
 Hosseinabady, M., & Nunez-Yanez, J. (2019). A Streaming Dataflow Engine
for Sparse Matrix-Vector Multiplication using High-Level Synthesis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.
https://doi.org/10.1109/TCAD.2019.2912923

Peer reviewed version

Link to published version (if available):
10.1109/TCAD.2019.2912923

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/8695747 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1109/TCAD.2019.2912923
https://doi.org/10.1109/TCAD.2019.2912923
https://research-information.bris.ac.uk/en/publications/a-streaming-dataflow-engine-for-sparse-matrixvector-multiplication-using-highlevel-synthesis(648aa45c-3dad-4170-b872-e55496f4f999).html
https://research-information.bris.ac.uk/en/publications/a-streaming-dataflow-engine-for-sparse-matrixvector-multiplication-using-highlevel-synthesis(648aa45c-3dad-4170-b872-e55496f4f999).html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Streaming Dataflow Engine for Sparse
Matrix-Vector Multiplication using High-Level

Synthesis
Mohammad Hosseinabady, and Jose Luis Nunez-Yanez

Abstract—Using high-level synthesis techniques, this paper
proposes an adaptable high-performance streaming dataflow
engine for sparse matrix dense vector multiplication (SpMV)
suitable for embedded FPGAs. As the SpMV is a memory-
bound algorithm, this engine combines the three concepts of
loop pipelining, dataflow graph, and data streaming to utilize
most of the memory bandwidth available to the FPGA. The
main goal of this paper is to show that FPGAs can provide
comparable performance for memory-bound applications to
that of the corresponding CPUs and GPUs but with signifi-
cantly less energy consumption. Experimental results indicate
that the FPGA provides higher performance compared to
that of embedded GPUs for small and medium-size matrices
by an average factor of 3.25 whereas the embedded GPU is
faster for larger size matrices by an average factor of 1.58. In
addition, the FPGA implementation is more energy efficient
for the range of considered matrices by an average factor
of 8.9 compared to the embedded CPU and GPU. A case
study based on adapting the proposed SpMV optimization to
accelerate the support vector machine (SVM) algorithm, one of
the successful classification techniques in the machine learning
literature, justifies the benefits of utilizing the proposed FPGA-
based SpMV compared to that of the embedded CPU and
GPU. The experimental results show that the FPGA is faster
by an average factor of 1.7 and consumes less energy by an
average factor of 6.8 compared to the GPU.

Index Terms—Sparse-Matrix-Vector, FPGA, High-Level
Synthesis, Energy, Support Vector Machine, Edge Computing

I. INTRODUCTION

SPARSE matrix-vector multiplication (SpMV) is one
of the common operations used in several areas such

as scientific optimization, circuit simulation, and machine
learning [1]. Although SpMV has been known for a long
time, recent progress in utilizing new architectures that
consist of multi-core CPUs, many-core GPUs, and FPGAs
has led to a renewed interest in research activities towards
optimizing its performance for the corresponding applica-
tions [2].

Generally, cloud-based big-data computing and analysis
are the main application framework for SpMV, especially
in machine learning areas. However, with the challenges
arising from centralized cloud-based computing such as
scalability and security, modern machine learning tech-
niques are utilizing distributed architectures, relying on the
edge computing framework. In this approach, the edge
processors consume the locally generated data to train or
refine a model. These data usually collected by a group

M. Hosseinabady and J. L. Nunez-Yanez are with the Department
of Electrical and Electronic Engineering,University of Bristol, Bristol,
UK e-mail: (mohammad@hosseinabady.com, {m.hosseinabady, j.l.nunez-
yanez}@bristol.ac.uk.

Manuscript received April 19, 2005; revised August 26, 2015.

of local sensors, hence, their size is limited. Recently, it
has been shown that this scenario can provide a highly
accurate model [3] by proposing CoCoA framework. An
extension of the CoCaA called Mocha [3] focuses on
the nascent federated machined learning scheme that has
been empirically evaluated by academia and industry [4],
corroborate the theoretical studies. This new approach has
motivated us to focus on efficiently developing the SpMV
on edge candidate devices considering moderate datasets
(i.e., training data) and limited dimension sizes (i.e., features
and training points).

Embedded FPGAs are potential candidates for accelerat-
ing computations on the edge thanks to their low energy
consumption, fine-grained parallelism and multi-precision
capabilities that help efficient implementation of compute-
intensive applications such as deep learning algorithms [5]
on small devices. This has inspired us to optimize the
Sparse Matrix-Vector Multiplication (SpMV) targeting on
embedded FPGAs.

Traditionally, FPGA accelerators are designed by Hard-
ware Description Languages (HDL) that can potentially
provide a high-performance implementation. However, the
HDL based design flow is tedious and time-consuming.
In addition, the design is not easily adaptable (modifiable)
to the versatile edge computing environment that includes
a variety of algorithms with different configurations and
complexity. To cope with these issues, we study the use
of the High-Level Synthesis (HLS) that is increasingly
popular for accelerating algorithms in embedded hetero-
geneous platforms. Studies have shown that HLS can
provide high-performance and energy-efficient implementa-
tions with shortening time-to-market and addressing today’s
system complexity [6].

The SpMV is known as a memory-bound algorithm with
irregular memory access operations and its implementation
on FPGA should be optimized for maximum memory
bandwidth utilization. This requires optimizing the number
of computational hardware threads and load balancing to
keep them busy. To achieve these optimization objectives,
this paper proposes a Streaming Dataflow Engine (SDE)
architecture for SpMV running on an FPGA using high-
level synthesis. To utilize the streaming data transfer capa-
bilities provided by HLS tools via the burst data transfer
protocol, this engine integrates the loop level and process
level pipelining in the code enabling high memory access
throughput by saturating the memory bandwidth.

Novelties and contributions of this paper are as follows.

• Proposing a streaming dataflow engine (SDF) for
SpMV, comprised of multiple hardware threads that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

can be used as a template in an HLS environment.
• Explaining the adaptivity of the proposed SDF for the

versatile algorithm and configurations in the machine
learning techniques on the edge computing paradigm

• Proposing a simple analytical model to understand the
algorithm and platform bottlenecks and overheads

• Comparing the embedded FPGA implementation of the
SpMV with multi-core embedded CPU and many-core
embedded GPU versions and studying in which cases
the FPGA implementation is more efficient.

• Optimizing the SVM algorithm as a real application
that uses SpMV as an operator by merging it with other
operators needed in SVM.

The rest of this paper is organized as follows. Preliminary
concepts, definitions, and requirements are explained in
the next section. Section III reviews previous work and
clarifies the motivations and contributions of this work. The
dataflow engine as the underlying structure of the proposed
techniques is discussed in Section IV. Section V goes
through the details of the proposed methodology. Section VI
investigates the experimental results. Finally, Section VII
concludes the paper.

II. PRELIMINARIES

This section briefly explains concepts, techniques, and
definitions that are considered throughout this paper.

A. Sparse matrix

Most of the elements in a sparse matrix are zeros.
Fig. 1(a) shows such a matrix with four rows (denoted
by n) and five columns (represented by m) which has
14 zero elements and 6 non-zero elements (denoted by
nnz). Operators involving these matrices (such as multi-
plications) usually suffer from low compute-per-byte ratio
which makes their traditional implementations inefficient.
Using new computation techniques with associated matrix
representations to achieve high performance and reduce the
memory utilization have been proposed for sparse matrix
manipulations. Using coordinate list (COO) in the form
of (row index, column index, value) tuples for non-zero
elements, as shown in Fig.1(b), is one way to reduce the
matrix memory footprint. However, one of the row and
column vectors has redundancy that can be removed. This
leads to the Compressed Sparse Row (CSR) representation,
shown in Fig.1(c) which is the common representation for
sparse matrices. Three vectors, named value, col_index and
row_index, represent the matrix. The value vector contains
the non-zero elements in row-order and their corresponding
column indices are saved in col_index vector, therefore, the
number of non-zero elements, denoted by nnz, determines
their sizes. The row_index elements are the indices of the
value vector that contains the first element of each row in
the original matrix. In other words, row_index elements
point to the first element of each row in the values vector.

There are several different sparse matrix representa-
tions [7], especially used among HPC community and some
of them rely heavily on the matrix sparsity pattern or the
underlying computer architecture. These representations can
be categorized into three main groups: General Format
(GF), Architecture Specific Format (ASF) and Sparsity
Pattern aware Format (SPF).

