
                          Strain, T., Gunner, S., & Wilson, E. (2019). Estimation of Vehicle Counts
from the Structural Response of a Bridge. In 2019 International Conference
on Smart Infrastructure and Construction (ICSIC 2019) Thomas Telford
(ICE Publishing). https://doi.org/10.1680/icsic.64669.751

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1680/icsic.64669.751

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via ICE Publishing at
https://www.icevirtuallibrary.com/doi/10.1680/icsic.64669.751. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1680/icsic.64669.751
https://doi.org/10.1680/icsic.64669.751
https://research-information.bris.ac.uk/en/publications/estimation-of-vehicle-counts-from-the-structural-response-of-a-bridge(b043748b-4ed3-47fd-acc0-2cedae5f9f25).html
https://research-information.bris.ac.uk/en/publications/estimation-of-vehicle-counts-from-the-structural-response-of-a-bridge(b043748b-4ed3-47fd-acc0-2cedae5f9f25).html


751

DeJong, Schooling and Viggiani
ISBN 978-0-7277-6466-9
https://doi.org/10.1680/icsic.64669.751
Published with permission by the ICE under the CC-BY license. (http://creativecommons.org/licenses/by/4.0/)

International Conference on Smart Infrastructure and Construction 2019 (ICSIC): 
Driving data-informed decision-making

ESTIMATION OF VEHICLE COUNTS FROM THE 
 STRUCTURAL RESPONSE OF A BRIDGE 

T.J. Strain*1, S. Gunner2 and R.E. Wilson3 

1,2,3Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom 
* Corresponding author

ABSTRACT In this paper an offline method for counting vehicles travelling across a bridge through its structural response under loading is 
developed. Readings from a single vertically oriented accelerometer fixed to the bridge are normalised and then summarised by instantaneous 
amplitude envelopes. The envelopes for a single vehicle have a profile that is log-normal in appearance. Least squares fitting is used in 
conjunction with the Akaike information criterion to fit the envelope time series as the superposition of 𝑛𝑛 log-normal functions (other functional 
forms are also considered). It is hypothesised that this fit describes 𝑛𝑛 vehicles travelling across the bridge. This method is applied to data from 
a previous study on rapid deployment of structural health monitoring systems undertaken on the Clifton Suspension Bridge (CSB) in Bristol. 
The data from a single strain gauge-based accelerometer installed as part of a wireless sensor network (WSN) on the bridge is used and 
demonstrates the value added by this method to pre-existing asset monitoring systems. A prediction accuracy of 74% is achieved on a labelled 
test set.  

1. Introduction

Structural health monitoring (SHM) systems enable those 
responsible for the safe and proper maintenance of critical 
infrastructure to make better data-driven decisions in order to 
ensure that damage and deterioration is properly managed. 
Sensors are fitted to an asset so that the displacement and 
acceleration of its structural components can be recorded. A 
great deal of work in applying novel sensing capabilities is 
undertaken in this area. Chan et al. (2006) installed Fiber Bragg 
grating sensors to take strain measurements of the Tsing Ma 
bridge in Hong Kong. Their optics-based sensing capability 
provided comparable strain measurements to a previous study. 
Oh et al. (2015) implemented a vision-based system to monitor 
the acceleration of a building from a multi-camera installation. 
Their system captured identical behaviour to traditional 
accelerometers. To monitor the entirety of an asset, sensors are 
often deployed at various locations as part of a wireless sensor 
network (WSN), such as a WSN of video cameras to monitor 
the structural health of a bridge (Basharat, et al., 2005). 

Sensing capabilities like these provide rich data sources to 
perform remote and intelligent SHM. However, what is less 
well researched is using the information from these sensors for 
a secondary purpose. Once a sensing capability has been 
installed onto an asset for SHM, there are no other costs besides 
the required maintenance of the WSN, and there is great 
potential to add value by using the data for other purposes. 

This paper describes a method that reuses data from 
accelerometers installed as part of a WSN on the Clifton 

Suspension Bridge (CSB) in Bristol. Originally installed as a 
feasibility study in deploying SHM systems on the bridge, the 
sensors monitored the acceleration and displacement of the 
CSB over a two-month period. In this paper, a method is 
developed to count the number of vehicles that cross the bridge 
from the accelerometer data. Traditionally inductance loops are 
used to count vehicles, however, they are expensive to install 
and require the road to be closed and dug up. A method that 
can count vehicles by using already available data might 
therefore represent savings both in cost and in time. 

2. Background

In January 2017 a WSN was fitted to the CSB for a study in 
rapid deployment of SHM systems (Gunner, et al., 2017). From 
25 January to 16 March 2017, the bridge’s structural response 
was captured and stored so that any changes in the bridge’s 
physical condition might be monitored. 

The CSB stands at 75m above the River Avon and spans 214m 
across the Avon Gorge joining Clifton to Leigh Woods. The 
deck is suspended via 81 pairs of vertical iron rods. Since its 
opening in 1864, the bridge has remained an important piece 
of infrastructure, carrying three million vehicles every year 
(Yeung & Smith, 2005). The bridge has one lane in each 
direction that is accessible to cyclists. A 20mph speed limit is 
in force on the bridge and so it takes a minimum of 24 seconds 
to drive across the entire span. There is a footpath on each side 
of the bridge for pedestrians. 
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Figure 1 Sensor deployment in the CSB trial. The 
Clifton end is in the foreground and the Leigh Woods 
end is furthest away from the viewer. The camera is 
pointing in a broadly westerly direction. 

 

A toll barrier at each end of the CSB records when a vehicle 
enters the bridge, truncated to the nearest minute. Vehicles 
travelling towards Leigh Woods pass through the toll barrier at 
the Clifton end of the bridge and vice versa. There is no 
information available on when cyclists and pedestrians enter or 
leave the bridge.  

Since a large number of vehicles use the CSB (over 8,000 per 
day on average), the toll barrier data, together with the 
structural responses captured in the study, provide a rich data 
set to help develop a vehicle count estimation method. Due to 
its age and design, the CSB is more compliant under loading 
than modern bridges. Hence the deflections due to vehicles 
tend to be larger and more easily identifiable. 

2.1 Sensor deployment 
Due to time and cost constraints, just four accelerometers were 
deployed on the bridge, in two pairs. Each pair straddles the 
width of the bridge deck, with one accelerometer on the north 
side and one on the south side, so that both vertical 
and torsional displacement can be measured. Each 
accelerometer is identified by the vertical iron 
suspension rod it is closest to, counting from the middle of the 
span, and whether it is on the north or south (N or S) side of 
the bridge, see Figure 1. The accelerometers have a range of 
10ms-2, a sampling rate of 4,000 readings per minute and a 
resolution of 5.2×10-5ms-2. The sampling rate which is 
relatively low, is chosen to prolong battery life, whilst 
resolving the principle modes of the bridge. 

The first accelerometer pair (11LW N and 11LW S) is placed 
26.8m from the midpoint, since Macdonald (2008) showed that 
this is the optimal location to pick up all of the deck’s natural 
frequencies up to 3Hz. 

