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Abstract

Risk is assessed with varying degrees of confidence, and the degree

of confidence is relevant to the risk manager. This paper proposes an

operational framework for representing confidence, based on an expert’s

current beliefs about how her beliefs might be different in the future.5

Two modelling simplifications, ‘no unknown unknowns’ (NUU) and an

homogeneous Poisson process (HPP) make this framework trivial to ap-

ply. This is illustrated for assessing an exceedance probability for a large

event, with volcanic risk as a specific example. The paper ends with a

discussion about risk and confidence assessments for national-scale risk10

assessment, including several further illustrations.
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1. Introduction15

This paper is aimed at experts performing risk assessments, and the risk man-

agers who commission them. I will assume just one expert, for convenience of

expression, and imagine that she has been commissioned to provide a proba-

bilistic risk assessment; more details of one such assessment are given below.

The emphasis throughout is on practicality.20

A risk assessment can be made with a varying degree of confidence, re-

flecting both the innate difficulty of the task, and the amount of resources

available. The expert’s confidence in her risk assessment is obviously relevant

to the risk manager, and it is common for risk assessments to close with a

question such as:25

How confident are you in your risk assessment?

1 = not confident at all, . . . , 5 = highly confident.

However, this question contains a lot of reducible ambiguity. Statisticians

strongly advocate the use of operationally-defined quantities when assessing

uncertainty, so that the resulting assessment is not contaminated by ambiguity30

of meaning (Lad, 1996; Cooke, 2004). The presence of ambiguity makes it hard

to interpret an answer, as illustrated in section 2.

Ambiguity also makes it harder to compare risk assessments across hazard

classes, particularly if different hazard classes are assessed by experts coming

from different risk cultures. The common need for a general-purpose approach35

which can be applied across hazard classes also rules out technically sophis-

ticated approaches such as intervals, e.g. using lower and upper previsions

(Troffaes and de Cooman, 2014). However attractive these might be to math-

ematicians, it is hard to disambiguate such intervals at an acceptable cost, for

use by experts working across a range of fields.40

I propose to replace the ambiguous question above by a more operationally-
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defined question, adjusted to the particular needs of the risk manager. As an

example:

Imagine performing this risk assessment again in five years’ time.

What is your current 90% uncertainty interval for the value you

will assign in five years’ time?

Lower: , Upper: .

I think most people would intuit that a ‘90% uncertainty interval’ will contain45

the specified value in about 90% of such assessments. This can be made precise

with written guidance, if necessary.

Part of the idea of this proposal is to put cognitive roadblocks in place,

to prevent a facile answer—what Daniel Kahneman would call a ‘system one’

answer (Kahneman, 2011). The process of risk assessment is exhausting, as is50

the process of filling-in a risk assessment questionnaire. If by the end of the

process the expert is exhausted, her answers will tend to be less considered.

So a simple question at this stage can provoke a facile answer, particularly if

it stands between the expert and a cold beer. A more complicated question,

which needs to engage ‘system two’ to process it, is presumably more likely to55

get a ‘system two’ response.

But there are other advantages as well. First, the operational nature of the

question means that the outcome is verifiable, discussed further in section 5.

Second, the question can be aligned with the needs of the risk manager, who

may be able to defer a decision if the information acquired in the near future60

might change his choice of action. Thus the risk manager specifies the delay

for each hazard class, according to his timetable and his priorities: section 2

has an illustration.

Third, the question can be answered by direct calculation, given a statis-

tical model. This is the topic of most of this paper, sections 3 and 4, 6 and65

7, and illustrated in sections 8 and 10. Suffice to say that the expert does not

need a statistical model, but she may find it helpful to reflect on the output of
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a statistical model, even quite a simple one, as discussed further in sections 9

and 10; this final section considers national-scale risk assessment.

2. Intermission: ‘Soft’ and ‘hard’ probabilities70

This section, about a fictional treatment of an actual event, is primarily a warn-

ing against making complicated decisions in testosterone-filled environments.

But it also illustrates the difficulty in interpreting ambigiuous assessments of

probability and confidence, and how they might be resolved.