Fig. 1: Sparse matrix representation example (n = 4, m = 5,
nnz = 6) (a) The original matrix, (b) The coordinate format
(c) The Compressed Row format

GF: Examples of the first group are CSR, COO, CSC [7]
that are more suitable for stream computing platforms,
as the data is saved in a sequential orders. They are
also suitable for computing architectures with high cache
memory [7]. However, they may not show high-performance
in GPUs which utilize the coalesce memory access scheme.

ASF: ELLPACk formats are among the second groups
suitable for vector architectures and GPUs with coalesce
memory access pattern [7].

SPF: Block based CSR formats used for matrices in
which zeros show a regular patterns such as block of zeros
are repeating in the matrix. Diagonal formats (DIAs) is an-
other example of this group that show the high-performance
computation for diagonal matrices where non-zero elements
are around the diagonal of the matrix. However, they are not
suitable for representing general sparse matrices.

In summary, we have selected a sparse matrix format that
• represents a wide range of matrices
• is suitable for streaming data computing
• requires a light-weight preprocessing step.

Therefore, we have used the general CSR format that makes
no assumption on the sparsity of the matrix and data are
saved in a sequential order.

The sparse matrix dense vector multiplication algorithm
based on the CSR representation is shown in the code
snippet of Listing 1 which multiplies the sparse matrix A,
represented by value, col_index and row_index vectors,
by a dense vector x and generates the output vector y,
i.e., y = Ax. It consists of two nested for loops. The outer
loop iterates through rows and the inner loop accesses each
element in a row. The inner loop performs the dot-product
of a row and the x vector by finding the proper element
in the x vector with the index denoted by k at Line 7 of
Listing 1.� �
1 void SpMV_Ref(int n, float ∗value, int ∗col_index, int ∗

row_index, float ∗x, float ∗y) {
2 int rowStart = 0, rowEnd = n;
3

4 for (int i = rowStart; i < rowEnd; ++i) {
5 float y0 = 0.0;
6 for (int j=row_index[i]; j<row_index[i+1]; j++) {
7 int k = col_index[j];
8 y0 += value[j] ∗ x[k];
9 }

10 y[i] = y0;
11 }
12 }� �

Listing 1: SpMV operator

B. High-level synthesis

High-Level Synthesis (HLS) tools, which transform a
high-level description of a task usually written in C/C++

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

into the equivalent HDL code, have been used recently
to efficiently implement many computational or memory-
intensive algorithms, especially on FPGA platforms [8].
The main goal of current HLS tools is to provide parallel
implementations of the concurrencies that are modeled
by designers in the input code using compiler directives
(such as pragmas) or following a specific coding style
suggested by the tools [9]. These concurrency models can be
categorised in two main groups: statement level and process
level.

1) Statement level: Independent expressions and assign-
ments are automatically implemented in hardware running
in parallel if there are enough resources in the underlying
hardware. Extending this feature to iterative statements by
completely or partially unrolling the iterations can be useful.

Current high-level synthesis tools leverage compile-time
code analysis and optimization techniques to provide a static
scheduling for the single statements and loops in the code.
Hence, this requires resolving ambiguity and dependen-
cies among variables, especially in iterative statements, at
compile-time to achieve maximum hardware performance.
The efficiency of loop pipelining depends heavily on the
result of the static dependency and hazard analysis during
which the compiler determines the fixed minimum loop
iteration initiation intervals (II). The loop II is the minimum
number of clock cycles before a loop iteration can start
processing data by finding free resources. In other words,
the II indicates the minimum interval between two consec-
utive loop iterations without encountering any hazards in
the pipeline [9].

2) Process level: A process is a stand-alone block of
statements without any side-effect, including loops, with
specific inputs and outputs. Data dependency between pro-
cesses can be represented by a dataflow graph in general.
FPGAs can provide high performance running streaming
dataflow processes. Streaming dataflow requires pipelin-
ing among processes and streaming data communication.
Fig. 2(a) shows a dataflow of simple stream computing
scheme which consists of three processes, Read, Compute
and Write, communicating through buffers. Each of these
processes can be implemented with a for loop in HLS. In
the ideal case, which IIs of all loops are 1, this dataflow
can be run at its highest performance as shown in Fig. 2(b)
and it takes N ∗ I I + l = N + l clock cycles to finish, where
N is the loop iterations and l is a latency of one dataflow
iteration. However, if the II of one process is higher than
1, it determines the II of the whole dataflow, consequently
reducing the performance. For instance, if the II of Compute
process is d as shown in Fig. 2(c), then the II of the design
would be d. In this case, the design takes N ∗ I I+ l = Nd+ l
clock cycles, which is d times slower than the ideal case
if l is negligible compared to N . Therefore, the main goal
of stream computing in HLS is to minimize the processes’
initiation intervals or compensate for its negative impacts. In
the sequel, this paper will explain some of the techniques
to design an optimum stream computation engine for the
sparse matrix multiplication.

III. PREVIOUS WORK

Sparse matrix operations are well-known problems in
scientific computations and optimizations, especially in

Fig. 2: Pipelined Stream Computing

high-performance computing. Recently, a new wave of
implementations is proposed [10] to support the application
of these operations in the machine learning field. These
algorithms mainly utilize multi-core CPUs or many-core
GPUs [11], [12].

Several studies have investigated the optimization of
SpMV on hardware and FPGAs [13], [14], [15].

Most of these research activities are focusing on high-end
FPGAs and big-data such as approaches proposed in [14],
[13], [16]. To get high-performance, they usually benefit
from a complex data preprocessing, thanks to their powerful
underlying computational hardware. In contrast to these
approaches, our methodology targets embedded systems
used in edge computing frameworks which process only
parts of the big-data in a distributed computing scheme such
as federated learning. In terms of the target sparse matrices,
some work consider the sparsity pattern in a matrix and
propose optimization techniques towards specific patterns
such as the methods introduced in [14], whereas others
make no assumptions about the sparsity structure of the
matrix, such as [17]. Our method in this paper fits the
second group.

Sadi et. al [16] propose a streaming SpMV accelerator
utilizing 3D stacked High Bandwidth Memory (HBM) to
overcome the memory wall issue. To consider large matrices
whose x and y vectors do not fit into the on-chip memory,
they propose matrix partitioning to fit the vector x into
the on-chip memory. They also propose a two-step stream
processing approach that is suitable for their architecture but
would have high overhead in embedded FPGAs. In contrast
to their approach, we use one step stream computing suit-
able for optimization on an embedded FPGA which does
not benefit from the HBM technology.

Fowers, et. al [18] introduce an FPGA-based SpMV
architecture and a sparse matrix decoding to exploit the
parallelism across matrix rows. They have assumed the
availability of two separate DRAMs on the system which
may not be available in most current embedded systems.

Designing an efficient floating point accumulator (i.e.,
multiplier and adder) to improve the performance of the
SpMV is the main theme in [2][19]. Opposed to these
approaches, our technique can be used with any accumulator
design and only its latency is required (as explained in
Section V) to determine the number of hardware threads
to achieve a high-performance.

In terms of the parallelism, some previous work exploit
the row based parallelism (such as [2], [19], [17]) and
pad each row with zeros to make their sizes a product of
the parallelization factor k. Similar to these approaches,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

we utilize the row-based parallelism however, we clearly
explain the minimum value of the zero-padding for a given
accumulator. In addition, our proposed techniques exploit
the parallelism in a row and between rows using two main
techniques in HLS that are loop pipelining and unrolling.

Reference [15] utilizes multi-port memory interfaces to
increase the memory bandwidth. Similarly, we utilize mul-
tiple ports as well as the wide-buses on each port and
compare the results with embedded GPU and CPU.

Finally, in contrast to other work, we show that the
proposed approach is easily adaptable to the environment of
a real application since the SpMV hardware description can
be extended with other compute intensive operators main-
taining the performance level. These concepts are explained
through case studies in Section VI.

IV. PROPOSED STREAMING DATAFLOW ENGINE

This section explains the structure of the proposed
streaming dataflow engine (SDE) with its performance
model.

Fig. 3 shows the structure of the proposed SDE for
implementing the sparse matrix-vector multiplication. The
related sub-tasks are distributed into three main stages
connecting through stream mapping layers. Whereas each
stage consists of a few processes performing computation
or data transfer between the FPGA and the main memory,
a stream mapping layer reformats and distributes the data
received from its input buffers among its output buffers.
In addition, it resolves the data-type mismatch problem
between two consecutive stages. For example, if the input
stage uses a 128-bit bus to transfer data to the FPGA
while the compute stage uses 32-bit float data-type, then
the stream data mapper should provide this transformation
by mapping an input stream data into four output stream
data utilizing proper buffers and pipelined concatenation or
splitting assignments.

