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Abstract
This paper presents a numerical and experimental study of coupled bending-torsion vibration of a beam
loaded by a tendon-induced axial force. The rotating beam-tendon system is described using a set of partial
differential equations and free vibration analysis is performed. The model is validated against a bench-
top experiment which features a reinforced open-section cantilever beam subjected to tendon loading. A
satisfactory agreement between the numerical and experimental results is obtained and it is shown that the
tendon not only reduces the natural frequencies of the beam, but also introduces frequency loci veering.
The validated model is then used to perform a case study on the Bo105 helicopter to present some benefits
of incorporating a tendon in a rotorcraft blade, making a first step towards an active tendon concept. This
concept should eventually allow rotorcraft to operate with a variable rotor speed, thereby increasing their
performance and efficiency.

1 Introduction

In recent decades there has been a growing interest in many fields of technology, including civil, mechanical
and aerospace engineering, in active and adaptive control of structures [1]. A far-reaching motivation of this
study is to develop a new concept for rotorcraft blade control, whereby an active tensile member (hereafter
referred to as a tendon) would be used as a means of adaptively manipulating a rotor’s dynamic proper-
ties. Once this control mechanism has been perfected, it should also help to reduce air pollution and noise
emission, decrease a fuel burn and increase the overall performance of rotorcraft. These benefits would be
achieved by allowing rotorcraft to operate at a wider range of rotor speeds as opposed to the current state-of-
the-art designs where the rotor speed is almost constant in order to avoid potentially harmful resonances of
the blades [2]. This concept was already introduced in [3–5], but many of its aspects have not yet been fully
addressed and experimentally validated.

Tendons or other means of applying compressive axial loading have already been used in a number of ap-
plications, often as actuators or a means of vibration control. A comprehensive review of active cable and
tendon control can be found in [1, 6]. From a number of studies that utilised tendons, a few used a similar
configuration to the present one, i.e. a beam-like structure loaded by a tendon. For example, in [7, 8] a
tendon was used for vibration control of a simple cantilever beam. It was found that vibration energy of
the beam in a prescribed frequency range can be removed by applying and releasing the tension in a spe-
cific manner, thereby effectively suppressing the vibration of the beam. These studies mainly focused on
the control aspects of the problem, but the modelling of the dynamic response was also performed using the
Euler-Bernoulli beam theory and the presence of the tendon was accounted for by an axial force. The same
approach of modelling a beam-cable system was also employed in [9] with the difference that the tendon was



made of a shape-memory alloy. It was shown therein that in addition to the vibration suppression by means
of an active control, a significant amount of damping can be introduced to the system by the tendon. In the
previous studies, simple beam models with an axial force were considered, partly because the dynamics of
such axially-loaded beams has been well understood [10]. In contrast, the use of cable that is mounted inside
a helicopter tail boom for response suppression was numerically and experimentally investigated in [11].
Unlike in the previous studies, the system was modelled using the finite element method. It was shown
that the cable can be tuned as a active vibration absorber which not only positions an antiresonance at the
excitation frequency for a critical location on the primary structure, but also shifts the natural frequencies of
the system. The interaction between the primary structure and the cable in terms of eigenvalue curve veering
was also observed.

The present paper deals with the dynamic analysis of the beam-tendon system which is an idealisation of the
active tendon concept whose development motivates this study. The present paper extends [3] by considering
the bending-torsion coupling of the primary beam and using a more sophisticated model of the tendon. To
the best knowledge of the authors, the same means of modelling has not yet been reported in literature.
The paper is organised as follows: in section 2 the mathematical model of the beam-tendon system and the
numerical approach used to obtain the modal properties are introduced. Then, the experimental set-up is
described in section 3 and the computed results are compared to the experimental ones. In section 4 it is
briefly shown how the presence of the tendon modifies the rotor properties of the Bo105 helicopter. Lastly,
the discussion and future challenges are given in section 5.

2 Modelling approach

The system under consideration is a rotating straight cantilever beam with a cross-section which has one axis
of symmetry (therefore featuring bending-torsion coupling) and is axially loaded by a tendon. The tendon
is attached to the beam’s tip, passes through its whole body (parallel to the neutral axis) and is fixed at the
same location as the beam. The tendon can be placed in any location on the axis of symmetry of the cross-
section. A tip mass which serves as a tendon attachment point is located at the free end of the beam (see the
experimental set-up in Fig. 1 for detail).

