrafish (Figure 4.1D). The resulting binary image can be used 

to analyse particles and quantify the fluorescent EVs in the images (Figure 

4.1C). Only objects in the size range of 0.58 µm2 to 1.0 µm2 were included in the 

analysis, with 0.58 µm2 covering a 4-pixel object to avoid any noise being 

counted and 1 µm2 being the upper limit for EV diameter and within the resolution 

limit of the confocal system used (see section 1.2.2.2). Initially, 25 mpi was 

chosen as a timepoint close to the time of injury and 5 hpi as a late timepoint, 

these timepoints were considered to reflect the speed with which an injury 

response might occur within the developing zebrafish. Quantification at 25 mpi or 

5 hpi did not reveal any significant change in EC-EV numbers in the DA when 

compared to uninjured controls (Figure 4.1E). 
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Figure 4.1. Quantification of EC-EVs Passing Through the DA in Response 
to Cardiac Injury. (A) Highlights the focal area of the DA, aligned to the cloaca. 
(B) 4 frames from a two-minute recording of the luminal space of the DA. (C) 
Schematic of the image analysis process, where the fluorescent channel is 
selected, a predetermined thresholding algorithm is applied, the region of interest 
defined and the particles within are assessed. (D) Maximum intensity value for 
each frame of a two-minute movie (20 selected frames shown as example), of the 
peripheral circulation of the DA, for 4 Tg and 2 non-Tg larval fish. Line at X 
(maximum intensity; = 101) demarks the threshold value used to exclude 
background noise based on the highest recorded value in non-Tg images. (E) 
Quantification of the number of EC-EVs recorded in the DA demonstrates no 
significant difference between timepoints. For statistical analysis in E, a one-way 
ANOVA test was performed, followed by Tukey’s post hoc test. The three groups 
did not differ significantly from each other with F = 0.750, p = 0.491. Scale bars: A 
= 100µm, B = 5 µm.  
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4.2.1.1 Endothelial Cell-Derived Extracellular Vesicles in the Caudal 

Haematopoietic Tissue 

The vessels of the CHT, in contrast to the DA, carry venous blood flow, a 

different tissue microenvironment in which to assess the EV profile. The 25 mpi 

timepoint was chosen as the highest variation was seen here in the DA and the 

1h25 mpi timepoint as a closer timepoint to identify the point at which the 

response might return to lower variation. The same analysis methods were used 

to quantify EV numbers in the CHT as used in the DA and revealed similar 

numbers at all time-points examined (Figure 4.2B). 

 

Figure 4.2. Quantification of EC-EVs Passing Through the CHT in Response 
to Cardiac Injury. (A) The boxed region highlights the focal area in the CHT, 
close to the cloaca. (B) Each data point is the result of a two-minute recording of 
the peripheral circulation of the CHT. Quantification of the number of EC-EVs 
recorded in the CHT demonstrates no significant difference between uninjured 
and different injury time-points. For statistical analysis in B, a one-way ANOVA 
test was performed (n=11) including Bartlett’s test, followed by Tukey’s post hoc 
test. The three groups did not differ significantly from each other with F = 1.299, p 
= 0.287. Scale bar:  A = 100µm  
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Interestingly, although no significant difference in EV number was observed 

between uninjured controls and at different time-points post-injury, there did 

appear to be a difference in the total number of EVs observed in the DA 

compared with the CHT. Although further analysis did not reveal statistical 

significance between the regions, this does suggest that ECs in different 

anatomical sites may vary in their production of EVs and confirms the importance 

of analysis at different sites within the larvae (Figure 4.3).  

 

Figure 4.3. Quantification of EC-EVs Passing Through the DA Compared 
with the CHT. (A) Highlights the focal areas of the DA and CHT, both aligned to 
the cloaca. (B) Quantification of the number of EC-EVs recorded in the DA and 
CHT demonstrates no significant difference between these two anatomical 
regions. For statistical analysis in B, a Grubbs’ test was performed and significant 
(P < 0.05, Z: 2.29) outliers were removed, followed by an unpaired t-test (n=15-
20). The two groups did not differ significantly from each other with t(33) =1.796, 
p= 0.082. Scale bar:  A = 100µm.  
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4.3 Cardiomyocyte-Derived Extracellular Vesicles in the 

Pericardial Space 

A population of EVs from the PF, as sampled from human patients undergoing 

aortic valve surgery, have been characterised (12). These EVs were thought to 

have derived from the heart or associated vasculature but cellular origin is difficult 

to assess in ex vivo samples. Changes to cell-type specific EV profiles that might 

occur after cardiac injury have not yet been elucidated. 

