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Abstract 

 

Tauopathies are neurodegenerative diseases characterised by the pathological 
phosphorylation and accumulation of tau protein within the brain.  Despite considerable 
efforts, the molecular pathways underlying tau pathogenesis have not yet been fully 
elucidated.  This has been partially attributed to the limitations of traditionally used in vitro 
and in vivo models to recapitulate the complex molecular pathways involved in the 
pathogenesis of tau.   

The use of human induced pluripotent stem cell (hiPSC) technology has enabled the 
derivation of disease-relevant cell types from patients with tauopathy.  During this project, 
models of sporadic Alzheimer’s disease (sAD) and frontotemporal dementia with 
Parkinsonism linked to chromosome 17 (FTDP-17) were developed through the derivation of 
vulnerable neuronal subtypes from hiPSC.  Tau-related molecular pathology was assessed in 
these models and compared to that within human brain tissue to determine the ability of 
these models to recapitulate the molecular aspects of the disease niche and to inform on the 
underlying pathways contributing to tau pathogenesis.   

hiPSC derived from a patient carrying Val337Met MAPT were differentiated to produce 
cortical glutamatergic neurons (CGNs) to model FTDP-17.  This model successfully 
recapitulated the abnormal tau phosphorylation characteristic of tauopathy and decreased 
levels of synapsin, indicative of synaptic loss.  Additionally, analysis of alterations in the gene 
expression,  protein levels and activity of tau kinases involved in tauopathy recapitulated 
those seen in the brain, demonstrating the value of this model as a platform for further 
investigation of the pathogenesis of frontotemporal dementia.  

Basal forebrain cholinergic neurons (bfCNs) and CGNs, which are vulnerable in sAD, were 
derived from control human pluripotent stem cell lines and treated with Amyloid-β (Aβ) 
oligomers for 48 hours to probe the molecular mechanisms underlying Aβ-induced tau 
pathology.  While no evidence of abnormal tau phosphorylation or increased levels of tau 
were found, the model was found to recapitulate the development of neuronal varicosities 
and the loss of synapsin.  The knowledge gained from this model serves to inform future 
models employing Aβ oligomer treatment. 
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List of Abbreviations 

 

[Ca2+]i Intracellular calcium concentration 

µl Microlitres 

µM Micromolar 

µm Micrometres 

3D  Three dimensional 

aa Amino acid 

AA Ascorbic acid 

ACh Acetylcholine 

ACID APP intracellular cytoplasmic domain 

AD Alzheimer’s disease 

ADP Adenosine diphosphate 

AGD Argyrophilic grain disease 

AlCl3 Aluminium chloride 

ALS amyotrophic lateral sclerosis 

AP-1 Activator protein 1 

ApoE Apolipoprotein E 

APP Amyloid precursor protein 

ATP Adenosine triphosphate 

Aβ Amyloid-β peptide  

Aβ40 Amyloid-β 1-40 

Aβ42 Amyloid-β 1-42 

Aβ42O Amyloid-β 1-42 oligomers 

AβO Amyloid-β oligomers 

BfCNs Basal forebrain cholinergic neurons 

BIN1 Bridging integrator 1 

BMPs Bone morphogenic proteins 

Bp Base pair 

BSA Bovine serum albumin 

bvFTD  Behavioural variant frontotemporal dementia 

C83 C-terminus fragment of 83aa 

C99 C-terminus fragment of 99aa 

Ca2+ Calcium ion 

CaCl2 Calcium chloride 

cAMP  Cyclic adenosine monophosphate 

CBD Corticobasal degeneration 



22 
 

Cdc42/Rac Cell division control protein 42 homolog/Ras-related C3 botulinum toxin 
substrate 1 

Cdk5 Cyclic dependent kinase 5 

CDK5 Cyclic dependent kinase 5 gene 

CDM Chemically defined media 

cDNA Complementary DNA 

CGN Cortical glutamatergic neurons 

ChAT Choline acetyltransferase 

c-myc Myelocytomatosis viral oncogene homologue 

CR1 Complement receptor 1 

CSF Cerebrospinal fluid 

CT Threshold cycle number 

CTE chronic traumatic encephalopathy 

Cu2+ Copper (II) ion 

DAPT  N-[N-(3,5-diflurorphenacetyl) – l-alanyl]-S-phenylglycine t-butyl ester 

DIV days in vitro 

DMEM Dulbecco’s Modified Eagle medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DTT 1,4-Dithiothreitol 

EB Embryoid body 

EDTA Ethylenediamine tetraacetic acid 

EGF Epidermal growth factor 

EOAD Early-onset Alzheimer’s disease 

ERK Extracellular signal-regulated protein kinase 

ESC  Embryonic stem cell 

fAD Familial AD 

FAM Fluorochrome 6-carboxyfluorescein (FAM) 

FBS Foetal bovine serum 

FGF2 Fibroblast growth factor 2 (also known as basic fibroblast growth factor – 
bFGF) 

FTD Frontotemporal dementia 

FTDP Frontotemporal dementia with Parkinsonism 

FTDP-17 Frontotemporal dementia with Parkinsonism linked to chromosome 17 

FTD-tau Frontotemporal dementia associated with tau pathology 

FTLD Frontotemporal lobar degeneration  

FUS Fused in sarcoma 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

gDNA Genomic DNA 
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GDNF Glial derived neurotrophic factor 

GFP  Green fluorescent growth factor 

GSK3 Glycogen synthase kinase 3 

GSK3α Glycogen synthase kinase 3 alpha 

GSK3β Glycogen synthase kinase 3 beta  

GSK3β  Glycogen synthase kinase 3 beta gene 

HCl Hydrochloric acid 

HD Huntington’s disease 

hESC  Human embryonic stem cell 

hFib Human fibroblast 

hiPSC Human induced pluripotent stem cell 

HiPSC-bfCNs Basal forebrain cholinergic neurons derived from human induced 
pluripotent stem cells 

HiPSC-CGN Cortical glutamatergic neurons derived from human induced pluripotent 
stem cells 

HIV Human immunodeficiency virus 

hPSC Human pluripotent stem cell 

hPSC-bfCNs Basal forebrain cholinergic neurons derived from human pluripotent stem 
cells 

HPSC-CGN Cortical glutamatergic neurons derived from human pluripotent stem cells 

ICM Inner cell mass 

iMEFs Inactivated mouse embryonic fibroblasts 

IPC Intermediate progenitor cells 

iPSC  Induced pluripotent stem cell 

IRES Internal ribosome response element 
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Chapter 1 

General Introduction 

1.1  Tau protein 

Tau is a microtubule binding protein present abundantly within the axons and the 

somatodendritic compartments  of neurons, as well as in relatively low levels within glial cells 

(Lee et al., 2001; Trojanowski et al., 1989; Tashiro et al., 1997).  This natively unfolded, 

hydrophilic protein has four main regions:  an N-terminal projection region, a proline-rich 

domain, a microtubule-binding domain and a C-terminal region (Mandelkow et al., 1996) 

(Figure 1.1).  The primary role of tau within neurons is to provide stability to the microtubules 

(Chapter 1.1.2.1).   

 

1.1.1  Expression of tau in the brain 

In humans, tau is encoded by microtubule-associated protein tau gene (MAPT), which is 

situated on chromosome 17q21 and contains 16 exons.  Six isoforms of tau are generated 

through alternative splicing of exons 2, 3 and 10; exons 2 and 3 each encode a 29-residue N-

terminal repeat sequence (N), while exon 10 encodes a microtubule repeat domain (R).  The 

resultant isoforms are denoted according to the number of these sequences that they 

contain, as 3R0N, 3R1N, 3R2N, 4R0N, 4R1N and 4R2N (Lee et al., 2001; Andreadis et al., 1992; 

Goedert et al., 1989) (Figure 1.2).  Although adults express all six isoforms, during the first 

year of neurodevelopment only 3R0N tau, also known as foetal tau, is expressed (Goedert et 

Figure 1.1     Schematic representation of the structure of tau protein 

Schematic representation of the structure of the longest isoform of tau protein (441 amino acids 

(aa)) depicting the N-terminal domains N1 and N2 (blue), the proline rich domain (orange) and 

the microtubule binding domains R1, R2, R3 and R4 (purple).  Tau binds to the microtubules via 

the microtubule binding domains and the N-terminal domains project outwards.   
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al., 1989).  Within the adult brain the ratio of 3R to 4R containing isoforms is approximately 

1:1.  Isoforms containing 0N, 1N and 2N comprise approximately 37 %, 54 % and 9 % of tau, 

respectively (Andreadis et al., 1995; Goedert and Jakes, 1990).  Abnormal alternative splicing 

of exon 10 results in an imbalance in the ratio of 3R:4R tau and is associated with particular 

tauopathies (Dickson et al., 2011).  The regulation of tau expression levels is brain region 

specific; the highest expression of tau in the brain occurs in the frontal and temporal lobes 

(Trabzuni et al., 2012; Majounie et al., 2013; McMillan et al., 2008).   

 

1.1.1.2  Haplotypes 

The locus containing the MAPT gene has two major haplotypes, H1 and H2.  H2 differs in 

comparison to H1 by a 238-base pair (bp) deletion upstream of exon 10, as well as the 

inversion of a 900 kilo base pair (kb) sequence (Pittman et al., 2006; Myers et al., 2007; 

Caillet-Boudin et al., 2015).  Genome wide association studies have associated non-inverted 

H1 haplotypes with increased plasma tau levels (Allen et al., 2016).  This haplotype has also 

been associated with 4R tauopathies (Beevers et al., 2017; Caffreys, 2006), frontotemporal 

dementia (FTD) and Alzheimer’s disease (AD) (Pastor et al., 2015; Pastor et al., 2002; Chen et 

al., 2017; Winder-Rhodes et al., 2015).  The H2 haplotype has been suggested to be 

Figure 1.2     The isoforms of tau 

Alternative splicing of MAPT produces six isoforms of tau; three of these include exon 10 and 
therefore have four microtubule binding domains (4R), three exclude this exon so have three 
microtubule binding domains (3R).  Within these two groups the isoforms differ based on their 
inclusion or exclusion of exons 2 and 3.  Exon 3 can only be included with exon 2, therefore allowing 
for three options; isoforms can have no N-terminal domains (0N), one N-terminal domain (1N) or 
two N-terminal domains (2N). 
Image from Wang and Mandelkow, 2015, with permission. 
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protective in neurodegenerative disease (Allen et al., 2016), however this haplotype has also 

been implicated as a risk factor in the development of Pick’s disease (PiD) (Russ et al., 2001) 

and early onset AD (EOAD) (Kaivorinne et al., 2008). 

1.1.2  The physiological functions of tau  

The most established function of tau is in microtubule stabilisation and as a conduit for the 

regulation of microtubule dynamics (Drubin and Kirschner 1986; Caceres and Kosik 1990; 

Avila et al., 2004) (Chapter 1.1.2.1).  As such tau also plays important roles in axonogenesis 

(Sayas et al., 2015; Dawson et al., 2001), synaptogenesis and synaptic plasticity in long-term 

depression (LTD) (Regan et al., 2015; Kimura et al., 2014).  Increasing evidence has 

demonstrated tau’s role in other cellular functions, unrelated to microtubule dynamics, such 

as in neurodevelopment, DNA repair, the transfer of information between neurons and in 

cell signalling (Hanger et al., 2014; Wang and Mandelkow, 2015).  The phosphorylation-

dependent role of tau in microtubule regulation, however, remains the primary focus when 

considering the pathological roles of tau in tauopathy. 

1.1.2.1  The role of tau as a microtubule binding protein 

Microtubules are cylindrical polymers, comprised of alpha and beta tubulin heteromers, 

which form part of the cytoskeleton in all cells (Kirschner and Mitchison, 1986).  In neurons, 

these linear structures, found grouped into bundles, have important roles in maintaining cell 

morphology, mitosis, scaffolding signalling molecules to form signalling hubs, synaptic 

plasticity and neurite growth (Kadavath et al., 2015).  Together with motor proteins, such as 

dynein and kinesin, which associate with the microtubule through microtubule associated 

proteins (MAPs), they are crucial for the transport of organelles, vesicles, nutrients and other 

cellular cargo in both in anterograde and retrograde directions throughout neurons.  As 

highly polarised cells with great energy demands, efficient cellular transport is particularly 

important for the maintenance of healthy biomolecular functioning within neurons.  

Dysfunction in microtubule transport is associated with neurodegenerative disease (Su et al., 

2010). 
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To carry out their functions effectively, microtubules must exist in a state of dynamic 

instability, which means they are constantly being assembled and disassembled.  This state 

is maintained and regulated by a plethora of proteins, including tau (De Forges et al., 2012; 

Roll-Mecak and McNally, 2010; Akhmanova and Steinmetz, 2015).    

 

 

Tau binds to microtubules via its microtubule binding domains, with its N-terminals and C-

terminals projecting outwards, at the interface between tubulin heterodimers (Santarella et 

al., 2004; Kar et al., 2003; Buée et al., 2000) (Figure 1.3).  The binding of specific isoforms of 

tau (Chapter 1.1.2) dictates the degree of microtubule stability of each bound tau molecule 

(Stanford et al., 2003; Kosik et al., 1989; Lu and Kosik, 2001).  4R isoforms have a greater 

affinity for the microtubules compared to 3R isoforms, owing to their possession of an extra 

microtubule-binding repeat domain, which explains their superior efficiency at promoting 

microtubule stability in comparison to 3R isoforms (Utton et al., 2001; Goedert and Jakes, 

1990).  The N-terminals of tau can also bind to microtubules to form part of a membrane-

Figure 1.3     Tau binds to microtubules to regulate the transport of cellular cargo 

Tau binds to the microtubules via its microtubule binding domains (blue rectangles).  The 

binding of tau to the microtubules is regulated by phosphorylation through the activity of 

phosphatases and kinases; phosphate groups are indicated by the pink circles.  Phosphorylation 

of tau regulates axonal transport, which is carried out by motor proteins, such as kinesin. 

Image from Kolarova et al., 2012, with permission.  Copyright © 2012 Michala Kolarova et al. 
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associated complex and to regulate the spacing between microtubules (Maas et al., 2000; 

Frappier et al., 1994; Al-Bassam et al., 2002; Buée et al., 2000; Kadavath et al., 2015).   

The exact mechanism through which tau regulates microtubule transport via the 

microtubules is unclear, however, increased binding of tau to the microtubules is thought to 

inhibit transport (Ebneth et al., 1998; Trinczek et al., 1999; Stamer et al., 2002; Dixit et al., 

2008; Stoothoff et al., 2009; Vossel et al., 2010; Shahpasand et al., 2012).  The amount of tau 

bound to the microtubules influences cellular transport and the concentration of tau exists 

in a gradient throughout mature neurons such that a greater amount of tau is present within 

the synapses to encourage release of cellular cargo (Medina et al., 2016).   

1.1.2.1.1  Regulation of microtubule binding by phosphorylation of tau  

Tau is subject to many modes of post-translational modification including phosphorylation, 

glycosylation, ubiquitination, sumoylation, glycation, polyamination, nitration, cleavage and 

truncation (Martin et al., 2011).  Primarily, however, it is the degree of phosphorylation of 

tau which dictates its binding affinity to the microtubules.  There are 85 possible 

phosphorylation sites within the longest isoform of tau (4R2N), of which 80 are serine or 

threonine residues and five tyrosine (Hanger et al., 2009).  Tau phosphorylation is tightly 

regulated by the activity of tau kinases and phosphatases (Chapter 1.3), to allow for control 

of microtubule function.  

In general, increased phosphorylation of tau results in decreased microtubule binding 

(Lindwall and Cole, 1984; Jenkins and Johnson, 1999; Sontag et al., 1996; Drewes et al., 1995; 

Sengupta et al., 1998).  It is recognised that phosphorylation of particular phosphorylation 

sites has a greater influence on the affinity of tau to the microtubules; for example, 

phosphorylation at Ser262, Ser214 and Thr231 is known to greatly reduce the affinity of tau 

for microtubules compared to phosphorylation at other residues (Sengupta et al., 1998).  

Foetal tau is highly phosphorylated, containing approximately seven moles of phosphate 

compared to the two moles within the adult brain (Kanemaru et al., 1992).  It is thought that 

this is important for neurogenesis; for example, it has been demonstrated that tau must be 

phosphorylated at serine 205 and threonine 205 (Ser202/Thr205) to allow for neurite 

extension (Rösner et al., 1995; Riederer et al., 2001). 
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1.1.3  Pathological phosphorylation of tau leads to neurodegeneration 

Many post-translational modifications of tau (Chapter 1.1.2) have been implicated in 

tauopathy (Martin et al., 2011; Héraud et al., 2014; Zilka et al., 2006; Paholikova et al., 2015; 

Cook et al., 2014; Irwin et al., 2013; Yan et al., 1994; Gong and Iqbal 2008), however, 

hyperphosphorylation of tau at abnormal sites is the hallmark of tauopathies.  It is believed 

that initial phosphorylation events lead to the formation of pathological conformations of 

tau, which are predisposed to become further phosphorylated and to subsequently 

aggregate (Zheng-Fischhöfer et al., 1998; Kimura et al., 1996).  The molecular pathways 

underlying the aberrant phosphorylation and aggregation of tau, leading to 

neurodegeneration, is an area of intense research.  Pathological tau is thought to contribute 

to neurodegeneration through several pathways (Figure 1.4).   

Hyperphosphorylation of tau is known to lead to the detachment of tau from the 

microtubules (Goedert, 1993), which leads to the destabilisation and disassembly of the 

microtubules.  Consequently, the loss of cellular structural integrity as well as cellular 

transport of critically important cargo, such as mitochondria, to distal areas of the neuron 

follows.  This contributes to synapse loss and neuronal death (Spires-Jones and Hyman, 2014) 

(Figure 1.4).  The detachment of tau from the microtubules also leads to an increase in free 

intracellular tau, which is susceptible to further phosphorylation and aggregation.   

The formation of tau with a pathogenic conformation occurs due to hyperphosphorylation 

(Gendron and Petrucelli, 2009; LaPointe et al., 2009) and has been proposed to seed the 

formation of aggregates of tau (Jicha et al., 1999; Jicha et al., 1997).  Hyperphosphorylated 

tau has also been proposed to be more resistant to degradation, thereby contributing to the 

accumulation and subsequent aggregation of the protein (Paglini and Cáceres, 2001).  For 

example, tau aberrantly phosphorylated at Ser422, Ser262 and Ser356 is resistant to 

proteasomal degeneration (Dickey et al., 2006).  Hyperphosphorylated, aggregated tau may 

further impede cellular transport, affect cell signalling and enforce toxicity through 

overloading protein clearance pathways.   

The interaction of tau with other proteins is also altered through increased phosphorylation, 

contributing to dysregulation of critically important biomolecular pathways.  This is 

exemplified by the fact that only hyperphosphorylated tau can interact with the kinesin-

associated protein JUN N-terminal kinase-Murray et al, 2014.  Additionally, abnormal 

phosphorylation of tau at specific sites ‘primes’ tau for further sequential phosphorylation 
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by other tau kinases, which would not usually occur in physiological conditions, establishing 

a pathogenic feed-forward system (Zheng-Fischhöfer et al., 1998; Cho and Johnson, 2003; 

Cho and Johnson, 2004). 

We have not yet completely mapped out which sites are aberrantly phosphorylated in all 

cases of tauopathy, however, mounting evidence supports the role of hyperphosphorylation 

of specific phospho-sites in AD and other tauopathies (Martin et al., 2013; Luna-Muñoz et al., 

2007).  Hanger and collegues have used mass spectrometry to map novel tau 

phosphorylation sites (Hanger et al., 2007).   

 

Interestingly, hyperphosphorylation of tau at sites associated with tauopathy have been 

found in mammals that undergo hibernation.  Hibernation is a physiological state 

Figure 1.4      Physiological and pathological phosphorylation of tau 

In normal physiological function (A and C), kinases and phosphatases work in concert to control the 
phosphorylation of tau, which determines its ability to bind to the microtubules.  Upon 
phosphorylation by kinases, tau detaches from the microtubules and is then dephosphorylated by 
phosphatases (A).  This regulation of tau phosphorylation facilitates stabilisation of the 
microtubules as well as transport of cargo along the microtubules; at the synapses cargo is released 
by phosphorylation of tau by kinases (C).   

Under pathological conditions (B and D), there is an imbalance between the action of kinases and 
phosphatases, leading to hyperphosphorylation of tau.  Hyperphosphorylation of tau causes tau to 
detach from the microtubules, leading to microtubule depolymerisation and the aggregation of 
hyperphosphorylated tau into tau deposits (NFTs) (B), which build-up within the neuron (D).  
Destabilisation of neurons contributes to the impairment of cellular transport and to the loss of 
synapses (D). 

Image adapted, with permission, from Bodea et al., 2016.  Copyright © 1999 - 2017 John Wiley & 
Sons, Inc.  

http://www.wiley.com/
http://www.wiley.com/
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characterised by significant decreases in body temperature and oxidative metabolism during 

prolonged inactivity to minimise energy expenditure during inhospitable environmental 

conditions.  Hibernation is accompanied by dramatic decreases in neuronal function (Arendt 

et al., 2003).  Previous studies have demonstrated that hyperphosphorylated tau has been 

found within the entorhinal cortex and hippocampus of European ground squirrals (Arendt 

et al., 2003) and within the brains of Arctic ground squirrels (Su et al., 2008).  The increase in 

tau phosphorylation was found to correspond to changes in the activity of tau kinases and 

phosphatases during hibernation; activity of tau kinases GSK3β and PKA increased and 

activity of tau phosphatase PP2A decreased during hibernation of the Arctic squirrel (Su et 

al., 2008).  This hyperphosphorylation is fully reversible when hibernation ends or during the 

periodic re-warmings of the animals body during hibernation and has been suggested to be 

a neuroprotective mechanism enabling the brain to adapt to dramatically decreased 

metabolism and temperature thus demonstrating a physiological role for 

hyperphosphorylation of tau in the adult mammal brain (Arendt et al., 2003; Su et al., 2008; 

Arendt and Bullmann, 2013).   

Hyperphosphorylation of tau has also been found within in the adult, healthy human brain; 

Matsuo and colleagues demonstrated that healthy, human brain biopsies have tau 

phosphorylated at many of the same sites associated with PHF tau found in patients with AD 

(Matsuo et al., 1994) and later rapid processing of biopsied healthy human and monkey brain 

tissues also revealed tau is hyperphosphorylated at sites associated with pathological tau 

(Garver et al., 1996).  Phosphorylation of tau at certain sites is known to be lost rapidly after 

death and time taken to process post-mortem brain samples has been demonstrated to be 

an important consideration in investigations into tau phosphorylation .  

 

1.2  Tauopathies 

Tauopathies are a group of heterogenous, progressive neurodegenerative diseases 

characterised by the pathological hyperphosphorylation and accumulation of tau within the 

brain.  The most common tauopathy is Alzheimer’s disease (AD), initially described by Alois 

Alzheimer (Alzheimer, 1907).  The second most prevalent is frontotemporal dementia (FTD) 

(Yoshiyama et al., 2001).  Hyperphosphorylated, aggregated tau pathology is also the primary 

culprit underlying many other dementing disorders including progressive supranuclear palsy 
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(PSP), corticobasal degeneration (CBD), argyrophilic grain disease (AGD), Huntington’s 

disease (HD), amyotrophic lateral sclerosis (ALS) and chronic traumatic encephalopathy (CTE) 

(Murray et al., 2014).  

1.2.1  Frontotemporal Dementia 

The highly heterogeneous group of diseases circumscribed by the term frontotemporal 

dementia (FTD) (or frontotemporal lobar degeneration (FTLD)) are characterised by a 

predominant, progressive loss of neurons within the frontal and temporal lobes.  Over time 

and with growing knowledge, our classification of these diseases has been refined.  

Histologically, there are four subtypes within the group; FTD-tau, FTD-TDP, FTD-FUS and FTD-

UPS, which are so called due to their association with the aggregation of tau, transactive 

response DNA-binding protein (TDP), fused in sarcoma (FUS) proteins or ubiquitin protease 

system (UPS) proteins, respectively (Figure 1.5).     

Between 50-80 % of FTD cases are thought to be sporadic, while the rest of the cases are 

accounted for by mutations within a number of genes.  FTD-TDP can be caused by mutations 

in GRN, TARDBP or VCP, which encode progranulin protein, transactive response DNA-

binding protein of 43 kilodalton (kDa) molecular weight (TDP-43) and valosin-containing 

protein, respectively.  Each of the mutations responsible for FTD-TDP cause formation of glial 

and neuronal inclusions of TDP-43, a DNA and RNA binding protein involved in RNA 

processing.  Mutations in CHMP2B, which encodes charged multivesicular body protein 2B 

are associated with FTD-UPS. Mutations in C9orf72, which is important for lysosomal storage 

function (Clayton et al., 2015) and in the regulation of endosomal trafficking (Farg et al., 
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2014), lead to FTD-FUS (Hardy, 2014; Goedert and Spillantini, 2000).  Mutations in MAPT 

cause FTD-tau.   

 

FTD-tau includes sporadic and familial forms of FTD with tau pathology.  The group includes 

Pick’s disease (PiD), frontotemporal dementia with Parkinsonism linked to chromosome 17 

(FTDP-17), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), white 

matter tauopathy with globular glial inclusions (WMT-GGI), argyrophilic grain disease (AGD) 

and tangle only dementia (TOD) (Halliday et al., 2012) (Figure 1.5).  While histologically 

Figure 1.5      Histological classification of frontotemporal dementias 

FTD can be classified due to its association with different protein pathologies.  FTD-tau is 
associated with tau pathology, FTD-fus is associated with ubiquitinated Fused-in-Sarcoma (FUS) 
pathology, FTD-TDP is associated with the presence of ubiquitinated TAR DNA-binding protein 
of 43 kDa (TDP-43) pathology and FTD-UPS includes pathology positive for components of the 
ubiquitin-proteasome system (UPS) but negative for FUS or TDP-43.  Tauopathies are also 
classified according to the predominant isoforms, 3R or 4R, of tau that accumulate.  Depending 
on the specific mutation responsible for FTDP-17, either of these isoforms, or a mixture, can be 
dominant.  PiD is associated with 3R tau accumulation.  Tauopathies known to contain more 4R 
tau include white matter tauopathy with globular glial inclusions (WMT-GGI), argyrophilic grain 

disease (AGD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD).   
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classified as distinct diseases, these diseases are all highly heterogenous and there are 

extensive histological and clinical overlaps between them (Luna-Muoz et al., 2014). 

In general, the presentation of FTD is associated with cognitive decline heeded by 

disinhibition, behavioural changes and emotional changes, however, the disease is highly 

variable in its clinical presentation.  Clinical presentations of FTD are classified into three main 

groups.  Behavioural variant FTD (bvFTD) accounts for approximately 60 % of all FTD cases 

and includes PiD and FTDP-17, while semantic dementia (SD) accounts for approximately 20 

% of cases and progressive non-fluent aphasia (PNFA) accounts for the remaining 20 % of 

cases.   

bvFTD is recognised by behavioural disinhibition, apathy, loss of empathy, hyperorality, 

dietary changes, executive function deficits and compulsive, perseverative or ritualistic 

behaviours (Piguet et al., 2011).  Memory is relatively spared in bvFTD, however, when 

memory dysfunction does present it is similar in phenotype to that in AD patients.  SD, also 

called temporal variant FTD, is characterised by a loss of language semantics caused by 

degeneration of an area of the left temporal lobe critical for assigning meaning to words.  

Right-sided SD occurs where neurodegeneration begins in the right temporal lobe and is 

characterised by problems remembering the faces of familiar people and loss of empathy.  

Patients with SD usually live longer than those with bvFTD, however, will always develop 

symptoms associated with bvFTD eventually.  Patients with PNFA have difficulty producing 

fluent speech despite their understanding of the meaning of the words remaining intact 

(Goedert et al., 2012).  Classification is further complicated by the co-presentation of motor 

dysfunction similar to that of Parkinson’s disease (PD), termed ‘frontotemporal dementia 

with Parkinsonism’ (FTDP), which most commonly is recognised in cases of bvFTD (Goedert 

et al., 2012). 

1.2.1.1  Neurodegeneration in frontotemporal dementia associated with tau pathology  

The presentation of FTD is influenced by the areas of the brain affected, the underlying 

pathology and the large-scale neural networks involved (Finger, 2016).  Each clinical group is 

associated with different patterns of neurodegeneration; bilateral degeneration of the 

medial frontal lobes and anterior temporal lobes underlies bvFTD, whereas SD is associated 

with more pronounced, usually asymmetric temporal lobe atrophy and PNFA is accompanied 

by atrophy of the left lateral sulcus. 
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Cortical glutamatergic neurons (CGNs) and glutamatergic transmission are particularly 

vulnerable in FTD (Procter et al., 1999; Ferrer, 1999; Sposito et al., 2015), demonstrated by 

reduced numbers of dendritic branches, numbers of dendritic spines and levels of synaptic 

proteins, including synapsin I (Ferrer, 1999).  Surprisingly few studies have been carried out 

aimed at understanding why glutamatergic neurons are selectively lost in the disease.  In AD, 

tau is linked to molecular pathways resulting in glutamate toxicity (Campos-Pea and Antonio, 

2014) and similar pathways may underlie loss of these neurons in FTD.   

1.2.1.2  Pick’s Disease 

Pick's disease (PiD) is a sporadic, progressive and highly heterogenous frontotemporal 

dementia (FTD) that accounts for approximately 2 % of all cases of dementia.  Clinically, PiD 

manifests at around age 40-60 years as bvFTD (Hodges 2001; Luna-Munoz et al., 2014).  

Patients live an average of 10.4 years after diagnosis (Josephs et al., 2005).  Histologically, 

PiD is recognised by frontal and anterior temporal lobe cortical atrophy due to the loss of 

synapses dendrites and neurons, white matter degeneration, achromatic neurons (Pick cells) 

and intraneuronal tau inclusions called Pick bodies (PBs) (Lewis et al., 2001; Kertesz, 2003), 

which have been found in the cerebral cortex, the hippocampus and in selected brainstem 

nuclei (Zhukareva et al., 2002).  Recent studies suggest that neurodegeneration first occurs 

in the frontotemporal limbic regions and neocortical regions before progressing to 

subcortical regions, then the primary motor cortex and pre-cerebellar nuclei and finally the 

visual cortex (Lewis et al., 2001).  Tau aggregations are mainly composed of 3R tau 

(Delacourte et al., 1998; Delacourte et al., 1996; Dickson et al., 2011; Buée and Delacourte 

1999) loosely arranged into straight filaments (Takauchi et al., 1984). 

1.2.2  Frontotemporal dementia with Parkinsonism linked to chromosome 
17 

We have known for a long time that tau is the major component of the intracellular 

filamentous deposits found in the brains of those suffering from many neurodegenerative 

diseases.  In 1998, mutations within MAPT were demonstrated to be the cause of familial 

FTD (Hutton et al., 1998; Poorkaj et al., 1998), emphatically demonstrating that dysfunction 

of tau protein can cause neurodegenerative disease. 

FTD caused by mutations in MAPT account for approximately 30 % of cases of heritable FTD 

and are associated with autosomal dominant inheritance of disease (Hardy, 2014).  These 
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diseases are named frontotemporal dementia with Parkinsonism linked to chromosome 17 

tau (FTDP-17) (Foster et al., 1997) as patients tend to clinically present with Parkinson’s 

disease-like motor symptoms along with bvFTD (Siuda et al., 2014). Patients usually initially 

present with psychiatric symptoms, alongside language dysfunction in some cases, and are 

often misdiagnosed with PiD, primary progressive aphasia, AD, PSP or CBD (Ghetti et al., 

2015).  Memory impairment, as a predominant presenting feature, has been reported in only 

a few cases of FTDP-17 (Doran et al., 2007), however, the phenotype of the memory 

disturbance phenotype is similar to that in AD (Doran et al., 2007).   

The clinical presentation, age of onset and duration of these diseases varies between patients 

with different MAPT mutations, in line with the heterogeneity reflected in the 

neuropathology and patterns of brain atrophy in these patients.  For example, while the 

average age of onset is 49 years and the life expectancy after diagnosis is 8.5 years, patients 

have presented with FTDP-17 in their early 20s as well as in the late 70s and lived for only 1.5 

years or as long as 26 years (Wszolek et al., 2003; Reed et al., 2000).  There is also a high level 

of heterogeneity between families carrying the same mutation and even within families 

(Larner, 2009; Larner and Doran, 2008; Wszolek et al., 2003; Bugiani et al., 1999), 

demonstrating that environmental factors or genetic modifiers play a role in the 

pathogenesis of tauopathies.  Phenotypic differences between patients with the same FTDP-

17 mutation may be explained by the tau haplotype (Chapter 1.1.1.2) (Baba et al., 2005) 

carried by these patients or their ApoE genotype (Mann et al., 2001).  Through understanding 

how each of these mutations, which exert specific changes to tau protein or the splicing of 

tau isoforms, result in different disease pathology and presentation, we can gain insight into 

the importance of particular pathogenic alterations to tau in disease.   

1.2.2.1  MAPT mutations  

Linkage analysIs of 150 families affected by FTDP-17 have led to the identification of 53 

intronic and exonic MAPT mutations (van der Zee and Van Broeckhoven, 2014).  

Approximately half of these are exonic mutations of exons 1, 9, 11, 12 and 13, which affect 

the ability of tau to interact with microtubules or increase its propensity to assemble into 

abnormal filaments (Hasegawa et al., 1998; Deture et al., 2000; Dayanandan et al., 1999; 

Hong et al., 1998; Matsumura et al., 1999; Ghetti et al., 2015).  The other mutations occur 

within exon 10 or in the adjacent introns (Figure 1.6).  Some of these intronic mutations of 

these mutations prevent or disrupt the formation of the stem loop structure of tau’s pre-
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RNA, which forms because the non-mutant sequence is palindromic, thereby preventing the 

splicing machinery from splicing out exon 10 (Wolfe, 2008).  Another mechanism through 

which mutations affect the splicing of exon 10 is by altering linear cis-splicing elements 

(Wolfe, 2008).  This results in the overproduction of 4R tau, thus perturbing the normal ratio 

of 3R:4R tau isoforms (Ghetti et al., 2015).  Disturbances in the normal function and 

expression of tau lead to neurodegeneration due to altered microtubule dynamics.   

 

Different mutations lead to different tau pathology, patterns of atrophy and clinical 

presentations.  For example, Whitwell and colleagues demonstrated that although all cases 

of FTDP-17 exhibit degeneration of the anterior temporal lobes, mutations that alter the 

splicing of tau pre-mRNA lead to grey matter loss focused within the medial temporal lobes, 

including the hippocampus, amygdala, parahippocampal gyrus and fusiform gyrus. On the 

other hand, mutations that lead to altered structure of tau are more commonly associated 

Figure 1.6      MAPT mutations in FTDP-17 

Schematic representation of the positions of MAPT mutations in FTDP-17.  Approximately half of 
these are either intronic or exonic mutations near, or in exon 10; These mutations affect the 
alternative splicing of exon 10.  Other exonic mutations exist in exon 1, 9, 11, 12 and 13 and these 
affect either the binding of tau to the microtubules or the propensity of tau to aggregate.  

Image from Ghetti et al., 2015, permission granted, Copyright © 1999 - 2017 John Wiley & Sons, 
Inc.  

 

 

http://www.wiley.com/
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with relative sparing of the medial temporal lobes and degeneration of the lateral temporal 

lobes (Whitwell et al., 2009).  

In the studies presented here, hiPSC from patients carrying a missense mutation resulting in 

a change of valine to methionine at 337 (V337M) within MAPT were differentiated into 

neurons.  A more detailed description of the clinical presentation and tau pathology 

associated with this mutation is given in Chapter 4 (Chapter 4.1.1).  Tau pathology within the 

frontal and temporal lobes of patients with a missense mutation resulting in a change of 

arginine to tryptophan at 406 (R406W), and within those with a point mutation resulting in 

a change of cysteine to tyrosine within intron 10 (IVS 10+16 C>T) MAPT, have been 

investigated in Chapter 6. 

1.2.2.1.1  The clinical and pathological features of IVS 10+16 C>T MAPT  

The point mutation from cysteine to tyrosine within intron 10 of MAPT (IVS 10+16 C>T MAPT) 

destabilises the stem-loop structure of intron 10 of MAPT (Figure 1.6), leading to a two- to 

six-fold increase in the ratio of 4R:3R tau mRNA by altering the splicing of exon 10 (Connell 

et al., 2005).  The clinical presentation of individuals with this mutation is heterogenous 

within and between families (Larner and Doran, 2008); patients have been diagnosed with 

FTD (Janssen et al., 2002; Pickering-Brown et al., 2002), AD (Doran et al., 2007; Larner et al., 

2008, 2009) and PSP (Morris et al., 2003).  A range of symptoms have been described 

including those more commonly associated with FTDP-17; motor dysfunction including 

Parkinsonism, anomia, language impairment and disinhibition have been reported 

(Pickering-Brown et al., 2002; Janssen et al., 2002; Larner et al., 2009; Stanford et al., 2004; 

Morris et al., 2003).  Age of onset varies from the late 30’s to the early 60’s of patients 

(Janssen et al., 2002; Pickering-Brown et al., 2002; Morris et al., 2003; Stanford et al., 2004; 

Larner and Doran, 2006; Larner, 2009). 

While the frontal and temporal lobes are affected in patients with this mutation, 

neuropathology, including the loss of neurons, neuropil vacuolation, grey matter gliosis, tau 

phosphorylation and tau aggregation, also varies in location and reports have concluded 

particularly severe loss of temporal lobe tissue (Larner et al., 2009), global loss of cortical 

regions of the brain (Larner et al., 2009) and the severe neurodegeneration of the globus 

pallidus and subthalamic nucleus  (Morris et al., 2003) within the brains of patients with this 
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mutation.  Hyperphosphorylated tau aggregates within the brains of these patients have 

been reported to be diffuse or globular in structure (Morris et al., 2003).   

1.2.2.1.2  The clinical and pathological features of R406W MAPT 

The point mutation arginine to tryptophan at 406 (R406W MAPT), occurs in exon 13 of MAPT.   

The residue it alters is highly conserved, which highlights its probable importance in the 

function of tau.  The mutation results in a change in the structure of tau, which results in 

alterations in the ability of tau to bind to the microtubules (Hong et al., 1998).   

Clinically, patients with this mutation present with AD-like symptoms, including memory 

impairment, as well as FTDP-17 symptoms including Parkinsonism, disinhibition and 

impulsivity (Ostojic et al., 2004; Carney et al., 2014; Van Swieten et al., 1999; Rademakers et 

al., 2003; Ebrahimi 2015; Passant et al., 2004; Hirschbichler et al., 2015; Behnam et al., 2015; 

Ng et al., 2015).  As with those with other FTDP-17 mutations, presentation is heterogenous 

between individuals with the disease.  Language disturbances have been reported in some 

cases (Rademakers et al., 2003; van Swieten et al., 1999), however, this is not the case for all 

cases of R406W MAPT FTDP-17 (Ikeuchi et al., 2008; Hirschbichler et al., 2015; van Swieten 

et al., 1999).  This mutation can result in one of two disease trajectories; in most cases 

reported the disease progresses slowly (Passant et al., 2004; Ostojic et al., 2004; Ikeuchi et 

al., 2008; Lindquist et al., 2008; Rademakers et al., 2003; Carney et al., 2014), however, in 

one patient progression of cognitive decline was observed to be rapid (Carney et al., 2014).  

Onset varies considerably from the 3rd to the 6th decade of the patients’ lives (Rademakers et 

al., 2003; Ostojic et al., 2004; Passant et al., 2004; Ikeuchi et al., 2008; Carney et al., 2014; 

Behnam et al., 2015; Hirschbichler et al., 2015) .  

The pathology associated with this mutation is described as bilateral frontotemporal 

degeneration (Basiri et al., 2015).  As well as the loss of neurons, gliosis and widespread 

aggregation of tau within the cortex are pathological features of this mutation.  Amyloid 

pathology has also been reported in some cases (Ishida et al., 2015).  

1.2.3  Alzheimer’s disease 

Alzheimer’s disease (AD) is responsible for the majority of cases of dementia worldwide 

(Alzheimer’s Association, 2016).  The symptoms of AD are caused by neurodegeneration of 

large scale neuroanatomic networks resulting in severe cortical atrophy (Weintraub et al., 
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2012; Seeley et al., 2009; Dennis and Thompson, 2014).  Neuropathologically, AD is 

hallmarked by the accumulation of intracellular tau protein and extracellular amyloid-beta 

(Aβ) within areas of the brain related to this circuitry.  There are two forms of AD with 

equivalent pathology and symptoms, which are clinically distinguished by their age of onset; 

the majority of cases are sporadic (sAD) and generally present after age 65, while 2-10 % of 

cases are familial (fAD), which present before age 65 (Alzheimer’s Association, 2016; Zhu et 

al., 2015).    

The predominant symptom of AD is memory failure, which is subtle upon initial presentation, 

becoming more severe with progression and is eventually incapacitating.  Patients also 

exhibit a range of other cognitive deficits, language disturbances and neuropsychological 

changes including depression, poor judgement, confusion, sleep disturbance, mutism, 

agitation, withdrawal, hallucinations and seizures (Landes et al., 2001; Peter-Derex et al., 

2015; Weintraub et al., 2012; Caraci et al., 2010; Selkoe 2011; Chi et al., 2014).  In the later 

stages of disease, patients may also experience motor symptoms (Wirths and Bayer, 2008).   

1.2.3.1  Neurodegeneration in Alzheimer’s disease 

Neurodegeneration begins in the basal forebrain and entorhinal cortex, considered an 

invariant focus of pathology in all AD cases, which gives rise to bidirectional projections 

connecting the hippocampus and the cortex (Schmitz et al., 2016).  Degeneration of the 

hippocampus follows and then neurons are lost in other neocortical areas including the 

temporal cortex (Buckner et al., 2008; Jack et al., 1998).  The hippocampus plays a prominent 

role in memory acquisition and consolidation, while the temporal lobe governs language 

function and is also involved in memory functions (Buckner et al., 2008; Jack et al., 1998), 

which explains the prominent memory dysfunction associated with AD.  In the later stages of 

AD, wide-spread neurodegeneration occurs, evidenced by shrinkage of the cerebral cortex 

and enlarged ventricles, precipitating additional symptoms (Braak et al., 2011; Braak and 

Braak, 1991; Braak and Braak, 1996; Braak and Braak, 1995) (Figure 1.7).   
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1.2.3.1.1  Vulnerable neuronal populations in AD 

The cholinergic and glutamatergic neurotransmission systems are preferentially targeted in 

AD  (Sims et al., 1983; Bartus et al., 1982; Francis et al., 1993; Greenamyre, 1986).  It is 

thought that neurodegeneration in the AD brain occurs in a dichotomous pattern, beginning 

with the basal cholinergic forebrain neurons (bfCNs), which originate from within the basal 

nucleus of Meynert (nbM) and provide cholinergic innervation to the hippocampus and 

cortex (Coyle et al., 1983; Auld et al., 2002; Wicklund et al., 2010; Prado et al., 2016; Duan et 

al., 2014.; Palmer and Gershon 1990; Whitehouse et al., 1982; Kuhn et al., 2015; Arendt et 

al., 1983; Bartus et al., 1982; Schmitz et al., 2016; Candy et al., 1983; Liu et al., 2015).  These 

neurons play important roles in encoding novel information, the regulation of cortical 

plasticity and attention, which are all important processes in memory function (Auld et al., 

2002; Olton, 1990; Zaborszky et al., 2012; Janocko et al., 2012; Schmitz et al., 2010; Schmitz 

et al., 2016; Schmitz et al., 2014; Quigley et al., 2010; McGaughy 2005; Pinto et al., 2013; 

Goard and Dan, 2009).  Aβ plaques occur early in these neurons and degeneration of the 

Figure 1.7      Neurodegeneration in Alzheimer’s disease 

The image above depicts a coronal section through a healthy brain (left hand side) and a late-stage 

AD brain (right hand side).  Upon comparison of the two, gross atrophy of the brain can be 

recognised by shrinkage of the cerebral cortex and ventricle enlargement.    The limbic regions and 

temporal lobes are labelled and demonstrate severe loss of brain tissue. 

Adapted with permission from www.alz.org ©2017 Alzheimer's Association. All rights 

reserved. Illustrations by Stacy Jannis. 

http://www.alz.org/
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nbM is correlated with dementia (Kerbler et al., 2015).  BfCNs are very long and project 

elaborate, richly arborised processes (Woolf, 1991).  Consequentially, they have high 

metabolic demands deeming them particularly vulnerable in AD (Wu et al., 2014).   

Glutamatergic neurons, particularly those within the cortex, are also particularly vulnerable 

in AD, leading to severe disruption of glutamatergic neurotransmission within the 

hippocampus and neocortical areas (Francis et al., 1993; Francis, 2003; Lee et al., 2002; 

Greenamyre et al., 1988; Campos-Pea and Antonio, 2014; Palmer and Gershon, 1990; Frisardi 

et al., 2011; Revett et al., 2013).  Since glutamatergic neurotransmission within the medial 

temporal lobes is important in learning and memory functions, the loss of these neurons may 

underlie dementia in AD (Squire and Zola-Morgan, 1991).   

1.2.3.2  Tau and Amyloid-beta pathology in Alzheimer’s disease 

 

Figure 1.8      Neurofibrillary tangles and Amyloid plaques in the Alzheimer’s disease brain 

A)  Schematic representation of the spread of Amyloid plaque (green) and tau tangle (red) 
pathology with disease progression. Darker colours resemble areas of higher concentrations of 
aggregations. Plaques develop profusely within the cortex and later in disease can be found within 
the allocortex, diencephalon and eventually throughout the majority of the brain.  NFTs first 
appear within the basal forebrain and entorhinal cortex, then within the temporal lobes and other 
cortical areas.   Image adapted, with permission, from Candela et al., 2013.   

B) Amyloid plaques immunostained with anti-beta-amyloid antibody (green arrow) and tau 
tangles immunostained with anti-PHF-1 antibody (red arrow) within a hippocampal slice from an 
AD brain.   Image adapted, with permission, from Rohn, 2013. 
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1.2.3.2.1  Propagation of tau pathology 

A study by Braak and colleagues compared tau pathology within the brain using 

immunostaining with antibodies against hyperphosphorylated tau and silver staining at Braak 

stages.  The group found that at Braak stage I, mild tau pathology is confined to the 

transentorhinal region.  At stage II, the density of NFT lesions increases and the pathology 

extends to the entorhinal cortex with pathological hyperphosphorylated tau found within the 

deep entorhinal plexus.  By stage III, tau pathology worsens and lesions extend to the 

hippocampus and the adjoining neocortical association areas.  Stage IV is characterised by 

increased lesion density within the entorhinal region and fusiform gyrus, as well as pathology 

within the medial temporal gyrus and insular cortex.  Lesions widely extend into the occipital 

lobe and the pristriate region in stage V and in stage VI lesions are visible within the 

parastriate and striate areas of the occipital neocortex (Braak et al., 2006).  

The stereotypical, spaciotemporal pattern of tau pathology progression associated with 

certain tauopathies, such as AD and AGD, supports the hypothesis that tau spreads trans-

synaptically in a manner resemblent of the progression of prion protein pathology (Seeley 

et al., 2009; Raj et al., 2012; Zhou et al., 2012; Clavaguera et al., 2015).  Prions are 

infectious agents, which propagate via protein-protein interactions, templating further 

aggregation of normally folded proteins (Prusiner, 1982).  Specific aggregations of tau, or 

stains, distinct in different tauopathies, are thought to conformationally template native tau 

into pathological fibrils.  Prions also stably maintain unique conformations that connect the 

structure of the prion to the pattern of pathology (Sanders et al., 2014), akin to the distinct 

patterns of neuropathology and rates of progression associated with different conformations 

of aggregated tau in specific tauopathies.   

Clavaguera and colleagues were the first to illustrate the transmission of tau pathology in 

prion manner.  The group injected brain extracts derived from P301S tau-expressing mice 

into the hippocampi of Tg mice overexpressing WT human tau and noted that this triggered 

the assembly of WT human tau into filaments.  This pathology spread from the site of 

injection to anatomically connected brain regions (Clavaguera et al., 2009).  Similar 

observations regarding the progression of tau pathology have also been achieved through 

injection of P301S tau-mice (Iba et al., 2013) or WT mice (Sanders et al., 2014) with synthetic 

pre-formed fibrils and within Tg mice expressing human P301S MAPT restricted to the 

entorhinal cortex (de Calignon et al., 2012; Liu et al., 2012).  Further studies involving the 

injection of aggregated tau isolated from patients with AD, PiD, AGD, PSP, TD and CBD 
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(Lasagna-Reeves et al., 2012; Clavaguera et al., 2013; Um et al., 2013; Kaufman et al., 2017; 

Narasimhan et al., 2017) into WT mice support this work, demonstating that tau aggregation 

was initiated through the introduction of pathogenic tau at the site of injection and within 

anatomically connected regions.  Interestingly, in the case of mice injected with tau isolated 

from AGD, PSP and CBD site specific lesions associated with disease were noted (Clavaguera 

et al., 2013), differences in the potency of particular tau stains to induce aggregation of 

endogenous tau was noted (Narasimhan et al., 2017) and different neuronal networks were 

differentially vulnerable to specific stains (Narasimhan et al., 2017), supporting the 

hypothesis of prion-like tau transmission.  Stains from CBD and PSP were found to be capable 

of causing tau aggregation within glial cells, further demonstrating the differences in the 

propensity of particular strains of tau to affect certain cell types (Narasimhan et al., 2017).  

Sanders and colleagues illustrated the faithfully templating of two synthetic pathogenic tau 

stains by inoculating WT mice with one of each strain.  Each stain faithfully produced different 

patterns of tau pathology progression within mice and later tau was purified from these mice 

revealing that the strains were unchanged, further supporting the similarities of tau 

pathology propagation with prion diseases (Sanders et al., 2014).  These observations may 

explain the distinct neuroanatomical patterns of tau aggregation and histopathology of 

different tauopathies. 

Soluble tau has been shown to be released into interstitial space within in vivo models, or 

media within in vitro models, and this release is increased with neuronal activity (Pooler et 

al., 2013; Yamada et al., 2014; Wu et al., 2016).  In vitro and in vivo experimental models 

have demonstrated that both synthetic, misfolded tau fibrils (Frost et al., 2009; Guo and Lee, 

2011) as well as those from AD patients (Santa-Maria et al., 2012) can be taken up by cells, 

seeding fibrillisation of endogenous tau.  Wu and colleages have demonstrated that tau 

misfolds into low molecular weight oligomers before further aggregation into fibrils and that 

these oligomers can be internalised after release by neighbouring cells (Wu et al., 2013).   

Experimental evidence supports several mechanisms by which tau may be released and 

reabsorbed by neighbouring neurons.  Oligomeric, misfolded ‘naked’ tau may be released 

into the interstital space (Chai et al., 2012; Kfoury et al., 2012; Pooler et al., 2013), to be taken 

up directly through the plasma membrane of the neighbouring cell, by macropinocytosis 

(Frost et al.,, 2009; Santa-Maria et al., 2012; Holmes et al., 2013; Wu et al., 2013), a form of 

actin-mediated endocytosis whereby the cell membrane internalises a large intracellular 

vesicle containing extracellular fluid and biomolecules (Lim and Gleeson, 2011).  
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Alternatively, tau may be released within exosomes, which fuse with the membranes of 

neighbouring cells (Saman et al., 2012).  Tunnelling nanotubes, which are membranous, 

tunnel-like structures that connect two cells allowing for cytoplasmic continuity, have been 

demonstrated to be involved in the spreading of prion proteins (Gousset et al., 2009) and 

have recently been implicated in tau transmission (Abounit et al., 2016; Tardivel et al., 2016).  

Additional research is needed to provide clarity on the mechanisms of transmission of 

misfolded ‘seed’ tau strains between neurons and glia of patients with tauopathy. 

1.2.3.2.2  Generation of Amyloid pathology 

Aβ is produced through proteolytic processing of its precursor protein, APP.  APP is a 

transmembrane protein and processing occurs through two pathways, the non-

amyloidogenic and the amyloidogenic pathway.  The amyloidogenic pathway is responsible 

for the production of Aβ.  In this pathway, APP is initially cleaved by β-secretase, generating 

a C-terminus fragment of 99 aa (C99), which remains in the membrane, as well as a soluble 

APP fragment (sAPPβ), which is released extracellularly.  Subsequent cleavage of C99 by γ-

secretase leads to the release of Aβ into the extracellular space and the APP intracellular 

cytoplasmic domain (AICD) is deposited intracellularly.  γ-secretase is a large protein complex 

consisting of at least four main proteins; presenilin 1 or presenilin 2, PEN2, APH1 and 

Nicastrin (Vetrivel et al., 2006).  Different forms of Aβ are produced, most commonly Aβ38, 

Aβ40 and Aβ42.  While the majority of Aβ produced in normal physiology is Aβ40 (Seubert et 

al., 1992), Aβ42 is the most abundant form found to be aggregated which is thought to be due 
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to its increased propensity to aggregate thereby resisting degradation (Roher et al., 1993; 

Snyder et al., 1994).   

 

The non-amyloidogenic pathway does not result in the production of Aβ as APP is first 

cleaved by α-secretase within the Aβ peptide region.  This initial cleavage leads to release of 

sAPPα into the extracellular space, leaving a C-terminus fragment of 83aa (C83) embedded 

in the membrane.  sAPPα is thought to be neuroprotective (Mattson et al., 1993; Furukawa 

et al., 1996; Ma et al., 2009), while sAPPβ lacks these neuroprotective properties (Furukawa 

et al., 1996). C83 is then cleaved by γ-secretase to produce the APP intracellular domain 

(AICD) and a small 3 kDa peptide called p3, both of which are rapidly degraded (Zhang et al., 

2012).  The non-amyloidogenic pathway and the amyloidogenic pathway are depicted in 

Figure 1.9.  

The formation of Aβ into plaques is thought to occur through well-defined sequential 

aggregation events.  Monomers form oligomers, which are most likely the principle toxic 

Figure 1.9     Schematic representation of amyloid beta precursor protein cleavage via the 
amyloidogenic and non-amyloidogenic pathways 

Aβ is produced through cleavage of APP via the amyloidogenic pathway, depicted on the left.  APP 
is first cleaved by β-secretase releasing sAPPβ into the extracellular space and leaving a 99 aa C-
terminus fragment within the membrane (C99).  After further cleavage of C99 by γ-secretase, Aβ 
is released into the extracellular space and AICD is left within cell.  APP is cleaved via the non-
amyloidogenic pathway initially by α-secretase to release sAPPα leaving C83 behind embedded in 
the membrane. Subsequent cleavage of the C-terminus fragment leads by γ-secretase leads to the 
release of p3 leaving AICD within the cell. 
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species of Aβ in AD (Klein, 2013; Verma et al., 2015), and then protofibrils of various sizes.  

Protofilaments then further aggregate to form amyloid fibrils and eventually these fibrils 

compose plaques (Martins et al., 2008).  

1.2.3.2.3  Amyloid toxicity 

In healthy people, the normal physiological levels of Aβ are approximately 1.5 nM, however, 

in AD patients much higher levels of have been reported (Kuo et al., 1996; Höglund et al., 

2008).  Toxic Aβ aggregates in the form of soluble Aβ oligomers, intraneuronal Aβ and 

amyloid plaques impair synapses and ultimately cause neurodegeneration and dementia.  

Aβ42 in comparison to Aβ40, elicits considerably greater toxicity in cell culture studies (Krishtal 

et al., 2015), possibly due to its greater propensity for aggregation (Harada and Kuroda, 2011; 

Vandersteen et al., 2012; Tiiman et al., 2015) and effect on the structure of Aβ aggregations 

(Pauwels et al., 2012).  For example, Aβ42, but not Aβ40, has been reported to decrease the 

functionality of forebrain cholinergic neurons differentiated from mouse embryonic stem 

cells (Wicklund et al., 2010), form ion channels in cell membranes in an immortalised neural 

cell line (Bode et al., 2017) and attenuate synaptic AMPA receptor function in primary CA1 

hippocampal neurons (Parameshwaran et al., 2007).  Oligomers are thought to be able to 

interact with the cell membrane non-specifically through electrostatic force and specifically 

by associating with ligand and receptors on pre- and post-synaptic terminals (Hertel et al., 

1997; Jarosz-Griffiths et al., 2016; Malinow et al., 2011; Spires-Jones and Hyman, 2014).  Aβ42 

oligomers have also been demonstrated to cause membrane disruptions through the 

creation of pores in the membrane (Sepulveda et al., 2010).  