The beam is modelled by means of the Houbolt-Brooks equations [12] which were modified to include
the effect of the tendon-induced axial force while the tendon is modelled using the wave equations [13]
augmented by the effects of centrifugal forces. The blade and tendon are coupled via the boundary conditions
at the tip (free end). At the root, both are fixed so their displacements are equal to zero. At the tip, the
displacement of both are identical and the tendon-induced axial force contributes to the shear and moment
conditions of the blade. Since the tendon is free to vibrate inside the blade, no other connectivity conditions
were enforced.

A set of partial differential equations (PDEs) describing the blade with the tendon can be written as (the
terms that are not included in the original Houbolt-Brook equations [12] are underlined and the pre-twist
β(x) is equal to zero)(
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where ˙(•) and (•)′ are time and spatial partial derivatives, respectively, w(t, x), v(t, x) are, respectively,
flapping (out-of-plane of rotation) and lead-lag (in-plane of rotation) bending displacements of the beam,
φ(t, x) is a torsional displacement, x is the independent spatial variable measured along initial position of
the elastic axis (0 ≤ x ≤ R),R is the length of the beam, t is time,EI1 andEI2 are the flapping and lead-lag
rigidity, respectively, GJ is the torsional rigidity, eA is the distance between tensile and elastic axes, e is the
distance between mass and elastic axes, Ω is the angular velocity of rotation, m is the mass of the beam
per unit length, kA is the polar radius of gyration of cross-sectional area, km1 and km2 are the polar radii of
gyration, km is the polar radius of gyration of cross-sectional mass about elastic axis, βy is a cross-sectional
parameter, wt(t, x), vt(t, x) are flapping and lead-lag transversal displacements of the tendon, respectively,
P is the applied tension (always positive) of the tendon, mt is the mass of the tendon per unit length, and
eP determines the position of the tendon. If eP = 0 the tendon coincides with the elastic axis whereas for
eP = e with the mass axis. The centrifugal forces acting on the beam and the tendon are given by

T = Ω2

R∫
x

mx̂ dx̂, Tt = Ω2

R∫
x

mtx̂ dx̂, (2)

Equations (1a)-(1c) are the modified Houbolt-Brooks equations which include the tendon-induced axial
force P . Since these equations are based on the Euler-Bernoulli theory, which neglects the transverse shear
deformation, rotary inertia effects and warping, an infinitely rigid planar cross-section that remains planar
and normal to the elastic axis after the deformation is assumed [14]. Equations (1d) and (1e) are the wave
equations describing the motion of the tendon under the assumption that its cross-sectional area remains
unchanged during deformation (the Poisson’s effect is not included) [13].

The PDEs are accompanied by an appropriate set of boundary conditions (BCs) which ensure the coupling
between the tendon and the beam at the tip. The boundary conditions at the fixed end (for x = 0) are

v = w = φ = v′ = w′ = wt = vt = 0, (3)

and at the free end (for x = R)

Q = 0 = (GJ − P (e− eP )βy − Pk2A)φ′, (4a)

My = 0 = EI1w
′′, (4b)

Mz = 0 = EI2v
′′ + PeP , (4c)

Vz = 0 = −M ′y +mtipẅ − Pw′ + Ω2mexφ+ Pw′t, (4d)

Vy = 0 = −M ′z +mtipv̈ − Pv′ + Ω2mex+ Pv′t, (4e)

wt = w + ePφ, (4f)

vt = v + eP , (4g)

where mtip is the mass located at the tip. Equation (3) prescribes zero displacements and slopes of the
blade, and zero displacements of the tendon at the fixed end. Equations (4a)-(4c) prescribe zero torque and
moments (including the moments induced by the tendon) at the tip of the blade. The blade is coupled with the
tendon through the shear boundary conditions (Eqs. (4d) and (4e)), and the displacement equality at the tip
enforced by Eqs. (4f) and (4g). The tip mass, characterised by mtip, also contributes to the shear boundary
conditions at the tip.

It should be noted that while the rotating beam-tendon system has not yet been studied in literature, a beam
featuring the bending-torsion coupling loaded by an axial force placed in an arbitrary position of the cross-
section has been previously considered. In particular, in [15,16] a system of equations describing such beam,
albeit without inertial forces (m = 0), was used to analyse its structural stability. The same set of equations,
augmented by the inertial forces (m 6= 0), was also used in [17] to investigate the response to deterministic



and random excitation. The PDEs introduced in Eqs. (1a)-(1c) reduce to the equations used in [17] when the
centrifugal force T is removed, and to the equations used in [15, 16] for m = 0.