4.3.1.1 Cardiomyocyte-Derived Extracellular Vesicles in the 

Pericardial Fluid 

To determine if numbers of CM-EVs are altered in the pericardial space following 

laser induced injury of the larval ventricle, live imaging was repeated at different 

time-points post-injury in Tg(myl7:HRAS-mCherry) fish (Figure 4.4A,B). The 5 

hpi timepoint was chosen as a starting point to identify changes in EV numbers 

post injury. The images were analysed as described in section 4.2.1 above, with 

the following changes; the threshold boundaries were set as 59-255 to exclude 

false positive signals determined by identical acquisition in non-Tg larval 

zebrafish (Figure 4.4C) and objects in the size range of 0.69 to 1.0 µm2 were 

counted. Quantification at 5 hpi did not reveal any significant change in CM-EV 

numbers when compared to uninjured controls although only a single time-point 

was analysed (Figure 4.4D). 
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Figure 4.4. Quantification of CM-EVs in the Pericardial Space in Response 
to Cardiac Injury. (A) Brightfield and fluorescent view of the head region of a 
Tg(myl7:mCherry-CAAX) fish at 3 dpf. The boxed region highlights the focal area 
of the pericardial space at the apex of the ventricle. (B) Higher magnification view 
of the boxed region in A showing the pericardial space immediately adjacent to 
the ventricle (red). The magenta box demarks the region of interest used to 
quantify EV numbers. (C) Maximum intensity value for each frame of a two-
minute movie (20 selected frames shown as example) of the peripheral 
circulation of the DA, for 4 Tg and 2 non-Tg larval fish. Line at X (maximum 
intensity; = 59) demarks the threshold value used to exclude background noise 
based on the highest recorded value in non-Tg images. (D) Graph showing the 
number of CM-EVs counted in every frame of two-minute live recordings of the 
region in B in uninjured and injured Tg(myl7:HRAS-mCherry) fish at 5 hpi. Scale 
bar:  A = 100 µm.  
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4.3.1.2 Cardiomyocyte-Derived Extracellular Vesicles associated 

with the Pericardial Wall 

To determine if numbers of CM-EVs seen associating with the pericardial wall 

changed in response to laser induced injury of the larval ventricle, live imaging of 

the pericardial wall was repeated at different time-points post-injury in 

Tg(myl7:HRAS-mCherry) fish (Figure 4.5A,B). The images were analysed as 

described in section 4.2.1 above, with the following changes; the threshold 

boundaries were set as 29-255 to exclude false positive signals determined by 

identical acquisition in non-Tg larval zebrafish (Figure 4.4C) and objects in the 

size range of 0.78 to 1.0 µm2 were counted. Analysing a convolved dataset 

alongside the corresponding deconvolved dataset revealed a significant 

difference in the number of EVs counted (Figure 4.5C), leading to a cautious 

approach being adopted and the subsequent analysis being carried out on 

convolved data only. Quantification of convolved data at 3, 4, 5 and 6 hpi did not 

reveal a significant change in CM-EV numbers when compared to uninjured 

controls (Figure 4.5D). 
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Figure 4.5. Quantification of CM-EVs Associating with the Pericardium in 
Response to Cardiac Injury. (A) Maximum intensity projection image of the 
pericardial space of a Tg(myl7:HRAS-mCherry); Tg(actin:mem-GFP) fish at 3 dpf. 
The ventricle is shown in red and cells of the epidermis and pericardial wall 
shown in grey. (B) The magenta outline indicates the region of interest used to 
quantify EV numbers. (C) Graph showing the number of CM-EVs counted in 
maximum intensity projections of 100 z planes per data point, convolved data is 
shown to be significantly different to deconvolved data. Matching colours indicate 
the same image in its convolved and deconvolved state. (D) Graph showing the 
number of CM-EVs counted in maximum intensity projections of 100 z planes per 
data point, at different timepoints post injury, convolved data only. For statistical 
analysis in C, a paired t-test was performed (n=7,7). The two groups differed 
significantly from each other with t(6) = 2.480, p = 0.048. For statistical analysis in 
D, a repeated-measures ANOVA test was performed. The means across the four 
groups did not differ significantly from each other with F(4,18) = 0.765, R2 = 
0.145, p = 0.562. Scale bar:  A = 100µm.  
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4.4 Quantification of Total Extracellular Vesicles Ex Vivo 