Readers may recollect the film Zero Dark Thirty (2012, directed by Kathryn75

Bigelow). In a pivotal scene, the Director of the CIA goes around the table

asking each person for their probability that the unknown man in the com-

pound in Abbottabad, Pakistan, is Osama Bin Laden. One of them (Daniel)

replies “I’d say it’s a soft sixty, sir. I’m virtually certain there’s some high

value target there, I’m just not sure it’s Bin Laden.” Shortly after, Maya,80

the analyst, who is sitting at the back, gets frustrated and blurts out “One

hundred percent, he’s there; okay, fine, ninety-five percent because I know

certainty freaks you guys out; but it’s a hundred!”.1

We put aside that these are fictional characters, to explore what they mean.

Daniel is virtually certain about one proposition, ‘the man is a high-value85

target’. He does not indicate his confidence but we may assume, from the fact

that he does not feel the need, that he is confident. He is less certain about

a second proposition ‘the man is Bin Laden’, p = 60%, and this he qualifies

with the adjective ‘soft’, indicating a lack of confidence. Maya has p > 95%

for this second proposition, and uses her demeanour to signal confidence: her90

probability is a ‘hard’ probability. In two lines of dialogue, these two experts

have apparently delivered a large amount of information to the risk manager
1Taken from the script at http://www.imsdb.com/scripts/Zero-Dark-Thirty.html.

Readers of a sensitive disposition should be warned that the language is strong in this
testosterone-fuelled scene, including in a further quote below, in which the expletives have
been replaced by ellipses.
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(the Director), covering both their probabilities and their confidences.

Or have they? Unfortunately, ‘soft’ and ‘hard’ are also capable of a second

interpretation in this dialogue. Maybe by ‘soft’ Daniel means ‘at most 60%’,95

and by her demeanour Maya means ‘at least 95%’. We will never know, and

neither will the Director, because he does not ask for clarification. Instead of

accepting this ambiguity, he could have asked for confidence in a much more

specific and useful form. He has a window in which he can launch a mission:

perhaps three weeks. What he really wants to know, it seems to me, is how100

much each person thinks their current probability might change in the light of

another week or two of intelligence. In other words, he wants something like

a probability and a 90% 2-week uncertainty interval.

Of course it is not necessary to be so precise, either about the level or

about the delay. In the film, he instructs his experts: “I’m about to go look105

the President in the eye and what I’d like to know . . . is where everyone stands

on this thing. Now, very simply. Is he there or is he not . . . there?”. Instead,

he could have asked “I want each of you to give me your probability that

he’s there, and also tell me whether you think your probability might change

meaningfully if we acquire another week or two of intel.” And he might have110

added, “To keep things snappy, address the second question on a scale from

‘soft’ to ‘hard’, where ‘soft’ indicates meaningful change, and ‘hard’ indicates

no meaningful change.” Then Daniel’s ‘soft sixty’ and Maya’s ‘hard ninety-five’

would have been less ambiguous and more useful.

At the risk of further dulling the excitement of the scene, I would disam-115

biguate ‘meaningful’. The Director is reluctant to launch a mission unless it

has a high probability of success. So he wants to know whether there is a rea-

sonable chance that the probability of success will drop below some threshold,

say 50%. There is a sizable probability that even if the man in the compound

is Bin Laden, the mission will fail, as nearly happened in the film. If there is a120

20% probability of failure then he needs the probability of the man being Bin
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Laden to be at least 0.5/0.8 ≈ 60%. However, I would advise him not to reveal

his threshold of 60% before the answers, because of the danger of ‘anchoring’

(Kahneman, 2011). He would be best served by asking for an actual interval

of probabilities, rather than a qualitative label like ‘soft’ or ‘hard’. But if that125

requires too much of his experts, he still extracts more useful information by

tying ‘soft’ and ‘hard’ to an uncertainty interval with a specific delay, than

he does by not asking about confidence and misinterpreting an ambiguous

response.