In order to evaluate the modal properties (natural frequencies and mode shapes) of the beam-tendon system,
an assumption of the normal mode is used. A solution of any given dependent variable is expressed as
the multiplication of the time-invariant mode shape and the time-varying harmonic function of the constant
frequency in the following form

w(t, x) = W (x)eiωt, v(t, x) = V (x)eiωt, φ(t, x) = φ(x)eiωt,

wt(t, x) = Wt(x)eiωt, vt(t, x) = Vt(x)eiωt.
(5)

Substituting the normal mode forms into Eqs. (1) and (4) allows one to eliminate time and rewrite the PDEs
into a system of first order ordinary differential equations (ODEs) that, together with the BCs, define a
boundary value problem. This boundary value problem can then be solved by a Matlab bvp4c solver [18]
for unknown natural frequencies ω and corresponding mode shapes W (x), V (x), φ(x), Wt(x) and Vt(x).
This solver is very versatile since it uses a collocation method but may suffer from a decreased numerical
performance if an appropriate starting guess is not provided.

3 Experimental validation

In this section, the theoretical model is validated using a bench-top experiment. A similar experiment has
been already presented in [3], where the pure bending of an Euler-Bernoulli beam loaded by a tendon has
been considered.

3.1 Experimental set-up description

The picture of the bench-top experiment can be seen in Fig. 1. The beam (whose properties are detailed in
section 3.2) is rigidly clamped at one and free at the other end. The tendon is attached to the tip mass mounted
at the free end of the beam, and passes freely inside the beam towards the clamp where its flexural motion is
constrained. The tendon then continues through the clamp and pulley and is attached to a hanging platform.
The tension of the tendon, and hence the axial load applied to the beam, is controlled by the amount of mass
placed on the platform. The tendon can be attached in several discrete positions along the cross-sectional
axis. Two notable positions, i.e. the mass and elastic axis, that are further discussed in this paper are marked
in the inset in Fig. 1. The applied tension and the placement of the tendon will be shown to have an influence
on the dynamic response of the system.

The beam is excited using a modal shaker to obtain frequency response functions (FRFs). A shaker was pre-
ferred to a modal hammer because of the repeatability that is required due to a large number of measurements
needed to validate the theoretical model for a wide range of loading cases. Moreover, it was also observed
in [3] that few tendon-dominated modes can be excited using a modal hammer. The shaker was controlled
via a modular control and data acquisition (DAQ) system. Random excitation, which linearises possible
weak non-linearities, such as the friction between the tendon attachment and the tip mass, was used to excite
the frequency range between 5 and 400 Hz. The response data were collected from the tip using two small
uni-directional accelerometers placed perpendicularly to each other. A higher number of accelerometers was
not used because it was found that their combined mass had a significant disturbing influence on the modal
properties of the beam. The laser displayed in Fig. 1 was not used in this study.

The response data and the input force were used to estimate the FRFs using the Hv-estimator [19] for the all
considered load cases. The load was varied using the weight plates in one kilogram increments from 1 kg to
44 kg. The natural frequencies (damping and mode shapes are not discussed in this paper) were estimated
using the least-square complex frequency (LSCF) estimator [20].
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Figure 1: Experimental set-up. The cantilever beam subjected to the tendon-induced axial force generated
by the applied load is excited by a shaker to obtain the frequency response functions for the estimation of
modal properties which are then used to validate the theoretical model.

3.2 Nominal channel beam and tendon properties

A beam with the channel cross-section, which was reinforced by several braces (see Fig. 1), was used to
validate the theoretical model. The selection of this beam was a compromise based on the following criteria
which were proposed to ensure that the effect of the tendon is observable while the beam is a representative
idealisation of a rotorcraft blade:

• Bending-torsion coupling - most modern rotocraft blades exhibit a certain amount of bending-torsion
coupling. This coupling is introduced due to their design and the use of composite material. In the
present study, the beam was made of aluminium, so the coupling was introduced through the choice
of the cross-sectional geometry.