by Flow Cytometry 

With the aim to quantify larger numbers of samples and to verify the 

quantification from live imaging, higher-throughput FC methods to assess the EV 

response to cardiac injury in larval zebrafish were developed. This required a 

modified FC system (see section 2.6) to allow small EVs to be reliably detected, 

as opposed to routine cell detection. By digesting whole Tg larvae, we looked to 

asses global EV responses to cardiac insult. Using Calcein we were able to label 

intact EVs, preventing any cellular debris and/or membrane fragments from 

skewing the results. 

4.4.1 Proof of Concept Controls 

In addition to the modifications to the flow cytometer (in line with previously tested 

and published suggestions (142)), care was taken with appropriate controls and 

proposed methods for standardisation in the field (116, 251). To avoid 

coincidence and an underestimate of EV concentration we carried out a serial 

dilution of concentrated EVs from uninjured Tg(actin:mem-GFP), which showed 

the expected linearity in relation to the event rate (Figure 4.6A), whilst the 

fluorescence intensity from the same samples stabilised at dilutions greater than 

600 µl (Figure 4.6B). This can be seen in the scatter plot signature of the three 

dilutions selected (Figure 4.6C). This process confirms singular EVs and not 

aggregates are being detected at dilutions of more than 600 µl.  
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Figure 4.6. EV Detection by Modified FC: Serial Dilution Assessment. 16 
pooled whole uninjured Tg(actin:mem-GFP) larval zebrafish (4 dpf) were digested 
and EVs isolated by centrifugation and filtration (see section 2.5). (A) Analysis of 
event rate over serial dilutions of EV sample. (B) Analysis of fluorescent intensity 
over serial dilutions of EV sample. (C) Scatter plots (GFP vs Calcein) of EV 
samples at different dilutions as indicated by arrows in B.Several control 

experiments were performed to allow gates for positive events to be set more 

reliably. Firstly, samples without larval zebrafish were processed as normal 

including Calcein labelling (Figure 4.7A), this revealed noise inherent in sample 

preparations, revealing the thresholds above which positive signals can be gated 

for. EVs isolated from non-Tg fish and labelled with Calcein (Figure 4.7B) 

showed a clear signature, allowing the Tg fluorophore gates to be more reliably 

set to an area on the scatterplot that does not overlap with this non-Tg Calcein 

labelled sample. EVs isolated from Tg fish but without Calcein labelling revealed 

a clear signature (Figure 4.7C) allowing the Calcein positive gates to be more 

reliably set beyond the threshold of the Tg fluorescent signal (Figure 

4.7C).These controls allowed specific gates to be set to capture Calcein+, GFP+ 
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and mCherry+ events from uninjured Tg(kdrl:mCherry-CAAX); Tg(actin:mem-

GFP) larvae (Figure 4.7D). 
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Figure 4.7. EV Detection by Modified FC – Control experiments for Tg and 
Calcein Labelling of EVs. The scatter plots of Trigger Pulse Width against FSC 
on the left-side are where an initial gate is created to count only singular events. 
The scatter plots of Calcein intensity vs mCherry intensity in the middle, are 
where mCherry+ and Calcein+ EVs can be gated for. The scatter plots of Calcein 
intensity against GFP intensity on the right-side are where GFP+ and Calcein+ 
EVs can be gated for (gate for GFP+ and Calcein- is also shown, as a distinct 
population could be detected in the Tg + Calcein samples). (A) Scatter plot 
representation of sample without EVs from larvae (No Fish) and labelled using 
Calcein. (B) Scatter plot representation of EVs sampled from non-Tg larvae and 
labelled using Calcein. (C) Scatter plot representation of EVs sampled from 
Tg(kdrl:mCherry-CAAX); Tg(actin:mem-GFP) larvae and labelled using Calcein. 
(D) Scatter plot representation of EVs sampled from Tg(kdrl:mCherry-CAAX); 
Tg(actin:mem-GFP) larvae without Calcein labelling.  
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Finally, a sample was prepared that included EVs isolated from Tg fish which 

were dyed with Calcein and treated with detergent. The initial steps of this 

process give positive signals in the predetermined gates for Calcein, mCherry 

and GFP (Figure 4.8A). However, the additional detergent treatment then 

degrades any lipid structures including membrane bound vesicles (Figure 4.8B). 