3. Risk and the ‘reasonable worst case’ (RWC)130

In a given hazard class, there will be a range of possible occurrences varying

primarily by magnitude, but also by other features such as intensity and du-

ration. For simplicity, I will take magnitude as a scalar proxy for the type

of occurrence. Each occurrence generates a loss. For simplicity, I will take

financial loss as a scalar proxy for the aggregation of the various dimensions of135

loss. Taken together, (time, magnitude, loss) comprises a 3D point process Π

say, with domain (0, 1)×R+×R+ over the forthcoming year. Risk assessment

concerns the distribution of the annual loss,

A :=
∑

(T,M,L)∈Π

L, (1)

where T is time, M magnitude, and L loss.

The process Π is very complicated to assess, and it is natural to ask whether140

there are some reasonable conditions under which key features of A can be

assessed using a much simpler construction. One feature which is amenable

in this way is the expected annual loss. If there is a ‘Goldilocks’ magnitude

m̃, sufficiently small that E(L |M ≤ m̃) ≈ 0, and also sufficiently large that

P(Ñ > 1) ≈ 0, where Ñ is the number of occurrences with M > m̃ in the145
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next year, then

E(A) ≈ P(Ñ > 0) · E(L |M > m̃), (2)

by the Law of Iterated Expectation. Eq. (2) is a formal basis for the mantra

‘risk is probability times consequence’, where risk is taken to be expected

annual loss. P(Ñ > 0) is termed the ‘exceedance probability’ of m̃: the

probability of at least one occurrence of M > m̃ in the next year.150

The Goldilocks condition seems strong, but it can be a reasonable approxi-

mation when loss is a strongly convex function of magnitude. In this case, the

expectation of A will be dominated by low-probability high-magnitude occur-

rences, the losses from which will far exceed the losses from low- and medium-

magnitude events which will be, relatively speaking, negligible. This seems to155

me to be the best justification for the very common practice of representing

a hazard class by a single large-magnitude occurrence m̃, and computing risk

of the hazard class as the product of the exceedance probability of m̃, and a

value for the loss should there be an occurrence with M > m̃.

This practice is ubiquitous in national risk assessement, discussed in sec-160

tion 10. In the UK National Risk Assessment (NRA), for example, each haz-

ard class is represented by a ‘reasonable worst case’ scenario (RWC, see NRR,

2017). Each hazard class is plotted on a common risk matrix as a (‘likeli-

hood’, ‘impact’) dot for the RWC. Under my interpretation of the NRA, the

Goldilocks condition is assumed for each hazard class, and the RWC is iden-165

tified with a specified magnitude m̃. The ‘likelihood’ of the hazard class is

the exceedance probability P(Ñ > 0), and the ‘impact’ of the hazard class is

the expected loss E(L |M > m̃). The NRA focuses on the hazard classes in

the top righthand corner of the risk matrix. Under my interpretation this is

correct, as these hazard classes have the largest expected annual loss, i.e. the170

largest risk.

Now accept the Goldilocks condition, for some specified magnitude m̃. Of
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the two quantities P(Ñ > 0) and E(L |M > m̃), the former is usually much

more challenging than the latter. In fact it is quite common to narrate the

RWC event, or to choose it from among well-documented historical events.175

For example, the Carrington event (1859) is a useful RWC scenario for a

massive space weather event. The RWC narrative fixes m̃ and allows a fairly

straightforward assessment of E(L |M > m̃). Therefore, the hard part of risk

assessment is specifying the exceedance probability P(Ñ > 0). In the rest of

this paper, I will focus on specifying the exceedance probability for some stated180

threshold. Technically, this would be an ‘uncertainty assessment’ rather than

a ‘risk assessment’, but, as I have explained, in the context of the Goldilocks

condition this distinction is blurred.