1.2.3.2.4  Phosphorylation of tau in AD 

Over 40 of tau’s phosphorylation sites are phosphorylated in AD and not in controls (Hanger 

et al., 2007; Martin et al., 2013).  We know that for tau to become highly phosphorylated, to 

the degree that it is in the AD brain, certain phosphorylation sites must initially be 

phosphorylated to ‘prime’ for further deleterious phosphorylation (Hashiguchi et al., 2002).  

In a comprehensive study aimed at revealing the sequential phosphorylation of specific sites 

of tau protein during disease progression, the brains of cases with mild cognitive impairment 

(MCI) and AD of different Braak stages were immunostained using 429 antibodies against 

phosphorylated tau (ptau) species. The authors found that the tau phosphorylation site 

Thr231 was initially phosphorylated, followed by Ser202 and Ser205.  Phosphorylation at 
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Ser396 and Ser404 ensued, with Thr214 and Ser212 phosphorylated subsequently (Luna-

Muñoz et al., 2007).   

Many of the sites phosphorylated in AD, including Thr181, Ser202, Ser205, Thr231, Ser396 

and Ser422, have been found to be phosphorylated in vitro as a consequence of AβO 

treatment in human and murine neural cell lines (Busciglio et al., 1995; Billingsley and 

Kincaid, 1997; Iqbal et al., 1998; Wang et al., 2000; Zheng et al., 2002; Johansson et al., 2006; 

Ma et al., 2009; Jin et al., 2011). 

1.2.3.3  Mutations of familial AD 

fAD is caused by highly penetrant mutations within three genes encoding proteins involved 

in the amyloid processing pathways (Zhu et al., 2015) (Figure 1.12), which result in the 

abnormal production of Aβ.  The disease, also called early onset AD (EOAD) owing to the 

unusually young age of onset in comparison to sAD, is diagnosed in patients who present 

before age 65 (Rossor et al., 2010; Zhu et al., 2015), have at least one affected, closely-related 

family member and have a mutation in one of these genes (Bird, 1993).  Over 200 mutations 

(Cruts et al., 2012), which are inherited in an autosomal dominant manner, have been found 

in the genes encoding APP (Goate et al., 1991), PSEN1 (Sherrington et al., 1995) and PSEN2 

(Levy-Lahad et al., 1995).  Pathological mutations within PSEN1 are the most common, 

affecting between 30-70 % of patients, while APP mutations are responsible for 10-15 % of 

cases and PSEN2 mutations account for less than 5 % of cases (Bird, 1993; Janssen et al., , 

2003; Tedde et al., 2003; Rogaeva et al., 2001; Lleó et al., 2002). Different clinical 

presentations are associated with specific mutations (Bird, 1993).   

The realisation that EOAD is caused by mutations these genes resulting in an increased ratio 

of cerebral Aβ42 as opposed to Aβ40 (Scheuner et al., 1996; Price et al., 1998), or by an increase 

in the self-aggregation of Aβ if the mutations are within the Aβ of APP (Selkoe and Hardy, 

2016), was the main contributing factor in the development of the amyloid cascade 

hypothesis of AD (Hardy and Higgins, 1992).  The hypothesis is based on the central role of 

Aβ in initiating the cascade of pathological molecular events resulting in AD (Hardy and 

Selkoe, 2002).  Additional genetic evidence in support of the hypothesis is that patients with 

Down Syndrome, which is caused by a trisomy of chromosome 21 resulting in an additional 

copy of APP, leads to the abnormal deposition of Aβ and early-onset dementia (Hardy and 

Higgins, 1992).   
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Whilst the Amyloid cascade hypothesis is centred around the role of Aβ in pathogenesis, 

studies using tau null mice have demonstrated the critical role of tau in AD.  Roberson and 

colleagueds demonstrated the importance of tau in disease pathogenesis through the 

production of Tg mice each expressing human APP (K670M/N671L/V717F) (hAPP) and either 

two (hAPP/Tau+/+), one (hAPP/Tau+/–) or no (hAPP/Tau–/–) endogenous tau alleles (Roberson 

et al., 2007).  While mice with two endogenous tau alleles were found to have learning and 

memory deficits as well as spacial memory deficits, mice with just one endogenous tau allele 

demonstrated reduced deficits and tau null mice showed no impairment compared to 

controls, indicating the importance of tau as a mediator for disease pathogenesis.  Santacruz 

and colleagues have also demonstrated the amelioration of memory function deficits, 

behavioural impairments and neuronal loss by decreasing levels of tau in mice expressing Tg 

MAPT P301L that could be supressed using doxycycline (Santacruz et al., 2005).  In other 

studies, a 3xTg AD mouse, which expresses APPSwe, tauP301L, and PS1M146V transgenes was 

found to generate Aβ pathology earlier than tau pathology, suggesting a causal relationship 

between the pathogenesis of the two proteins (Oddo et al., 2003).  This mouse model also 

suggests tau as a mediator of the disease as severe cognitive deficits are not observed until 

tau pathology is present (Oddo et al., 2004; Billings et al., 2005).  Additionally, the cognitive 

deficits recognised in the 3xTg AD mouse are only mitigated when immunotherapy is used to 

reduce both Aβ and tau, and not Aβ alone (Oddo et al., 2006).  Further evidence of 

the mediatory role of tau has been found in patients with AD; the presence of neurofibrillary 

tangles more strongly correlates to cognitive decline in comparison to Aβ pathology  (Bennett 

et al., 2004).  

1.2.3.4  Risk factors of Alzheimer’s disease 

The primary risk factor of AD is ageing; however, genetic and environmental risks have also 

been implicated.  Environmental risk factors include obesity (Beydoun et al., 2008), smoking 

(Lee et al., 2010), lack of exercise (Morris et al., 2017), lower levels of education and alcohol 

abuse (Anstey et al., 2009).  Previous medical conditions such as hypertension (Qiu et al., 

2005), diabetes (Lu et al., 2009) and stroke (Savva et al., 2010) also increase the risk of 

developing AD. 

The major genetic risk determinant for sAD is the presence of Apolipoprotein E (ApoE) 

polymorphic alleles ε2, ε3 or ε4.  ApoE is a major cholesterol carrier, which functions in lipid 

transportation, glucose metabolism, neuroinflammation, neuronal signalling and 
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mitochondrial function in the brain.  ApoE isoforms differentially regulate Aβ aggregation and 

clearance in the brain; the ε2 allele decreases risk, ε3 is considered neutral, one copy of ε4 

increases risk by two fold and two copies of ε4 increases risk by 12 fold (Liu et al., 2013).  

Genome wide association studies and next-generation sequencing have revealed over 20 

gene loci associated with AD risk, including those within clusterin (apolipoprotein J) (Harold 

et al., 2009; Lambert et al., 2009), phosphatidylinositol binding clatherin assembly protein 

(PICALM) (Harold et al., 2009; Lambert et al., 2009), complement receptor 1 (CR1) (Lambert 

et al., 2009), bridging integrator 1 (BIN1) (Seshadri et al., 2010; Tan et al., 2013) and sortilin-

related receptor 1 (SORL1) (Rogaeva et al., 2007).  

 

1.3  Tau kinases and phosphatases 

The balanced activities of many tau kinases and phosphatases allow for precise control of the 

phosphorylation status of tau protein within neurons under physiological conditions.  In 

tauopathy, the equilibrium of kinase and phosphatase activity is thought to become 

imbalanced, leading to the accumulation of aberrant changes in tau protein over time due to 

abnormal phosphorylation. Understanding how the levels and activity of tau kinases and 

phosphatases change in tauopathy may allow us to deduce key initiating pathological events 

in tauopathy (Boutajangout et al., 2011; Martin et al., 2013).   

Many tau kinases that have been implicated in tauopathy including glycogen synthase-3 

(GSK3), cyclin-dependent kinase 5 (Cdk5) p21-activated kinase 3 (PAK3), p38, extracellular-

signal related kinase (ERK), c-Jun N-terminal kinase (JNK), Akt and microtubule-affinity 

regulating kinase (MARK) (Lee et al., 2011; Tell and Hilgeroth, 2013).  Protein phosphatase 

2A (PP2A) is the major tau phosphatase in the brain and is reduced within the AD brain (Gong 

et al., 1993), however there are other known phosphatases including  PP1, PP2B, PP2C and 

PP5 (Hanger et al., 2009).   

Glycogen synthase kinase 3β (GSK3β) and cyclin dependent kinase 5 (Cdk5) are considered 

to be particularly important kinases in tau pathogenesis and are considered potential 

therapeutic targets for the treatment of tauopathies (Mazanetz and Fischer 2007; 

Boutajangout et al., 2011; Pandey and DeGrado, 2016; Tell and Hilgeroth 2013; Eldar-

Finkelman and Martinez, 2011; Tolosa et al., 2014; Lovestone et al., 2014; Llorens-Martín et 

al., 2014).  GSK3β has been reported to phosphorylate more aberrantly phosphorylated sites 



54 
 

in disease than any other tau kinase (Martin et al., 2013).  There are few studies into the role 

of p21-activated kinase 3 (PAK3) in tau phosphorylation and tauopathy, however, recent 

work suggests that the tau kinase may be upregulated in FTDP-17 and involved in AD (Zhao 

et al., 2006; Ma et al., 2008; Nguyen et al., 2008; Arsenault et al., 2013; Ehrlich et al., 2015; 

Hallmann, et al., 2015). 

1.3.1  GSK3β 

Glycogen synthase kinase 3 (GSK3) is a highly conserved, proline directed serine/threonine 

kinase, which is highly enriched in the brain, especially within the neocortex, hippocampus 

and cerebellum (Yao et al., 2002).   Glycogen synthase kinase 3β (GSK3β) is one of two related 

paralogs that encode GSK3, the other of which is glycogen synthase kinase 3α (GSK3α), which 

produce two highly homologous proteins of 52 and 47 kDa, respectively (Doble and 

Woodgett, 2003).  Both proteins are expressed ubiquitously, although GSK3β is expressed at 

higher levels within the brain, and are distinguished by differences in their C-terminal and N-

terminal domains (Woodgett 1990; Leroy et al., 2002).   

GSK3β is involved in the regulation of a myriad of cellular processes within the brain and is 

recognised as a master regulator in many signalling pathways including insulin signalling and 

glycogen synthesis, neurotransmitter signalling, neurotrophic factor signalling and Wnt 

signalling (Llorens-Martín et al., 2014; Wu and Pan, 2010; An et al., 2010; Hemmings et al., 

1981; Embi et al., 1980).  GSK3β also phosphorylates cytoskeletal proteins, including tau, to 

regulate microtubule architecture and dynamics (Hanger and Noble, 2011; Hashiguchi and 

Hashiguchi 2013; Goold and Gordon-Weeks 2004; Trivedi et al., 2005; Castaño et al., 2010; 

Wu et al., 2011).  Through its role in regulating microtubule dynamics, it is a crucial kinase in 

neurodevelopment, synaptic transmission and synaptic plasticity including the regulation of 

LTP and LTD (Conde and Cáceres, 2009; Geraldo and Gordon-Weeks, 2009; Ciani et al., 2004; 

Purro et al., 2008; Krylova et al., 2000; Salinas, 2005; Lucas et al., 1998; Hall et al., 2000; Lucas 

and Salinas, 1997; Eickholt et al., 2002; Shi et al., 2004; Yoshimura et al., 2005; Jiang et al., 

2005; Davis et al., 2008; Plattner et al., 2006; Clayton et al., 2010; Huang 1998; Peineau et 

al., 2007; Stanton, 1996; Hooper et al., 2007; Lisman 2003; Cai et al., 2008; Malenka and 

Bear, 2004; Giese, 2009; Chen et al., 2006; Zhu et al., 2007; de Barreda et al., 2010).   

GSK3β is an unusual kinase as it is constitutively active, however, due to its involvement in a 

plethora of physiological processes, regulation of GSK3β must be tightly controlled.  GSK3β 
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is primarily regulated by phosphorylation; phosphorylation of Tyr216 can enhance enzyme 

activity and, conversely, phosphorylation of Ser9 is inhibitory (Wang et al., 1994).  Akt, which 

is also a tau kinase and will be discussed later (Chapter 1.3.4), is a kinase involved in the 

PI3K/PKB/Akt signal transduction cascade, stimulated by insulin and growth factors, capable 

of phosphorylating GSK3β at Ser9 (Delcommenne et al., 1998; Cross et al., 1994; Cross et al., 

1995).  The activity of GSK3β can also be inhibited through N-terminal cleavage by calcium-

dependent protease calpain (Goni-Oliver et al., 2007; Jin et al., 2015a).   

GSK3β is capable of phosphorylating at least 36 of tau’s phosphorylation sites (Martin et al., 

2013; Hanger et al., 2007).  However, GSK3β preferably phosphorylates tau at Ser199, 

Ser202, Ser396, Ser400, Ser 412 Ser413 and Thr231 (Billingsley and Kincaid 1997; Imahori 

and Uchida, 1997) and moderately phosphorylates tau at Ser46, Thr50 and Ser202/Thr205 

(Illenberger et al., 1998), while other sites are phosphorylated to a lesser degree.  Tau can be 

phosphorylated by GSK3β in the absence of a previous priming event (Cho and Johnson 

2003), however, many of the sites associated with tauopathy, including Ser404 (Plattner et 

al., 2006; Sengupta et al., 2006) and Thr231 (Li and Paudel, 2006; Li et al., 2006), have been 

demonstrated to require priming by another kinase before phosphorylation of GSK3β can 

occur.  In order for these two particular sites to become phosphorylated Cdk5 primes tau 

before phosphorylation by GSK3β (Li and Paudel, 2006; Li et al., 2006; Plattner et al., 2006; 

Sengupta et al., 2006).  Sites found phosphorylated exclusively in AD by GSK3β include 

Ser422, Ser409, Thr403, Ser368, Ser289, Ser262, Ser238, Ser237, Ser214, Ser210, Ser184, 

Thr175, Thr153 and Thr69 (Martins et al., 2013).  It seems that to affect tau’s MT binding 

ability, tau must be phosphorylated at previously primed sites, indicating the importance of 

priming by other kinases, before GSK3β activity, to affect microtubules (Cho and Johnson, 

2003). 

1.3.1.1  GSK3β in tauopathy 

Since 1992, we have known that GSK3β is an important kinase associated with the abnormal 

hyperphosphorylation of tau leading to NFT formation in tauopathies (Hanger et al., 1992; 

Mandelkow et al., 1992).  Increased GSK3β activity has been observed in the brains of AD 

patients (DaRocha-Souto et al., 2012; Leroy et al., 2007), through the application of AβO to 

primary neuronal cultures (Alvarez et al., 1999; DaRocha-Souto et al., 2012; Takashima et al., 

1996; Takashima et al., 1993) and in murine models of AD (Deng et al., 2014; DaRocha-Souto 

et al., 2012; Shipton et al., 2011).   
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Increased activity and overexpression of GSK3β have been shown to result in increased tau 

phosphorylation at sites consistent with those hyperphosphorylated in AD brains within both 

in vitro (Lovestone et al., 1994; Moreno et al., 1995; Sperbera et al., 1995; Li and Paudel, 

2006; Hanger et al., 1992; Mandelkow et al., 1992) and transgenic (Tg) animal models (Lucas 

2001; Engel et al., 2008; Spittaels et al., 2000; Brownlees et al., 1997).  Inhibition has been 

shown to decrease tau phosphorylation (Malm et al., 2007; Zhang et al., 2011; Shi et al., 

2008; Noble et al., 2005; Crouch et al., 2009; Greco et al., 2009; Kozikowski et al., 2006; 

Leclerc et al., 2001; Takahashi et al., 1999), as well as total tau protein levels (Martin et al., 

2009; Rametti et al., 2008) and MAPT mRNA (Rametti et al., 2008).  The activity of GSK3β has 

also been associated with increased aggregation of tau (Lei et al., 2011; Chun and Johnson 

2007; Engel et al., 2006; Rankin et al., 2007).   

In Tg murine and drosophila models of tauopathy, concurrent overexpression of GSK3β has 

been demonstrated to accelerate neurodegeneration (Lucas 2001; Engel et al., 2008; 

Spittaels et al., 2000; Chun and Johnson 2007) and inhibition of GSK3β has been shown to 

reduce tau-induced neurotoxicity (Nakashima et al., 2005; Pérez et al., 2003; Engel et al., 

2006; Alvarez et al., 1999; Qing et al., 2008; Sofola et al., 2010; Hurtado et al., 2012).   

GSK3β is thought to be intimately related to the pathogenesis of tauopathy and its 

dysregulated activity may participate in pathological feed forward loops in tandem with Aβ 

and tau in AD (Llorens-Martín et al., 2014). One example of a feed-forward loop is the 

activation of GSK3β through hyperphosphorylated tau, mediated by an increase in oxidative 

stress, neuroinflammation and apoptotic processes (Saeki et al., 2011; Shim et al., 2007).  In 

vitro overexpression of GSK3β has been demonstrated to alter the transport of organelles 

along microtubules, microtubule structure and microtubule assembly, alongside abnormal 

phosphorylation of tau (Sang et al., 2001; Lovestone et al., 1996; Cho and Johnson 2003; 

Utton et al., 1997; Cuchillo-Ibanez et al., 2008; Dill et al., 2008; Tatebayashi et al., 2004; 

Reddy, 2013).  Polymorphisms in GSK3β have been demonstrated to occur at over twice and 

thrice the frequency in FTD patients and AD patients, respectively, as in aged healthy subjects 

(Schaffer et al., 2008).   

GSK3β also interacts with different components of the amyloid plaque producing system, 

such as APP and presenilin (Aplin et al., 1996; Terracciano et al., 2010; Kirschenbaum et al., 

2001b; Kirschenbaum et al., 2001; Twomey and McCarthy, 2006) influencing the production 

of greater levels of Aβ (Phiel et al., 2003).  The kinase also influences the expression of β-
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secretase in triple Tg AD murine models, leading to increased Aβ (Ly et al., 2013).   

Reciprocally, mounting evidence in Tg murine and in vitro models carrying mutations 

resulting in increased production of Aβ supports the role of Aβ in increasing GSK3β activity 

(Takashima et al., 1993; Takashima et al., 1996; Hoshi et al., 2003; Takashima et al., 1998; 

Ma et al., 2006; Terwel et al., 2008), representing a pathogenic feed-forward mechanism.  

Furthermore, genetic or pharmacological deactivation of GSK3β in these models prevents 

increased levels and neurotoxicity of Aβ (Takashima et al., 1993; Takashima et al., 1996; Koh 

et al., 2008; Aplin et al., 1997; Ryder et al., 2003; Serenó et al., 2009; Rockenstein et al., 2007; 

Decker et al., 2010; Ly et al., 2013).   

Investigations using tau null mice show these mice are protected against neurotoxicity 

mediated by Aβ (Ittner et al., 2010; Roberson et al., 2007) or GSK3β (de Barreda et al., 2010), 

indicating that tau is required in order for the function of pathogenic feed-forward systems 

established by the complex interactions between GSK3, Aβ and tau. These studies strongly 

implicate GSK3β in AD pathogenesis and have led to the development and clinical testing of 

several GSK3β inhibitors aimed at reducing tau phosphorylation in disease.   

1.3.2  CDK5 

Cyclin dependant kinase 5 (Cdk5) belongs to the cyclin dependant kinase (CDK) family of 

proline-directed serine threonine kinase proteins (Kimura et al., 2014). Many of Cdk5’s 

substrates are involved in the regulation of microtubule dynamics (Shah and Lahiri, 2016; 

Contreras-Vallejos et al., 2014); while tau is the most well-known of these, others include 

collapsing response mediator protein 2  (Brown et al., 2004), axin (Fang et al., 2011), stathmin 

(Hayashi et al., 2006), doublecortin (Tanaka et al., 2004), tubulin polymerization-promoting 

protein (Hlavanda et al., 2007) and microtubule associated protein 1B (Paglini et al., 1998).  

Therefore, the activity of Cdk5 influences neurotransmission, neurogenesis, trafficking of 

cellular cargo, synaptic plasticity, LTP and LTD as these rely on rapid changes in microtubule 

structure (Hawasli et al., 2007; Angelo et al., 2006; Hisanaga and Endo 2010; Nakayama et 

al., 1999; Kawauchi 2014; Kawauchi et al., 2005).   

It is important for Cdk5 activity to be tightly regulated as it functions in so many important 

pathways.  Cdk5 is active when complexed with specific activator proteins, p39 and p35 (Tsai 

et al., 1994; Tang et al., 1997).  The expression of these activator proteins is restricted to the 

neurons, therefore, the activity of Cdk5 is neuron specific (Li et al., 2016; Guidato et al., 1998; 
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Miyajima et al., 1995; Paglini and Cáceres, 2001; Humbert et al., 2000) and developmentally 

regulated such that p39 is expressed in foetal development whereas p35 is expressed in 

adults (Dhariwala and Rajadhyaksha, 2008).  When Cdk5 complexes with its activators p35 or 

p39, which have membrane-targeting motifs, the complex translocates from the cytoplasm 

to the membrane allowing for interaction with its substrates (Asada et al., 2008).  Both p35 

and p39 have short half-lives and are degraded via ubiquitin-mediated proteasome system, 

allowing for tightly regulated Cdk5 activity (Li et al., 2016).   

P35 can be cleaved by calpain to produce p25, which retains the Cdk5 binding domain and 

therefore also complexes with Cdk5 (Tang et al., 1997; Tsai et al., 1994; Lew et al., 1994; 

Uchida et al., 1994; Lee et al., 2000; Patrick et al., 1999).  P25 makes a stronger association 

with Cdk5 and Cdk5-p25 has a half-life estimated to be six times greater than Cdk5-p35 

(Patrick et al., 1998; Angelo et al., 2006).  Cdk5-p25 is also not restricted to the membrane, 

as Cdk5-p35 is, allowing the complex access to additional substrates within the cytoplasm 

and nucleus.  Due to these properties of Cdk5-p25 it is considered hyperactive (Lee et al., 

2000; Noble et al., 2003; Patzke and Tsai 2002).  An increase in Cdk5-p25 is associated with 

neurotoxic events and neurodegenerative disease.   

1.3.2.1  Cdk5 in tauopathy 

Cdk5 is a particularly interesting kinase as all of the 11 serine/threonine sites of tau protein 

that it phosphorylates are found to be phosphorylated in AD brains (Chauhan et al., 2005; 

Hanger et al., 2009; Martin et al., 2013).  Major sites phosphorylated by Cdk5 include Ser404, 

Ser235, Ser202 and Thr205, while minor sites include Ser199, Ser396, Thr153, Thr181, 

Thr212, Thr217 and Thr231 (Kimura et al., 2014; Lund et al., 2001; Wada et al., 1998; Sakaue 

et al., 2005; Kimura et al., 2013).  Cdk5 is deregulated in AD and has been intimately 

associated with the pathological processes leading to neurodegeneration (Chang et al., 2010; 

Kanungo et al., 2009).  The mechanism behind this dysregulation is thought to hinge on 

increased intracellular calcium ([Ca2+]i), which occurs in pathological conditions, including in 

the presence of Aβ1-42 or oxidative stress (Lee et al., 2000; Kusakawa et al., 2000; Patzke 

and Tsai, 2002), within the brains of patients with tauopathy.  Increased [Ca2+]i results in the 

activation of calpain, which subsequently cleaves p35 to produce p25 and leads to increased 

levels of hyperactive Cdk5 (Lee et al., 2000).  Importantly, Cdk5-p25 has a higher tau kinase 

activity than Cdk5-p35 (Hashiguchi et al., 2002; Sakaue et al., 2005; Kimura et al., 2014; 

Patrick et al., 1999; Imahori and Uchida, 1997; Dhavan and Tsai, 2001).   
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Studies that provide support for the hypothesis that Cdk5 is hyperactivated in tauopathy 

brain report increased levels of Cdk5-p25, increased p25 and increased p25/p35 ratios within 

AD brains compared to controls (Tseng et al., 2002; Camins et al., 2006; Lee et al., 1999; 

Grynspan et al., 1997; Liu et al., 2016; Zhu et al., 2001).  Cdk5 protein levels have also been 

reported to be increased two-fold in AD brains compared to age-matched controls (Lee et 

al., 1999; Pei et al., 1998; Zhu et al., 2001).  Increased Cdk5 levels have also been observed 

in pre-tangle neurons isolated from AD brains, suggesting that dysregulation of Cdk5 may be 

an early event in tau pathogenesis  (Pei et al., 2001).   

A transgenic mouse overexpressing p25 in the forebrain has been used to demonstrate that 

increased p25 alone is sufficient to elicit neurofibrillary tangles and subsequent neuronal loss 

in otherwise healthy mice through bolstering Cdk5 activity (Cruz et al., 2003).  Furthermore, 

the pathology observed in these mice occurred in the cortex and hippocampus, which are 

primary regions of neurodegeneration in AD and FTD (Chapter 1.2) suggesting a link between 

aberrantly activated Cdk5 and tauopathy.  In an additional study, this transgenic mouse was 

crossed with FTDP-17 model mice carrying the P301L MAPT mutation and the authors 

reported markedly increased tau phosphorylation, tau pathology and neurodegeneration in 

double transgenic mice compared to mice carrying the tau mutation alone (Noble et al., 

2003).   

Cdk5-p25 phosphorylates the same sites on tau as Cdk5-p35 (Sakaue et al., 2005), therefore, 

it is suspected that Cdk5-p25 is capable of causing hyperphosphorylation of tau as it binds to 

tau with greater affinity (Hashiguchi et al., 2002) and has a longer half-life leading to an 

imbalance in the rate of phosphorylation verses dephosphorylation of tau.  Additionally, as 

Cdk5-p25 can phosphorylate ‘free’ tau within the cytoplasm it increases the propensity for 

tau to become aggregated (Giese, 2014).   Indeed, Cdk5 has been found co-localised with tau 

tangles in AD brains (Augustinack et al., 2002b).   

Increased levels of Aβ are also linked to the activity of Cdk5.  Cleavage of p35 to produce p25 

can be induced by Aβ peptide treatment (Lee et al., 2000; Town et al., 2002; Li et al., 2003).  

Additionally, Cdk5-p25 is involved in the synthesis of amyloid-β (Cruz et al., 2006) via 

increasing levels of β-secretase (Wen et al., 2008) and as APP, presenilin-1 (PSEN1) and 

amyloid-β are among its substrates (Baumann et al., 1993; Morfini et al., 2004; Lau et al., 

2002; Iijima et al., 2000).  Furthermore, Cdk5 has been suggested to play a role in mediating 

tau pathology and neurotoxicity caused by the presence of Aβ in AD.  Numerous in vitro 
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studies involving the application of Aβ peptides have demonstrated increased 

phosphorylation of tau at sites phosphorylated by Cdk5, with concurrent increase in Cdk5-

p25 (Otth et al., 2002; Zempel et al., 2010; Shukla et al., 2012; Hernandez et al., 2009; Han 

2005; Lopes et al., 2007; Zheng et al., 2005; Zheng et al., 2010).  Inhibition of Cdk5 activity 

has been demonstrated to ameliorate Aβ peptide-induced toxicity and tau phosphorylation 

in AD Tg murine models and within cells treated with Aβ peptides (Hernandez et al., 2009; 

Alvarez et al., 1999; Chang et al., 2010; Lopes et al., 2010; Lee et al., 2000).  P35 

overexpression potentiates Aβ-induced apoptosis in neuronal cultures (Utreras et al., 2009).   

Furthermore, overexpression of p25 in cortical neurons not only results in aberrant 

phosphorylation of tau but also cytoskeletal disruption and apoptotic cell death, indicating 

that aberrant Cdk5 activation is neurotoxic. Cdk5-p25 has been demonstrated to increase 

oxidative stress and cause mitochondrial dysfunction (Sun et al., 2008).  Increased levels of 

Cdk5 also promotes neuronal apoptosis (Li et al., 2002; Hamdane et al., 2005; Cheung et al., 

2008).    

CDK5 gene expression has also been proposed to be altered in tauopathy, which could 

explain changes to its activity, however this is controversial.  Liang and colleagues found CDK5 

expression was decreased in the entorhinal cortex, hippocampus, posterior cingulate cortex 

and medial temporal gyrus in patients with AD in comparison to controls (Liang et al., 2008).  

Interestingly, the same study also revealed an increase in p35 expression and it was 

speculated that this may represent a neuroprotective mechanism to prevent further tau 

pathology  (Liang et al., 2008).  Within PC12 cells overexpressing APP, CDK5 expression was 

found to be increased (Czapski et al., 2011).   

1.3.3  P21 activated kinases 

P21 activated kinases (PAKs) are a family of serine/threonine kinases, activated by cell 

division control protein 42 homolog/Ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac), 

which are classified into two groups of isoforms based on their structural and biochemical 

properties.  Group 1 consists of PAKs 1-3, while group 2 includes PAKs 4-6 (Arias-Romero and 

Chernoff 2008; Minden 2012).  All PAKs contain an N-terminal Cdc42/Rac-binding domain 

and a C-terminal protein kinase domain, which are highly conserved (Kelly and Chernoff 

2011).  PAK3 shares 95 % homology with PAK1 and is believed to have many similar, 

redundant functions (Kelly and Chernoff, 2011; Huang et al., 2011).  Both of these tau kinases 



61 
 

are expressed throughout the brain, particularly in the hippocampus, and are distributed 

throughout the soma and within the proximal dendrites of differentiated neurons (Allen et 

al., 1998; Huang et al., 2011).  There are two other main differences between these two 

isoforms of PAK, which may allude to unknown functional discrepancies of the two isoforms; 

PAK1 is able to enter the nucleus of neurons, whereas PAK3 cannot (Lightcap et al., 2009), 

and PAK1 requires binding with Rho GTPases to become active, whereas Pak3 does not. The 

binding of Rho GTPases to PAK3 is, however, essential for the translocation of PAK3 to the 

dendrites (Bagrodia and Cerione, 1999).   

These PAKs are known to play roles in the regulation of synapse formation, dendritic spine 

morphology, synaptic transmission, neurite outgrowth, growth cone guidance, apoptosis and 

cell cycle control (Arias-Romero and Chernoff, 2008; Zhao et al., 2006; Hayashi et al., 2004; 

Nakayama et al., 2000; Obermeier et al., 1998; Zhang et al., 2005; Boda et al., 2004; Malinow 

and Malenka 2002; Thévenot et al., 2011; Huang et al., 2011; Ding et al., 2015).  The 

involvement of PAK 1 and 3 in these roles may be due to their ability to regulate actin and 

microtubule dynamics through phosphorylation of cytoskeletal proteins, including tau (Arias-

Romero and Chernoff, 2008; Zhao et al., 2006; Szczepanowska, 2009). 

Several lines of evidence demonstrate that the loss of PAK 1 and 3 functions is detrimental 

to neurogenesis and instrumental in neurodegeneration.  PAK3 mutations that result in loss 

of function cause X-linked non-syndromic mental retardation (Hayashi et al., 2007; Kreis and 

Barnier, 2009; Peippo et al., 2007).  PAK1/PAK3 null mice have severely impaired memory 

and learning functions, major loss of brain volume and hyperactive behaviour as well as 

reduced dendrite lengths and dendrite tip number (Huang et al., 2011).  Both Tg null PAK1 

and Tg null PAK3 mice exhibit changes in synaptic morphology and LTP, however these mice 

are otherwise viable, fertile and healthy probably owing to their function redundancy 

(Hayashi et al., 2004; Meng et al., 2005; Asrar et al., 2009).  PAK3 null rat hippocampal slices 

and primary neuron cultures also exhibit abnormal spine morphology, abnormal activity-

mediated spine dynamics and reduced LTP.  Furthermore, in the prefrontal cortex and 

hippocampus of patients with depression PAK1 and PAK3 expression are decreased, which 

corresponds with decreased volume of these areas in these patients (Fuchsova et al., 2016).   
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1.3.3.1  PAK3 in tauopathy 

In the hippocampi of early-stage AD patients, increased levels of total and active PAK3 levels 

have been reported (Nguyen et al., 2008), while significantly decreased levels of PAK3 have 

been measured in late-stage AD within the hippocampus, temporal lobes and neocortex (Ma 

et al., 2008; Nguyen et al., 2008; Arsenault et al., 2013; Zhao et al., 2006a).  This disparity in 

PAK3 levels has been replicated in young and aged mutant APP Tg mice (Nguyen et al., 2008).  

The variation in PAK3 levels was demonstrated to be a response to increased Aβ; limiting the 

production of Aβ in these mice, by preventing the cleavage of APP by caspase, prevented the 

increased activity of PAK3 in young mice and the decreased activity in aged mice (Nguyen et 

al., 2008).  This finding was replicated in rat hippocampal neurons treated with Aβ42O, which 

were found to exhibit abnormal activation of PAK3 and translocation of PAK3 from the 

cytosol to the membrane (Ma et al., 2008).  Additionally, in fAD murine models PAK3 has 

been shown to mediate the pathways leading to apoptosis and abnormal DNA synthesis 

through its interaction with the C-terminus of APP (McPhie et al., 2003).  An increase in PAK3 

has been proposed to signify a protective mechanism in early AD as the loss of PAK3 is 

detrimental, evidenced by a more pronounced loss of synaptic proteins and a loss in social 

recognition abilities in Tg AD mice crossed with PAK3 null mice, compared to those with two 

copies of PAK3 (Arsenault et al., 2013). Alternatively, the initial increase in the activation of 

PAK 1 and 3 in AD may be a consequence of microtubule instability, as this has been 

demonstrated to result in PAK1 activation in non-neuronal cell cultures (Zang et al., 2001). 

Comparatively fewer studies have investigated the involvement of PAK3 on tau pathogenesis 

in tauopathy. A high-content siRNA screen revealed PAK3 phosphorylates tau at Ser262 

(Azorsa et al., 2010), however, further investigation is required to understand which other 

sites PAK3 may phosphorylate.  Arsenault and colleagues demonstrated that loss of PAK 

function within a Tg AD murine model corresponds with increased aggregation of tau, 

however, no change in soluble tau levels or tau phosphorylation at Ser202, Ser205, Ser396 

or Ser404 was detected (Arsenault et al., 2013).  In a recent study, however, PAK3 depletion 

in 3xTg-AD mice led to increased pSer202/pSer205 and pSer396/pSer404 tau (Bories et al., 

2017).   

Dysregulation of PAK3 activity may indirectly result in aberrant tau phosphorylation through 

its effects on other tau kinases. Extracellular signal regulated kinase 3 (Erk3), a tau kinase 

implicated in neurodegenerative disease (De La Mota-Peynado et al., 2011), is a substrate of 
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PAK3.  Furthermore, PAK3 forms a complex with the tau phosphatase protein phosphatase 2 

(PP2A) (Westphal et al., 1999), found to be deactivated and expressed at lower levels in 

tauopathy (Torrent and Ferrer, 2012).  Since PP2A is thought to be regulated through 

complexing with other proteins, this may suggest that PAK3 regulates PP2A activity 

(Westphal et al., 1999).    

PAK3 is downregulated is hiPSC dopaminergic neurons carrying mutations N279K and V337M 

MAPT, suggesting that tau pathology resulting from these mutations may influence the 

expression of PAK3 (Ehrlich et al., 2015).  Tau activates AP-1 transcription factor via MAPK 

(Leugers and Lee, 2010) and AP-1 transcription factor is responsible for PAK3 transcription 

(Parker et al., 2013), therefore it is possible that aberrant species of tau affect the expression 

of PAK3.  Furthermore, PAK3 phosphorylates tau kinase GSK3β as well as tau (Killick et al., 

2014; Zhou et al., 2014; Inestrosa and Varela-Nallar, 2014).   

 

1.4  Models of tauopathy 

Investigating the pathogenesis of tauopathy is particularly challenging for several reasons.  

Firstly, these diseases are unique to the aged, human brain, which is inaccessible before 

death. Secondly, tauopathies are clinically, pathologically and biochemically heterogeneous, 

therefore tissue from large cohorts of patients is required to allow us to form firm inferences 

about disease.  Thirdly, the neuropathological phenotypes of various tauopathies are 

distinguished based on the involvement of different anatomical areas, cell types and 

presence of distinct isoforms of tau in the pathological deposits, calling for a multidisciplinary 

approach including biomolecular techniques to understand these diseases.   

Recent progression in imaging techniques, specifically in positron emission tomography, 

computed tomography, magnetic resonance imaging and multiphoton imaging has furthered 

our ability to study the brains of individuals with AD and FTD.  While these techniques provide 

valuable data in living patients, particularly concerning the anatomical location of 

neurodegeneration, they are limited in their ability to provide biomolecular information.  Yet, 

whilst post-mortem histology and biomolecular study of brain tissue allows us to see end-

stage properties of disease, we are unable to study the mechanisms of initial pathogenesis.  

This is particularly important as AD and FTD are progressive diseases, whereby pathology is 

accumulated over a long prodromal period.  Furthermore, it is not feasible to obtain brain 
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tissue from a large cohort of patients with very low post-mortem delay (PMD) and proteins, 

post-translational modifications and mRNA are particularly vulnerable to degradation 

(Matsuo et al., 1994).  Prolonged agonal conditions including hypoxia, coma and ischaemia, 

further complicate assessment of tauopathy-related pathology in these samples as these 

conditions can alter molecular pathways associated with neurodegenerative disease.  To 

address research questions concerning the biomolecular basis of tauopathy, animal models 

and cell-based models, such as those using neuroblastoma cell lines and primary murine 

neuron cultures, have traditionally been used, however, the use of these models have 

limitations. 

1.4.1  Animal models 

The aetiology of idiopathic tauopathy is unknown.  Therefore, animal models have been 

created using transgenic (Tg) and knockout (KO) technology to modulate the expression of 

pathogenetically important proteins, with the intention of replicating the neuropathology 

and clinical phenotypes recognised in humans.  The most popular vertebrate animals used in 

neurodegenerative research are rodents.  Invertebrate animals, including the 

nematode Caenorhabditis elegans (C. elegans) and the fruit fly Drosophila melanogaster 

(Drosophila), are particularly useful for genetic screening.  While each of these have provided 

important insights into tauopathy (Götz and Ittner, 2008), no model is capable of 

recapitulating all aspects of human tauopathy and each of them have limitations.   

1.4.1.1  Murine models 

Murine models of AD are a mainstay of research into tauopathy and have facilitated many 

important discoveries, including those regarding the biology of formation of amyloid plaques 

and neurofibrillary tangles.  Tg technology, coupled with behavioural analysis techniques 

cultivated over decades, has enabled in vivo investigation in animals that have a similar 

number of genes and considerable chromosomal synteny with humans (Chinwalla et al., 

2002).  The structure and function of the circuitry of the hippocampus and entorhinal cortex 

is also largely phylogenetically conserved between humans and mice.  There are limitations, 

however; the use of rodents is costly, time-intensive and restricted by ethical considerations 

due to animal rights laws.  Failed translation of promising therapeutic solutions for 

tauopathies into humans is also a major problem with the use of mice in pre-clinical research 

(Franco and Cedazo-Minguez, 2014; Laurijssens et al., 2013; Windisch, 2014).   
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Murine models of AD successfully recapitulate age-dependent accumulation of amyloid 

plaques, which are structurally similar to those found in humans, as well as memory 

impairment and cognitive deficits that occur before the presence of pathology (Meyer-

Luehmann et al., 2008; Morrissette et al., 2009).  Physiological differences are thought to 

underlie the lack of faithful recapitulation of important features of human tauopathy, such 

as widespread neuronal loss (Sullivan and Young-Pearse, 2015).  Rodents and humans differ 

neurally: human cortical and hippocampal neurons have more elaborate dendritic branching 

and a greater density of dendritic spines compared to mice (Ballesteros-Yáñez et al., 2006; 

Benavides-Piccione et al., 2006; Elston et al., 2011); humans’ astrocytes are larger with more 

complex processes (Oberheim et al., 2006; Oberheim et al., 2009); only humans have Von 

Economo (also known as Spindle) neurons, which are important in pathogenesis of FTD 

(Seeley et al., 2006).  Another important consideration is that the splicing of exon 10 MAPT 

varies in mice and humans with 4R tau predominantly expressed in adult mice (McMillan et 

al., 2008).  There are also disparities between humans and rodents in drug metabolism, drug 

pharmacokinetics and immune system modulation (Geerts, 2009; Seok et al., 2013).   

Another concern is the fact that murine Tg models may in fact be representative of the 

consequences of overexpression of human genes, at levels significantly above those that are 

physiologically relevant, rather than tauopathy.  Indeed, many proteins will become toxic if 

overexpressed at sufficient levels and human genes within a rodent may cause abnormal 

interactions.  While murine models have been invaluable in deciphering the biology of 

amyloid and tau aggregation, the subtle molecular changes that result in pathogenesis in 

human AD and FTD, particularly in sporadic cases, may not be involved in generation of the 

observed pathology in these animals.  Furthermore, many popular murine models 

overexpress multiple mutated genes and this does not occur in people with familial disease.  

Additionally, the majority of cases of tauopathy are sporadic whereas these animal models 

are representative of familial disease.  As we do not yet understand whether the molecular 

mechanisms that instigate sporadic disease are equal to those that cause familial disease 

these models are thought to be limited in their applicability for the study of tau pathogenesis.   

1.4.1.3  Drosophila models 

The genome and neurobiology of Drosophila is well characterised, owing to over 100 years 

of research using these animals.  There are no ethical restrictions according to animal 

protection laws for the use of drosophila, which when coupled with the fact that they are 



66 
 

time and cost effective to maintain makes them a good option for modelling 

neurodegenerative disease.  Drosophila can be genetically modified inexpensively and very 

quickly, which, along with their short-life span deems them particularly applicable to genetic 

screens (Prüßing et al., 2013).  Tg drosophila expressing MAPT mutations do exhibit 

hyperphosphorylation of tau and neurodegeneration, however, they do not demonstrate 

large aggregations of tau (Wittmann, 2001).   

Although drosophila are more complex organisms compared to C. elegans, they are far less 

complex than humans both physiologically and genetically.  The anatomy of the drosophila 

brain, although well characterised, is very different to that of humans.  There is also poor 

conservation of many proteins important in neurodegenerative disease and a lower level of 

genetic redundancy.  They also have a simpler, less adaptive immune system in comparison 

to humans and drug metabolism is likely to be very different.  It is also very difficult to 

measure complex behaviour and cognitive decline in these animals (Prüßing et al., 2013).   

1.4.1.3  C. elegans models 

C. elegans are time-effective, cheap and unrestricted by ethical considerations due to animal 

rights laws.  There are also advantages in using C. elegans for screening, including the ease 

of genetic modification, the ability to generate Tg strains rapidly and the short lifespan of the 

worms.  Kraemer and colleagues developed a tauopathy model using C. elegans expressing 

wild type or FTDP-17 mutant tau, which recapitulated the aggregation of 

hyperphosphorylated tau and age-dependent neuronal degeneration, that was later used 

alongside screening to demonstrate the possible involvement of many unexpected genes in 

tauopathy (Kraemer et al., 2003; Kraemer et al., 2006).  These models are limited, however, 

by their applicability to human tauopathy due to major differences in physiology compared 

to humans (Teschendorf and Link, 2009).  In total, there are just 302 neurons in the nervous 

system of these animals and no active immune system.  Furthermore, it is very difficult to 

carry out electrophysiological studies using C. elegans neurons as these are small and difficult 

to patch clamp (Ramot et al., 2008).   

1.4.2  Cell-based models of tauopathy 

The main advantages of using in vitro models are that these can be used alongside 

biomolecular techniques to study the biomolecular mechanisms involved in tauopathy.  

Traditional cell-based disease modelling approaches rely on animal primary neurons or 
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cancerous cell lines.  To model tauopathy, these cells are most commonly treated with tau 

or Aβ peptides and can be genetically modified to knockout or overexpress genes encoding 

proteins involved in tauopathy.  Whilst these models have provided invaluable contributions 

to neurodegenerative research, they also have limitations.   

1.4.2.1  Primary neuronal cultures 

Primary cortical and hippocampal neuron cultures, which are lost in tauopathy, represent a 

valuable research tool for the study of biomolecular mechanisms underlying tauopathy and 

for electrophysiological studies.  These neurons are usually isolated from either wild type 

(WT) or Tg murine animals, and therefore are limited in their ability to model human 

tauopathy by their physiological differences.  These cells are more likely to recapitulate 

neurons in the body, however, compared to cancer-derived cell lines (Gordon et al., 2013) 

(Chapter 1.4.2.2). Perhaps the most technically challenging aspect faced by researchers 

working with these cultures is the inability of isolated neurons to proliferate; cultures must 

be skilfully established and maintained to ensure a healthy culture is obtained (Gordon et al., 

2013).  Additionally, isolation of these cells from animal tissues is difficult as neurons must 

be separated from other neural cell types and the purity of each culture must be determined.  

The use of primary neuronal cultures is also subject to ethical considerations under animal 

rights laws. 

1.4.2.2  Cancer-derived cell lines 

Models of tauopathy based on cancer-derived cell lines circumvent many of the limitations 

posed by primary cell culture models.  These cells are immortal, banked, easy to culture and 

are not subject to ethical considerations.  These properties, alongside the ability of these 

lines to be rapidly expanded in vitro, facilitates the establishment of unlimited cultures of 

homogenous cells, limiting variablily in experimental design.  It is also easier to genetically 

modify these cells as they are easy to transfect (Gordon et al., 2013).   

Numerous human cancer-derived cell lines exist; NT2 and SH-SY5Y are commonly used and 

are derived from cell lines established from a neuronally committed teratocarcinoma and a 

neuroblastoma, respectively.  Although these cells are derived from humans, they are 

considered to be less representative of human neurons compared to cultured primary 

neurons as these cells lack important neuronal phenotypes such as ion channels, receptors, 

functional synapses and long neuritic processes usually found in neurons.  This has been 



68 
 

somewhat overcome by directed differentiation of these cells to produce ‘neuron-like’ cells, 

most commonly using retinoic acid.   

Differentiated SH-SY5Y cells express mature neuronal markers, including tau, and have 

neuritic processes, synaptophysin-positive functional synapses, increased membrane 

excitability, neurotransmitters (NT) and NT receptors (Adem et al., 1987; Påhlman et al., 

1981; Påhlman et al., 1984; Lopes et al., 2010; Tosetti et al., 1998; Encinas et al., 2000; 

Kovalevich and Langford, 2013).  These cultures are nevertheless limited in their ability to 

recapitulate tau pathogenesis due to the interaction of biomolecular pathways with 

expressed cancer genes (Zheng et al., 2010).  An important consideration in the development 

of models of tauopathy using these lines is that neuroblastoma cell lines do not express all 

six isoforms of tau, therefore may not be appropriate for studying molecular aspects of tau 

pathogenesis (Sullivan and Young-Pearse, 2015).   

1.4.3  Modelling tauopathy using induced pluripotent stem cells 

1.4.3.1  Stem cells 

Stem cells are undifferentiated cells of a multicellular organism capable of replicating 

indefinitely to give rise to cells of the same type or differentiating to become other types of 

cells.  The zygote, which is the cell created after fertilisation of an egg, is a totipotent stem 

cell; this cell can give rise to all cells of the body as well as forming the extra-embryonic tissue, 

including the placental and umbilical tissues (Mitalipov and Wolf, 2009).  The blastocyst is 

generated early in embryogenesis and consists of the embryoblast and the trophoblast, 

which are the inner and outer layers of this structure, respectively.   

The inner cell mass forms within the blastocyst and consists of human embryonic stem cells 

(hESC) which can form all the cells of the body, except extra-embryonic tissues, and are thus 

described as pluripotent (Gilbert, 2000).  These cells differentiate to form multipotent stem 

cells restricted to differentiation into one of the three primary germ layers; mesoderm, 

endoderm and ectoderm.  Neural tissue arises from the ectoderm, as does tissue that makes 

up the skin, teeth, hair and many exocrine glands (Gilbert, 2000).  These multipotent cells 

further differentiate to produce progenitor cells with further restricted potential for 

differentiation. This includes the neuroblasts, which differentiate to form neurons, and 

glioblasts, which differentiate to produce glial cells such as oligodendrocytes and astrocytes.  
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The differentiation of totipotent, pluripotent and multipotent cells is schematically 

represented in Figure 1.10.  

 

 

1.4.3.1.1  Embryonic stem cells  

The ability of pluripotent stem cells to replicate indefinitely, coupled with the development 

of protocols allowing directed differentiation to produce cells of the nervous system, 

provided researchers with a non-exhaustive supply of human neurons with which to study 

neurodegenerative disease in vitro.  For use experimentally, hESC are derived from within 

the inner cell mass of the blastocyst of donated embryos (Vazin and Freed, 2010). 

In 2000, the first neurons were derived from hESC (hESC-neurons) (Reubinoff et al., 2000).  

Subsequently protocols for directing differentiation to produce neurons, which involve 

manipulation of the in vitro environment as well as treatment with growth factors and small 

Figure 1.10     Schematic representation of totipotent, pluripotent and multipotent stem cell 
differentiation during development 

Zygotes are totipotent and differentiate to produce embryonic stem cells (hESC), which comprise 
the inner cell mass (ICM) and are pluripotent.  hESC of the inner cell mass differentiate to form 
germ layer specific multipotent stem cells, which give rise to tissue specific progenitors.  Neurons 
are formed from neural stem cells, which give rise to neuroblasts. 
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molecules, have been refined allowing for the derivation of specific cells including motor 

neurons, dopaminergic neurons, GABAergic neurons, oligodendrocytes, astrocytes, 

glutamatergic neurons and cholinergic neurons (Crompton et al., 2013; Nilbratt et al., 2010; 

Bissonette et al., 2011; Perrier et al., 2002; Gerrard et al., 2005; Yan et al., 2005; Erceg et al., 

2008; Zhang et al., 2006; Wichterle et al., 2002). 

One important limitation of disease modelling using hESC is that these cells are derived from 

embryos, rather than adult humans, therefore we do not know whether this person would 

have developed sporadic tauopathy since we still do not understand every genetic and 

epigenetic factor that contributes to increased risk.  Additionally, donated embryos are rare 

and precious resources, limiting the creation of a large bank of cell lines thought to be 

necessary to account for the heterogeneity in tauopathy.  Furthermore, research using hESC 

is fraught with political and ethical concerns as collection of the inner cell mass obligates the 

destruction of the embryo. 

1.4.3.1.2  Induced pluripotent stem cells 

In 2006, Nobel Laurette Yamanaka demonstrated that terminally differentiated, somatic cells 

can be reprogrammed to produce pluripotent stem cells (Takahashi and Yamanaka, 2006).  

These cells, called induced pluripotent stem cells (iPSC) are identical to embryonic stem cells 

in their pluripotent potential and epigenetic profile (Mallon et al., 2014).  The first human 

induced pluripotent stem cells (hiPSC) were generated in 2007 (Yamanaka et al., 2007) using 

human immunodeficiency virus (HIV) derived lentiviral vectors to transfer genes encoding 

transcription factors that drive pluripotency into fibroblasts.  These factors, commonly 

referred to as ‘Yamanaka’s factors’, include Octamer binding transcription factor 4 (OCT4), 

Kruppel-like factor 4 (Klf4), Sex determining region Y box 2 (SOX2) and myelocytomatosis viral 

oncogene homologue (c-myc).  Further developments in reprogramming led to the use of 

various other combinations of factors to achieve reprogramming, allowing for the elimination 

of c-myc, which is a known oncogene (Yu et al., 2007).   

The hiPSC lines, V337M-C and V337M-E, generated for this project (Chapters 3 and 4) were 

created through reprogramming of fibroblasts using lentiviral vectors.  Whilst the use of 

lentiviral vectors delivers good reprogramming efficiency, the main disadvantage of using 

this method is that the reprogramming vectors are integrated into the infected somatic cell’s 

genome leaving a ‘footprint’.  The presence of this ‘footprint’ may affect experimental results 
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through transient expression of transgenes (Rao and Malik, 2012).  Furthermore, the use of 

retroviral and lentiviral vectors can introduce the risk of deleterious DNA recombination 

associated with viral integration into the nucleus (Vannucci et al., 2013).   

The use of non-integrating viral delivery systems such as sendai viral vectors (Fusaki et al., 

2009), mRNA reprogramming (Warren et al., 2010), PiggyBac transposition (Wang et al., 

2008; Woltjen et al., 2009; Yusa et al., 2009), small molecule reprogramming (Jung et al., 

2014) and episomal factor delivery methods such as lipofection (Okita et al., 2008) and 

nucleofection (Yu et al., 2011; Okita et al., 2010) have vanquished the risk of deleterious DNA 

recombination, improving the reliability of iPSC models (Schlaeger et al., 2015).  

The field is rapidly progressing and has overcome many of the initial limitations recognised.  

Reprogramming efficiency has been vastly improved using small-molecule compounds such 

as valproic acid (Huangfu et. al., 2008), genetic alterations such as knockdown of the p53 

gene (Hong et. al., 2009) and optimisation of the in vitro environment, for example through 

culturing in normoxic conditions (Prado-Lopez et al., 2010).  Techniques enabling 

reprogramming of many other non-invasively obtained cells, including blood cells (Okabe et 

al., 2009; Loh et al., 2009) has been developed.  

1.4.3.1.3  Differentiation of pluripotent stem cells to produce neurons 

The generation of specific subtypes of human pluripotent stem cell (hPSC)-derived neurons 

intended to model tauopathy often begins with generation of forebrain neurons.  Since the 

‘default’ fate for neural differentiation of hiPSC is to become cortical neurons, further 

differentiation into specific neuronal subtypes is achieved through dual SMAD inhibition 

within a monolayer culture (Chambers et al., 2009; Shi et al., 2012), embryoid body (EB) 

culture (Crompton et al., 2013; Eiraku et al., 2008) or in tandem with the development of 

three-dimensional organoid culture system (Lancaster et al., 2012).  Small molecules, growth 

factors and the forced expression of transcription factors (Bissonnette et al., 2011; Duan et 

al., 2014) can be used to modulate developmental patterning pathways to produce specific 

cell types; for example, glutamatergic neurons (Boisvert et al., 2013; Shi et al., 2012; Vazin et 

al., 2014) and bfCNs (Crompton et al., 2013; Bissonnette et al., 2011).  hiPSC-derived 

glutamatergic neurons have been demonstrated to be more vulnerable to Aβ-induced 

pathogenesis compared to hiPSC-GABAergic neurons (Vazin et al., 2014), supporting the 
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utility of hiPSC-neurons for research into the selective vulnerability of neuronal subtypes in 

tauopathy.  

1.4.3.1.4  The role of dual Smad inhibition in neural induction 

Smads are proteins that mediate intracellular signalling triggered by transforming growth 

factor β (TGFβ) ligands, which include TGFβs and bone morphogenic proteins (BMPs) 

(Ueberham and Arendt, 2013).  The TGFβ superfamily signalling pathways have diverse and 

complex roles in the regulation of cell growth, differentiation and development of neural 

cells (Yun et al., 2008). TGFβ signals are transmitted through transmembrane 

serine/threonine (Ser/Thr) kinase receptors, which when activated phosphorylate TβRI-

associated Smads.  These activated Smads form a complex with the co-mediator Smad (Smad 

4), which translocates to the nucleus where it activates or suppresses target gene expression 

(Massagué et al., 2000).   

There are Smads associated with two main pathways; Smad1/5/9 are part of the BMP 

pathway and Smad2/3 are part the TGFβ/activin pathway.  Inhibition of the BMP pathways, 

associated with mesoderm lineage development, have previously been shown to be involved 

in neural induction (Sasai et al., 1994; Hemmati-Brivanlou et al., 1994; Smith et al., 1992) and 

inhibition of either the BMP or TGFβ pathways aids neural induction of hESCs (Smith et al., 

2008; Elkabetz et al., 2008; Lee et al., 2007).  Inhibition of either of these pathways alone is 

not sufficient to induce neural induction, however, dual pathway inhibition has been shown 

to enable neural induction through directed differentiation towards the neuroectoderm in 

human embryonic stem cell cultures (Chambers et al., 2009).   