The scatterplot for the detergent treated sample still demonstrates events that 

trigger below the thresholds set, essentially leaving nothing but noise, with a 

similar scatterplot signature to the previous sample with no larval zebrafish 

included, only buffers and Calcein (Figure 4.7A). 

 

Figure 4.8. EV Detection by Modified FC - Detergent Treatment. (A) Scatter 
plot representation of EVs sampled from Tg(kdrl:mCherry-CAAX); Tg(actin:mem-
GFP) larvae and labelled using Calcein. (B) Scatter plot representation of EVs 
sampled from Tg(kdrl:mCherry-CAAX); Tg(actin:mem-GFP) larvae and labelled 
using Calcein followed by detergent treatment.  
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4.4.2 Results 

Once we had confidence in the system, we were able to begin assessing EV 

injury responses. With relevant literature in mammalian systems highlighting 24 

hours as a timepoint where EV concentration peaks in the peripheral circulation 

post experimental MI (176), we focused on 6, 12, 18 and 24 hpi as our initial 

timepoints to investigate EV number (Figure 4.9). Our in vivo imaging data was 

acquired with the assumption that an EV-based response would occur within 

shorter timescales in the developing zebrafish when compared to mammalian 

models, but the insignificant results obtain prompted later timepoints to be 

considered. The results revealed a significant difference in means and a 

significant difference specifically between 18 and 24 hpi. 

 

Figure 4.9. FC Assessment of EV Numbers Resulting from Cardiac Injury in 
Larval Zebrafish. (A) Final gates set for Calcein+/mCherry+ EVs and 
Calcein+/GFP+ EVs. (B) Total number of EVs determined by Calcein+ labelling 
over timepoints post-cardiac injury, each data point consists of EVs prepared 
from 16 pooled larvae. (C) EVs derived from actin+ cells (green), EC-EVs (red) 
and double positive EVs (black) are shown as a percentage of total calcein+ EVs. 
For statistical analysis in B, a repeated-measures ANOVA test was performed, 
followed by Bonferroni’s Multiple Comparisons test. The means across the five 
groups differed significantly from each other with F(4,2) = 6.87, R2 = 0.775, p = 
0.011. Multiple comparisons revealed a significant difference between 18 and 24 
hpi with p < 0.01, the difference was insignificant for all other comparisons.  
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Being able to assess EV numbers by FC presents the opportunity to isolate 

specific EV populations by FACS methods. Initially EVs isolated by size and 

density where imaged using the HyVolution system as an initial assessment, this 

method revealed labelled EVs to be scarce in a raw preparation but using 60 nm 

fluorescent beads gave some perspective on relative sizes (Figure 4.10A). 

Trialling FACS provided a more concentrated example and some EVs remained 

intact after FACS, as assessed by TIRF microscopy (Figure 4.10B) (see section 

2.7). 

 

Figure 4.10 TIRF Imaging of FACS Isolated EV. (A) EVs isolated by density 
and size not by fluorescence, including 60 nm fluorescent beads for comparison. 
(B) FACS for Calcein+, GFP+ and mCherry+ EVs allows for the isolation of intact 
EVs derived from actin+ cells and ECs. Scale bar = 5 µm
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Discussion 

EVs represent a novel intercellular communication mechanism that offer huge 

potential as disease biomarkers and therapeutic delivery systems. However, in 

order to realise their full potential, further in vivo data on EV dynamics is required. 

During this project, endogenous EVs of known cellular origin were observed in 

vivo using Tg larval zebrafish. Firstly, populations of EC-EVs were observed in 

the peripheral circulation passing through the dorsal aorta and caudal vein of the 