• The number of modes - the number and character of the vibration modes (flapping, lead-lag, torsional
or coupled) should be similar to a typical rotorcraft blade. For the Bo105 helicopter studied in section 4
there are 10 modes between 5 Hz and 450 Hz. The experimental beam was designed in such a way that
it has similar number and character of modes in a comparable frequency range. This was achieved by
the choice of the material (aluminium) and geometry of the beam.

• The effect of the tendon - The tendon should produce observable effects in the investigated loading
range. In particular, the reduction of the natural frequency for the first two modes should be at least
5 % of their nominal values. In order to achieve such reduction, the rigidity of the beam was lowered
by using a thin-walled profile.

• Boundary conditions - a typical hingeless rotorcraft blade is fixed at the root and free at the other end.
In addition, a tip mass is often used to improve the overall performance, vibration and acoustics of
helicopters [21]. Therefore, a cantilever beam with a tip mass (which acts as an attachment point for
the tendon) was used.



• Euler-Bernoulli theory - The theoretical model was derived based on the Euler-Bernoulli theory which
neglects the transverse shear deformation, rotary inertia effects and sectional warping. Therefore, the
experimental beam should be in line with the idealisation used. However, due to the previous require-
ments (open, thin-walled profile needed to emphasise the tendon effects and bending-torsion coupling),
the assumptions of the Euler-Bernoulli theory would be violated. Therefore, it was attempted to rein-
force the beam with several braces to minimise the influence of the neglected effects.

The nominal properties of the beam seen in Fig. 1 are R = 1 m, A = 9.47× 10−5 m2, EI1 = 169.30 N m2,
EI2 = 354.26 N m2, GJ = 2.42 N m2 and e = 0.0191 m. The beam was weighted and the mass was found
to be m = 0.2478 kg m−1. Likewise, the mass of the tip is mtip = 0.0269 kg. Other parameters can be
computed from the above parameters in a standard manner as outlined in [12, 22]. The tendon is made of a
steel wire with mt = 0.0125 kg m−1.

3.3 Validation of the theoretical model without the tendon

Before including the tendon into the experiment, the model of the beam with and without the tip mass was
validated. The purpose of this step was to obtain the underlying model of the beam, which is defined using
Eqs. (1a)-(1c) without the axial force P , as accurately as possible so that the effect of the tendon can be
studied separately.

Firstly, the beam without the tip mass is considered. The comparison of the experimental and computed
nominal natural frequencies can be found in Fig. 2. It can be seen in Fig. 2(c) that the relative error of almost
all modes is greater than 5 % with the greatest error over 15 % for 3rd lead-lag (3L-L) mode. Therefore, it was
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Figure 2: Comparison of experimental and computed natural frequencies without the tendon: (a) no tip
mass, (b) with tip mass, (c) error for no tip mass, and (d) error with the tip mass. xB-T means the xth mode
dominated by the bending-torsion motion, whereas xL-L is the xth lead-lag mode.



decided to update selected model parameters such that the difference between the two sets of frequencies is
minimised. The updating was performed using a single-objective multi-variable optimisation using a genetic
algorithm [23], whereby the objective function was defined by the error between the measured and computed
natural frequencies. EI1, EI2 and GJ were selected for the optimisation since the natural frequencies are
the most sensitive to these three parameters and their uncertainty.

The optimised bending and torsional rigidities, EI1, EI2 and GJ , were 89.11 %, 82.79 % and 95.54 % of
their nominal values, respectively. The resulting natural frequencies and their comparison with the exper-
imental values can be seen again in Fig. 2(a) and (c). Although the nominal parameters have not been
dramatically changed, the overall character of the error between the measured and updated frequencies is
very different. The error of almost all modes has decreased under the 5 % threshold. Unfortunately, the error
of the 3rd and 4th mode has increased while the error of the 9th mode (3L-L) decreased but remained higher
than 5 %. It is believed that if more parameters were used for the optimisation the resulting error would
be lowered. However, more parameters have not been used to avoid creating an artificial model matching
the limited set of experimental results. Moreover, it is also possible that the model used cannot accurately
represent the experimental beam due to the Euler-Bernoulli theory assumptions violation. This assertion will
be supported in section 3.4 where it is shown that the error is intrinsic to the model of the beam without the
tendon and therefore has negligible effects on the model with the tendon.

