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Abstract 

Matrix cracking in continuous fibre reinforced composites follows the fibre orientations, but 

continuum damage mechanics models are not able to properly capture this. A novel method is 

presented here to alleviate mesh sensitivity of the damage growth direction and represent 

discrete matrix cracks. In a ply-by-ply mesoscale model, matrix cracks within a ply usually 

rely on mesh dependent strain localisation to decide the crack growth direction. The newly 

proposed algorithm instead uses the ply level fibre orientation as a model input, and 

maintains crack advancement along this direction, based on a neighbour searching scheme. A 

further advantage is that it is able to represent individual cracks discretely, with a predefined 

minimum crack spacing. This overcomes another limitation of continuum damage models, 

where discrete cracks are only represented in a smeared sense. This procedure has been 

shown to be able to reproduce complex crack networks in multidirectional laminates, 

independent of the mesh pattern. 

Keywords: A. Structural composites, B. Matrix cracking, C. Damage mechanics, C. Finite 

element analysis (FEA), Tracking algorithms 
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1 Introduction 

Continuum damage mechanics (CDM) is a framework for modelling material failure as 

progressive loss of stiffness at the macroscale due to diffused damage occurring at the 

microscale such as coalesce and growth of microcracks, voids and other kinds of defects. The 

concept was first introduced by Kachanov [1] in the context of creep rupture, and was 

subsequently expanded by Rabotnov [2], Lecky and Hayhurst [3], Chaboche [4], Lemaitre[5] 

and many others. In its simplest isotropic version, a single non-decreasing scalar variable is 

used to represent the evolution of damage, by progressively reducing the material stiffness 

from its initial undamaged value to zero at complete failure. A more refined theory considers 

damage anisotropy in different material directions with the help of a damage tensor, whose 

components represent damage evolution in different directions. From the perspective of 

numerical implementation, continuum damage models are an attractive choice to model 

structural failure since the damage law can easily be incorporated in the form of a user 

defined material in any commercial finite element package. Due to this, several instances of 

development and application of these damage models can be found throughout the literature 

for application to continuous fibre reinforced laminated composites e.g. Ladeveze and Dantec 

[6], Pinho et al.[7,8], Maimíet al.[9–11], Williams and Vaziri [12], van der Meer and Sluys 

[13]to name just a few. In a mesomechanical approach, where a single ply within a laminate 

constitutes the smallest scale of analysis, traditionally single integration point elements are 

used to implement a CDM material law. In such a case, the stress vs. strain response of the 

integration point represents the response of the entire volume of the associated element, 

which implies that the damage response is ‘smeared’ over the element volume. Hence these 

formulations are also known as smeared damage laws.  

Damage evolution in a CDM typically follows a strain-softening behaviour. A well-known 

numerical problem associated with a strain-softening constitutive behaviour is ‘localisation’. 
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This indicates that damage always tends to localise in one row of finite elements. Hence with 

progressive mesh refinement, as the element dimension tends to zero, energy dissipation due 

to damage will also tend to zero, which is clearly non-physical. The reasons for strain 

localisation and its effects are discussed in Bazant and Belytschko[14] and Bazant and 

Oh[15,16].Several approaches have been proposed to overcome this problem and the most 

popularly used method in composite damage analysis is the crack band theory suggested in 

[15]. In a crack band approach, the element characteristic length of the finite element mesh is 

precomputed and explicitly included in the failure constitutive law (see the work by Maimi et 

al.[17] as an example). This guarantees regularised energy dissipation, independent of the 

mesh size. Although this approach is quite straightforward to implement, it does not address 

the underlying problem of strain localisation directly but instead masks it by the 

regularisation parameter. Another undesired consequence of the localisation problem, which 

is the subject of the present work, is spurious sensitivity of the damage growth direction 

along the mesh lines of the finite element model. This is particularly concerning when 

modelling intra-laminar matrix crack development within a laminate. Because laminates are 

usually constructed by stacking multiple plies with different fibre direction in each, the crack 

growth direction needs to follow the local fibre direction in each ply, and not the underlying 

mesh pattern. Although transverse matrix cracking is regarded as a secondary failure mode, 

being relatively benign on its own to cause global failure, there are several instances 

reported[18–20]where they strongly interact with inter-ply delaminations, resulting in a plane 

of delamination migrating to another weak ply interface and causing unexpected failure. In 