CHT (Figure 3.5, Figure 4.1 and Figure 4.2). Novel in vivo behaviours were 

observed, such as the EVs seen loosely interacting with the vascular endothelium 

, showing a ‘rolling’ like motion across the surface of ECs lining the vessel 

(Figure 3.5; Movie 2). Secondly, CM-EVs were detected in the PF surrounding 

the heart and filling the pericardial space (Figure 3.10; Movie 6). These EVs 

were often observed moving stochastically, but this could easily be an artefact of 

imaging a single optical slice through a large volume, sometimes they appeared 

to be influenced, as would be expected, by the hemodynamic ‘streams’ 

generated by the beating heart. CM-EVs were also observed interacting with the 

pericardial wall (Figure 3.11; Movie 7), either with the cells themselves or 

associated ECM. Thirdly, techniques were established to extract and isolate EVs 

from whole Tg larval zebrafish and enumerated by a modified FC setup (Figure 

4.9). This presents the potential for EVs to be assessed for dynamics in vivo 

using fluorescence microscopy and then with this Tg system the same EV 

populations can be more systematically characterised ex vivo using FC. Finally, 

the number of cardiovascular EVs were assessed at different time-points post 

laser induced cardiac injury in larval zebrafish (see Chapter 4:). The initial 

assessment of the EV response did not reveal significant changes in cell-type 

specific EVs following injury, although there appeared to be a significant increase 

in total EV numbers between 18 hpi and 24 hpi (Figure 4.9), which warrants 

further investigation. 

EV based intercellular communication and its importance in 

physiological/pathophysiological processes is becoming well established; this is 

true across systems but also specifically within cardiovascular biology. This 

evidence is predominantly the result of cell culture-based studies, with limited 

results from in vivo experiments. The subcellular size of EVs is the primary 

concern for in vivo studies, tracking EVs within disparate tissue and extracellular 

settings is particularly challenging and demands certain standards are met. 
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Effective labelling of EVs is a perquisite for visualisation and needs to be both 

specific and capable of providing sufficient signal to allow for their detection. The 

prenylated-fluorophore reporter systems used in this study not only meets this 

standard but also allows for quantification of these EVs in vivo and ex vivo. 

An often-cited challenge in EV research is the difficulty in defining the cellular 

origin of EVs and their cargo. The system characterised here provides a new 

standard, where the origin of EVs is clearly marked and can be immediately 

assessed in vivo and ex vivo. Demonstrating the feasibility of this system for the 

stated purpose opens many potential avenues for future study, where 

theoretically any cell type can be labelled with the methods described and the EV 

production and behaviour assessed.  

5.1 In Vivo Imaging of Extracellular Vesicle Behaviours 

The real strength of the translucent larval zebrafish model system is the ability to 

carry out live cellular and sub-cellular level time-lapse imaging of EV dynamics in 

vivo. Nuances in behaviour can be assessed in detail and behaviours observed 

that might be unlikely or unable to occur in vitro. Characterising release, uptake 

and function (see section 1.2.4) in vivo proved a real challenge in the timescale of 

this study, but the imaging experiments presented highlight the feasibility of 

meeting this challenge in the future. 

5.1.1 Endothelial Cell-Derived Extracellular Vesicles Rolling 

Interactions with Endothelial Cells 

One in vivo behaviour identified during the characterisation of endothelial cell-

derived EVs during this study was the observation that EC-EVs were often seen 

‘rolling’ along, and potentially interacting with, the ECs lining the blood vessels 

(Figure 3.5). This process was visually akin to the well characterised process of 

leukocyte rolling prior to extravasation out of the vessel into the surrounding 

tissue (252, 253), in fact this rolling process is a key step for leukocytes exiting 

the circulation and crossing the vascular endothelium (85, 254). It has been 

shown that leukocytes require the selectin family of adhesion molecules for this 

rolling behaviour to be initiated (255, 256), with specific sequential interactions 

with P- and L-selectin key to rolling and arrest in vivo (257). Activation through 

chemokine signalling and integrins on the surface of the leukocyte is then thought 
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to be responsible for stabilising the connection for complete arrest (258). Other 

aspects such as the hemodynamic forces in play and the shear stress the 

leukocyte is exposed to are also thought to play key roles, in concert with 

signalling and receptor based interactions (253, 259). Future work will be 

required to determine if EVs utilise similar mechanisms to interact with ECs and 

the functional consequences of these interactions. 

Additionally, platelets also use surface receptors to interact with the vascular 

endothelium and other platelets when forming aggregations (260). The von 

Willebrand factor receptor (261, 262), glycoprotein Ibα (GPIbα) (263), and a 

signalling collagen receptor, GPVI (264), are involved in the adhesion of platelets. 