Having the parameters of the model for the beam without the tip mass updated, these parameters were used
to compute the natural frequencies of the model with the tip mass. The experimental and computed results
are again compared in Fig. 2(b) and (d). No additional updating was performed because the tip mass could
be easily measured. As expected, the magnitude of all natural frequencies reduced when the tip mass was
added. When compared to the experiment, it can be seen that the error of some modes even decreased.
Unfortunately, the error of the 3rd mode increased significantly, approaching 25 % and the error of 7th mode
(5B-T) has also exceeded 5 %. The errors of all other modes are lower than 5 % which is herein considered
as an acceptable error which can be explained by the violations of the Euler-Bernoulli theory assumptions
used in the theoretical model.

3.4 Validation of the theoretical model with the tendon

The Campbell diagram, which shows the dependence of the natural frequencies on the applied load, is
obtained for the case when the tendon coincides with the mass axis can be seen in Fig. 3. Two sets of
frequency loci can be distinguished in both the numerical and experimental data. There are ten beam-
dominated modes present which decrease very slowly with the increasing load (this effect is better seen
in Fig. 5). It can also be noticed that for very low applied load, these frequency loci are very close to those
obtained for the beam without the tendon. The other modes, which increase rapidly with the added masses,
are the tendon-dominated modes. Experimentally, seven of such modes were captured. However, there
would be many more for very low loading. Such modes have not been sufficiently excited in the experiment
and even numerically, they were not obtained. The inability of the solution method to find the higher modes
for low loading seems to be caused by the need to provide extremely accurate starting guess. Unfortunately,
due to a very large number of modes it is very difficult to find such a starting guess that would lead to all the
modes. The beam-dominated and tendon-dominated modes interact with each other through mode veering.
The number of veering regions is very high for the higher frequency regions and lower loading due to the
large number of the tendon-dominated modes in that region. A selected veering region is shown in Fig. 6
and discussed in more detail in section 3.6.

Overall, the agreement between the experiment and theoretical results is deemed to be satisfactory. In par-
ticular, the rapidly increasing tendon-dominated modes match the measured values very well. The computed
and experimentally measured beam-dominated modes exhibit the same trends with systematic discrepancies
manifested as frequency offsets. In order to explain the offsets and to emphasize the effect of the tendon,
four loading configurations are studied in Fig. 4 (for applied load equal to 1, 15, 30 and 44 kg).
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Figure 3: Comparison of the computed and measured Campbell diagrams. Rapidly increasing natural fre-
quencies belong to the tendon-dominated modes while almost constant frequency loci belong to the beam-
dominated modes.

The reduction of the natural frequency caused by the tendon is shown in Fig. 4(a). It can be seen that for
almost all captured modes, the frequency decreases with the increased applied load. In addition, the reduction
is much higher for the first mode (over 10 %) than for the rest of the modes. Some of the values for the first
three modes could not have been obtained (n/a in Fig. 4) because of the presence of veering in the Campbell
diagram (see Fig. 5 for detail of the first mode). While the reduction of the natural frequency depends on the
applied load, the errors between the experimental and computed values stay almost constant with increasing
load as evidenced by Fig. 4(b). A small variance of these errors can be explained by the standard experimental
errors.The error for the beam with the tip mass but without the tendon (from Fig. 2(d)) is shown Fig. 4(b) in
blue in order to demonstrate that the error for different loads cases is not only constant, but also comparable
to the error for the beam without the tendon. Since the error is invariant with the applied load while the
anticipated reduction of the natural frequency is observed, it can be concluded that the effect of the tendon
was captured correctly by the model. This also supports the previous assertion that the error in Fig. 2(d) and
the offset in the frequency loci in Fig. 3 is caused solely by the errors associated with the modelling of the
beam using the Euler-Bernoulli theory.
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due to the presence of veering.