these cases, incorrectly predicted matrix crack paths will lead to an incorrect sequence of 

overall damage progression, and consequently an incorrect laminate strength. Therefore, in 

such cases it is extremely important to correctly capture the crack growth direction for 

reliable numerical predictions. Three approaches are generally used within the composites 
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community to address this problem. The first one is to design the mesh in each individual ply 

to be aligned with the local fibre direction, e.g. Nikishkov et al. [21], Song et al.[22], Lopez 

et al.[23]. Not only does this demand a considerable meshing effort, but also it is not always 

possible to satisfy this requirement while meshing complex 3D geometry. Most importantly, 

this results in non-matched mesh at the ply interfaces, which require tie constraints between 

the plies to hold the assembly together, or the use of contact based cohesive interface 

formulations, both of which significantly increase the computational time. Further, the ply 

mesh needs to be sufficiently fine to simulate discrete cracks, which are able to initiate and 

interact with delaminations. A variation of this approach without the use of a continuum 

damage model is to use cohesive elements to represent matrix cracks, which are pre-inserted 

between solid ply elements in the regions of interest in the mesh, following the fibre 

direction[24–27]. The second approach is to eliminate the problem of localisation altogether 

by using nonlocal averaging scheme, e.g. Forghani and Vaziri[28]. In this method, the local 

material pointwise strain is averaged over a region of finite radius using a Gaussian or bell-

shaped power function (see Jirasek [29] for a comprehensive review of this method) and this 

nonlocal strain is used to construct the damage variable. Whilst this method successfully 

eliminates the mesh- pattern bias of the crack growth direction, it introduces an additional 

parameter, namely the averaging radius, which needs to be carefully selected. In the macro 

scale damage model implemented in [28], the averaging radius is determined by post 

processing images of failed test specimens to identify the width of the damaged region, which 

is taken to be a measure of this radius. This is not feasible in a ply-level analysis, where, 

matrix cracks within a ply are accompanied by extremely small process zones, owing to the 

brittle nature of the resin. The process zone in this scale of analysis is typically comparable to 

the order of individual element size of the FE mesh, and thus does not yield any 

computational advantage. Further, due to the averaging, damage does not appear as sharp 



 

 5 

cracks in this method, but as a finite band spanning a few elements. This also results in poor 

interaction with cohesive interface elements between plies for initiating delamination. The 

third approach to solve the localisation problem is to model cracks using partition-of-unity 

based strong discontinuity modelling techniques, rather than continuum damage. This 

includes application of eXtended finite element method (XFEM)[30,31] and its variant 

regularised XFEM[32], Phantom Node Method (PNM)[33], Floating Node Method(FNM) 

[34], Augmented Finite Element Method (AFEM)[35,36], Cohesive Segment Method [37] 

and its variant [38] etc. This class of methods is not influenced by mesh-pattern dependence 

and by far are the most accurate in simulating realistic crack growth and interaction with 

delamination and other damage modes in composites. However, these are significantly 

computationally expensive compared to the other methods discussed above and are not 

straightforward to be implemented in commercial FE solvers. Further, these methods still lag 

behind standard continuum damage models in terms of robustness and scalability. 

In the current work, we present a new technique that combines features of a standard 

continuum damage model and mesh-independent strong discontinuity model. It preserves the 

ease of implementation and robustness of CDM models for matrix cracking, while allowing 

the user to simulate multiple discrete cracks which are mesh-pattern independent. Crack 

initiation locations are a model outcome and are not needed to be specified a priory. As will 

be shown, this simple element-wise fibre tracking algorithm eliminates the mesh pattern bias. 

It is implemented in Abaqus/Explicit, but any other commercial FE software which supports 

user material subroutines is equally suited for this method. Examples are given in terms of 

models run on multiple CPUs in a high-performance Linux cluster, where multidirectional 

crack networks interact with delaminations, leading to failure. 
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2 Matrix crack model 

2.1 Constitutive law 

In this work, the 3DCDM law proposed by Pinho et al. [7] is used for matrix cracking. 8 node 

solid brick elements C3D8R with reduced integration in Abaqus [39] are used for the 

implementation. The damage law is briefly outlined below for completeness: 

Referring to Figure 1(a), the material frame stresses are rotated to a hypothetical crack frame 

which is oriented at an angle 𝜑 (yet to be determined) with the ply normal: 

 𝜎N =
𝜎22 − 𝜎33

2
+

𝜎22 − 𝜎33

2
cos 2𝜑 + 𝜏23 sin 2𝜑 (1) 

 𝜏T = −
𝜎22 − 𝜎33

2
sin 2𝜑 + 𝜏23 cos 2𝜑 (2) 

 𝜏L = 𝜏12 cos 𝜑 + 𝜏13 sin 𝜑 (3) 

where 𝜎N is the normal stress while 𝜏T and 𝜏Lare the two shear stress components on the 

crack frame. 