Initiating contact to exposed subendothelial collagen requires the binding of 

GPIbα on the membrane surface of platelets to immobilised von Willebrand factor 

(265), this interaction results in a rolling effect along the endothelium. The 

decrease in velocity allows GPVI to bind collagen (266). This is particularly 

interesting, as plasma EVs isolated from patients following MI were also found 

with increased expression of GPIbα (267). Other studies using proteomics 

approaches combined with gene ontology methods have revealed EVs to contain 

proteins involved broadly in the binding and rolling process across cell types 

(268, 269). This study is the first documented observation of this potentially 

important EV behaviour in vivo. 

5.1.2 Endothelial Cell-Derived Extracellular Vesicles Released 

via Filopodial-Like Protrusion 

When using the Tg(kdrl:mCherry-CAAX) endothelial Tg reporter system, potential 

EV release from the tip of a filopodial-like projection was observed in the CHT 

venous region of a 3 dpf larval fish (Figure 3.6). Similar processes have 

previously been documented transporting EVs in drosophila (77) and aiding 

uptake of EVs by human primary fibroblasts (270). Revealing this dynamic 

behaviour in vivo may begin to reinforce a novel mechanism for EV release 

beyond direct shedding from the plasma membrane and exocytosis. Further 

documentation and attempts to inhibit the process by targeting specific molecular 

components, could allow the functional relevance of this process to be fully 

elucidated.  
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5.1.3 Cardiomyocyte-Derived Extracellular Vesicles Interactions 

with the Pericardium 

The pericardium is exposed to rhythmic changes in flow and pressure forces 

generated through the PF, as a result of the beating heart as well as longer term 

changes through developmental stages (271). These processes have been 

shown to play a role in epicardial development in zebrafish, with proepicardial cell 

clusters that originate on the pericardium identified as the origin for this cell layer, 

with flow dynamics dictating the attachment sites for these proepicardial cells as 

they are released into the pericardial space (271). As these are the only studies 

so far focussed on the pericardial space and the currents generated within the 

PF, aspects from this study may help to dissect the role hydrodynamic forces 

play in EV release and how they will influence behaviour and eventual arrest 

sites. It would also be interesting to use Tg zebrafish with the epicardial cells 

fluorescently labelled, in combination with Tg(ET37:GFP) labelled fibroblasts, to 

determine the recipient cells for these CM-EVs. To really understand the 

interactions presented here and visualised by light microscopy, the next essential 

step would be to assess the ultrastructural picture by EM (see section 

1.2.5.2.3.1). The strengths of optical imaging in the zebrafish can be combined 

most effectively with EM when the fully integrated methods of correlative light 

electron microscopy are used (Hosseini et al., 2014). This would allow putative 

EVs associating with the pericardial wall to be identified by fluorescent signal, the 

larval zebrafish could then be fixed as rapidly as possible and the region 

identified by light microscopy can then be investigated by EM (Hosseini et al., 

2014).  

5.1.4 Complementary Transgenic Approaches 

Identifying the cells that CMs and ECs might be communicating with could also 

be approached using the Cre/Lox system (236, 272). This system allows the fate 

of EVs to be determined by colour switching in recipient cells with the switch 

mediated by Cre mRNA overexpression in the producing cell and this mRNA 

packaged by an unknown mechanism into the EVs produced by that cell. These 

EVs are then thought to travel to their endogenous targets and the mRNA is 

translated within any recipient cells, the Cre can then cut at LoxP sites in a 

ubiquitously expressed floxed colour switch transgene, which removes the first 

fluorophore and a stop codon sequence and allows the sequential fluorophore to 

be expressed, switching the colour of the recipient cell. Initially this system was 
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demonstrated to assess tumour-derived EVs in mouse (236), but has since been 

used to assess what the authors determined to be contact-dependent 

cytoplasmic transfer between macrophages and tumour cells in zebrafish (273). 

Some caution would be necessary if adopting this system, firstly it gives a 

readout of mRNA transfer only, as the authors do not find the effects observed to 

be the result of protein transfer, as Cre protein levels were beyond detection 

(236). mRNA is one of many possible cargoes that can impact the physiology of a 

recipient cell, so the system is limited in this sense. It is also true that the 

mechanisms responsible for Cre mRNA transfer or indeed loading are unknown 

and that the Cre/LoxP system is considered ‘leaky’ in various applications (273, 

274), making well thought-out control experiments an imperative as well as 

careful selection of appropriate promoters. The benefits and obstacles presented 

in using this system to assess functional transfer of EV cargo are thoroughly 

explored in an International Society of Extracellular Vesicles position paper (94). 