The input stage, as shown in Fig. 3, consists of a few
processes (denoted by s) each of which is responsible for
reading data from the main memory, through a dedicated
port, using a burst data transfer scheme. Each process is
implemented by a pipelined loop with a specific initiation
interval (II) which has a direct impact on the bandwidth
utilization. The maximum input bandwidth utilization asso-
ciated with a process is determined based on the number of
bytes read per second which can be represented by Equ. (1)
in which I Iin is the initiation interval of the process reported
by the HLS tool, bin is the bus-width of the corresponding
memory port, and fin is the clock frequency of the memory
interface.

The compute stage in Fig. 3 receives sequences of
data from its predecessor stream data mapping layer and
performs its task. This stage comprises of p processes each
of which consists of t pipelined threads that can be run in
parallel. The SpMV computation tasks are divided among
these parallel processes. The maximum performance of a
process in terms of the number of operations per second
is denoted by Equ. (2) in which I Icomp is the initiation
interval of processes’ loop, ccomp denotes the number of
operations in each loop iteration and fcomp determines the
frequency of the operations.

Fig. 3: Streaming Dataflow Engine (SDE): Structure

The output stage consisting of w processes is responsible
for writing the results to the main memory. It has a similar
structure to the input stage.

One of the features of this structure is its adaptability to
a specific application, such that it can be adapted to a given
target application by adding operations to the code of each
process as long as the added operator does not incur any
loop dependency which results in no changes in II during
the synthesis, in case of having enough resources on the
FPGA.

BWinmax
i = (bin × fin)/(I Iin) (1)

Per f compmax
i = t ∗ (ccomp × fcomp)/(I Icomp) (2)

BWoutmax
i = (bout × fout)/(I Iout) (3)

Performance model: We propose a performance model
to determine the contribution of algorithm and platform
on the design efficiency. This model simply clarifies the
bottleneck of the whole design and can be used as a guide-
line to propose algorithmic or architectural optimization
techniques. This model calculates the execution time of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

the design as shown in Equ. 4, where talg represents the
time required by the algorithm which includes the ideal
execution time denoted by talg

ideal
and the algorithm overhead

represented by talgover . Moreover, tplat denotes the platform
overhead which consists of hardware (tplat

hard
) and library

(tplat
lib

) overheads. An example of tplat
lib

is the high-latency of
the floating-point operators that can have a negative impact
in pipelined design. The hardware module initialization is
an example of tplat

hard
.

T = talg + tplat = (talg
ideal

+ talgover) + (t
plat
lib
+ tplat

hard
) (4)

In addition, in the rest of this paper, we define MBRAM

and MBW as the amount of FPGA internal memory (i.e.,
BRAM) and the main memory bandwidth used by the
design.

V. SPMV: PROPOSED METHODOLOGY

Considering the dataflow engine of Fig. 3, this section
explains the proposed streaming computation architecture
in C language that can be synthesized by an HLS tool sup-
porting the dataflow pipelining such as Xilinx Vivado-HLS.
We also explain a sparse matrix representation suitable for
the data stream communication.

The proposed SpMV implementation consists of three
main tasks.
Task 1: Transferring the entire dense vector x into the

FPGA memory (i.e., BRAM).
Task 2: Invoking the stream computation engine
Task 3: Transferring the results from the FPGA to the main

memory.
In the sequel, we explain how to utilize different optimiza-
tion techniques to implement these three tasks.

A. Naïve stream computing

The code presented in Listing 1 receives the data in values
and col_index vectors in a streaming fashion as their indices
in the algorithm (i.e., j at lines 7 and 8) is ascending during
the execution. The first step of stream computing in [16]
implements this algorithm in ASIC with their own designed
processing elements (PEs) which their details have not been
explained. Although, this algorithm can be synthesized by
available HLS tools, exploiting the parallelism in the code
is not straightforward (in the context of FPGA and HLS)
as the number of iterations of the inner loop at Line 6
is known at runtime. Therefore, the code static analysis
performed by an HLS tool cannot resolve the dependency
among the statements; consequently, the outer loop cannot
be pipelined or unrolled and should be executed sequentially
which makes its stream computing inefficient due to the
high iteration latency. To solve this problem, we modify
the sparse matrix CSR representation as explained in the
sequel.

The key point of the solution is making the length of
the inner loop in Listing 1 predictable for each iteration
of the outer loop. For this purpose, we modify the row-
index vector in Fig. 1(b) such that each value represents
the number of data element involved in the inner loop
performing the dot-product at Line 8 in Listing 1. The
new vector is called row_length as shown in Fig. 4 for
the same matrix of Fig. 1(a). This representation is referred

Fig. 4: MCSR format of the sparse matrix in Fig. 1(a)

Fig. 5: Naïve stream computation pseudo-code

to as Modified CSR (MCSR) throughout this paper. This
technique is similar to the one presented in [20]. Note that,
the row_length elements can be computed by differenti-
ating two consecutive elements in the row_index vector.
Therefore, its computation can be done in the hardware
along with Task 1. The interested reader can refer to the
open source code of this research for more information [21].
The overheads associated with this technique are explained
in Section VI-C.

The aforementioned three tasks of this implementation
are as follows. Task 1 transfers the entire x into the FPGA
memory using the burst data transfer which takes about m
(i.e., its length) clock cycles. To implement Tasks 2 and 3
the SDE structure of Fig. 3 can be used. Considering this
structure and the MCSR representation, Fig. 5 depicts the
pseudo-code of the naïve stream computation for the SpMV.
The dense vector x transferred to the FPGA is denoted by
x_local in this pseudo-code.

The input stage consists of three processes, P1, P2 and
P3, to read row_length and col_index indices as well as
value vectors (as shown in Fig. 4) from the main memory in
a streaming manner using the burst data transfer protocol.
In this case s = 3, and as each process uses a dedicated
memory port and the burst data transfer is used to read
vectors, the minimum I Iin, reported by the synthesis tool,
for each process is 1. As the data-types in the three stages
are the same, the streaming data mapping layer is very
simple and only consists of buffers as shown between
stages.

The code in process P4 of Fig. 5 converts the nested loops
in Listing 1 into a single loop that can easily be pipelined.
The intra- and inter-loop iteration dependencies due to read-
after-write potential hazards on col_left variable and the
accumulation on the sum variable (at Line 10 of the P4
process in Fig. 5) restricts the timing relation between the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 6: (a) Naïve: RAW dependency hazard in the code of
Fig. 5 (b) Fast stream: Unrolling to compensate the I I = 4

two consecutive loop iterations. This can cause an II higher
than one. For example, in our experiment, we obtained the
initiation interval of 4 (i.e., I I = 4) by synthesizing the
code for Xilinx Zynq-MPSoC. The main reason for this
high II is the high latency of the accumulate operator with
the float data-type. Fig. 6(a) shows the simplified pipeline
timing diagram. This restricts the whole task throughput and
performance. In addition, as just one process is considered
without any loop unrolling, therefore p = 1, t = 1, according
to Fig. 3. The last stage (i.e., output stage) consists of one
process which writes back the results into the main memory.
In this case, w = 1 and I Iout = 1. If there are enough
memory ports to transfer data into the FPGA, then this
process requires about (nnz∗ I IP4) clock cycles to complete.
Taking the number of clock cycles for Task 1 into account,
the entire SpMV takes about (m + nnz ∗ I IP4) cycles to
execute. Therefore, Equs. 5, 6 and 7 show the performance
model, BRAM usage and memory bandwidth utilization,
respectively. Note that in this case talg

ideal
= (m+nnz)/ f and

tplat
lib
= (I IP4 − 1)nnz/ f because it is caused by the floating

point operation latency.

T = (m + nnz)/ f + (I IP4 − 1)nnz/ f + tplat
hard

(5)

MBRAM = m ∗ sizeo f (DAT ATY PE) (6)
MMW = (m + nnz)/T (7)

Our experimental results show that tplat
hard

is negligible,
hence, according to Equ. 5, the main bottleneck of this
design is the high initiation interval of process P4 in the
compute stage. The next subsection explains how to cope
with this issue.