Similarly, the normal strain 𝜖N and shear strains 𝛾T and 𝛾Lon the crack frame are: 

 𝜖N =
𝜖22 − 𝜖33

2
+

𝜖22 − 𝜖33

2
cos 2𝜑 + 𝛾23 sin 2𝜑 (4) 

 𝛾T = −
𝜖22 − 𝜖33

2
sin 2𝜑 + 𝛾23 cos 2𝜑 

(5) 

 𝛾L = 𝛾12 cos 𝜑 + 𝛾13 sin 𝜑 (6) 

The crack frame orientation 𝜑 is found by the maximum of the failure criteria in equation 

(7)over possible fracture angles in the range 0° and 180°: 

 (
𝜎N

𝑌T
)

2

+ (
𝜏L

𝑆L
)

2

+ (
𝜏T

𝑆T
)

2

= 1;  𝜎N ≥ 0 (7) 

 (
𝜏L

𝑆L − 𝜇L𝜎N
)

2

+ (
𝜏T

𝑆T − 𝜇T𝜎N
)

2

= 1;  𝜎N < 0 (8) 

where𝑌T is the ply transverse tensile strength, 𝑆L and 𝑆T are the longitudinal and transverse 

shear strengths respectively. Similarly, friction coefficients on the crack plane in the 

longitudinal and transverse direction are𝜇Land 𝜇T.𝑆T , 𝜇T and 𝜇Lare obtained from the 
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transverse compressive strength 𝑌c and corresponding fracture angle𝜑(denoted by𝜑0and is 

equal to 53˚) using Mohr-Coulomb theory: 

 𝑆T =
𝑌c

2 tan 𝜑0
, 𝜇T = −

1

tan(2𝜑0)
, 𝜇L = 𝑆L

𝜇T

𝑆T
 (9) 

Once damage is initiated at a certain crack frame𝜑,  an equivalent mixed-mode damage 

driving stress 𝜎m and displacement 𝛿m are ascertained: 

 𝜎m = √〈𝜎N〉2 + (𝜏T)2 + (𝜏L)2  (10) 

 𝛿m = (
〈𝜎N〉〈𝜖N〉 + 𝜏T𝛾T + 𝜏L𝛾L

𝜎m
) 𝑙𝑒 (11) 

In Equation (10) and (11), Macaulay bracket indicates that negative values of stresses and 

strains do not enter the constitutive equation, as they tend to close the crack rather than 

driving the damage further. The parameter 𝑙e in Equation (11) is the characteristic element 

length. The default value of characteristic length accessible from the user material subroutine, 

which is given by the cube root of the element volume, is used in this work. This 

simplification is in keeping with the fact that all the elements in the fine mesh region of the 

models presented here (see Section 3) are nearly cuboidal and that the crack frame angle 

,𝜑, is approximately equal to 0˚, since the tensile loading renders all elements either under 

pure transverse tension or under a combination of transverse tension/in-plane shear. For a 

more general three dimensional stress state, and for crack growth that is not orthogonal to the 

loading direction, a more accurate measure of the element characteristic length can be 

calculated as the ratio between the element volume and the cracked area within the element. 

The cracked area is a function of the ply orientation, element edge dimensions, crack frame 

angle 𝜑 and the crack’s position within the element (obtained from the edge cut point 

coordinates, which are already obtained as part of the solution). 