The second pair (40 LW N and 40 LW S) is placed towards the 
Leigh Woods end of the bridge, where the structural response 
to a vehicle entering or exiting there is greatest. 

Finally, in addition to the accelerometers, displacement 
transducers were deployed at the north and south sides of the 
deck at the Leigh Woods end. The transducers measure vertical 
displacement, however, their data is not used in this study. 
A comprehensive description of the sensor deployment is 
provided in Gunner et al. (2017). 

2.2 Accelerometer windows 
Figure 2 shows two-minute windows of the bridge’s structural 
response to vehicles travelling across the bridge in each 
direction, where the directions are determined by the toll 
barrier data. The figure shows that accelerometers 11LW N and 
11LW S are featureless under loading for both directions of 
travel, whereas a clear response is observed in accelerometers 
40LW N and 40LW S. There is no obvious difference between 
the responses recorded by the 40LW N and 40LW S 
accelerometers, therefore we will only consider the 
acceleration recorded by 40LW N in this paper, which we 
denote as 𝑎𝑎𝑡𝑡 at time 𝑡𝑡. 

3. Data processing 

3.1 Segmentation and matching of accelerometer data 
In order to develop a method to count vehicles, the 
accelerometer data is segmented into windows with 
corresponding ground truth vehicle counts provided by the toll 
barrier data. 

The toll barriers record when a vehicle enters the bridge 
truncated to the nearest minute. That is, a vehicle arriving at 
time 𝑡𝑡 ≔ YYYYDDMM hh:mm:ss is attributed to  

𝑇𝑇(𝑡𝑡) ≔ YYYYDDMM hh:mm:00. (1) 

Minute by minute, we thus have counts for the number of 
vehicles that enter each end of the bridge. The accelerometer 
data 𝑎𝑎𝑡𝑡 can then be segmented into the corresponding one-
minute windows that begin at time 𝑇𝑇(𝑡𝑡).  

Consider the following situation. A vehicle enters the bridge at 
time 𝑡𝑡1, and is still travelling across the bridge at time 𝑡𝑡2 such 
that 𝑇𝑇(𝑡𝑡2) > 𝑇𝑇(𝑡𝑡1). In this case, the vehicle may cause a 
structural response in the one-minute window after that in 
which it enters the bridge.  

To ensure that all structural responses of a vehicle entering in 
a given minute are captured, we group that minute’s toll barrier 
data with the accelerometer data for that and the following 
minute, resulting in a two-minute window. 

Further, to prevent confusion with the structural response 
caused by vehicles that enter the bridge either before or after 
the selected minute, we take forward for analysis only those 

 
 

 
 
 

 

minutes for which the immediately preceding and succeeding 
toll barrier counts are zero. The accelerometer has a sampling 
interval of Δ𝑡𝑡 = 0.015s, and so each two-minute window of 
accelerometer data can be expressed as 𝑎𝑎𝑖𝑖, for 𝑖𝑖 = 1,2, … , 𝑚𝑚 
where 𝑚𝑚 = 8,000. 

Figure 2 Panels show accelerometer readings for two-
minute windows where respectively (a) two vehicles 
enter from the Leigh Woods end and (b) a single vehicle 
enters from the Clifton end. The structural responses to 
each vehicle are especially clear in these examples, 
however, they are not as clear in other windows. 

 
3.2 Instantaneous amplitude envelope computation 
To ensure that each window of accelerometer data has a similar 
minimum and maximum amplitude, a normalisation is 
performed on each window in the form 

�̃�𝑎𝑖𝑖 = 2 [ 𝑎𝑎𝑖𝑖 − min(𝑎𝑎𝑖𝑖)
max(𝑎𝑎𝑖𝑖) − min(𝑎𝑎𝑖𝑖)

] − 1,   (2) 

to give normalised readings �̃�𝑎𝑖𝑖 between -1 and 1. 

We now summarise accelerometer data in a smoothed form 
known as the instantaneous amplitude envelope (IAE) 
(Picinbono, 1997). We consider the three following methods 
for computing the IAE, see Figure 3. 

1. Peak to Peak.  The accelerometer data is replaced by 
a cubic spline that interpolates local maxima, 
provided they are separated by at least 𝑑𝑑 time-steps 
(Biswas & Si, 2011). Here 𝑑𝑑 = 5 was observed to 
achieve the required level of smoothing, but the 
computed envelope is not necessarily positive, so the 
method is discarded. 

2. Analytic Signal. The IAE is found from the 
magnitude of the discrete-time analytic signal (Reilly, 
et al., 1994). The computed envelopes are less smooth 
than we require, so the method is discarded. 

3. Moving Root Mean Square (MRMS). MRMS 
computes the root mean square from a window of 
width 2𝑤𝑤 that slides across the accelerometer data 
(Albu & Heydt, 2003). Thus smoothed readings �̂�𝑎𝑖𝑖 are 
found by  
 

�̂�𝑎𝑖𝑖 = √ 1
2𝑤𝑤𝑖𝑖 − 1 ∑ �̃�𝑎𝑖𝑖

𝑖𝑖+𝑤𝑤𝑖𝑖

𝑖𝑖−𝑤𝑤𝑖𝑖

 ,      
(3) 

where 𝑤𝑤𝑖𝑖 = min(𝑖𝑖, 𝑤𝑤, 𝑚𝑚 − 𝑖𝑖). The computed 
envelope is thus strictly positive, and a choice of 𝑤𝑤 = 
20 (window width of 0.6s) seems to give an 
appropriate level of smoothing. This method is used 
in the remainder of this study. 

Figure 3 Normalised accelerometer data for a two-
minute accelerometer window and the corresponding 
IAE computed by the three methods.  

3.3 Labelled data set  
The toll barrier data is inspected to find one-minute windows 
when one, two or three vehicles enter the bridge at one end, 
and no vehicles enter at the other end. Further, only windows 
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Figure 1 Sensor deployment in the CSB trial. The 
Clifton end is in the foreground and the Leigh Woods 
end is furthest away from the viewer. The camera is 
pointing in a broadly westerly direction. 

 

A toll barrier at each end of the CSB records when a vehicle 
enters the bridge, truncated to the nearest minute. Vehicles 
travelling towards Leigh Woods pass through the toll barrier at 
the Clifton end of the bridge and vice versa. There is no 
information available on when cyclists and pedestrians enter or 
leave the bridge.  

Since a large number of vehicles use the CSB (over 8,000 per 
day on average), the toll barrier data, together with the 
structural responses captured in the study, provide a rich data 
set to help develop a vehicle count estimation method. Due to 
its age and design, the CSB is more compliant under loading 
than modern bridges. Hence the deflections due to vehicles 
tend to be larger and more easily identifiable. 