B. Fast stream computing

One way to overcome the high initiation interval bot-
tleneck of the P4 process is processing multiple data in
one iteration of the process’s loop. Hence, the loop can be
unrolled with a factor of I Icom, i.e., t = I Icom in the SDE
shown in Fig. 3. For example, according to our experiment,
since I Icom = 4 here, then it is enough to unroll the loop
just 4 times. As such, the P4 process can consume the
data generated by the input stage processes without causing
any wait state in processes of the input stage. Listing 2
shows the corresponding snippet code. The corresponding
simplified timing diagram is shown in Fig. 6(b). Although
the I I is not changed, using four elements in each iteration
increases the throughput by a factor of 4 which cancels the
negative impact of I I = 4. Note that this technique increases
the number of utilized adder/multipliers by a factor of II
compared to the naive implementation. Utilizing multiple
multipliers/adders has proposed by researchers who use the

HDL design flow to cancel the high-latency of floating-point
multipliers in a pipeline, such as scheme [18]. However,
they have proposed their own fused accumulator which is
not directly applicable to the context of HLS.� �
1 for (r=0; r<data_size; r+ = I Icom) { //pipelined
2 if (col_left == 0) {
3 col_left=rows_fifo.read()
4 sum=0;
5 }
6 for (int i = 0; i < I Icom ; i++) {//unrolled
7 value = values_fifo.read();
8 col = col_fifo.read();
9 int k = h(col);

10 y[i] = y0;
11 term[i] = value ∗ x[k];
12 }
13 DATA_TYPE sum_tmp=0;
14 for (int i = 0; i < I Icom ; i++) {//unrolled
15 sum_tmp += term[i];
16 }
17 sum += sum_tmp;
18 col_left−=I Icom ;
19 if (col_left == 0) {
20 results_fifo << sum;
21 }
22 }� �

Listing 2: Fast stream computing code

As each iteration of the for loop at Line 1 of the snippet
code in Listing 2 processes I Icom data items of a row, the
number of processed data element in each row should be
a product of I Icom. To satisfy this constraint some zero
elements should be added to each row in the matrix repre-
sentation in Fig. 4. This is referred to as zero-padding in the
sequel of this paper. This zero-padding adds an overhead to
the performance that will be examined later in Section VI
for a set of matrices. The number of elements processed in
each row is denoted by eup (elements under process) which
is greater than nnz. Therefore, considering the number of
Task 1 clock cycles, this implementation requires (m+ eup)
clock cycles to complete. Equ. 8 shows the corresponding
performance model, where talg

ideal
= (m+nnz)/ f and talgover =

(eup − nnz)/ f . Note, this algorithm address the platform
library overhead and introduce the algorithm overhead. The
experimental results show that this ends up to improve the
performance.

T = (m + nnz)/ f + (eup − nnz)/ f + tplat
hard

(8)

MBRAM = m ∗ sizeo f (DAT ATY PE) (9)
MMW = (m + equ)/T (10)

Note that, for implementing the zero-padding process, only
the row_length vector should be modified and there is
no need to modify the values and col_indices to contain
zeros. The extra zeros can be inserted into the stream
computing during the computation [21]. The complexity of
the row_length modification algorithm is O(n) and can be
done in hardware (by a loop II=1 [21]) along with Task 1
which does not have any impact on the total performance.

This algorithm can be modified to cover other sparse
matrix formats. This illustrates that the proposed HLS tech-
nique is easily modifiable and adaptable to new situations
in contrast to the traditional HDL approach. For example,
it can be modified as Listing 3 to support symmetric sparse
matrices in which only lower-left or upper-right triangular
shape of data should be saved in the CSR format. In this
algorithm, each matrix element (i.e., value) should modify

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

two elements in the y output vector that has been shown
in Lines 12 and 13. This requires keeping the y vector in
the FPGA. However, multiple access to the y elements in
one iteration of the outer pipelined loop increases the II,
mainly because of the shortage in the number of ports on
y for parallel data access. To solve this problem, Line 13
utilizes I Icom copy of the y vector to save partial results.
Lines 22 to 25 show how to merge these partial results
to get the final y vector elements. The resource overheads
of this modification are 61.1%, 15.2%, 11.2%, and 19.3%
on DSP, FF, LUTRAM and LUT of the FPGA. It also
reduces the maximum size of the sparse matrix by a factor
of 2. The performance improvement of this modification is
63% for a symmetric sparse matrix of size 40960 × 40960
with nnz = 139264. Note that further optimization of this
modified algorithm is beyond the scope of this paper and
requires a separate article.� �
1 for (r=0; r<data_size; r+ = I Icom) { //pipelined
2 if (col_left == 0) {
3 col_left=rows_fifo.read()
4 sum=0;
5 }
6 for (int i = 0; i < I Icom ; i++) {//unrolled
7 value = values_fifo.read();
8 col = col_fifo.read();
9 int k = h(col);

10 y[i] = y0;
11 term[i] = value ∗ x[k];
12 if (col != r)
13 y_local[i][col] += value ∗ x_local[r];
14 }
15 DATA_TYPE sum_tmp=0;
16 for (int i = 0; i < I Icom ; i++) {//unrolled
17 sum_tmp += term[i];
18 }
19 sum += sum_tmp;
20 col_left−=I Icom ;
21 if (col_left == 0) {
22 DATA_TYPE tmp=0;
23 for (int i = 0; i < II; i++)
24 tmp += y_local[i][r];
25 results_fifo << sum+tmp;
26 }
27 }� �

Listing 3: Fast stream computing code for sparse
symetric matrix

Although Listing 2 provides a fast streaming computation
for SpMV, it utilizes three memory ports (i.e., memory
interconnects on the FPGA) that restricts its scalability to
utilize more ports for performing parallel threads, mainly
due to the limited number of memory ports available in
embedded systems. The next subsection explains how to
reduce the number of utilized ports and increase the number
of computation processes.

C. Reduced-port stream computing

To reduce the number of ports used by the design in
Listing 2, the row and column indices can be combined
and read through a single port. As shown in Fig. 7, the new
format is defined by concatenating the number of elements
in a row and the column indices of those elements. The
new combined vector which is called indices has a length of
n+ eup, where n is the number of rows. The corresponding
implementation requires (m + (n + eup)) clock cycles to
complete. Therefore, Equ. 11 shows the performance model,

Fig. 7: Two-port streaming CSR

where talg
ideal

= (m + nnz)/ f and talgover = (n + eup − nnz)/ f .

T = (m + nnz)/ f + (n + eup − nnz)/ f + tplat
hard

(11)

MBRAM = n ∗ sizeo f (DAT ATY PE) (12)
MMW = (m + n + equ)/T (13)

It should be noted that interleaving the row and column
indices is a very simple process and does not include any
computation and can be done during the process of receiving
the locally generated data by the embedded system on the
edge computing platform which results in no overhead on
preprocessing data. This can be done by buffering each
row’s data at the edge platform before merging column and
row indices. The goal of this optimization is to reduce the
number of used ports and not to improve the performance,
instead, it prepares the algorithm to utilize multiple ports to
improve the performance. The next subsection clarifies the
benefits of this approach.

D. Multi-port stream computing

One way to increase the design throughput is utilizing
multiple ports to transfer data from memory to the FPGA
in parallel. If the embedded FPGA contains P memory ports
each having B bits, and the number of bits of each element
in value and indices vectors are g and h, respectively, then
the number of computing processes, denoted by p in Fig. 3
satisfies Equ. (14). In this case, the rows in the input sparse
matrix can be divided into p parts, each processed by a
computing process, resulting in a maximum of p times
speed-up. However, the maximum speed-up is limited by
the part that contains more data elements. As each hardware
thread calculates a part of the output vector y, Tasks 2 and
3, mentioned earlier in this section, execute sequentially.
Therefore, the entire y is saved into the FPGA BRAM and
transferred to the memory after Task 2 finishes.

p ≤
P ∗ B
g + h

(14)

Tasks 1 and 3 can also benefit from multiple port uti-
lization. If we use k ports to transfer these vectors, then
this implementation requires about m/k + (n+ eup)/p+n/k
clock cycles to complete. Therefore, Equ. 15 shows the
performance model, where talg

ideal
= (n/k + (n)/p)/ f and

talgover = ((n + eup − nnz)/p + m/k)/ f .