To further explore the nature of the EVs being detected in vivo the presented 

approaches in this study could be combined with markers that might reveal 

intracellular origin and suggest something of the mechanism for their biogenesis. 

For example, there are three published Tg zebrafish lines that directly label Rab5, 

Rab7 and Rab11 by way of GFP-fusion expression. Presence of Rab5, Rab7 or 

Rab11 -GFP fluorescent signal colocalised with the EVs as identified in this 

study, would suggest early endosomal, late endosomal or recycling endosomal 

origins respectively. Each of these Rab proteins have been highlighted in the 

literature as being components within EV isolates and have been implicated in 

EV biogenesis (see section 1.2.2.1), but their mechanistic involvement in vivo has 

yet to be elucidated. For each of the Rab proteins there is also a constitutive 

active and a dominant-negative Tg line that can be controlled via cell-type 

specific promoters to potentially allow in vivo function of these EVs to be probed 

(Clark et al., 2011). This would contribute towards a comprehensive picture in 

vivo, where an understanding of intracellular and cellular origin can be gained by 

using stable transgenic fluorescent labelling of endogenous EVs, allowing a 

depth of knowledge to be obtained whilst observing native EV dynamics. 
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5.2 Ex Vivo Assessments 

During this project EVs isolated from whole larval zebrafish were assessed using 

a modified FC setup (Figure 4.9). The results recorded at different timepoints 

post cardiac injury revealed large amounts of variability within groups, which 

meant there was no significant differences observed across most timepoints 

(Figure 4.9). Aside from increasing experimental replicates, a few technical 

matters may be influential in obfuscating the data. Firstly, the modified FC setup 

is still only capable of recording a larger subset of EVs, there are further 

modifications that could be made if the machine was dedicated to EV 

experiments (142) and improvements on the technology are continuously being 

made available (275-277). Another important aspect is the labelling approach, 

although it appears effective, we cannot be sure of the labelling efficiencies nor 

can we be sure of the consistency with which EVs are being labelled. This issue 

could possibly be circumvented to some degree, by being sure of the number of 

insertions of the Tg construct into the genome and using only heterozygous Tg 

fish to introduce more consistency in potential labelling. Lastly, there will be 

inherent variability in the laser-induced cardiac injury method, because of user 

inexperience. Inconsistency in the amount of damaged tissue would likely lead to 

variability in EV numbers. This issue could be addressed in a few ways, including 

the use of more controlled laser injuries, as with the use of more sophisticated 

confocal setups and methods used to photoconvert single cells, but with higher 

laser power needed to induce cell death.  

5.2.1 Assessment of Extracellular Vesicle-Based Cardiac Injury 

Response in Adult Zebrafish 

Using FC to assess changes in EV profile resulting from cardiac injury was 

successfully demonstrated using larval zebrafish (Figure 4.9). Samples were 

necessarily pooled to collect sufficient numbers of EVs for analysis and this was 

especially necessary for the EC-EVs, which were much fewer in number 

compared with Calcein+ EVs or total EV numbers. In fact, CM-EVs were 

indistinguishable from background noise when extracted from larval zebrafish 

and assessed by FC. A future step that would avoid some of the issues 

encountered in this study, would be to carry out similar experiments using adult 

zebrafish. This should also allow EV profile changes to be assessed in 

individuals, where specific changes will not be lost in the mean result given with 
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pooled samples. Further, individual organs/tissues could be sampled from the 

adult zebrafish to reveal specific differences pertinent to that sample (e.g. in the 

heart following cardiac injury) and perhaps highlight signalling events to remote 

sites such as the spleen (176). Working with adult zebrafish would also allow 

regenerative processes to be probed, as separated from often indistinguishable 

developmental processes in larval zebrafish. The cryoinjury method would be 

used for cardiac injury (278), a much more relevant disease model system, where 

ex vivo assessments could be aligned with defined phases of repair and 

regeneration in an attempt to reveal associations that may highlight functional 

significance and warrant further investigation. 

5.2.2 Ultrastructural Assessment Using Electron Microscopy 

The absolute size of the EVs characterised in this study are obscured by the 

light-based detection methods employed for in vivo imaging, to appreciate the 

ultrastructure of these EVs would require the use of EM (see section 1.2.5.2.3.1). 