1.4.3.1.5  Modelling tauopathy using induced pluripotent stem cells 

This advent, when paired with protocols facilitating the derivation of hESC-neurons, invited 

the generation of neurons differentiated from hiPSC that had been reprogrammed from 

disease patient’s somatic cells (hiPSC-neurons), creating a new opportunity for modelling 

disease in vitro.  Patient-derived hiPSC-neurons were first cultured by Dimos and colleagues 

to model ALS (Dimos et. al., 2008) and later Ebert and colleagues demonstrated that iPSC-

motor neurons from spinal muscular atrophy (SMA) patients recapitulated deficits of the 

disease (Ebert et. al., 2009).  The first iPSC model of AD was reported in 2011 (Yagi et al., 

2011) and significant progression has been made since then. 
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There are still limitations in the use of hiPSC as models of tauopathy.  Recent studies have 

revealed heterogeneity between cell lines generated from patients with fAD (Kondo et al., 

2013), sAD (Kondo et al., 2013; Israel et al., 2012) and FTDP-17 carrying the same MAPT 

mutation (Hallmann et al., 2017; Wren et al., 2015), which reflects the heterogeneity noted 

in patients.  This finding calls for studies using hiPSC-neurons derived from larger cohorts of 

patients and although biorepositories, such as The Human Pluripotent Stem Cell (hPSC) 

Repository project (California, USA) have been established, it may take some time before 

large numbers of cell lines are available.  Further to this, the generation of neurons from large 

numbers of cell lines is labour intensive and expensive. Genetic background variability 

between lines may also hinder reliable results (Kim et al., 2010), although the development 

of isogenic lines circumvents this problem (Fong et al., 2013).  As the field advances, 

developments in reprogramming and differentiation efficiency are hoped to overcome 

counter these factors (Ebrahimi, 2015).   

1.4.3.1.6  Modelling frontotemporal dementia using induced pluripotent stem cells 

hiPSC-neuron models have been derived through reprogramming somatic cells from patients 

with various MAPT mutations, including V337M (Ehrlich et al., 2015), N279K (Wren et al., 

2015; Ehrlich et al., 2015; Iovino et al., 2015), P301L (Iovino et al., 2015), A152T (Silva et al., 

2016; Fong et al., 2013), R406W (Imamura et al., 2016), IVS 10+16 (Esteras et al., 2017) and 

IVS 10+14 MAPT (Imamura et al., 2016).  These hiPSC lines have been used to derive mixed 

populations of neurons (Ehrlich et al., 2015; Fong et al., 2013), as well as specific neuronal 

subtypes including cortical neurons (Esteras et al., 2017; Imamura et al., 2016; Wren et al., 

2015; Silva et al., 2016; Iovino et al., 2015; Usenovic et al., 2015), dopaminergic neurons 

(Ehrlich et al., 2015) and astrocytes (Hallmann et al., 2017).  hiPSC-neuron models have also 

been derived through overexpression of P301L MAPT within control hiPSC lines (Verheyen et 

al., 2015).  One model of sFTD-tau has been developed through seeding of control hiPSC-

neurons with oligomeric tau species to initiate tau pathology, rather than through deriving 

hiPSC from patients carrying mutations (Usenovic et al., 2015).  A summary of the key findings 

of these studies is given in Table 1.1.  
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Table 1.1 hiPSC models of FTDP-17  

Mutation Neuronal 
Subtype 

Findings Reference 

A152T 
MAPT 

Mixed Gene-dose-dependent effect of the A152T MAPT 
mutation on neurodegeneration and increased 
tau phosphorylation at Ser202/Thr205.  
Dopaminergic neurons are more susceptible to 
neurodegeneration that other neuronal subtypes.   

(Fong et al., 
2013) 

N279K and 
P301L 
MAPT 

Cortical 
glutamatergic 

N279K and P301L increase levels of tau during 
maturation and cause mitochondrial transport 
dysfunction.  N279K express tau prematurely 
leading to an increased 4R:3R tau ratio, have 
increased pThr212/pSer214 tau and tau 
aggregates. P301L neurons have contorted 
processes with varicosities containing tau and α-
synuclein. 

(Iovino et al., 
2015) 

P301L  Cortical 
glutamatergic 

No tau pathology could be detected in mutant 
neurons, except on priming with pre-formed 
aggregates, which then revealed substantially 
increased pSer202/Thr205 tau, total tau levels and 
tau aggregation compared to controls.   

(Verheyen et 
al., 2015) 

N279K Cortical 
glutamatergic 

N279K increased tau protein, 4R:3R tau ratio and 
cellular stress.  Increased levels of vesicle 
components. 

(Wren et al., 
2015) 

No 
mutation 

Cortical Treatment of control neurons with oligomeric tau 
species increased pThr231 and pSer396/404 tau, 
numbers of MC1 positive neurons and tau 
aggregation. 

(Usenovic et 
al., 2015) 

N279K 
V337M 

Mixed 50% 
dopaminergic  
45% 
GABAergic 
2-4% 
Cholinergic 

N279K and V337M MAPT hiPSC-neurons exhibit 
increased tau fragmentation, increased 
pSer202/Thr205 tau, activation of the unfolded 
protein response and disease associated changes 
to the gene expression profile.  N279K neurons 
were found to have increased tau aggregation, an 
increased 4R:3R tau ratio, decreased neurite 
extension and increased oxidative stress response 
to inhibition of mitochondrial respiration.   

(Ehrlich et al., 
2015) 

IVS 10+16 
MAPT 

Cortical 
glutamatergic 

An increased ratio of 4R:3R tau ratio in IVS 10+16 
MAPT compared to controls was found.  
Additionally, full splicing of tau was recognised 
after prolonged culture of neurons for 1 year. 

(Sposito et al., 
2015) 

A152T 
MAPT 

Mixed Increased levels of tau and ptau at Ser202/Thr205, 
Ser396/404 and Thr231/235 were found in A152T 
MAPT hiPSC-neurons.  No aggregates were 
detected and MAPT expression was found to be 
unchanged.  A152T MAPT hiPSC-neurons were 
more vulnerability to cellular stress. 

(Silva et al., 
2016) 
 

R406W 
 
IVS 10+14 
C>T 

Cortical 
neurons  

R406W and IVS 10+14 MAPT hiPSC-neurons have 
accumulations of misfolded tau accumulations 
and increased extracellular release of misfolded 
tau.  Cultures of hiPSC-neurons carrying these 
mutations also show increased 
neurodegeneration.  Upon electrical stimulation, 

(Imamura et 
al., 2016) 
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evoked calcium ion (Ca2+) transients are 
dysregulated. IVS 10+14 MAPT neurons also 
exhibited increased 4R tau. 

N279K Astrocytes Astrocytes from one mutant line were larger and 
contained tau, as well as being more vulnerable to 
oxidative stress and having increased levels of 
GFAP indicative of astrocytic activation.  4R1N tau 
expressed early in mutant neurons and astrocytes 
compared to controls. 

(Hallmann et 
al., 2017) 

IVS 10+16 
MAPT 

Cortical 
glutamatergic 

Increased vulnerability of control neurons 
cultured with FTD-astrocytes to cellular stress.  
Altered mitochondrial function.  Overproduction 
in ROS in mitochondria, which leads to oxidative 
stress. Increased cell death in neurons dependent 
on increased ROS in mitochondria.  

(Esteras et al., 
2017) 

 

These studies have demonstrated that hiPSC-neuron FTDP-17 models are capable of 

recapitulating the neuronal pathology found in disease patient brains.  Neuronal pathology, 

including decreased neurite extension in hiPSC-neurons carrying N279K MAPT (Iovino et al., 

2015) and contorted processes with varicosities containing tau and α-Synuclein in P301L 

hiPSC-neurons (Iovino et al., 2015), has been reported. 

Some of these studies have investigated the molecular mechanisms underlying the observed 

neurodegeneration, tauopathy and response to cellular stress.  The results demonstrate that 

these models are useful for probing tau pathogenesis.  For example, N279K and P301L MAPT 

hiPSC-neurons exhibit mitochondrial transport dysfunction (Iovino et al., 2015), which may 

result from these mutations and underlie neurodegeneration.  Increased levels of vesicle 

components have been noted in A152T MAPT neurons (Wren et al., 2015).  N279K and 

V337M MAPT hiPSC-neurons exhibit increased activation of the unfolded protein response 

(Ehrlich et al., 2015), responsible for protein clearance, which may show a compensatory 

increased clearance mechanisms to cope with excess tau within these cells.  Healthy hiPSC-

neurons co-cultured with hiPSC-astrocytes from a patient carrying 10+16 MAPT showed 

reduced mitochondrial function, demonstrating that astrocytes carrying the mutation can 

cause neuronal dysfunction in nearby neurons within the brain (Esteras et al., 2017).  This 

Table 1.1 hiPSC models of FTDP-17  

hiPSC models of FTDP-17 derived from patients, apart from for Verheyen et al., 2015 in which 

control neurons were genetically altered to express 2R4N P301L and for Usenovic et al., 2015, in 

which control neurons were pre-seeded with pre-aggregated tau to induce tau pathology.  ‘Mixed’ 

refers to a mixed population of neuronal subtypes.  In Esteras et al., 2017 control hiPSC neurons 

were cultured with hiPSC-astrocytes carrying the IVS 10+16 MAPT mutation. 



76 
 

study demonstrated that these in vitro hiPSC models can be used to probe relationships 

between different cell types in isolation during the development of disease.  The models have 

also demonstrated changes in the levels of tau protein, tau phosphorylation and tau 

aggregation as a result of different mutations within MAPT.   

These studies have also provided insights into the effects of MAPT mutations during neuronal 

maturation.  Tau mutations have been found to have no effect on reprogramming efficiency 

(Fong et al., 2013; Imamura et al., 2016) or the propensity of hiPSC to differentiate into 

neuronal subtypes (Hallman et al., 2015; Ehrlich et al., 2015; Imamura et al., 2016; Fong et 

al., 2013).  However, N279K hiPSC-neurons express 4R1N much earlier than control neurons 

(Iovino et al., 2015).  

These studies have also been used to provide proof-of-principle that these models can be 

used in drug discovery.  For example, hiPSC-dopaminergic neurons from patients with V337M 

MAPT and N279K MAPT were found to have a pronounced oxidative stress response 

compared to controls, which could be rescued through GSK3β inhibition (Ehrlich et al., 2015).  

Imamura and colleagues also demonstrated that treatment of hiPSC-neurons derived from 

patients carrying the 10+14 MAPT mutation with glutamate receptor blockers or genetic 

correction of using CRISPR/Cas9 gene editing ameliorated evidence of pathology in these 

cells (Imamura et al., 2016).  Similarly, Hallmann and colleagues have demonstrated the 

genetic correction of N279K MAPT neurons with CRIPSR/Cas9 (Hallmann et al., 2017).   

1.4.3.1.7  Modelling Alzheimer’s disease using induced pluripotent stem cells 

To date, the majority of AD models established using hiPSC-derived neurons have been 

developed through reprogramming somatic cells from fAD patients carrying mutations in 

genes involved in the production of Aβ i.e. PSEN1, PSEN2 and APP (Chapter 1.2.3.3).   Models 

of sAD have also been developed that rely on both the differentiation of hiPSC-neurons from 

sAD patients (Kondo et al., 2013; Israel et al., 2012; Duan et al., 2014; Young et al., 2015; 

Hossini et al., 2015) and the treatment of control hiPSC-neurons with Aβ peptides (Xu et al., 

2013; Zhang et al., 2014; Vazin et al., 2014; Nieweg et al., 2015).  hiPSCs reprogrammed from 

Down’s syndrome (DS) patients have been developed to study AD (Shi et al., 2012; Chang et 

al., 2015), as DS is caused by a triplication of chromosome 21, which contains the genes for 

APP and some tau kinases, such as dual specificity tyrosine-phosphorylation-

regulated kinase 1A (DYRK1A) (Kimura et al., 2007; Jin, Yin, Gu, et al., 2015), and patients 



77 
 

with DS also develop dementia, akin to AD.  Models of AD using hiPSC-neurons have also 

been developed through culture of hiPSC-neurons in three dimensional (3D) scaffolds (Zhang 

et al., 2014; Choi et al., 2015) and the development of hiPSC-derived cerebral organoids (Raja 

et al., 2016).  These studies are summarised in Table 1.2.   

The most common experimental output reported in these studies is a change in the levels of 

either amyloid (Shi et al., 2012; Israel et al., 2012; Yagi et al., 2011; Kondo et al., 2013), or in 

the ratio of Aβ 1-42 to Aβ 1-40 (Aβ42/Aβ40) (Sproul et al., 2014; Duan et al., 2014; Muratore 

et al., 2014; Koch et al., 2012; Moore et al., 2015), both of which are associated with AD.  

Studies have revealed a developmental increase in the production of Aβ (Muratore et al., 

2014; Koch et al., 2012) and provided proof-of-principle that both sAD and fAD hiPSC models 

are capable of recapitulating this aspect of AD pathology.  So far, only three models have 

exhibited Aβ aggregates (Chang et al., 2015; Choi et al., 2014; Raja et al., 2016).   

Increased levels of tau phosphorylation (Yagi et al., 2011; Hossini et al., 2015; Choi et al., 

2014; Shi et al., 2012; Chang et al., 2015; Muratore et al., 2014; Moore et al., 2015; Raja et 

al., 2016; Israel et al., 2012), altered tau kinase activity (Israel et al., 2012; Muratore et al., 

2014), altered tau kinase gene expression (Hossini et al., 2015) and abnormal translocation 

of PAK3 (Zhang et al., 2014) have been described in hiPSC-neurons modelling AD.  Other 

studies have reported altered glutamate metabolism (Hossini et al., 2015), increased 

sensitivity to Ca2+ mediated cell death, increased cell stress after glutamate-induced 

excitation (Duan et al., 2014), production of reactive oxygen species (ROS) (Hossini et al., 

2015; Kondo et al., 2013) and the increased expression of genes involved in oxidative stress 

and in the proteasome (Kondo et al., 2012; Hossini et al., 2015).  These studies indicate that 

hiPSC-neurons can be used to investigate the molecular pathways involved in AD. 

Some of these studies have provided proof-of-principle that hiPSC-neurons can be used to 

screen drugs capable of influencing tau phosphorylation.  Israel and colleagues demonstrated 

that treatment of fAD and sAD hiPSC-neurons with β-secretase inhibitors, but not γ-secretase 

inhibitors, significantly reduced levels of pThr231 tau and active GSK3β (Israel et al., 2012).  

Furthermore, both β- and γ-secretase inhibitors decreased the number of 

APP(K670N/M671L,V717L) or ΔE9 PSEN1 hiPSC-neurons, that were positively stained for 

ptau (Choi et al., 2014).  In a recent study, hiPSC-derived neurons from six controls donors 

and seven sAD patients were used to investigate effects the expression of a protective or AD 

risk variant of SORL1, a gene encoding an endocytic trafficking factor, on Aβ burden.  The 
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group demonstrated that only those with the protective variant responded to brain derived 

neurotrophic factor (BDNF) treatment (Young et al., 2015), demonstrating the usefulness of 

these models to investigate the impact of gene variants on specific pathways.   

 

Table 1.2 hiPSC-neuron models of AD 

sAD/fAD Genetics Neuron 
subtype 

Findings Reference 

fAD N141I PSEN1 
and PSEN2 

Cholinergic Increased production of Aβ42 
ameliorated by γ-secretase inhibitors. 

(Yagi et 
al., 2011) 

DS Down’s 
Syndrome 
Trisomy 21 

Cortical Increased Aβ, increased secreted tau, 
pSer396/pSer404 tau and pSer202/205 
tau. 

(Shi et al., 
2012) 

fAD L166P and 
D385N PSEN1 

Mixed* Decreased Aβ40. (Koch et 
al., 2012) 

fAD and 
sAD 

APP 
duplication 

Mixed* Increased Aβ40, increased ptau (Thr231), 
increased levels of active GSK3β, early 
large endosomes. 

(Israel et 
al., 2012) 

fAD and 
sAD 

sAD, E693 and 
V717L APP 
hiPSC 

Mixed* Accumulation of intracellular AβO (E693 
APP), increased ROS production, 
increased oxidative stress-related gene 
expression. 

(Kondo et 
al., 2013) 

sAD N/A  Forebrain  Aβ-induced cell cycle re-entry, neuronal 
apoptosis and increased Cdk2. 

(Xu et al., 
2013) 

sAD N/A GABAergic 
and 
glutamatergic 

Increased apoptosis of control hESC- 
and hiPSC-neurons with increasing 
concentrations of Aβ. 

(Vazin et 
al., 2014) 

fAD and 
sAD 

APOε3/ε4 
genotype  

BfCNs Increased Aβ42/Aβ40 ratio increased cell 
stress after glutamate-induced 
excitation. 

(Duan et 
al., 2014) 

fAD V717L APP Cholinergic Increased Aβ42/Aβ40 ratio, two-fold 
increase in tau, increased pSer262 tau 
and increased active GSK3β. 

(Muratore 
et al., 
2014) 

fAD PSEN1 A246E; 
PSEN1 M146L 

Mixed* Increased Aβ42/Aβ40 ratio. (Sproul et 
al., 2014) 

sAD N/A  Mixed* (3D) Abnormal translocation of PAK3 and 
decreased pre-synaptic protein 
(drebrin) within neurons in response to 
Aβ42O. 

(Zhang et 
al., 2014) 

fAD K670N/M671L 
and V717L 
APP or ΔE9 
PSEN1  

Mixed* (3D) Aβ and tau aggregations within neurons, 
beaded neurites, pSer396/404 and 
pSer202/Thr205 tau reduced upon 
treatment with γ- and β-secretase 
inhibitors. 

(Choi et 
al., 2014) 

sAD  N/A GABAergic 
and 
glutamatergic 

Control hiPSC-neurons were treated 
with Aβ for 8 days, increased pSer202 
and pThr231, impaired synaptic 
transmission and increased stress 
response. 

(Nieweg 
et al., 
2015) 
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sAD SORL1 
protective 
and risk 
alleles 

Mixed* SORL1 variant dependant decrease of 
Aβ after treatment with brain derived 
neurotrophic factor (BDNF). 

(Young et 
al., 2015) 

sAD N/A Mixed* Downregulation of GSK3 and CDK5, 
altered gene expression of genes 
involved in the ubiquitin proteasome 
system, treatment with γ-secretase 
inhibitors reduced tau and pThr231.   

(Hossini 
et al., 
2015) 

DS Down’s 
Syndrome 
Trisomy 21 

Mixed* Aβ, aggregates, increased secreted tau, 
redistribution of pSer396/pSer404 and 
pSer202/Thr205 tau. 

(Chang et 
al., 2015) 

fAD  V717I APP  

APP 

duplication 

ΔI4 PSEN1  

Y115C PSEN1  

Down’s 
Syndrome 
Trisomy 21 

Cortical 
glutamatergic 
neurons 

Increased ratio of Aβ42 to Aβ40.  
Increased total tau, pSer396 tau, 
pSer404 tau and pSer202/Thr205 tau in 
hiPSC carrying APP mutants but no 
increase in those carrying PSEN1 
mutations.   

(Moore et 
al., 2015) 

fAD  APP 

duplication 

M136I PSEN1  

A264E PSEN1  

Mixed*  
(3D) 

Increased phosphorylation of tau at  
Ser396 or Thr181 at 90 days.  Increased 
levels and aggregation of Aβ.  Endosome 
abnormalities. 

(Raja et 
al., 2016) 

Table 1.2 hiPSC-neuron models of AD 

Models are derived from patients with fAD and sAD patients apart from in the six highlighted 
publications.  Models of sAD developed through treatment of control hiPSC-neurons with Aβ42O 
are highlighted in green.  A fAD model developed through treatment of Tg modified control neurons 
with Aβ42O is highlighted in blue. Tg fAD hiPSC-neurons are highlighted in red.  
*Mixed includes cell cultures derived from hiPSC consisting of many types of neuronal subtypes, 
including dopaminergic, GABAergic, glutamatergic and cholinergic neurons. 
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Chapter 2 

General Methods 

 

2.1  Cell culture 

All cell lines were cultured within a humidified incubator at 37 oC and 5 % CO2.  All cell work 

was carried out in a class II cell culture hood.   

2.1.1  Mouse embryonic fibroblast culture 

2.1.1.1  Mouse embryonic fibroblast (MEF) media 

Mouse embryonic fibroblasts (MEFs) and inactivated MEFs (iMEFs) were grown in media 

comprised of the following: 

 

Table 2.1 Mouse embryonic fibroblast (MEF) media 

  

2.1.1.2  Derivation of mouse embryonic fibroblasts (MEF) 

Animals were maintained and treated under the Home Office’s animals (Scientific 

Procedures) act 1986 and in agreement with the University of Bristol Animal Welfare and 

Ethical Review Body guidelines.  Pups were removed from a pregnant mouse at gestational 

day 12-13 (E12-13).  After removal of the yolk sack using a sterile scalpel and forceps, the 

Volume Reagent Product ID  

87 % Dulbecco’s Minimum Essential Medium (DMEM) Sigma, D6546 

10 % Foetal Bovine Serum (FBS) (Heat Inactivated)  Invitrogen, 10500 

1 % GlutaMAX™ (100x) Invitrogen, 35050  

1 % Non-Essential Amino Acids (NEAA) (100x) Invitrogen, 11140 

1 % Penicillin-Streptomycin solution stabilised (Pen-Strep) Sigma, P4458 
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head was removed to kill each foetus.  This is necessary in accordance with Home Office 

Schedule 1 requirement for all foetuses over gestational day 10.  After removal of the internal 

organs of each foetus the remaining tissue was pooled into a 50 ml falcon tube with 20 ml 

TrypLE™ Express (1X) [Life Technologies, 12604-021]. The tissue incubated for 10 minutes in 

the TrypLE™ Express after homogenisation of the tissue through repeated trituration with a 

P1000 pipette tip and a glass aspirating needle.  20 ml of FBS was added to the foetal material 

after completion of the incubation period to quench the TrypLE.  The cell suspension was 

centrifuged (300 g; 5 minutes) before the cells were resuspended in MEF media (Chapter 

2.1.1.1).  The cells were split between 175 cm3 flasks; the same number of flasks as foetuses 

were used.  The cells were allowed to proliferate, cultured in MEF media, until approximately 

80 % confluent before being passaged three times at a ratio of 1:5 to expand the population 

of cells.  To passage the cells, the flasks were washed with PBS three times and incubated 

with 5 ml of TrypLE for 10 minutes at 37 oC within the incubator. 

2.1.1.3  Mouse embryonic fibroblast (MEF) inactivation 

MEFs were inactivated through incubation with mitomycin C for 2 hours within the incubator.  

A 100 μg/ ml stock solution of mitomycin C was first prepared by dissolving 10 mg of 

mitomycin C from Streptomyces Caespitosus [Tocris, 3258] in 100 ml of MEF media (Table 

2.1).  2 ml of the stock solution of mitomycin C was then added to each flask, which contained 

18 ml of MEF media, to give a final concentration of 10 μg/ ml.  After completion of the 

incubation period, each flask was washed three times with phosphate buffered saline (PBS), 

pH 7.2 [Invitrogen, 20012] before being incubated for a further 10 minutes in 4 ml of TrypLE™ 

Express.  The TrypLE™ Express was the quenched with MEF media and the cells were washed 

and collected into 50 ml falcon tubes.  The MEFs were centrifuged (300 g; 5 minutes), 

resuspended in freezing media (10 % DMSO; 90 % FBS) and counted (Chapter 2.1.3.1).   The 

cells were cryopreserved (Chapter 2.3.1.2) and stored within -80 oC freezer in aliquots of 4-8 

x 106 cells per cryovial.  From this point the cells are referred to as iMEFs.   

2.1.1.4  Plating down inactivated mouse embryonic fibroblasts (iMEFs) as feeders for 
human induced pluripotent stem cells  

Tissue culture plates [Corning, 430167] were coated by incubating with 0.1 % gelatin 

(prepared from powder [Sigma, G1890] in ddH20) for 10 minutes within the incubator.  An 

aliquot of iMEFs was thawed, resuspended in 10 ml of MEF media within a 15 ml falcon tube 
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and centrifuged (300 g; 3 minutes).  The iMEFs were resuspended in MEF media.  Once the 

gelatin coating was aspirated from the tissue culture plates, iMEFs were plated at a density 

of 21,000 cells/cm2.  The cells were allowed to adhere to the plates overnight.  The media 

was changed to human pluripotent stem cell (hPSC) media (Table 2.2) at least 2 hours before 

passaging pluripotent cells onto the layer of iMEFs to allow the iMEFs to condition the media. 

2.1.2  Human pluripotent stem cell culture 

2.1.2.1  Culturing human pluripotent stem cells on an iMEF feeder layer 

 

Table 2.2 Human pluripotent stem cell media 

Volume Reagent Product ID 

76.7 % Knock-Out DMEM Invitrogen, 10829 

20 % Knock-Out Serum Replacement  Invitrogen, 10828 

1 % GlutaMAX™ (100x) Invitrogen, 35050 

1 % Non-essential amino acids NEAA (100x) Invitrogen, 11140 

1 % Penicillin-Streptomycin solution stabilised (Pen-Strep) Sigma, P4458 

0.2 % 2-Mercaptoethanol (50 mM) Invitrogen, 991827 

10-20 ng/ ml Human Fibroblast Growth Factor – basic (FGF2) PeproTech, 100-18B 

0.1 % Fungizone Invitrogen, 15290-018 

2.1.2.1.1  Mechanical passaging of human induced pluripotent stem cells  

Differentiated areas of colonies were aspirated before passaging using a P200 pipette tip and 

an aspirator.  A sterile insulin needle [VWR, 613-0740] was used to score colonies into 

squares of approximately equal sizes (Figure 2.1).  This was done within the hood under a 

dissection microscope (Leica).  A new needle was used for each cell line.  The colony pieces 

were then detached and collected from the tissue culture plate using a P1000 pipette.  30-

40 colony pieces were collected and plated onto a tissue culture plate with a layer of iMEFs.  

The colony pieces were allowed to attach to the tissue culture plates for 24 hours and the 

media was changed 48 hours later.  Colonies were allowed to grow for 5-10 days before being 

passaged.   
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2.1.2.2  Culturing human pluripotent stem cells (hPSC) within the Essential 8TM feeder free 
system 

Human pluripotent stem cells were grown in Essential 8TM (E8) media within 6-well tissue 

culture plates [Fisher, 10119831], coated with either Vitronectin, MatrigelTM or GeltrexTM.  

Essential 8 TM Medium was developed in the laboratory of James Thomson (Chen et al., 2011) 

before being validated and refined by Cellular Dynamics International.  The E8 system has 

been extensively tested for its ability to support maintenance of pluripotency in various hiPSC 

lines.  The complete media requires combination of Essential 8 TM Medium with a 1:50 v/v of 

Essential 8TM Supplement, to consist of DMEM/F12, 64 mg/L l-ascorbic acid-2-phosphate 

magnesium, 14 µg/L sodium selenium, 100 µg/L FGF2, 19.4 mg/L insulin, 543 mg l−1 sodium 

Figure 2.1      Mechanical stem cell colony passaging 

Mechanical passaging of hESC colonies views under a stereomicroscope.  Once the colony has 

reached an appropriate size for passaging (A), a 20 G needle is used to score the colony, viewed 

under a stereomicroscope within the cell culture hood (B). Next, the colony is scored again 

perpendicularly to the direction of initial scoring (C) to create colony pieces of ideal size for re-

plating.  These colony pieces are collected within a P1000 pipette tip and transferred to a new 

plate, pre-seeded with iMEFs (D). 

Image from Lerou et al., 2008 with permission from © 2017 Macmillan Publishers Limited. All 

Rights Reserved. 

 

(a) Colony that reached adequate size for passaging. (b) Colony has been scored using bent needle. (c) Colony 

has been scored in perpendicular direction. (d) Pieces of scored colonies have been dislodged using 1,000-μl 

pipette tip 
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bicarbonate (NaHCO3) and 10.7 mg/L transferrin, 2 µg/L TGFβ1 or 100 µg/L Nodal (Chen et. 

al., 2011).   

2.1.2.2.1  Tissue culture plate surface coatings 

The advantages of using the following cell culture substrates for culturing hiPSC are reduced 

variability compared to using an iMEF feeder layer, which results in more stable cultures from 

passage to passage.   

2.1.2.2.1.1  GeltrexTM 

GeltrexTM is a gelatinous substrate composed of a complex mixture of basement membrane 

proteins derived from the spontaneous tumours of Engelbreth-Holm-Swarm mice, which 

provide a physical support for cultured cells to grow on top of.  An aliquot of GeltrexTM [Life 

Technologies] was thawed overnight at 4 oC.  The aliquot was kept on ice during handling.  

The contents of the aliquot were diluted in cold DMEM/F12 [Invitrogen, 31331028] to a 

concentration of 150 μg/ ml.  1 ml of the solution was applied to each well of a 6-well plate.  

The plates were incubated for 1 hour with GeltrexTM within the cell culture incubator before 

being incubated for 1 hour at room temperature.  The GeltrexTM was then aspirated and 2 ml 

of Essential 8 media was added to each well. 

2.1.2.2.1.2  MatrigelTM 

MatrigelTM also consists of basement membrane proteins derived from spontaneous 

Engelbreth-Holm-Swarm mouse tumours, is a gelatinous substrate and provides a physical 

support for the growth of cells in vitro. An aliquot of 300 μl MatrigelTM [BD Bioscience] was 

thawed overnight at 4 oC.  The aliquot was kept on ice during handling.  500 μl of cold KO 

DMEM media, which consists of Knockout DMEM [Invitrogen, 10829] supplemented with 

Knockout Serum Replacer [Invitrogen, 10828] was added to the aliquot to dilute it.  The 

contents of the aliquot were then added to 29.3 ml of cold KO DMEM within a 50 ml falcon.  

After mixing, 1 ml of the solution was applied to each well of a 6-well plate and incubated for 

at least 2 hours within the cell culture incubator.  The MatrigelTM was then aspirated and the 

wells were washed once with KO DMEM.  2 ml of Essential 8 media was added to each well. 
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2.1.2.2.1.3  Vitronectin 

Vitronectin is an abundant, secreted glycoprotein found in serum, the extracellular matrix 

and bone, which promotes cell adhesion and spreading when used as a surface 

coating.  Vitronectin is relatively inexpensive compared to other available synthetic surfaces 

and requires minimal preparation.  The truncated recombinant human vitronectin (rhVTN-N) 

[Life Technologies, A14701SA], corresponding to the amino acid fragment 62–478 of human 

vitronectin expressed in E. coli, is purified from inclusion bodies and refolded for use as a 

substrate for the feeder-free culture of human pluripotent stem cells (hPSCs) in Essential 8™ 

medium.  This form of vitronectin was used at a concentration of 5 μg/ ml.  An aliquot of 

stock vitronectin, at concentration 0.5 mg/ ml, was diluted 1:100 in PBS.  1 ml of vitronectin 

was added to each well of a 6-well plate and incubated at room temperature for 1 hour.  The 

solution was aspirated before Essential 8 media was added to the well.   

2.1.2.2.1.4  Poly-L-ornithine and laminin    

200 μl poly-L-ornithine (POR) hydrochloride [Sigma P2533] was added at stock concentration 

to each well and incubated for 2 hours within the incubator.  The poly-L-ornithine was then 

removed and 250 μl of 10 μg/ ml laminin (diluted from stock [Sigma, L2020] in PBS) was 

added to each well.  The wells were incubated with laminin within the incubator for 2 hours 

or overnight.  Upon completion of the incubation period, the laminin was removed and media 

was added to the wells.  At this point to plates are referred to as POR/L coated. 

2.1.2.2.2  Passaging human pluripotent stem cells using ethylenediamine tetraacetic acid 

UltraPure™ 0.5M EDTA, pH 8.0 [Life Technologies, 15575-020] was diluted to a stock of 0.5 

mM in PBS and warmed in a water bath to 37 oC.  Wells with cells to be passaged within them 

were treated with ROCK inhibitor (Y27632) (10 ng/ ml) [Tocris, 1254], which was added to 

the media, 30 minutes prior to being passaged.  The Essential 8 media was aspirated and 

each well was washed once with the EDTA stock solution.  1 ml of ethylenediamine 

tetraacetic acid (EDTA) was applied to each well before incubating at room temperature for 

6 minutes.  The EDTA was aspirated and 1-2 ml of Essential 8 media was sprayed onto the 

tissue culture surface to dislodge the colonies.  The colonies were gently triturated until they 

had broken up into smaller colony pieces. 20-30 colony pieces were added to a freshly coated 

well of a 6-well plate.  The colonies were allowed to adhere to the tissue culture surface 
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overnight.  The media was changed after 48 hours.  Colonies growing within the E8 culture 

system were passaged every 4-8 days. 

2.1.2.2.3  Passaging human pluripotent stem cells from iMEFs to E8 cell culture system 

Tissue culture plates with colonies to be passaged within them were treated with ROCK 

inhibitor (10 ng/ ml).  Colonies were scored and 20-30 pieces were collected (Chapter 

2.1.2.1.2) before being transferred to a freshly coated well of a 6-well plate.  The colony 

pieces were allowed to adhere to the tissue culture surface overnight.  The media was 

changed after 48 hours.   

2.1.3  General Cell Techniques 

2.1.3.1  Counting cells 

To calculate the number of cells within a given volume of cell suspension, cells were first 

centrifuged and re-suspended in 1 ml of media, pipetting with a P1000 to ensure the cells 

were evenly suspended. To gain a dilution factor of 10, 10 μl of the cell suspension was 

collected into a 0.5 ml Eppendorf tube before 80 μl of media and 10 μl of 0.4 % Trypan Blue 

[Invitrogen, 15250] was added.  The mixture was pipetted using a P1000 pipette to ensure it 

was evenly mixed.  
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A coverslip was placed onto a clean haemocytometer and 10 μl of the cell suspension within 

the Eppendorf tube was carefully pipetted at the edge of the coverslip.  Capillary action 

ensured the suspension was taken under the coverslip to fill the counting chamber.  Only live 

cells were counted.  Trypan blue is not absorbed by live cells so these cells appear colourless, 

with a bright, refractive border; the dye transverses the membranes of non-viable cells so 

that these cells appear blue. 

 

 

 

 

 

 

Figure 2.2     Schematic demonstrating the grid within the counting chamber of the 
haemocytometer used   

Cells brightly stained with Trypan blue within highlighted areas (green) with lettered 
numbers were counted to give a total of five counts.  Within the highlighted areas, only 
cells which crossed over the outer borders on the left-hand side and the top and were 
included in the count.  Each highlighted area represents the number of cells within 1 µl of 
the cell suspension; therefore, the scale factor is 104. The number of live cells was calculated 
using the equation shown in the figure. 
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2.1.3.2  Cryopreservation of cells 

2.1.3.2.1  Cryopreservation of MEFs and iMEFs 

After aspirating the media from the cells, the cells were washed with PBS and an appropriate 

volume of TripLE ExpressTM was added to the cells.  The cells were incubated for 10 minutes 

in the incubator.  After completion of the incubation the TripLE ExpressTM was quenched with 

an equal volume of MEF media and the cells were collected into a falcon tube.  For 

cryopreservation of cells in a volume greater than 10 ml, cells were collected into a 50 ml 

falcon and centrifuged (300 g; 5 minutes); for cryopreservation of cells in a volume less than 

10 ml cells were collected into a 15 ml falcon and centrifuged [300 rpm; 3 minutes].  The cells 

were resuspended in freezing media, consisting of 10 % Dimethyl sulfoxide (DMSO), which 

acts as a cryoprotectant, and 90 % foetal bovine serum (FBS) [Life Technologies, 10500064]) 

and 700 μl of the cell suspension was added into each labelled 1 ml cryovial [Greiner, 

123278]. The cryovials were placed in a Mr FrostyTM , at room temperature, and immediately 

stored at -80 oC.  Mr FrostyTM is a freezing container consisting of a plastic chamber of 

compartments in which to place individual vials of cells, surrounded by 100 % isopropyl 

alcohol, which allows for a uniform cooling rate of approximately 1 oC per minute, 

determined to be ideal for optimal cell survival.   

2.1.3.2.2  Cryopreservation of human pluripotent cells grown on an iMEF feeder layer 

The media was aspirated from the cells and 1 ml of warm 1 mg/ ml collagenase IV [Life Tech, 

17104-019] (made up from stock concentration of 10 mg/ ml diluted in KO DMEM)] was 

added to each tissue culture plate.  The cells were incubated with collagenase IV for 20 

minutes in the incubator before KO DMEM and a P1000 pipette were used to spray the 

colonies from the tissue culture surface.  The colonies were collected into 15 ml falcon tubes 

and topped up to 10 ml with KO DMEM before being centrifuged (1100 g; 3 minutes).  The 

media was removed from the cell pellet and the colonies were gently resuspended in freezing 

media.  For each tissue culture plate, colonies were resuspended in 700 μl of freezing media 

and this volume was added to a labelled, 1 ml cryovial.  The cells were placed into a Mr 

FrostyTM and immediately frozen at -80 oC.   
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2.1.3.2.3  Cryopreservation of human pluripotent cells cultured within the E8 system 

A 2x freezing media consisting of 20 % DMSO and 80 % E8 media was prepared.  An 

appropriate number of cryotubes were labelled.  The media was removed from E8 cells and 

the cells were washed once with warmed EDTA, before being incubated with EDTA for 6 

minutes.  After the incubation period the EDTA was removed and the cells were sprayed from 

the tissue culture well surface with an appropriate volume of E8 media, for example 1 ml for 

each well of a 6-well plate and 0.5 ml for each well of a 12-well plate.  An equal volume of 

freezing media was then added to each well drop wise.  500 μl to 700 μl was pipetted into 

each cryovial and the cryovials were placed into a Mr FrostyTM, which was placed into -80 oC 

freezer.  When hPSC cultured within the E8 system were thawed they were plated in E8 

media supplemented with 10 μg/ ml ROCK inhibitor to limit cell death.   

2.1.3.2.4  Cryopreservation of neurospheres 

Neurospheres to be cryopreserved were collected from within the tissue culture flask into a 

15 ml falcon with 10 ml of media.  The neurospheres were centrifuged (300 g; 3 minutes) and 

the media removed from the falcon.  Freezing media (10 % DMSO in foetal bovine serum 

(FBS)) was added to the spheres.  An average of 40 neurospheres were frozen in a 1 ml 

cryovial with 700 μl of freezing media.  The cryovials were placed in a Mr FrostyTM and 

immediately stored at -80 oC.   

2.1.3.2.5  Cryopreservation of neural progenitors and neurons at day 20-25 of the cortical 
glutamatergic neuron differentiation protocol 

The cells were washed once with PBS before 200 μl of AccutaseTM [Sigma, A6964] was applied 

to each well with cells to be cryopreserved.  The cells were incubated with AccutaseTM for 5 

minutes within the incubator.  After completion of the incubation period the cells were gently 

pipetted, using a P1000 pipette, to dissociate the cells to give a single-cell suspension.  800 

μl of neural maintenance media was added to each well to quench the AccutaseTM, and this 

mixture was transferred to a 15 ml falcon tube.  The cells were centrifuged (200 g; 5 minutes) 

and resuspended at 2 x 106 cells/ ml in neural stem cell freezing media [neural maintenance 

media supplemented with 10 % DMSO; 20 ng/ ml FGF2]. 
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2.2  Biomolecular Techniques 

2.2.1  Western Immunoblotting 

2.2.1.1  Protein extraction from neurospheres  

The media was gently aspirated from the wells containing neurospheres before the 

neurospheres were washed once with ice cold PBS.  100 μl Ice cold RIPA buffer (50 mM Tris 

HCl [pH7.4], 150 mM NaCl,1 % Triton-X-100 (v/v), 0.5 % Sodium deoxycholate (w/v), 0.1 % 

sodium dodecyl sulphate (SDS) (w/v)) plus 1 tablet of Protease Inhibitor [Roche, cOmplete 

Mini, 04693124001] per 10 ml of RIPA buffer and 1 tablet of Phosphatase Inhibitor PhosStop, 

[Roche] per 10 ml was used to dissolve neurospheres within 3 wells.  Neurospheres were 

manually detached from the surface of the wells whilst in RIPA buffer using a P1000 pipette 

tip.  The RIPA buffer and neurospheres from three wells were collected into a sterile, labelled 

1.5 ml Eppendorf and triturated using a P200 pipette tip before being left on ice for 10 

minutes.  The sample was then further homogenised by triturating using a 1 ml syringe and 

18G needle.  The sample was then centrifuged (4 oC; 12,000 g, 15 minutes) and the 

supernatant was collected into a clean, cold Eppendorf.  The sample was immediately stored 

at -80 oC overnight.   

2.2.1.2  Protein quantification 

A bicinchoninic acid (BCA) assay [Pierce, 23225] was used to quantify the concentration of 

protein within each sample.  The manufacturer’s protocol was followed.  A set of standards 

of known protein concentrations comprised of bovine serum albumin (BSA) dissolved in RIPA 

buffer (50 mM tris HCl, 150 mM NaCl, 1 % Triton X-100 (v/v), 1 % sodium deoxycholate (w/v), 

0.1 % sodium dodecyl sulfate (w/v), pH 7.4) were prepared and pipetted in triplicate into 

wells of a 96-well plate, alongside triplicates of each protein sample, and incubated with the 

reaction solution for 30 minutes at 37 oC on a shaking platform.  The protein in the samples 

degrades the Cu2+ within the reaction solution to Cu1+, which forms a complex with BCA 

leading to a colorimetric reaction.  This reaction causes the contents of the wells to change 

colour from green to purple.  The relationship between BSA/Cu1+ complex and the 

concentration of protein is linear, allowing the protein within each well to be then quantified 

by measuring the absorbance, read at 562 nm (1 minute) using a photospectrometer.  The 

values from the BCA assay standards were used to create a standard curve and calculate the 
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equation for this curve, using MS ExcelTM.  The equation can then be used to calculate the 

concentration of protein within each sample.   

2.2.1.3  Buffers and solutions used during western immunoblotting 

 

Table 2.3 Components of SDS Sample Buffer (5 X) 

Reagent Product Concentration 

TRIS-HCl [Tris(hydroxymethyl) aminomethane HCl] Melford, T1513 50 mM – pH 6.8 

Dithiothreitol (DTT) Sigma, D9779 100 mM 

SDS Sigma, L3771 2 % (w/v) 

Bromophenol Blue Sigma, B0126 0.1 % (w/v) 

Glycerol Sigma, G5516 10 % (w/v) 

 

Table 2.4 Components of Loading Gel (12 %)  

Reagent Product Concentration Volume 
(v/v) 

H2O* Sigma, W3500 N/A 32.96 % 

Acrylamide Sigma, A3574 30 % 40.00 % 

TRIS [(hydroxymethy)aminomethane] Melford, B2005 1.5 M – pH 8.8 25.00 % 

SDS Sigma, L3771 10 % (w/v) 1.00 % 

Ammonium Persulfate (APS) Sigma, A3678 10 % (w/v) 1.00 % 

TEMED Fluka BioChemika, RA12027 N/A 0.04 % 

 

Table 2.5 Components of Stacking Gel (4 %) 

Reagent Product Concentration Volume 
(v/v) 

H2O* Sigma, W3500 N/A 68.65 % 

Acrylamide Sigma, A3574 30 % 16.75 % 

TRIS [(hydroxymethy)aminomethane] Melford, B2005 1 M – Ph 6.8 12.50 % 

SDS Sigma, L3771 10 % (w/v) 1.00 % 

Ammonium Persulfate (APS) Sigma, A3678 10 % (w/v) 1.00 % 

TEMED Fluka BioChemika, 
RA12027 

N/A 0.10 % 
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Table 2.6 Components of Running Buffer (10x) 

Reagent Product Amount 

TRIS Melford, B2005 30.2 g 

Glycine Melford, GO709 188.0 g 

SDS Sigma, L3771 0.5 % (w/v) 

H2O* N/A Made up to 2 L using H2O 

 

 

Table 2.7 Components of Transfer Buffer (10x) 

 

 

 

 

 

Table 2.8 Components of TRIS Buffer Saline (TBS) (10x) 

Reagent Product Amount 

TRIS Melford, B2005 30 g 

NaCl2 Sigma, S7653 80 g 

KCl Sigma, P9541 2 g 

H2O*  N/A Made up to 2 L using H2O 

*H20 was purified using The Milli-Q Integral System, Millipore. 

 

2.2.1.4  Sample Preparation  

The lysate samples were thawed on ice.  The volume of each lysate required to add 20 μg of 

protein for each sample was calculated, using the concentration of the protein samples 

calculated using the BCA assay (Chapter 2.2.1.2).  The volume of H20 required to prepare the 

samples to a total volume of 20 μl was also calculated.   The water was pipetted into labelled 

PCR tubes before adding the 4 μl sample buffer (Table 2.3) containing dithiothreitol (DTT), 

which is required to denature the protein.  Finally, the correct volume of protein was added 

to the corresponding labelled PCR tube.  The samples were heated to 100 oC for 5 minutes 

Reagent Product Amount 

TRIS Melford, B2005 58 g 

Glycine Melford, GO709 29.2 g 

SDS Sigma, L3771 3.7 % (w/v) 

H2O*  N/A Made up to 2 L using H2O 
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within a heat block to facilitate denaturisation of the protein.  Following this treatment, the 

samples were kept on ice before loading.   

2.2.1.5  Preparation of the loading and stacking gels 

12 % acrylamide loading gel was used for all western blotting experiments (Table 2.4).  The 

apparatus for running the protein and the gels were prepared before the protein samples 

were prepared, to limit the time from thawing the samples to preparation for western 

blotting ensuring minimal sample degradation. 7 ml of the loading gel was pipetted, 

immediately after preparation in a 50 ml falcon tube, between two clean 1.5 mm2 plates, 

secured within the Mini Protean II Apparatus (Biorad).  500 μl of butanol was then pipetted 

on top of the loading gel, to ensure the gel set with an even upper surface to allow all samples 

to run equally through the gel.  The gel was allowed to set for 30 minutes before the butanol 

was removed, and the gel washed with water to remove traces of butanol.  The stacking gel 

was then prepared (Table 2.5) and 2 ml pipetted onto the loading gel.  To create the wells 

within the stacking gel for protein loading, a comb with 10 ‘teeth’ was inserted into the top 

of the gap between the two plates and the gel was allowed to set for 15 minutes.  The plates 

containing the set gel were transferred from the Mini Protein II Apparatus into the running 

cassette and the tank (Mini Trans-Blot® Cell, Biorad) was filled with 1L 1 X running buffer 

(Table 2.6), making sure that the running buffer covered the top of the gel.  The comb was 

removed from the gel and the gel was loaded with the protein samples.  A note of the order 

of the protein samples was taken and the wells created by the comb were checked to ensure 

they had not been distorted in the process.  5 μl of protein ladder (Precision Plus Protein™ 

Kaleidoscope™ Standards, [Bio-Rad 161-0375]) was loaded in a well alongside the protein 

samples.  The samples were run at 100 V until they had passed the stacking gel, at which 

point the voltage was increased to 150 V.  The gel was run until the blue sample buffer could 

be seen at the bottom of the gel, which takes approximately 70 minutes.  The plates were 

removed from the apparatus and separated carefully before the stacking gel was removed 

and discarded, leaving the loading gel. 

2.2.1.6  Wet transfer of proteins to a polyvinylidene difluoride membrane  

Two pieces of sponge and two pieces of blotting paper were soaked in 1 X transfer buffer 

with 10 % methanol (Table 2.7).  Polyvinylidene difluoride (PVDF) membrane was cut into an 

appropriate size and soaked for one minute in methanol, before being transferred to a 
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container with 1 X transfer buffer, with 10 % methanol, to soak for an additional 5 minutes.  

Soaking the membrane in methanol ensures it is ‘active’, while soaking in 1 X transfer buffer 

ensures the membrane is at isotonic equilibrium.  The gel and membrane were layered 

between filter paper and sponge within the transfer cassette as depicted (Figure 2.3) rolling 

each layer upon addition to minimise the chance of air bubbles becoming trapped.  The 

cassette was secured close and placed into the western transfer apparatus.  To limit 

degradation of the protein, an ice block was added into the tank next to the cassette as the 

process of transferring produces heat.  The tank was then filled with 1 X transfer buffer with 

10 % methanol and the lid fitted.  The apparatus was placed into a plastic bucket containing 

ice to minimise heating.  The transfer was performed by passing 200 mA of current through 

the apparatus for 90 minutes.  Upon completion of the transfer, the membrane was removed 

from the apparatus and the gel discarded. The membrane was ‘reactivated’ by soaking in 

methanol for five minutes.   

 

Figure 2.3 Schematic of western transfer 

 

2.2.1.7  Probing the PVDF membrane with antibodies 

The membrane was rolled into a 50 ml falcon tube, ensuring no overlapping, and then 

blocked in 10 ml of 10 % skimmed milk [Marvel] in 1 X TBS (Table 2.8) + 20 % Tween (TBS-T) 

for an hour at room temperature on a roller.   After washing the membrane 3 times (10 

minutes/wash) in 10 ml of TBS-T within a clean falcon tube, the membrane was added to a 

new, clean falcon tube with 5 ml of the prepared primary antibody solution.  The primary 

Figure 2.3     Schematic of western transfer 

The current was passed from the negative anode to the positive anode through the gel and then 

the membrane to transfer the protein.  The sponges and filter paper were arranged such as to 

ensure the membrane and gel remained soaked by the transfer buffer. 
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antibodies were prepared in 5 % milk in 1 x TBS-T to the required concentration.  The 

membrane was incubated with the antibody overnight at 4oC on a roller.  The following day, 

the membrane was removed from the primary antibody and placed into a clean falcon tube 

and washed 3 times as before.  An appropriate secondary horseradish peroxidase (HRP)-

conjugated antibody was diluted 1:5000 in 5 % milk in 1 x TBS-T in a clean falcon tube and 

the membrane was incubated with the secondary antibody for 1 hour at room temperature 

on a roller.  The membrane was washed 3 times as before.   

2.2.1.8  Enhanced chemiluminescence (ECL) detection of antibodies 

The membrane was placed within a plastic folder.  0.75 ml of Luminol Enhancer and 0.75 ml 

Stable Peroxide Buffer were mixed in a 15 ml falcon tube [Supersignal west pico 

chemiluminescent substrate (ECL) kit; Thermo Scientific, 34080] and this solution was added 

to the membrane within the folder.  The solution was spread over the membrane, ensuring 

even coverage, for one minute.  The solution was then removed and the folder sealed 

airtight.  The folder containing the membrane was then affixed within a HypercassetteTM [GE 

Healthcare Amersham].  In a dark room, autoradiograph film (Amersham Hyperfilm ECL, [GE 

Healthcare, 28-9068-40]) was added to the hypercassette to expose the film to the 

membrane.  The film was developed using a Kodak X-OMAT 1000 auto processor. 

2.2.1.9  Stripping the western 

Western blots were re-probed after initial probing with a ‘housekeeping’ antibody to allow 

normalisation of signals.  Before re-probing, the membrane was stripped using western blot 

stripping buffer [Fisher, 21059].  The membrane was incubated with the stripping buffer for 

5-10 minutes at room temperature within a 50 ml falcon tube on a roller, before being 

washed three times (10 minutes/wash) and re-activated by soaking in methanol for five 

minutes.  The membrane was blocked for one hour in 10 % milk in 1 X TBS-T before re-

probing.  Each blot was probed with an antibody against GAPDH before being probed with a 

tau antibody, either DA9, PHF-1 or CP13.  Each western blot was then probed with an 

antibody against a tau kinase, either GSK3β, GSK3β pTyr216, Akt pSer273 or PAK3.  Other 

blots were probed with GAPDH and then either antibodies against synapsin or p25-p35.  This 

information is also given within Chapter 5.2.4.1. 
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2.2.1.10  Densitometric analysis of protein bands 

Densitometric analysis was performed using the software Image J, downloaded from 

http://rsbwb.nih.gov/ij/.  The blot was scanned using an Epsom scanner 1250 and saved as a 

Tiff file.  Each band was individually selected to generate a histogram.  The areas under the 

peaks of each histogram were calculated and imported into an Excel file for processing for 

analysis.  

2.2.2  Immunocytochemistry 

2.2.2.1  List of solutions  

 

Table 2.9 Components of blocking/permeabilisation solution 

Reagent Amount Product 

Triton-X-100 0.1 %-0.4 % Sigma, T8787 

Horse serum 10 % Life technologies, 26050088 

Bovine serum albumin (BSA) 2 % Sigma, A9418 

Phosphate buffered Saline (PBS) + CaCl2 + MgCl2 Up to 10 ml Sigma, D8662 

 

Table 2.10 Components of antibody incubation solution 

Reagent Amount Product 

Primary/secondary antibody Various Various  

Triton-X-100 0.1 % Sigma, T8787 

Horse serum 1 % Life technologies, 26050088 

Bovine serum albumin (BSA) 0.2 % Sigma, A9418 

Phosphate buffered Saline (PBS) + CaCl2 + MgCl2 Up to 10 ml Sigma, D8662 

 

2.2.2.2  Preparation of cells for immunocytochemistry 

Cells were washed with PBS and an appropriate volume of 4 % paraformaldehyde (PFA) at 

room temperature was added to the cells (i.e. 150 μl per well of a 4-well or 24-well plate).  

The cells were incubated at room temperature; 15 minutes for cells in a monolayer, or 20 

minutes for neurospheres.  Cells were then incubated with blocking/permeabilisation 

solution for 2 hours at room temperature, or overnight at 4 oC, on a rocker.  Cells were then 

gently washed 3 times (10 minutes/wash) in PBS + 0.1 % Triton-X-100 (PBS-Tx).   

http://rsbwb.nih.gov/ij/
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2.2.2.3  Probing cells with antibodies 

Cells were incubated with the primary antibody, prepared in antibody incubation solution, 

overnight at 4 oC on a rocker.  The following day the cells were gently washed 3 times (10 

minutes/wash) in PBS-Tx before being incubated with the appropriate fluorescent secondary, 

at a concentration of 1:400, for 2 hours on a rocker, protected from light.  After washing the 

cells 3 times (10 minutes/wash) Hoechst solution at a concentration of 1:1000 in PBS was 

added to the cells for 5 minutes, protected from light.  After the incubation period the cells 

were washed 3 times (10 minutes/wash).   

2.2.2.4  Mounting coverslips  

Cells cultured on coverslips and immunostained were mounted.  The coverslips were 

removed from the cell culture well using forceps and placed inverted onto a ~30 μl drop of 

Vectorshield® Mounting Medium on a slide.  Care was taken to avoid placing any pressure on 

the coverslips.  The coverslips were allowed to rest on the slides for approximately two 

minutes to allow the mounting medium to spread through capillary action.  Any excess 

medium was removed using blotting paper.  A layer of clear nail varnish was painted around 

the edge of the coverslip to seal the coverslip to the slide and contain the mounting medium.  

After allowing 1 hour to dry, a second coat of nail varnish was applied.  A fluorescence 

microscope (Leitz DMRB, Leica) was used to image the cells, captured by a camera (DC 500, 

Leica) and processed using Leica imaging software.   

2.2.3  Analysis of Gene Expression 

The expression of specific genes present within hPSCs, embryoid bodies (EBs), hPSC-derived 

neurons and brain tissue was quantified by quantitative polymerise chain reaction (qPCR) 

using Taqman® probes.  Briefly, total RNA was isolated from the cells, purified and converted 

to cDNA.  The cDNA is representative of the RNA present within the sample and therefore 

can be used to quantify RNA expression. This technique involves the amplification of target 

DNA, representative of the gene in question, using sequence specific Taqman® DNA probes, 

which consist of oligonucleotides labelled with a fluorescent reporter.  Fluorescence is only 

detected after hybridisation of the probe with the complimentary target DNA sequence.  The 

fluorescent sequence was detected using a StepOnePlus™ System [Applied Biosciences] 

and the complimentary software used to quantify the number of cDNA copies present 

within each sample. 
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2.2.3.1  Extraction and purification of total RNA 

RNA extraction and purification was performed by using TRIzol reagent [Ambion, 15596-026] 

with the PureLink® RNA Mini Kit [Ambion, 12183018].  TRIzol® [Ambion] is a monophasic 

solution of phenol and guanidine isothiocyanate, designed to isolate separate RNA, DNA and 

proteins from cell and tissue samples into fractions.   

hiPSC colonies were grown in feeder-free conditions in 9 cm diameter cell culture plates until 

50 % confluent.  Cortical glutamatergic neurons were grown in 6 cm diameter 6-well plates 

until confluent and basal forebrain neurons were grown in 24-well plates.  The media from 

the cells was removed and an appropriate volume of TRIzol®, dependent on the surface area 

of the culture surface, was added to the cells.  hPSC and neurons were homogenised directly 

in the plate by pipetting 20 times with a P1000 pipette tip.  EBs and brain tissue were 

collected into RNAse-free tubes and an appropriate amount of TRIzol® was added to each 

tube.  Embryoid bodies and brain tissue were homogenised within the tubes using a tissue 

homogeniser and then by pipetting 20 times with a P1000 pipette tip.   