4. Beliefs, through time

Risk assessment is about judgement, and judgement is a property of the mind;185

i.e., it is ‘personal’ to use the preferred term of the great 20th century statis-

tician L.J. Savage (see, e.g., Savage, 1971). The risk manager, or his auditors,

cannot require of the expert that she give a traceable account of precisely

how she arrived at her judgements. This is unattainable if those judgements

have been gradually constructed over decades of study, discussion, experiment,190

analysis, and reflection. What the risk manager requires is that the expert is

indeed an expert for the hazard class in question, and that she has honestly

reflected her judgement in her risk assessment: i.e., she accepts ownership of

her judgements. It is common to use ‘judgement’ when referring to an expert’s

uncertainty (Aspinall and Cooke, 2013), but below I will use ‘belief’, because195

of its presence in philosophers’ quick definition of ‘knowledge’, which is ‘jus-

tified true belief’ (Ladyman, 2002, pp. 5–6). To me, ‘judgement’ seems a bit

ponderous, and liable to be misconstrued.

Our beliefs are always ‘time-stamped’: we hold them at a point in time,
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conscious that they have changed in the past, and may change in the future.200

The most obvious cause of a change is the availability of new data. To change

our beliefs substantially, these data will usually be anomalous. For example,

the tsunami following the Tōhoku earthquake in Japan in 2011, or the Kaik-

oura earthquake in New Zealand in 2016, both of which were much larger

than expected; or the Grenfell Tower fire in the UK in 2017, which revealed205

compliance issues with building regulations. But it is also possible that the

existing data, or the theory within which they are interpreted, will be reap-

praised. Part of a person’s status as an expert in her field is that she has

useful beliefs about these possibilities. These beliefs will be reflected in her

confidence assessment.210

For concreteness, suppose that the expert is required to provide her ex-

ceedance probability for a ‘reasonable worst case’ occurrence in some hazard

class (see section 3). This is her probability of at least one occurrence at

least as bad as the reasonable worst case occurrence happening in the next

year. Rather than write ‘at least as bad as the reasonable worst case occur-215

rence’ I will just write ‘large occurrence’. So the exceedance probability is the

probability of at least one large occurrence happening in the next year.

Let N be a counting process, such that N(t, t′) is the number of large

occurrences happening in the time interval (t, t′). Let t = 0 denote the present,

and k > 0 denote some specified time k years into the future. Then

p0 := P0{N(0, 1) > 0} (3a)

denotes the expert’s current exceedance probability, and

Pk := Pk{N(k, k + 1) > 0} (3b)

denotes her exceedance probability in k years time. Pk is a random quantity
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at time t = 0, with distribution function

F0,k(u) := P0(Pk ≤ u). (4)

An expert’s current uncertainty about Pk can be captured in a prospective220

interval, constructed from F−0,k, the quantile function of F0,k:

F−0,k(p) := inf{u ∈ R : F0,k(u) ≥ p}. (5)

Here is a specific definition, to avoid more notation.

Definition 1 (Prospective Interval). Your 90% 5-year prospective interval

for a proposition A comprises the 5th and 95th percentiles of your current

probability distribution for the probability you will assign to the analogue of225

A in 5 years time. In the notation of this section, F−0,5(0.05) and F−0,5(0.95).

The notation in this section will be useful below, but its initial purpose is

to give a precise form to the idea that the expert can be currently uncertain

about her future probabilities, and can—in principle—capture her current un-

certainty in terms of a distribution function. In these terms, the proposed230

confidence question from section 1 is to ask the expert for her lower and upper

limits of some appropriate prospective interval. The choice ‘90% 5-year’ is a

generic suggestion, to be modified in particular applications. For terrorism

risk, for example, a delay of 5 years is likely to be too long (Woo, 2015).

This concept of currently uncertain future probabilities has a respectable235

provenance in both Statistics (Goldstein, 1997, ‘temporal sure preference’),

and in Philosophy (van Fraassen, 1995, ‘reflection principle’). In these two

treatments the event is the same, but in my treatment the event may have

to change, although the change can be subtle. In section 2, the event under
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discussion in the boardroom is:240

A = ‘The man currently in the compound is Bin Laden’.