2.1 Sensor deployment 
Due to time and cost constraints, just four accelerometers were 
deployed on the bridge, in two pairs. Each pair straddles the 
width of the bridge deck, with one accelerometer on the north 
side and one on the south side, so that both vertical 
and torsional displacement can be measured. Each 
accelerometer is identified by the vertical iron 
suspension rod it is closest to, counting from the middle of the 
span, and whether it is on the north or south (N or S) side of 
the bridge, see Figure 1. The accelerometers have a range of 
10ms-2, a sampling rate of 4,000 readings per minute and a 
resolution of 5.2×10-5ms-2. The sampling rate which is 
relatively low, is chosen to prolong battery life, whilst 
resolving the principle modes of the bridge. 

The first accelerometer pair (11LW N and 11LW S) is placed 
26.8m from the midpoint, since Macdonald (2008) showed that 
this is the optimal location to pick up all of the deck’s natural 
frequencies up to 3Hz. 

The second pair (40 LW N and 40 LW S) is placed towards the 
Leigh Woods end of the bridge, where the structural response 
to a vehicle entering or exiting there is greatest. 

Finally, in addition to the accelerometers, displacement 
transducers were deployed at the north and south sides of the 
deck at the Leigh Woods end. The transducers measure vertical 
displacement, however, their data is not used in this study. 
A comprehensive description of the sensor deployment is 
provided in Gunner et al. (2017). 

2.2 Accelerometer windows 
Figure 2 shows two-minute windows of the bridge’s structural 
response to vehicles travelling across the bridge in each 
direction, where the directions are determined by the toll 
barrier data. The figure shows that accelerometers 11LW N and 
11LW S are featureless under loading for both directions of 
travel, whereas a clear response is observed in accelerometers 
40LW N and 40LW S. There is no obvious difference between 
the responses recorded by the 40LW N and 40LW S 
accelerometers, therefore we will only consider the 
acceleration recorded by 40LW N in this paper, which we 
denote as 𝑎𝑎𝑡𝑡 at time 𝑡𝑡. 

3. Data processing 

3.1 Segmentation and matching of accelerometer data 
In order to develop a method to count vehicles, the 
accelerometer data is segmented into windows with 
corresponding ground truth vehicle counts provided by the toll 
barrier data. 

The toll barriers record when a vehicle enters the bridge 
truncated to the nearest minute. That is, a vehicle arriving at 
time 𝑡𝑡 ≔ YYYYDDMM hh:mm:ss is attributed to  

𝑇𝑇(𝑡𝑡) ≔ YYYYDDMM hh:mm:00. (1) 

Minute by minute, we thus have counts for the number of 
vehicles that enter each end of the bridge. The accelerometer 
data 𝑎𝑎𝑡𝑡 can then be segmented into the corresponding one-
minute windows that begin at time 𝑇𝑇(𝑡𝑡).  

Consider the following situation. A vehicle enters the bridge at 
time 𝑡𝑡1, and is still travelling across the bridge at time 𝑡𝑡2 such 
that 𝑇𝑇(𝑡𝑡2) > 𝑇𝑇(𝑡𝑡1). In this case, the vehicle may cause a 
structural response in the one-minute window after that in 
which it enters the bridge.  

To ensure that all structural responses of a vehicle entering in 
a given minute are captured, we group that minute’s toll barrier 
data with the accelerometer data for that and the following 
minute, resulting in a two-minute window. 

Further, to prevent confusion with the structural response 
caused by vehicles that enter the bridge either before or after 
the selected minute, we take forward for analysis only those 

 
 

 
 
 

 

minutes for which the immediately preceding and succeeding 
toll barrier counts are zero. The accelerometer has a sampling 
interval of Δ𝑡𝑡 = 0.015s, and so each two-minute window of 
accelerometer data can be expressed as 𝑎𝑎𝑖𝑖, for 𝑖𝑖 = 1,2, … , 𝑚𝑚 
where 𝑚𝑚 = 8,000. 

Figure 2 Panels show accelerometer readings for two-
minute windows where respectively (a) two vehicles 
enter from the Leigh Woods end and (b) a single vehicle 
enters from the Clifton end. The structural responses to 
each vehicle are especially clear in these examples, 
however, they are not as clear in other windows. 

 
3.2 Instantaneous amplitude envelope computation 
To ensure that each window of accelerometer data has a similar 
minimum and maximum amplitude, a normalisation is 
performed on each window in the form 

�̃�𝑎𝑖𝑖 = 2 [ 𝑎𝑎𝑖𝑖 − min(𝑎𝑎𝑖𝑖)
max(𝑎𝑎𝑖𝑖) − min(𝑎𝑎𝑖𝑖)

] − 1,   (2) 

to give normalised readings �̃�𝑎𝑖𝑖 between -1 and 1. 

We now summarise accelerometer data in a smoothed form 
known as the instantaneous amplitude envelope (IAE) 
(Picinbono, 1997). We consider the three following methods 
for computing the IAE, see Figure 3. 

1. Peak to Peak.  The accelerometer data is replaced by 
a cubic spline that interpolates local maxima, 
provided they are separated by at least 𝑑𝑑 time-steps 
(Biswas & Si, 2011). Here 𝑑𝑑 = 5 was observed to 
achieve the required level of smoothing, but the 
computed envelope is not necessarily positive, so the 
method is discarded. 

2. Analytic Signal. The IAE is found from the 
magnitude of the discrete-time analytic signal (Reilly, 
et al., 1994). The computed envelopes are less smooth 
than we require, so the method is discarded. 

3. Moving Root Mean Square (MRMS). MRMS 
computes the root mean square from a window of 
width 2𝑤𝑤 that slides across the accelerometer data 
(Albu & Heydt, 2003). Thus smoothed readings �̂�𝑎𝑖𝑖 are 
found by  
 

�̂�𝑎𝑖𝑖 = √ 1
2𝑤𝑤𝑖𝑖 − 1 ∑ �̃�𝑎𝑖𝑖

𝑖𝑖+𝑤𝑤𝑖𝑖

𝑖𝑖−𝑤𝑤𝑖𝑖

 ,      
(3) 

where 𝑤𝑤𝑖𝑖 = min(𝑖𝑖, 𝑤𝑤, 𝑚𝑚 − 𝑖𝑖). The computed 
envelope is thus strictly positive, and a choice of 𝑤𝑤 = 
20 (window width of 0.6s) seems to give an 
appropriate level of smoothing. This method is used 
in the remainder of this study. 

Figure 3 Normalised accelerometer data for a two-
minute accelerometer window and the corresponding 
IAE computed by the three methods.  

3.3 Labelled data set  
The toll barrier data is inspected to find one-minute windows 
when one, two or three vehicles enter the bridge at one end, 
and no vehicles enter at the other end. Further, only windows 
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for which no vehicles enter at either end in the preceding and 
the following minute are considered.  A two-minute window of 
IAE accelerometer data, corresponding to the selected minute 
and that which follows, is then extracted for analysis. Such 
quiet traffic conditions feature mostly at night-time, so the 
search was restricted to 10pm to 7am each night. In addition, 
this selection reduces the likelihood of structural responses to 
pedestrians or cyclists, whose ground truth numbers are not 
known. 