T =(m/k + (nnz)/p)/ f+

((n + eup − nnz)/p + m/k)/ f + tplat
hard

(15)

MBRAM =(n ∗ p + m) ∗ sizeo f (DAT ATY PE) (16)
MMW =(n + m + eup)/T (17)

One concern with this multi-process design is the unbal-
anced number of data elements divided among the parallel
computing processes. The next subsection explains how to
deal with this problem.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

E. Load balancing

To get the maximum performance by utilizing multiple
computing processes, their workloads should be balanced
through a proper matrix partitioning. This pre-processed
matrix partitioning problem can be modeled using the 1D
chains-on-chains partitioning (CCP) problem [22], [23]. If
all rows are denoted by the R =< r0, r1, ...rN−1 > chain
(i.e., an ordered set) and the elements under process in each
row denoted by EUP =< eup0, eup1, ...eupN−1 >, then
the partitioning problem is dividing R into p disjoint and
non-empty sub-chains denoted by R =< P0, P1, ..., Pp−1 >
in which Pi =< rj, rj+1, ...rj+k−1 >. If the number of
elements being processed in each partition is denoted by
eupPi =

∑t=k−1
t=j eupt , then the objective of the partitioning

is to minimize the largest value of eupPi , where 0 ≤ i ≤ p,
as all partitions are running in parallel and the optimum case
is when the execution of the largest partition is minimized.
In the ideal case, this minimum happens when all partitions
have the same number of elements under process (eup).

For the sake of simplicity, we use a greedy algorithm
as shown in Algorithm 1 to solve this load balancing. The
ideal case of eupPi is eupequ = (

∑N−1
i=0 eupi)/p such that all

partitions have the same number of elements under process.
Starting at the first partition and first line, the algorithm
adds lines to the partition until the difference between the
partitions eupPi and eupequ is decreasing. Note that the
complexity of the load balancing process is O(n), where n
is the number of rows, and can be done on the hardware
with a pipelined loop with II=1 [21] or on the processor
available in the embedded system and does not have a low
overhead.

Algorithm 1: Load balancing algorithm
Data: no_part: number of partition
Data: eup: number of total eup
Data: R =< r0, r1, ...rN−1 >:
Result: < P0, P1, Pp−1 >:

1 ideal_part_size = eup/no_part;
2 P0 = r0
3 j = 0;
4 for i ← 1 to N − 1 do
5 if

��Pj

�� + |ri | < ideal_part_size then
6 Pj = Pj + ri
7 else
8 if j + 1 < no_part then
9 j + +;

10 end
11 Pj = Pj + ri
12 end
13 end

VI. EXPERIMENTAL RESULTS

This section evaluates the proposed SpMV optimization
techniques. For this purpose, firstly, several sparse matrices,
selected as benchmarks, are used to study the impact of each
optimization technique explained in Section V. Then, the
performance results are compared with the performance of
a multi-core embedded CPU and two many-core embedded
GPUs running the corresponding SpMV. Finally, two case

studies are examined to explain the efficiency of the pro-
posed methods in practice. Before delving into the detailed
analysis and comparison, the next subsection explains the
experimental set-up used for generating results.

A. Experimental setup

To evaluate the proposed methods, we use three state-of-
the-art embedded platforms available on the market. Xilinx
ZCU102 evaluation board featuring the Zynq UltraScale
XCZU9EG-2FFVB1156 FPGA [24], referred to as Zynq-
MPSoC in the sequel, is used to run the proposed SpMV
on its embedded FPGA. In addition, this platform is used
to execute the multi-threaded version of SpMV on its quad-
core embedded processor. Nvidia Jetson TX1 and TX2
as two available commercial embedded GPU are used for
running the corresponding SpMV on their embedded GPUs.

Zynq-MPSoC: The Xilinx Zynq Ultrascale+ MPSoC
consists of two main parts: the multi-core ARM process-
ing system (PS) and the programmable logic (PL). This
embedded system is supported by an external 64-bit DDR4
memory as the main memory for program code and data that
is shared between the PL and PS through dedicated ports.
Our design utilizes the four 128-bit high performance (HP)
ports on the Zynq-MPSoC to transfer data between the main
memory and the PL. In this system, the FPGA and the CPU
power domain supply voltages are provided by 23 voltage
rails [24] among them VCCINT and VCC_PSINTFP sup-
ply the main powers for the FPGA and CPU in this paper,
respectively. The corresponding voltage regulator, provided
these voltage rails, supports the Power Management Bus
(PMBUS) and I2C protocol, so the power consumption can
be monitored through software using the proper I2C APIs in
Linux. We use the Xilinx SDSoC environment [25] which
utilizes Xilinx Vivado-HLS and Vivado as the synthesis
tool-chain to generate the bitstream file for the FPGA
configuration and related drivers and software in Linux to
invoke the accelerator.

TX1 and TX2: These embedded systems are based
on NVIDIA Tegra X1 and X2 SoC [26], respectively.
Whereas the TX1 consists of an NVIDIA Maxwell GPU
with 256 CUDA cores, a Quad ARM A57, and 4 GB
64bit memory, the TX2 encompasses the NVIDIA Pascal
architecture with 256 CUDA cores, a Quad ARM A57, and
8 GB 128bit memory. The cuSPARSE library [27], one of
the most efficient industrial libraries provided by Nvidia for
sparse matrix operation, is used in this paper for SpMV
implementation on the embedded GPUs. In this system,
the GPU and the CPU power domain supply voltages are
provided by VDD_GPU and VDD_CPU voltage rails. The
powers drawn from these rails are measured as the power
consumption of each part. Note that these two platforms
utilize programmable voltage regulators that can be moni-
tored at runtime through the I2C protocol. Consequently, a
software thread can read the power consumption of these
modules at runtime using the I2C software library available
in the Linux OS [21].

Note that the power measurements in the experimental
results do not include the cool-down power in which capaci-
tors in the accelerator are discharged after the kernel execu-
tion has completed. However, for the sake of completeness
and giving a value for the energy consumed during this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

period, we measured the power consumption after finishing
a task. Our measurements show that for the GPU this period
takes about 4ms and consumes 11388uJ energy, and for the
FPGA it takes around 57ms and consumes 6071uJ. Note
that studying and Optimization of the cool-down energy
consumption requires separate research that is beyond the
scope of this paper.

B. Benchmarking

A group of sparse matrices from the University of Florida
Sparse Matrix Collection [28] has been considered as our
benchmarks in this section. According to the histogram
of these matrices [28] the dimension and the number of
non-zero elements for most of matrices are less than 105

and 106, respectively. Therefore, the benchmarks chosen
here are among the most frequently occurring mid-range
matrices to be processed by our underlying FPGA. This
is in line with the motivations of this research, explained
in Section I, in which an embedded system only processes
a part of a big data. Table I shows the statistics of these
sparse matrices. The first column is the name of the matrix
as it appears in [28], the number of rows and columns are
shown in Columns 2 and 3, respectively. The last column
represents the number of non-zero elements in each matrix.

TABLE I: Sparse matrix statistics
Matrix name n m nnz

bcsstk03 112 112 376
rotor1 100 100 708
fpga_dcop_11 1220 1220 5892
spaceStation_5 1020 1020 7895
cage8 1016 1016 11003
c-48 18354 18354 92217
mhd4800a 4800 4800 102252
abtaha2 37932 332 137228
rajat22 39900 39900 197264
TF16 15437 19321 216173
g7jac080 23672 23672 293976
SiO 33404 33404 675528
lhr34c 35152 35152 764014
IG5-17 30162 27944 1035008
mixtank_new 29960 29960 1995041
TSOPF_RS_b300_c2 28338 28338 2943887

C. FPGA accelerator results

This section examines the performance of the proposed
techniques on each sparse matrix benchmark and points out
to the corresponding resource utilization and limitations as
well as its scalability.

Performance: To evaluate the performance of the pro-
posed methodology, we consider two different FPGA clock
frequencies (100MHz and 200MHz) and two single and
double precision floating data type, denoted by SP and
DP, respectively. The FPGA clock frequency has a direct
impact on the I I of the stream computing engine of Fig. 3.
Increasing the clock frequency increases the latency of
the floating-point operation used for the accumulation at
Line 17 of Listing 1. The synthesis results show I I = 4
and I I = 8 for the SP data type at design frequencies
of 100MHz and 200MHz, respectively. For the DP data
type, the initiation intervals change to 5 and 10 at design
frequencies of 100MHz and 200MHz, respectively. The
different IIs result in a different number of elements under
process (eup) after applying the zero-padding technique,
which has been shown in Table II for the single precision.