Returning to the boardroom in two weeks time, the ‘currently’ in A will be

two weeks advanced, and so the analogous event in the prospective inter-

val is slightly different. For exceedance probabilities, the current exceedance

probability is for 2020, say, but the 5-year prospective interval exceedance

probability is for 2025. The degree to which a prospective interval provides a245

confidence assessment of a current probability depends on the closeness of the

analogue. As the illustrations in this paper demonstrate, there are plenty of

close analogues in risk assessment.

5. The ‘bazaar of experts’

From the expert’s point of view, a single probability p0 is already more of a250

hostage to fortune than a verbal label such as ‘quite unlikely’. Providing a 90%

five-year prospective interval (`, u) raises the stakes much higher. In five years

time, the expert will be aware of whether her p5 lies inside her original (`, u).

If it is not inside, she faces a tricky decision from a personal point of view,

about whether to reveal her true p5 and the deficiency of her original (`, u),255

or whether to adjust her p5 towards/into her original (`, u). In the former

case her reputation suffers, while in the later case she may appear out of step

with other experts, many of whom are not constrained by previously-stated

prospective intervals. On the other hand, she might be able to celebrate the

fact that her true p5 is inside her original (`, u), in which case her reputation260

is enhanced.

The logic of this situation will be clear to both risk managers and experts.

An expert who provides a prospective interval puts more of her reputation

on the line; gamblers would say she has more ‘skin in the game’. Thus she
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distinguishes herself from other experts by signalling her higher level of com-265

mitment. This is more than a binary signal. First, her prospective interval

can be narrower than others’. Second, she can make more predictions and pro-

vide more prospective intervals: for example, she might provide prospective

intervals for different durations, or over a range of events within her expertise.

In a world scarce of experts, this type of signalling would be unnecessary.270

But we live in a world full of ‘experts’, and the challenge for the risk manager

is to select a good one (Tetlock, 2005). In this ‘bazaar of experts’, committed

experts will want to distinguish themselves by providing a benchmark by which

they can be judged. In so doing, these experts provide a defensible reason for

risk managers to select them over other experts who are unable or unwilling275

to quantify their confidence in their predictions. In turn, risk managers can

justify their choice of experts to their clients’ auditors (Smith, 2010).

Finally, it is worth mentioning a valuable tool for guarding against over-

confidence—represented in this context by a too-narrow prospective interval.

This is the ‘premortem’, originally proposed by Gary Klein (Klein, 2007), and280

discussed by Daniel Kahneman (Kahneman, 2011, p. 264). Adapted to this

context:

Imagine we are five years into the future. Owing to events in the

last five years your new probability is substantially higher than the

upper limit of your original 90% 5-year prospective interval. Take285

5 to 10 minutes to write a brief history of those events.

I have used ‘higher’, but ‘lower’ or ‘outside’ might be more appropriate, de-

pending on circumstances.

6. No unknown unknowns (NUU)

A current distribution function for a future probability is a complicated thing.290

In this section and the next I show how it can be generated by a simple algo-
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rithm under two modelling conditions, ‘no unknown unknowns’ (this section)

and a homogeneous Poisson process (section 7). I will continue to use the ex-

ample from the previous section, where p0 is the expert’s current exceedance

probability, and Pk is her exceedance probability k years into the future, which295

is currently an uncertain quantity.

As already indicated, there need be no connection at all between p0 and

Pk, because of all the things that might happen in the interval (0, k), some of

which might be surprising to the expert. But there ought to be a relationship

between p0 and F0,k, because both are based on the same information—the300

information available to the expert at time t = 0. This section presents a

probabilistic model in which this relationship is explicit, which I term ‘no

unknown unknowns’ or ‘NUU’. NUU is descriptive of the expert’s current

state of mind. That is, the expert examines her beliefs at time t = 0 and

decides that they are consistent with NUU, and is then able to apply NUU to305

compute her p0 and F0,k.

Definition 2 (No unknown unknowns, NUU). The modelling framework of

NUU comprises:

1. A specified stochastic process generating N , starting at time −a < 0

(i.e. a years in the past), and310

2. Probability at time t is computed by conditioning on the outcome of the

stochastic process over the interval (−a, t).