In total, we built a training set of 30 windows and a validation 
set of 120 windows, as shown in Table 1. Here the counts from 
the Leigh Woods and Clifton toll barriers are denoted by 𝑛𝑛LW 
and 𝑛𝑛C respectively. The training windows are used to tune the 
method in Section 4 and the validation windows are used to 
test its accuracy in Section 5.  

The method identifies the structural response to each vehicle, 
and thus automatically counts vehicles travelling across the 
bridge in each window. The method is developed to work both 
when the response is clear for each vehicle, as shown in Figures 
2 and 3, and when the bridge is busier.  

To summarise: each selected window is equipped with the 
count for each toll barrier 𝑛𝑛LW and 𝑛𝑛C, and a smoothed IAE 
time series �̂�𝑎𝑖𝑖 for 𝑖𝑖 =  1,2, … , 𝑚𝑚. For reference purposes, the 
time 𝑇𝑇(𝑡𝑡) (YYYYMMDD hh:mm:00) at which the window 
commences is also recorded.   

Table 1 Labelled data set of 30 training windows and 
120 validation windows. We collect 30 training 
windows with a single vehicle for training and 120 
validation windows for one, two and three vehicles. 

𝑛𝑛LW 𝑛𝑛C Training windows Validation windows 

 
1 0 15 20 
2 
3 
0 
0 
0 

0 
0 
1 
2 
3 

0 
0 
15 
0 
0 

20 
20 
20 
20 
20 

 

4. Method 

The bridge will exhibit a damped oscillatory response to 
loading. This response is multi-modal and complex. The 
general idea is to seek the optimal fit of the IAE with a 
simplified closed-form function that captures the number of 
vehicles crossing the bridge. Section 4.1 describes the method 
and Section 4.2 fits it to the training set. 

4.1 Derivation of the method 
We try to fit a function to the smoothed IAE time series, �̂�𝑎𝑖𝑖 for 
𝑖𝑖 = 1,2, … , 𝑚𝑚. The IAE begins at time 𝑡𝑡0, and the 𝑖𝑖th reading 

�̂�𝑎𝑖𝑖, is recorded at  𝑡𝑡 = 𝑡𝑡0 + 𝑖𝑖Δ𝑡𝑡. This provides a mapping from 
the discrete time index 𝑖𝑖 of the IAE, to continuous time 𝑡𝑡. 

4.1.1 Single vehicle: We use the basis function 𝑓𝑓(𝑡𝑡; 𝜽𝜽) to fit the 
IAE of the bridge’s structural response under the loading of a 
single vehicle. We assume that the function is smooth and is 
parameterised by 𝑝𝑝 parameters, 𝜽𝜽 = [𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑝𝑝].  

In addition, we include a scaling parameter 𝛾𝛾 to account for 
different envelope amplitudes, and a shift parameter 𝜏𝜏 that 
locates the vehicle within the two-minute window. Thus we fit 

𝑔𝑔(𝑡𝑡; 𝜽𝜽, 𝛾𝛾, 𝜏𝜏) = γ𝑓𝑓(𝑡𝑡 − 𝜏𝜏, 𝜽𝜽).     (4) 

4.1.2 Multiple vehicles: Under a linear superposition 
assumption, we model the structural response to 𝑛𝑛 vehicles by 
the weighted sum of 𝑛𝑛 single-vehicle basis functions in the 
form 

𝑔𝑔𝑛𝑛(𝑡𝑡) = ∑ 𝑔𝑔𝑗𝑗(𝑡𝑡; 𝜽𝜽𝑗𝑗, 𝛾𝛾𝑗𝑗, 𝜏𝜏𝑗𝑗)  = 
𝑛𝑛

𝑗𝑗=1
∑ 𝛾𝛾𝑗𝑗

𝑛𝑛

𝑗𝑗=1
𝑓𝑓(𝑡𝑡 − 𝜏𝜏𝑗𝑗; 𝜽𝜽𝒋𝒋).    (5) 

The function 𝑔𝑔𝑛𝑛(𝑡𝑡) is parameterised by 𝑛𝑛(𝑝𝑝 + 2) parameters 
𝜽𝜽𝑗𝑗 = [𝜃𝜃𝑗𝑗1, 𝜃𝜃𝑗𝑗2, … , 𝜃𝜃𝑗𝑗𝑝𝑝], 𝛾𝛾𝑗𝑗 and 𝜏𝜏𝑗𝑗 for 𝑗𝑗 =  1,2 … , 𝑛𝑛. 

The chosen estimate 𝑛𝑛∗ for the number of vehicles, is then 
found by the putative ‘trial’ number of vehicles 𝑛𝑛 that 
minimises the mean square error (MSE),  

MSE ≔ 1
𝑚𝑚 ∑(�̂�𝑎𝑖𝑖 −  𝑔𝑔𝑛𝑛(𝑡𝑡𝑜𝑜 + 𝑖𝑖Δ𝑡𝑡))2

𝑚𝑚

𝑖𝑖=1
, (6) 

between the fitted function and the IAE.  

The parameters 𝜽𝜽𝑗𝑗, 𝛾𝛾𝑗𝑗 and 𝜏𝜏𝑗𝑗 are found in sequence. That is, the 
parameters that describe a single vehicle 𝜽𝜽1, 𝛾𝛾1 and 𝜏𝜏1, are 
solved for and fixed. Then, the parameters that describe a 
second vehicle, 𝜽𝜽2, 𝛾𝛾2 and 𝜏𝜏2, are solved for and fixed, and so 
on.  

The procedure continues to add vehicles until the information 
criterion described in Section 4.1.3 tells it to stop. At this point, 
the procedure has arrived at its final estimate 𝑛𝑛∗.  

4.1.3 Akaike information criterion: To avoid over-fitting, the 
Akaike information criterion (AIC) (Akaike, 2011) is used to 
penalise the goodness of fit o𝑓𝑓 𝑔𝑔𝑛𝑛(𝑡𝑡) by the number of used 
parameters 𝑛𝑛(𝑝𝑝 + 2). The AIC is defined by  

2𝑛𝑛(𝑝𝑝 + 2) − 2log �̂�𝐿, (7) 

where log �̂�𝐿 is the maximum value of the log-likelihood 
function of the fit 𝑔𝑔𝑛𝑛(𝑡𝑡) given the IAE. The chosen estimate 𝑛𝑛∗  
is selected by the function that minimises the AIC. 

 
 

 
 
 

 

4.1.4 Auto-correlation and the likelihood function: Standard 
likelihood techniques make the assumption that the error terms 
between the fitted function and the IAE, 𝜀𝜀i =  �̂�𝑎𝑖𝑖 –  𝑔𝑔𝑛𝑛(𝑡𝑡0 +
𝑖𝑖Δ𝑡𝑡), are identically and independently distributed (iid). This is 
not an appropriate assumption when dealing with time series 
data, as consecutive errors are likely to be correlated.  