TABLE II: The eup for different II
Matrix name I I = 4 (overhead%) I I = 8 (overhead%)

bcsstk03 448 (16.1%) 896 (58.0%)
rotor1 832 (14.9%) 1064 (33.5%)
fpga_dcop_11 8144 (27.6%) 10400 (43.4%)
spaceStation_5 9472 (16.6%) 12320 (35.9%)
cage8 12440 (11.6%) 14144 (22.2%)
c-48 130304 (29.2%) 185584 (50.3%)
mhd4800a 110096 (7.1%) 117312 (12.8%)
abtaha2 151728 (9.6%) 303456 (54.8%)
rajat22 253108 (22.1%) 359944 (45.2%)
TF16 236728 (8.7%) 272056 (20.5%)
g7jac080 295052 (0.4%) 351296 (16.3%)
SiO 718880 (6.0%) 819584 (17.6%)
lhr34c 814728 (6.2%) 872416 (12.4%)
IG5-17 1080672 (4.2%) 1152040(10.2%)
mixtank_new 2061692 (3.2%) 2114464(5.6%)
TSOPF_RS_b300_c2 2985696 (1.4%) 3097096(4.9%)

Fig. 8: SpMV: FPGA resource utilization

As mentioned in Subsection V-A, transforming the CSR
to MCSR can be done in the hardware along with trans-
ferring the vector x into FPGA. This design comes with
hardware and energy overheads. The synthesized hard-
ware shows 0.8%, 13.3% and 2.1% overhead on FF,
LUTRAM and LUT in FPGA resource utilization, respec-
tively. In addition, its energy overhead for bcsstk03 and
TSOPF_RS_b300_c2 sparse matrices are 18% and 0.9%,
respectively, corresponding to the smallest and largest ma-
trix in our benchmark.

As mentioned in Subsection V-E the load balancing
algorithm, that can be done on the CPU, has a very low
overhead as its complexity is O(n), where n is the number of
rows. This overhead is 0.3% for bcsstk03 matrix and 7.6%
for TSOPF_RS_b300_c2, corresponding to the smallest and
largest matrix in our benchmark.

Fig. 9 compares the speed-up of the different levels of
optimizations explained in Section V to the naïve version.
According to this diagram, the fast-stream version speeds up
the naïve version up to 3.91 times that is quite close to the
upper bound of I Icom = 4. Merging the two indices vectors
in the reduced-port case abates this speed-up; however, it
enables increasing the number of hardware processes in
the multi-port option that eventually increases the speed-
up factor to 21.1. As can be seen from this diagram, the
load balancing technique has a great impact on the large
matrices with an unbalanced distribution of nnz elements
such as mixtank_new.

Fig. 10 shows the execution time of the proposed SpMV
for the two different frequencies. For each frequency two
diagrams are plotted, one based on the performance formula

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 9: SpMV: speed-up of each optimization compared to the naïve

Fig. 10: SpMV: FPGA performance at different frequency
for SP data type

of Equ. 15 without the platform overhead (i.e., tplatover) and
the other based on the real measurement. As can be seen, the
platform overhead is almost zero for f = 100MHz and it is
negligible for f = 200MHz. This shows the low overhead
of using HLS for implementing the proposed algorithm.

Table III shows the memory bandwidth utilization for
each sparse matrix for the two different design frequencies.
The theoretical limit for using four 128-bit HP memory
ports in Zynq MPSoC are ((128 ∗ 4)/8) ∗ 100MHz =
6.4GB/s and ((128∗4)/8)∗200MHz = 12.8GB/s at design
frequencies of 100MHz and 200MHz, respectively. This
table shows that the proposed methodology has managed to
achieve up to 93.8% and 79.7% of these theoretical memory
bandwidths, respectively.

TABLE III: Utilized memory bandwidth (GB/s)
100MHz 200MHz

Matrix name Formula Empirical Formula Empirical
bcsstk03 5.1 0.5 7.0 0.7
rotor1 5.5 0.8 7.2 1.0
fpga_dcop_11 5.1 2.8 7.5 3.6
spaceStation_5 5.2 3.2 8.9 4.9
cage8 5.5 3.4 9.0 5.0
c-48 5.1 4.9 8.9 8.3
mhd4800a 5.8 5.2 10.4 8.2
abtaha2 5.6 5.4 6.5 5.4
rajat22 5.1 5.0 7.7 12.4
TF16 5.5 5.3 9.3 8.8
g7jac080 5.5 5.3 8.8 8.5
SiO 5.7 5.6 9.4 9.2
lhr34c 5.8 5.7 10.2 9.8
IG5-17 6.0 5.9 10.4 9.2
mixtank_new 6.1 6.0 11.1 9.6
TSOPF_RS_b300_c2 6.1 6.0 10.8 10.2

Table IV Shows a brief comparison with three other
SpMV design on FPGA. The first row shows the number of
Giga FLoating point Operation Per Second (GFLOPS), the
second row is the maximum memory bandwidth utilization.
The maximum sparse matrix dimension handled in each
case is shown in the third row and the last row shows
the maximum design frequency. Note that [18] utilizes an
Altera Startix V D5 FPGA with two DRAM supporting an

aggregate memory bandwidth of 21.3GB/s, so this is the
reason for achieving a performance of 3.9 GFLOPS.

TABLE IV: Comparison with other SpMV implementation
on FPGA

Our method Ref.[17] Ref.[18]
GFLOPS 2.5 < 2.5 3.9
Memory BW (GB/s) 10.2 14.1 –
Max. matrix dimension size 50000 30237 16000
Max. frequency 200 160 150

Resource utilization and limitation: Fig. 8 shows the
percentage of resource utilization for each optimization
level explained in Section V.

Regarding the data sizes, as the proposed techniques
keep the x or y dense vectors into the FPGA BRAM, the
implementations should allocate almost all the BRAM to be
able to process large matrices. This is the reason for high
BRAM utilizations. Table V shows the maximum matrix
dimension sizes that can be processed by each optimization
technique using the Zynq-MPSoC. However, there is no
any limitation on the number of non-zero elements in each
matrix due to the streaming mechanism of reading these
data. The first three optimization techniques do not impose
any restriction on the number of rows as they only keep the
x dense vector into the BRAM. However, the last technique
restricts both the number of rows and columns of the sparse
matrices as it requires to save both the x and y vectors into
the BRAM.

TABLE V: Maximum matrix dimensions for the Zynq-
MPSoC FPGA

Resource naïve fast-stream reduced-port multi-port
MAX n – – – 50000
MAX m 980000 980000 980000 50000

In terms of the scalability, the limiting factor of our
design for higher performance is memory bandwidth and
not the available hardware resources. Therefore, a larger
chip will not help to improve performance but performance
scalability will be obtained with several devices working in
parallel to benefit from the aggregated memory bandwidth.

D. Comparison with embedded CPU and GPU

This subsection compares the performance and energy
consumption of our proposed FPGA design for SpMV with
the corresponding ones running on embedded CPU and
GPUs.

Embedded CPU: Table VI compares the performance of
the proposed SpMV on the FPGA with the corresponding

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 11: Data transfer plus computation execution time:
FPGA vs GPU

software implementation running on the quad-core Corex-
A53 available on the Zynq-MPSoC. The software imple-
mentation utilizes the OpenMP parallel programming model
to employ multiple cores available on the processor. The
first column of this table shows the benchmark names,
Columns 2, 3, and 4 represent the execution time in msec
after running the software implementation of the SpMV on
one, two, and four cores, respectively. The execution time
of the fastest FPGA implementation is presented in the fifth
column. The amount of speed-up achievable by using the
FPGA is shown in the last column. As a general rule, the
FPGA implementation shows better performance compared
to the quad-core CPU version when the nnz factor increases.