The mixed-mode critical energy release rate 𝐺C for failure is determined following the power 

law criterion: 
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 (
𝐺I

𝐺IC
)

𝛼

+ (
𝐺II

𝐺IIC
)

𝛼

= 1 (12) 

where 𝐺Iand 𝐺IIare the mode I and mode II energy release rates and the corresponding critical 

values attained under individual modes are denoted with suffix ‘C’. The power law exponent 

is α. This leads to the following expression for 𝐺C: 

 𝐺C = [{
1

𝐺IC
(

〈𝜎N
o〉𝜖N

o

𝜎m
o 𝜖m

o )}

𝛼

+ {
1

𝐺IIC
(

𝜏T
o𝛾T

o + 𝜏L
o𝛾L

o

𝜎m
o 𝜖m

o )}

𝛼

]

−
1

𝛼

 (13) 

In Equation (13), the prefix ‘o’ on a quantity indicates its value at damage onset. The relative 

displacement between the crack surfaces at failure 𝛿m
f  (superscript ‘f’ indicates failure) can 

now be defined as: 

 𝛿m
f =

2𝐺c

𝜎m
o 𝑙𝑒

 (14) 

A damage variable 𝑑 ∈ [0,1] is finally introduced which drives the damage: 

 𝑑 =
𝛿m

f (𝛿m − 𝛿m
0 )

𝛿m(𝛿m
f − 𝛿m

0 )
 (15) 

This damage variable is then used to degrade the mixed-mode damage driving stress 

𝜎mlinearly to zero in subsequent increments (Figure 1(b)). 

However, a straightforward implementation of the above-mentioned damage law leads to 

spurious mesh pattern bias, as already discussed in the introduction. A ply-level fibre tracking 

algorithm is thus introduced to alleviate this problem. 

2.2 Fibre direction tracking  

To make the crack growth independent of the mesh pattern, local fibre directions needs to be 

known during computation. This is achieved by reading a file at the start of the simulation, 

which is prepared in advance and contains information about element numbers, 

corresponding ply ids and ply fibre directions written down in a tabular format. This 

information is stored in state variables. Additionally, the mesh file is read at the beginning 
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and the element connectivity information is retrieved. For each element, this information is 

used to identify the four edge sharing neighbour elements in the same ply. The damage state 

of a given element (elastic/damaged/failed) is then passed to these four neighbours at each 

time increment until failure, which forms the basis of the tracking algorithm. Once the 

initiation criteria (equation (7) or (8)) is met in an element, a check is performed whether any 

of the adjoining four neighbours has already damaged/failed. If this is not the case, the path 

of the crack segment is assumed to traverse through the element integration point. The 

coordinates of this point together with the slope obtained from ply fibre angle uniquely 

defines the straight line crack segment within the element. To identify the element edges that 

are intercepted by this segment, a signed distance function𝜑(𝒙) is discretely evaluated at the 

two corner nodes of each edge: 

 𝜑(𝒙) = 𝑚𝑖𝑛𝒙𝒄∈Γ𝑐
‖𝒙 − 𝒙𝒄‖𝑠𝑖𝑔𝑛(𝒏. [𝒙 − 𝒙𝒄]) (16) 

where Γ𝑐 denotes the crack segment and 𝒏 is the crack normal. A cut edge results in 𝜑(𝒙) to 

be evaluated to opposite signs at its two supporting nodes. Once the cut edges are identified, 

points of intersection of the element edges with the crack segment are obtained by solving 

straight line equations. These intersection points are passed to the neighbours sharing 

common cut edges as additional information. If a neighbour is found to be already 

damaged/failed, the crack segment then passes through the intersection point previously 

transferred to this element to maintain crack path continuity (figure 2(a) and (b)). 

Because this method is still not a discrete crack model, the crack segments are not 

individually represented, but smeared over the element volume, thus an element-by-element 

propagation results. However, to preserve discreteness, for each new crack, damage is limited 

only to just one row of elements in the direction of crack growth. This is effected by 

artificially blocking initiation in a small user-defined circular region around the currently 

damaged element (Figure3) except for its immediately adjacent neighbours that are aligned 



 

 10 

with the fibre direction. Once the crack advances, some of the ‘blocked’ elements are 

accordingly reactivated. As will be shown, this allows multiple parallel ply cracks to initiate 

in solution dependent locations and grow completely independent of the mesh and interact 

with inter-ply delaminations appropriately. 

The exchange of data between elements during runtime needs special mention. In the actual 

implementation, this is done with the help of COMMON BLOCK variables within the 

FORTRAN programme, wherein information is stored globally and accessed from all the 

elements at runtime. However, the present modelling approach is aimed for large structural 

problems for which parallel processing (running on several CPUs simultaneously) is an 

essential requirement to limit computation to practical timescales. Usage of COMMON 

variables generally prohibits multi-CPU implementation as data stored in these variables are 

not properly communicated between participating CPUs or data is overwritten, producing 

unpredictable results. This hurdle has been overcome using the recently introduced 

VEXTERNALDB subroutine in Abaqus/Explicit 6.14 [39]which allows including MPI 

libraries in a multi-CPU environment and efficiently exchanging information between the 

CPUs, making it convenient to implement such non-local modelling schemes for a large 

number of elements. 