Instead, we assume that the errors follow an auto-regressive 
(AR) process. Each error is modelled as the weighted sum of 
the previous 𝑞𝑞 errors plus a noise term, which is assumed to be 
iid normally distributed with zero mean and variance 𝜎𝜎𝜀𝜀

2 in the 
form 

𝜀𝜀𝑖𝑖 =  ∑ 𝜙𝜙𝑘𝑘𝜀𝜀𝑖𝑖−𝑘𝑘 + 𝑁𝑁(0, 𝜎𝜎𝜀𝜀),
𝑞𝑞

𝑘𝑘=0
 

    
(8) 

where |𝜙𝜙𝑘𝑘| < 1 for 𝑘𝑘 =  0,1, … , 𝑞𝑞. The parameter 𝑞𝑞 is known 
as the order of the AR model, which is denoted as AR(𝑞𝑞). The 
AR coefficients 𝜙𝜙𝑘𝑘 (weights) define how correlated each error 
𝜀𝜀𝑖𝑖 is with the 𝑘𝑘th error before (𝜀𝜀𝑖𝑖−𝑘𝑘), known as the 𝑘𝑘th lag. 

The AR coefficients are determined by the Partial Auto-
Correlation Function (PACF) (Ramsey, 1974). In practice, 
software routines such as the parcorr function in Matlab can be 
employed to find the PACF. The choice of model order 𝑞𝑞 is 
described in Section 4.2.3 

The 𝑖𝑖th error from the AR process is then defined by 

𝜀𝜀�̂�𝑖 = 𝜀𝜀𝑖𝑖 − ∑ 𝜙𝜙𝑘𝑘𝜀𝜀𝑖𝑖−𝑘𝑘,
𝑞𝑞

𝑘𝑘=1
 (9) 

where 𝜀𝜀̂ ∼ 𝑁𝑁(0, 𝜎𝜎𝜀𝜀). 

Note the two-minute windows contain periods when there are 
no vehicles on the bridge, and therefore, there is no structural 
response, only background noise.  
 
So that we only consider data above the noise floor, a threshold 
𝛿𝛿 is set. We then consider only those �̂�𝑚 < 𝑚𝑚 errors 𝜀𝜀�̅�𝑖 for 
which �̂�𝑎𝑖𝑖 > 𝛿𝛿 for 𝑖𝑖 = 1,2, … , �̂�𝑚. Here the threshold 𝛿𝛿 is set to 
0.05ms-2, by visual inspection. 
  
The errors 𝜀𝜀�̅�𝑖 are also normally distributed with zero mean but 
with variance 𝜎𝜎�̅�𝜀

2. A standard calculation gives the log-
likelihood function for the fitted function 𝑔𝑔𝑛𝑛(𝑡𝑡) in the form 

log �̂�𝐿 = − �̂�𝑚
2 log (∑ 𝜀𝜀�̅�𝑖

2
�̂�𝑚

𝑖𝑖=1
) + 𝑐𝑐, (10) 

for constant 𝑐𝑐. Substituting Equation (10) into Equation (7) 
gives the quantity to be minimised. To summarise, in doing so 
we find the estimated number of vehicles that cross the bridge, 
from   

𝑛𝑛∗ = argmin
𝑛𝑛

 [2𝑛𝑛(𝑝𝑝 + 2) +  �̂�𝑚log (∑ 𝜀𝜀�̅�𝑖
2 

�̂�𝑚

𝑖𝑖=1
)]. (11) 

4.2 Training the method 
To determine the basis functions and various parameters in the 
method, we consider its application to a training set in which 
only one vehicle is present in each two-minute window, see 
Table 1. The restriction to single-vehicle set-ups is in order to 
factor out additional problems if the linear superposition 
assumption turned out to be poor. 

4.2.1 Choice of basis functions: We consider the basis function 
𝑓𝑓(𝑡𝑡; 𝜽𝜽) that models the IAE time series of the bridge’s 
structural response to a single vehicle entering the bridge at 
either end. A good basis function will give a small mean 
squared error in Equation (6) with 𝑛𝑛 = 1. 

Thus each selected IAE summarises the damped oscillatory 
response of the bridge to the dynamic loading caused by a 
single passing vehicle. The overall shape should be one with a 
rapid ‘attack’ and a gradual (probably exponential) decay. 
Inspired by probability theory, we considered the following 
three forms for the basis function, each of which has (𝑝𝑝 = 2) 
two parameters that control ‘location’ and ‘dispersion’ and thus 
the overall ‘shape’.    

log-normal: 

𝑓𝑓(𝑡𝑡; 𝜽𝜽) = 1
𝑡𝑡√2𝜋𝜋𝜎𝜎

exp (−
(log(𝑡𝑡) − 𝜇𝜇)2

2σ2 ) ,                

                                  𝜽𝜽 =  [𝜇𝜇, 𝜎𝜎] 
(12) 

gamma: 

𝑓𝑓(𝑡𝑡; 𝜽𝜽) = 𝛽𝛽𝛼𝛼

Γ(𝑎𝑎) 𝑡𝑡𝛼𝛼−1 exp(−𝛽𝛽𝑡𝑡),   𝜽𝜽 = [𝛼𝛼, 𝛽𝛽] 
  
(13) 

Weibull: 

𝑓𝑓(𝑡𝑡; 𝜽𝜽) = 𝑘𝑘
𝜆𝜆 (𝑡𝑡

𝜆𝜆)
𝑘𝑘−1

exp (− 𝑡𝑡𝑘𝑘

𝜆𝜆𝑘𝑘) ,   𝜽𝜽 = [𝑘𝑘, 𝜆𝜆]   (14) 

The quality of each function is computed by calculating the 
optimal MSE for each of the 30 single-vehicle training 
windows. Table 2 shows the mean MSE (MMSE), i.e., the 
average across the 30 windows. The log-normal fit is best and 
so log-normal basis functions are used going forward.  

4.2.2 Examination of the log-normal parameters: We now 
consider whether the log-normal parameters 𝜇𝜇 and  𝜎𝜎 are 
similar for each vehicle travelling across the bridge. If they 
were, they might be fixed in the fitting process so that only 𝛾𝛾 
and 𝜏𝜏 need be determined for each vehicle. 
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for which no vehicles enter at either end in the preceding and 
the following minute are considered.  A two-minute window of 
IAE accelerometer data, corresponding to the selected minute 
and that which follows, is then extracted for analysis. Such 
quiet traffic conditions feature mostly at night-time, so the 
search was restricted to 10pm to 7am each night. In addition, 
this selection reduces the likelihood of structural responses to 
pedestrians or cyclists, whose ground truth numbers are not 
known. 

In total, we built a training set of 30 windows and a validation 
set of 120 windows, as shown in Table 1. Here the counts from 
the Leigh Woods and Clifton toll barriers are denoted by 𝑛𝑛LW 
and 𝑛𝑛C respectively. The training windows are used to tune the 
method in Section 4 and the validation windows are used to 
test its accuracy in Section 5.  