To achieve this, the most straightforward approach would be to extract and 

isolate EVs using the methods described previously (section 2.5), once isolated 

different whole mount preparations would allow for either TEM (Théry et al., 

2006) or cryo-electron microscopy (Brisson et al., 2017). EM could also be used 

in combination with immunogold labelling for EV markers such as CD63 (see 

section 1.2.5.2.2.1) to highlight specific EV characteristics and reveal details of 

intracellular origins (Brisson et al., 2017). Combining the model system presented 

in this study with EM analysis would allow us to further assess EVs from a known 

cellular origin, a challenge that is often difficult to overcome.  

5.3 Summary 

During this study, using a transgenically expressed ubiquitous extracellular 

labelling approach it was possible to label and live-image endogenously 

produced EVs in vivo. Further, endogenously produced CM-EVs were live-

imaged in vivo within the pericardial space. CM-EVs were seen moving within the 

pericardial fluid and associating statically with the pericardial wall, either with a so 

far unidentified cell type or associated extracellular matrix. Live-imaging of 

endogenously produced EC-EVs being transported by the peripheral circulation 

in vivo was also performed, with interesting interactions between EC-EVs and EC 

filopodial-like projections which perhaps hint at a novel release mechanism. EVs 
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were extracted globally from whole larvae and then isolated using a non-specific 

method based on size and density and the EV sample was then quantitatively 

analysed ex vivo based on fluorescence using FC. Finally, FACS can be used to 

isolate specific populations of EV based on their fluorescence and therefore 

cellular origin presenting opportunities for cardiovascular EV cargo analyses in 

the future. 
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Appendix 

Figure Legends for Movies (supplied on USB memory stick) 

Movie 1. Live Imaging Sequence of Larval Zebrafish Peripheral Circulation. 
Brightfield image sequence (1000 frames = 39.96 seconds) through the centre of 
the DA of a 3 dpf larval zebrafish, showing blood cells passing through the 
vessel. Taken from the 2-minute movies used for data analysis. Scale bar = 10 
µm. 

Movie 2. Live Imaging Sequence of EC-EVs in the Peripheral Circulation. 
Image sequence (64 frames = 1.26 seconds) of a single EV rolling along the ECs 
lining the DA of a 3 dpf Tg(kdrl:mCherry-CAAX) larval zebrafish. The fluorescent 
channel and brightfield combined are shown alongside the fluorescent channel 
alone. Scale bar = 10 µm.  

Movie 3. Live Imaging Sequence of EC-EV Release into the CV. Image 
sequence (121 frames = 4.8 seconds) of a single EV at the tip of a filopodial-like 
protrusion and then being released into the peripheral circulation of a 3 dpf 
Tg(kdrl:mCherry-CAAX) larval zebrafish. Gamma adjustments made as 
described in section 2.4. Scale bar = 5 µm. 

Movie 4. Defining the Pericardial Space in the Larval Zebrafish. Fluorescent 
3-D reconstruction (Imaris) of 100 stacked images through the pericardial region 
of a 3 dpf Tg(myl7:GFP) larval zebrafish. The pericardial space marked by 
dextran is in grey. Scale bar = defined in movie and changes with digital zoom. 

Movie 5. Live Imaging Sequence of A5-EVs in the Pericardial Space. Image 
sequence of three EVs as they come into focus in the pericardial space of a 3 dpf 
Tg(TBP:G4m);(UAS:secA5-YFP) larval zebrafish. Scale bar = 5 µm. 

Movie 6. Live Imaging Sequence of CM-EVs in the Pericardial Space. Image 
sequence (441 frames = 8.8 seconds) of a CM-EV moving in the pericardial 
space of a 4 dpf Tg(myl7:HRAS-mCherry) larval zebrafish. The fluorescent 
channel and brightfield combined are shown alongside the fluorescent channel 
alone. Gamma adjustments made as described in section 2.4. Scale bar = 10 
µm. 

Movie 7. Visualising CM-EVs Associating with the Pericardial Wall. 
Fluorescent 3-D reconstruction (Imaris) of 100 stacked images through the 
pericardial region of a 3dpf Tg(myl7:HRAS-mCherry);Tg(actin:mem-GFP) larval 
zebrafish. The near-ubiquitous expression of the actin expressing cells are 
pseudo-coloured grey. Scale bar = defined in movie and changes with digital 
zoom. 
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