3 Example cases 

The method’s performance is tested with two example problems, where matrix cracks interact 

with other damage mechanism, and therefore their accurate representation is important, as 

discussed below. Comparisons are also drawn with results obtained by running the same 

models with traditional CDM method.  
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3.1 Static tensile failure of open-hole quasi-isotropic laminate 

Static tensile failure of open-hole quasi-isotropic laminate is a challenging problem [40]that 

has been used by many authors to verify modelling methods and their ability to accurately 

capture matrix crack-delamination interaction. Keeping the same model geometry, two 

different layups are investigated from existing literature: [452/902/-452/02]S [41] and [902/-

452/02/452]S [42]. . The failure is by delamination in both cases, but differs significantly in 

terms of failure load. In the first [452/902/-452/02]S laminate case, the delamination is seen to 

initiate at the boundary of a 3.175 mm diameter hole and then propagate outwards while 

remaining confined between the bounds of  plus and minus 45° ply matrix cracks, before 

propagating back to the grips at the -45/0 interface. This strong coupling between cracks and 

delamination results in triangular delamination patterns (Figure 4) on either side of the hole. 

Figure 5 shows the FE mesh of the laminate with the associated boundary conditions. A fine 

mesh with in-plane element size 0.25 mm×0.25 mm in the central region is used. Between 

every two plies (modelled using a single layer of solid C3D8R elements), a thin (0.01 mm) 

layer of cohesive COH3D8 elements are inserted to simulate delamination. Although the ply 

behaviour is modelled using the present user material formulation, the cohesive material 

model already existing in Abaqus is used for the cohesive elements. The ply and cohesive 

interface material properties used in the present study are listed in Table 1 and Table 2 

respectively.  

Due to symmetry in the z direction, only half of the laminate is modelled and z-symmetry 

boundary conditions are applied at the midplane. Prior to mechanical loading, thermal 

residual stress development in the laminate due to cure shrinkage is modelled by subjecting it 

to a temperature drop from 180˚C (final cure temperature) to 20˚C (room temperature). 

Tensile loading is then introduced, by applying equal and opposite velocities on the two 

edges of the laminate. The velocity magnitude is kept sufficiently small (0.2mm/sec) to keep 
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the simulation quasi-static and avoid any dynamic effects. The selective mass-scaling option 

available in Abaqus/Explicit is used with a minimum allowed time increment size of 1µsec, 

such that any element not able to meet this requirement during simulation is selectively mass-

scaled. This is only done to expedite the overall computation and checked carefully so that it 

has minimal influence on the overall load-displacement response. 

 

The simulation outcomes for tensile failure stress levels are plotted in Figure 6, together with 

experimental results for the same. Clearly, the present approach matches the experiments 

very well. However, a conventional CDM under-predicts the strength by approximately 19% 

with respect to the experimental mean and lies outside the scatter band. The reason for this is 

clear from Figure 7, where the matrix cracks in the plies and delamination patterns in the ply 

interfaces just after failure are compared between the two approaches. The matrix cracks are 

more discrete and follow the fibre orientation in the current approach, as expected, while the 

conventional CDM results in diffused damage development over a large area in all the plies. 

More importantly, this diffuse nature of ply damage is not fully able to initiate and interact 

with delaminations, resulting in underdeveloped +45/90 and 90/-45 delaminations and 

erroneously formed -45/0 delamination. Due to better representation of matrix cracks, this 

problem is not present in the newly presented directed CDM approach, and results in very 

realistic delamination patterns (compared to experimental results from[41]), leading to an 

overall accurate failure stress prediction. The situation of incorrect crack and delamination 

interaction in the conventional CDM method also leads to spurious delamination and overall 

instability. To show this point more clearly, in Figure 8 the delamination pattern evolution in 

the +45/90 interface is compared between the two methods, together with the matrix crack 

development in the adjoining plies at different stress levels during loading. The conventional 

CDM method leads to premature delamination due to widespread diffused damage in the 90˚ 
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ply (shown in grey). The delamination on either side of the hole does not develop to its full 

extent, instead the model fails unstably at a much lower overall tensile stress level. This is not 

the case with directed CDM method, where the sharp matrix cracks are able to initiate and 

develop triangular delamination patterns at either side of the hole, providing better numerical 

stability to the model and causing failure at a stress level that agrees with the experiment. 