The method identifies the structural response to each vehicle, 
and thus automatically counts vehicles travelling across the 
bridge in each window. The method is developed to work both 
when the response is clear for each vehicle, as shown in Figures 
2 and 3, and when the bridge is busier.  

To summarise: each selected window is equipped with the 
count for each toll barrier 𝑛𝑛LW and 𝑛𝑛C, and a smoothed IAE 
time series �̂�𝑎𝑖𝑖 for 𝑖𝑖 =  1,2, … , 𝑚𝑚. For reference purposes, the 
time 𝑇𝑇(𝑡𝑡) (YYYYMMDD hh:mm:00) at which the window 
commences is also recorded.   

Table 1 Labelled data set of 30 training windows and 
120 validation windows. We collect 30 training 
windows with a single vehicle for training and 120 
validation windows for one, two and three vehicles. 

𝑛𝑛LW 𝑛𝑛C Training windows Validation windows 

 
1 0 15 20 
2 
3 
0 
0 
0 

0 
0 
1 
2 
3 

0 
0 
15 
0 
0 

20 
20 
20 
20 
20 

 

4. Method 

The bridge will exhibit a damped oscillatory response to 
loading. This response is multi-modal and complex. The 
general idea is to seek the optimal fit of the IAE with a 
simplified closed-form function that captures the number of 
vehicles crossing the bridge. Section 4.1 describes the method 
and Section 4.2 fits it to the training set. 

4.1 Derivation of the method 
We try to fit a function to the smoothed IAE time series, �̂�𝑎𝑖𝑖 for 
𝑖𝑖 = 1,2, … , 𝑚𝑚. The IAE begins at time 𝑡𝑡0, and the 𝑖𝑖th reading 

�̂�𝑎𝑖𝑖, is recorded at  𝑡𝑡 = 𝑡𝑡0 + 𝑖𝑖Δ𝑡𝑡. This provides a mapping from 
the discrete time index 𝑖𝑖 of the IAE, to continuous time 𝑡𝑡. 

4.1.1 Single vehicle: We use the basis function 𝑓𝑓(𝑡𝑡; 𝜽𝜽) to fit the 
IAE of the bridge’s structural response under the loading of a 
single vehicle. We assume that the function is smooth and is 
parameterised by 𝑝𝑝 parameters, 𝜽𝜽 = [𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑝𝑝].  

In addition, we include a scaling parameter 𝛾𝛾 to account for 
different envelope amplitudes, and a shift parameter 𝜏𝜏 that 
locates the vehicle within the two-minute window. Thus we fit 

𝑔𝑔(𝑡𝑡; 𝜽𝜽, 𝛾𝛾, 𝜏𝜏) = γ𝑓𝑓(𝑡𝑡 − 𝜏𝜏, 𝜽𝜽).     (4) 

4.1.2 Multiple vehicles: Under a linear superposition 
assumption, we model the structural response to 𝑛𝑛 vehicles by 
the weighted sum of 𝑛𝑛 single-vehicle basis functions in the 
form 

𝑔𝑔𝑛𝑛(𝑡𝑡) = ∑ 𝑔𝑔𝑗𝑗(𝑡𝑡; 𝜽𝜽𝑗𝑗, 𝛾𝛾𝑗𝑗, 𝜏𝜏𝑗𝑗)  = 
𝑛𝑛

𝑗𝑗=1
∑ 𝛾𝛾𝑗𝑗

𝑛𝑛

𝑗𝑗=1
𝑓𝑓(𝑡𝑡 − 𝜏𝜏𝑗𝑗; 𝜽𝜽𝒋𝒋).    (5) 

The function 𝑔𝑔𝑛𝑛(𝑡𝑡) is parameterised by 𝑛𝑛(𝑝𝑝 + 2) parameters 
𝜽𝜽𝑗𝑗 = [𝜃𝜃𝑗𝑗1, 𝜃𝜃𝑗𝑗2, … , 𝜃𝜃𝑗𝑗𝑝𝑝], 𝛾𝛾𝑗𝑗 and 𝜏𝜏𝑗𝑗 for 𝑗𝑗 =  1,2 … , 𝑛𝑛. 

The chosen estimate 𝑛𝑛∗ for the number of vehicles, is then 
found by the putative ‘trial’ number of vehicles 𝑛𝑛 that 
minimises the mean square error (MSE),  

MSE ≔ 1
𝑚𝑚 ∑(�̂�𝑎𝑖𝑖 −  𝑔𝑔𝑛𝑛(𝑡𝑡𝑜𝑜 + 𝑖𝑖Δ𝑡𝑡))2

𝑚𝑚

𝑖𝑖=1
, (6) 

between the fitted function and the IAE.  

The parameters 𝜽𝜽𝑗𝑗, 𝛾𝛾𝑗𝑗 and 𝜏𝜏𝑗𝑗 are found in sequence. That is, the 
parameters that describe a single vehicle 𝜽𝜽1, 𝛾𝛾1 and 𝜏𝜏1, are 
solved for and fixed. Then, the parameters that describe a 
second vehicle, 𝜽𝜽2, 𝛾𝛾2 and 𝜏𝜏2, are solved for and fixed, and so 
on.  

The procedure continues to add vehicles until the information 
criterion described in Section 4.1.3 tells it to stop. At this point, 
the procedure has arrived at its final estimate 𝑛𝑛∗.  

4.1.3 Akaike information criterion: To avoid over-fitting, the 
Akaike information criterion (AIC) (Akaike, 2011) is used to 
penalise the goodness of fit o𝑓𝑓 𝑔𝑔𝑛𝑛(𝑡𝑡) by the number of used 
parameters 𝑛𝑛(𝑝𝑝 + 2). The AIC is defined by  

2𝑛𝑛(𝑝𝑝 + 2) − 2log �̂�𝐿, (7) 

where log �̂�𝐿 is the maximum value of the log-likelihood 
function of the fit 𝑔𝑔𝑛𝑛(𝑡𝑡) given the IAE. The chosen estimate 𝑛𝑛∗  
is selected by the function that minimises the AIC. 

 
 

 
 
 

 

4.1.4 Auto-correlation and the likelihood function: Standard 
likelihood techniques make the assumption that the error terms 
between the fitted function and the IAE, 𝜀𝜀i =  �̂�𝑎𝑖𝑖 –  𝑔𝑔𝑛𝑛(𝑡𝑡0 +
𝑖𝑖Δ𝑡𝑡), are identically and independently distributed (iid). This is 
not an appropriate assumption when dealing with time series 
data, as consecutive errors are likely to be correlated.  