After homogenisation the plates or tubes were incubated on ice for 5 minutes.  The 

incubation period ensured the complete homogenisation and extraction of nucleic materials 

from the cells.  After incubation on ice, homogenised hPSC and neurons were transferred to 

RNAse-free tubes.  The samples were frozen immediately at -80 oC or processed using the 

PureLink® RNA Mini Kit to isolate RNA.   

The PureLink® RNA Mini Kit relies on spin column technology.  PureLink® DNase [Ambion, 

12185010] is optimised for use with the PureLink® RNA Mini Kit and was used to remove 

genomic DNA from the RNA samples; this product is an endonuclease that breaks apart 

double- and single-stranded DNA and is free of ribonucleases and proteases.  Briefly, the 

bench area, pipettes and tube stands were cleaned using RNase AWAYTM surface 

decontaminant [Thermo Scientific, 7002] to ensure an RNA-free environment.  The 

manufacturer’s instructions for the PureLink® RNA Mini Kit were followed to complete 

extraction and purification of RNA and to remove any residual DNA.  RNA-free filter pipette 

tips were used throughout the protocol.   

2.2.3.2  Quantification of RNA  

A spectrometer [NanoPhotometerTM, Implen, Pearl Edition] was used to quantify the 

concentration of the RNA within the sample by first vortexing the sample for 2 seconds and 
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then adding 1 μl of the sample to the sensor.  The value of the concentration was recorded, 

along with the absorbance ratio values; absorbance ratio of 260nm/280nm should equate to 

2.0 +/- 0.05, which indicates a pure RNA sample, whereas the ratio 260nm/230nm should be 

between 2.0 and 2.2, indicating pure nucleic acid. If this ratio value deviates from this it 

indicates there may be protein contaminants within the sample, therefore, samples outside 

of these ranges were discounted.   

2.2.3.3  Reverse Transcription of RNA to cDNA   

The High-Capacity cDNA Reverse Transcription (RT) Kit [Applied Biosystems, 4368814] was 

used to convert up to 2 µg of RNA per sample to cDNA.  A 2 X reaction mix was prepared on 

ice according to the manufacturer’s instructions (Table 2.11).  An equal amount of RNA, for 

example 1 µg, for each sample was added to the reaction to allow for accurate quantification 

of gene copy number during qPCR.  To create a negative template control for each sample, 

the protocol was performed without MultiscribeTM Reverse Transcriptase.  When used 

alongside qPCR, the negative template control ensured there was no DNA contamination 

within the samples before reverse transcription.  

 

Table 2.11 Reaction mix for reverse transcription of RNA to cDNA. 

 Component Volume/Reaction (µL) 

 Kit with MultiscribeTM Reverse 
Transcriptase to create a positive 
template 

Kit without MultiscribeTM Reverse 
Transcriptase to create a negative 
template 

5 x RT Buffer 2.0 2.0 

25x dNTP* Mix (100 
nM) 

0.8 0.8 

10x RT Random 
Primers 

2.0 2.0 

MultiscribeTM 
Reverse 
Transcriptase 

1.0 - 

RNAse Inhibitor 1.0 1.0 

Nuclease-free H2O 3.2 4.2 

Total per Reaction 10.0 10.0 

*dNTPs comprise dATP, dCTP, dTTP and dGTP 
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The manufacturer’s instructions for High-Capacity cDNA Reverse Transcription Kit were 

followed.  Briefly, the volumes of each component (10x RT Buffer, 25x dNTP Mix (100 nM)), 

10 X RT Random Primers, MultiscribeTM Reverse Transcriptase, RNAse Inhibitor and Nuclease-

free H20) (Table 2.11) needed to make up the volume of reaction mixture, was calculated to 

create a positive and negative template for each sample, plus 10 % to account for any 

pipetting error.  The positive template and negative template mixtures were made in RNAse 

free Eppendorf tubes, vortexed to mix, briefly centrifuged and kept on ice.  10 µl of RNA 

mixture for each sample, containing the correct amount of RNA and made up to 10 µl with 

nuclease-free H20, was pipetted into clean, RNAse free tubes.  10 µl of the positive or 

negative reaction mixtures were pipetted into the RNAse-free PCR tubes containing the RNA 

mixture.  The samples were inverted three times to mix before centrifuging briefly.  The tubes 

were placed into the thermal cycler [Biorad, MJ Mini] programmed with the following heat 

cycle:  25 oC for 10 minutes, 37 oC for 120 minutes and 85 oC for 5 minutes.  Once the cycle 

was complete, the synthesised cDNA was stored at 4 oC before being used for qPCR.  

2.2.3.4  Quantitative Polymerise Chain Reaction 

The required volume, plus 10 % to account for pipetting error, of 2X TaqMan® Universal PCR 

Master Mix (Applied Biosystems, 4364340) was determined to perform qPCR reactions for 

all samples, endogenous control assays and non-template controls (NTC) for each gene assay.  

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous reference 

gene throughout.  The 2X TaqMan® Universal PCR Master Mix contains AmpliTaq Gold® DNA 

Polymerase, UP (Ultra-pure), Uracil‐N glycosylase (UNG), dNTPs with dUTP, dNTPs with dUTP, 

ROX™ Passive Reference and optimized buffer components.  The Taqman® Gene Expression 

Assay (20 X) was added to the master mix (Table 2.12) within an RNAse-free Eppendorf.  

Taqman® Gene Expression Assays for real-time PCR were purchased from Applied Biosystems 

(Table 2.13; at the 5’ end, the probes were conjugated to the fluorochrome 6-

carboxyfluorescein (FAM); and at the 3’ end to the quencher tetramethylrhodamine 

(TAMRA).  
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Table 2.12 Components required per qPCR Taqman® Gene Expression Assay reaction. 

Component Volume (µl) 

2X TaqMan® Universal PCR Master Mix 10  

Taqman® Gene Expression Assay (20 X) 1  

cDNA template Varies  

RNase free H20 To 20 

 

Table 2.13 Taqman® probes 

Gene TaqMan® Gene Expression 

Assay Catalog no. ID 

Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Hs02758991 

Cyclin-Dependent Kinase 5 (CDK5) Hs00358991 

Glycogen synthase kinase 3 beta (GSK3β) Hs01047719 

P21 Protein (Cdc42/Rac)-Activated Kinase 3 (PAK3) Hs00176828 

Repeat Microtubule Associated Protein Tau (MAPT) Hs02758991 

 

Within strip PCR tubes the appropriate volume (Table 2.12) required for a triplicate of each 

assay was measured out.  The appropriate volume of cDNA, consistent between all samples 

and assays, for a triplicate of each assay was then added to each tube.  The tubes were 

vortexed and centrifuged for 5 seconds to ensure adequate mixing of the components.  20 µl 

of each assay and cDNA mixture was then added to the side of a well of a 96-well plate 

(MicroAmp, Applied Biosystems).  This was repeated to ensure a triplicate of each assay.   

Non-template controls (NTC) were also mixed and pipetted in the same way with the same 

volumes, however, in the place of the cDNA template RNAse free H20 was added.  The plate 

was covered with an optical adhesive cover (Applied Biosystems; Cat No. 4313663) to 

prevent evaporation and contamination during the reaction and then centrifuged at 300 g 

for one minute at room temperature in a centrifuge to eliminate any bubbles that may have 

formed during pipetting and ensure the mixture was at the bottom of each well.  The 

instructions in the instrument user guide for the StepOnePlus™ Real‐Time PCR System were 

used to set the thermal cycling parameters of the PCR system as described in Table 2.14. 
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Table 2.14 Thermal cycling parameters used for qPCR 

Parameter UNG incubation Polymerase activation PCR (40 cycles) 

 Hold Hold Denature Anneal/extend 

Temperature 50 oC 95 oC 95 oC 60 oC 

Time (mm:ss) 02.00 10.00 00.15 01.00 

2.2.3.5  Analysis of qPCR results 

The threshold cycle number for product detection (Δ CT value) for the housekeeping gene 

(GAPDH) and the genes being tested (MAPT, CDK5, GSK3β or PAK3) were calculated within 

the StepOnePlus™ Real‐Time PCR System complimentary software, for both the control 

samples and experimental samples.  These values were copied into Microsoft Excel and the 

average relative gene expression of each gene in comparison to the controls was then 

calculated.  In Chapter 4, control samples were from Shef 6-CGN and experimental samples 

were from V337M-C-CGN.  In Chapter 5, control samples were Nas 2-bfCN or Shef 6-CGN not 

treated with Aβ42O and experimental samples were those treated with Aβ42O.  The average 

of the CT values for each sample in triplicate were averaged.  ΔCT values for the experimental 

(ΔCTE) and control (ΔCTC) conditions were generated subtracting the average CT value of the 

housekeeping gene from the average CT value of the gene being tested for the experimental 

sample.  The difference between ΔCTE and ΔCTC (ΔCTE-ΔCTC) was calculated to work out the 

Double Delta CT Value (ΔΔCT).   The value of 2^-ΔΔCT was then calculated to arrive at the 

value for average relative gene expression.  This value, for each sample, was normalised to 

the average 2^-ΔΔCT value of the control samples.   

2.2.4  Statistical analysis of western immunoblotting and gene expression 
results 

Analysis was carried out to determine the statistical significance of results from western 

immunoblotting densitometry and qPCR.  Graphpad Prism 7 was used to analyse the data 

and statistical tests were recommended by Prism.   

An unpaired Student’s t-test was used to analyse the statistical significance of western 

immunoblotting results in which two groups were compared, as recommended by Graphpad 

Prism 7.  Upon analysis of the effects multiple concentrations of Aβ42O on tau-related 

pathogenesis within Shef 6-bfCN (Chapter 5.3), the Friedman test was used followed by the 

Dunn post-hoc test to allow for comparison of results across separate blots. 
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Statistical analysis of gene expression data was carried out using non-parametric tests as 

sample sizes are too small to reliably confirm normal distribution of data.  Where two groups 

were compared, statistical analysis was carried out using the Mann-Whitney test.  Where 

more than two groups were compared the Kruskal-Wallis test followed by a post-hoc Dunn’s 

test.  *=p ≤ 0.05. **=p ≤ 0.01. ***=p ≤ 0.001. ****=p ≤ 0.0001. 

2.2.5 Definition of technical and biological replicates 

For each biological sample collected for western immunoblotting or gene analysis via qPCR 

of cortical glutamatergic neurons (CGNs), protein lysates were collected from one well of a 

6-well plate (Chapter 4 and Chapter 5).  Lysates from three wells of a 24-well plate were 

pooled for each biological sample collected for western immunoblotting or gene analysis for 

basal forebrain cholinergic neurons (bfCNs) (Chapter 5).  Each western blot was repeated 

three times to account for technical variation.  Three technical replicates of the resultant 

cDNA created were carried out on each qPCR plate.   
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Chapter 3 

Generation of V337M MAPT induced 
pluripotent stem cell lines 

 

3.1  Introduction 

Val337Met (V337M) MAPT is a rare mutation, otherwise known as the Seattle family A 

mutation, described as a missense, single nucleotide polymorphism within exon 12 of MAPT 

resulting in a change in the amino acid (aa) at 337 from valine to methionine, resulting in 

frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) (Poorkaj et 

al., 1998).  Four human pluripotent stem cell (hPSC) lines were used during this PhD project: 

Shef 6, a human embryonic stem cell (hESC) line; Nas 2 a human induced pluripotent stem 

cell (hiPSC) line; and two hiPSC lines derived from a patient carrying V337M MAPT.  

Characterisation of the pluripotency of the Nas 2 hiPSC and Shef 6 hESC lines has been carried 

out previously within the Kunath lab (Devine et al., 2011) and by the UK Stem Cell Bank, 

respectively.  The study was approved by National Research Ethics Service (NRES Committee 

– South West) reference 09/H0102/47.  The work in this chapter describes the generation, 

establishment and characterisation of hiPSC lines V337M-C and V337M-E.   

Reprogramming of V337M MAPT lines was carried out previously within the Caldwell lab by 

Dr. Lucy Crompton while clonal selection and characterisation was carried out by the author 

of this thesis, under the supervision of Dr. Lucy Crompton.  A skin biopsy was obtained from 

a 44 year old female with the heterozygous mutation V337M MAPT.  Cells from the skin 

biopsy were cultured in vitro to expand a population of fibroblasts, which were obtained from 

Corriell Biorepository (http://ccr.coriell.org/, catalogue no:  ND40082) (New Jersey, USA), 

where they had been genetically characterised.  These fibroblasts were reprogrammed using 

lentiviral transduction of pluripotency transcription factors (TFs), OCT4, KLF4, SOX2, LIN28 

and NANOG, along with the gene for green fluorescent protein (GFP), to produce human 

induced pluripotent stem cells (hiPSC) carrying the mutation.  Clones were selected for 

expansion and two of these were taken forward for characterisation of pluripotency and 

karyotyping: V337M-C and V337M-E.  After expansion of the clones, the established cell lines 

http://ccr.coriell.org/
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were cultured and continually banked up until passage 10.  hESC and hiPSC lines between 

passages 10 and 16 were differentiated to produce cortical glutamatergic neurons (CGNs). 

At the start of this PhD, there were concerns within the scientific community that hiPSC lines 

may not be identical to hESC with regards to their genetic and epigenetic regulation of 

pluripotency, genome integrity and gene expression (Bilic and Belmonte, 2012; Puri and 

Nagy, 2012).  Additionally, concerns over the inability of hiPSC-models to recapitulate certain 

aspects of particular diseases, previously recapitulated in hESC-models, were also raised 

(Halevy and Urbach, 2014).   Potential differences between these two cell types would hinder 

the comparison of the results in such studies to those found within studies using hESC-

models.  To allow for control of these possible differences, the gold standard of the time was 

to use a control hESC line alongside a control hiPSC line within studies involving modelling 

using hiPSC lines derived from patients.  This is no longer deemed necessary as differences 

between these two cell types have been confirmed to be minimal (Bates and Silva, 2017).   

 

Figure 3.1     Reprogramming of hFibs to produce hiPSC 

A skin biopsy was collected from the patient, which was cultured in vitro to expand a population 

of fibroblasts.  Lentiviral vectors were used to transduce reprogramming factors (OCT4, SOX2, 

KLF4), along with GFP, into patient fibroblasts.  The silencing of GFP was used to monitor the 

completion of reprogramming.   
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3.2  Methods 

3.2.1  Human fibroblast culture 

Human fibroblast culture was carried out by Dr. Lucy Crompton within the Caldwell lab to 

gain fibroblasts from a skin biopsy.   

3.2.2  Reprogramming 

Reprogramming of these fibroblasts was originally carried out within the Caldwell lab by Dr. 

Lucy Crompton using lentiviral vectors (pRRL-Sin-cppt-PGK-EGFP, pSin4-EF2-Oct4-Sox2, 

pSin4-EF2-Nanog-Lin28, pWXPL-Klf4) originally from the James Thomson lab (Yu et al., 

2007).  A discussion on the disadvantages of retroviral reprogramming and ‘start-of-the-art’ 

approaches is given in Chapter 1.4.3.1.2. 

 

Table 3.1 Transduction Media  

 
Volume or 
concentration 

Reagent Product 

76.8 % (v/v) Knock-out DMEM [Invitrogen, 10829] 

20 % (v/v) Knock-out serum replacement [Invitrogen, 10828]  

1 % (v/v) GlutaMAX™ (100x) [Invitrogen, 35050] 

1 % (v/v) Non-essential amino acids NEAA (100x) [Invitrogen, 11140] 

1 % (v/v) Penicillin-streptomycin (Pen/Strep).  solution stabilised [Sigma, P4458] 

0.2 % (v/v) 2-Mercaptoethanol (50 mM) [Invitrogen, 991827] 

100 ng/ ml Human fibroblast growth factor – basic (FGF2) [Peprotech, 100-
18B] 

8 μg/ ml Polybrene® (Hexadimethrine bromide) [Sigma, 107689] 

2 mM Valproic acid [Calbiochem, 
676380] 

 

3.2.3  Clonal Selection of hFibs  

Clonal selection of hFibs was carried out by the author supervised by Dr. Lucy Crompton.  

After transduction, the cells were plated onto inactivated mouse embryonic fibroblasts 

(iMEFs), within a 9 cm diameter cell culture plate, in 3 ml transduction media containing 100 

ng/ml of fibroblast growth factor 2 (FGF2) and 20 mM valproic acid (VPA).  Over the following 
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14 days, the cells were half-fed daily; 1.5 ml of the media was removed and replaced with 

fresh transduction media.  After 7 days, VPA was removed from the media and the cells were 

viewed under a fluorescent microscope [Leica, BS7270] to detect ‘clumping’ of GFP positive 

hFibs.   After a further 14 days, the hFibs had clumped and swirled, forming early colonies 

with defined borders.  The location of these colonies were marked on the bottom of the plate 

using a permanent marker.  GFP positive colonies were manually passaged, viewed under a 

dissection microscope within the tissue culture hood, one colony at a time.  Each colony was 

transferred into one well of a 6-well plate, pre-seeded with iMEFs, and cut into smaller pieces 

using an insulin needle.  From this point, the cells were treated as independent clones and 

labelled by letter A-F.  The passaged colony pieces were allowed to form colonies and 

monitored for morphology and the expression of GFP.  At this point, cells are morphologically 

different compared to hFibs and more similar to a stem cell colony, however, they still 

express GFP indicating incomplete reprogramming.   

The amount of FGF2 was reduced to 50 ng/ml for one week, before being reduced to 20 

ng/ml.  The colonies of each clone were passaged again into 6 wells of a 6-well plate after a 

period of two weeks had passed since the last passage.  GFP expression is silenced at this 

point, identified by a lack of fluorescence, indicating complete reprogramming of the cells.  

The pluripotency was determined by analysis of morphology of the cells and colonies, alkaline 

phosphatase staining and fluorescent immunocytochemistry using pluripotency markers.  

Four of these clones were chosen for cryopreservation and two were finally selected for use 

in modelling FTDP-17 (Chapter 4).   

 

Table 3.2 Table of cell lines used 

 

Name Type Control or carrying mutation Source 

Shef 6 hESC Control UK Stem Cell Bank 

Nas 2 hiPSC Control Prof. Kunath’s lab 

V337M-C hiPSC Carrying mutation V337M MAPT Prof. Caldwell’s lab 

V337M-E hiPSC Carrying mutation V337M MAPT Prof. Caldwell’s lab 

 

3.2.4  Alkaline Phosphatase Staining 

hiPSC were cultured for approximately five days until medium-sized colonies had formed.  

The media was aspirated from the plate and cells were fixed in 4 % paraformaldehyde for 1.5 
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minutes.  The fixative was then aspirated, the plate was washed gently with TBS-T (20 mM 

Tris-HCl, 0.15 M NaCl and 0.05 % Tween-20) and 1.5 ml of alkaline phosphatase stain from 

the alkaline phosphatase staining kit [Sigma, AP0100] was pipetted onto each plate.  The 

plates were incubated with alkaline phosphatase stain, protected from the light, for 15-30 

minutes at room temperature.  The stain was then aspirated off of the cells and the cells 

were rinsed with TBS-T.  Epsom scanning software was used obtain images of the plates.  Pink 

colonies indicate pluripotent cells, whereas non-coloured cells represent differentiated cells.   

3.2.5  Fluorescent immunocytochemistry 

Immunocytochemistry was carried out as detailed in Chapter 2.2.2.   

Table 3.3 Antibodies for characterisation of hiPSC 

 

Antibody Code and manufacturer Concentration Species Details  

SSEA4 ab16287, Abcam 1:300 Mouse IgG3, monoclonal 

Tra-1-60 ab16288, Abcam 1:300 Mouse IgM, monoclonal 

 

3.2.6  Karyotyping 

hiPSC were cultured almost to confluence within a 25cm3 flask in the E8 system and sent live 

to The Doctors Laboratory Ltd. for karyotypic analysis to ensure sound chromosomal integrity 

after reprogramming.  

3.2.7  Genotyping 

A 25 cm3 flask of V337M MAPT hFibs was grown until confluent.  The media was aspirated 

and the cells were washed twice with PBS to remove traces of media.  The 25 cm3 flask was 

stored overnight in a -80 oC freezer to aid the lysis of cells.  The next day lysis buffer [10 mM 

Tris-HCl pH 7.5-8, 10 mM EDTA, 10 mM NaCl, 0.5 % SDS, 18 µg/ml Proteinase K (Roche, 

03115887001)] was added to the cells.  The flask was then incubated overnight in a humified 

incubator set to 55 oC.  2 x the volume of -20 oC ethanol/salt solution (75 mM NaCl in 100%, 

ethanol) was added to the flask and the flask was placed on an orbital rocker for 30 minutes 

to elute the DNA from the cells.  Genomic DNA (gDNA) could be seen, precipitated within the 

liquid in the flask.  The liquid and gDNA was removed from the flask and placed into a 15 ml 

falcon tube and centrifuged at 4000 g for 10 minutes.  The supernatant was removed from 
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the falcon tube leaving a gDNA pellet, which was then washed twice with 100 % ethanol.  The 

gDNA was then carefully removed with a pipette tip and placed into an Eppendorf tube.  All 

excess liquid was removed and the pellet was allowed to air dry within the tube for 15 

minutes at room temperature.  250 µl of TE buffer (Tris 10 mM, EDTA 1 mM, pH 8) was then 

added to the gDNA at room temperature and the DNA was allowed to resuspend after 

pipetting for 1 hour.  Samples were then haplotyped in Dr Roger Barker’s lab, Brain Repair 

Centre, Cambridge, UK.  

3.2.8  Maintenance of hiPSC 

hiPSC were maintained on either iMEFs or within the Essential 8TM system as described in 

Chapter 2.1.2.1 and 2.1.2.2, respectively. 
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3.3  Results 

3.3.1  Characterisation of pluripotency 

Characterisation of hiPSC is essential to verify that pluripotent stem cells have been created.  

This was achieved through observation of the morphology of the cells and the colonies that 

they form.  True hiPSCs should resemble pluripotent hESCs, and both the V337M-E and 

V337M-C hiPSC lines displayed hESC-like morphology; colonies had defined edges and 

consisted of small, round cells with a large proportion of each cell taken up by its nucleus 

(Vallier et al., 2004).  Similar to hESCs, cells within the V337M-E and V337M-C hiPSC lines 

were compact within the colonies (Vallier et al., 2004).  Shef 6 was used to compare the 

morphology of the cells within the colonies of Tau-V337M hiPSC.  All cells within the colonies 

expressed both Tra-1-60 and Stage-Specific Embryonic Antigen-4 (SSEA4) (Figure 3.2), which 

are gold-standard markers of pluripotency.  Colonies of each line also contained cells with a 

high level of alkaline phosphatase activity, which is also indicative of pluripotency.  
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Figure 3.3 Colonies of V337M-C and V337M-E hiPSC express high levels of alkaline 

phosphatase 

  

Figure 3.3 Colonies of V337M-C and V337M-E hiPSC express high levels of alkaline 

phosphatase 

Alkaline phosphatase staining demonstrating colonies of V337M-C hiPSC (A) and V337M-E hiPSC (B) 

expressing high levels of alkaline phosphatase, as illustrated by pink colonies.  Non-uniform colonies 

are those that have been manually pruned to remove any cells that may be differentiating to ensure 

the stability of the culture.   
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3.3.2  V337M MAPT lines have normal karyotypes 

The process of reprogramming carries a small risk of introducing chromosomal abnormalities 

and through the culture of hiPSC culture these can be introduced.  Therefore, the karyotypes 

of these cells were examined.  No abnormalities were seen within the chromosomes of 

V337M-C-hiPSC or V337M-E-hiPSC with karyotyping (Figure 3.4), indicated by matching pairs 

of 23 chromosomes, each with appropriate chromosomal size and shape. 

 

 

 

 

 

 

Figure 3.4      Karyotyping of V337M-C and V337M-E hiPSC 

No chromosomal abnormalities were revealed by karyotyping in either V337M-

C (A) or V337M-E (B) hiPSC, as indicated by the presence of matching pairs of 

23 chromosomes, each with appropriate chromosomal size and shape. 
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3.3.3  V337M MAPT hiPSC are homozygous H1 

MAPT can exist as one of two haplotypes, H1 or H2.  Both of these are associated with the 

development of tauopathy and are described in Chapter 1 (Chapter 1.1.1.2).  The patient 

fibroblasts used to generate these hiPSC were genotyped to understand whether they carry 

the H1 or H2 haplotypes of MAPT.  The fibroblasts were found to be homozygous H1, 

therefore, hiPSC carrying V337M MAPT are also homozygous H1.  Shef 6 hESC lines are also 

homozygous H1 (Sposito et al., 2015).   

3.3.4  Summary 

HiPSC lines V337M-C and V337M-E exhibit morphology consistent with pluripotency, express 

hallmark pluripotency markers and have high levels of alkaline phosphatase, indicative of 

pluripotency.  Genotyping of these lines revealed that these hiPSC have the H1 haplotype, 

the significance of which in tauopathy is described in Chapter 1 (Chapter 1.1.1.2).  These 

results indicate that reprogramming was successful and that hiPSC have been derived, 

therefore, these lines are suitable for the development of hiPSC-neuron models.   
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Chapter 4 

The development of a model of 
frontotemporal dementia with Parkinsonism 

linked to chromosome 17 using induced 
pluripotent stem cell technology 

  

4.1  Introduction 

The molecular pathways underlying tau pathogenesis is an area of intense research as 

improved comprehension of these of these may facilitate the development of effective 

therapeutics.  Inferences gained through investigating the pathways affected by specific 

MAPT mutations may provide valuable knowledge on the pathogenesis of tau, applicable to 

sporadic tauopathies as well as to those that are heritable.  Neurodegenerative diseases 

caused by mutations in MAPT are termed frontotemporal dementia with Parkinsonism linked 

to chromosome 17 (FTDP-17).  The clinical presentation, pathology and known mutations of 

FTDP-17 are described in Chapter 1 (Chapter 1.2.2).   

To develop a model with the potential to allow research into the initial pathogenic events 

that occur due to MAPT mutations, induced pluripotent stem cell (iPSC) technology was used 

to develop a model of FTDP-17.  The work in this chapter describes the differentiation of 

hiPSC, derived from a patient carrying V337M MAPT, to produce cortical glutamatergic 

neurons (CGN), which are particularly vulnerable in FTD (Chapter 1.2.2).  Current knowledge 

of the specific pathology and symptoms associated with this mutation are discussed below 

(Chapter 4.1.1).  Two cell lines, V337M-C and V337M-E, were derived from a patient carrying 

the mutation Val337Met (V337M) MAPT (Chapter 3) and differentiated alongside a human 

embryonic stem cell (hESC) control line (Shef 6) and a hiPSC control line (Nas 2), to produce 

these neurons.   

At the start of this project, the gold standard in experiments using iPSC was to include a hESC 

line, which is why an hESC line was included in these experiments.  The western blotting 

results included in this chapter use one control line, Shef 6 hESC or Nas 2 hiPSC, and one line 
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carrying V337M MAPT, V337M-C or V337M-E, on each blot allowing for comparison between 

controls and cells carrying the mutation on the same blot.  Unfortunately, a control was not 

included to allow for comparison of results from western immunoblots containing Shef-6-

CGN and V337M-E-CGN samples with western immunoblots containing Nas-2-CGN and 

V337M-C-CGN samples.  Samples from lines Shef 6 and V337M-C were used for gene 

expression analysis as it was not possible to gain enough CGNs from V337M-E and Nas 2 to 

carry this out. 

To characterise changes in tau protein due to the mutation, the levels of tau protein, 

expression of MAPT and phosphorylation of tau at sites associated with tauopathy were 

investigated.  The levels, activity and gene expression of key tau kinases, thought to be 

involved in deregulated hyperphosphorylation of tau in patients with FTDP-17 and other 

tauopathies (Chapter 1.3), were also investigated to interrogate the molecular pathways 

underlying early pathogenesis.    

4.1.1  Val337Met MAPT 

V337M MAPT is a rare, missense mutation also referred to as the ‘Seattle family A’ mutation 

after the family in which it was first discovered (Poorkaj et al., 1998).  V337M MAPT is caused 

by a change in the amino acid (aa) valine to methionine at position 337 within exon 12.  

Although we do not completely understand how this mutation results in tauopathy, valine at 

337 of MAPT is present in other tau protein homologues and is highly conserved (Poorkaj et 

al., 1998) alluding to its importance in tau’s function.   

Recent research has described patients with this mutation as presenting as young as in their 

30’s but more typically in their 50’s with a disease duration of approximately 10 years (Spina 

et al., 2017; Bird et al., 1997; Poorkaj et al., 1998; Domoto-Reilly et al., 2017; Sumi et al., 

1992).  Patients present initially with irritability, compulsive behaviour and mental 

inflexibility (Spina et al., 2017).  As the disease progresses, hallmark symptoms of behavioural 

variant frontotemporal dementia (bvFTD) are observed including loss of inhibition, antisocial 

behaviour, paranoia and loss of empathy (Ghetti et al., 2015; Spina et al., 2017; Bird et al., 

1997; Poorkaj et al., 1998; Sumi et al., 1992).  In the later stages, language problems become 

apparent alongside dementia, which includes disturbance in memory, episodic function and 

loss of semantic knowledge (Spina et al., 2017). 
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The mutation results in symmetrical frontotemporal atrophy (Connell et al., 2001; Spina et 

al., 2017) (Figure 4.1).  Tau aggregates, including neurofibrillary tangles (NFTs), are present 

in the highest density within the medial frontal lobes and to a lesser extent within the lateral 

temporal lobes (Spina et al., 2017; Sumi et al., 1992; Spillantini et al., 1996).  

Neurodegeneration also has been reported in parahippocampus, amygdala and neocortical 

areas (Sumi et al., 1992; Spina et al., 2017).    

  

 

Degeneration within the hippocampus is spared even when tau aggregates are present 

within the region (Spina et al., 2017).  This suggests that the molecular events resulting in 

degeneration due to this mutation occur before the aggregation of tau.  Indeed, in V337M 

MAPT Tg drosophila, no filamentous tau aggregates could be identified in neurons despite 

neurodegeneration, suggesting that tau-induced neurodegeneration is not dependent on the 

aggregation of filamentous tau (Wittmann, 2001).  Considerable variability in the clinical 

presentation and neuropathology of the disease has been reported, akin to FTDP-17 caused 

by other MAPT mutations (Larner and Doran, 2008).  For example, Spina and colleagues 

demonstrated the presence of amyloid pathology, which is not normally observed, within the 

Figure 4.1     MRI images of the brains of two patients with V337M MAPT 

(A) MRI scan showing coronal section of a 65 year old male patient with FTDP-17 caused by V337M 
MAPT mutation.  His symptoms evolved over 20 years. The MRI shows moderate to marked, 
bilateral frontal and temporal cortical atrophy as well as severe anterior temporal lobe atrophy.  
Image adapted with permission from Ghetti et al., 2015 © 1999 – 2017 John Wiley and Sons, Inc. 

(B) MRI scan showing transverse section of a 58 year old male patient with V337M MAPT.  Image 
adapted with permission from Spina et al., 2017 © 2017 American Academy of Neurology.  
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brain of a member of a V337M MAPT family (Spina et al., 2017).  Additionally, Domoto-Reilly 

and colleagues reported one member of a family with V337M MAPT presenting with an 

unusually long duration of disease and delayed penetrance (Domoto-Reilly et al., 2017).  This 

patient was found to carry the ApoE genotype E2/E3, thought to be protective in 

neurodegenerative disease (Liu et al., 2013), implicating the influence of other genetic 

factors in the heterogeneity of this disease (Domoto-Reilly et al., 2017). 

The NFTs in the brains of individuals with this mutation are composed of straight and paired 

helical filaments (PHF) of tau composed of all six isoforms of tau (Poorkaj et al., 1998; Sumi 

et al., 1992; Spillantini et al., 1996; Ghetti et al., 2015).  Aggregations of tau are found mainly 

in neurons of V337M MAPT patient brains (Brandt et al., 2005) and are similar in structure to 

those recognised in AD (Kidd et al., 1963; Goedert et al., 1989).  The mutation has no effect 

on the splicing of exon 10 of MAPT (Ehrlich et al., 2015; Brandt et al., 2005), therefore, tau 

hyperphosphorylation within the brains of patients with this mutation is not initiated through 

an alteration in the ratio of 4R:3R isoforms of tau.    

The mutation encourages aggregation of tau, which may explain the formation of NFTs in the 

brains of patients with V337M MAPT.  Tau with this mutation forms filaments upon heparin 

treatment, in vitro, after incorporation of 4-6 moles of phosphate per mole of tau protein, 

whereas wild type (WT) tau will not form filaments until approximately 10 moles of 

phosphate per mole of tau have been incorporated (Arawaka et al., 1999).  Tau inclusions in 

the brains of these patients stain for tau within an abnormal conformation associated with 

early tauopathy (Sumi et al., 1992), however, it is not clear how the mutation causes tau to 

become hyperphosphorylated.  Importantly, V337M MAPT does not create additional 

phosphorylation sites in tau protein, therefore, the resultant hyperphosphorylation of tau 

due to this mutation must involve downstream molecular pathways triggered by this 

mutation (Brandt et al., 2005).  These pathways are unclear; however, studies have been 

undertaken to understand whether this mutation can affect the susceptibility of tau to be 

phosphorylated by tau kinases, including GSK3β and Cdk5 (Connell et al., 2001; Han et al., 

2009) or the activity of tau kinases (Lambourne et al., 2005).   

One mechanism through which tau mutations are thought to cause neurodegeneration is by 

impairing the ability of tau protein to stabilise microtubules.  Several studies have been 

carried out to examine the effect of V337M MAPT on the ability of tau to bind and stabilise 

microtubules.  In cell free, in vitro systems, V337M MAPT reduces the affinity and binding 
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capacity of tau to microtubules (Hasegawa et al., 1998; Dayanandan et al., 1999; Rizzu et al., 

1999; Hong et al., 1998) and the ability of tau to facilitate microtubule polymerisation (Hong 

et al., 1998; Hasegawa et al., 1998).  V337M tau has also been shown to disrupt microtubule 

organisation within non-neuronal mammalian (Arawaka et al., 1999) and insect (Frappier et 

al., 1999) cells.  In a baculovirus system, expression of V337M MAPT tau led to fewer 

microtubules per process and altered microtubule spacing (Frappier et al., 1999).  

4.1.2  Aims 

The aim of the work in this chapter was to develop and probe a hiPSC-model of V337M MAPT 

FTDP-17 and to investigate the ability of the model to be used to gain insight into the 

influence of V337M MAPT on total tau levels, tau phosphorylation at sites associated with 

tauopathy and the expression of MAPT.  The protein levels, activity and gene expression 

levels of tau kinases associated with tauopathy were also investigated.     
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4.2  Methods 

4.2.1 Use of Tg4510 mice for antibody screening  

Tg4510 mice were used to optimise tau antibodies used within this thesis project.  Tg4510 

mice overexpress human mutant P301L MAPT 4R0N tau (Ramsden et al., 2005; Santacruz et 

al., 2005).  Expression is mostly restricted to neurons of the forebrain, driven by the Ca2+-

calmodulin kinase II promoter, and can be suppressed by treatment with doxycycline (Denk 

and Wade-Martins, 2009; Santacruz et al., 2005).  Tg4510 mice develop severe NFT pathology 

in the form of pre-tangles from 2.5 months of age and argyrophilic tangle-like inclusions from 

4 months of age onwards, which dramatically worsens with age (Santacruz et al., 2005).   

These mice are ideal for optimisation of a panel of tau antibodies for western 

immunoblotting for number of reasons: firstly, these mice develop prominent tau pathology 

and this tau pathology is well characterised (Ramsden et al., 2005; Santacruz et al., 2005; 

Song et al., 2015); secondly, many of these antibodies have previously been used to 

investigate tau phosphorylation of tissue from these mice allowing for comparison of the 

results obtained in this study (Song et al., 2015; Ramsden et al., 2005; Santacruz et al., 2005); 

thirdly, this transgenic mouse model expresses human tau thereby ensuring that the 

antibodies are capable of detecting human tau. 

A panel of tau antibodies was optimised for probing western blots to ensure their suitability 

for use in the experiments.  Antibodies DA9, PHF-1, CP13 and RZ3 have been used previously 

to establish the pathology within post-mortem brain tissue of Alzheimer’s patients (Luna-

Munoz et al., 2007).  Basal forebrain, hippocampus and cortex tissue from a well-established 

FTDP-17 murine model, Tg4510, at 5 and 10 months of age was western immunoblotted 

alongside tissue from aged matched wild type (WT) mice.   

All animal tissues were supplied from Eli Lily, where animals were maintained and treated 

under the Home Office’s animals (Scientific Procedures) act 1986 and in agreement with the 

University of Bristol Animal Welfare and Ethical Review Body guidelines.  Female animals 

were euthanised at 5 months and 10 months of age according to the schedule 1 method of 

cervical dislocation and brain tissue was immediately removed and frozen for histological or 

molecular analysis.   
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4.2.2  Differentiation of human pluripotent cells to produce cortical 
glutamatergic neurons 

This protocol describing the derivation of cortical glutamatergic neurons (CGNs) from human 

pluripotent stem cells (hPSC) has been adapted from work carried out within the Livesey Lab 

(University of Cambridge) (Shi et al., 2012) to allow for the derivation of these cells from 

hiPSC cultured within the E8 culture system (Chapter 2.1.2.2).   

During neural development, glutamatergic projection neurons, which go on to form the 

cerebral cortices affected in FTD, are formed in a stereotyped temporal order, whereby deep 

layer neurons are produced first and upper layer neurons last (Mountcastle, 1998).  The use 

of dual Smad (Sma and Mad Related family) pathway inhibition in this protocol directs the 

differentiation of hiPSC firstly into cortical stem and progenitor cells, which then undergo the 

same temporal process of differentiation and neurogenesis recognised during development 

to generate projection neurons of all layers of the cerebral cortex, in appropriate proportions 

(Shi et al., 2012).    

LDN-193189 and SB431542 are the two small molecule Smad inhibitors used in this protocol.  

LDN-193189 is a cell permeable inhibitor of BMP type I receptors ALK2 and ALK3  (Yu et al, 

2008).  SB421542 is a potent and selective inhibitor of the TGFβ type I receptor activin 

receptor-like kinase ALK5, and its relatives ALK4 and ALK7 (Inman et al., 2002).  Additional 

information on the roles of dual Smad inhibition is detailed in Chapter 1.4.3.1.4. 
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4.2.2.2  Media used during the derivation of cortical glutamatergic neurons 

 

Table 4.1 Components of Neural Maintenance Media (NMM) 

 

 

Product Amount Supplier and product code 

Advanced DMEM/F12 47.5 % Life Technologies, 12634028 

Neurobasal 47.5 % Life Technologies, 21103049 

B27 supplement 2 % Life Technologies, 17504044 

N2 supplement 1 % Life Technologies, 17502048 

Penicillin-Streptomycin solution stabilised (Pen-Strep) 1 % Sigma, P4458 

GlutaMAX™ (100x) 1 % Invitrogen, 35050 

2-Mercaptoethanol (50mM) 0.2 % Invitrogen, 991827 

Insulin solution (from bovine pancreas) (stock solution 

10 mg/ml)  

0.025 % Sigma, I0516 

Figure 4.2        Schematic detailing the protocol used for the derivation of cortical glutamatergic 
neurons from human pluripotent stem cells 

Y= Y-27632 (ROCK inhibitor).  The protocol can be divided into five stages; hPSC culture, neural 

induction, neural rosette formation, neural progenitor expansion and neuronal maturation.  hPSC 

are first cultured, on truncated Vitronectin (VTN-T)-coated 6-well plates within the Essential 8 (E8) 

culture system, to gain a culture of healthy pluripotent stem cell colonies at 50-70 % confluency 

and these cells are cultured in neural induction media (NIM) to direct them to differentiate into 

cells a neural lineage. The start of neural induction is considered to be ‘day 1’.  Once a monolayer 

of neuroepithelial cells has formed, the cells are passaged onto plates pre-coated with 

polyornithine-laminin (POL) before being cultured within neural maturation media (NMM) 

supplemented with fibroblast growth factor 2 (FGF2) for 4 days.  After this period, the cells are 

cultured in NMM for the duration of the protocol and are passaged once more at day 20. 

http://www.lifetechnologies.com/order/catalog/product/21103049
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Table 4.2 Components of Neural Induction Media (NIM) 

Product Amount Supplier and product code 

Neural Maintenance Media To 100% As above 

LDN-193189  1 ng/ml  [Sigma–Aldrich, SML0559] 

SB431542 (Selective inhibitor of activin 
receptor-like kinase, TGF-beta type I 
receptor)  

10 µM [Tocris, 1614] 

 

4.2.2.3  Neural Induction 

Human pluripotent stem cells (hPSP) were cultured in xeno-free and feeder-free culture 

conditions, within the wells of 6-well plates [Fisher, 10098870].  The cells were cultured in 

the E8 culture system [LifeTechnologies, A1517001], in which cells are cultured within E8 

media on truncated Vitronectin [VTN-N; LifeTechnologies, A14700] (Chapter 2.1.2.2.1.3) 

coated plastic surfaces (Chapter 2.1.2.2.1.3).  Cells were cultured in 2 ml of media, which was 

removed and replaced with fresh media each day.  Once a monolayer of 50-70 % confluence 

had been achieved, which takes approximately 4 days after initial passaging of hiPSC colonies, 

the media was changed to neural induction media (NIM), containing the Smad inhibitors LDN-

193189 and SB431542.  This day of the protocol is referred to as day 1.  Cells were cultured 

within this media for 10 days allowing for the formation of a uniform monolayer of cells 

consisting of cells with small, round nuclei, indicating neuroepithelial cells, as opposed to 

large, round nuclei, indicative of hiPSC and hESC (Shi et al., 2012).   

At this point, cells were dissociated by adding 250 µl of 37 °C Dispase stock, consisting of 10 

mg/ml Dispase [Life Technologies, 17105] in PBS, directly to the cell culture media and 

incubating for 7 minutes at 37 °C.  After incubation, the monolayer was broken into 

aggregates of 300-500 cells by pipetting with a P1000 pipette three times.  The media 

containing the aggregates was collected into a 15 ml falcon tube and the aggregates were 

allowed to settle into the bottom of the tube before the media was aspirated.  The aggregates 

were resuspended in 1 ml of NIM, supplemented with 10 ng/ml Rho-associated protein 

kinase (ROCK) inhibitor (Y-27632) [Tocris, 1524] to inhibit cell apoptosis.  The clumps of cells 

were passaged into wells of a 6-well plate pre-coated with poly-L-ornithine and laminin 

(POR/L) (Chapter 2.1.2.2.1.4) containing 1.7 ml of NIM, supplemented with 10 ng/ml Y-

27632, by adding 330 µl of the resuspended cell aggregate mixture to each well to achieve a 

passaging ratio of 1:3.   
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4.2.2.4  Neural Rosette Formation  

The cells were allowed to adhere onto the cell surface overnight, after passaging on day 10, 

and the next day the media was replaced with neural maintenance media (NMM) 

supplemented with human fibroblast growth factor 2 (FGF2) [PeproTech, 100-18B].  The 

media was replaced every day and FGF2 was kept in the media until day 15.  FGF2 has an 

important role in the differentiation, development and function of the central nervous 

system (CNS) (Woodbury and Ikezu, 2014) and its expression co-occurs with neurogenesis in 

the developing brain (Powell et al., 1991).  In this protocol, it is added to media after neural 

induction to stimulate neurogenesis (Shi et al., 2012).  Neural rosette structures formed 

between days 11-19, observed using an inverted microscope.    

4.2.2.5  Terminal differentiation and maturation of neurons 

The rosettes were allowed proliferate and differentiate to produce neural progenitors and 

neurons for the duration of the protocol, for which they were maintained in NMM and fed 

every day.  Between day 20-30 substantial neurogenesis is observed.  Between days 20-23, 

the cultures were passaged and re-plated to continue differentiation, to plate cells for 

immunocytochemistry and to allow for cryopreservation (Chapter 4.3.1.6).  After day 30, 

2 μg/ml laminin, from Engelbreth-Holm-Swarm murine sarcoma basement membrane 

[L2020, Sigma], was added to the media on one day each week, to prevent detachment of 

neurons from the culture surface (Nistor et al., 2015).  

4.2.2.6  Passaging cells at day 20-23 

Between day 20-23 the neural progenitor and neuron cultures were passaged using 

AccutaseTM [Sigma, A6964], which is a gentle enzyme mixture with proteolytic and 

collagenolytic enzyme activity.  After the media was aspirated from the cells, the cells were 

washed gently with PBS once, and 1 ml of AccutaseTM was added to each well.  The cultures 

were incubated in AccutaseTM for 1-2 minutes at 37 oC.  After the incubation period, 4 ml of 

37 oC NMM, supplemented with Y-27632 to prevent apoptosis, was added to each well to 

quench the AccutaseTM and the media was gently pipetted to detach the cells from the 

culture surface.  The cell suspension was added to a 15 ml falcon tube and centrifuged (200 

g; 5 minutes).  For re-plating, the cells were resuspended in NMM supplemented with 10 

ng/ml Y23532 to inhibit apoptosis, gently pipetting with a P1000 pipette to ensure a fully 

dissociated cell suspension, counted and plated at a concentration of 50000 cells/cm2 onto 
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either POR/L pre-coated 6-well plates or POR/L pre-coated glass coverslips within 4-well 

plates for subsequent immunocytochemistry.  For cryopreservation, the cell pellet collected 

was re-suspended in neural stem cell cryopreservation media (1260 µl E8 media 

supplemented with 10 ng/ml Y23532 and 140 µl Dimethyl sulfoxide (DMSO)) at a 

concentration of 2x106 cells/ml and the cell suspension was divided equally between two 

sterile cryovials [Greiner Bio One, 123278] and frozen at -80 oC within a Mr. FrostyTM freezing 

container (Chapter 2.1.3.2.1).  

4.2.3  Immunocytochemistry 

Cells were washed once with PBS and 200 µl of room temperature, 4 % paraformaldehyde 

(PFA) was added to the cells.  The cells were incubated with PFA for 15 minutes before the 

PFA was removed and the cells were washed gently three times with PBS to ensure residual 

PFA was removed.  Non-specific binding of proteins was blocked by incubation of the cells 

for 1 hour, or overnight, in blocking/permeabilisation solution (Chapter 2.2.2.1).  Upon 

completion of the incubation period the blocking/permeabilisation solution was removed 

and the primary antibody was added.  The cells were incubated with the primary antibody 

(Table 4.4) overnight before being washed gently three times with PBS.  Primary and 

secondary antibodies were prepared and diluted in 1 % HS, in 0.1 % TX-PBS.  The secondary 

fluorophore antibody was then added and incubated for two hours, protected from the light, 

at room temperature on a rocking plate.  After the two hour incubation period, the cells were 

washed with PBS for five minutes on a rocking table, three times.  After the final aspiration 

of the washing liquid, the glass coverslips were carefully lifted from the wells and placed 

facing down-wards onto a droplet of Vectorshield™ on a glass slide. The circumference of the 

coverslips were sealed with clear nail varnish and allowed to dry overnight, protected from 

the light.  

4.2.4  Western Immunoblotting 

A panel of tau antibodies, including PHF-1, DA9, CP13 and RZ3 was first assessed in Tg 4510 

mice (Chapter 4.3.1).  After assessment and optimisation of the western blotting protocols, 

required to achieve clear results using these antibodies, a complement of antibodies was 

used to probe hPSC-neuron lysates via western immunoblotting (Table 4.4).  Western 

blotting protocols described in Chapter 2.2.1 were followed.  The bands analysed by 

densitometry were  normalised to those created through probing with anti-GAPDH for each 



126 
 

result.  The western immunoblots shown within figures in this chapter are representatives of 

the three western immunoblots carried out for each result.  For phosphorylated tau 

antibodies, density of bands after normalisation to GAPDH were also compared to those for 

total tau after normalisation to GAPDH.  Where multiple bands were produced through 

probing with anti-tau antibodies, all bands were included in the densitometric analysis.    

Analysis of PAK3 levels included only bands at 65 kDa. For analysis of synapsin levels only 

bands at 75 kDa were included.  For p25 and p35 level analysis, only bands at 25 kDa and 35 

kDa, respectively, were included in analysis.   For analysis of the levels of GSK3β and pTyr216 

GSK3β, only bands at 48 kDa and 52 kDa were included in analysis. 
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Table 4.3 Primary antibodies in immunocytochemistry and western 
immunoblotting 

Primary 
antibody 

Protein detected  Host Source and 
catalogue 
number 

References Dilutions 

Western ICC 

Akt 
pSer273 

pSer273 Akt Rabbit 9271, Cell 
Signalling  

(Ksiezak-Reding et 
al., 2003) 

1:500 N/A 

βIII 
Tubulin 

βIII Tubulin Mouse ab6046, 
Abcam 

(Huidong et al., 
2015)  

N/A 1:1000 

CP13 pSer202 tau Mouse Prof. 
Davies* 

(Petry et al., 2014; 
Vingtdeux, et al., 
2011) 

1:1000 N/A 

DA9 Pan-tau Mouse  Prof. 
Davies* 

(Petry et al., 2014) 1:5000 N/A 

GAPDH GAPDH 

 

Mouse AM4300, 
Invitrogen 

(de Oliveira et al., 
2017)  

1:5000 N/A 

GSK3β GSK3β Rabbit D5C5Z, Cell 
Signalling 

(Burk et al., 2017) 

 

1:500 N/A 

GSK3β 
pTyr216 

pTyr216 GSK3β Rabbit ab75745, 
Abcam 

(Porquet et al., 
2015; Rui et al., 
2013) 

1:500 N/A 

p25-p35 p25-p35 Rabbit C64B10, 
Cell 
Signalling 

(Porquet et al., 
2014) 

1:300 N/A 

PAK3 PAK3 Rabbit 2609S, Cell 
Signalling 

(Murata and 
Constantine-Paton, 
2013) 

1:300 N/A 

PHF-1 pSer396/pSer404 
tau 

Mouse Prof. 
Davies* 

(Otvos et al., 1994) 1:5000 N/A 

PSD-95 PSD-95 Mouse ab2723, 
Abcam 

(Frandemiche et al., 
2013) 

1:1000 1:300 

RZ3 pThr231 Mouse Prof. 
Davies* 

(Vingtdeux et al., 
2011) 

1:250 N/A 

Synapsin Synapsin I Rabbit ab64581, 
Abcam 

(Stefanova et al., 
2016) 

1:750 1:300 

RD3 3R tau Mouse 05-803, 
Merck 
Millipore 

(de Silva et al., 
2003) 

1:1000 N/A 

RD4 3R tau Mouse 05-804, 
Merck 
Millipore 

(de Silva et al., 
2003) 

1:100 N/A 

*Prof. Peter Davies (Albert Einstein College of Medicine, New York, USA) kindly supplied 

CP13, DA9, PHF-1 and MC1 antibodies.   
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4.2.4.1 Preparation of mouse brain tissue lysates 

Mouse hippocampal or cortical brain areas, from control or Tg4510 mice were homogenised, 

in 10 µl per mg of tissue in ice cold RIPA buffer (Chapter 2.2.1.1) plus one tablet of Protease 

Inhibitor [Roche, cOmplete Mini, 04693] per 10 ml of RIPA buffer and one tablet of 

Phosphatase Inhibitor PhosStop, [Roche] per 10 ml.  To homogenise, the tissue was firstly 

compressed using a sterile plastic disposable 1.5 ml microtube pestle 20 times.  The tissue 

was then passed through a series of sterile, disposable needles of descending size, from 14 

gauge to 20 gauge, attached to a sterile syringe.  The resultant crude homogenate was 

centrifuged at 11,000 g for 15 minutes at 4 oC to clarify it by removing any remaining non-

homogenated brain tissue.  The homogenates were kept on ice throughout this process and 

used immediately in western blotting or stored immediately at -80 oC. 

4.2.5  qPCR 

Shef 6-CGNs and V337M-C-CGNs were cultured after terminal differentiation to maturity 

before being collected and processed to extract and purify RNA.  See Chapter 2.2.3 for details 

of the protocols used for extraction and purification of RNA from hPSC-CGN cultures, 

conversion into cDNA, qPCR and analysis of the results.  A list of the Taqman® probes used 

during this chapter are detailed in Table 2.13 and include probes against GSK3β, CDK5, MAPT, 

PAK3 and also GAPDH, which was used as a quantitative control for analysis.   

To calculate the average relative gene expression, the cycle threshold (CT) values (Chapter 2) 

for each gene were normalised to those gained through qPCR using the probe against GAPDH 

and each result was normalised against the average of Shef 6-CGNs, which was used as the 

healthy control for these experiments.  Statistical analysis of qPCR data in this chapter was 

performed using a Mann-Whitney test.   
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4.3  Results 

4.3.1  Optimisation of a panel of tau antibodies for western immunoblotting  

 

Figure 4.3 Western immunoblots of Tg4510 mice basal forebrain, cortex and 
hippocampus with tau antibodies  

 

Western immunoblots using antibodies CP13, PHF1, RZ3, DA9, 4R tau, 3R tau and α-Tubulin 

as a control antibody, demonstrate clearly that tau pathology is more prominent in the 

hippocampus, cortex and basal forebrain of Tg mice compared to WT mice (Figure 4.3).  Tau 

pathology in Tg4510 mice begins within the cortex (Santacruz et. al., 2005); therefore, it is 

Figure 4.3      Western immunoblots of Tg4510 mice basal forebrain, cortex and hippocampus 
with tau antibodies 

Western immunoblots of Tg4510 mice and WT mice basal forebrain, cortex and hippocampus at 

ages 5 months and 10 months probed using antibodies CP13, DA9, PHF-1, 3R tau, 4R tau and RZ3 

alongside alpha-Tubulin, which is used as a loading control antibody to allow for the consideration 

of the total amount of protein loaded. 
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unsurprising that the immunoblots indicate the greatest staining, using total and 

phosphorylated tau antibodies, within the cortex of these mice.   

DA9 detects both dephosphorylated and phosphorylated tau, therefore is an antibody used 

to detect total tau.  In 10 month old Tg4510 mice, immunoblotting for DA9 is decreased in 

comparison to 5 month old mice, which likely corresponds to the gross neurodegeneration 

observed at 10 months in a previous study (Spires et al., 2006).   

CP13 detects pSer202 tau, which is associated with early phosphorylated tau pathology 

(Luna-Muñoz et al., 2007) and the immunoblots indicate greater amounts of this form of tau 

especially in the cortex and hippocampus of Tg mice, which corresponds to the increased 

staining seen in CA1 neurons within the hippocampus of Tg4510 mice at 10 months old 

(Ramsden et al., 2005).  In these western blots, CP13 staining is increased in Tg mice 

compared to WT in both 5 month and 10 month old mice and is more pronounced in Tg mice 

of 10 months of age compared to those of 5 months of age.  A similar pattern is found for 

antibodies PHF-1 and RZ3, demonstrating that these western blots are consistent with 

previous reports of increased phosphorylated tau pathology, exacerbated with age, within 

Tg4510 mice compared to controls.   

RZ3 detects pThr231 tau and immunoreactivity is seen in a variety of tau transgenic AD model 

mice and in the brains of patients with AD (Acker et al., 2013).  Although RZ3 has not 

previously been cited as being used on Tg4510 mouse brain tissue, the increased presence 

of pThr231 tau as detected here by this antibody is commensurate with the known increase 

in NFT pathology, in particular in the cortex and hippocampus, of these mice.   