Another important aspect of modelling failure of open-hole specimens is the ability to 

correctly represent the axial stress redistribution in the 0˚ ply near the hole due to splitting. 

The importance of this has been discussed in [43]. Relaxation of the axial stress due to 

formation and growth of splits (here directed CDM cracks in 0˚ plies) is verified by plotting 

the variation of axial stress in an element near the hole (see Figure 9) as a function of the split 

length. This clearly shows that the method is able to reproduce the stress relaxation in the 0˚ 

plies due to split formation prior to delamination propagation.  

The second layup modelled is [902/-452/02/452]S, with the model preparation and load 

application remaining exactly same as the previous layup. The outcome of this model is only 

briefly discussed here since the quality of comparison to experiments from [42] is very 

similar to the first layup presented above. In this case, the amount of delamination is less that 

in the first layup and therefore the failure stress increases to a higher value. The delamination 

pattern at failure in the different interfaces predicted by the directed CDM matches closely 

with that reported in [42], modelled using individual matrix cracks explicitly embedded in the 

mesh pattern. The predicted failure stress from [42] is 512 MPa and experimental strength is 

499MPa. The directed CDM method predicts failure at 502 MPa, thus confirming the 

robustness of the present method. 
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3.2 Static tensile failure of un-notched quasi-isotropic laminate 

 Hallett et al.[18] have also previously investigated the unnotched tensile strength of the same 

[452/902/-452/02]s laminates. The failure in this case is not delamination-driven, but due to 

fibre rupture in the 0˚ plies. Modelling work in [18] showed that matrix crack development in 

the -45˚ plies cause local stress concentrations in the adjoining 0 plies, which leads to 0° plies 

failing with a fracture surface aligned with the -45° fibre direction. The numerical models in 

[18]used a fibre-aligned mesh with cohesive elements pre-inserted between and within plies 

to simulate delamination and matrix cracking respectively. Although, no fibre failure was 

explicitly modelled, highly localised axial stresses, which exceeded the material tensile 

strength, were observed in the contour plot of 0˚ plies, in a region immediately adjacent to a -

45˚ ply matrix crack, thus confirming this mechanism of failure. 

The new directed CDM method is here tested as to whether the above-mentioned matrix 

crack-fibre failure interaction could be captured well. Only the specimen gauge length is 

modelled for faster computation and a 0.25 mm×0.25 mm mesh is used in the region of 

interest (Figure 10). The 0˚ ply axial stress contour is checked and the simulation is 

discontinued when the axial stress exceeds the volume dependent unidirectional fibre strength 

(2687 MPa for a volume similar to only 0°plies in the laminate, for the material system in 

Table 1[18]). 

The contour plot of the axial stress in the 0˚ ply is shown in Figure 11, for the present and 

conventional CDM approaches respectively, when the laminate cross-sectional stress reaches 

645 MPa. The axial stress concentrations along the -45° crack line, which exceeds the 

material strength at this point are clearly visible in Figure 11 (top). This also agrees well with 

the experimental failure stress 660 MPa (3.3% C.V)[18]. In contrast the only stress 

concentrations in the conventional CDM are near the boundary conditions as shown in Figure 

11 (bottom), with a stress level much below that required for fibre. Figure 12 shows the 
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discretely represented multiple cracks in different plies at failure. The same is not observed 

for the conventional CDM approach, where in the absence of a predefined stress 

concentration such as the open hole in section 3.1, matrix cracks in the off-axis plies were 

seen to be even more diffuse. These smeared matrix cracks are unable to cause localisation of 

the stresses in adjacent plies and could not capture the damage interaction between cracks and 

fibre failure. In this case, the simulation finally ended unstably due widespread damage 

causing element distortion. 

4 Conclusion 

The problem of mesh pattern sensitivity in composite damage modelling using traditional 

continuum damage models is highlighted and overcome in this work. A ply based crack 

tracking approach is suggested as an additional capability on top of any standard continuum 

damage model and with any given FE mesh pattern, with minimal computational overhead. 