3.5 The effect of the position of the tendon

All the results presented so far were obtained for the case where the tendon coincides with the mass axis of
the beam, as depicted in the inset of Fig. 1. Figure 5 compares the previous results with the results obtained,
both computationally and experimentally, for the tendon placed in the elastic axis. It can be seen that the
position of the tendon has an influence on the natural frequencies of the beam-dominated modes. The com-
puted results correspond to the experimental values qualitatively quite well although there are quantitative
differences. These differences, however, correspond to the error that is intrinsic to the model of the beam as
discussed in section 3.4. The results indicate that the higher reduction of the frequency can be achieved by
placing the tendon in the mass axis. This is in line with the conclusions of stability analysis made in [15,16]
that the critical load is at its maximum when the axial force coincides with the elastic axis.
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Although it is reasonable to expect that the measured frequencies produce smooth trends with increasing
loads, some small deviations can be observed in Fig. 5. These deviations are very small (not exceeding
0.1 Hz) and can be explained by the presence of the standard experimental errors. It is believed that these
small deviations caused a variance of the error shown in Fig. 4(b) which would be otherwise constant.
Furthermore, Fig. 5 also shows why some of the values in Fig. 4 were not evaluated. Specifically, for the
load equal to 1 kg it would be meaningless to compare the computed and measured frequencies, because the
computed values are influenced by veering caused by the tendon modes that have not been excited in the
experiment.

3.6 The veering in the beam-tendon system

In Fig. 3 a number of veering regions can be seen, one of which is enlarged in Fig. 6. The computed modes
are also added to illustrate the veering. Typical signs of veering can be observed - two modes converge, but
then suddenly diverge and continue on the trajectory of the other mode while swapping all their properties
including the damping ratio and mode shapes. It can be seen that the mode shape in inset 1a became the mode
shape in inset 3c which is located at the different frequency locus. Similarly, the mode shape in 3a swapped
with that in 1c. The frequency curve which passes through the veering regions unchanged is associated
with the motion of the tendon in the lead-lag direction. Since this motion is not coupled to bending-torsion
vibration of the beam, it is not influenced by the veering as also evidenced by the mode shapes in insets
2a-2c. A similar phenomenon was also observed in [11] for a symmetric cable where it raised concerns with
regards to the application of the tuned vibration absorber developed therein. The veering is a frequent and
important phenomenon occurring in the studied beam-tendon system as seen in Fig. 3 and will be therefore
studied closely in the future.

18 19 20 21 22 23 24

weight [kg]

120

125

130

135

140

145

n
at

u
ra

l 
fr

eq
u

en
cy

 [
H

z]

measured computed W(x) V(x) (x) Wt(x) Vt(x)

3a

3b

3c

1a 1b 1c

2a

2b
2c

Figure 6: Veering in the beam-tendon system. The mode shapes displayed have been obtained numerically.



4 A helicopter case study

This section describes an application of the tendon as a means of manipulating the dynamic properties of a
helicopter rotor blade, highlighting its benefits and potential as well as future challenges that will have to be
addressed.

4.1 Selected helicopter and rotor description

The selected helicopter is the Bo105, currently produced by Airbus Helicopters. The Bo105 is a light,
widely used, multi-purpose helicopter deployed in medical services, police, search and rescue, and military
missions. This helicopter was selected as its rotor blade structural and airfoil aerodynamic data are well
defined, and because this helicopter is used a reference aircraft in SABRE project [5].

The Bo105 features a four-bladed hingeless main rotor and a two-bladed teetering tail rotor. The main rotor
blade is used in this study since it is more suitable for the application of the proposed control mechanism. The
equivalent uniform structural properties of each Bo105 blade are R = 4.912 m, EI1 = 10 000 N m2, EI2 =
170 000 N m2, GJ = 4850 N m2, m = 5.5 kg m−1, km1 = 0.090 m, km2 = 0.0648 m, e = −0.01 m,
eA = 0 m, kA = 0.041 m and mtip = 0 kg. Since the blades have initial linear pre-twist characterised by
β(x) = −0.022x+ 0.0663 rad, this pre-twist was also considered in Eq. (1) in the same way as in [12]. The
Bo105 helicopter operates with the reference (nominal) rotor speed Ωref = 44.4 rad s−1. For the purpose of
this study, a nylon rope with mt = 0.0887 kg m−1 is used as a tendon and the reference tendon tension was
chosen to be Pref = 5250 N.

4.2 Selected results for the helicopter case study

The comparison of the baseline and modified frequency diagrams can be seen in Fig. 7(a). The blue solid
frequency loci represent the response of the baseline rotor with nominal parameters where the first ten modes
are considered, and the rotor speed is varied between 0 and 1.2 of the reference rotor speed Ωref . It might
appear that the dynamic behaviour of the rotor has been significantly changed by the tendon since many new
modes and veering regions, especially at higher frequencies, have emerged (red dashed lines). However,
after a close examination of the frequency diagram and related mode shapes (not shown), it can be found that
all new loci are related to modes that are dominated by the motion of the tendon and do not therefore have
a significant influence on the blade’s dynamics. However, the tendon does influence the blade-dominated
modes by reducing their frequency and by creating a number of veering regions. The former is at the moment
seen as the key effect of the tendon that can be utilised to control the dynamic behaviour of the rotor.