PHF-1 is a well-characterised antibody, which detects pSer396/404 tau and is a marker for 

late-stage NFTs.  Previous studies parallel results from these immunoblots (Ramsden et al., 

2005; Santacruz et al., 2005), which show that PHF-1 staining was increased within 10 month 

old mice in comparison to 5 month old mice and most intense staining was found within the 

cortex.  The antibody MC1 was also included in the panel of antibodies used within this 

project.  MC1 can be used to detect abnormal conformations of tau associated with early 

tangle formation (Gotz et al., 2001).  MC1 loses specificity when used for western 

immunoblotting, therefore, it was not used to probe western blots of hPSC-neurons (Petry 

et al., 2014).   
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Immunostaining with 3R tau and 4R tau antibodies, which detect tau with three C-terminal 

repeats and four C-terminal repeats respectively, indicates that these mice have increased 

amounts of both of these isoform groups of tau in comparison to wild type mice, however, 

this is to be expected due to the increase in total tau detected by DA9.  At the beginning of 

this study, these isoform specific antibodies were intended to be used to understand whether 

tau pathology resulting from V337M MAPT could alter the ratio of 3R:4R tau as changes in 

the ratio are associated with tauopathy.  However, the recent discovery that 4R tau is not 

expressed within hPSC-neurons until they have been cultured for at least 100 days (Sposito 

et al., 2015), with the exception of those hPSC-neurons carrying mutations that are capable 

of altering the splicing of MAPT leading to early expression of 4R tau (Iovino et al., 2015; 

Hallman et al., 2015; Wren et al., 2015), deemed this analysis unnecessary.   

The parallels between previous reports of tau pathology within Tg4510 mice and the western 

immunostaining detected in these immunoblots indicated that this panel of antibodies is 

suitable for the detection of changes in tau and may enable a deeper understanding of the 

changes of tau phosphorylation in neurons derived from hiPSC with mutations within MAPT. 
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4.3.2  Characterisation of CGNs derived from pluripotent stem cells  

During the generation of CGNs from hiPSC, cell cultures pass various milestones during 

differentiation, mimicking cortical neurogenesis during development (Shi et al., 2012).  These 

milestones can be assessed and characterised by immunocytochemistry.  During the 

development of the cortex, cortical glutamatergic neurons (CGNs) are produced from radial 

glia, which are capable of differentiating into intermediate cell types that terminally 

differentiate to form neurons and glia (Heins et al., 2002; Noctor et al., 2001; Miyata et al., 

2001; Malatesta et al., 2000; Englund et al., 2005).  Radial glia express paired box protein 

6 (Pax 6), a homeodomain transcription factor that exerts high-level control over cortical 

development (Manuel et al., 2015).  Radial glia differentiate to produce intermediate 

progenitor cells (IPCs), which express T-domain transcription factor 2 (Tbr2) and are 

committed to a glutamatergic neuron fate (Englund et al., 2005; Hevner et al., 2006).  Pax 6 

and Tbr 2 expression overlaps within cells during development of CGNs (Englund et al., 2005; 

Hevner et al., 2006).  The presence of Pax 6 (Figure 4.4) and Tbr 2 (Figure 4.5) were detected 

in cultures at day 15 of the protocol via fluorescent immunocytochemistry.   
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Figure 4.4 Neural progenitors express Pax6 at day 15  

 

 

 

 

 

Figure 4.4     Neural progenitors express Pax6 at day 15 

Neural progenitors differentiated from Shef 6 (A), Nas 2 (B), V337M-E (C) and V337M-C (D), 
express Pax 6 at day 15 of the protocol.  Scale bars indicate 50 µM. 
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Figure 4.5 Neural progenitors express Tbr2 at day 15 

 

The mixture of neural progenitors and young neurons at day 15 of the protocol express both 

Pax 6 and Tbr 2.  The presence of these two proteins in day 15 cultures indicates the presence 

of both radial glia and IPCs, indicating that the cells are following the correct route for 

differentiation.   

Figure 4.5     Neural progenitors express Tbr2 at day 15 

Neural progenitors differentiated from Shef 6 (A), Nas 2 (B), V337M-E (C) and V337M-C (D), 
express Tbr2 at day 15 of the protocol.  Scale bars indicate 50 µM 
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Figure 4.6 Neural progenitors express Tbr1 at day 25 

 

Later in cortical neurogenesis, T-domain transcription factor 1 (Tbr1) is expressed.  Tbr1 is 

expressed by virtually all post-mitotic glutamatergic cortical neurons (Hevner et al., 2001; 

Hevner et al., 2006; Englund et al., 2005) and is not present in GABAergic neurons (Hevner et 

al., 2001).  At day 25 of the differentiation protocol, the cultures of neurons positively co-

immunostained with an antibodies against βIII Tubulin and Tbr1, indicating that these 

neurons are glutamatergic (Figure 4.6).   

 

 

 

 

Figure 4.6     Neural progenitors express Tbr1 at day 25 

Neural progenitors differentiated from Nas 2 (A) and V337M-C (B), express Tbr1 at day 22 of the 
protocol.  Scale bars indicate 50 µM. 
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Figure 4.7 hPSC-CGN express vGlut1 at day 50

 

 

Vesicular glutamatergic transporter 1 (vGlut1) is a vesicular glutamatergic transporter, 

present within neurons that use the neurotransmitter glutamate and within the cortex, 

hippocampus or cerebellar cortex (Bellocchio et al., 2000).  Mature cortical glutamatergic 

neurons should express vGlut1, therefore, an antibody against this protein was used in 

combination with fluorescent immunocytochemistry to visualise the presence of vGlut1.  Nas 

2-CGN, Shef 6-CGN, V337M-C-CGN and V337M-E-CGN cultures all have neurons, highlighted 

by βIII Tubulin, that co-stain positively with VGlut1 (Figure 4.4).  Positive immunostaining of 

these neurons, therefore, indicates post-mitotic cortical glutamatergic neurons (CGNs).   

Figure 4.7     hPSC-CGN express VGlut1 at day 50 

Nas 2-CGN (A), Shef 6-CGN (B), V337M-C-CGN (C) and V337M-E-CGN (D) immunostained with βIII 
Tubulin (red) and VGlut1 (green). V337M-C-CGN and V337M-E-CGN were also immunostained with 
Hoechst solution (blue) to indicate cell nuclei.   The overlays are depicted in the panels furthest to 
the right.  Scale bar for Nas 2-CGN (A) indicates 50 µm, scale bars for Shef 6-CGN (B), V337M-C-CGN 
(C) and V337M-E-CGN (D) indicate 100 µm. 
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Figure 4.8 Day 50 hPSC-CGN express synapsin I 

 

 

 

 

 

 

 

 

 

 

 

Dysfunction and loss of synapses precedes neurodegeneration in tauopathy, therefore, it was 

important to confirm the presence of synapses within hPSC-CGNs.  Immunocytochemistry 

using antibodies against synapsin, a pre-synaptic protein important for vesicle trafficking 

within the synapse present within early and mature synapses (Evergren et al., 2007) (Figure 

4.8) and βIII Tubulin, demonstrated the presence of this synaptic protein in hPSC-CGNs at day 

50 of the differentiation protocol.  These hPSC-CGNs also express post-synaptic density 

protein 95 (PSD-95) (Figure 4.9), a protein present within the post-synaptic density of mature 

synapses (Naisbitt et al., 2000).    

Figure 4.8     Day 50 hPSC-CGN express synapsin I 

Shef 6-CGN express synapsin I at day 50 as indicated by positive fluorescent immunostaining 
using antibodies against synapsin I and βIII Tubulin.  Scale bars indicates 50µm. 
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Figure 4.9 hPSC-CGN express post-synaptic density protein 95 at day 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9     hPSC-CGN express post-synaptic density protein 95 at day 50 

Shef 6-CGN express Synapsin at day 50 as indicated by positive fluorescent immunostaining using 
antibodies against PSD 95 and βIII Tubulin.  Scale bars indicate 50µm. 
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4.3.3  Tau and phosphorylated tau levels in CGNs 

After terminal differentiation, hPSC-CGNs were cultured to maturity, i.e. 50 days, from lines 

Nas 2, Shef 6, V337M-C and V337M-E before the cells were washed, lysed and frozen.  The 

resultant samples were western immunoblotted and probed with total tau antibody, DA9, as 

well as antibodies PHF-1, CP13 and RZ3 to detect tau phosphorylated at Ser396/Ser404, 

Ser202 and Thr231, respectively.  The calculated density and size of each band was 

normalised to bands produced by probing with the housekeeping control antibody GAPDH.  

The bands produced by probing with the phosphorylated tau antibodies were also 

normalised against those revealed by probing with DA9, after normalisation against GAPDH, 

allowing for consideration of total tau variation within sample.  Prepared lysates from 

V337M-C-CGN were western immunoblotted alongside Nas 2-CGN, while V337M-E-CGN 

were western immunoblotted alongside Shef 6-CGN.   
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Figure 4.10 Level of total tau in hiPSC-CGNs 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10     Levels of total tau in CGNs  

Representative western blots showing CGN derived from V337M-C and Nas 2 (V337M-C-CGN n=4; 
Nas 2-CGN n=3) (A) and from derived from V337M-E and Shef 6 (V337M-E-CGN n=4; Shef 6-CGN 
n=3) (B) probed with GAPDH and DA9 antibodies.  Bar charts represent the density of DA9 bands 
compared to GAPDH bands for CGN derived from (B) V337M-C and Nas 2 (***p=0.0005)  and from 
(C) V337M-E and Shef 6 (*** p=0.0007). 
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Levels of total tau are decreased in neurons carrying the V337M mutation, derived from 

V337M-C (p= 0.0005) and V337M-E (p= 0.0007), compared to control neurons derived from 

Nas 2 and Shef 6, respectively (Figure 4.10).   

To detect the amount of tau phosphorylated at Ser396 and Ser404 within cells carrying 

V337M MAPT compared to control cells, lysates from V337M-C-CGN, V337M-E-CGN, Shef 6-

CGN and Nas 2-CGN were immunoblotted and western blots were probed with PHF-1 

(Figures 4.11 and 4.12).   

 

Figure 4.11 Level of tau phosphorylation Ser396 and Ser404 in V337M-C-CGNs and 
Nas 2-CGNs 

 

Figure 4.11     Levels of tau phosphorylated at pSer396 and pSer404 in V337M-C- and Nas 2-CGNs  

Representative western blot (A) showing CGN derived from V337M-C and Nas 2 probed with GAPDH 

and PHF-1 antibodies (V337M-C-CGN n=4; Nas 2-CGN n=3) and corresponding bar charts 

representing the density of PHF-1 bands normalised to GAPDH bands (***p=0.0005) (B) and then 

normalised to DA9 bands (C).   

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Levels of pSer396/404 tau are decreased in V337M-C-CGN before normalisation to total tau 

levels (p= 0.0005), however, there was no significant difference in levels of tau 

phosphorylation at these sites between Nas 2-CGN and V337M-C-CGN after normalisation to 

total tau (p= 0.2677).    

 

Figure 4.12 Levels of tau phosphorylated at Ser396 and Ser404 in V337M-E-CGNs and 
Shef 6-CGNs 

 

Levels of pSer396/404 tau are decreased in V337M-E-CGN before normalisation to total tau 

levels (p= 0.0013), and after normalisation to total tau (p= 0.0014).   

Figure 4.12     Levels of tau phosphorylated at Ser396 and Ser404 in V337M-E-CGNs and Shef 6-
CGNs 

Representative western blot (A) showing CGN derived from V337M-E and Shef 6 probed with 

GAPDH and PHF-1 (V337M-E-CGN n=3; Shef 6-CGN n=5).  Bar charts representing the density of (B) 

PHF-1 bands normalised to GAPDH bands (** p= 0.0013) and then (C) normalised to DA9 bands (** 

p= 0.0014).   

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 4.13 Level of tau phosphorylation Ser202 in V337M-C-CGNs and Nas 2-CGNs  

 

Before normalisation to total tau, no difference was found in phosphorylation of tau at 

Ser202 between V337M-C-CGN and Nas 2-CGN, however, upon normalisation to total tau 

within the neurons, tau was found to be phosphorylated within V337M-C-CGN compared to 

Nas 2-CGN (p= 0.0019) (Figure 4.13).   

Thr231 phosphorylation of tau is associated with pre-tangle pathology (Augustinack et al., 

2002a) and has been shown to inhibit tau’s ability to bind microtubules by approximately 25 

% (Sengupta et al., 1998).  To investigate the phosphorylation of tau at this site western blots 

of V337M-C-CGN and Nas 2-CGN were probed with RZ3 (Figure 4.14).   

 

Figure 4.13    Levels of tau phosphorylated at pSer202 and pSer205 in V337M-C- and Nas 2-CGNs  

Representative western blot showing CGN derived from V337M-C and Nas 2 probed with GAPDH 

and CP13 (V337M-E-CGN n=4; Nas 2-CGN n=3).  Bar charts representing the density of (B) CP13 

bands normalised to GAPDH bands and (C) then normalised to DA9 bands ( ** p= 0.0019). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 4.14 Level of tau phosphorylation Thr231 in V337M-C-CGNs and Nas 2-CGNs  

 

pThr231 tau is significantly reduced in V337M-C-CGN compared to Nas 2-CGN both before 

(p≤ 0.0001) and after (p= 0.0002) normalisation to total tau.  Unfortunately, the signal 

generated through probing western blots of V337M-E-CGN and Shef 6-CGN was too weak to 

enable analysis of tau phosphorylation at this site. 

 

 

 

Figure 4.14     Levels of tau phosphorylated at pThr231 in V337M-C- and Nas 2-CGNs  

Representative western blot (A )showing CGN derived from V337M-C and Nas 2 probed with 
GAPDH and RZ3 (V337M-C-CGN n=4; Nas 2-CGN n=3) and corresponding bar chart representing 
the density of RZ3 bands normalised to GAPDH bands (****  p<0.0001) (B) and then to DA9 (*** 
p=0.0002) (C).   
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
 



145 
 

4.3.4  Gene expression of MAPT in Shef 6-CGNs and V337M-C CGNs 

Shef 6-CGNs and V337M-C-CGNs were cultured after terminal differentiation to maturity 

(Chapter 4.2.1), before the cells were collected and processed to extract and purify RNA.  RNA 

was converted to cDNA and qPCR was carried out using Taqman® probes to discern 

expression levels of MAPT (Chapter 2.7).  The average relative gene expression MAPT was 

calculated for V337M-C-CGN and compared to that in Shef 6-CGN. 

 

Figure 4.15 Levels of MAPT gene expression in V337M-C-CGNs and Shef 6-CGNs 

 

While the average relative expression of MAPT is not statistically different in V337M-C-CGN 

compared to Shef 6-CGN (p= 0.0571) (Figure 4.15), this result approaches statistical 

significance. 

 

 

 

 

 

 

Figure 4.15     Levels of MAPT gene expression in V337M-C-CGN and Shef 6-CGN 

Bar chart representing the average MAPT gene expression within V337M-C-CGN and Shef 6-CGN 
(V337M-C-CGN n=4; Shef 6-CGN n=3).  

Data was analysed using a Mann-Whitney test.  Error bars indicate +1 S.E.M. 
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4.3.5  Tau kinase levels and activity in hiPSC-CGNs 

To investigate the levels and activity of GSK3β within hiPSC-CGN carrying the V337M MAPT 

mutation compared to control neurons, western blots were probed with antibodies against 

total GSK3β and GSK3β phosphorylated at pTyr216.  Phosphorylation of GSK3β at this site is 

necessary for GSK3β activity (Chapter 1.3.1) and by comparing levels of pTyr216 GSK3β to 

total GSK3β it is possible to investigate the activity of this kinase. 

Levels of GSK3β (p= 0.2225), pTyr216 GSK3β (p= 0.6334) and the ratio of pTyr216 GSK3β 

normalised to total GSK3β (p= 0.2106), were not significantly different in V337M-C-CGN 

compared to Nas 2-CGN (Figure 4.16).  However, in V337M-E-CGNs levels of GSK3β were 

found to be significantly increased compared to Shef 6-CGN (p= 0.0122) while levels of 

pTyr216 GSK3β were decreased (p= 0.0159) (Figure 4.17).  This was reflected in a decreased 

ratio of pTyr216 GSK3β to total GSK3β (p= 0.0016) (Figure 4.17, E), indicating that while 

GSK3β levels overall rise in cells carrying V337M MAPT compared to Shef 6-CGN, the activity 

of GSK3β is decreased.  Banding patterns varied between western blots for pTyr216 GSK3β 

and total GSK3β for both V337M-C and Nas-2 derived CGNs (Figure 4.16) and V337M-E and 

Shef 6 derived CGNs (Figure 4.17). 
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Figure 4.16 Levels of active GSK3β in V337M-C-CGN and Nas 2-CGNs  

 

 

Figure 4.16     Level of GSK3β and pTyr216 GSK3β in V337M-C-CGN and Nas 2-CGN  

Representative western blots showing CGNs derived from V337M-C and Nas 2 probed with 

antibodies against (A) GAPDH and GSK3β and (B) GAPDH and pTyr216 GSK3β (V337M-C-CGN 

n=4; Shef 6-CGN n=3).   Bar charts representing the density of (C) GSK3β bands normalised to 

GAPDH bands, (D) pTyr216 GSK3β bands normalised to GAPDH bands and (E) pTyr216 GSK3β 

bands normalised to total GSK3β bands, then to GAPDH bands.   

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 

 pTyr216 
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Figure 4.17 Levels of active GSK3β in V337M-E-CGN and Shef 6-CGNs  

  

Figure 4.17     Level of GSK3β and pTyr216 GSK3β in V337M-E-CGN and Shef 6-CGN  

Representative western blots showing CGNs derived from V337M-E and Shef 6 probed with 

antibodies against (A) GAPDH and GSK3β and (B) GAPDH and pTyr216 GSK3β (V337M-E-CGN n=3; 

Shef 6-CGN n=4).  Corresponding bar charts represent the density of (C) GSK3β bands normalised 

to GAPDH bands (* p= 0.0122), (D)  pTyr216 GSK3β bands normalised to GAPDH bands (* p= 

0.0159) and (E) pTyr216 GSK3β bands normalised to total GSK3β bands, then to GAPDH bands (** 

p= 0.0016).   

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 

 

 

 

 pTyr216 
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To investigate the activity of Cdk5, the relative ratio of p35 to p25 in brain samples was 

examined by probing western blots with an antibody against p25 and p35.  An increase in the 

activity of Cdk5 is indicated by increased levels of p25 and decreased levels of p35 as 

described in more detail in Chapter 1 (Chapter 1.3.2). 

 

Figure 4.18 Levels of p35 in hPSC-CGN 

 

Figure 4.18     Levels of p35 in hPSC-CGNs  

Representative western blots showing CGNs derived from (A) V337M-C and Nas 2 (V337M-C-CGN 
n=4; Nas 2-CGN n=3) and (C) V337M-E and Shef 6 (V337M-E-CGN n=3; Shef 6-CGN n=5) probed 
with antibodies against GAPDH and p25/p35.  Bar charts representing the density of p35 bands 
normalised to GAPDH bands for (B) V337M-C and Nas 2 (** p= 0.0037) and (D) V337M-E and Shef 
6 (*** p= 0.0004).   

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Levels of p25 were too low to be quantified in these western immunoblots.  Levels of p35 

were significantly decreased in V337M-C-CGN compared to Nas 2-CGN (p= 0.0037) and in 

V337M-E-CGN compared to Shef 6-CGN (p= 0.0004) (Figure 4.18).  

Western blots were probed with anti-PAK3 to investigate the effects of V337M MAPT on 

levels of this tau kinase.  PAK3 levels were significantly decreased in V337M-C-CGN compared 

to Nas 2-CGN (p< 0.0001).  Although PAK3 levels appear to be decreased in V337M-E-CGN 

compared to Shef 6-CGN, this result is not statistically significantly (p= 0.0601) (Figure 4.19).   
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Figure 4.19 Levels of PAK3 in V337M-C-CGNs and Nas 2-CGNs 

 

 

 

 

 

Figure 4.19     Levels of PAK3 in hiPSC-CGNs  

Representative western blot showing CGNs derived from (A) V337M-C and Nas 2 (V337M-C-CGN 

n=4; Nas 2-CGN n=3) and (C) V337M-E and Shef 6 (V337M-E-CGN n=3; Shef 6-CGN n=5) probed 

with antibodies against GAPDH and PAK3.  Corresponding bar charts representing the density of 

PAK3 bands normalised to GAPDH bands for (B) V337M-C and Nas 2 ( **** p< 0.0001) and (D) 

V337M-E and Shef 6.   

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Akt, also known as protein kinase B (PKB), is a serine/threonine protein kinase capable of 

phosphorylating tau directly at Thr212 and Ser214 (Kyoung et al., 2004; Ksiezak-Reding et al., 

2003) and regulating the activity of other tau kinases via phosphorylation; for example, Akt 

phosphorylates GSK3β at Ser9, therefore inhibiting it (Chalecka-Franaszek and Chuang, 1999; 

Doble and Woodgett, 2003; De Sarno et al., 2002).  Phosphorylation of Akt at Ser473 is 

necessary for its activation (Kyoung et al., 2004; Ksiezak-Reding et al., 2003).  The influence 

of V337M MAPT on the activity of Akt were investigated by probing western blots with an 

antibody against this phosphorylated form of Akt.  The levels of pSer473 Akt within V337M-

C-CGN (p= 0.0749) and V337M-E-CGN (p= 0.9459) are not significantly different compared to 

Nas 2-CGN and Shef 6-CGN, respectively (Figure 4.20).   
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Figure 4.20 Level of pSer473 Akt in hPSC-CGNs 

 

 

 

 

 

Figure 4.20    Level of pSer473 Akt in hPSC-CGNs   

Representative western blots showing CGNs derived from (A) V337M-C and Nas 2 (V337M-C-CGN 

n=4; Nas 2-CGN n=3) as well as (C) V337M-E and Shef 6 (V337M-E-CGN n=3; Shef 6-CGN n=4) 

probed with GAPDH and pSer473 Akt antibodies.  Corresponding bar charts represent the density 

of pSer473 Akt bands normalised to GAPDH bands for (B) V337M-C and Nas 2 and (D) V337M-E 

and Shef 6.   

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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4.3.6  Gene expression of tau kinases in CGN  

To determine the effect of V337M MAPT on the expression levels of tau kinases, GSK3β, CDK5 

and PAK3, qPCR was carried out using probes to detect cDNA of these kinases. 

 

Figure 4.21 Levels of tau kinase gene expression in V337M-C-CGNs and Shef 6-CGNs 

 

 

 

 

GSK3β (p= 0.0571), CDK5 (p= 0.0571) and PAK3 (p= 0.1000) gene expression levels are not 

significantly different in V337M-C-CGN compared to Shef 6-CGN (Figure 4.21), however, 

results for GSK3β and CDK5 approach statistical significance. 

 

 

 

 

Figure 4.21     Levels of tau kinase gene expression in V337M-C-CGNs and Shef 6-CGNs 

Bar charts representing the average gene expression of (A) GSK3β, (B) CDK5 and (C) PAK3 within 

V337M-C-CGN and Shef 6-CGN (V337M-C-CGN n=4; Nas 2-CGN n=3).   

 

Data was analysed using a Mann-Whitney test.  Error bars indicate +1 S.E.M. 
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4.3.7  Loss of synapsin I in CGN 

 

Figure 4.22 Level of synapsin in hPSC-CGNs  

 

Levels of synapsin are significantly decreased in V337M-C-CGN compared to Nas 2-CGN (p= 

0.0018).  Similarly, levels of synapsin are significantly decreased in V337M-E-CGN compared 

to Shef 6-CGN (p= <0.0001) (Figure 4.22).   

Figure 4.22     Levels of synapsin I in hPSC-CGNs 

Representative western blots showing (A) V337M-C-CGN and Nas2-CGN (V337M-C-CGN n=4; Nas 
2-CGN n=3) and (C) Shef 6-CGNs and V337M-E-CGNs probed with antibodies against GAPDH and 
synapsin (control n=5; Aβ 0.5µM n=3).  Corresponding bar charts show the average relative 
density of synapsin I bands normalised to GAPDH bands for (B) V337M-C-CGN and Nas2-CGN (** 
p=0.0018) and (D) Shef 6-CGNs and V337M-E-CGNs (**** p<0.0001).   
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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4.4  Discussion 

4.4.1  Limitations in the use of a V377M MAPT iPSC derived from a single 
patient  

The work in this chapter compares tau protein levels, MAPT gene expression levels, tau 

phosphorylation levels, tau kinase protein levels, tau kinase protein activity and tau kinase 

gene expression levels between CGNs derived from two iPSC lines derived from a single 

patient and control cell lines.  It is important to recognise the limitations of using a single 

patient to understand the pathological changes involving tau protein due to FTDP-17.  FTDP-

17 is known to be caused by over 53 mutations, each producing different pathological 

phosphorylation of tau, which may involve different pathways to hyperphosphorylation or 

different levels of kinase activity.  As discussed in more depth in Chapter 1, patients with the 

same mutations are also known to present in different ways.  The heterogeneity of these 

diseases is not reflected through the work in this chapter as iPSC-CGN derived from one 

patient was examined.  Further studies, addressing the pathological changes to tau and tau 

kinases assessed in this chapter, within a cohort of patients carrying V337M MAPT would 

shed additional light on the heterogeneity of pathological tau and tau kinases between 

patients carrying this mutation.  Additional studies addressing these within patients carrying 

other mutations would also illuminate the heterogeneity of these within FTDP-17 patients in 

general.  This work is likely necessary before the results gained through this study could 

inform clinical drug discovery efforts (Cabana et al., 1999; Greenfield et al., 2007).  In the 

future, statistical techniques, such as Bayesian and adaptive statistical methods, may be 

employed to pool results gained through single patient studies to understand tau pathology 

in a wider population of FTDP-17 patients (Duan et al., 2013).    

4.4.2  Levels of tau and MAPT expression in V337M-CGN  

The work in this chapter has demonstrated that hiPSC-CGNs carrying V337M MAPT have 

markedly decreased levels of tau protein and MAPT expression compared to controls, 

suggesting that a decrease in MAPT expression contributes to decreased levels of tau.   

The finding of decreased levels of tau within these cells aligns with previously reported 

decreased levels of full-length tau within a mixed population of neurons, comprised mainly 

of GABAergic neurons and dopaminergic neurons, derived from V337M MAPT hiPSC (Ehrlich 

et al., 2015).  In this study, the authors demonstrate increased fragmentation of tau and 
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conclude that this is at the expense of full-length tau, however, increased fragmentation was 

not observed within these V337M MAPT hiPSC-CGNs.  The decrease in tau found within 

V337M MAPT hiPSC-CGNs contrasts increased levels of total tau reported within in N297K 

(Wren et al., 2015), A152T (Silva et al., 2015) and P301L (Verheyen et. al., 2015) MAPT hiPSC-

neurons, indicating that this aspect of tau pathology may be exclusive to this mutation. 

Although levels of tau protein have not yet been investigated within the brains of patients 

with this mutation, a recent study reported similar levels of tau within the CSF of V337M 

MAPT patients compared to controls (Spina et al., 2017).  Similar levels of CSF-tau in 

comparison to controls has also been reported in patients carrying P301L and G272V MAPT 

(Rosso et al., 2003) and within those diagnosed with FTD (Sjögren et al., 2001).  Analysis of 

total tau levels within the brain tissue of a patient carrying IVS 10+3 G>A MAPT (Spillantini et 

al., 1997) and in patients with FTD-tau (Adamec et al., 2001; van Eersel et al., 2009) has also 

revealed similar levels compared to controls.  The decrease in total tau levels within V337M 

MAPT hiPSC-CGNs does not reflect levels reported in the cerebrospinal fluid (CSF) or brain 

tissue of those with FTDP-17 and other sporadic forms of FTD-tau.   

The decrease in MAPT expression found in V337M MAPT hiPSC-CGNs in this study was 

unexpected as Ehrlich and colleagues found that V337M MAPT hiPSC-dopaminergic neurons 

express MAPT at similar levels to controls (Ehrlich et al., 2015).  Furthermore, no difference 

in expression levels were found in Drosophila overexpressing human V337M MAPT 

compared to those expressing WT human MAPT (Haddadi et al., 2016).  In A152T MAPT 

hiPSC-neurons MAPT expression has also been reported to be similar to that within controls 

(Silva et al., 2016).   

Ehrlich and colleagues reported considerable variation in MAPT expression levels between 

FTDP-17 hiPSC-neurons created from different clones (Ehrlich et al., 2015).  Non-disease 

related variation of MAPT expression between hiPSC clones could explain the difference in 

MAPT expression reported by Ehrlich and colleagues compared to those measured here, as 

only one clone was analysed here due to a lack of those derived from V337M-E.  The disparity 

between levels of MAPT expression in this study and within Ehrlich et al., 2015 may also be 

explained by neuronal subtype variability in MAPT expression changes due to V337M MAPT.  

MAPT expression levels and the expression of different isoforms of tau varies between 

different areas of the brain, with the temporal and frontal lobes expressing the highest levels 

of tau (Majounie et al., 2013; Trabzuni et al., 2012).  Liang and colleagues have demonstrated 
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that in AD brains MAPT expression is differentially altered in a regionally specific manner; 

specifically regions particularly targeted in AD express lower levels of MAPT compared to 

healthy brains (Liang et al., 2008).  CGNs are abundantly present within the frontal and 

temporal cortices, therefore, gene expression of MAPT may be decreased in these as they 

represent the areas principally degenerated in FTDP-17, whereas Ehrlich and colleagues 

measured MAPT expression within cells that contained a large proportion of dopaminergic 

neurons, which are not associated in such high numbers within these brain areas.  Further 

investigation into changes in the gene expression of MAPT within brain tissue isolated from 

the frontal and temporal cortices compared to other areas of the brain may help us to 

understand whether the effects of MAPT mutations alter gene expression in a region-specific 

manner.   

The reduced levels of tau protein and MAPT expression within V337M MAPT hiPSC-CGNs 

found in this study may reflect the state of these cells early in disease; before tauopathy has 

become apparent.  A reduction in the levels of tau protein has been demonstrated previously 

to diminish the severity of disease (Cheng et al., 2014; Santacruz et al., 2005).  Therefore, the 

reduction of tau measured in these cells could indicate a protective mechanism.   

4.4.3  Levels of phosphorylated tau in V337M-CGN  

Levels of pSer396/404 tau were found to be increased within CGN derived from one hiPSC 

cell line with the mutation (V337M-E), both before and after normalisation to total tau.   

Within CGN derived from V337M-C, however, levels of pSer396/404 were found to be not 

significantly different in comparison to controls after normalisation to total tau.   

Although phosphorylation of tau at this site has not yet been investigated within hiPSC-

neurons carrying V337M MAPT or within the brain tissue of patients with this mutation, 

increased phosphorylation of tau at this site has been reported within the hippocampal 

neurons of 11 month old V337M MAPT mice (Tanemura et al., 2002).  It has also been 

demonstrated, in vitro, that V337M MAPT tau is more rapidly phosphorylated at Ser396 

and Ser404 and phosphorylated to a greater degree than WT tau at Ser404 upon 

treatment with kinases isolated from the rat brain (Alonso et al., 2004).  In another study, 

pSer396/404 tau was found to be increased in H4 neuroblastoma overexpressing V337M 

tau compared to those overexpressing WT tau (DeTure et al., 2002).  Although tau is 

phosphorylated at pSer396/404 during neurodevelopment (Bramblett et al., 1993), which 
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potentially could be a limitation in the recognition of increased phosphorylation due to MAPT 

mutations in these cells, this site has been found to be more intensely phosphorylated in 

hiPSC-neurons carrying A152T MAPT (Silva et al., 2016) and in hiPSC-neurons seeded with 

pre-aggregated tau oligomers (Usenovic et al., 2015) compared to controls, illustrating that 

hiPSC-neurons are capable of overcoming this limitation. It was, therefore, expected that 

V337M MAPT hiPSC-CGNs would also have increased phosphorylation of tau at these sites. 

Evidence of interclonal variability upon disease specific phenotypic analysis has been 

previously documented within studies involving the derivation of neurons and other cell 

types from hiPSC (Martelli et al., 2012; Ehrlich et al., 2015; Yokobayashi et al., 2017; Sheridan 

et al., 2011), which is suggested to be at least partially due to variability occurring during 

reprogramming and differentiation (Liang and Zhang, 2013; Vitale et al., 2012).  Clonal 

variability may explain the difference in the phosphorylation of tau at pSer396/404 between 

clones V337M-C and V337M-E.   

Levels of tau phosphorylated at pSer202 are increased within V337M-C-CGN after 

normalisation to total tau in comparison to the control line, Nas 2-CGN.  In agreement with 

the results in this present study, widespread pSer202/205 tau positive immunostaining has 

been reported within the midbrains of V337M MAPT patients (Ehrlich et al., 2015,) as well as 

within the hippocampal neurons of Tg V337M MAPT mice at 6-12 months of age compared 

to controls (Lambourne et al., 2005; Tanemura et al., 2002).  These are also supported by 

previous in vitro studies, which have provided evidence to suggest that the mutation may 

increase the propensity for tau to become phosphorylated at these sites.  In a cell-free 

system, V337M MAPT tau is phosphorylated in vitro to a greater degree, upon 

phosphorylation with kinases isolated from the rat brain,  at Ser202 compared to WT tau 

(Alonso et al., 2004) demonstrating that V337M MAPT may result in tau with a greater 

propensity to be phosphorylated at these sites.  Additionally, co-overexpression of V337M 

MAPT and GSK3 in CHO cells has been shown to result in increased pSer202 tau compared to 

CHO cells co-expressing WT tau and GSK3 (Dayanandan et al., 1999).  hiPSC-neuron models 

have so far demonstrated increased pSer202 tau within hiPSC-neurons carrying N279K, 

P301L and A152T MAPT (Ehrlich et al., 2015; Fong et al., 2013; Verheyen et al., 2015, Silva et 

al., 2016) despite pSer202 tau being present at high levels during neurodevelopment 

(Goedert et al., 1993).   
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The banding patterns revealed by probing western blots with CP13 are different for Nas 2-

CGN compared to V337M-C-CGN samples.  In V337M-C-CGN samples, the bands at 68 kDa 

are lower in density compared to the same bands within Nas 2-CGN samples.  Additionally, 

bands at 52 kDa are much more dense in V337M-C-CGN compared to those in Nas 2.  Kimera 

and collegues have previously used phospho-tagging alongside western immunoblotting to 

demonstrate that certain mutations affect the banding pattern produced by phosphorylation 

of tau by Cdk5 when probing with different total tau and phospho-tau antibodies.  Upon 

further investigation, the group did not find R406W MAPT affected major phosphorylation 

sites known to be  phosphorylated by Cdk5 (Ser202, Thr205, Ser235 and Ser404), therefore 

it was concluded that minor phosphorylation sites may be affected by the mutation resulting 

in the altered pattern of phosphorylation.  Whilst Kimura and colleagues found that R406W 

MAPT altered these banding patterns, V337M MAPT was not found to alter the 

phosphorylation of tau by Cdk5 (Kimura et al., 2016).  The altered pattern of phosphorylation 

in V337M-C-CGN compared to Nas 2-CGN may suggest that V337M MAPT alters the order in 

which tau is phosphorylated, possibly resulting in fewer tau species phosphorylated at 

Ser202 being hyperphosphorylated to a degree resulting in the band at 68 kDa.  As other tau 

kinases apart from Cdk5, for example GSK3β, PKC and Erk 1/2 (Martin et al., 2013), are known 

to phosphorylate tau at pSer202 it possible that V337M MAPT alters the propensity for tau 

to become phosphorylated by kinases other than Cdk5; further investigation is needed to 

examine this hypothesis. 

Phosphorylation of tau at Thr231 was found to be markedly decreased in V337M-C-CGN 

compared to Nas 2-CGN, suggesting that the mutation alters tau phosphorylation at this site.  

In support of this result, overexpression of V337M MAPT within H4 neuroblastoma cells 

was shown to decrease phosphorylation of tau at Thr231 tau (DeTure et al., 2002).  

Additionally, V337M MAPT overexpression within HEK-297 cells has been demonstrated to 

increase dephosphorylation of tau at this site by protein phosphatase 2A (PP2A) compared 

to overexpression of WT tau (Han et al., 2009).  This result was unexpected, however, as 

increased phosphorylation at this site is associated with tauopathy (Acker et al., 2013).  

Furthermore, increased pThr231 tau has been detected in Tg V337M MAPT mice at six 

months of age (Lambourne et al., 2005).  In line with these studies, within a cell-free in vitro 

system V337M MAPT tau is phosphorylated more rapidly by rat brain kinases and to a 

greater degree at Thr231 compared to WT tau (Alonso et al., 2004).  In control hiPSC-

neurons seeded with pre-aggregated tau (Usenovic et al., 2015) and in hiPSC-neurons 
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derived from a patient with A152T MAPT increased pThr231 tau has been reported (Silva 

et al., 2016), demonstrating that the decrease in pThr231 tau found in V337M MAPT 

hiPSC-CGNs is likely to be an effect of this specific mutation. The decrease in 

phosphorylation of tau within V337M MAPT hiPSC-CGN in this study may represent the 

effect of the mutation in early disease, possibly due to its influence on the ability of tau 

to be dephosphorylated at this site.   

4.4.4  Protein levels, activity and expression levels of tau kinases in V337M-
CGN 

Levels of GSK3β and active (pTyr216) GSK3β, as well as expression levels of GSK3β in V337M-

C-CGN, are not significantly different compared to Nas 2-CGN.  In V337M-E-CGN, however, 

total GSK3β levels are increased and the amount of active GSK3β is decreased compared to 

Shef 6-CGN, both before and after comparison to total GSK3β.  These results suggest that the 

activity of GSK3β is not increased within V337M MAPT hiPSC-CGNs.  Increased activity of 

GSK3β is associated with neurodegenerative disease and GSK3β is capable of 

phosphorylating the majority of sites phosphorylated in AD, therefore it is considered an 

important therapeutic target (Chapter 1.3.1).   

It is uncertain whether GSK3β levels and activity are altered in V337M MAPT FTDP-17.  No 

change in pTyr216 GSK3β could be found in Tg V337M MAPT mice compared to controls 

(Lambourne et al., 2005) and phosphorylation of V337M MAPT tau by GSK3β within a cell-

free system, in vitro, was similar compared to WT tau (Connell et al., 2001), suggesting that 

this mutation does not alter the propensity of tau to become phosphorylated by this kinase.  

These results, therefore, corroborate existing evidence and suggest that GSK3β is not 

involved in the initial phosphorylation events early in tauopathy resulting from V337M MAPT.  

Therefore, the changes in phosphorylation levels of tau at pSer202, pSer396/404 and 

pThr231, which are sites phosphorylated by GSK3β (Reynolds et al., 2000; Goedert et al., 

1995), in V337M-CGN are unlikely to be due to increased GSK3β activity.   

The banding patterns produced by probing western blots for pTyr216 GSK3β and total GSK3β 

for both V337M-C and Nas-2 derived CGNs and V337M-E and Shef 6 derived CGNs were 

found to vary.  Total GSK3β bands for V337M-C-CGN were found at 48 kDa as well as 52 kDa, 

whereas there was just one total GSK3β band for Nas 2-CGN at 52 kDa.  This may be due to 

the greater levels of protein present within the samples loaded on the blots for V337M-C-
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CGN, allowing for visualisation of the minor band at 48 kDa.  Mukai and colleagues suggested 

that the upper band may indicate GSK3β2, the alternative spliced variant of GSK3β with a 

13 amino acid-insertion, whereas the lower band may indicate GSK3β1 (Mukai et al., 

2002).  An additional band at approximately 46 kDa was also produced by probing western 

blots of V337M-C-CGN and Nas 2-CGN for pThr216 GSK3β, which was not present within 

western blots of V337M-E-CGN and Shef-6-CGN probed with the same antibody.  The 

additional minor bands may indicate non-specific binding and therefore were not included in 

the analysis of these results.  

The protein levels of p35 were found to be decreased in V337M MAPT hiPSC-CGN in 

comparison to control hiPSC-CGN.  The regulation of Cdk5 activity is discussed in detail in 

Chapter 1 (Chapter 1.3.2); to briefly reiterate, Cdk5 must bind to p35 or p25 to become 

active.  It is considered to be ‘hyperactive’ when bound to p25 and increased levels of p25 or 

decreased levels of p35 are associated with neurodegenerative disease (Chapter 1).  While 

the levels of p25 cannot be commented on due to the insufficient staining of western blots, 

the decrease in p35 levels detected within V337M-CGN compared to controls suggests that 

p35 has been cleaved to p25, indicative of increased Cdk5 activity.   

Previous reports of the effects of V337M MAPT on the activity of Cdk5 are controversial.  A 

decrease in p35 was not found via western blotting in cells carrying this mutation, therefore, 

increased activity of Cdk5 may underlie the increased levels of tau phosphorylation 

recognised at pSer396/404, pSer202 and pThr231 in V337M-CGN, as these are sites known 

to be phosphorylated by this kinase (Martin et al., 2013; Imahori and Uchida, 1997).  FTDP-

17 mutations have been shown previously to result in increased levels of caspase 3 (Stanford 

et al., 2003).  Indeed, cultures of V337M MAPT hiPSC-dopaminergic neurons have greater 

numbers of cleaved-caspase 3 positive neurons compared to control neurons after treatment 

with Rotenone, indicating increased vulnerability of neurons with the mutation (Ehrlich et 

al., 2015).  Since p35 is cleaved to p25 by caspase, increased levels of caspase could lead to 

increased Cdk5 activity (Chapter 1.3.2).   

PAK3 protein levels of were found to be significantly decreased in V337M-C-CGN compared 

to Nas 2-CGN.  While levels of PAK3 are not significantly decreased in V337M-E-CGN 

compared to Shef 6-CGN controls, there is a trend towards decreased PAK3 protein in 

V337M-E-CGN compared to Shef 6 controls (p= 0.061).  A decrease in PAK3 protein levels has 

been demonstrated to result in neurodegeneration, specifically involving dysregulation of 
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microtubule dynamics and the loss of synapses (Chapter 1.3.3).  PAK3 protein levels and gene 

expression was expected to be decreased in these cells as expression of PAK3 was found to 

be downregulated in V337M MAPT hiPSC-dopaminergic neurons compared to controls in a 

previous study (Ehrlich et al., 2015).  However, gene expression analysis of PAK3 in these cells 

demonstrated that PAK3 is not expressed at significantly different levels in V337M MAPT 

hiPSC-CGNs compared to controls, which may represent a difference between PAK3 

expression in these two different cell types.  PAK3 has not been found to be expressed at 

lower levels within the midbrains of FTDP-17 patients previously (Ehrlich et al., 2015), 

however, which may be due to the association of decreased PAK3 expression with early 

pathogenesis.  In AD, PAK3 levels have been demonstrated to be low in early stage disease 

only (Nguyen et al., 2008) (Chapter 1.3.3).   

The activity of Akt is not affected by V337M MAPT in these hiPSC-CGNs, as there is no 

significant difference in the levels of pSer473 Akt between hiPSC-CGNs carrying V337M MAPT 

compared to controls.  These results suggest that Akt phosphorylation of tau is not involved 

in early pathogenesis of FTDP-17 caused by this mutation.  Although there have been no 

previous studies on the activity of Akt in V337M MAPT patients or models, in P301S MAPT Tg 

mice, no change in the levels of Akt or its activity were found (Barini et al., 2016), therefore, 

this result agrees with previously published work.   

4.4.5  Levels of synapsin I in V337M-CGN 

Levels of synapsin I were found to be markedly decreased in V337M-CGN compared to 

controls, implicating a loss of post-synaptic densities and impaired synaptic localisation of 

NMDARs (Warmus et al., 2014).  In C. elegans, V337M MAPT causes pre-synaptic dysfunction 

of cholinergic neurons (Kraemer et al., 2003).  Synapses have been demonstrated to be 

affected early in FTDP-17, before evidence of neurodegeneration and in some cases 

tauopathy, in FTDP-17 mouse models (Yoshiyama 2008; Umeda et al., 2013; Crescenzi et al., 

2014; Hoffmann et al., 2013; Eckermann et al., 2007; Harris et al., 2012; Rocher et al., 2010).    

One possible explanation for the loss of synapses could be explained by a disruption of the 

regulation of microtubule dynamics, which has been documented to be associated with 

V337M MAPT (Hong et al., 1998; Hasegawa et al., 1998; Dayanandan et al., 1999; Rizzu et al., 

1999; Frappier et al., 1999; Arawaka et al., 1999; Deture et al., 2000).  These results suggest 

that hiPSC-CGNs may be highly suited for the investigation of synaptopathy in 

neurodegenerative disease.    
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4.4.6  Summary 

This study has provided proof-of-concept that patient derived hiPSC-CGNs can be used to 

investigate changes in tau protein levels, tau phosphorylation, kinase activity and gene 

expression caused by V337M MAPT.  hiPSC-CGNs carrying the mutation have been 

demonstrated to have lower levels of tau protein in comparison to controls.  Furthermore, 

hiPSC-CGNs derived from this patient had increased levels of pSer202 tau and decreased 

levels of pSer231 tau, indicating that this mutation is capable of altering the tau 

phosphorylation at these sites, which are associated with tauopathy.  The hiPSC-CGNs have 

also provided an insight into altered kinase activity due to the mutation; Cdk5 activity is 

decreased, as evidenced by decreased levels of p35, while levels of PAK3 are also decreased.  

Surprisingly, GSK3β activity, a tau kinase considered to be a ‘master regulator’ of tau 

phosphorylation, was not increased in these cells, which suggests that the increase in 

pSer202 was not due to GSK3β but another kinase, possibly Cdk5, which also phosphorylates 

tau at this site.   
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Chapter 5 

The development of a model of Alzheimer’s 
disease using pluripotent stem cell 

technology 

 

 

5.1  Introduction 

An extensive body of experimental evidence from biomarker analysis in Alzheimer’s disease 

(AD) patients, in vitro models and in vivo models supports the hypothesis that pathological 

tau phosphorylation and aggregation is initiated by aberrant accumulation of amyloid-β (Aβ) 

in AD (Stancu et al., 2014).  A therapeutic solution may transpire through precise 

manipulation of the molecular pathways coupling these proteins to prevent prodromal 

pathological events, which occur decades before cognitive symptoms arise.  Currently, the 

molecular pathways that facilitate Aβ-induced tau phosphorylation early in the disease 

remain unclear.  Traditional in vitro and in vivo models cannot accurately represent the subtle 

molecular changes important in early stage AD (Chapter 1.4).  A clinically relevant, human 

model allowing for improved resolution of these pathways would, therefore, be an invaluable 

tool for this line of investigation. 

Chapter 4 described altered tau phosphorylation and kinase activity in V337M MAPT hiPSC-

neurons compared to controls, demonstrating that hiPSC technology can be used to gain 

inferences into frontotemporal dementia with Parkinsonism linked to chromosome 17 

(FTDP-17).  To examine whether neurons derived from human pluripotent stem cells (hPSC-

neurons) can also be used to investigate the early changes in tau phosphorylation in sporadic 

AD (sAD), hPSC-neurons were treated with Aβ 1-42 oligomers (Aβ42O), described as the most 

pathogenic form of Aβ (Chapter 1.2.3.2.2).  Two control hPSC lines were differentiated to 

produce mature basal forebrain cholinergic neurons (bfCNs) and cortical glutamatergic 

neurons (CGNs), which are two particularly vulnerable neuronal subtypes in AD (Chapter 

1.2.3.1.1).  The effects of Aβ42O on the levels of total tau, MAPT expression, tau 

phosphorylation at specific sites associated with AD and tau kinase activity were investigated.   



166 
 

5.1.1  The relationship between Aβ and tau in Alzheimer’s disease 

AD is defined not only by the presence of abnormally phosphorylated tau (ptau) but also Aβ 

pathology.  The pathology and pathogenesis of AD is discussed in detail in Chapter 1, along 

with the pathological processing of amyloid protein and the pathological phosphorylation of 

tau in AD (Chapter 1.3.3).  Deleterious interactions between tau and Aβ seem to be necessary 

for initiation and progression of AD.  Indeed, a recent study using regression models to 

analyse cognitive decline and clinical progression in patients with mild cognitive impairment 

(MCI), with aggregations of both proteins, demonstrated that Aβ and tau interact 

synergistically, rather than additively, to drive AD (Pascoal et al., 2017). 

Evidence from murine AD models, with concurrent Aβ and tau pathology, supports the 

hypothesis that abarent Aβ processing exacerbates tau pathology.  For example, 

intracerebral injection of Aβ42O into transgenic (Tg) mice with mutations in MAPT results in 

greater hyperphosphorylation of tau, as well as higher levels of tau in abnormal 

conformations, not only at the injection site but also in distant regions of the brain (Bolmont 

et al., 2007; Frautschy et. al., 1991; Götz et al., 2001; Sigurdsson et al., 1997; Chabrier et al., 

2004; Lewis et al., 2001; Pooler et al., 2015).  Likewise, the resultant offspring born by 

crossing mice with an APP duplication with mice expressing human P301L MAPT exhibit 

increased neurofibrillary tangle (NFT) pathology within the limbic and olfactory areas of the 

brain compared to P301L MAPT parent mice.  This was despite expressing similar levels of 

tau as P301L MAPT parent mice and similar Aβ pathology to APP parent mice (Lewis et al., 

2001).  Chabrier and colleagues generated a double Tg mouse through crossing a mouse 

overexpressing human MAPT with mice overexpressing human V717L or KM670/671NL APP, 

and reported acceleration of cognitive impairment, tau pathology and dendritic spine loss, in 

comparison to either parent (Chabrier et al., 2014), linking Aβ-dependent acceleration of tau 

pathology with other synaptic and symptomatic AD hallmarks.  Pooler and colleagues also 

reported a dramatic increase in the speed and distribution of tau propagation from the 

entorhinal cortex to synaptically-connected brain regions of the offspring produced by 

crossing mice overexpressing P301L MAPT within layer II of the entorhinal cortex with Tg 

3xfAD (K670M/N671L APP, ΔE9 PSEN1) mice, compared to either parent (Pooler et al., 2015).    

The presence of tau has been demonstrated to be necessary for Aβ-induced changes to 

cytoskeletal structure, neurodegeneration and subsequent cognitive decline recognised in 

AD.  Application of AβO (Aβ oligomers) to tau null MAPT mouse primary hippocampal 
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neurons does not result in the cytoskeletal changes and neurodegeneration, which occur 

when it is applied to WT mouse primary hippocampal neurons (Jin et al., 2011; Rapoport et 

al., 2002).  Furthermore, cross-breeding mutant Tg hAPP(K670M/N671L,V717F) or 5xFAD 

(APP(K670N/M671L,I716V,V717I/PSEN1M146L,L286V) mice with null MAPT mice 

ameliorates cognitive dysfunction and early mortality (Roberson et al., 2007; Leroy et al., 

2012).  In patients with a high cerebrospinal fluid (CSF) Aβ load, the presence of pThr181 tau 

was reported to be necessary for cognitive decline (Desikan et al., 2012), demonstrating the 

requirement of abnormal ptau for the pathogenesis of AD.  Collectively, this body of research 

suggests that Aβ exerts its toxic potential through interactions with tau protein.   

Although we do not yet have a thorough understanding of the mechanisms through which 

Aβ causes pathological phosphorylation of tau protein, evidence collected over the last two 

decades supports numerous pathways, which may work in concert with each other to drive 

disease progression.  Aβ and tau can form soluble complexes in vitro (Guo et al., 2006) and it 

has been hypothesised that the interaction of Aβ with tau seeds an initial structural change 

in tau, which templates further misfolding and hyperphosphorylation of tau thereby 

propagating tau pathology (Guo et al., 2006; Bolmont et al., 2007).  Furthermore, AβO 

interacts with the membranes of neurons initiating molecular cascades associated with 

dyshomeostasis of intracellular calcium concentration ([Ca2+]i), disturbed Wnt signalling and 

neuroinflammation.  These molecular cascades are intimately associated with the 

dysregulation and activation of tau kinases and phosphatases, resulting in the 

hyperphosphorylation of tau.   

5.1.2  Rational for sAD hiPSC-model design 

The glutamatergic and cholinergic systems are especially affected in AD, of which CGNs and 

bfCNs are particularly vulnerable, respectively (Chapter 1.2.3).  This model of sAD benefits 

from hiPSC-technology to produce these specific neuronal subtypes from control hPSC lines.  

The hiPSC line, Nas 2 (Chapter 3), was differentiated alongside the hESC line, Shef 6 (Chapter 

3), and synthetic Aβ42O was applied to mature hiPSC-neurons over a period of 48 hours.  Two 

control lines were used in this study to evaluate the reproducibility of model should different 

hPSC cell lines be used.  hPSC-bfCNs were derived through plating neural stem cells, derived 

from hPSCs, for 35 days and hPSC-CGN were derived by culturing cells for 50 days from the 

first day of differentiation.  The reason for these time points was so that the hPSC-bfCNs and 

hPSC-CGNs would be of similar ‘age’ or maturation point as by approximately day 15 of the 
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protocol for the production of hPSC-CGN hPSC have differentiated to become neural 

progenitors (Chi et al., 2012).   

sAD is a highly heterogenous disease; various environmental and lifestyle factors are thought 

to influence the pathogenesis, alongside the cumulative effects of many unknown genetic 

risk factors (Chapter 1.2.3.4).  Genetic factors are conserved through the process of 

reprogramming and differentiation of hiPSC (Rouhani et al., 2014), however, environmental 

influences and the effects they exert on a patient’s epigenetics, are not (Hewitt and Garlick, 

2013).  Therefore, many of the cumulative factors that impact on the development of sAD 

may be lost in reprogramming, which may explain the lack of clear phenotype in some hiPSC-

neuron lines derived from sAD patients (Kondo et al., 2013; Israel et al., 2011; Duan et al., 

2014).  Molecular pathology within hiPSC-neurons generated from different sAD patients has 

been demonstrated to be highly variable (Duan et al., 2014; Kondo et al., 2013; Israel et al., 

2012) and to model this heterogeneous disease comprehensively hiPSC-neurons will likely 

need to be differentiated from a large cohort of donor sAD patients.  To circumvent these 

challenges, synthetic Aβ42O was applied to hiPSC-neurons created from control cell lines, 

rather than from sAD patient somatic cells, to allow for examination of the effects of Aβ42O 

on tau pathogenesis in isolation of influential environmental and genetic factors.   

Oligomeric Aβ42 is the most toxic form of Aβ in neurodegenerative disease (Chapter 

1.2.3.2.2), therefore, treatment of cells with this form of Aβ was used to model AD.  Previous 

studies are at odds on the effects of Aβ42O at various concentrations upon treatment of 

different cell types, however, the majority of the literature overall suggests that greater 

concentrations of Aβ (e.g., between 5 µM and 10 µM) are acutely toxic to cells, whereas 

concentrations lower than this are more likely to be closer to physiological levels and 

therefore be more representative of AD pathology (Wicklund et al., 2010).  Concentrations 

ranging from 0.1 µM to 1 µM Aβ42 are most commonly used for AD modelling to study 

changes in tau phosphorylation using cell culture systems (Wicklund et al., 2010; Zempel et 

al., 2010; Gilson et al., 2015).  The aggregation of Aβ42 depends on concentration and it has 

been reported that application of concentrations of Aβ 1-42 to cell media in the micromolar 

range result in aggregation of monomers to produce oligomers, whereas application of 

nanomolar to low micromolar concentrations result in aggregation into a mixture of 

monomers and oligomers (Hellstrand et al., 2010).  This study aims to investigate the effect 

of Aβ42O on tau pathology, rather than toxicity; therefore, a range of concentrations from 0.1 
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µM to 1 µM were used in this study.  Cells were incubated with Aβ42O over a period of 48 

hours as many publications have been produced demonstrating application of Aβ42O over 

this time period (Wei et al., 2002; de Felice et al., 2008; Ferreira et al., 1997; Zheng et al., 

2002; Choi et al., 2014) and it was hoped this would allow for comparison of the results from 

this study with those from other publications.   

Unfortunately, it was not possible to generate enough Nas 2-CGNs during this project to 

allow for treatment of these cells with Aβ42O to be evaluated.  It also was not possible to 

generate enough Nas 2-bfCN or Shef 6-CGN to evaluate the effects of 0.1 µM Aβ42O.   

5.1.3  Aims 

The aim of the work in this chapter was to develop a model of sAD and to investigate changes 

in tau related-molecular pathology within it to gain insight into the pathogenesis of AD.   
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5.2  Methods 

Cortical glutamatergic neurons (CGNs) were derived from control hPSC cell lines, Nas 2 and 

Shef 6 using the protocol described in Chapter 4 (Chapter 4.2.1).   