Instead, we assume that the errors follow an auto-regressive 
(AR) process. Each error is modelled as the weighted sum of 
the previous 𝑞𝑞 errors plus a noise term, which is assumed to be 
iid normally distributed with zero mean and variance 𝜎𝜎𝜀𝜀

2 in the 
form 

𝜀𝜀𝑖𝑖 =  ∑ 𝜙𝜙𝑘𝑘𝜀𝜀𝑖𝑖−𝑘𝑘 + 𝑁𝑁(0, 𝜎𝜎𝜀𝜀),
𝑞𝑞

𝑘𝑘=0
 

    
(8) 

where |𝜙𝜙𝑘𝑘| < 1 for 𝑘𝑘 =  0,1, … , 𝑞𝑞. The parameter 𝑞𝑞 is known 
as the order of the AR model, which is denoted as AR(𝑞𝑞). The 
AR coefficients 𝜙𝜙𝑘𝑘 (weights) define how correlated each error 
𝜀𝜀𝑖𝑖 is with the 𝑘𝑘th error before (𝜀𝜀𝑖𝑖−𝑘𝑘), known as the 𝑘𝑘th lag. 

The AR coefficients are determined by the Partial Auto-
Correlation Function (PACF) (Ramsey, 1974). In practice, 
software routines such as the parcorr function in Matlab can be 
employed to find the PACF. The choice of model order 𝑞𝑞 is 
described in Section 4.2.3 

The 𝑖𝑖th error from the AR process is then defined by 

𝜀𝜀�̂�𝑖 = 𝜀𝜀𝑖𝑖 − ∑ 𝜙𝜙𝑘𝑘𝜀𝜀𝑖𝑖−𝑘𝑘,
𝑞𝑞

𝑘𝑘=1
 (9) 

where 𝜀𝜀̂ ∼ 𝑁𝑁(0, 𝜎𝜎𝜀𝜀). 

Note the two-minute windows contain periods when there are 
no vehicles on the bridge, and therefore, there is no structural 
response, only background noise.  
 
So that we only consider data above the noise floor, a threshold 
𝛿𝛿 is set. We then consider only those �̂�𝑚 < 𝑚𝑚 errors 𝜀𝜀�̅�𝑖 for 
which �̂�𝑎𝑖𝑖 > 𝛿𝛿 for 𝑖𝑖 = 1,2, … , �̂�𝑚. Here the threshold 𝛿𝛿 is set to 
0.05ms-2, by visual inspection. 
  
The errors 𝜀𝜀�̅�𝑖 are also normally distributed with zero mean but 
with variance 𝜎𝜎�̅�𝜀

2. A standard calculation gives the log-
likelihood function for the fitted function 𝑔𝑔𝑛𝑛(𝑡𝑡) in the form 

log �̂�𝐿 = − �̂�𝑚
2 log (∑ 𝜀𝜀�̅�𝑖

2
�̂�𝑚

𝑖𝑖=1
) + 𝑐𝑐, (10) 

for constant 𝑐𝑐. Substituting Equation (10) into Equation (7) 
gives the quantity to be minimised. To summarise, in doing so 
we find the estimated number of vehicles that cross the bridge, 
from   

𝑛𝑛∗ = argmin
𝑛𝑛

 [2𝑛𝑛(𝑝𝑝 + 2) +  �̂�𝑚log (∑ 𝜀𝜀�̅�𝑖
2 

�̂�𝑚

𝑖𝑖=1
)]. (11) 

4.2 Training the method 
To determine the basis functions and various parameters in the 
method, we consider its application to a training set in which 
only one vehicle is present in each two-minute window, see 
Table 1. The restriction to single-vehicle set-ups is in order to 
factor out additional problems if the linear superposition 
assumption turned out to be poor. 

4.2.1 Choice of basis functions: We consider the basis function 
𝑓𝑓(𝑡𝑡; 𝜽𝜽) that models the IAE time series of the bridge’s 
structural response to a single vehicle entering the bridge at 
either end. A good basis function will give a small mean 
squared error in Equation (6) with 𝑛𝑛 = 1. 

Thus each selected IAE summarises the damped oscillatory 
response of the bridge to the dynamic loading caused by a 
single passing vehicle. The overall shape should be one with a 
rapid ‘attack’ and a gradual (probably exponential) decay. 
Inspired by probability theory, we considered the following 
three forms for the basis function, each of which has (𝑝𝑝 = 2) 
two parameters that control ‘location’ and ‘dispersion’ and thus 
the overall ‘shape’.    

log-normal: 

𝑓𝑓(𝑡𝑡; 𝜽𝜽) = 1
𝑡𝑡√2𝜋𝜋𝜎𝜎

exp (−
(log(𝑡𝑡) − 𝜇𝜇)2

2σ2 ) ,                

                                  𝜽𝜽 =  [𝜇𝜇, 𝜎𝜎] 
(12) 

gamma: 

𝑓𝑓(𝑡𝑡; 𝜽𝜽) = 𝛽𝛽𝛼𝛼

Γ(𝑎𝑎) 𝑡𝑡𝛼𝛼−1 exp(−𝛽𝛽𝑡𝑡),   𝜽𝜽 = [𝛼𝛼, 𝛽𝛽] 
  
(13) 

Weibull: 

𝑓𝑓(𝑡𝑡; 𝜽𝜽) = 𝑘𝑘
𝜆𝜆 (𝑡𝑡

𝜆𝜆)
𝑘𝑘−1

exp (− 𝑡𝑡𝑘𝑘

𝜆𝜆𝑘𝑘) ,   𝜽𝜽 = [𝑘𝑘, 𝜆𝜆]   (14) 

The quality of each function is computed by calculating the 
optimal MSE for each of the 30 single-vehicle training 
windows. Table 2 shows the mean MSE (MMSE), i.e., the 
average across the 30 windows. The log-normal fit is best and 
so log-normal basis functions are used going forward.  

4.2.2 Examination of the log-normal parameters: We now 
consider whether the log-normal parameters 𝜇𝜇 and  𝜎𝜎 are 
similar for each vehicle travelling across the bridge. If they 
were, they might be fixed in the fitting process so that only 𝛾𝛾 
and 𝜏𝜏 need be determined for each vehicle. 
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Table 2 MMSE for the log-normal, gamma and Weibull 
fits to single-vehicle windows.  

Function MMSE Leigh 
Woods [ms-2] 

MMSE 
Clifton [ms-2] 

MMSE 
Total  
[ms-2] 

 
log-normal 
gamma 
Weibull 

0.0005 
0.0006 
0.0017 

0.0012 
0.0012 
0.0022 

0.0008 
0.0009 
0.0019 

 

For each of the training windows we fit a log-normal function 
by least squares to find the optimal parameters  𝜽𝜽 =  [𝜇𝜇, 𝜎𝜎],  𝛾𝛾 
and 𝜏𝜏. Figure 4 shows a scatter plot of the optimal 𝜇𝜇 and 𝜎𝜎  
parameters. There is unfortunately no consistent pattern and 
therefore the log-normal parameters must be found 
independently for each vehicle going forward. 