Updating probabilistic beliefs by conditioning is known as ‘Bayesian condition-

alization’ in the philosophy of inference (Howson and Urbach, 2006, ch. 3). Ac-

cording to NUU, an ‘unknown unknown’ is belief-changing information which315

cannot or should not be conditioned upon. This, I propose, is the mathematical

representation of Donald Rumsfeld’s famous ‘unknown unknowns’ utterance:

unknown unknowns change the expert’s stochastic process.
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To avoid any more notation, I will conflate the history of the process with

the process itself, because the generalization is straightforward. The stochastic320

process is P−a. Under NUU,

P0(·) = P−a{· |N(−a, 0) = m}, (6a)

where m is the known number of large occurrences which have happened over

the interval (−a, 0). Then p0 from (3a) has the form

p0 = P0{N(0, 1) > 0}. (6b)

Similarly, Pk from (3b) has the form

Pk(y) = P0{N(k, k + 1) > 0 |N(0, k) = y}, (6c)

based on y occurrences in the interval (0, k). From the point of view of t = 0,325

though, y is uncertain, and hence F0,k from (4) has the form

F0,k(u) = P0{Pk(Y ) ≤ u}, (6d)

writing Y := N(0, k). This function can be expressed algorithmically as

F0,k(u) =
∑

y:Pk(y)≤u

P0(Y = y). (6e)

Eq. (6) are the NUU equations.

The effect of NUU is to make all current and future beliefs a function of

the stochastic process P−a and the history over (−a, 0). But NUU does not330

impose any simplifications on the expert’s stochastic process P−a, which can

be as rich and as complex as she requires. The sequence of large occurrences in

the time interval (0, k) will certainly be in Pk, but so will the expert’s beliefs
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about the response to those occurrences, if she chooses. For example, with

industrial hazards, she might believe that an occurrence of a certain type will335

cause the regulator to shut down or modify some installations, which will then

reduce the probability of further occurrences of that type to near-zero, and so

on. In this way NUU provides a licence for the expert to specify a rich P−a

because her p0 and F0,k can be extracted algorithmically using (6).

7. NUU with an homogeneous Poisson process340

(NUU-HPP)

Having just extolled the virtues of a complex stochastic process, this section

presents the NUU calculation of p0 and F0,k based on the very simplest inter-

esting stochastic process, an homogeneous Poisson process (HPP) (see, e.g.,

Kingman, 1993; Davison, 2003). I will term this combination ‘NUU-HPP’.345

The expert decides to treat N as an HPP with unknown rate λ. This is how

the expert chooses to model her beliefs, not in any sense a statement about

nature itself. The following probability theory is standard (see, e.g., Davison,

2003; Robert, 2007).

Under the HPP model, the expert’s beliefs are350

P0{N(t, t′) = y | λ} = e−(t′−t)λ {(t′ − t)λ}y

y!
, y = 0, 1, . . . . (7)

The Jeffreys prior for λ is π(λ) ∝ λ−
1
2 , which is a natural choice here, and has

the distinct advantage that all expressions are all available in closed-form. This

prior can be embedded within the Gamma distribution as π(λ) = Gamma(1
2
, 0+),

where 1
2
is the shape parameter and 0+ is the rate parameter; below, I use

α and β, respectively. ‘0+’ is a value a tiny bit larger than 0, a minor con-355

trivance to keep π proper. Then, at time t = 0, having seen m large events in
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the interval (−a, 0), the conditional distribution of λ is

π0(λ |m) := Gamma(1
2

+m, a) (8)

using the standard Poisson-Gamma conjugate update.

To evaluate p0,

p0 = P0{N(0, 1) > 0}

=

∫
P0{N(0, 1) > 0 | λ} π0(λ |m) dλ

=

∫
(1− e−λ) π0(λ |m) dλ

= 1−
(

β0

1 + β0

)α0

, (9)

where α0 := 1
2

+ m and β0 := a, from (8). Eq. (9) may seem unfamiliar,360

but for large a, p0 ≈ (1
2

+ m)/(1 + a) using a first-order approximation from

the generalized Binomial theorem, which will typically be close to m/a, as

expected.