It can be noticed in Fig. 7(a) that there is a major difference between the behaviour of the blade- and tendon-
dominated modes. While the blade-dominated modes increase with the increasing rotor speed due to the
centrifugal effects, the tendon-dominated modes decrease. This is caused by the fact that the tendon, which
is modelled as a taut string, loses its tension due to the applied centrifugal force which leads to the rapid
decrease of its natural frequencies. The preceding observation indicates that should the tendon have a desired
effect, i.e. to influence the dynamic behaviour of the blade-dominated modes by shifting their frequencies,
the applied tension must be higher than the centrifugal force at that rotor speed. To meet this requirement,
the tendon tension must be actively controlled based on the variations in the rotor speed and other flying
conditions. Otherwise, the tendon-induced axial load could cause stability issues at the low rotor speeds
while having little effect at the operational ones. Such situation is depicted in Fig. 7(a) as well - while the
reduction of the first blade-dominated mode at the reference rotor speed is relatively minor, the same tendon
tension led to a complete disappearance of the first mode at the low rotor speed. The first mode emerges at
0.1 of the reference rotor speed. Such behaviour can potentially lead to the loss of stability and is therefore
one of the reasons why the active control of the tendon tension may be of paramount importance in the future.
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Figure 7: A case study of the Bo105 helicopter rotor blade with the tendon: (a) the comparison of the baseline
and modified frequency diagrams and (b) the relative frequency reduction at reference rotor speed evaluated
for three different positions of the tendon within the blade and a range of tendon tensions

The dependence of the relative frequency reduction on the applied tension and the position of the tendon in
the blade is shown in Fig. 7(b). Three different tendon positions have been considered - the tendon coincides
either with the elastic axis, mass axis or further behind the mass axis. It is seen that by increasing the applied
tension, the frequency reduction is increased as well. However, similar to the experiment this reduction is
not the same for all modes. For example, the frequency of the first flapping mode was reduced more than
the lead-lag one, which is in line with the experimental observation in Fig. 4. The position of the tendon
also has a considerable effect. In particular, the torsion-dominated mode is significantly influenced. While
the frequency of this mode reduces linearity in the investigated range of tension when the tendon coincides
with the elastic axis, the reduction is approximately quadratic when the tendon lies elsewhere. Moreover,
it seems that increasing the offset of the tendon from the elastic axis leads to a more substantial reduction
of the natural frequency of the torsional mode. Therefore, to achieve the optimal performance of the active
tendon in the future, not only the tendon tension must be controlled, but also the position of the tendon in the
airfoil must be considered.



5 Discussion

In previous sections, the theoretical model of the rotating beam-tendon system has been introduced, its
experimental validation has been conducted and a case study on the Bo105 helicopter has been presented. In
this section, the main findings, assumptions and limitations are discussed, and directions for the future work
are outlined.

The validation of the theoretical model given by Eq. (1) was conducted in section 3 using the natural frequen-
cies. The validation was performed on the beam exhibiting the bending-torsion coupling which was meant
to be a representative idealisation of a helicopter blade. In order to select the beam, a number of criteria,
summarised in section 3.2, have been used. Unfortunately, while attempting to design the beam which would
sufficiently demonstrate the tendon-induced effects, the assumptions of the Euler-Bernoulli theory were vi-
olated by selecting the thin-walled, open-section channel beam. Consequently, a good match was obtained
only for the tendon-dominated modes, while, despite having the correct trends, the natural frequencies of the
beam-dominated modes were offset from the measured ones. However, it was demonstrated using Fig. 2(d)
and Fig. 4(b) that the offsets are the same for all loading configurations. Therefore, they are not caused by
the tendon and merely originate from the violation of the Euler-Bernoulli assumptions. It can be therefore as-
sumed that if the beam was modelled with a better accuracy, the overall agreement between the experimental
and computational results would be improved.