TABLE VI: SpMV FPGA execution time (msec) compari-
son with embedded CPU

Cortex-A53
benchmarks 1-core 2-core 4-core FPGA FPGA Speed-up
bcsstk03 0.008187 0.005817 0.005319 0.0168 0.32
rotor1 0.013165 0.010049 0.007779 0.0245 0.32
fpga_dcop_11 0.107124 0.068131 0.050811 0.0338 1.50
spaceStation_5 0.135262 0.117783 0.073115 0.0342 2.13
cage8 0.18639 0.122833 0.078148 0.035 2.23
c-48 1.7283 1.696485 1.233822 0.3021 4.08
mhd4800a 1.699987 0.994339 0.575088 0.1399 4.11
abtaha2 2.710926 1.827024 1.2892 0.586 2.2
rajat22 4.253527 2.782051 1.957403 0.3343 5.86
TF16 4.179026 2.897752 1.677043 0.3344 5.02
g7jac080 5.233087 3.298531 2.297791 0.4411 5.21
SiO 12.727249 8.903879 5.098102 0.8615 5.92
lhr34c 13.584376 8.411587 4.973272 0.8482 5.86
IG5-17 19.719413 12.602667 7.99485 1.111 7.20
mixtank_new 36.28779 24.690021 13.812478 1.9559 7.06
TSOPF_RS_b300_c2 48.882794 48.14978 30.80637 2.8723 10.7

Embedded GPU: This section uses Nvidia Jetson-
TX1&TX2 embedded GPUs to compare with our SpMV
implementation on the FPGA. GPUs provide massive par-
allelisms which are suitable for implementing regular al-
gorithms. In addition, utilizing different types of on-chip
memory such as scratch-pad, they overcome the high la-
tency of accessing data in the off-chip global memory.
Fig. 11 compares the SpMV execution time running on
4-Core CPUs, GPUs and FPGA for the SP and DPdata
types. The GPU execution times include the data transfer
and computation similar to that of the CPU and FPGA.

As can be seen, FPGA shows better performance com-
pared to GPUs and CPU if both data transfer and com-
putation are considered in an application. However, it is
also worth considering only the computation for the GPU
implementation as in some iterative applications the data
transfer performs only once. Considering this assumption,
Fig. 12 compares the GPU and FPGA performance for two
different range of matrix sizes. According to these diagrams,
whereas the FPGA generally shows better performance for
low nnz factor, GPU presents a higher performance for
larger nnz factors.

Fig. 12 depicts two performance trends of running SpMV
on embedded GPUs and FPGA for low and high values of
nnz considering SP and DP data types. As can be seen,
the embedded FPGA shows better performance with small
and medium-size matrices and the embedded GPUs show
better performance when the value of nnz is large. However,
both FPGA and GPU provide higher performances than that
of the embedded CPU. According to the measured data,
the speed-up factor of the FPGA implementation to that of
the GPU for small and medium-size matrices is 3.25 on
average whereas the speed-up factor of the GPU for large
size matrices is 1.58 on average.

The CPU usually benefits from their extensive cache
memory to cope with memory intensive applications. There-
fore, in cases that the data being processed fits the cache
memory, the CPU can show better performance than other
architectures. This justifies the better performance of CPU
for smaller sparse matrices. On the other hand, GPU benefits
from utilizing a large number of hardware threads and
coalesce memory access, therefore they can show better
performance in tasks that provide a large amount of data
to keep all threads busy. This explains why GPU can show
better performance for large sparse matrices.

Energy consumption: This section compares the energy
consumption of running SpMV on the embedded FPGA, the
multi-core embedded CPU, and the many-core embedded
GPU. Fig. 13 compares the energy consumption of the
SpMV running on the FPGA, CPU, and GPU in µJ. As
can be seen the energy consumptions of the CPU and GPU
implementations are much more than that of the FPGA.
For example for the last case as shown in Fig. 13, the
FPGA consumes 4097.23/1849.32 = 2.21 times less en-
ergy. According to the measured energy consumption for all
benchmark matrices, on average the FPGA implementation
consumes 8.9 times less energy compared to the GPU. This
confirms the benefit of using FPGA instead of CPU and
GPU in situations that energy consumption is an important
factor, such as mobile edge devices.

E. Case Study 1: SAXPY
In some applications and libraries, the SpMV kernel

usually computes y = y + αAx + β. This kernel requires
to read the previous y vector as an input, as it appears on
the right-hand side. The proposed techniques can be easily
modified to efficiently implement this kernel without adding
overhead. For this purpose, the streaming data format pre-
sented in Fig. 7 can be modified to interleave the y vector
elements with the values vector similar to interleaving the
column and row indices. In this case, both vectors in Fig. 7
have the same length. Processes in the stream mapping layer
(Fig. 3) can separate the y values into a FIFO what will be
used later in the compute stage layer. For example, the y

elements can be read and used an initialization value for
the sum variable at Line 4 of P4 process in Fig. 5. Figs. 14
(a) and (b) compare the SAXPY execution time running on
GPU and FPGA for two range of matrix sizes similar to
Fig. 12. In addition, the amount of energy consumption is
shown in Fig. 14(c).

F. Case Study 2: Support Vector Machine
This section puts the proposed SDE in Fig. 3 into

practice to show its adaptability and efficiency in real

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 12: Execution time for SP and DP in FPGA vs GPU (only computation) for two range of nnz

Fig. 13: SpMV: Energy consumption comparison - only
computation time

applications. For this purpose, we have chosen Support
Vector Machine (SVM) which is one of the successful
classification algorithms in the literature [29]. We have
modified LIBSVM [30], one of the state-of-the-art SVM
implementations, to use embedded FPGA, GPU and CPU
implementations of the SpMV.

To make the paper self-contained, the C-SVM [30] as
one type of the SVM is briefly explained here. C-SVM
solves the optimization problem in Equ. (18) subject to Equ.
(19), where xi ∈ Rn, i = 1, ..., l are the training vectors,
y ∈ Rl, yi ∈ {1,−1} represents the class labels, C
is the regularization parameter, w is the vector of model
coefficients, b is a constant and ξi denotes parameters for
handling non-separable data. The function φ is used to
transform data from the input space to the feature space.

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi (18)

yi(w
T φ(xi) + b) ≥ 1 − ξi , ξi ≥ 0; i = 1, .., l (19)

The dual form of the problem which is more suitable for
iterative optimization is shown in Equ. (20) and Equ. (21),
where e = [1, ..., 1]T and Q is an l × l matrix as shown in
Equ. (22). The K(xi, xj) = φ(xi)T φ(xj) in Equ. (22) is the
kernel function.

min
α

1
2
αTQα + eTα (20)

subject to yTα = 0, 0 ≤ αi ≤ C; i = 1, .., l (21)

Qi j = yiyjK(xi, xj) (22)

After solving this problem, the model coefficients can be
obtained using Equ. (23).

w =

l∑
i=1

yiαiφ(xi) (23)

In our implementation, we have considered the sigmoid
kernel function which can be represented as Equ. (24).

kernel : K(xi, xj) = tanh(γxTi xj + r) (24)

The calculation of the Q matrix in Equ. (22), which
its computation graph is depicted in Fig. 15(a), is Equ.
compute-intensive part of this algorithm and it takes up to
80% of the total SVM execution time with the sigmoid
kernel. Each xTi xj term in (24) is the result obtained by
invoking the SpMV operation.

Other researchers also follow this mechanism to acceler-
ate the SVM on multi-core CPU, GPUs and ASIC design.
Among them are [30] which utilizes multi-core CPU and
GPU. Eriko, et al. [31] propose an ASIC accelerator for
SpMV to perform the Q computation in SVM. An ASIC
accelerator for sparse matrix sparse vector multiplication is
proposed by [1] that has been used to speed-up the SVM
execution. They have used a simulation approach to evaluate
their designs.

Our proposed SpMV can be used to perform this op-
eration. However, we would like to emphasize that the
proposed SpMV can be easily adapted to the requirement
of Q computation (which is invoking tanh function after

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Fig. 14: SAXPY: FPGA and GPUs execution time comparison for two range of nnz

Fig. 15: Pipelined loop of Q computation

SpMV) to improve the performance. Note that the hy-
perbolic tangent (i.e., tanh) function calculation is also
time-consuming. As these operations apply to each element
of the SpMV output individually, it can be merged into
the SpMV pipeline in our proposed FPGA implementa-
tion while the initiation interval remains intact. For this
purpose, only the processes in the output stage of Fig. 3
should be modified. For example, the assignment in the
loop body of the P4 process in Fig. 5 can be modified
to Y [i] = tanh(γ ∗ results_ f i f o.read() + r) without any
changed in the initiation interval of the corresponding loop.
Fig. 15(b) shows the modified output stage corresponding
to the SDE of Fig. 3. As the pipeline structure can hide
the latency of the tanh function, the overall performance
remains unchanged.

To evaluate the impact of SpMV implementations used
in the SVM, we have considered nine training data sets,
taken from [30], with different sizes shown in Table VII.
Figs. 16(a) and 16(b) compare the performance and energy
consumption of the SVM training phase running on the
embedded FPGA, GPU and quad-core CPU. As can be
seen, running the adapted SpMV on the FPGA slightly
improves the performance and significantly reduces the
energy consumption. Averaging all the measurements for
the given datasets in Table VII, the FPGA-2 implementation
of the SVM is 1.7 times faster consumes 6.8 times less
energy compared to the embedded GPU version.