5.2.1  Differentiation of human pluripotent cells to produce basal forebrain 
cholinergic neurons using a non-adherent, embryoid body based system 

This protocol was developed within the Caldwell lab (Crompton et al., 2013).  The method is 

dependent on a non-adherent, embryoid body based system.  This reductionist approach to 

hPSC differentiation allows the cells to establish their own developmental cues, parallel to 

those recognised during embryonic patterning within the neural tube, to produce basal 

forebrain cholinergic neurons (bfCNs) (Crompton et al., 2013).   

The non-adherent system promotes endogenous sonic hedgehog (SHH) signalling within 

cultures of embryoid bodies, which directs the expression of key transcription factors, 

homeobox protein Nkx 2.1 and Lim homeobox 8 (LHX8), required to drive the fate of the cells 

towards basal forebrain neural progenitors.  Subsequent adherent culture of the 

neurospheres allows the cells to terminally differentiate to produce bfCNs.  This protocol has 

been demonstrated to produce bfCNs capable of releasing acetylcholine and that have a 

functional electrophysiological profile (Crompton et al., 2013).  
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5.2.1.1  Media used during the derivation of basal forebrain cholinergic neurons 

 

Table 5.1 Chemically Defined Media (CDM) 

 

Table 5.2 Neural Expansion Media (NEM) 

 

Table 5.3 Terminal Differentiation Media (TDM) 

 

Product Amount Supplier and product code 

IMDM + GlutaMAXTM 49 % Life Technologies, 31980-022 

F12 + GlutaMAXTM 49 % Life Technologies, 31765-027 

Penicillin-Streptomycin solution 
stabilised (Pen-Strep) 

1 % Sigma, P4458 

Albumax® 200 mg/ ml Life Technologies, 11021-029 

Monothioglycerol 100 ng/ ml Sigma M6145 

Insulin 10 mg/ ml Sigma, I6634 

SB431542 20 μM Tocris, 1614 

ROCK inhibitor 10 μM Tocris, 1254 

Product Amount Supplier and product code 

KO DMEM 68 % Life Technologies, 10829018 

F12 + GlutaMAXTM 28 % Life Technologies, 31765-027 

B-27® Supplement 2 % Gibco, A14867-01 

GlutaMAXTM  1 % Invitrogen, 35050 

Penicillin-Streptomycin solution stabilised (Pen-Strep) 1 % Sigma, P4458 

Fibroblast Growth Factor 2 (FGF2) 20 ng / ml Peprotech, 100-18B 

Heparin  5 µg / ml Sigma, H-1349 

Epidermal Growth Factor (EGF) 20ng/ ml Sigma, E-9644 

Product Amount Supplier and product code 

KO DMEM 68 % Life Technologies, 10829018 

F12 + GlutaMAXTM 28 % Life Technologies, 31765-027 

B-27® Supplement 2 % Gibco, A14867-0 

GlutaMAXTM 1 % Invitrogen, 35050 

Penicillin-Streptomycin solution stabilised (Pen-Strep) 1 % Sigma, P4458 
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5.2.1.2 Formation of embryoid bodies from human pluripotent stem cells 

Six 9 cm diameter tissue culture plates, each containing approximately 30 colonies of hPSC, 

grown on a layer of iMEFs, were required for each neuralisation.  Any differentiated areas of 

the colonies were removed using an aspirator before incubating the cells with warm 1X 

collagenase (1 ml per plate) within the cell culture incubator at 37 oC for 20 minutes to detach 

the colonies from the tissue culture surface.  Upon completion of the incubation period the 

collagenase was quenched with DMEM (4 ml per plate) to prevent further activity.  The 

colonies were gently sprayed from the tissue culture surface using a P1000 pipette tip and 

collected in a 50 ml falcon tube.  The colony pieces were allowed to settle at the bottom of 

the falcon tube before the media was aspirated.  The colony pieces were resuspended in 5 

ml of hPSC media without FGF2 to wash and allowed to settle again.  After removing the 

media, the colonies were resuspended in 1 ml hPSC media without FGF2.  The colonies were 

collected using a P1000 pipette and placed in a droplet onto the lid of a 6 cm diameter 

chopping plate.  The excess media was carefully removed using a P200 pipette tip.  A 

McIlwain tissue chopper (Mickle Laboratory Engineering Ltd.) was used to chop the colonies 

in a uniform fashion into 150 μM pieces.  hPSC media, without FGF2 and supplemented with 

10 ng/ ml ROCK inhibitor, was then added to the pieces on the chopping plate and a P200 

pipette tip was used to gently lift the colony pieces and transfer them into a 25 cm3  tissue 

culture flask, pre-coated with poly 2-hydroxyethyl-methacrylate and containing 6 ml of hPSC 

media without FGF2 and supplemented with 10 ng/ ml of the ROCK inhibitor, Y27632 (Tocris, 

1254).  The cells were allowed to form neurospheres for 4 days. 

5.2.1.3 Neuralisation of embryoid bodies 

To begin the neuralisation, the embryoid bodies (EBs) were collected with the media within 

the 25 cm3 flask into a 15 ml falcon tube and centrifuged (300 g; 5 minutes).  The media was 

removed and the EBs were resuspended in 10 ml CDM (Table 5.2), which contains the SMAD 

inhibitor SB431542.  The 25 cm3 tissue culture flask was washed with PBS, before the 

resuspended EBs were added back into the flask.  The EBs were cultured in CDM for 8 days.  

At the end of this period the spheres of cells, which were once EBs, are now referred to as 

neurospheres as they now consist of neural stem cells. 
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5.2.1.4 Expansion of neural stem cells within neurospheres  

After completion of this period the neurospheres were centrifuged (300 g; 5 minutes) and 

re-suspended in NEM (Table 5.3), supplemented with 10 μM ROCK inhibitor and 20 μM 

SB431542 for the first 10 days of expansion.  Every 7 days, the neurospheres were chopped 

into 200 μm uniform pieces using the McIlwain tissue chopper to prevent the neurospheres 

becoming too large and to expand the population of cells.  If a neurosphere becomes too 

large during expansion, the cells at the centre of the spheres will not have adequate access 

to nutrients in the media and will not respire correctly, leading to molecular and possibly 

genetic changes within these cells and cell death.  The cells were also regularly triturated  

with a P1000 pipette to ensure a pure population of NSCs (Crompton et al., 2013).  

5.2.1.5 Terminal Differentiation of neural stem cells and progenitors 

13 mm glass coverslips [VWR, 631-0149], stored in ethanol after sterilisation through 

treatment with nitric acid, were passed through a Bunsen burner flame to ensure sterility 

and remove ethanol. Each coverslip was placed into a well of a 12-well plate and coated with 

poly-L-ornithine and laminin (POR/L) (Chapter 2.1.2.2.1.4) and 250 μl TDM (Table 5.4) was 

added to each well, supplemented with 10 ng/ml N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-

phenylglycine-1,1-dimethylethylester (DAPT).  DAPT is an inhibitor of the γ-secretase 

complex, for which Notch is a key target, therefore DAPT indirectly inhibits the Notch 

pathway leading to enhanced neuronal differentiation (Crawford and Roelink, 2007).  

Through inhibition of Notch, 3-5 neurospheres were plated onto each well on the coverslip, 

taking care to ensure space between each sphere.  The spheres were allowed to attach, 

without the plate being disturbed, for 48 hours within the incubator.  The media was then 

fully changed to TDM without DAPT.  The media was changed every 2 days; alternating feeds 

were supplemented with 0.1 % laminin to aid attachment of the spheres to the culture 

surface.  After 3-6 days axons sprouting from the spheres could be seen.  Plated neurospheres 

were cultured for 35 days before processing for protein extraction (Chapter 2.2.1.1) or being 

subjected to a period of toxin application for 48 hours.   
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5.2.2  Application of toxins 

Aβ42O were prepared and added to media as described below.  The cells were incubated for 

48 hours with media containing the Aβ42O in concentrations ranging from 0.1 µM to 1 µM. 

5.3.2.1  Preparation of Aβ42O 

Lyophilised Aβ42 peptide [Anaspec, AS-24224] was dissolved to a concentration of 1.6 M in 

35 % acetonitrile (Ryu et al., 2004) and 10 μl aliquots were stored in clean 0.5 ml Eppendorf 

tubes at -20 oC until required.  The day before application of Aβ42 onto the cells, an aliquot 

was thawed and diluted to 300 mM by addition of knockout (KO) DMEM.  The solution was 

pipetted using a P200 pipette to ensure the solution was mixed.  The solution was stored for 

18 hours, overnight, within the cell culture incubator at 37 oC to allow polymerisation of 

protein monomers to oligomers.  After the 18 hour incubation period, on the day of 

application of the toxin to the cells, warmed cell culture media was prepared within a 15 ml 

falcon tube with the correct concentration of Aβ and mixed thoroughly by inversion of the 

tube five times (van Helmond et al., 2009).  The media was then ready to add to the cells.  

5.2.3  Immunocytochemistry 

Immunostaining was performed as described in Chapter 2 (Chapter 2.2.2).  The antibodies 

used during immunostaining in this chapter are listed in Table 5.5.   

5.2.4  Western Immunoblotting 

Immunostaining was performed as described in Chapter 2 (Chapter 2.2.1) using tau and ptau 

antibodies previously optimised in Tg 4510 mice (Chapter 4.3.1).  The antibodies used during 

western immunoblotting in this chapter are listed in Table 5.5.   

5.2.4.1 Stripping and re-probing of western immunoblots 

Apart from western blots of samples obtained from Shef 6 -CGN treated with 1 μM Aβ42O 

and associated controls, western blots were stripped between probing with each antibody 

using western blot stripping buffer [Fisher, 21059].  Each blot was probed with an antibody 

against GAPDH before being probed with a tau antibody, either DA9, PHF-1 or CP13.  Each 

western blot was then probed with an antibody against a tau kinase, either GSK3β, GSK3β 

pTyr216 or PAK3.  Other blots were probed with GAPDH and then either antibodies again 

synapsin or p25-p35.  DA9, PHF-1 or CP13 bands were analysed on separate blots because 
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stripping of these antibodies was determined to be difficult and bands for these antibodies 

are at similar weights. 

Western blots of samples obtained from Shef 6 -CGN treated with 1 μM Aβ42O and associated 

controls were carried out through probing the same blots as these blots were produced and 

probed early in this PhD project.  The process of probing separate western blots for each tau 

antibody was employed after this set of western blots throughout the PhD project to mitigate 

the risk of traces of previous tau antibodies being left behind on the blot after stripping.  For 

these western blots, westerns were probed with secondary antibody after stripping to ensure 

primary antibodies were fully stripped from the blots before probing with an additional 

antibody.  For this reason, the same GAPDH blot is used to compare results for Shef 6 -CGN 

treated with 1 μM Aβ42O.  These results are depicted in figures 5.6, 5.8, 5.11, 5.14, 5.16 and 

5.17.  

5.2.4.2 Analysis of western blots 

The density of bands was analysed as described in Chapter 2 (Chapter 2.2.1.10).  Each band, 

for a specific antibody, was normalised to its bands for control antibody, GAPDH.  For each 

blot, the result for each case were compared to averaged controls.  For phosphorylated tau 

antibodies, density of bands was also compared to those for total tau, after individual 

normalisation to GAPDH.  Where anti-tau antibodies revealed multiple bands, all bands were 

included in the densitometric analysis.    Analysis of PAK3 and synapsin were determined by 

analysis of only the main predicted bands at 65 kDa and 75 kDa, respectively.  For p35 and 

p25 level analysis, only bands at 35 kDa and 25 kDa, respectively, were included.  For analysis 

of the levels of GSK3β and pTyr216 GSK3β, only bands at 48 kDa and 52 kDa were included 

in analysis. 

Statistical analysis for Nas 2-bfCN and Shef 6-CGN results was carried out using an unpaired 

Student’s t-test.   Statistical analysis for Shef 6-bfCN results was carried out using the 

Friedman test, with multiple comparisons undertaken between each concentration, 

including the controls, using Dunn’s post hoc test.  The Friedman test is a non-parametric test 

used to compared three or more matched or paired groups and allows for comparison of 

bands across different blots.  This statistical test was chosen as samples for each 

concentration for Shef 6-bfCN are spread across three sets of blots.  *=p ≤ 0.05. **=p ≤ 0.01. 

***=p ≤ 0.001.  
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Table 5.4 Antibodies used in western immunoblotting and immunocytochemistry 

*Prof. Peter Davies (Albert Einstein College of Medicine, New York, USA) kindly supplied 

CP13, DA9, PHF-1 and MC1 antibodies.   

Primary 
antibody 

Protein 
detected  

Host Manufacturer 
and catalogue 
number 

References 

Dilutions 

Western ICC 

βIII 
Tubulin 

βIII 
Tubulin 

Mouse ab6046, Abcam (Tong et al., 
2015) 

N/A 1:1000 

βIII 
Tubulin 

βIII 
Tubulin 

Rabbit ab15568, Abcam N/A N/A 1:1000 

CP13 pSer202 
tau 

Mouse Prof. Davies* (Petry et al., 
2014; 
Vingtdeux, et 
al., 2011) 

1:1000 N/A 

DA9 Pan-tau Mouse  Prof. Davies* (Petry et al., 
2014) 

1:5000 N/A 

GAPDH GAPDH Mouse AM4300, 
Invitrogen 

(de Oliveira et 
al., 2017) 

1:5000 N/A 

GSK3β GSK3β Rabbit D5C5Z, Cell 
Signalling 

(Burk et al., 
2017) 

1:500 N/A 

GSK3β 
pTyr216 

pTyr216 
GSK3β 

Rabbit Ab75745, Abcam (Porquet et al., 
2015) 

1:500 N/A 

p25-p35 p25-p35 Rabbit C64B10, Cell 
Signalling 

(Porquet et al., 
2015) 

1:300 N/A 

PAK3 PAK3 Rabbit 2609S, Cell 
Signalling 

(Murata and 
Constantine-
Paton, 2013) 

1:300 N/A 

PHF-1 pSer396/p
Ser404 tau 

Mouse Prof. Davies* (Otvos et al., 
1994) 

1:5000 N/A 

PSD-95 PSD-95 Mouse ab2723, Abcam (Frandemiche et 
al., 2013) 

1:1000 1:300 

Synapsin Synapsin I Rabbit ab64581, Abcam (Stefanova et 
al., 2016) 

1:750 1:300 

ChAT ChAT Rabbit ab181023, Abcam (Crompton et 
al., 2013) 

N/A  1:250 

MC1 Abnormal 
conformati
on tau 

Mouse Prof. Davies* (Jicha et al., 
1997; Jicha et 
al., 1999; Petry 
et al., 2014) 

N/A 1:250 

Mushashi Mushashi Rabbit ab154497, Abcam N/A N/A 1:300 

Nestin Nestin Mouse ab105389, Abcam (Pijuan-Galitó et 
al., 2016) 

1:300 N/A 
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5.2.5  Quantitative PCR 

Quantitative PCR (qPCR) was carried out as described in Chapter 2 using probes to detect the 

gene expression of GAPDH, MAPT, GSK3β, CDK5 and PAK3.  The details of these probes can 

also be found in Chapter 2 (Chapter 2.2.3).  Statistical analysis of qPCR data was performed 

using the Mann-Whitney test where one concentration of Aβ42O was used to treat the same 

cells or a Kruskal-Wallis test followed by a post-hoc Dunn’s test where more than one 

concentration was used.  *=p ≤ 0.05. **=p ≤ 0.01. ***=p ≤ 0.001.  
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5.3  Results 

5.3.1  Characterisation of bfCN differentiation  

The intermediate cells generated during this differentiation protocol have already been 

characterised in Crompton et al., 2013.  However, to ensure a homogenous population of 

neural stem cells (NSC) were obtained within the neurospheres before plating down for 

terminal differentiation, cells from within neurospheres at day 30 of neural expansion were 

dissociated and plated for two hours before fixing for immunocytochemistry with two NSC 

markers, nestin and mushashi (Figure 5.1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1     Cells within neurospheres express neural stem cell markers at day 30 during of 
expansion phase of Crompton protocol  

Dissociated cells from within neurospheres at day 30 of differentiation of Nas 2 line, plated and 
cultured for two hours, immunostain positively for nestin (B, red) and mushashi (C, green), two 
neural stem cell markers as shown in the overlay (D). Hoechst stain was used to highlight the cell 
nuclei (A, blue).  Scale bars indicate 30 µM. 
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Choline acetyltransferase (ChAT) is the enzyme responsible for biosynthesis of the 

neurotransmitter acetylcholine (ACh), by catalysing the transfer of an acetyl group from 

acetyl coenzyme A to choline.  ChAT is expressed by cholinergic neurons in the central 

nervous system (CNS) (Oda, 1999) and can be used as a marker for cholinergic neurons.  

Terminally differentiated cells, cultured for 35 days after neurosphere plate down, were fixed 

and immunostained with an anti-ChAT antibody and anti-βIII tubulin.  BfCNs differentiated 

from both Shef 6 and Nas 2 lines positively stain with anti-ChAT (Figure 5.2). 

Terminally differentiated bfCNs were fixed and immunostained to detect synapsin I and post-

synaptic density protein 95 (PSD-95).  Synapsin is a protein integral to the pre-synaptic 

membrane and important for vesicle trafficking within the synapse (Evergren et al., 2007), 

therefore can be used to indicate pre-synaptic membranes.  PSD-95 is a key constituent 

protein of the post-synaptic density, which is associated with the post-synaptic membrane, 

Figure 5.2     Characterisation of day 35 differentiated bfCNs 

Images in the upper panels demonstrate Shef-6 bfCNs immunostained with antibodies against βIII 
tubulin (A, red), ChAT (B, green) and the overlay of these (C). Images in the lower panels show Nas 
2-bfCNs immunostained with antibodies against βIII tubulin (D, red), ChAT (E, green) and the overlay 
of these (F).  Scale bars indicate 50µm. 
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and is therefore used as a post-synaptic marker (Naisbitt et al., 2000).  Distribution of these 

proteins from the soma throughout the axon is an indicator of synapse formation.     
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Figure 5.3 Immunostaining demonstrating positive staining for anti-synapsin I and anti-
PSD 95 in Shef 6-bfCN and Nas 2-bfCN 

A, B, C and D show immunostaining of Shef 6-bfCN with Hoechst nuclear stain (A, blue), anti-βIII 
Tubulin (B, red), anti-synapsin I (C, green) and the overlay of these (D).  E and F show enlargements 
of the areas outlined by white boxes in C and D, respectively.  G, H and I show Shef 6-bfCN 
immunostained with anti-βIII Tubulin (G, red), anti-PSD 95 (H, green) and the overlay of these (I).  
J, K and L show Nas 2-bfCN immunostained with anti-βIII Tubulin (J, red), anti-PSD 95 (K, green) 
and the overlay of these (L).  Scale bars for A, B, C and  D indicate 100 µm; scale bars for E and F 
indicate 25 µm; Scale bars for G, H, I, J, K and L indicate 50 µm. 
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Nas 2-bfCN and Shef 6-bfCN both positively stained for synapsin I and PSD-95 (Figure 5.3).  

Confocal microscopy, along with epifluorescence microscopy, was used to demonstrate the 

proximity of puncta stained with anti-synapsin I and anti-PDS-95 (Figure 5.4) indicating 

mature synaptic structure (Nieweg et al., 2015).  Nas 2-CGN and Shef 6-CGN also 

demonstrate positive staining for anti-synapsin I and anti-PDS-95, as described in Chapter 4 

(Figures 4.8 and 4.9).   

 

 

 

 

 

 

Figure 5.4 Synapsin and PSD-95 puncta are within close proximity to each other in 
mature bfCNs 

Nas 2-bfCNs at day 35 positively immunostain for PSD-95 (green) and synapsin (red) with puncta 
along axons within close proximity to each other as can be seen in enlarged images.  Images in A 
were taken using epifluorescence microscopy, while images in B were taken using confocal 
microscopy.  Scale bars indicate 25 μM for those in A and 5 μM for those in B.   
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5.3.2  Tau and ptau levels in Shef 6-bfCNs, Nas 2-bfCNs Shef 6-CGNs treated 
with Aβ42O 

To investigate the levels of total tau and ptau within mature Shef 6-bfCNs, Nas 2-bfCNs and 

Shef 6-CGNs, cells were cultured after terminal differentiation to maturity, which equates to 

35 days after final plate down for bfCNs and 50 days in culture for CGNs (Chapter 5.2.1), and 

treated with Aβ42O for 48 hours before being washed, lysed and immunoblotted.  Levels of 

total tau and tau phosphorylated at Ser396/404 and Ser202 were detected by probing 

western blots with tau and ptau specific antibodies.  The calculated density and size of each 

band was normalised firstly to bands produced by probing with the housekeeping control 

antibody GAPDH and subsequently to the average of the controls; therefore, these results 

are graphically represented as a ratio of the controls.  To allow for consideration of total tau 

variation within each sample, the bands produced by probing with ptau antibodies  were also 

normalised against those revealed by probing with DA9, which specifies total tau, after 

normalisation to GAPDH levels and before normalisation to the average of the controls.  PHF-

1 detects tau phosphorylated at Ser396/404 and CP13 detects tau phosphorylated at Ser202. 
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Figure 5.5 Levels of total tau in bfCNs treated with Aβ42O 

Figure 5.5 Level of total tau in bfCNs treated with Aβ42O 
Representative western blots showing Shef 6-bfCNs treated with 0.1 µM, 0.5 µM, 1 µM Aβ42O 
(control n=5; Aβ 0.1 µM n=3; Aβ 0.5 µM n=4; Aβ 1 µM n=4) (A) and Nas 2-bfCNs treated with 0.5µM 
Aβ42O (control n=3; Aβ 0.5 µM n=3) (C), probed with GAPDH and DA9 antibodies.  Graphs 
representing the average relative density of DA9 bands normalised to GAPDH bands for Shef 6-
bfCN (B) and for Nas 2-bfCN (D) treated with Aβ42O.   
 
Data represented in B) was analysed using a Friedman test with post-hoc Dunn’s test. Data 
represented in D) was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Western immunoblots of hiPSC-neurons treated with Aβ42O were probed with DA9, an 

antibody against total tau, to understand whether the oligomers affect the total amount of 

tau within the cells.  Treatment of Shef 6-bfCNs with incrementally increasing concentrations 

of Aβ42O (0.1 µM, 0.5 µM and 1 µM) did not have a statistically significant effect on total tau 

(p= 0.0747) (Figure 5.5, A and B).  Nas 2-bfCNs were treated with 0.5 µM Aβ42O, which did 

not have an effect on total tau levels (p= 0.4509) (Figure 5.5, C and D).  Likewise, no 

statistically significant change in the levels of total tau was caused by treatment of Shef 6-

CGN with 0.5 µM or 1 µM Aβ42O (p= 0.4638 and p= 0.5098, respectively) (Figure 5.6).   
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Figure 5.6 Level of total tau in Shef 6-CGNs treated with Aβ42O 

 

 

 

 

 

 

 

Figure 5.6 Level of total tau in Shef 6-CGNs treated with Aβ42O 
Representative western blot (A) showing Shef 6-CGNs treated with 0.5 µM (control n=3; Aβ 0.5 µM 
n=3)  and 1 µM (control n=3; Aβ 1 µM n=3)  Aβ42O, alongside controls, probed with GAPDH and 
DA9.  Representation of the average relative density of DA9 bands normalised to GAPDH bands for 
those treated with 0.5 µM  (B) and 1 µM (C) Aβ42O compared to controls.   
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 5.7 Levels of tau phosphorylated at pSer396 and pSer404 in Nas 2-bfCNs 
treated with Aβ42O 

 

 

 

 

 

 

 

 

Figure 5.7 Level of tau phosphorylated at pSer396 and pSer404 in Nas 2-bfCNs treated 
with Aβ42O 

Representative western blot (A) showing Nas 2-bfCNs treated with 0.5µM Aβ42O alongside 
controls probed with GAPDH and PHF-1 (control n=3; Aβ 0.5µM n=3) and graphical representation 
of the average relative densities of PHF-1 bands normalised to GAPDH bands (B) and then 
normalised to DA9 bands (C).   
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 5.8 Levels of tau phosphorylated at Ser396 and Ser404 in Shef 6-CGNs treated 
with Aβ42O  

 

Figure 5.8 Level of tau phosphorylated at Ser396 and Ser404 in Shef-6 CGNs treated with 
Aβ42O 
Representative western blots (A) of Shef 6-CGNs treated with 0.5µM (control n=3; Aβ 0.5 µM n=3)  
and 1 µM (control n=3; Aβ 1 µM n=3) Aβ42O alongside controls, probed with GAPDH and PHF-1.  
Graphs representing the average relative density of PHF-1 bands normalised to GAPDH bands (B 
and D) and then to DA9 bands (C and E) for Shef 6-CGNs treated with 0.5µM Aβ42O (B and C) and 
1 µM Aβ42O (D and E), compared to controls.  
  
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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No significant difference in pSer396/404 tau was found in Nas 2-bfCNs treated with 0.5 µM 

Aβ42O compared to controls either before normalisation to total tau (p= 0.2417), or 

afterwards (p= 0.3096) (Figure 5.7).  No statistically significant diffference was found in Shef 

6-CGN treated with 0.5 µM or 1 µM Aβ42O before normalisation to total tau (p= 0.1018 and 

p=4765, respectively) or after normalisation to total tau (p= 0.6089 and p= 0.3808, 

repectively) (Figure 5.8).   

 

Figure 5.9 Levels of tau phosphorylated at Ser202 in Shef 6-bfCNs treated with Aβ42O 

 

Figure 5.9 Level of tau phosphorylated at Ser202 in Shef 6-bfCNs treated with Aβ42O  
Representative western blots showing Shef 6-bfCNs treated with 0.1 µM, 0.5 µM, 1 µM Aβ42O 
(control n=5; Aβ 0.1 µM n=3; Aβ 0.5 µM n=4; Aβ 1 µM n=4) probed with GAPDH and CP13 
antibodies (A).  Graphs representing the average relative density of CP13 bands normalised to 
GAPDH bands (B) and then to DA9 bands (C) for Shef 6-bfCN treated with Aβ42O.   
 
Data was analysed using a Friedman test with post-hoc Dunn’s test.  Error bars indicate +1 S.E.M. 
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Figure 5.10 Levels of tau phosphorylated at Ser202 in Nas 2-bfCNs treated with Aβ42O 

 

 

 

 

 

 

 

 

 

Figure 5.10 Level of tau phosphorylated at Ser202 in Nas 2-bfCNs treated with Aβ42O  
Representative western blot (A) showing Nas 2-bfCNs treated with 0.5 µM Aβ42O and probed with 
GAPDH and CP13 (control n=3; Aβ 0.5 µM n=3).  Graphs representing the density of CP13 bands 
normalised to GAPDH bands (B), then normalised to DA9 bands (C), for Nas 2-bfCN treated with 
Aβ42O. 
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M.  
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Figure 5.11 Levels of tau phosphorylated at Ser202 in CGNs treated with Aβ42O 

 

No statistically significant difference in pSer202 tau levels was found in  Shef 6-bfCN treated 

with 0.1 µM, 0.5 µM or 1 µM Aβ42O compared to controls, either before normalisation to 

total tau (p= 0.7813), or afterwards (p= 0.2449) (Figure 5.9).  Similarly, within Nas 2-bfCN 

treated with 0.5 µM Aβ42O no statistically significant change in levels of tau phosphorylated 

at these sites was detected compared to controls before normalisation to total tau (p= 

0.9405) or following normalisation (p= 0.6862) (Figure 5.10).  Application of 1 µM Aβ42O to 

Shef 6-CGN also did not statistically significantly alter levels of pSer202 tau before 

normalisation to total tau (p= 0.9071) or after normalisation to total tau (p= 0.8817), 

compared to controls (Figure 5.11). 

 

Figure 5.11 Level of tau phosphorylated at Ser202 in Shef 6-CGNs treated with Aβ42O 
Representative western blots (A) of Shef 6-CGNs treated with 1 µM (control n=3; Aβ 1 µM n=3)  
Aβ42O alongside controls, probed with GAPDH and CP13.  Graphs representing the average relative 
density of CP13 bands normalised to GAPDH bands (B) and then to DA9 bands (C). 
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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5.3.3  Gene expression of MAPT in Shef 6-CGN and Nas 2-bfCNs treated with 
Aβ42O 

MAPT expression levels within Shef 6-CGN treated with 1 µM Aβ42O and Nas 2-bfCN treated 

with 0.5 µM Aβ42O were investigated.  The average relative gene expression was calculated 

for cells treated with each concentration of Aβ42O compared to controls.  Neither Nas 2-

bfCNs treated with 0.5 µM Aβ42O (p= 0.2286) or Shef 6-CGNs treated with 1 µM Aβ42O (p= 

0.4000) were found to express significantly higher levels of MAPT compared to controls 

(Figure 5.12). 

 

Figure 5.12 Relative expression of MAPT in Nas 2-bfCN and Shef 6-CGN treated with 

Aβ42O 

 

 

 

 

 

 

Figure 5.12 Relative expression of MAPT in Nas 2-bfCN and Shef 6-CGN treated with Aβ42O 
Graphs representing the average relative gene expression of MAPT within Nas 2-bfCN treated with 

0.5 µM Aβ42O (control n=3; Aβ 0.5 µM n=4) (A) and within Shef 6-CGN treated with 1 µM Aβ42O 
(control n=3; Aβ 1 µM n=3) compared to controls.   
 
Data was analysed using a Mann-Whitney test.  Error bars indicate +1 S.E.M. 
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5.3.4  Tau kinase levels and activity in Shef 6-CGNs and Nas 2-bfCNs treated 
with Aβ42O 

To discern whether the activity of tau kinases GSK3β, Cdk5 and PAK3 are affected by 

treatment of hPSC-neurons with Aβ42O, protein levels of GSK3β, GSK3β pTyr216, p25, p35 

and PAK3 in Nas 2-bfCNs treated with 0.5 µM Aβ42O and Shef 6-CGN treated with 0.5 µM 

Aβ42O or 1 µM Aβ42O were investigated via western immunoblotting.  

Phosphorylation of GSK3β at pTyr216 is necessary for the kinase to become fully active 

(Chapter 1.3.1), therefore levels of GSK3β phosphorylated at this site were compared to total 

GSK3β to distinguish the effects of 0.5μM Aβ42O treatment on GSK3β activity in Nas 2-bfCNs.  

Levels of total GSK3β are unchanged in Nas 2-bfCN treated with 0.5 µM Aβ42O compared to 

controls (p= 0.7450), however, levels of pTyr216 GSK3β are increased (p= 0.0127) and remain 

increased when normalised against total GSK3β (p= 0.0273) (Figure 5.13). 
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Figure 5.13 Levels of total and active GSK3β in Nas 2-bfCNs treated with Aβ42O 

 

 

 

Figure 5.13 Levels of total and active GSK3β in Nas 2-bfCNs treated with Aβ42O 
Representative western blots of Nas 2-bfCNs treated with 0.5µM Aβ42O alongside controls, 
probed with GAPDH and anti-GSK3β (A) and GAPDH and anti-GSK3β (B) (control n=3; Aβ 0.5 µM 
n=3).  Graphs representing the average relative density of anti-GSK3β bands normalised to 
GAPDH bands (C), of anti-GSK3β pTyr216 bands normalised to GAPDH * p= 0.0127 (D), and of 
anti-GSK3β pTyr216 bands normalised to anti-GSK3β bands * p= 0.0273 (E). 
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 5.14 Levels of active GSK3β in Shef 6-CGNs treated with Aβ42O 

 

Conversely, statistical analysis revealed levels of GSK3β pTyr216 were reduced in Shef 6-

CGNs treated with 0.5 µM compared to controls and treatment with 1 µM Aβ42O (p= 0.0413) 

(Figure 5.14).  There was no statistical difference in the levels of GSK3β pTyr216 between 

controls and Shef 6-CGNs treated with 1 µM Aβ42O.   

Increased p25, decreased p35 and increased p25:p35 ratio are indicative of increased Cdk5 

activity, as discussed in Chapter 1.3.2.  Therefore, western immunoblots of Nas 2-bfCNs 

treated with 0.5 µM Aβ42O and Shef 6-CGNs treated with 0.5 µM and 1 µM Aβ42O alongside 

Figure 5.14 Levels of active GSK3β in Shef 6-CGNs treated with Aβ42O 
Representative western blot (A) of Shef 6-CGNs treated with 0.5 µM (control n=3; Aβ 0.5 µM n=3)  
and 1 µM (control n=3; Aβ 1 µM n=3) Aβ42O alongside controls, probed with GAPDH and anti-
GSK3β pTyr216.  Graphs representing the average relative density of anti-GSK3β pTyr216 bands 
normalised to GAPDH bands, averaged to the controls, for Shef 6-CGNs treated with 0.5 µM (B) 
and 1 µM (C) Aβ42O.   
 
Data was analysed using an unpaired student’s T test.  Error bars indicate +1 S.E.M.  

 



196 
 

controls were probed with anti-p25/p35 to investigate Cdk5 activity.  The ratio of each to 

GAPDH was measured, however, p25 levels were too low to be detected for Shef 6-CGN 

treated with 0.5 µM Aβ42O.  Where p25 could be calculated in controls and Shef 6-CGN 

treated with 1 µM Aβ42O on the same blot, and within Nas 2-bfCNs, anti-p25 bands were 

normalised against GAPDH and then normalised to p35 bands to calculate the p25:p35 ratio.    

Levels of p35 (p>0.9999), p25 (p= 0.4111) and the ratio of p25:p35 (p= 0.3327) were not 

significantly changed through the application of 0.5 µM Aβ42O to Nas 2-bfCNs (Figure 5.15). 

Levels of p25 (p= 0.2464) and the ratio p25:p35 (p= 0.1183) were found to be not significantly 

different in Shef 6-CGN treated with 1 µM Aβ42O compared to controls (Figure 5.16, C and 

D), however, levels of p35 were significantly decreased in cells treated with 1 µM or 0.5 µM 

Aβ42O (p= 0.0019) (Figure 5.16).  
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Figure 5.15 Levels of p25 and p35 in Nas 2-bfCNs treated with Aβ42O  

Figure 5.15 Levels of p25 and p35 in Nas 2-bfCNs treated with Aβ42O 
Representative western immunoblot (A) of Nas 2-bfCNs treated with 0.5 µM Aβ42O alongside 
controls, probed with GAPDH and anti-p25/p35 (control n=3; Aβ 0.5 µM n=3).  Graphical 
representations of average relative density of p35 bands normalised to GAPDH bands (B), of p25 
bands normalised to GAPDH bands (C) and of p25 bands normalised to p35 bands (D) for Nas 2-
CGNs.   
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 5.16 Levels of p25 and p35 in Shef 6-CGNs treated with Aβ42O 

Figure 5.16 Levels of p25 and p35 in Shef 6-CGNs treated with Aβ42O 
Representative western blot of Shef 6-CGNs treated with 0.5µM (control n=3; Aβ 0. 5 µM n=3) and 

1µM (control n=3; Aβ 1 µM n=3) Aβ42O alongside controls, probed with GAPDH and anti-p25/p35 

(A).  Graphs representing the average relative density of anti-p35 bands normalised to GAPDH 
bands for Shef 6-CGN treated with 0.5 µM Aβ42O * p= 0.0419 (B) and 1 µM Aβ42O * p=0.0274 (C).  
Graphs representing the average relative density of anti-p25 bands normalised to GAPDH bands 
(D) and then to p35 bands (E) for Shef 6-CGN treated with 1 µM Aβ42O.   
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 5.17 Levels of PAK3 in Shef 6-CGNs and Nas 2-bfCNs treated with Aβ42O 

 

Western blots of Shef 6-CGNs and Nas 2-bfCNs treated with Aβ42O were probed with anti-

PAK3 antibody to investigate the effects of Aβ42O on the levels of this tau kinase within these 

Figure 5.17 Levels of PAK3 in Shef 6-CGNs and Nas 2-bfCNs treated with Aβ42O 
Representative western blots of Shef 6-CGNs treated with 0.5 µM (control n=3; Aβ 0.5 µM n=3) 
and 1 µM Aβ42O (control n=3; Aβ 1 µM n=3) alongside controls (A) and Nas 2-bfCN treated with 
0.5 µM Aβ42O (control n=3; Aβ 0.5 µM n=3) (D) probed with GAPDH and anti-PAK3.  Graphs 
representing the average relative density of anti-PAK3 bands normalised to GAPDH bands for Shef 
6-CGNs treated with 0.5 μM (B) and 1 μM (C).  Graph representing the average relative density of 
anti-PAK3 bands normalised to GAPDH bands for Nas 2-bfCNs treated with 0.5 µM Aβ42O alongside 
controls (E). 
 
Data represented was analysed using an unpaired student’s t-test.  Error bars indicate +1 S.E.M.  
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cells.  PAK3 levels were not significantly different in Shef 6-CGNs treated with 0.5 µM (p= 

0.9379) and 1 µM Aβ42O (p= 0.5859) or Nas 2-bfCNs 0.5 µM Aβ42O (p> 0.9999) treated with 

Aβ42O compared to controls (Figure 5.17). 

5.3.5  Gene expression of tau kinases in Shef 6-CGN and Nas 2-bfCNs 
treated with Aβ42O 

To determine whether changes in expression levels of tau kinases are concomitant with 

altered tau kinase activity or tau phosphorylation in response to Aβ42O treatment within Shef 

6-CGN and Nas 2-bfCN, qPCR was carried out using probes to detect GSK3β, CDK5 and PAK3 

cDNA.   

Whilst GSK3β expression was found to be greater within Nas 2-bfCN treated with 0.5 µM 

Aβ42O compared to those treated with 1 µM Aβ42O (p= 0.0128), there was no significant 

difference in Nas 2-bfCN treated with 0.5 µM Aβ42O (p= 0.2715) or 1 µM Aβ42O (p= 0.0714) 

compared to both controls (Figure 5.18, A).  Similarly, no significant change in expression was 

detected for Shef 6-CGN treated with 1 µM Aβ42O (p= 0.1000) (Figure 5.18, B).  

Expression of CDK5 was not found to be significantly different in Nas 2-bfCN treated with 0.5 

µM Aβ42O (p=0.0571) (Figure 5.18, C) compared to controls, or in Shef 6-CGN treated with 1 

µM Aβ42O (p >0.9999) (Figure 5.18, D).  The expression of PAK3 was not significantly altered 

in Nas 2-bfCN after application of either 0.5 µM Aβ42O (Figure 5.18, E) or 1 µM Aβ42O (p= 

0.4990)  or in Shef 6-CGN treated with 1 µM Aβ42O (p= 0.4000) (Figure 5.18, F) compared to 

controls.   
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Figure 5.18 Relative expression of tau kinases in hiPSC-neurons treated with Aβ42O 

 

 

Figure 5.18 Relative gene expression of tau kinases in hiPSC-neurons treated with Aβ42O 
Graphs representing the average relative gene expression of GSK3β (A)* p= 0.0128 (control n=7; 
Aβ 0.5 µM n=4; Aβ 1 µM n=3); CDK5 (C) (control n=3; Aβ 0.5 µM n=4) and PAK3 (E) (control n=7; 
Aβ 0.5 µM n=4; Aβ 1 µM n=3) within Nas 2-bfCN treated with 0.5 µM and 1 µM Aβ42O alongside 
controls.  
 
Graphs representing the average relative gene expression of GSK3β (B), CDK5 (D) and PAK3 (F)  
within Shef 6-CGN treated with 1 µM Aβ42O compared to controls (control n=3; Aβ 1 µM n=4). 
 
Data represented in A) and E) was analysed using a Kruskal-Wallis with post-hoc Dunn’s test.  Data 
represented in B), C), D) and F) was analysed using a Mann-Whitney test.  Error bars indicate +1 
S.E.M. 
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5.3.6  Level of synapsin I in Shef 6 and Nas 2 derived CGNs and bfCNs 
treated with Aβ42O 

To investigate the synaptotoxic effects of treatment with Shef 6-CGNs and Nas 2-bfCNs, 

western blots of lysates from these cells after treatment were probed with anti-synapsin I.  

Shef 6-CGN treated with 0.5 µM Aβ42O had lower synapsin I levels compared to controls (p= 

0.0274) (Figure 5.19, B), however, no change in synapsin I levels was detected in Nas 2-bfCNs 

after the same treatment (p= 0.0929) (Figure 5.19, D). 
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Figure 5.19 Decrease in protein level of synapsin I in Shef 6-CGNs and Nas 2-bfCNs with 
Aβ42O as indicated by western immunoblotting using anti-synapsin  

 

 

Figure 5.19 Decrease in protein level of synapsin I in Shef 6-CGNs and Nas2-bfCNs  with 
Aβ42O  as indicated by western immunoblotting using anti-Synapsin  
Representative western blots showing Shef 6-CGNs treated with 0.5 µM Aβ42O (control n=3; Aβ 
0.5 µM n=3) (A)  and Nas 2-CGNs treated with 0.5 µM (control n=3; Aβ 0.5 µM n=3) (C), alongside 
controls, probed with GAPDH and anti-synapsin I.  Graphs represent the average relative density 
of anti-synapsin I bands normalised to GAPDH bands for Shef 6-CGN treated with 0.5 µM Aβ42O 
(B) and Nas 2-bfCN treated with 0.5 µM Aβ42O (D).   
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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5.3.7  Varicosities in Nas 2-bfCN treated with 1 µM Aβ42O 

To investigate the presence of pathogenic tau within neurons, Nas 2-bfCN treated with 1µM 

Aβ42O were fixed and immunostained with MC1, an antibody which specifically recognises a 

form of tau with an abnormal conformation associated with early AD (Weaver et al., 2000; 

Jicha et al., 1997).  Nas 2-bfCN treated with 1 µM Aβ42O have greater numbers of neurons 

positively stained with MC1 and axonal varicosities that positively stain with MC1 (Figure 

5.20; B and C, white arrows) compared to controls from the same differentiation set (Figure 

5.20, A).   

Trafficking of vital organelles, including mitochondria, has also been reported to be disrupted 

in tauopathies (Chapter 1.1.2).  Mitochondria have a vital role within neurons and their 

dysfunction is intimately associated with neurodegenerative disease (Cabezas-Opazo et al., 

2015; Moreira et al., 2010).  To investigate the transport of mitochondria with Nas 2-bfCN 

treated with 1 µM Aβ42O, cultures were immunostained with anti-ATPβ, which detects the 

beta subunit of ATP (adenosine triphosphate) synthase, an enzyme responsible for 

phosphorylating ADP (adenosine diphosphate) to ATP.  This enzyme is richly present within 

mitochondria and so anti-ATPβ can be used as a mitochondrial marker (Jonckheere et al., 

2012).  Staining was too dim to use for controls, however, varicosities containing 

mitochondria were observed in Nas 2-bfCNs treated with Aβ42O (Figure 5.21; B, C, E, F).   
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Figure 5.20 Nas 2-bfCNs treated with 1 µM Aβ42O contain varicosities containing an 
abnormal conformation of tau 

 

Figure 5.20 Nas 2-bfCNs treated with 1 µM Aβ42O contain varicosities containing an 
abnormal conformation of tau 
Nas2-bfCNs positively immunostained for tau with an abnormal conformation in neuronal 
varicosities, as indicated by positive staining using MC1 antibody (green) and βIII Tubulin antibody 
(red).  Arrows indicate individual neurons with varicosities containing MC1 tau found in neurons 
treated with 1 µM Aβ42O, but not in controls.  Controls are shown stained with antibodies A) MC1, 
B) βIII Tubulin and both C) MC1 and βIII Tubulin.  Nas 2-bfCNs treated with 1 µM Aβ42O are shown 
stained with D) MC1, E) βIII Tubulin and both F) MC1 and βIII Tubulin.  Another example of Nas 2-
bfCNs treated with 1 µM Aβ42O, taken from a different well, are shown stained with G) MC1, H) 
βIII Tubulin and both I) MC1 and βIII Tubulin.  Scale bars indicate 50 µM. 
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5.21 Nas 2-bfCNs treated with 1 µM Aβ42O have varicosities containing 

mitochondria  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Nas 2-bfCNs treated with 1 µM Aβ42O have varicosities containing mitochondria  
Nas 2-bfCNs were immunostained with anti-βIII Tubulin (A and D, red) and anti-ATPβ (B and E, 
green).  Overlays (C and F) demonstrate axonal varicosities positively stained with ATPβ along 
axons.  Scale bars indicate 50 µM. 
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5.4  Discussion 

The work in this chapter was untaken to investigate whether the application of pre-

aggregated, synthetic Aβ42O, within a concentration range of 0.1 μM to 10 μM, to hPSC-bfCNs 

and hPSC-CGNs can recapitulate molecular aspects of early tauopathy recognised in AD.  

Specifically, the levels of tau protein and phosphorylated species of tau have been measured, 

which are reported to be increased in the AD brain and are considered to be indicators of tau 

pathology.  Levels of MAPT expression were also investigated to determine whether altered 

levels contribute to the levels of tau protein.  To investigate the culpability of the tau kinases 

GSK3β, Cdk5 and PAK3, reportedly dysregulated in AD, within the model, the protein levels, 

activity and gene expression of these proteins were also investigated. 

5.4.1  Characterisation of hPSC-bfCN 

BfCNs were differentiated from Nas 2-hiPSC and Shef 6-hESC after the generation of 

neurospheres from these lines.  Acutely plated cells from these neurospheres, from each line, 

positively immunostain for nestin, an intermediate filament protein specific to CNS precursor 

cells (Zimmerman et al., 1994; Fukuda et al., 2003) and RNA-binding protein Mushashi 

homolog 1 (Mushashi), which is highly enriched within mammalian CNS and selectively 

expressed in neural stem cells (NSCs) (Sakakibara et al., 1996; Kaneko et al., 2000).  The 

positive expression of these two markers in acute plate-downs of dissociated neurospheres 

indicates a homogenous population of NSCs, necessary to ensure a population of terminally 

differentiated cells of purely neural lineage.  At 35 days after  plating the neurospheres to 

initiate terminal differentiation, these neurons express the cholinergic marker, ChAT, as 

indicated by positive immunostaining of cultures with anti-ChAT and anti-βIII Tubulin. 

Furthermore, at day 35 of terminal differentiation, these neurons also express synapsin, 

known to be present within early synapses, and PSD-95, a marker for mature synapses.  Since 

synapsin is a pre-synaptic marker and PSD-95 is a post-synaptic marker, the proximity of 

puncta positive for these two proteins indicates the formation of synapses (Micheva et al., 

2010; Pratt et al., 2008).  The presence of mature synapses within in vitro AD models is an 

important consideration as dysfunction and loss of synapses are fundamental elements in 

early AD pathogenesis (Ferreira and Klein, 2011).  Additionally, it has been postulated that 

tau pathology propagates throughout neural networks upon neuronal excitation via release 

of tau at synapses (Kfoury et al., 2012; Wu et al., 2016; Wang et al., 2017; Liu et al., 2012), 
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therefore the presence of a network of functional neurons is required in order to recapitulate 

AD pathogenesis as accurately as possible in vitro.   

Characterisation of Shef 6-CGNs and Nas 2-bfCNs has been described previously in Chapter 

4.  At 50 days, derived neurons expressed the vesicular glutamate transporter 1 (vGlut1), a 

marker of glutamatergic neurons (Chapter 4.3.2). Immunostaining of hiPSC-CGNs also 

revealed the presence of synapsin I and PSD-95 in neurons. 

5.4.2  Aβ42O-induced tau pathology 

Increased tau and ptau are widely reported in studies in post-mortem brain tissue, CSF and 

blood of AD patients (Sjögren et al., 2001; Iqbal et al., 2010; Zetterberg et al., 2013) (Chapter 

1.3).  AD pathology develops over decades and it is not known if this pathological feature can 

be recapitulated in control hiPSC-neurons treated with Aβ42O, although studies in primary 

neurons suggest this may be feasible (Zheng et al., 2002; Billingsley and Kincaid 1997; Iqbal 

et al., 1998; Busciglio et al., 1995; Johansson et al., 2006; Jin et al., 2011; Ma et al., 2009; 

Wang et al., 2000; Alvarez et al., 1999). 

In an attempt to examine this aspect of pathology in these hiPSC-neurons, levels of tau 

protein were investigated by western immunoblotting and qPCR, respectively.  Tau protein 

levels were not significantly altered through the treatment of Nas 2-bfCNs with 0.5 µM, Shef 

6-CGNs with 0.5 µM or 1 µM Aβ42O, or Shef 6-bfCNs with 0.1 µM, 0.5 µM or 1 µM Aβ42O.  

These results indicate that treatment of hPSC-neurons with these concentrations of Aβ42O 

over 48 hours does not result in altered levels of total tau protein, therefore, this aspect of 

AD pathology was not recapitulated in this model.       

This is predictable as so far, no sAD hiPSC-neuron model has reported increased levels of 

total tau or the presence of NFTs (for references see Table 1.2) and one sAD model based on 

the application of Aβ to hiPSC-neurons reported similar levels of total tau after treatment 

(Nieweg et al., 2015).  There have also been reports of increased tau secretion into the media 

of hiPSC-neurons derived from DS patients (Chang et al., 2015; Shi et al., 2012).  

The cause of increased total tau within the AD brain is unclear; some have hypothesised that 

the increase may be due to the resistance of pathologically phosphorylated and aggregated 

tau to proteasomal degradation and removal through clearance pathways (Paglini and 
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Cáceres, 2001; Moore et al., 2015).  In this hiPSC-models of AD, 48 hour treatment with Aβ42O 

may not allow sufficient time for the accumulation of tau.   

To determine whether increased transcription of MAPT early in disease could play a role in 

the increased levels of tau in AD brains, gene expression was investigated.  MAPT expression 

was not altered by treatment of Nas 2-bfCNs or Shef 6-CGNs with 0.5 µM or both 0.5 µM and 

1 µM Aβ42O, respectively.  These results are in line with results from a previous study in which 

MAPT expression levels were reported to be unchanged within hiPSC-neurons derived from 

fAD patients carrying various mutations (Moore et al., 2015).  Studies examining levels of 

MAPT mRNA in AD brains compared to aged healthy brains have produced controversial 

results.  While Liang and colleagues demonstrated decreased MAPT gene expression within 

the entorhinal cortex, hippocampus, middle temporal gyrus and posterior cingulate cortex of 

AD patients (Liang et al., 2008), no statistically significant change was determined in two 

other studies where expression in specific brain regions was examined (Farnsworth et al., 

2016; Fukasawa et al., 2017).  However, it should be noted that upon amalgamation of results 

obtained from various brain regions, Fukasawa and colleagues did note statistically 

decreased MAPT in AD brains compared to controls (Fukasawa et al., 2017).  Liang and 

colleagues suggested that the decrease in MAPT expression in AD brains may represent a 

neuroprotective mechanism of remaining neurons (Liang et al., 2008).  If so, decreased MAPT 

expression occurs later in disease as hiPSC-neurons are thought to represent the early stages 

of disease pathogenesis.   

An elevated level of ptau is one of the defining molecular features of the AD brain; 

pSer396/404 and pSer202 tau are found in AD brain NFTs.  Phosphorylation of tau at Ser396 

and Ser404 is associated with the later stages of AD, while phosphorylation at Ser202 is 

associated with early AD (Luna-Munoz et al., 2007).  The application of 0.5 µM Aβ42O to Nas 

2-bfCN, or of 0.5 µM or 1 µM Aβ42O to Shef 6-CGN did not result in statistically significant 

changes in tau phosphorylation at sites Ser396/404 compared to controls.  Similarly, pSer202 

tau levels were not significantly altered in Shef 6-CGN or Nas 2-bfCN after treatment with 0.5 

µM Aβ42O, or in Shef 6-bfCN after treatment with 0.1 µM, 0.5 µM or 1 µM Aβ42O.  These 

results indicate that the application of Aβ42O, in concentrations between 0.1 µM and 1 µM, 

to hiPSC-derived CGNs and bfCNs for 48 hours does not cause elevated tau phosphorylation 

at these sites. 
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These results are unsurprising as so far, no sAD hiPSC-neuron model has recapitulated 

increased pSer396/404 tau, although one study has demonstrated increased pSer202 tau 

(Nieweg et al., 2015).  Increased phosphorylation of tau at these sites has been reported in 

previous fAD hiPSC-neuron models, suggesting that models based on fAD mutations may 

reproduce tau hyperphosphorylation at these sites more reliably.  Increased pSer396/404 

and pSer202/205 tau have been detected in V717L APP hiPSC and within hiPSC carrying a 

duplication of APP (Moore et al., 2016).  Increased phosphorylation of tau at Ser396, as well 

as Thr181, has also been reported within hiPSC-derived cerebral organoids carrying APP 

duplication (Raja et al., 2016).  Choi and colleagues reported a dramatic increase in 

pSer396/404 and pSer202/205 tau within select neurons, via immunocytochemistry, within 

3xfAD (K670N/M671L,V717L APP/ΔE9 PSEN1) hiPSC-neurons (Choi et al., 2014).   

In a recent publication, an increase in pSer202/pSer205 tau could not be found in rat primary 

neurons treated with Aβ42O via western immunoblotting, however, increased 

immunostaining at the dendrites of these cells was reported (Tanokashira et al., 2017).  

Mislocalised pSer202/202 and pSer396/404 tau has been detected, via 

immunocytochemistry, in some hiPSC-neuron models derived from DS patients (Chang et al., 

2015).  These studies, along with immunostaining results reported by Choi and colleagues 

(Choi et al., 2014), suggest that the use of immunocytochemistry to detect abnormal 

translocation and increased levels of ptau facilitate identification of early AD pathology in 

hiPSC-neurons in which protein levels are not significantly altered.  While no change in the 

levels of pSer396/404 tau or pThr231 was detected within cells of hiPSC-neurons derived 

from patients with DS, increased levels of tau phosphorylated at these sites was detected 

within the media of these cultures (Shi et al., 2012), which may signify that ptau cannot be 

detected in some hiPSC-neuron models of AD via western immunoblotting due to secretion 

of ptau.   

Further investigation of levels of pThr231 tau in this model may reveal increased tau 

phosphorylation, as increased phosphorylation of tau at this site has been reported in sAD 

hiPSC-neuron models (Hossini et al., 2015; Israel et al., 2013; Nieweg et al., 2015) as well as 

within hiPSC-neurons derived from fAD patients with APP duplication (Israel et al., 2013).  

The age of the neurons in these studies seems to be critical to successful recapitulation of 

increased tau phosphorylation at these sites.  Muratore and colleagues noted that pSer262 

tau levels were not increased at day 35 of culture but were at 100 days (Muratore et al., 
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2013), while Raja and colleagues detected increased ptau at 90 days but not at 60 days (Raja 

et al., 2016).  Choi and colleagues measured phosphorylation within their model at 70 days 

after differentiation of hiPSC-neurons (Choi et al., 2014), while Moore and colleagues 

detected ptau within hiPSC-neurons at day 90 (Moore et al., 2016).  The culture period for 

hiPSC-bfCN and hiPSC-CGN in this study may not be sufficient to allow for detection of 

increased ptau.  

Previous studies involving the application of Aβ to murine primary neurons report increased 

pSer396/404 and pSer202/205 tau levels after treatment (De Felice et al., 2008; Ramser et 

al., 2013; Alvarez et al., 1999; Zempel et al., 2010).  Recapitulating increased increased 

phosphorylation at these sites in hiPSC-neurons appears to be more challenging.  In the foetal 

brain, tau is heavily phosphorylated at sites hyperphosphorylated in AD (Matsuo et al., 1994) 

and recently, we have learned that hiPSC-neurons, once differentiated, mature at a similar 

rate to those within the developing human brain (Sposito et al., 2015).  High levels of 

phosphorylation in young hiPSC-neurons may mask the effects of Aβ42O-induced changes to 

pathways leading to aberrant tau phosphorylation in the hPSC-CGN and hPSC-bfCN used in 

this project.   

5.4.3  Aβ42O-induced alterations in kinase activity, levels and expression 

Levels of GSK3β were not significantly altered by treatment with Aβ42O in Nas 2-bfCNs and 

Shef 6-CGNs, however GSK3β activity, indicated by levels of GSK3β phosphorylated at 

Tyr216, was altered in both cell types.  Treatment of Nas 2-bfCNs with 0.5 μM Aβ42O 

significantly increased GSK3β activity, while the same treatment of Shef 6-CGNs decreased 

activity, as indicated by levels of active (pTyr216) GSK3β.  These results suggest that GSK3β 

activity is differentially affected in these two neuronal subtypes.   