It was found, both numerically and experimentally, that the tendon introduces two effects to the beam-tendon
system. Firstly, it reduces the natural frequency of the beam-dominated modes and, secondly, it creates a
number of veering regions. Both of these findings were also obtained in [3, 11], but the former was not
observed in other studies [7–9] where only the latter effect was captured while modelling the tendon as
an axial force. It was also observed that the position of the tendon inside the beam has an influence on
the quantitative and qualitative reduction in the frequencies. In particular, the torsional modes seem to
exhibit qualitative changes with the varying position of the tendon as shown in Fig. 7(b). However, reliable
experimental results for the varying position of the tendon were unfortunately obtained for only the first
mode, and, since no experimental results are available in literature, a general conclusion about the effect of
the tendon position cannot yet be formulated. In particular, the effect of the position of the tendon on the
torsional modes should be experimentally verified.

A number of assumptions have been considered to obtain the PDEs in Eq. (1) that describe the beam-tendon
system. Most importantly, the Euler-Bernoulli theory was used. In order to facilitate this theory, the trans-
verse shear deformation, rotary inertia effects and the sectional warping were neglected [14]. It is believed
that the violation of these assumptions in the experimental set-up led to an inaccurate match with the ex-
perimental data despite an attempt to reinforce the experimental beam by the braces. The Euler-Bernoulli
theory was used in this study to provide the first insights into the possibilities and challenges associated with
the tendon. However, for the future development of the concept, especially with regards to its application
in rotorcraft, a more general theory will have to be used. Although a large number of refined beam the-
ories is available in literature [14], the composite beam theory appears to be the most general and widely
accepted [24]. The use of the composite beam theory would be also preferable since the rotorcraft blades
are usually made of composite materials, and the theory is able to capture all required effects, including
warping and large deformation. The tendon was modelled as a taut string where it was assumed that its di-
ameter remains constant [13]. Since a light-weighted tendon that would be suitable for the final application
in rotorcraft will be most likely very compliant, its model will have to be adjusted. However, modelling
the Poisson’s effect in the wave equations renders the PDEs non-linear [13] and therefore unsuitable for the
design studies. Similarly, any non-linearities (caused for example by joints, friction or large deformations)
are currently not included in the analysis or experiment since their existence and importance are unknown.

The PDEs describing the beam-tendon system have been solved using a Matlab bvp4c solver [18] to obtain
the modal properties. This solver is known to be very versatile, but requires a good starting guess to find all
solutions in the frequency range of interest. In particular, it is very difficult to obtain the symmetric modes at
the same natural frequency. The presence of the symmetric or almost-symmetric modes is, however, inherent



to the system so, in order to make the solution approach more robust, a method that does not require a starting
guess should be used in further studies. Recently, a differential quadrature method (DQM) [25] has gained
some popularity in structural dynamics, so its use will be considered for the present problem as well.

In section 4, a case study of the Bo105 helicopter was presented. From the results, it can be concluded that
(i) the tendon can provide a means of reducing the natural frequencies of the blade-dominated modes, (ii)
the control of the tension must be used to avoid not only potentially harmful resonances but also stability
issues related to the tendon, (iii) the tendon position in the airfoil should be considered as a design variable
and (iv) the veering caused by the varying tension and rotor speed should be further explored. Although
the obtained results are encouraging, much work, such as a thorough consideration of aerodynamic stability
issues, needs to be conducted before the concept can be commissioned. Nevertheless, the results of the case
study highlighted the potential of the active tendon to provide a means of control required to adaptively
avoid the harmful resonances at different operational conditions. This, possibly in conjunction with other
morphing concepts [5], should enable rotocraft to operate over a wider range of rotor conditions, thereby
increasing their efficiency and decreasing their fuel burn, air pollution and noise emission in the future.

6 Conclusion

This paper presented a numerical and experimental study of the coupled bending-torsion vibration of the
tendon-loaded beam. The beam-tendon system was modelled using a set of partial differential equations and
the free vibration analysis was performed using the collocation method. A test rig consisting of an open-
section cantilever beam and the tendon that provides the axial load was used to experimentally validate the
theoretical model. A satisfactory agreement between the numerical and experimental results was obtained
and it was shown that the tendon not only reduces the natural frequencies of the beam, but also introduces
frequency loci veering. Since the study was motivated by the future application of an active tendon in rotor-
craft, the numerical model was augmented by considering the centrifugal effects and a case study performed
on the Bo105 helicopter showed that the active tendon concept has potential to influence the rotor blade
dynamic properties.
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