TABLE VII: SVM training data set
a1a a2a a3a a4a a5a a6a a7a a8a a9a

n 524 2265 3185 4782 6414 11220 16100 22696 32561
m 122 122 122 122 122 122 122 122 122
nnz 7248 31404 44162 66304 88939 155608 223304 314815 451592

G. Challenges and Lessons

The challenges and take away lessons for using HLS as
design flow are as follows
• Reusing the software-based algorithm in HLS is not

straightforward and may need lots of modifications
to allow synthesis tools exploit enough parallelism to
provide the required performance. Thinking in stream
computing can be helpful to cope with this issue.

• Taking advantage of loop pipelining is the key tech-
nique to provide scalable design as it can provide
parallelism with minimum resource utilization.

• Utilizing all the memory ports available on the FPGA
side can provide enough data for several pipelined
stream computing threads on the FPGA to maximize
performance.

VII. CONCLUSIONS

This paper has proposed an efficient sparse matrix dense
vector multiplication to be used in a high-level synthesis
approach and run on an embedded FPGA. The proposed
method is based on stream computing techniques in which
computation and data transfer between the FPGA and the
main memory are executing in a pipelined fashion. The
experimental results indicate that the FPGA implementation
of SpMV can be more performance-efficient for small and
medium-size matrices compared to the GPU versions while
the GPU can show better performance in large size matrices.

ACKNOWLEDGMENT

The authors would like to thank the support received
from EPSRC for this work part of the ENEAC project
(EP/N002539/1). The open source code of this research can
be found at [21].

REFERENCES

[1] L. Yavits and R. Ginosar, “Accelerator for sparse machine learning,”
IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 21–24, Jan
2018.

[2] Y. Zhang, Y. H. Shalabi, R. Jain, K. K. Nagar, and J. D. Bakos, “Fpga
vs. gpu for sparse matrix vector multiply,” in 2009 International
Conference on Field-Programmable Technology, Dec 2009, pp. 255–
262.

[3] V. Smith, “System-aware optimization for machine learning at scale,”
Ph.D. dissertation, EECS Department, University of California,
Berkeley, Aug 2017.

[4] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik,
“Federated optimization: Distributed machine learning for on-device
intelligence,” CoRR, vol. abs/1610.02527, 2016. [Online]. Available:
http://arxiv.org/abs/1610.02527

[5] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017, pp.
65–74.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Fig. 16: SVM Results

[6] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T.
Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels,
“A survey and evaluation of fpga high-level synthesis tools,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 10, pp. 1591–1604, Oct 2016.

[7] N. Bell and M. Garland, “Implementing sparse matrix-vector multi-
plication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing Networking, Storage
and Analysis, Nov 2009, pp. 1–11.

[8] M. Hosseinabady and J. L. Nunez-Yanez, “A systematic approach to
design and optimise streaming applications on FPGA using high-
level synthesis,” in 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), Sept 2017, pp. 1–4.

[9] Xilinx Inc., Vivado Design Suite User Guide High-Level Synthesis,
ug902 ed., 2018.

[10] S. Sun, M. Monga, P. H. Jones, and J. Zambreno, “An i/o bandwidth-
sensitive sparse matrix-vector multiplication engine on FPGAs,”
IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 59, no. 1, pp. 113–123, Jan 2012.

[11] Y. Liang, W. T. Tang, R. Zhao, M. Lu, H. P. Huynh, and R. S. M.
Goh, “Scale-free sparse matrix-vector multiplication on many-core
architectures,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 12, pp. 2106–2119,
Dec 2017.

[12] W. T. Tang, W. J. Tan, R. S. M. Goh, S. J. Turner, and W. F. Wong, “A
family of bit-representation-optimized formats for fast sparse matrix-
vector multiplication on the GPU,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 9, pp. 2373–2385, Sept 2015.

[13] E. S. Chung, J. C. Hoe, and K. Mai, “CoRAM: An in-fabric memory
architecture for fpga-based computing,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp.
97–106.

[14] S. Li, Y. Wang, W. Wen, Y. Wang, Y. Chen, and H. Li, “A data
locality-aware design framework for reconfigurable sparse matrix-
vector multiplication kernel,” in 2016 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), Nov 2016, pp. 1–6.

[15] Y. Umuroglu and M. Jahre, “An energy efficient column-major back-
end for fpga spmv accelerators,” in 2014 IEEE 32nd International
Conference on Computer Design (ICCD), Oct 2014, pp. 432–439.

[16] F. Sadi, L. Fileggi, and F. Franchetti, “Algorithm and hardware co-
optimized solution for large spmv problems,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), Sept 2017,
pp. 1–7.

[17] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
FPGAs,” in Proceedings of the 2005 ACM/SIGDA 13th International
Symposium on Field-programmable Gate Arrays, ser. FPGA ’05.
New York, NY, USA: ACM, 2005, pp. 63–74.

[18] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A
high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication,” in 2014 IEEE 22nd Annual International Symposium
on Field-Programmable Custom Computing Machines, May 2014,
pp. 36–43.

[19] L. Zhuo, G. R. Morris, and V. K. Prasanna, “High-performance
reduction circuits using deeply pipelined operators on fpgas,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 10,
pp. 1377–1392, Oct 2007.

[20] J. Sun, G. Peterson, and O. O. Storaasli, “Mapping sparse matrix-
vector multiplication on fpgas,” in Reconfigurable Systems Summer
Institute (RSSI 2007), 2007.

[21] M. Hosseinabady. (2018) Sparse matrix vector multiplication on zynq
fpga. [Online]. Available: https://github.com/Hosseinabady/SDSoC-
Benchmarks/tree/master/SpMV

[22] A. Pinar and C. Aykanat, “Fast optimal load balancing algorithms
for 1d partitioning,” J. Parallel Distrib. Comput., vol. 64, no. 8, pp.
974–996, Aug. 2004.

[23] S. H. Bokhari, “Partitioning problems in parallel, pipeline, and

distributed computing,” IEEE Transactions on Computers, vol. 37,
no. 1, pp. 48–57, Jan 1988.

[24] Xilinx Inc., Zynq UltraScale+ MPSoC Technical Reference Manual,
Xilinx Inc., UG1085 (v1.1), March 7, 2016.

[25] SDSoC Environment User Guide, Ug1027 (v2017.4) ed., 2018.
[26] Nvidia. (2017) Jetson tx1-tx2 developer kit

carrier board specification. [Online]. Available:
https://developer.nvidia.com/embedded/downloads

[27] ——. (2018) cuSPARSE library. Nvidia. [Online]. Available:
https://docs.nvidia.com/cuda/cusparse/index.html

[28] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25,
Dec. 2011.

[29] V. Kecman, Learning and Soft Computing: Support Vector Machines,
Neural Networks, and Fuzzy Logic Models. Cambridge, MA, USA:
MIT Press, 2001.

[30] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[31] E. Nurvitadhi, A. Mishra, and D. Marr, “A sparse matrix vector mul-
tiply accelerator for support vector machine,” in 2015 International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), Oct 2015, pp. 109–116.

Mohammad Hosseinabady received the BS de-
gree in electrical engineering from the Sharif
University of Technology, Sharif, Iran, in 1992,
the MS degree in electrical engineering and
the PhD degree in computer engineering from
the University of Tehran in 1995 and 2006,
respectively. He is currently a researcher with
the University of Bristol, working on energy
proportional computing based on the reconfig-
urable platforms. His research interests include
highlevel reliability and testability, reconfigurable

architectures, dynamic resource management, runtime power management.
He has published several papers on these topics in journals and conference
proceedings.

Jase Yunez-Nanez received the PhD degree in
hardware-based parallel data compression from
the University of Loughborough, United King-
dom, with three patents awarded on the topic
of highspeed parallel data compression. He is a
senior lecturer in digital systems at the University
of Bristol and member of the microelectronics
group. His main area of expertise is in the
design of reconfigurable architectures for signal
processing with a focus on run-time adaptation,
parallelism and energy-efficiency. He is the PI

in several industrial (e.g., TSB, DSTL, ESA) and UK research council
projects including a CASE award by ARM in the field of run-time energy
prediction and energy-aware scheduling. He is currently also involved as
a coinvestigator in the EU ENTRA and Energy-ICT FP7 projects.