Varying levels of GSK3β activity have been reported in different areas of the brain.  Within 

the frontal cortex of AD brains, pTyr216 GSK3β has been reported to be increased (Leroy et 

al., 2007), while activity has been found to be unchanged within the AD hippocampus (Pei et 

al., 1997).   In another study, the activity of GSK3β was found to be decreased in the pre-

frontal cortex of AD brains (Swatton et al., 2004), indicating that further research is required 

to understand the regional differences in GSK3β activity within the AD brain.  Increased 

activity of GSK3β has previously been reported within V717L APP hiPSC-derived cholinergic 

neurons (Muratore et al., 2014) and in rat cholinergic septal neurons after treatment with 
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AβO (Zheng et al., 2002), in line with the increase in pTyr216 GSK3β in hiPSC-bfCN reported 

in this chapter.  Increased levels of pTyr216 GSK3β have also been found within a mixed 

population of hiPSC-neurons carrying a duplication of APP (Israel et al., 2012).   

The gene expression of GSK3β within Nas 2-bfCN and Shef 6-CGN was not significantly altered 

by treatment with 1 μM Aβ42O or 0.5 μM Aβ42O.  Expression was significantly increased, 

however, in Nas 2-bfCN treated with 0.5 μM Aβ42O compared to those treated with 1 μM 

Aβ42O.  These results suggest that GSK3β expression is not altered by treatment of these 

neurons for 48 hours with concentrations 1 μM Aβ42O or 0.5 μM Aβ42O.   

GSK3β expression has been reported to be upregulated in AD and MCI patients, within the 

hippocampus (Blalock et al., 2004), in post-synaptosomal supernatants (Pei et al., 1997) and 

in peripheral lymphocytes (Hye et al., 2004).  Conversely, decreased expression of GSK3β has 

also been described within the hippocampus, medial temporal gyrus and posterior cingulate 

cortex of AD patients compared to healthy age-matched controls (Liang et al., 2008).   In this 

publication, the authors suggest that healthy neurons that remain in the brains of AD patients 

may respond to the disease by decreasing GSK3β expression as a neuroprotective 

mechanism.  The results in this study align with the decrease in GSK3β expression previously 

reported in hiPSC-cortical neurons derived from a patient with sAD (Hossini et al., 2015).  

These studies do not support thes lack of gene expression difference in Nas 2-bfCN and Shef 

6-CGN treated with Aβ42O in this study.    

As described, greater levels of p35 compared to p25 can be associated with physiological 

activity of Cdk5, while greater levels of p25 indicate hyper-activated Cdk5 (Chapter 1.3.2). 

Levels of p25 and levels of p35 are unchanged in Nas 2-bfCN treated with 0.5 μM Aβ42O, while 

levels of p35 are decreased in Shef 6-CGN treated with either 1 μM or 0.5 μM Aβ42O.  In 

agreement with this, AβO treatment of rat primary cortical neurons has been demonstrated 

to cause decreased levels of p35 (Hsiao et al., 2008).   

CDK5 expression was observed to be unchanged in Nas 2-bfCN treated with 0.5 µM Aβ42O 

and Shef 6-CGN treated with 1 µM Aβ42O compared to controls.  These results differ 

compared to a previous report in which CDK5 expression was demonstrated to be decreased 

in sAD hiPSC-neurons (Hossini et al., 2015).  Conversely, in PC12 cells overexpressing APP 

gene, expression of CDK5 was increased (Czapski et al., 2011).  Two studies have reported 

decreased expression of CDK5 in specific brain areas including the entorhinal cortex, 

hippocampus, posterior cingulate cortex and medial temporal gyrus in patients with AD in 
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comparison to controls (Liang et al., 2008; Fukasawa et al., 2017).  Interestingly, Liang and 

colleagues also reported an increase in p35 expression alongside decreased CDK5 expression 

and hypothesised that these expression changes may represent neuroprotective processes 

in the remaining healthy cells in an attempt to prevent further tau pathology (Liang et al., 

2008).   

PAK3 levels and PAK3 expression are unchanged in Nas 2-bfCN and Shef 6-CGN treated with 

0.5 µM and 1 µM Aβ42O.  While changes in PAK3 levels have not been reported in hiPSC-

neurons via western immunoblotting, the application Aβ42O to hiPSC-neurons within a 3D 

culture system has been shown to stimulate translocation of PAK3 into the somatodendritic 

compartments (Zhang et al., 2014), which agrees with previous research in rat primary 

cortical neurons (Ma et al., 2008).  Elevated levels of PAK3 and phosphorylated PAK3 have, 

however, been reported in rat cortical neurons after treatment with Aβ42O (Ma et al., 2008).  

These results suggest that the pathways affected in AD that result in changes to PAK3 protein 

and gene expression levels, described in Chapter 1 (Chapter 1.3.3), may not be recapitulated 

fully in hPSC-bfCNs and CGNs upon treatment with Aβ42O. 

5.4.4  The effects of Aβ42O on synapsin I protein levels 

The loss of synapses is an early event in AD pathogenesis and is thought to occur before the 

loss of neurons (Scheff et al., 2006; Hong et al., 2016).  Levels of synapsin I have been found 

to be decreased within affected brain regions of AD patients compared to controls, indicating 

the loss of synapses (Hamos et al., 1989; Perdahl et al., 1984).  To investigate the loss of 

synapses within this model of AD, levels of synapsin I within hPSC-CGNs and hPSC-bfCNs 

treated with Aβ42O were investigated. 

In this study, levels of synapsin I were found to be decreased in Shef 6-CGN treated with 1 

μM Aβ42O, indicating that treatment of these cells with this concentration of Aβ42O 

recapitulates this aspect of AD.  No change in synapsin I levels was found in Nas 2-bfCN 

treated with 0.5 μM Aβ42O.  Although functional synaptic impairment has been 

demonstrated in hiPSC-glutamatergic neurons treated with 25-50 ng/ml Aβ42O for 8 days, 

the levels of the pre-synaptic protein vGlut1 were reported to be unchanged in this AD hiPSC-

model (Nieweg et al., 2015).  Similarly, Israel and colleagues demonstrated no change in 

synapsin I within hiPSC-neurons derived from patients with a duplication of APP or sAD 

patients, compared to controls (Israel et al., 2011).  The cultures of hiPSC-neurons 
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differentiated by Israel and colleagues consisted of a mixed population of neurons and were 

estimated to contain 15 % of glutamatergic neurons, therefore, the lack of decreased 

synapsin I in these hPSC-neurons may represent the relative resilience of other neuronal 

subtypes.  Differences in the relative resilience of hPSC-CGN compared to hPSC-bfCN to the 

loss of synapsin could be explained by phenotypic differences or differences in culture 

conditions.  Additionally, these differences may be due to the insufficiency of 0.5 µM Aβ42O 

to cause synapsin I loss relative to the higher concentration of 1 μM. 

Reports on the relative resilience of different neuronal subtypes in AD and models of AD are 

conflicting.  Counts and colleagues examined the protein levels of pre-synaptic proteins, 

synaptophysin and synaptotagmin, alongside post-synaptic drebrin in the hippocampi of 

patients with mild-to-moderate AD compared to those with no cognitive impairment.  They 

found that while drebrin levels were diminished by 40 % in AD, synaptophysin and 

synaptotagmin levels were preserved (Counts et al., 2012).  The same group previously 

demonstrated a loss of approximately 35 % of synaptophysin levels in the temporal cortex of 

patients with MCI compared to controls (Counts et al., 2006), suggesting that the loss of 

specific synaptic proteins in AD may be regionally distinct.  This may explain that while there 

is no loss in synapsin I levels within hiPSC-bfCNs, which represent the basal forebrain 

projecting to the hippocampus, synapsin I levels are reduced in hiPSC-CGN, which represent 

cortical neurons.   

Within an in vitro model of AD, the treatment of KM670/671NL APP mouse primary cortical 

neurons with 1 µM AβO had no effect on levels of synapsin I, while post-synaptic proteins 

were found to be decreased (Almeida et al., 2005).  On the contrary, treatment of control 

mouse primary hippocampal neurons with Aβ40O significantly decreased synapsin (Sepulveda 

et al., 2010).  These reports, coupled with the results in this chapter, highlight the need for 

further clarification of the synaptic proteins loss in different neuronal subtypes in AD.  

5.4.5  Aβ42O-induced varicosities containing pathogenic tau and 
mitochondria 

Axonal varicosities, which can be described as swellings or beading, are well documented in 

AD (Geula et al., 2008; Grutzendler et al., 2007; Notter and Knuesel, 2013; Terwel et al., 

2002).  These varicosities are thought to be caused by impaired transport of vesicles 

containing cargo along the microtubules, caused by aberrant phosphorylation of tau through 
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the interaction of AβO and tau (Mertens et al., 2013; Krstic and Knuesel, 2012; Khan and 

Bloom, 2016).  Individual neurons within cultures of Nas 2-bfCN treated with 1 µM Aβ42O 

were found to have axonal varicosities, which positively immunostained for a pathological 

conformation of tau and mitochondria, in this study.  

Varicosities have been demonstrated before in hiPSC-neuron models of tauopathy.  

Varicosities within hiPSC-neurons, carrying mutations in APP (K670N/M671L and V717L) as 

well as in PSEN1 (ΔE9), have been reported within those neurons exhibiting increased levels 

of tau phosphorylation, identified by immunostaining with antibodies to detect pSer396/404 

and pSer199/202/205 tau (Choi et al., 2014).  Additionally, Iovino and colleagues have 

demonstrated varicosities, which positively immunostain with a 4R tau antibody, within 

P301L MAPT hiPSC-CGNs, which also exhibited impairments in the transport of mitochondria 

(Iovino et al., 2015).  This study suggests a link between pathological tau, varicosities and 

mitochondrial impairment. 

Increased phosphorylation of tau, specifically at Ser396/404 and Ser199/202/205, has also 

been demonstrated to lead to abnormalities in mitochondrial transport in P301L MAPT mice 

and within the human AD brain (Kopeikina et al., 2011).  In PC12 cells, as well as in mouse 

cortical neurons, carrying MAPT mutations associated with increased phosphorylation of tau 

at Ser199, Ser202 and Ser205, individual neurons within cultures that were positively 

immunostained with MC1 also exhibited reduced mitochondrial transport, indicating a link 

between tau phosphorylation, the formation of tau with an abnormal conformation and 

reduced transport of mitochondria (Shahpasand et al., 2012).  Furthermore, acute 

application of synthetic AβO to rat hippocampal neurons has been previously shown to result 

in prompt and severe disruption of mitochondrial transport, indicating that this treatment 

can be used to recapitulate this aspect of pathology (Rui et al., 2006). 

These results suggest that Nas 2-bfCN treated with 1 µM Aβ42O may, therefore, be a suitable 

model for investigating the pathways through which Aβ causes changes to tau protein 

resulting in a pathogenic conformation of tau.  The model may also be suitable for 

investigating microtubule transport deficits.  Since it has been previously demonstrated that 

varicosities and impaired axonal transport occur before overt AD pathology in the AD brain 

(Stokin, 2005), the varicosities recognised in this study may be representative of early, 

prodromal pathology linked to AD.   
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5.4.6  Summary 

This study has shown that bfCN neurons respond to Aβ42O with changes in kinase activity of 

GSK3β and Cdk5.  The development of varicosities in response to Aβ42O in Nas 2-bfCN and 

reduction of synapsin I levels in Shef 6-CGN also indicate early pathological changes.  

Furthermore, the differences in the responses of the two types of neurons examined 

suggests that distinct neuronal subtypes have different responses to Aβ42O, which may relate 

to the progression of neurodegeneration through specific pathways in the brain. 

This model failed to recapitulate key changes in tau pathology on a molecular level; increased 

levels of tau protein and tau phosphorylation were not observed.  Although this is not 

unexpected, based on the literature, this limitation of the model may affect its utility for drug 

discovery.  It is hoped that further development of the model could overcome these 

limitations.   

One important consideration when modelling with hiPSC-neurons is that these cells are 

relatively immature, despite being cultured for a long time in vitro, compared to those of the 

AD brain. HiPSC-neurons are thought to mature at a similar rate to that recognised in the 

developing human brain and since the most significant risk factor in AD is age, these neurons 

may not recapitulate molecular changes recognised in aging.  For example, NFTs in the AD 

brain are made up of all six isoforms and development of tau pathology may depend on 

interactions between tau isoforms.  Due to the relative immaturity of these cells, only one of 

the six isoforms of tau is expressed; 3R0N.  Furthermore, it has been shown that AβO more 

readily bind to the surface of aged neurons and have a greater effect on membrane stability 

compared to younger neurons (Ungureanu et al., 2016).   Therefore, the relative immaturity 

of these hiPSC-neurons may contribute to a lack of complete AD phenotype.   

A review of AD hiPSC models to date has revealed some possible avenues for improvement 

of this model.  Three publications detailing 3D AD hiPSC-neuron models have demonstrated 

AD phenotypes that could not be observed in equivalent 2D models.  Zhang and colleagues 

treated hiPSC-neurons within a 3D culture system with 0.1 μM Aβ42O for 24 hours and 

demonstrated abnormal translocation of PAK within neurons in their 3D system, but not in a 

2D system (Zhang et al., 2014).  The only hiPSC-neuron models reported to develop tau 

aggregations were created through 3D culture system (Choi et al., 2014; Raja et al., 2016).  

Recently, the use of layered hydrogels for 3D modelling has been demonstrated to accelerate 

the maturation of neurons and allow for co-culture of different cell types (Zhang et al., 2016). 
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Co-culturing neurons with glial cells has also been shown to advance neuronal maturation 

(Qi et al., 2017).    At 365 days in vitro, hiPSC-CGNs begin to express the adult isoforms of tau 

(Sposito et al., 2015), therefore culturing cells for longer periods after terminal 

differentiation may allow more complete modelling of AD. 

The work in this chapter contributes to the base level research that must be carried out to 

understand the behaviour of tau in hiPSC-neurons to move towards creating improved 

models for research and drug discovery.  
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Chapter 6 

Tau pathology in the brain tissue of  

patients with frontotemporal dementia  

and Alzheimer’s disease 

 

6.1  Introduction 

Frontotemporal dementia (FTD) is a clinically and pathologically diverse group of progressive 

neurodegenerative diseases (Chapter 1.2.1), the majority of which are sporadic.  In this 

project, hiPSC-neurons have been derived from a patient carrying a mutation that causes 

FTDP-17 (Chapter 4) to model FTD.  Although we do not yet understand the initial causative 

events that instigate pathogenesis in sporadic cases of FTD, we do know that mutations in 

MAPT result in FTDP-17, therefore it is logical to create hiPSC-models based on these 

mutations.  Mutations of MAPT only make up an estimated 10 % of FTD cases (Hardy, 2014), 

however; for this reason it would be valuable to understand how closely these models 

represent the sporadic cases of FTD, as well as FTDP-17.  PiD is a sporadic FTD (sFTD) covering 

a variety of symptoms and pathology, although it has many important features in common 

with FTDP-17 (Chapter 1.2.1).  Both PiD and FTDP-17 most commonly clinically present as 

behavioural variant FTD (bvFTD), are classified as FTD-tau (Figure 1.4) and follow similar 

patterns of neurodegeneration (Chapter 1.2.1).   

Accordingly, the work described in the first part of this chapter was carried out to investigate 

post-mortem tau-related pathology within the frontal and temporal cortices of patients with 

FTDP-17 and PiD, using the same molecular tools used to investigate tau pathology in hiPSC-

neurons (Chapter 4.2) to limit variability during comparison.  Western immunoblotting was 

carried out to determine soluble tau protein levels and their phosphorylation status, 

alongside the protein levels and activity of the tau kinases glycogen synthase kinase 3β 

(GSK3β), cyclic dependent kinase 5 (Cdk5) and p21 activated kinase 3 (PAK3), in six controls, 

three PiD patients and three FTDP-17 patients.   Two of the three patients with FTDP-17 

carried the mutation IVS 10+16 MAPT, while one carried the mutation R406W MAPT.  Below 
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the known pathology and clinical presentations of these mutations are discussed (Chapter 

6.1.1).  

Tau within hiPSC-neurons carrying MAPT mutations has been demonstrated to be soluble, 

with no aggregates of tau (Silva et al., 2016; Hallmann et al., 2017; Ehrlich, Hallmann, et al., 

2015; Wren et al., 2015); therefore, to allow for comparison of tau pathology in human brains 

with hiPSC-models the levels and phosphorylation status of soluble tau protein was 

investigated.  This project focuses on tau pathogenesis since phosphorylated, soluble tau has 

been suggested to be the precursor of tau aggregates (Šimić et al., 2016).   

This knowledge will further our understanding regarding whether hiPSC-models created 

using patients with mutations in MAPT can be used to model not only FTDP-17 but also 

sporadic FTD, and to what extent.  An evaluation of the ability of V337M MAPT hiPSC-neurons 

to recapitulate the pathology found in these tissues is discussed in Chapter 8 (Chapter 8.1).   

In the second part of this chapter, the gene expression levels of MAPT and two selected tau 

kinases were determined within the basal forebrain nucleus basalis of Meynert (nbM) in 

patients with Alzheimer’s disease (AD) compared to controls, using qPCR.  This area of the 

brain is affected early in AD and is particularly vulnerable, as discussed in Chapter 1 (Chapter 

1.2.3).  An evaluation of the ability of the hiPSC-neuron model of AD described in Chapter 5 

(Chapter 5) to recapitulate these changes is discussed in Chapter 8 (Chapter 8.2).   
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6.2  Methods and reagents 

6.2.1  Brain tissue samples 

Temporal and frontal brain tissue from three FTDP-17 patients, with either R406W MAPT or 

IVS 10+16 MAPT mutations, along with three control patients tissue, was obtained from the 

Queen’s Square Brain Bank for Neurological Disorders (QSBB) (London, UK) (Ethics ref 

08/H0718/54+5].  Temporal and frontal brain tissue was obtained from three patients with 

PiD and three control patients, and compared with tissue from four patients with AD (nbM) 

from the South West Dementia Brain Bank (SWDBB) [Ethics ITA074].  Table 6.1 lists the 

known, relevant details regarding these patients.  Brain tissue from patients carrying the rare 

V337M MAPT mutation proved very difficult to find and could not be obtained for this 

project.  An alternative mutation, R406W MAPT, was obtained instead.  Both R406W and 

V337M are nonsense, exonic mutations, which increase tau aggregation, reduce tau 

microtubule binding (Hutton et al., 1998; Poorkai et al., 1998), do not affect splicing of exon 

10 of MAPT and have equal numbers of 3R and 4R tau isoforms within aggregations of tau 

(Hong et al., 1998).  Tissue from only one patient with R406W MAPT was available, therefore, 

frontal and temporal cortex tissue of patients with IVS 10+16 MAPT was also obtained.  

Details of the pathology and clinical presentation of patients with these two mutations are 

given in Chapter 1 (Chapter 1.2.3.1).   

 

 



221 
 

 
Ta

b
le

 6
.1

 
B

ra
in

 t
is

su
e 

sa
m

p
le

s 

Ta
b

le
 6

.1
 

B
ra

in
 t

is
su

e 
sa

m
p

le
 d

et
a

ils
 (

le
g

en
d

 c
o

n
ti

n
u

ed
 o

n
 f

o
llo

w
in

g
 p

a
g

e)
 

TC
= 

te
m

p
o

ra
l c

o
rt

ex
; F

C
= 

fr
o

n
ta

l c
o

rt
ex

; n
b

M
 =

 n
u

cl
eu

s 
b

a
sa

lis
 o

f 
M

e
yn

er
t.

  G
ro

u
p

 1
 m

ea
n

 a
n

d
 S

.D
 o

f 
a

g
e 

is
 7

3
.6

7
+

/-
4

.2
3

 a
n

d
 o

f 
P

M
D

 is
 +

/-
 

5
1

.3
3

+/
-1

7
.9

8
.  

G
ro

u
p

 2
 m

ea
n

 a
n

d
 S

.D
. o

f 
a

g
e 

is
 6

2
.8

3
 +

/-
 7

.0
5

.  
G

ro
u

p
 3

 m
ea

n
 a

n
d

 S
.D

 o
f 

a
g

e 
is

 8
1

.1
4

 +
/-

 4
.7

4
 a

n
d

 o
f 

P
M

D
 is

 5
1

.9
2

+/
-2

7
.0

7
.  

G
ro

u
p

 1
 a

n
d

 2
 c

o
m

b
in

ed
 m

ea
n

 a
n

d
 S

.D
. o

f 
a

g
e 

is
 6

8
.2

5
 +

/-
 7

.9
2

.  

 



222 
 

6.2.2  Western immunoblotting 

6.2.2.1  Lysate preparation of brain samples 

This method was adapted from Mair et al., 2016 and buffer recipes selected for their ability 

to prevent degradation changes to post translational modifications (PTM) during processing.  

300 mg of frozen brain tissue was weighed out and homogenised in 1.5 ml of Buffer 1 (Table 

6.2).  The tissue was homogenised firstly by compressing 20 times using a sterile plastic 

disposable 1.5 ml microtube pestle, then by passing the tissue through a series of sterile, 

disposable needles of descending size, from 14 gauge to 20 gauge, attached to a syringe.  

After centrifuging 15 minutes; 11,000 g; 4 oC to clarify the crude homogenate, 1 % Sarkosyl 

(Sigma, L9150) was added to each sample from a 10 % stock solution and the samples were 

incubated on a vertically rotating platform for 60 minutes at 4 oC.  The samples were then 

centrifuged at 100,000 g for 120 minutes at 4 oC.  The supernatant was removed and kept in 

a clean Eppendorf labelled ‘soluble fraction’.  Samples were stored at -80 oC and thawed on 

ice just before preparation of western immunoblotting samples.       

 

Table 6.2 Reagents for Buffer 1 

Reagent Manufacturer and code Concentration 

Tris HCl pH 7.4 Melford, T1513 25 mM 

NaCl Melford, S0520 150 mM 

EDTA Sigma, E6758 10 mM 

EGTA Sigma, E3889 10 mM 

DTT Thermal Fisher, R0862 1 mM 

Nicotinamide Sigma, 72340 10 mM 

Trichostatin A Selleck Chemicals, S1045 0.002 mM or 2 µM 

PhosStop™ phosphatase 
inhibitor tablet 

Roche, 04906845001 1 tablet/10 - 50 ml ddH2O 

cOmplete™ protease 
inhibitor cocktail tablet 

Roche, 11697498001 1 tablet/ 10 - 50 ml ddH2O 

 

Western immunoblotting samples were prepared as described in Chapter 2 (Chapter 2.2.1).  

30 µg of protein was loaded into each well, as measured by bicinchoninic acid (BCA) assay 

(Chapter 2.2.1.2).  The samples were run on 12 % SDS-page gels and the antibodies for pan-

tau and phospho-tau were run on separate western blots to avoid any residual staining, 



223 
 

which could affect the results as analysed by densitometry.  All tau kinase antibodies were 

also run on separate blots.  Each western blot was performed three times.  Densitometric 

analysis and other western immunoblotting steps were carried out as described in Chapter 2 

(Chapter 2.2.1).  The details for the antibodies used to probe western immunoblots in this 

chapter are as detailed in Table 5.5 (Table 5.5; Chapter 5.2.4). 

6.2.2.2  Analysis of western immunoblots 

Upon completion of densitometric analysis of western bands for tau antibodies, analysed as 

described in Chapter 2 (Chapter 2.2.1.10), bands were normalised against those measured 

for GAPDH, a housekeeping protein.  All bands revealed by western immunoblotting using 

anti-tau antibodies were included in densitometric analysis, for each sample.  The statistical 

significance of differences, calculated as a P value, between patient and control groups was 

calculated using a Student’s T-test.  Analysis of PAK3 levels included only bands at 65 kDa. 

For analysis of synapsin levels only bands at 75 kDa were included.  For p25 and p35 level 

analysis, only bands at 25 kDa and 35 kDa, respectively, were included in analysis.   For 

analysis of the levels of GSK3β and pTyr216 GSK3β, only bands at 41 kDa to 52 kDa were 

included in analysis.  Graphs were annotated with asterisks to denote the level of 

significance; * with P < 0.05, ** with P < 0.01 and *** with P < 0.001.    

6.2.3  qPCR analysis of gene expression in brain tissue 

6.2.3.1 RNA extraction, purification and conversion to cDNA 

1 ml of TRIzol® reagent (Thermo Fisher, 15596026) was added to 100 mg of brain tissue.  The 

tissue was then homogenised as described above (Chapter 6.3.1) before being incubated for 

5 minutes at room temperature to allow for complete dissociation of nucleoprotein 

complexes.  0.2 ml of chloroform was then added to each sample and the samples were 

vigorously mixed for 15 seconds before being left to incubate for 2-3 minutes at room 

temperature.  The samples were then centrifuged at 12,000 g at 4 oC for 5 minutes.  The 

sample separated into three layers; a lower red phenol-chloroform layer, a white interphase 

and a colourless upper aqueous phase containing RNA.  A wide 200 µl pipette tip was used 

to carefully extract the upper layer ensuring none of the interphase was collected with it.  

The aqueous phase was transferred into a clean, RNAse-free Eppendorf and either immediate 

frozen within a -80 oC freezer or processed to purify and concentrate the RNA, as described 
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in Chapter 2 (Chapter 2.2.3.1).  The concentration and purity of the resultant RNA samples 

were measured using the NanoPhotometer™ Pearl (Implen) as outlined in Chapter 2 (Chapter 

2.2.3.2).  Reverse transcription of RNA to cDNA was performed as detailed in Chapter 2 

(Chapter 2.2.3.3) and qPCR was carried out in triplicate as described previously (Chapter 

2.2.3.4).  The analysis of qPCR was also carried out as detailed in chapter 2 (Chapter 2.2.3.5).  

The threshold cycle (CT) values for MAPT, GSK3β, CDK5 or PAK3 were normalised against the 

CT values for the housekeeping gene, GAPDH.  The statistical significance of differences, 

between patient and control groups, was calculated using the Mann-Whitney test where 

expression within brain tissue of controls were compared to brain tissue of AD patients 

(Chapter 6.3.5) and the Kruskal-Wallis test followed by a post-hoc Dunn’s test where 

expression within the brains of controls, FTDP-17 patients and PiD patients were compared 

(Chapter 6.3.2 and Chapter 6.3.3).  *=p ≤ 0.05. **=p ≤ 0.01. ***=p ≤ 0.001. 
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6.3  Results 

6.3.1  Tau pathology within the frontal and temporal cortices of patients 
with FTD 

To investigate the total levels of tau protein within the frontal and temporal cortices of 

patients with PiD, compared to controls, western immunoblots were probed with the 

antibody to total tau, DA9.   
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Figure 6.1  Levels of total tau in frontal and temporal cortex brain tissue from PiD patients 

 

No statistically significant change in levels of total tau were detected in frontal (p= 0.2952) 

or temporal (p= 0.2976) cortices of PiD compared to controls.  The total levels of tau protein 

within the frontal cortices of patients with FTDP-17, compared to controls, were also 

detected by probing western immunoblots with DA9 (Figure 6.1). 

Figure 6.1     Levels of total tau in frontal (A & B) and temporal (C & D) cortex brain tissue 
from PiD patients 

Representative western blots showing frontal cortex tissue (A) and temporal cortex tissue (B) 

from PiD patients alongside healthy controls probed with GAPDH and DA9 (Control n=3; PiD 

n=3).  Graphs representing the density of DA9 bands normalised to GAPDH bands for frontal 

cortex tissue (C) and temporal cortex tissue (D). 

 

Data was analysed using an unpaired Student’s t-test. Error bars indicate +1 S.E.M. 
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Figure 6.2  Levels of total tau in frontal cortex brain tissue from FTDP-17 patients 

 

No change in levels of total tau were detected in the frontal cortices of patients with FTDP-

17 compared to controls (p= 0.5155) (Figure 6.2).   

Figure 6.2     Levels of total tau in frontal brain tissue from PiD patients 

Representative western blot (A) showing frontal cortex tissue from patients with FTDP-17 

alongside healthy controls probed with GAPDH and DA9 (Control n=3; FTDP-17 n=3).  Graph 

representing the density of DA9 bands normalised to GAPDH bands (B). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.3 Levels of pSer404/pSer396 tau in frontal cortex brain tissue from PiD 

patients 

 

In the frontal cortices of patients with PiD pSer396/404 tau levels were not significantly 

increased before normalisation to DA9 (p= 0.0717) but were found to be increased after 

normalisation to total tau (p= 0.0049), compared to controls (Figure 6.3). 

 

 

 

 

 

Figure 6.3     Levels of pSer396/404 tau in frontal cortex brain tissue from PiD patients 

Representative western blot (A) showing frontal cortex tissue from patients with PiD alongside 

healthy controls probed with GAPDH and PHF-1 (Control n=3; PiD n=3).  Graphs representing 

the density of PHF-1 bands normalised to GAPDH bands (B) and of PHF-1 bands normalised to 

DA9 bands  ** p= 0.0049 (C). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Levels of pSer396/404 tau were also investigated in the frontal cortices of patients with 

FTDP-17 compared to controls by probing western blots with the antibody PHF-1. 

 

Figure 6.4 Levels of pSer396/404 tau in frontal cortex tissue from FTDP-17 patients 

 

pSer396/404 tau was significantly increased in the frontal cortices of patients with FTDP-17 

compared to controls both before (p= 0.0059) and after comparison to DA9 (p= 0.0221) 

(Figure 6.4).   

To investigate the levels of pSer202 tau within the frontal and temporal cortices of patients 

with PiD, compared to controls, western immunoblots were probed with the antibody CP13.   

Figure 6.4     Levels of pSer396/404 tau in frontal cortex brain tissue from FTDP-17 patients 

Representative western blot (A) showing frontal cortex tissue from patients with FTDP-17 

alongside healthy controls probed with GAPDH and PHF-1 (Control n=3; FTDP-17 n=3)  Graphs  

representing the density of PHF-1 bands normalised to GAPDH bands ** p= 0.0059 (B) and of 

PHF-1 bands normalised to DA9 bands *p= 0.0221 (C). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.5  Levels of pSer202 tau in frontal cortex brain tissue from PiD patients 

 

No significant difference was detected in the total levels of pSer202 tau within the frontal 

cortices of patients with PiD compared to controls, either before (p= 0.0775) or after 

normalisation to DA9 (p= 0.2766) (Figure 6.5).   

Similarly, no significant difference in levels of tau phosphorylated at these sites was detected 

in the temporal cortices of PiD patients compared to controls either before (p= 0.4680) or 

after (p= 0.4306) normalisation to total tau (Figure 6.6).   

 

Figure 6.5     Levels of pSer202 tau in frontal cortex brain tissue from PiD patients 

Representative western blot (A) showing frontal cortex tissue from patients with PiD alongside 

healthy controls probed with GAPDH and CP13 (Control n=3; PiD n=3).  Graphs representing the 

density of CP13 bands normalised to GAPDH bands (B) and of CP13 bands normalised to DA9 

bands (C). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.6 Levels of pSer202 tau in temporal cortex brain tissue from PiD patients 

 

Within the temporal cortices of patients with PiD total levels of pSer202 tau are not 

significantly different compared to controls either before comparison to total tau (p= 0.9639) 

or after (p= 0.4896) (Figure 6.6).   

The levels of pSer202 tau were also investigated within the frontal cortices of patients with 

FTDP-17 compared to controls by probing western blots with CP13.   

 

 

Figure 6.6     Levels of pSer202 tau in temporal cortex brain tissue from PiD patients 

Representative western blot (A) showing temporal cortex tissue from patients with PiD alongside 

healthy controls probed with GAPDH and CP13 (Control n=3; PiD n=3).  Graphs representing the 

density of CP13 bands normalised to GAPDH bands (B) and CP13 bands normalised to DA9 bands 

(C). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.7 Levels of pSer202 tau in frontal cortex brain tissue from FTDP-17 patients 

 

 

No significant difference was detected in the levels of pSer202 in frontal cortex tissue from 

controls and FTDP-17 patients either before normalisation to total tau (p= 0.2591) or after 

(p= 0.2721) (Figure 6.7).   

 

 

Figure 6.7     Levels of pSer202 tau in frontal cortex brain tissue from FTDP-17 patients 

Representative western blot (A) showing frontal cortex tissue from patients with FTDP-17 

alongside healthy controls probed with GAPDH and CP13 (Control n=3; FTDP-17 n=3).  Graph 

representing the density of CP13 bands normalised to GAPDH bands (B) and CP13 bands 

normalised to DA9 bands (C). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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6.3.2  Levels of MAPT gene expression within the frontal and temporal 
cortices of patients with FTD 

The levels of MAPT gene expression within the frontal and temporal cortices of patients with 

PiD and FTDP-17, compared to controls, were determined using qPCR.   

 

6.8 Levels of MAPT gene expression in frontal and temporal cortex tissue from 

patients with PiD and FTDP-17 

 

Gene expression of MAPT was found to be significantly greater in the frontal cortices (p= 

0.0348) (Figure 6.8, A) but not the temporal cortices (p= 0.2948) (Figure 6.8, B) of patients 

with PiD.  MAPT expression was not found to be significantly different in the frontal cortices 

(p=0.2147) (Figure 6.8, A) or temporal cortices of patients with FTDP-17 (p= 0.2948) (Figure 

Figure 6.8     Levels of MAPT gene expression in frontal and temporal cortex tissue from patients 
with PiD disease and FTDP-17  

Graphs representing the average MAPT gene expression within frontal cortex tissue *p= 0.0348  
(A) and within temporal cortex tissue **p= 0.0094 (B) from patients with FTDP-17 and PiD disease 
(Control n=6; PiD n=3; FTDP-17 n=3).  

Data was analysed using a Kruskal-Wallis test followed by a Dunn’s post hoc test.  Error bars 
indicate +1 S.E.M. 
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6.8, B) compared to controls.  However, MAPT expression was lower within the temporal 

cortices of patients with FTDP-17 compared to those with PiD (p= 0.0094) (Figure 6.8, B). 

6.3.3  Levels and activity of tau kinases within the frontal and temporal 
cortices of patients with FTD 

To explore the potential roles of tau kinases in PiD and FTDP-17, the levels and activity of 

GSK3β, CDK5 and PAK3 were investigated within the frontal and temporal cortices of PiD 

patients compared to controls, as well as in the frontal cortices of patients with FTDP-17 

compared to controls.  The total levels of GSK3β and the levels of GSK3β phosphorylated at 

Tyr216, necessary for the kinase to be maximally active (Chapter 1.3.1), were investigated 

through probing immunoblots with antibodies specific against these proteins.   
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Figure 6.9 Levels of GSK3β and pTyr216 GSK3β in frontal cortex brain tissue from PiD 

patients 

 

Figure 6.9     Levels of GSK3β and pTyr216 GSK3β in frontal cortex brain tissue from PiD patients 

Representative western blots showing frontal cortex tissue from patients with PiD alongside 
healthy controls probed with GAPDH and GSK3β (A) and GAPDH and pTyr216 GSK3β (C) (Control 
n=3; PiD n=3).  Graphs representing the density of GSK3β bands normalised to GAPDH bands (B), 
of pTyr216 GSK3β normalised to GAPDH bands (D) and of pTyr216 GSK3β normalised to GSK3β 
bands * p= 0.0464 (E).  

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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No significant difference in the levels of GSK3β (p= 0.3279) or pTyr216 GSK3β (p= 0.1523) 

were detected in the frontal cortices of patients with PiD compared to controls.  However, 

after normalisation of pTyr216 GSK3β levels to total GSK3β, the frontal cortices of patients 

with PiD were found to have increased levels of active GSK3β (p= 0.0464) (Figure 5.10).  

Similarly, within the temporal cortices of PiD patients there was no significant difference in 

GSK3β (p= 0.6749) or pTyr216 GSK3β (p= 0.9815) levels compared to controls.  Furthermore, 

there is no significant difference in pTyr216 GSK3β levels after normalisation to total GSK3β 

levels (p= 0.5306) between controls and patients with PiD (Figure 6.10). 
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Figure 6.10 Levels of GSK3β and pTyr216 GSK3β in temporal cortex brain tissue from 
PiD patients  

 

 

Figure 6.10     Levels of GSK3β and pTyr216 GSK3β in temporal cortex brain tissue from PiD 
patients 

Representative western blots showing temporal cortex tissue from patients with PiD alongside 
healthy controls probed with GAPDH and GSK3β (A) or pTyr216 GSK3β (C) (Control n=3; PiD n=3). 
Graphs representing the density of GSK3β bands normalised to GAPDH bands (B), of pTyr216 
GSK3β normalised to GAPDH bands (D) and of pTyr216 GSK3β normalised to GSK3β bands (E).   
 
Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.11 Levels of GSK3β in frontal cortex brain tissue from FTDP-17 patients 

 

There was no significant difference in the levels of GSK3β in the frontal cortices of patients 

with FTDP-17 compared to controls (p= 0.5268) (Figure 6.11). 

To investigate the activity of Cdk5 in PiD and FTDP-17, western immunoblots were probed 

with an antibody against p25 and p35, the activator proteins of Cdk5.  Increased p25 protein 

levels and decreased p35 protein levels are associated with aberrant hyperactivity of Cdk5, 

which contributes to pathological hyperphosphorylation of tau (Chapter 1.3.2).   

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11     Levels of GSK3β in frontal lobe brain tissue from FTDP-17 

Representative western blot (A) showing frontal cortex tissue from patients with FTDP-17 

alongside healthy controls probed with GAPDH and GSK3β (Control n=3; FTDP-17; n=3).  Graph 

representing the density of GSK3β bands normalised to GAPDH bands (B). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.12 Levels of p25 and p35 in frontal cortex brain tissue from PiD 

 

Figure 6.12     Levels of p25 and p35 in frontal cortex brain tissue from PiD 

Representative western blot (A) showing frontal cortex tissue from patients with PiD alongside 

healthy controls probed with GAPDH and p25/p35 (Control n=3; PiD n=3).  Graph representing 

the density of p25 bands normalised to GAPDH bands * p= 0.0126 (B), p35 bands normalised to 

GAPDH bands (C) and p25 bands normalised to p35 bands. 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Levels of p25 were increased (p= 0.0126) while levels of p35 were unchanged (p= 0.4367) in 

the frontal cortices of PiD patients compared to controls as indicated by densitometric 

analysis of the p25 and p35 bands, respectively, normalised to GAPDH bands (Figure 6.12).  

There was no change in the ratio of p25/p35 levels within the frontal cortices of patients with 

PiD compared to controls, calculated by normalising p25 bands to p35 bands (Figure 6.12, D).   

 

Figure 6.13 Levels of p25 in temporal cortex brain tissue from PiD 

 

Levels of p25 are not significantly different within the temporal cortices of PiD patients 

compared to controls (p= 0.4415) as indicated by densitometric analysis of p25 bands 

normalised to GAPDH bands.  Levels of p35 could not be detected in these samples as the 

immunoreactivity was not sufficient (Figure 6.13).   

 

Figure 6.13    Levels of p25 in temporal cortex brain tissue from PiD 

Representative western blot (A) showing frontal cortex tissue from patients with PiD alongside 

healthy controls probed with GAPDH and p25 (Control n=3; PiD n=3).  Bar chart representing 

the density of p25 bands normalised to GAPDH bands (B). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.14 Levels of PAK3 in frontal and temporal cortex brain tissue from PiD patients 

 
PAK3 is not changed in PiD patients compared to control patients within the frontal cortices 

(p= 0.5016) as indicated by densitometric analysis of PAK3 bands normalised to GAPDH bands 

(Figure 6.14).  PAK3 levels could not be compared within in the temporal cortices of patients 

with PiD compared to controls as the band for PAK3 expected at 65 kDa was not present and 

an additional band was present at 35 kDa. 

Figure 6.14     Levels of PAK3 in frontal and temporal cortex brain tissue from PiD patients 

Representative western blots showing frontal cortex PiD (A) and temporal cortex (C) tissue from 

patients with and alongside healthy controls probed with GAPDH and PAK3 (control n=3; PiD 

n=3).  Graph representing the density of PAK3 bands normalised to GAPDH bands for frontal 

cortex brain tissue (B). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.15 Levels of PAK3 in frontal cortex brain tissue from FTDP-17 patients 

 

Densitometric analysis of PAK3 normalised to GAPDH bands demonstrate that PAK3 is 

decreased in the frontal cortices of patients with FTDP-17 compared to controls (p= 0.0201) 

(Figure 6.15). 

 

 

 

 

 

Figure 6.15     Levels of PAK3 in frontal cortex brain tissue from FTDP-17 

Representative western blot (A) showing frontal cortex tissue from patients with FTDP-17 

alongside healthy controls probed with GAPDH and PAK3 (Control n=3; FTDP-17; n=3).  Graph 

representing the density of PAK3 bands normalised to GAPDH bands  * p= 0.0201.   

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.16 Gene expression levels of GSK3β, CDK5 and PAK3 in frontal and temporal 

cortices of patients with PiD and FTDP-17 

Figure 6.16     Gene expression levels of GSK3β, CDK5 and PAK3 in frontal lobe brain tissue from 
PiD disease and FTDP-17 patients 

Graphs representing the average GSK3β (A),  CDK5 (C) and PAK3 * p= 0.0494 (E) gene expression 

within frontal cortices of patients with PiD and FTDP-17 (Control n=6; PiD n=3; FTDP-17 n=3).  

Graphs representing the average GSK3β *p= 0.0415 (B),  CDK5 (D) and PAK3 (F) gene expression 

within temporal cortices of patients with PiD and FTDP-17 (Control n=6; PiD n=3; FTDP-17 n=3).   

 

Data was analysed using a Kruskal-Wallis test followed by a Dunn’s post hoc test.  Error bars 

indicate +1 S.E.M. 
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Gene expression of GSK3β was not found to be significantly different in the temporal cortices 

(p= 0.2795) or frontal cortices (p= 0.7430) of patients with PiD compared to controls (Figure 

6.16, B and A).  In the frontal (p= 0.8492) and temporal cortices (p= 0. 0.4339) of patients 

with FTDP-17, gene expression of GSK3β was not significantly different compared controls 

(Figure 6.16, A and B).  GSK3β gene expression was found to be significantly lower within the 

temporal cortices of patients with FTDP-17 compared to PiD (p= 0.0415), however, this was 

not found to be true within the frontal cortices (p= 0.0580).   

CDK5 expression levels were not found to be significantly different within the frontal (p= 

0.1093) and temporal cortices (p= 0.4511) of FTDP-17 patients compared to controls (Figure 

6.16, C and D).  Similarly, levels of CDK5 expression were not found to be significantly 

different within the frontal (p >0.9999) and temporal cortices (p >0.9999) of PiD patients.  

There is also no significant difference in CDK5 expression within the frontal (p= 0.7726) or 

temporal cortices (p= 0.5227) between PiD and FTDP-17 patients. 

In the frontal cortices of patients with FTDP-17 PAK3 expression levels were found to be 

decreased compared to controls (p= 0.0494), although this was not found to be the case in 

the temporal cortices of these patients (p= 0.4511).  In PiD patients, no significant difference 

was found within the frontal (p >0.9999) or temporal cortices (p >0.9999).  There was also no 

significant difference in PAK3 expression in the temporal cortices of patients with FTDP-17 

compared to those with PiD (p= 0.5227),  or within the frontal cortices (p= 0.1391). 
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6.3.4  Levels of synapsin I in within the frontal and temporal cortices of 
patients with FTD 

 

Figure 6.17 Levels of synapsin I in temporal cortex brain tissue from patients with PiD 

 

Levels of synapsin I, indicated by the top two bands at approximately 75 kDa, in the temporal 

cortices of patients with PiD are significantly decreased compared to controls (p= 0.0004).   

 

 

Figure 6.17    Levels of synapsin I in temporal cortex brain tissue from PiD 

Representative western blot (A) showing temporal cortex tissue from patients with PiD alongside 

healthy controls probed with GAPDH and synapsin I (Control n=3; PiD n=3).  Bar chart representing 

the density of synapsin I bands normalised to GAPDH bands  *** p= 0.0004 (B). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M. 
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Figure 6.18 Levels of synapsin I in frontal cortex brain tissue from patients with FTDP-

17 

 
Levels of synapsin I in the frontal cortices of patients with FTDP-17 are unchanged compared 

to controls (p= 0.5790).   

 

 

 

Figure 6.18     Levels of synapsin I in frontal cortex brain tissue from FTDP-17 patients 

Representative western blot (A) showing frontal cortex tissue from patients with FTDP-17 

alongside healthy controls probed with antibodies against GAPDH and synapsin I (Control n=3; 

FTDP-17 n=3).  Graph representing the density of synapsin I bands normalised to GAPDH bands (B). 

 

Data was analysed using an unpaired Student’s t-test.  Error bars indicate +1 S.E.M.  
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6.3.5  Gene expression of MAPT, CDK5 and PAK3 in basal nucleus of 
Meynert of patients with AD 

 

Figure 6.19 Levels of MAPT, CDK5 and PAK3 gene expression in basal nucleus of 

Meynert from patients with AD 

 

Relative gene expression levels of MAPT (p <0.9999), CDK5 (p= 0.4000) and PAK3 (p= 0.7000) 

are unchanged within basal forebrain of AD patients compared to controls.   

Figure 6.19     Levels of MAPT, CDK5 and PAK3 gene expression, normalised to GAPDH, in basal 
nucleus of Meynert (nbM) of patients with AD. 

Graphs representing the average MAPT (A), CDK5 (B) and PAK3 (C) gene expression within nbM of 

patients with AD compared to controls (Control n=4; AD n=3).  

Data was analysed using a Mann-Whitney test.  Error bars indicate +1 S.E.M. 
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6.4  Discussion 

6.4.1 Rational behind inclusion of sample PiD2 and sample heterogeneity 

Unlike cell-based experiments, there is a great deal of heterogeneity in biological 

measurements in post-mortem human tissues.  To establish statistically significant difference 

between disease and control brain tissue it is therefore necessary to use a large cohort.  

Tissue obtained from FTD individuals is rare and there are also multiple sub-types of FTD 

which may have differing pathological presentation; together this makes it difficult to 

determine highly significant similarities or differences from other diseases or even control 

brain tissue.  For this study it was only possible, unfortunately, to obtain small numbers of 

samples.  Nevertheless, the results have highlighted certain aspects which may inform the 

rationale for further studies.  Therefore, particularly because it seems that the PiD samples 

are heterogenous, all samples, including apparent outliers (for instance PiD2), have been 

included here.    

Examples of this heterogeneity are given here.  For instance, in Figure 6.1, lower levels of 

total tau is evident not only within both frontal and temporal cortex of PiD2, compared with 

PiD1 and PiD3, but also in the temporal cortex for control 1, compared with the other 2 

controls.  Given this heterogeneity appears to be a part of the natural heterogeneity of 

human samples, all have been included.  Additionally, in Figure 6.3, p396/404 tau levels are 

much higher in the frontal cortex tissue of PiD1 and PiD3 than controls and PiD2 levels, 

although PiD2 levels are still increased in comparison to controls.  Considerable variation was 

also seen in p396/404 tau levels between samples MAPT 10+16 (1) and MAPT 10+16 (2) 

(Figure 6.4) indicating the variability of tau phosphorylated at this site even between 

different patients with the same tauopathy.  Interestingly, western blots indicating pSer202 

tau banding patterns, particularly those at approximately 35kDa and 52kda, that varied 

considerably for PiD 2 within the frontal (Figure 6.4) and temporal cortex (Figure 6.5), 

compared to both controls and PiD 1 and PiD 3 samples.  In Figure 6.7, pSer202 levels in 

MAPT 10+16 (1) and MAPT 10+16 (2) vary especially in the bands at 52 kDa and 40 kDa.  

Interestingly, western blots probed with CP13, indicating pSer202 tau, demonstrated 

banding patterns that varied considerably for PiD 2 within the frontal and temporal cortex 

compared to both controls and PiD 1 and PiD 3 samples.  Specifically, a band at approximately 

35kDa has much greater density compared to the other samples, whereas the band at 
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approximately 52kda is much less dense.  Additionally, the 40 kDa band revealed by probing 

with CP13 in MAPT 10+16 (1) is denser than the band at 52 kDa, whereas in MAPT 10+16 (2) 

the band at 52 kDa is denser than the one at 40 kDa (Figure 6.7).   

Additionally, in western blots probed with both antibodies against GSK3β and pTyr216 

GSK3β, PiD2 samples of both frontal and temporal lobes, show a different banding pattern 

compared to the other PiD samples. In particular, 48 and 52kda pTyr216 GSK3β bands are 

much fainter, whereas the 41 kDa band is much darker.  Further to these results, 

heterogeneity in banding patterns has also been described by others, in samples taken from 

different patients with tauopathy (Espinosa et al., 2008) 

Western blots probed with anti-PAK3 of controls and PiD patient temporal cortex tissue 

revealed that the expected band for PAK3 at 65 KDa was missing for PiD2 and an additional 

major band at 35 kDa was present.  Unfortunately, it was only possible to obtain three 

samples from PiD patients, therefore statistical analysis could not be carried out on the 

results gained from probing western blots from the temporal lobes using PAK3 antibody.  For 

this reason, quantification and statistical analysis of this result has been omitted.  The reason 

for this unexpected result remains unclear, however, may be attributed to the heterogeneity 

of the disease.  One possible explanation is that PAK3 may have been cleaved within the 

temporal cortex of PiD2.  Caspase 3 is known to be able to cleave another isoform of PAK, 

hPAK65, at a single site, between the N-terminal regulatory p21-binding domain and the C-

terminal kinase domain, to produce a smaller protein of approximately 35 kDa (Lee et al., 

1997).  Although PAK1 is known to unaffected by caspase 3 cleavage (Lee et al., 1997), it is 

possible that PAK3 may be cleaved by caspase 3, which is known to have increased activity 

and to play multiple roles in neurodegenerative disease (Zhang, 2013). 

6.4.2  Protein and gene expression levels of tau within the frontal and 
temporal cortices of patients with PiD and FTDP-17 

Western immunoblots of lysates from the frontal and temporal cortices of controls, patients 

with PiD and patients with FTDP-17, probed using an antibody against total tau, revealed six  

bands at approximately 48-68 kDa, indicating the presence of the six adult isoforms of tau 

protein in these patients, as well as lower molecular weight bands indicating products of tau 

degradation (Adamec et al., 2001; Goedert et al., 1989).  In the frontal and temporal cortices 

of patients with PiD, and the frontal cortices of patients with FTDP-17, total levels of soluble 

tau are not significantly different compared to controls.  These results are in line with 
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previously reported levels of soluble tau within the frontal cortex tissue of patients with PiD 

and FTLD associated with tau pathology compared to those within controls (van Eersel et al., 

2009; Adamec et al., 2001).   

MAPT expression levels were found to be higher in the frontal cortices of patients with PiD 

but not FTDP-17, or within the temporal cortices of patients with either disease.  Previously, 

MAPT expression in patients with FTLD associated with tau pathology has been previously 

shown to be similar to controls, therefore the higher levels of expression within the frontal 

cortices of PiD patients were unexpected.  Although the levels of MAPT expression have not 

been evaluated in the brains of patients with the mutations carried by these FTDP-17 

patients, previous studies in hiPSC-neurons derived from patients with FTDP-17 (Ehrlich et 

al., 2015) and Tg drosophila models of FTDP-17 (Haddadi et al., 2016) have reported similar 

levels of MAPT mRNA.  Furthermore, MAPT expression levels have been demonstrated to 

largely correlate with tau protein levels within the brain (Trabzuni et al., 2012) whereas here 

soluble protein levels of tau do not reflect MAPT expression.  The higher levels of expression 

within the frontal cortices of patients with PiD may be explained by the fact that here only 

soluble levels of tau were measured, and additional tau may have been aggregated and so 

insoluble.  Further investigation into the insoluble levels of tau may provide insight into this.   

MAPT expression levels and the expression of different isoforms of tau have been 

demonstrated to be brain region specific (McMillen et al., 2008; Majounie et al., 2013; 

Trabzuni et al., 2012), suggesting distinctions in the regulation of MAPT expression between 

brain areas.  Therefore, in these PiD patients, the higher levels of MAPT expression in the 

frontal cortices, in contradiction to the similar levels of expression compared to controls 

found in the temporal cortices, could be explained by the different effects of the MAPT 

mutations on the pathways that regulate MAPT expression within these areas.   

6.4.3  Levels of phosphorylated tau in the frontal and temporal cortices of 
patients with PiD and FTDP-17 

In this study, pSer396/404 tau levels were found to be increased within the frontal cortices 

of patients with PiD and FTDP-17, compared to controls, after normalisation to total tau.  This 

was expected as increased phosphorylation at this site has previously been reported in PiD 

cases in which Pick bodies positively stain with anti-pSer396/404 tau antibodies (van Eersel 

et al., 2009; Zhukareva et al., 2002; Love et al., 1988; Ishizawa et al., 2000; Sparks et al., 
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1994).  Furthermore, in cortical tissue of patients with IVS 10+16 MAPT and other FTDP-17 

mutations, tau is phosphorylated at Ser396/404 (Irwin et al., 2013).  While phosphorylation 

of R406W MAPT tau at Ser396/404 has been reported to be decreased into Chinese hamster 

ovary cells compared to controls, in Tg R406W MAPT mice, pSer396/404 tau is increased 

(Ikeda et al., 2005). 

No difference was found in the phosphorylation of tau at pSer202 in PiD and FTDP-17 frontal 

and temporal cortices in comparison to controls.  Interestingly, levels of tau phosphorylated 

at this site have been shown by others to be increased within the brains of patients with PiD 

(Zhukareva et al., 2002; Espinoza et al., 2008; Koga et al., 2017; van Eersel et al., 2009; Nölle 

et al., 2013) and also FTDP-17 patients carrying G272V MAPT (Nölle et al., 2013). Sections of 

the midbrains of patients carrying V337M MAPT also immunostain more intensely with an 

antibody against pSer202/Thr205 tau, indicating increased levels (Ehrlich et al., 2015).  

Furthermore, increased tau phosphorylation at Ser202 has been reported in Tg R406W MAPT 

mice (Ikeda et al., 2005), as well as Tg P301L MAPT mice (de Calignon et al., 2012).   

Shiarli and colleagues demonstrated, via immunohistochemistry using AT8, an antibody that 

recognises tau phosphorylated at pSer202 as well as Thr205, that the levels of tau 

phosphorylated at pSer202 are approximately 90 % lower in frontal cortex tissue of PiD and 

FTDP-17 patients, including those with R406W and IVS 10+16 MAPT mutations, compared to 

those in AD patients (Shiarli et al., 2006).  Furthermore, this publication mentions the 

significant decrease in western blot immunoreactivity using AT8 observed via western 

immunoblotting in FTDP-17 and PiD patients compared to AD patients (Hasegawa, 

unpublished data).  As FTDP-17 and PiD are heterogenous diseases and variation in the 

phosphorylation of tau at these sites has been demonstrated between patients (Shiarli et al., 

2006), tissue from a larger cohort of patients may be required to gain statistically significant 

results to confirm changes in the levels of pSer202 tau.  

Phosphorylation of tau at Thr231 could not be detected in the temporal and frontal cortices 

of controls or patients with either PiD of FTDP-17 using RZ3 antibody.  Tau phosphorylated 

at Thr231 is associated with AD as brain lysates from healthy human controls do not react 

with this antibody via western blotting (Acker et al., 2013).  Previously, pThr231 tau has been 

demonstrated to be significantly decreased in the frontal cortices of patients with PiD and 

FTDP-17, including those with mutations in R406W and IVS 10+16, compared to patients with 
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AD (Shiarli et al., 2014).  These studies, along with the results in this study, suggest that 

hyperphosphorylation of this site may be specific to AD and not present in all tauopathies.   