Two challenging test cases are demonstrated in the present study clearly showing the 

superiority of this method over traditional CDM, both in terms of accuracy and numerical 

stability while modelling complex progressive failure of multidirectional laminates. In these 

cases, the discrete representation of individual matrix cracks and their correct orientation 

within a ply is quite crucial, as they interact with other damage mechanisms during failure. 

The quality of results is similar to other more established methods for introducing discrete 

matrix cracks, such as XFEM or oriented meshes, but the computational and pre-processing 

complexity is greatly reduced. With XFEM-like methods several additional complexities 

arise, such as the need to partition elements to integrate discontinuous fields, additional 

memory management schemes in the programme to introduce and update additional 

nodes/degrees of freedom corresponding to the crack segments etc. Such complexities are not 

present in the current method. The full potential of the method could be harnessed in the 
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future for modelling of complex failure of structural scale components, where a crack 

oriented mesh construction is not an option. The method could also be extended to study 

dynamic failure, such as impact, where numerical stability can be an issue when using with 

traditional CDM methods. 
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(a)                                                                          (b)                                           

Figure 1.(a) Matrix crack plane and associated traction components (b) Bilinear cohesive damage 

law. 

 

 

 

                                                        (a)                                                                                 (b)                    

Figure 2. (a) Crack passing through an integration point in absence of a failed neighbour (b) Crack 

coming from an already failed element and passing independently of the integration point location to 

maintain advancement along fibre direction. 
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Figure 3. Artificial blocking of crack initiation within a user-defined circular region 

 

 

Figure 4. Triangular delamination pattern highlighted in red (visible area by solid lines, and non-

visible by dashed lines) in a quasi-isotropic open-hole specimen failed in tension. 

 

 

Figure 5. FE mesh of the open-hole specimen (only the gauge length is modelled for computational 

efficiency) 
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Figure 6. Failure stresses obtained from the present and conventional CDM approaches, compared 

experiment for open hole tensile failure of a[452/902/-452/02]S laminate. 
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Figure 7.Damage profile obtained from simulations with ply matrix cracks shown in turquoise and 

inter-ply delaminations shown in red  

  

Experiment [41]

Fibre oriented CDM model

Conventional CDM model



 

 22 

Damage growth (cracks and delamination) at 45/90 interface 

Conventional CDM Directed CDM 

  
200 MPa 

  
320 MPa 

Already failed at 320 MPa 

 
400 MPa 

Figure 8. Interaction of matrix cracks (+45˚ ply cracks shown in pink and 90˚ ply cracks in grey) with 

delamination (shown in red) at the +45/90 interface with applied loading, compared between the 

conventional and directed CDM method. 

 

Figure 9. Axial stress relaxation near the hole in the 0˚ ply. (a) Location of the element from where 

the axial stress is recorded (b) Axial stress vs. split length during three stages of the split growth 

(shown in turquoise)  corresponding to (c). 
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Figure 10. FE mesh of the unnotched quasi-isotropic specimen. 

 

 

Figure 11. Contour plot of axial stress in the 0° ply in directed CDM (top) and conventional CDM 

(bottom), at the same cross-sectional stress level. In the directed CDM method, 0° ply already failed 

due to matrix crack induced local stress concentration. In conventional method, the ply remains 

undamaged at this point. 

 

 

Figure 12.Overall pattern of matrix crack development inside the laminate at failure: 45˚ cracks 

(pink), -45˚ cracks (blue) and 90˚ cracks (grey). 
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Table 1. Material properties of IM7/8552[18,44] 

E11 E22 E33 ν12 ν13 ν23 G12 G13 G23 α11 α22 α33 

(MPa) (MPa) (MPa)    (MPa) (MPa) (MPa) (/°C) (/°C) (/°C) 

161000 11380 11380 0.32 0.32 0.43 5170 5170 3980 0 3e-5 3e-5 

YT Yc SL GIc GIIc α 

(MPa) (MPa) (MPa) (N/mm) (N/mm)  

60 185 90 0.2 1.0 1.0 

 

Table 2. Cohesive interface properties [18] 

KI  

(N/mm3) 

KII  

(N/mm3) 

𝜎I
max

 

(MPa) 

𝜎II
max

 

(MPa) 

GIc 

(N/mm) 

GIIc 

(N/mm) 

α 

(-) 

105 105 60 90 0.2 1.0 1 

 