Figure 4 Scatter plot of log-normal parameters fitted to 
30 training windows. 
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The AR model order 𝑞𝑞 is the only system parameter learnt prior 
to the vehicle counting procedure described in Section 4. In 

summary, for each window and for each putative number of 
vehicles, new log-normal means 𝜇𝜇 and standard deviations 𝜎𝜎, 
scales 𝛾𝛾 and shifts 𝜏𝜏 are found by least squares. In the 
likelihood calculation, new sets of AR coefficients 𝜙𝜙𝑘𝑘 for 𝑘𝑘 =
0,1, … , 8 are also computed.  
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5. Results 

We test the method by computing the estimated number 𝑛𝑛∗ of 
vehicles for 120 validation windows and comparing with their 
ground truth counts 𝑛𝑛LW and 𝑛𝑛C, see Table 1. The results are 
shown in Table 3. Since the method does not identify the 
direction of travel, 𝑛𝑛LW + 𝑛𝑛C = 𝑛𝑛∗ corresponds to a correct 
prediction (although for any one validation window, only one 
of 𝑛𝑛LW or 𝑛𝑛C is non-zero). The method estimates the correct 
number of vehicles in 89 (74%) of the validation windows.  

Table 3 Toll barrier counts and the corresponding 
estimated number of vehicles 𝑛𝑛∗, for 120 validation 
windows. 
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Figure 6 illustrates the method at work for two exemplar 
windows. In each example, the MSE decreases as the putative 
number of ‘trial’ vehicles increases and the function 𝑔𝑔𝑛𝑛(𝑡𝑡) 
becomes more complex. However, the AIC penalises the  

 
 

 
 
 

 

Figure 6 Estimation method in operation for two exemplar windows. (a)  𝑛𝑛LW = 2, 𝑛𝑛C = 0 (b)  𝑛𝑛LW = 0, 𝑛𝑛C = 1. 
Left-hand panels (i) show the superposition of one, two, three and four basis functions fitted to the IAEs. Right-
hand panels (ii) show the corresponding MSE and AIC for the fits.

 
complexity of 𝑔𝑔𝑛𝑛(𝑡𝑡), and the number of vehicles is found 
correctly, by its minimisation. 

6. Discussion 

The overall prediction accuracy of 74% is somewhat 
disappointing. However, when 𝑛𝑛C = 0 (vehicles only enter at 
the Leigh Woods end), we achieve an accuracy of 87% and we 
have the beginnings of a plausible operational method. In 
addition, for these windows, there is no evidence of bias 
towards over or under-counting. 

In contrast, the fit to vehicles entering at the Clifton end is poor, 
and there is apparently a bias towards over-counting. This may 

be explained by the exemplar window shown in Figure 7. A 
single log-normal basis function is a poor fit to the structural 
response in this case, because the vehicle causes two peaks in 
the structural response, one when it enters the bridge at the 
Clifton end, and a second when it reaches the accelerometer at 
the Leigh Woods end. The estimation method attempts to fit 
the two peaks with two basis functions, and so counts two 
vehicles when only one is present. This problem does not arise 
for vehicles entering at the Leigh Woods end, because the entry 
peak is almost simultaneous with that when the accelerometer 
is reached. Note Table 2, which concerns the training set, has 
already indicated that unimodal basis functions fit the Leigh 
Woods vehicles better than the Clifton ones. 
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Table 2 MMSE for the log-normal, gamma and Weibull 
fits to single-vehicle windows.  

Function MMSE Leigh 
Woods [ms-2] 

MMSE 
Clifton [ms-2] 

MMSE 
Total  
[ms-2] 
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gamma 
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0.0017 

0.0012 
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0.0022 

0.0008 
0.0009 
0.0019 
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and 𝜏𝜏. Figure 4 shows a scatter plot of the optimal 𝜇𝜇 and 𝜎𝜎  
parameters. There is unfortunately no consistent pattern and 
therefore the log-normal parameters must be found 
independently for each vehicle going forward. 
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the Leigh Woods end), we achieve an accuracy of 87% and we 
have the beginnings of a plausible operational method. In 
addition, for these windows, there is no evidence of bias 
towards over or under-counting. 

In contrast, the fit to vehicles entering at the Clifton end is poor, 
and there is apparently a bias towards over-counting. This may 

be explained by the exemplar window shown in Figure 7. A 
single log-normal basis function is a poor fit to the structural 
response in this case, because the vehicle causes two peaks in 
the structural response, one when it enters the bridge at the 
Clifton end, and a second when it reaches the accelerometer at 
the Leigh Woods end. The estimation method attempts to fit 
the two peaks with two basis functions, and so counts two 
vehicles when only one is present. This problem does not arise 
for vehicles entering at the Leigh Woods end, because the entry 
peak is almost simultaneous with that when the accelerometer 
is reached. Note Table 2, which concerns the training set, has 
already indicated that unimodal basis functions fit the Leigh 
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Further work should consider different basis functions for the 
two directions of travel, which would also allow the counts for 
the two directions of travel to be separated. Alternatively, we 
might place the accelerometer in a position which is indifferent 
to the direction of travel, e.g., midway along the span. Note 
also that this paper has only used the data from a single 
accelerometer, as the aim was to demonstrate the beginnings of 
a plausible operational method that might be applied to existing 
SHM set-ups, with a very limited number of sensors. However, 
clearly a range of improvements might be possible if the data 
from multiple accelerometers were fused.  

Figure 7 An example where 𝑛𝑛C = 1, (𝑛𝑛LW = 0) and 
𝑛𝑛∗ = 2. When the vehicle enters at the Clifton end, 
there is an additional peak in advance of that when it 
reaches the Leigh Woods end detector. 

 

7. Conclusion 

In this paper we have developed a method that estimates the 
number of vehicles that cross a bridge from its structural 
response to their dynamic loading. We have applied the method 
to scalar accelerometer data from the Clifton Suspension 
Bridge (CSB) in Bristol, UK. A validation exercise applied to 
a set of selected two-minute windows of data counted the 
correct number of vehicles in 74% of the set. However, due to 
various features of the set-up, which was designed for 
structural health monitoring (SHM), not for counting vehicles, 
the method performs quite differently in the two directions of 
travel – 61% and 87% accuracy respectively. The higher figure 
suggests that with some refinements to the method and sensor 
set-up, we have the beginnings of a deployable operational 
system. Note that for many practical traffic management and 
appraisal purposes, the key is not that vehicles are counted 
precisely, but rather that an offline estimate of the count is 
unbiased over quite long time periods – this requirement is 
relatively tame and looks to be within reach. 

There are several shortcomings in our current work and 
consequently opportunities for future research. Firstly, as 
currently presented, the method does not distinguish between 
the directions of travel. However, this appears addressable by 
considering the data from multiple sensors and distinct basis 
functions for each direction. Secondly, the validation set 
currently used is not representative of typical operational 
conditions, because it does not mix vehicles with different 
directions of travel, and the total vehicle counts are quite low, 
compared to busier times of the day. Future work should 
investigate to what degree the method can identify individual 
vehicles when there are many different overlapping structural 
responses, perhaps including those from cyclists and 
pedestrians too, and indeed whether linear superposition holds 
in congested traffic flow regimes. Finally, the method as 
presented works because the CSB is much more compliant than 
modern concrete bridges, where an examination of higher 
frequency information, rather than the amplitude envelopes 
used here, is likely to be the way forward. 
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