6.4.4  Protein levels and expression of tau kinases in the frontal and 
temporal cortices of patients with PiD and FTDP-17 

Within the frontal and temporal cortices of patients with PiD as well as the frontal cortices 

of patients with FTDP-17, there was no significant difference in the levels of total GSK3β 

protein.  GSK3β levels have not been investigated in PiD or FTDP-17, although no change has 

been seen in the brains of patients with AD (Leroy et al., 2007).  GSK3β enzyme activity was 

not measured here, however, an indication of this can be seen by the levels of pTyr216 GSK3β 

present.  In that respect, GSK3β activity within the temporal cortices of patients with PiD was 

comparable to that within controls. Within the frontal cortices of PiD patients, however, 

pTyr216 GSK3β was found to be increased.  Previous studies have reported an increase in 

GSK3β activity within the brains with those with tauopathy.  Leroy and colleagues 

demonstrated an increase in pTyr216 GSK3β via western immunoblotting, in the frontal 

cortices of AD patients compared to controls (Leroy et al., 2007).  Another group 

demonstrated decreased inhibition of GSK3β, determined by increased phosphorylation of 

GSK3β at its inhibitory site Ser9 (Chapter 1.3.1), in the temporal cortices of AD patients 

(DaRocha-Souto et al., 2012).  The differences in activation of GSK3β within the frontal and 

temporal cortices of PiD patients could be due to differences in the regulation of GSK3β, of 

which little is known, in various brain areas, which has previously been demonstrated in mice 

overexpressing GSK3β (Fuster-Matanzo et al, 2011). 

GSK3β gene expression was not found to be significantly different in the frontal cortices or 

temporal cortices of patients with both PiD and FTDP-17 compared to controls.  These results 

reflect the similar protein levels of total GSK3β in the frontal and temporal cortices of PiD 

patients, as well as the frontal cortices of FTDP-17 patients, compared to controls.  

Additionally, these results are in line with previous studies, which overall suggest that, after 

development, GSK3β is rarely regulated through increased or decreased expression (Beural 

et al., 2015).   

Contrary to the results within this study, upregulation of GSK3β has previously been 

demonstrated within the temporal and frontal cortices of patients with ALS, a tauopathy 

related to PiD (Luna-Morenz et al., 2007), although not within the cerebellum or 
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hippocampus (Yang et al., 2008).   Another study also described altered expression of GSK3β 

within the medial temporal gyrus and the hippocampus of AD patients, although difference 

in gene expression was found within the superior frontal gyrus or visual cortex (Liang et al., 

2008).  

While there was no significant difference in the levels of p25 within the temporal cortices of 

PiD patients, p25 levels were found to be increased in the frontal cortices in comparison to 

controls.  This indicates increased activity of Cdk5 within the frontal cortices but not the 

temporal cortices of these patients.  In the frontal cortices, levels of p35 were found to be 

unchanged compared to controls.  Immunoreactivity indicating p35 was very faint and, 

unfortunately, levels within the temporal cortices could not be detected.  This is in line with 

previous reports demonstrating the rapid cleavage of p35 within a short post-mortem delay 

(PMD) in human AD and control brains (Taniguchi et al., 2001; Patrick et al., 2001), which 

would explain the low levels of p35 protein. 

The increase of p25 within the frontal cortices of PiD patients is in disagreement with a 

previous study reporting no difference in the protein levels of p25 or p35 within this area in 

PiD and FTD patients in comparison to controls (Tandon et al., 2003).  It should be mentioned, 

however, that reports of these protein levels in AD patients vary; two publications mention 

the increase of p25 in AD brains (Tseng et al., 2002; Patrick et al., 1999), whilst others were 

unable to reproduce this (Tandon et al., 2003; Taniguchi et al., 2001).  The variation in Cdk5 

activity in the frontal and temporal cortices of PiD patients compared to controls may be 

indicative of different pathological mechanisms in these two parts of the brain and could 

provide an important clue to help us to understand why certain brain regions are more 

susceptible to different neurodegenerative disease pathways.   

No significant difference in the gene expression levels of CDK5 within the frontal and 

temporal cortices of patients with PiD or FTDP-17 compared to controls was found.    

Decreased CDK5 expression has not been reported in FTD before, however, it has been 

reported in brain regions susceptible to neurodegeneration in AD patients (Liang et al., 2008, 

Liang et al., 2010). 

Levels of PAK3 protein are unchanged within the frontal cortices of patients with PiD.  

However, they are decreased within the frontal cortices of patients with FTDP-17.  Decreased 

levels of PAK3 are associated with neurodegeneration and the loss of synapses (Chapter 
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1.3.3).  Although levels of PAK3 protein have not been investigated in PiD or FTDP-17 patient 

brains, in AD levels of PAK3 have been reported to be decreased (Nguyen et al., 2008; Zhao 

et al., 2006).  These results indicate that decreased PAK3 levels are not common to all 

tauopathies, at least in the frontal or temporal cortices, and that there are regional protein 

level differences in the brains of patients with FTDP-17.   

Expression levels of PAK3 were also found to be decreased in the frontal cortices of FTDP-17 

patients compared to controls, however, were not significantly changed in the temporal 

cortices of these patients or within either cortex in PiD patients.  Although levels of PAK3 

gene expression have not been investigated within the frontal or temporal cortices of 

patients with PiD, decreased gene expression has been reported in hiPSC-dopaminergic 

neurons derived from patients with V337M MAPT and N279K MAPT (Ehrlich et al., 2015).  

Contrarily, within the midbrains of FTDP-17 patients carrying either N279K MAPT or P301L 

MAPT, PAK3 levels were found to be unchanged in comparison to controls.   Taken together, 

these results may indicate region specific alterations in PAK3 gene expression in FTDP-17, 

which is in line with region specific changes in other tau kinases in AD (Liang et al., 2008; 

Liang et al., 2010).  For example, CDK5 expression is known to vary between different brain 

regions in normal physiological function (Wu et al., 2000), AD patients (Liang et al., 2008; 

Liang et al., 2010) and in opiate users with AD-like brain changes (Anthony et al., 2010). 

6.4.5  Levels of synapsin I within PiD temporal cortex and FTDP-17 frontal 
cortex 

Levels of synapsin I in the temporal cortices of patients with PiD were significantly decreased 

compared to controls, which implicates the loss of pre-synaptic proteins in PiD.  This finding 

was expected, as the loss of synaptic proteins and synaptic dysfunction is a well recorded co-

occurrence with tauopathy.  Decreased levels of synapsin have been found in PiD patients’ 

temporal cortices (Clare et al, 2010), frontal cortices (Ferrer, 1999) and hippocampi (Lippa, 

2004).  Furthermore, decreased pre-synaptic density was reported in the frontal cortices of 

patients with FTD (Brun et al., 1995; Ferrer, 1999), although this group later reported no such 

change in the temporal cortices of these patients (Liu and Brun, 1996).   

Unexpectedly, the level of synapsin I in the frontal cortices of patients with FTDP-17 was not 

significantly different compared to controls, suggesting no loss in pre-synaptic proteins.  

Synapses have been demonstrated to be lost in the frontal cortices of FTDP-17 patients (Brun 
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et al., 1995; Clare et al., 2010; Liu and Brun, 1996; Mackenzie et al., 2009).  Counts and 

colleagues have provided evidence of varying levels of pre- and post-synaptic proteins across 

different brain regions of patients with AD and mild cognitive impairment MCI, compared to 

controls.  The group demonstrated that while synaptophysin levels were reduced by 35 % in 

the temporal cortex but not the frontal cortex, drebrin levels were reduced in the temporal 

cortex but increased in the frontal cortex in patients with MCI (Counts et al., 2006).  This 

study, carried out by Counts and colleagues, suggests a disparity in the frontal and temporal 

cortices in terms of the loss of synaptic proteins and may explain why temporal cortical 

functions, such as memory and language, are lost early in AD, while frontal cortical functions 

such as executive function, are preserved in the early stages of disease.  As the temporal 

cortices are primarily subject to neurodegeneration in patients with FTDP-17 caused by 

R406W and IVS 10+16, synaptic loss in the frontal cortices may be relatively spared.  It is 

noted that these results contain an outlier in that control 5 (lane 5; Figure 6.18) (Table 1) has 

very low band density compared to the other two controls.  Further research with a greater 

cohort of patients is required to confirm this result, which does not align with previous 

research.  Unfortunately, due to a lack of tissue it was not possible to carry out western blots 

for frontal cortex PiD patients and controls, or for temporal cortex FTDP-17 patients. 

6.4.6  Gene expression of MAPT, CDK5 and PAK3 within the nbM of patients 
with AD compared to controls 

No change in the gene expression of MAPT was detected in AD patient nbM compared to 

controls.  Previous reports on MAPT expression in AD are controversial as some studies 

report lower levels of MAPT expression (Fukasawa et al., 2017), while others report no 

change in MAPT expression levels in AD brains (Farnsworth et al., 2016; Fukasawa et al., 

2017).  MAPT mRNA has previously been found to be decreased within the entorhinal cortex, 

hippocampus, middle temporal gyrus and posterior cingulate cortex of AD patients (Liang et 

al., 2008).   

Although gene expression of CDK5 in the AD nbM was 40 % of that of controls, this result was 

not statistically significant.  CDK5 expression has been demonstrated to be decreased within 

the brains of AD patients (Liang et al., 2008, Liang et al., 2010; Fukasawa et al., 2017), 

although this is debated (Tandon et al., 2003; Borghi et al., 2002).  It should be noted 

however, that cohort sizes in the studies performed by Liang and colleagues were much 

greater than those performed by Tandon and colleagues (n=3 for both AD patients and 
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controls) and within the study published by Borghi and colleagues.  The lack of statistically 

significant change in PAK3 expression levels between AD patients and controls was also 

surprising, as PAK3 levels within the hippocampus have been demonstrated to be decreased 

with AD brains, animal models and cell-based models (Zhao et al., 2006; Nguyen et al., 2008).  

These results may be explained by variation between patients within the small cohort of 

patients examined in this study.  Indeed, CDK5 expression has previously been demonstrated 

to vary considerably between patients with AD (Tandon et al., 2003).  It may be necessary for 

increased numbers of patients to be included in studies investigating the expression of 

kinases which are known to be variable between patients to achieve a statistically significant 

result. 

 

6.5  Chapter Summary 

The results demonstrate that PiD and FTDP-17 share similarities in tau-related molecular 

pathology.  Levels of total soluble tau protein were found to be unchanged in the frontal and 

temporal cortices of PiD patients, as well as within the frontal cortices of patients with FTDP-

17, compared to controls.  Additionally, MAPT gene expression levels were increased in the 

frontal cortex in both PiD and FTDP-17 patients compared to controls.  Compared to controls, 

phosphorylation of tau at Ser396/404 was significantly increased, while phosphorylation at 

Ser202 was not significantly different, in both diseases.  In both PiD frontal and temporal 

cortices, as well as FTDP-17 frontal cortices, total GSK3β protein levels and GSK3β expression 

were not significantly different to controls. 

On the contrary, there are differences in tau-related molecular pathology between the two 

disease groups.  In the frontal cortices, PAK3 expression and protein levels were found to be 

significantly decreased in FTDP-17 patients but not in PiD patients.  Significantly decreased 

levels of synapsin I were found in patients with PiD but not within patients with FTDP-17.  

These differences in kinase expression, kinase level and synapsin I may provide insight into 

the pathogenesis of both sporadic and familial FTD.   

Brain region specific differences in protein levels and gene expression were also found in 

each disease and these differences were found to be unique to each form of FTD.  PiD 

patients, MAPT expression levels and GSK3β activity levels were increased only within the 

frontal cortices, while PAK3 expression levels were found to be decreased only in the frontal 
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cortices of FTDP-17 patients.  These specific differences in MAPT expression, as well as PAK3 

expression and GSK3β activity levels may facilitate understanding into the area of 

pathogenesis initiation in the brains of these patients. 

The limitations of using human brain tissue in research have been outlined in Chapter 1 

(Chapter 1.4.1), however, it is worth reiterating that FTD is a particularly heterogenous 

disease and therefore a large cohort of patients is preferable for use alongside biomolecular 

investigation.  While each sample from FTD patients came from either the frontal or temporal 

cortices, it is also important to note that some variability in this work may have been 

introduced through variation in the exact sampling area.  To overcome this, future studies 

should be carried out on tissue from multiple sampling areas within each cortex.  The western 

immunoblotting results in this chapter inform on the Sarkosyl soluble tau-related pathology 

in PiD and FTDP-17.  Sarkosyl insoluble fractions typically include NFTs and other entangled 

proteins, including kinases such as Cdk5 and GSK3β.  Future work carried out on Sarkosyl 

insoluble fractions, coupled with the work in this chapter, would allow a more 

comprehensive understanding of tau pathology in these tissues.   
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Chapter 7 

Final discussion and future work 

 

Despite decades of research and the thorough characterisation of tau pathology within the 

brains of patients with tauopathies, our knowledge of the molecular pathways involved in 

the etiopathology of these diseases remains inadequate.  The complete elucidation of these 

pathways may be critical for the development of therapies capable of overcoming the 

progression of these diseases.  One obstruction to progress is the lack of readily-available 

models that faithfully recapitulate the biomolecular pathways involved in the development 

of tauopathy in humans.  Traditional animal models of tauopathy have failed to faithfully 

recapitulate human disease, resulting in the failure of many promising drugs to clinically 

translate (Sasaguri et al., 2017).  Biomolecular studies of the human brain can be carried out 

using post-mortem tissue, however this represents end-stage disease rather than the state 

of the brain during pathogenesis. 

Models of tauopathy have been developed through the differentiation of patient-derived 

human induced pluripotent stem cells (hiPSC) to produce disease-relevant cell types.  While 

these models promise to facilitate investigation of the biomolecular pathways involved in 

early-stage disease, during which time we may be able to intercept therapeutically, the field 

is still in its infancy and it is important to research the applicability of these models. 

The purpose of this PhD project was to investigate the ability of hiPSC models of tauopathy 

to inform on tau-related molecular pathology.  hiPSC models of frontotemporal dementia 

with Parkinsonism linked to chromosome 17 (FTDP-17) and sporadic Alzheimer’s disease 

(sAD) were developed through the derivation of vulnerable neuronal subtypes from hiPSC.  

The levels of tau protein and MAPT expression were determined alongside levels of tau 

phosphorylation at sites known to be aberrantly phosphorylated in tauopathy.  The protein 

levels, activity and gene expression of three tau kinases previously implicated in tauopathy, 

GSK3β, Cdk5 and PAK3 (Chapter 1.3), were also investigated to understand the changes that 

occur in these during pathogenesis.  Levels of synapsin I were also determined to understand 

whether the loss of synaptic proteins recognised in tauopathy is recapitulated in these 
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models.  These changes in pathology were compared to those investigated within brain tissue 

in this study, and within the literature.   

It should be noted that upon the inception of this project, it was not known that only foetal 

tau is expressed within hiPSC-neurons until approximately one year of culture has passed 

(Sposito et al., 2015), which will likely affect tau pathogenesis as these diseases occur in 

adults and involve all six tau isoforms.  

 

7.1  The development of a model of frontotemporal dementia 
with Parkinsonism linked to chromosome 17 using induced 
pluripotent stem cell technology 

The causal importance of tau protein in the pathogenesis of neurodegenerative disease was 

highlighted by the discovery that mutations of MAPT result in FTDP-17.  As the underlying 

cause of sporadic tauopathy remains unclear, the development of models of tauopathy 

based on the expression of MAPT mutations offers the opportunity to investigate the 

molecular pathways involved in tau pathogenesis.  To model FTDP-17, two hiPSC clones 

(V337M-C and V337M-E), derived from a patient carrying the missense mutation valine to 

methionine at 337 (V337M) MAPT, were differentiated to produce cortical glutamatergic 

neurons (CGNs) and cultured for 50 days. 

It is not known whether tau pathogenesis in sporadic frontotemporal dementia (FTD) occurs 

through the same molecular pathways as at that within FTDP-17.  Therefore, the tau-related 

molecular pathology discovered in this model was compared to that within the frontal and 

temporal cortices of patients with both FTDP-17 and Pick’s disease (PiD).   It is hoped that 

insights gained through the study FTDP-17 pathogenesis will also be applicable to sporadic 

forms of FTD, which are more common.    
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7.1.1 The ability of hiPSC-CGNs generated from a patient with V337M MAPT 
to model tau pathology in FTDP-17 

7.1.1.1 Comparison of levels of tau protein and MAPT expression in hiPSC and brain tissue 

Chromosomal microdeletions, microduplications and microtriplications involving MAPT have 

been demonstrated to cause syndromes involving mental retardation, thereby 

demonstrating the importance of changes in MAPT expression levels in neurological disease 

(Caillet-Boudin et al., 2015).  Despite this knowledge, few studies have examined the gene 

expression of MAPT in tauopathy.   

In this study, hiPSC-CGNs derived from a patient carrying V337M MAPT were not found to 

have significantly different MAPT gene expression levels compared to controls, in line with 

the similar levels of MAPT gene expression found within the frontal and temporal cortices of 

FTDP-17 patients and temporal cortices of patients with PiD in this study.  These results are 

in agreement with previous reports reporting similar levels of MAPT expression (van Eersel 

et al., 2009; Adamec et al., 2001).  Therefore, levels of tau protein within V337M MAPT hiPSC-

CGNs represent levels within the brain.  MAPT expression was increased within the frontal 

cortices of patients with PiD, suggesting that alterations in MAPT expression, at least in the 

temporal cortex, are also distinguished between different frontotemporal dementias.    

The expression of MAPT is regulated epigenetically by methylation.  Generally, 

hypermethylation of MAPT, leading to decreased levels of tau protein, is associated with 

neuroprotective mechanisms; in reverse, hypomethylation of MAPT is associated with 

increased levels of tau protein and neurodegeneration (Caillet-Boudin et al., 2015).  Previous 

studies have shown that MAPT DNA methylation is altered within the brains of patients with 

tauopathy in a region-specific manner.  For example, within the brains of patients with 

Parkinson’s disease, in which tau pathology is recognised, hypermethylation of MAPT is 

associated with decreased tau protein and relative sparing (Coupland et al., 2014).  

Additionally, the majority of MAPT methylation changes in the AD brain were found to occur 

within the temporal lobes, an area particularly vulnerable in this disease, and when modelled 

in vitro these changes brought about increased expression of tau (Iwata et al., 2014).  Liang 

and colleagues have also reported region-specific reductions in MAPT expression within 

vulnerable areas of the brain, including the temporal cortex, of AD patients and this has also 

been hypothesised to be neuroprotective (Liang et al., 2008).  These studies suggest that in 

tauopathy, MAPT gene expression may vary in specific brain regions compared to healthy 



261 
 

brains and that this variation contributes to pathology.  Further research into MAPT 

methylation changes due to disease would be useful to understand if this form of epigenetic 

regulation is affected in FTDP-17 and PiD.  Indeed, highly reproducible DNA methylation 

changes are associated with human ageing (Koch et al., 2011) and may provide the link 

between age and tauopathy.  Mice are often used in epigenetic studies, however, hiPSC-

neuron models may be more ideal for this investigation due to the differences between 

mouse and human epigenetic regulation (Wagner, 2017).  

In a previous study levels of MAPT expression were shown to correlate with tau protein 

expression (Trabunzi et al., 2012).  Levels of soluble tau in the frontal cortices of patients with 

PiD may not represent MAPT expression because these protein levels do not take into 

account potential levels of excess, Sarkosyl-insoluble, aggregated tau.  Further investigation 

into the insoluble levels of total tau protein, coupled with the reported levels of insoluble 

tau, may reveal a correlation in changes in tau protein levels with changes in MAPT 

expression in the frontal cortices of these patients.   

7.1.1.2 Tau phosphorylation in hiPSC-neurons and brain tissue 

The hallmark of tauopathies is the accumulation of hyperphosphorylated tau within the 

brain.  Abnormal phosphorylation of tau initiates a pathological sequence of events, which 

ultimately leads to neurodegeneration.  These include the loss of microtubule stability, 

dysfunction in cellular transport, the aggregation of tau, the loss of synapses and the 

dysregulation of critically important cellular pathways.  Phosphorylation of tau in tauopathy 

is thought to occur sequentially.  The sequential phosphorylation has been investigated 

within AD, but not FTD.  In AD, phosphorylation at pThr231 is thought to be a very early event, 

which is followed by phosphorylation at pSer202 and subsequently pSer396/Ser404 (Luna-

Munoz et al., 2007).  Phosphorylation of tau at Ser396/404 is a well-known indicator of tau 

pathology and is associated with later stages of tau phosphorylation (Luna-Munoz et al., 

2007).  Tau was found to be abnormally phosphorylated in hiPSC-neurons carrying MAPT 

mutations compared to controls.   

In FTDP-17 and PiD frontal cortices, levels of pSer396/404 were predictably increased.  While 

increased phosphorylation at pSer396/404 was found in hiPSC-CGN derived from one clone, 

V337M-E, levels were not found to be significantly altered in the other ,V337M-C, indicating 

clonal variability.   
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Phosphorylation at Ser202 was found to be increased in V337M MAPT hiPSC, in line with 

previous studies demonstrating increased phosphorylation of tau within the midbrains of 

patients with this mutation (Ehrlich et al., 2015), PiD patient brains (Zhukareva et al., 2002; 

Espinoza et al., 2008; Koga et al., 2017; van Eersel et al., 2009; Nölle et al., 2013) and within 

the brains of patients with FTDP-17 caused by G272V MAPT (Nölle et al., 2013).  Surprisingly, 

in this study, no significant change in pSer202 tau was determined in the frontal cortices of 

patients with FTDP-17, as well as the frontal and temporal cortices of PiD patients, contrary 

to previous reports.  In each case the mean of the levels was found to be greater than that 

of controls, however, and there was a trend towards increased phosphorylation at this site 

within the frontal cortex of PiD patients. As discussed in Chapter 6  (Chapter 6.4.2), this may 

be due to heterogeneity and an increased cohort size may provide clarity on this result.  

Another reason for the lack of significantly increased phosphorylation at this site may be the 

fact the tau investigated was Sarkosyl-soluble tau, and tau phosphorylated at this site may 

have been sequestered into Sarkosyl-insoluble aggregations of tau, as it has been shown to 

decorate Pick Bodies previously (Zhukareva et al., 2002; Espinoza et al., 2008; Koga et al., 

2017; van Eersel et al., 2009; Nölle et al., 2013).   

In V337M MAPT hiPSC-CGNs, tau phosphorylation at Thr231 was considerably decreased 

compared to controls while staining was too weak to detect levels on western immunoblots 

of lysates derived from brain tissue of controls, FTDP-17 patients or PiD patients.  This was 

surprising, as increased levels of pThr231 tau within the brains of patients with AD are widely 

reported (Acker et al., 2013; Beurger et al., 2002) and tau aggregations in FTLD patients 

positively immunostain with antibodies against pThr231 tau (Moszczynski et al., 2017).  

Interestingly, levels of pThr231 tau in the brains of patients with FTDP-17 (Shiarli et al., 2014) 

and in the CSF of patients with FTD (Buerger et al., 2002) are much closer to that of controls 

than AD and levels in CSF can be used to discriminate between the two diseases  (Buerger et 

al., 2002).  While further research into the levels of pThr231 tau within the brains of patients 

with FTDP-17 and PiD would be useful to understand if levels are decreased compared to 

controls, the results in V337M MAPT hiPSC-CGN suggest that in early disease tau 

phosphorylation at this site is decreased.  Interestingly, phosphorylation of tau at Thr231 has 

been demonstrated to be a consequence of increased GSK3β activity leading to the 

detachment of tau from the microtubules (Moszczynski et al., 2014; Cho and Johnson, 2004).   
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7.1.3 Changes in kinase expression, levels and activity in hiPSC-neurons and 
brain tissue 

The abnormal phosphorylation of tau occurs through dysregulation of tau kinases and 

phosphatases in tauopathy (Bodea et al., 2015; Dolan et al., 2010; Martin et al., 2013).  The 

molecular pathways responsible for these alterations in these kinases and phosphatases are 

not well understood.  Despite this, the involvement of GSK3β and Cdk5 in tauopathy is well 

reported (Dolan et al., 2010; Martin et al., 2013) and therapeutics targeting the activity of 

both kinases have been developed to limit tau phosphorylation; whilst promising in murine 

models of disease, the intended effects of these did not translate in humans (Vell et al., 2013; 

Tolosa et al., 2014; Lovestone et al., 2015).  Comparatively little research has been carried 

out on the involvement of PAK3 in tauopathy, however, recently this kinase has been shown 

to be downregulated in V337M MAPT hiPSC-dopaminergic neurons (Ehrlich et al., 2015), 

indicating that it may be involved in pathogenesis.   

The gene expression, protein levels and activity of Cdk5 and GSK3β were investigated, 

alongside the gene expression and protein levels of PAK3 to understand if these are altered 

in V337M MAPT hiPSC-CGNs and patient brain tissue.  Through elucidating the mechanism, 

and time-frame (i.e. early-stage disease verses late-stage disease), during which these 

kinases become dysregulated in tauopathy we may be able to further refine therapeutics to 

render them effective. 

CDK5 expression was not found to be significantly altered in V337M MAPT hiPSC-CGN or 

within both the frontal and temporal cortices of those with FTDP-17 and PiD, demonstrating 

that hiPSC carrying V337M MAPT recapitulate this lack of expression change.  The activity of 

Cdk5, determined by an increase in p25 or a decrease in p35, was found to be increased in 

both V337M-hiPSC CGNs and within the frontal cortex of patients with PiD, demonstrating 

that Cdk5 activity in PiD is recapitulated in this model.  Unfortunately, due to a lack of tissue 

p25 and p35 levels within the frontal cortex of FTDP-17 patients could not be examined.  

These results implicate alterations in Cdk5 kinase activity both in the pathogenesis and later 

stages of FTD-tau. 

V337M MAPT hiPSC-CGN recapitulate altered protein levels of PAK3 within FTDP-17 brain 

tissue.  PAK3 protein levels were significantly decreased in V337M MAPT hiPSC-CGNs derived 

from one hiPSC clone (V337M-C) and there was a trend towards decreased levels in CGNs 

derived from the other (V337M-E) (p= 0.0601).  Reduced PAK3 levels were also found within 
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R406W and IVS 10+16 MAPT patient frontal and temporal cortices, demonstrating that a 

reduction in PAK3 protein levels is not specific only to FTDP-17 caused by the V337M MAPT 

mutation.  Recently, it has been demonstrated that downregulation of PAK1 activity, which 

shares functional overlap with PAK3, during the treatment of dopaminergic neurons to 

induce oxidative stress, correlates with neurodegeneration (Kim et al., 2016).  In light of this 

study, these results suggest that decreased PAK3 levels, within hiPSC-CGNs and cortex tissue, 

may be representative of neurodegenerative pathways.  The recapitulation of these protein 

and gene expression changes demonstrate the suitability of this model for further 

investigation into this pathway and the activity levels of PAK3 in FTDP-17.On the other hand, 

in the frontal and temporal lobes of patients with PiD, levels of PAK3 protein were not found 

to be statistically different to those within controls, suggesting that changes in the protein 

levels of PAK3 are not involved in pathogenesis in this disease.   

The gene expression of PAK3 was not found to be statistically different in V337M MAPT 

hiPSC-CGNs, contrasting previously reported findings by Ehrlich and colleagues on expression 

levels within hiPSC-dopaminergic neurons (Ehrlich et al., 2015).  Similarly, within the frontal 

and temporal cortices of PiD patients, as well as the temporal cortices of patients with FTDP-

17, PAK3 expression was not significantly different compared to controls.  In line with these 

results, the expression of PAK3 in the midbrains of V337M MAPT FTDP-17 patients has been 

measured previously and the authors concluded no change in gene expression within the 

midbrains of these patients (Ehrlich et al., 2015).   

PAK3 expression was, however, found to be decreased within the frontal cortex of patients 

with FTDP-17, which may suggest that PAK3 expression levels are altered in a regionally 

specific manner within the brains of these patients.  One possible pathway through which 

MAPT mutations could cause a reduction in PAK3 expression is through tau’s role in the 

potentiation of activating protein 1 (AP-1) activity, which occurs in response to nerve growth 

factor (Leugers and Lee, 2010); AP-1 regulates the activity of PAK3 such that overexpression 

of AP-1 leads to increased levels of PAK3 expression (Parker et al., 2013).  Mutations in MAPT 

may hinder the ability of tau to influence the activity of AP-1, thereby resulting in decreased 

levels of PAK3.   

Within V337M MAPT hiPSC-CGN, gene expression of GSK3β was not found to be significantly 

different in comparison to controls, recapitulating the gene expression levels found within 

the frontal and temporal cortices of patients with FTDP-17 or patients with PiD, in which 
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GSK3β gene expression was not found to be significantly different compared to controls.  

Total levels of GSK3β within V337M-CGN were found to be significantly increased within one 

clone, V337M-E, although unchanged within the other, V337M-C, indicating clonal variability 

in this model.  Additionally, no significant differences compared to controls were found in 

the total levels of GSK3β within the frontal cortices of patients with FTDP-17 or PiD.  

Together, these results suggest that changes in the protein levels of GSK3β are not likely to 

be involved in disease pathogenesis or progression.   

The activity of GSK3β was found to be decreased in V337M-E-CGN compared to controls, 

whereas it was found to be increased in the frontal cortices of PiD patients and unaltered in 

the temporal cortices of these patients.  Additional research is required to understand 

whether GSK3β activity plays a role in disease pathogenesis or progression in FTD, however, 

these results indicate that GSK3β activity within PiD patient brain tissue is not recapitulated 

in this hiPSC model of FTDP-17. 

The phosphorylated form of Akt, another tau kinases, was also investigated within the cells 

of this hiPSC-neuron and levels were found to similar compared to controls, suggesting that 

increased levels of the active, phosphorylated form of this tau kinase are not involved in 

FTDP-17. 

7.1.4  Comparison of levels of synapsin I in hiPSC and brain tissue  

The dysfunction and loss of synapses is thought to be an early event in tauopathy and to 

contribute to the dichotomous loss of neurons throughout the brain as functional 

connections between neurons are lost (Selkoe et al., 2002; Bodea et al., 2016).  

Hyperphosphorylated tau causes the loss of synapses through several pathways (Zhao et al., 

2017; Spire-Jones et al., 2014).  The levels of synapsin I, a pre-synaptic protein demonstrated 

previously to be lost in neurodegenerative disease, were determined within V337M MAPT 

hiPSC-CGNs to investigate the ability of these to recapitulate this aspect of disease.  Levels of 

synapsin I were found to be decreased in hiPSC-CGNs, indicative of tauopathy and 

demonstrating that the loss of synaptic proteins is affected very early in disease 

pathogenesis, since these neurons are thought to be equivalent to foetal neurons in age.  

Although this is also strongly replicated in the PiD post-mortem temporal cortex, the 

reduction seen in the tissue from the FTDP-17 patients was not significant due to an outlier 



266 
 

in one of the controls.  Replicate values from the controls were unsatisfactory but there was 

not enough tissue to replicate this experiment.   

7.1.5  Summary of results 

V337M MAPT hiPSC-CGNs recapitulated important tau-related pathology found in FTD 

patients, including the abnormal phosphorylation of tau and the loss of the pre-synaptic 

protein, synapsin I.  This indicates that this model would be a useful tool for investigating the 

biomolecular pathways involved in aberrant tau phosphorylation and the early loss of 

synapses in FTD.   

This study has also demonstrated the value of using hiPSC-CGN derived from patients with 

MAPT mutations to investigate biomolecular differences in disease, which may underlie the 

pathological phosphorylation of tau.  The protein levels of PAK3, a tau kinase under-

investigated in tauopathy, were found to be decreased within V337M MAPT hiPSC-CGNs as 

well as within the frontal and temporal cortices of patients with FTDP-17.  Since PAK3 

expression was not found to be downregulated in V337M MAPT hiPSC-CGNs or the temporal 

cortices of patients with FTDP-17 this suggests that PAK3 levels are reduced through a 

pathological mechanism that does not target PAK3 gene expression.  Similarly, the results 

gained from V337M MAPT hiPSC-CGNs and the frontal cortices of patients with PiD in this 

study suggest the activity of the Cdk5 is increased, in FTD-tau.   

Although protein levels of GSK3β and GSK3β gene expression were not significantly different 

compared to controls within the frontal and temporal cortices of FTDP-17 and PiD patients, 

or within V337M MAPT hiPSC-CGN, the activity of this kinase within V337M MAPT hiPSC-

CGNs did not mirror that observed within tissue from either PiD or FTDP-17 patients.  The 

inability of the model to replicate this aspect of tauopathy could be attributed to a number 

of limitations inherent in modelling with hiPSC-neurons.  GSK3β is involved in neural 

development and these cultures of hiPSC-neurons, at day 50, are now thought to be 

equivalent in age to those within the developing foetus, exemplified by the production of 

only foetal tau isoforms in hiPSC-neurons before day 365 of culture (Sposito et al., 2015).  

The pathways altered in adults due to pathological tau leading to increased GSK3β activity 

may respond differently in these ‘young’ neurons.  The limitation of age in hiPSC-neuron 

modelling is discussed later (Chapter 7.3.1).  Furthermore, GSK3β is involved in a concert of 

cellular signalling pathways within the brain, some of which may be influenced by the 
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presence of other cell types within the brain.  Increased GSK3β activity may not be 

recapitulated in this model, therefore, due to a lack of faithful recapitulation of the disease 

niche.  This limitation is discussed later (Chapter 7.3.3).  Levels of active GSK3β varied 

between the two clones indicating clonal variation, which is a limitation of hiPSC-models that 

is well reported (Hallman et al., 2015; Liang and Zhang, 2013) and discussed later (Chapter 

7.3.4).   

GSK3β activity is also regulated by phosphorylation of GSK3β at Ser9, which inhibits its 

activity (Hanger and Noble, 2011).  It is possible that a more accurate depiction of GSK3β 

activity may be gained through analysis of levels of GSK3β phosphorylated at Ser9.   

The lack of difference between MAPT expression in V337M MAPT hiPSC-CGNs mirrors MAPT 

expression within the FTDP-17 frontal and temporal cortices, as well as within the PiD 

temporal cortices, but not within the PiD frontal cortices where greater levels of MAPT 

expression were measured compared to controls. Further study is also required to 

understand the mechanisms behind region-specific and disease-specific MAPT expression 

changes in PiD frontal and temporal corticies.    

 

7.2  The development of a model of Alzheimer’s disease using 
pluripotent stem cell technology 

Most AD models, including those developed using hiPSC technology, have been developed 

through the expression of mutations associated with familial AD (fAD), which is much more 

rare compared to sAD.  sAD remains particularly difficult to model due to the unknown 

aetiology of the disease.  Studies in which sAD has been modelled using patient derived 

hiPSC-neurons, have reported large phenotypic variation between lines from different 

patients; in studies by Israel and colleagues (Israel et al., 2012) as well as Kondo and 

colleagues (Kondo et al., 2013) only one out of two sAD lines studied demonstrated 

phenotypes comparable to those observed in hiPSC-neurons derived from patients with fAD.  

As sAD does not have a genetic cause, the use of gene editing techniques to create isogenic 

lines are not helpful here.    

The aberrant molecular pathways involved in sAD are numerous, exceedingly complex and 

poorly understood; however, previous research has provided substantial evidence 

suggesting Aβ pathology initiates and exacerbates tau pathology through various pathways.  
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Therefore, during this project, a model of sAD was developed to investigate Aβ-induced tau 

pathogenesis and the same tau-related molecular pathology measured within V337M MAPT 

hiPSC-derived neurons was investigated in this model.  The presence of neuronal varicosities 

was also investigated.  These results were compared to those within the literature, while 

changes in gene expression levels of MAPT, CDK5 and PAK3 were also compared to those 

within the basal forebrain nucleus of Meynert (nbM) of AD patients compared to healthy 

patients.   

To model sAD, the control hESC line Shef 6 and the control hiPSC line Nas 2 were 

differentiated to produce both bfCNs and CGNs, which are particularly vulnerable in this 

disease.  Aβ 1-42 oligomers (Aβ42O) were applied to the hPSC-neurons for 48 hours, at 

concentrations of 0.1, 0.5 and 1 μM, to investigate the molecular tau-related pathology 

induced by this treatment.   

The following paragraphs review the molecular tau-related pathology found within these 

models and compare this to that observed within the nbM tissue of AD patients and to 

previously reported pathology. 

7.2.1  The ability of hPSC-neurons treated with Aβ42O to model tau 
pathology in AD 

7.2.1.1  MAPT expression, levels of tau and the phosphorylation of tau  

The presence of increased levels of tau and abnormal hyperphosphorylation of tau are 

considered the hallmarks of AD pathology alongside Aβ pathology (Luna-Munoz et al., 2007) 

but these are not recapitulated within this sAD model.  Levels of total tau were not increased 

within Nas 2-bfCNs, Shef 6-bfCNs or Shef 6-CGNs after the application of any concentration 

(0.1, 0.5 or 1 μM) of Aβ42O over 48 hours.  While this was not surprising since no other sAD 

hiPSC-model has replicated the increased levels of tau found in the AD brain, recapitulation 

of increased tau levels has been achieved in two fAD hiPSC-models (Moore et al., 2015; Choi 

et al., 2014).   

Through determining the properties of models in which increased total tau was 

demonstrated, we may be able to understand how this sAD model can be improved upon in 

the future.  One sAD model, based on the application of Aβ to hiPSC-neurons over 8 days, 

reported similar levels of total tau after treatment (Nieweg et al., 2015), which suggests that 
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the lack of recapitulation of increased total tau would not be overcome by lengthening the 

period of Aβ treatment from 48 hours up to 8 days.  It remains to be determined whether 

treatment with Aβ42O throughout the differentiation and maturation of hiPSC-neuron 

cultures could bring about an increase in total tau.  Additionally, hiPSC-CGNs within the 

model reported by Nieweg and colleagues were matured for approximately 14 weeks after 

the start of the differentiation protocol as opposed to 50 days for hiPSC-CGNs in this study, 

suggesting that further ‘ageing’ of the cells through prolonged culture would not coax the 

appearance of increased levels of tau either.   

Moore and colleagues reported increased levels of total tau in V717L APP or APP duplication 

hiPSC-forebrain neurons cultured for 90 days.  These cultures were described as three 

dimensional (3D) as these had developed into thick monolayer cultures over a culture period 

of 90 days (Moore et al., 2015).   Choi and colleagues also reported increased total tau within 

3xfAD (K670N/M671L,V717L APP/ΔE9 PSEN1) hiPSC-neurons cultured for approximately 70 

days within a 3D culture system (Choi et al., 2014).  As other hiPSC-models based on fAD 

mutations have also failed to demonstrate increased levels of tau protein, these models 

suggest that culture of hiPSC-neurons within 3D culture systems may allow for this aspect of 

AD to be replicated.   One explanation for this, given by Moore and colleagues, could be that 

3D culture systems allow for the accumulation of tau within neurons.   

No statistically significant changes in tau phosphorylation levels at sites Ser202 or Ser396/404 

were brought about through the treatment of hPSC-bfCNs with 0.1, 0.5 or 1 μM Aβ42O or of 

hPSC-CGNs treated with 0.5 μM Aβ42O, over a period of 48 hours.  Nieweg and colleagues 

reported increased levels of pSer202/Thr205 tau, as well as pThr231 tau, within hiPSC-

neurons cultured for 14 weeks and treated with Aβ for 8 days (Nieweg et al., 2015), 

suggesting that increased ‘ageing’ of neurons through longer culture periods or the 

application of Aβ over a longer period may be necessary to achieve changes in ptau within 

sAD hiPSC-neuron models based on the application of Aβ to otherwise healthy neurons.  

Indeed, within studies using hiPSC-neurons derived from patients with fAD long-term culture 

has been demonstrated to be necessary before observed ptau levels significantly exceed 

those of controls.  For example, Raja and colleagues detected increased ptau at 90 days but 

not at 60 days (Raja et al., 2016).   

No significant change in the expression of MAPT was found within hPSC-bfCNs and hPSC-

CGNs treated with Aβ42O, which reflects levels of MAPT expression within AD patient nucleus 
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basalis of Meynert (nbM) tissue found in this study.  These results align with recently 

reported levels within AD brain tissue (Fukasawa et al., 2017; Farnsworth et al., 2016) and 

fAD hiPSC-glutamatergic neurons (Moore et al., 2015).   

7.2.2  Activity levels and expression of kinases 

The levels, activity and gene expression of tau kinases GSK3β, Cdk5 and PAK3 were 

investigated within these hPSC-neurons after treatment with Aβ42O.  The purpose of this 

work was to investigate the AD-related pathways through which Aβ influences the tau 

kinases GSK3β, Cdk5 and PAK3.  

Within Shef 6-CGN treated with 1 μM Aβ42O and Nas 2-bfCN treated with 0.5 or 1 μM Aβ42O, 

no significant difference in the gene expression of GSK3β was found compared to controls, 

in line with levels found in AD patient nbM tissue.  These results disagree with reported 

downregulation of GSK3β within hiPSC-neurons derived from a patient with sAD (Hossini et 

al., 2015).   The activity of GSK3β has been demonstrated to be increased in V717L APP hiPSC-

CGNs and a within mixed population of hiPSC-derived neurons carrying a duplication of APP 

(Muratore et al., 2014; Israel et al., 2012).  In contrast, decreased GSK3β activity was 

indicated in Shef 6-CGN treated with 0.5 μM Aβ42O, while no difference in activity was noted 

for Shef 6-CGN cultures treated with 1 μM Aβ42O in comparison to controls.   

Similarly, in Nas 2-bfCN treated with 0.5 μM Aβ42O and Shef 6-bfCN treated with 1 μM Aβ42O 

CDK5 gene expression was unchanged by treatment compared to controls.  These results 

recapitulate CDK5 expression levels within AD nbM tissue, which were found to be not 

significantly different to controls, despite a decrease of 40% in mean value of gene expression 

compared to controls.  Within the literature, CDK5 expression has been reported to be 

downregulated in studies using large cohorts of patients (Fukasawa et al., 2017; Liang et al., 

2008), and within hiPSC-neurons derived from a sAD patient (Hallmann et al., 2015).  

However, no change in CDK5 expression has also been reported upon comparison of AD 

brains and health patient brains (Tandon et al., 2002).  Further investigation into the 

expression of CDK5 is required to clear this point of contention within the literature.  Within 

Shef-6 CGN treated with 1 μM Aβ42O, levels of p35 were decreased, suggesting increased 

Cdk5 activity, however, this was not found within Nas2-bfCN treated with 0.5 μM Aβ42O.   

These results suggest that Cdk5 and GSK3β activity is affected in different ways within these 

two cell types; bfCNs and CGNs.  As these represent the basal forebrain and cerebral cortex, 
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respectively, investigation using these may provide insight into the progression of AD.  

Additional research using these two hPSC-derived neuronal subtypes in tandem within 

investigations using hiPSC-neuron models would allow for further characterisation of their 

differences in response to Aβ42O.  Additionally, concurrent differentiation of hiPSC-bfCNs and 

hiPSC-CGNs from fAD patients would also be useful to confirm changes recognised through 

treatment with Aβ42O as fAD and sAD are generally associated with the same pattern of 

progression of aggregated Aβ and tau pathology in the brain.   

The levels of PAK3 were unaltered by treatment of Shef 6-CGN or Nas 2-bfCN with 1 μM and 

0.5 μM Aβ42O, respectively.  Additionally, gene expression of PAK3 was also unaltered by 

these treatments.  This result reflects gene expression within AD nbM tissue.  These results 

disagree with previous research demonstrating that PAK3 levels are decreased within the AD 

brain, however, these were examined within the hippocampus (Nguyen et al., 2008; Zhao et 

al., 2006).  It would be useful to carry out this investigation again with a larger cohort of 

patient brain tissue to rule out heterogeneity in the non-significant result.   

7.2.3  Comparison of levels of synapsin I in hPSC-neurons treated with 
Aβ42O  

Tau and Aβ pathology have been linked to the loss of synapses in AD mouse models and 

within AD patient brains, a parameter that correlates with cognitive decline in this disease 

(Palop and Mucke, 2010; Palop et al., 2006).  Treatment of Shef 6-CGN with 1 μM Aβ42O 

replicated the loss of synaptic proteins reported in AD, indicating that this particular 

treatment of hPSC-derived CGNs would be useful for investigating the mechanisms 

underlying synaptic loss in this disease.  Treatment of Nas 2-bfCN with 0.5 μM Aβ42O, 

however, failed to replicate this important feature of neuropathology.  This disparity could 

be due to differences in the reaction of the two cell types studied to the application of Aβ, 

discussed in Chapter 5 (Chapter 5).  Aβ42O bring about missorting of tau into the dendrites, 

which leads to the loss synapses (Zempel et al., 2010). 

7.2.4  Varicosities  

In Nas 2-bfCNs, treatment with 1 μM Aβ42O resulted in the development of varicosities within 

the lengths of select neurons containing mitochondria and an abnormal conformation of tau 

associated with tau pathology in AD.   Axonal varicosities are well documented in AD (Geula 

et al., 2008; Grutzendler et al., 2007; Notter and Knuesel, 2013; Terwel et al., 2002) and are 
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thought to represent microtubule transport dysfunction, leading to accumulation of cell 

organelles and pathological conformations of tau (Mertens et al., 2013; Krstic and Knuesel, 

2012; Khan and Bloom, 2016).  These varicosities are found in AD and have been previously 

replicated in AD hiPSC-neurons (Choi et al., 2014).   

7.2.5  Summary of results  

This model failed to replicate reported hyperphosphorylation of tau in AD at phosphorylation 

sites pSer202 and pSer396/404.  Since phosphorylation of tau is an important and invariable 

aspect of AD pathology this model may not be suitable for the investigation of pathology 

downstream of overt phosphorylation in tau.  No changes in total tau levels, usually found to 

be increased within AD brains, was observed deeming this model unsuitable for studying the 

causal mechanisms of tau accumulation in AD. 

The inability of this model to recapitulate important, previously reported AD pathology may 

be explained by more general limitations in modelling tauopathy using hiPSC-neuron models, 

described below (Chapter 7.3).  However, it is possible that these limitations also arise from 

the limitations of 48-hour treatment with Aβ42O to model AD.  This acute treatment may not 

be sufficient to induce changes that in human disease, culminate over decades to result in 

the pathogenic hallmarks of AD.   

Nevertheless, treatment of Nas 2-bfCNs with 1μM Aβ42O did cause the appearance of 

varicosities in neurons, recapitulating these found within the AD brain and suggesting that 

microtubule transport was affected by the treatment.  This model may, therefore, provide 

insights into microtubule transport deficits in AD within these human neurons.  Furthermore, 

treatment of Shef 6-CGNs with 1μM Aβ42O replicated the loss of pre-synaptic proteins, 

through decreased levels of synapsin I, recognised as an early event in AD pathology.   

Aβ-induced alterations in the activity of kinases were also recognised; levels of GSK3β activity 

were increased in Nas 2-bfCNs treated with 0.5 μM Aβ42O.  Additionally, decreased p35 

levels, indicative of decreased Cdk5 activity, were found within Shef 6-CGN treated with 1 

μM Aβ42O.  These results indicate that while overt changes in tau were not discovered, this 

model may be suitable for studying early changes in the molecular pathways that contribute 

to aberrant tau phosphorylation. 
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Finally, comparison of the different responses, in activity of tau kinases Cdk5 and GSK3β, to 

Aβ42O within these two cell types demonstrates that culture of specific neuronal subtypes 

derived from hiPSC may be used to understand the different behaviours of these cell types 

in AD.  These differences in kinase activity may explain the regional progression of AD with 

further research. 

 

7.3  Limitations and future development of models 

7.3.1  Limitations of hiPSC-neuron models to recapitulate the aged 
phenotype of neurons in the brains of patients with tauopathy 

Identifying phenotypes in hiPSC-neurons modelling tauopathies, where aging is the main risk 

factor, is challenging due to the current limitations of these models.  Upon the inception of 

hiPSC-neuron models it was suggested that the epigenetic profile of the donor patient cells, 

also known as ‘age memory’, may be retained by these cells allowing for the production of 

‘aged’ neurons.  Since then, it has become apparent that the ‘age memory’ is lost during 

hiPSC-reprogramming (Miller et al., 2013), therefore, the neurons derived from patient 

hiPSC-neurons are equivalent in age to those found during foetal development.  In terms of 

modelling tauopathy this property of hiPSC-neurons is particularly problematic; firstly, it is 

believed younger neurons may be more resilient to neurodegeneration caused by tauopathy 

and so the changes brought on over decades within human aged-neurons may not be 

recapitulated in these; and secondly these neurons produce only the foetal isoform of tau 

(3R0N) until day 365 (Sposito et al., 2015), whereas in AD and FTD all six isoforms of tau are 

involved in pathogenesis (Ghetti et al., 2015) preventing faithful recapitulation of disease.  

Additionally, foetal tau is heavily phosphorylated at many of the same sites found to be 

hyperphosphorylated in tauopathy, which may restrict identification of changes in 

phosphorylation of tau due to disease processes in these models.   

Currently, we do not have an ideal solution enabling this challenge to be overcome as the 

neurobiology of aging is poorly understood and therefore cannot be accurately replicated in 

vitro.  Protocols involving direct conversion of fibroblasts to neurons are reported to allow 

the production of neurons that retain the age-specific transcriptional profile of donor cells, 

which may support the development hiPSC-neuron models which are more susceptible to 

tau pathology (Mertens et al., 2015).  Miller and colleagues have expressed progerin, to 
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induce premature aging in hiPSC-neurons (Miller et al., 2013); when paired with genetic 

alterations resulting in tauopathy, this may allow for overt tau pathology to be replicated in 

these models, however, it is unknown whether tau pathology will occur through alternate 

molecular pathways to those which occur within the human brains of patients with these 

diseases.  Further optimisation of culture methods, for example through three dimensional 

(3D) culture, co-culture with other neural cell types and the use of optimised media 

compositions (Bardy et al., 2015), have been demonstrated to support earlier maturation of 

neurons, which may also improve the ability of these models to recapitulate tau pathology.   

7.3.2  Limitations of hiPSC-neuron models to recapitulate the latency of tau 
pathogenesis 

In these age-related tauopathies, pathology develops and progresses over decades.  

Furthermore, there is evidence suggesting that, during the progression of disease, pathways 

responsible for tau pathogenesis become modulated; for example, levels of PAK3 are 

reduced in early AD, and increased in late-stage AD (Chapter 1.3.3).  This may explain why 

tau hyperphosphorylation has not been observed in many hiPSC-models of tauopathy and 

why Raja and colleagues reported a lack of tau hyperphosphorylation in their hiPSC-model of 

AD at 60 days of culture, while at 90 days hyperphosphorylation of tau at Thr181 and Ser396 

was detected (Raja et al., 2016).  

Although the ability to culture hiPSC-neurons for extended periods has been recently 

drastically improved, with hiPSC-neurons reportedly cultured for 365 days (Sposito et al., 

2015), this time period of culture falls short of the 30 or so years required for the 

development of tau pathology within the human brain.  Furthermore, extended maintenance 

of these cultures is costly and technically challenging.  One solution to overcome this 

challenge may involve subjecting the cultures to environmental stressors to coax the early 

appearance of overt pathology, however, this may lead to the development of models that 

recapitulate the overt pathology of disease through different molecular pathways to those 

that occur in the adult brain, further obscuring the development of therapeutics aimed at 

interrupting these pathways.  This limitation of hiPSC-neuron modelling may constrain the 

use of the models for investigation of early-stage tau pathogenesis.   
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7.3.3  Limitations in recapitulating the disease niche 

A conspicuous limitation in the use of hiPSC-neurons to model tauopathy is the difficulty in 

replicating the complex disease niche of the human brain.  Some aspects of disease pathology 

have been demonstrated to be replicated in vitro, within this study and in previous studies 

detailed in Chapter 4.1 and Chapter 5.1, using hiPSC-neurons; however, the complex 

cytoarchitecture of the brain and the effects of interactions with other cell types in the brain 

are not modelled by monolayer cultures of pure hiPSC-neurons.  While these limitations of 

in vitro modelling are challenging to overcome, recent advancements presage the possibility 

of more physiologically accurate cultures in the future.   

Glial cells have important roles in tauopathy.  In AD, astrocytes associate with Aβ plaques 

(Rinaldi and Caldwell, 2013), are capable of internalising and degrading Aβ (Wyss-Coray et 

al., 2003; Koistinaho et al., 2004) and exhibit cellular stress, which is thought to contribute 

to neurodegeneration through decreased antioxidant support of neurons (Abramov et al., 

2003).  Microglial cells are important components of the inflammatory response recognised 

in AD pathology and microglial inflammatory activity has been demonstrated to be increased 

in AD, while protein clearance mechanisms are reduced (Sarlus and Heneka, 2017).  Microglia 

also play important roles in the molecular pathways that transduce Aβ-induced tau 

hyperphosphorylation, illustrated by Figure 1.2.3 (Figure 8.1, Chapter 1.2.3), through 

increased inflammatory response.  Future models of tauopathy would, therefore, benefit 

from the development of co-cultures of neurons with glial cells, aimed at replicating the 

disease niche more faithfully.   

Culturing hiPSC-neurons with primary murine and human astrocytes supports long-term 

culture, shortens the maturation period of neurons and supports maturation of functional 

synaptic connections (Kuijlaars et al., 2016; Odawara et al., 2014).  Astrocytes have now been 

derived from healthy, AD (Kondo et al., 2013) and FTDP-17 (Hallmann et al., 2017) patient 

hiPSC, which have also been demonstrated to improve the ability of neurons to produce 

mature action potentials and reduce variability associated with introducing astrocytes from 

different species or patients (Gunhanlar et al., 2017).   Recently, protocols for the derivation 

of microglia from hiPSC have been published (Haenseler et al., 2017; Douvaras et al., 2017; 

Muffat et al., 2016); one of these studies exhibited greater physiological accuracy in these 

models, demonstrating a decreased  pathogen-response pathway (Haenseler et al., 2017).  
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Future research using these models may help us to understand more clearly the molecular 

influence of these glial cells in tau pathogenesis in neurons.   

3D models of tauopathy have also been developed, which employ 3D scaffolds culture and 

the generation of cerebral organoids, described as miniature brain models, with discrete 

areas representing brain regions, in attempt to model the complexity of neural connectivity 

in the brain.  Four publications detailing 3D AD hiPSC-neuron models have been published 

(Lee et al., 2016; Zhang et al., 2014; Choi et al., 2014; Raja et al., 2016), which demonstrated 

AD phenotypes that could not be observed in 2D models.  Zhang and colleagues observed 

abnormal translocation of PAK within hiPSC-neurons in their 3D system, but not in a 2D 

system (Zhang et al., 2014), while Choi and colleagues, along with Raja and colleagues, have 

developed the only hiPSC-models of AD in which aggregates of tau and Aβ within neurons 

were observed (Raja et al., 2016; Choi et al., 2014).   

7.3.4  Overcoming clonal variability between hiPSC-neuron cultures 

Clonal variability, which affects the disease phenotype modelled by hiPSC-neurons created 

from the same person’s hiPSC, is well reported throughout the literature on modelling 

neurodegenerative disease using hiPSC-neurons (Hallmann et al., 2015; Martelli et al., 2012; 

Ehrlich et al., 2015; Yokobayashi et al., 2017; Sheridan et al., 2011).  A number of reasons 

have been suggested for this including sources of variation that occur during reprogramming 

and differentiation of these cells (Liang and Zhang, 2013; Vitale et al., 2012).   

It is possible to use gene editing techniques, such as zinc finger nuclease editing technology 

(Hockemeyer et al., 2009) and CRISPR/Cas9 (Seah et al., 2015) to create isogenic lines to 

overcome this, provided the disease being modelled has a genetic basis.   Future approaches 

to modelling may involve either genome editing or screening for clonal variability between 

lines in order to select lines that most successfully recapitulate disease. 
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7.4 Thesis summary 

During this project a model of FTDP-17 was produced that is capable of recapitulating 

important aspects of tau-related molecular pathology found within the brains of patients 

with this disease, indicating that this model is useful for the investigation of tau pathogenesis 

within FTDP-17, and to a lesser extent PiD.   

Within the hiPSC-neurons treated with Aβ42O to sAD, tau hyperphosphorylation or increased 

levels of tau found in AD were not recapitulated.  These did recapitulate the appearance of 

varicosities within neurons and the loss of synaptic proteins due to the presence of Aβ.  

Interestingly, bfCNs and CGNs derived from pluripotent stem cells, that were treated with 

the same concentration of Aβ42O, revealed different responses in the activity of tau kinases 

GSK3β and Cdk5.  These differences, which occurred in the absence of tau 

hyperphosphorylation, suggest that early in disease the dysregulation of tau kinases may vary 

between specific cell types.  Further clarification of these differences may inform on the 

regional progression of pathology within AD. 
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