Exactly the same reasoning applies to evaluate pk(y), but with

πk(λ |m+ y) := Gamma(1
2

+m+ y, a+ k) (10)

instead of π0(λ |m):365

Pk(y) = 1−
(

βk
1 + βk

)αk(y)

, (11)

where αk(y) := 1
2

+m+ y and βk := a+ k, from (10).

Finally, to evaluate P0(Y = y),

P0(Y = y) =

∫
e−kλ

(kλ)y

y!
π0(λ |m) dλ

=
Γ(α0 + y)

Γ(α0) y!

(
k

β0 + k

)y (
β0

β0 + k

)α0

, y = 0, 1, . . . , (12)
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Figure 1: The NUU-HPP model: no unknown unknowns and an homogeneous
Poisson process. Values for p0, F0,5 and the 90% 5-year prospective interval,
for different values of a and m = round(0.2 · a). p0 is shown as the vertical
dashed line. F0,5 is shown as the dots and horizontal bars. The prospective
interval is shown on the horizontal axis as a thick bar.

where Γ denotes the Gamma function. Eq. (12) is a Negative Binomial distri-

bution in an unfamiliar parameterization. The familiar parameterization has

size = α0 and prob = β0/(β0 +k) = β0/βk, according to the arguments of the370

dnbinom function in the statistical computing environment R (R Core Team,

2017).

Together, (9), (11) and (12) make up (6) under the NUU-HPP model.

R code for computing p0, F0,k and F−0,k as functions of a, m, and k is given in

the Appendix.375

Figure 1 shows the NUU-HPP model in action, for different values of a and

m, with k = 5. The overall pattern is very intuitive. When a (the history)

is long and k (the future) is short, the expert’s current uncertainty about

Pk is small, because the information gained about λ over the interval (0, k)

is only a small addition to the large amount of information already gained380

over (−a, 0). As a shortens, so her current uncertainty about Pk increases.

When a is reduced to 1 year, her 90% 5-year prospective interval is roughly

(0.1, 0.8). At this point, she is close to declaring that she currently has no idea

about what her future exceedance probability will be. An expert claiming high

confidence in this situation cannot be using the NUU-HPP model.385
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Not a confidence interval. The definition of a prospective interval (sec-

tion 4) makes it clear that a prospective interval is not a confidence interval

(as defined, for example, in Casella and Berger, 2002, ch. 9). The NUU-HPP

model, though, is a parametric model in which the parameter λ translates in

a simple fashion into an exceedence probability:390

P{N(0, 1) > 0;λ} = 1− exp(−λ) ≈ λ, (13)

the approximation holding for λ� 1. Therefore, a 90% confidence interval for

λ can easily be transformed into a 90% confidence interval for the exceedance

probability.

However, we should protest if the expert claims, as she may be tempted to

do, that such a confidence interval is a good way to quantify ‘confidence’ in a395

manner suitable for a risk manager and his client. The deficiencies of confi-

dence procedures in this regard are well-known (Morey et al., 2016). But it is

also clear that prospective intervals have a decision-relevant control parameter

‘k-year’ which is absent from confidence intervals. It is a intrinsic feature of

risk management to care about time horizons, but a confidence interval has400

no capacity to distinguish between waiting for 2 weeks, as in the Zero Dark

Thirty scenario (section 2), a year, or five years or longer, as might be suitable

for natural hazards.

8. Example: Icelandic volcanic risk

Consider the case of Icelandic volcanic risk, for which the reasonable worst405

case occurrence might be an explosive eruption of magnitude M ≥ 4, i.e. at

least 100 Mt of ejected matter (see, e.g., Sparks et al., 2013). In this section I

assess my probability of exceedance, i.e. the probability that there will be at

least one explosive M ≥ 4 eruption in Iceland in the next year.

I believe that there are unlikely to be any volcanic ‘unknown unknowns’410
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Figure 2: Icelandic volcanic risk, under the NUU-HPPmodel. According to the
LaMEVE database, there have been 12 large (M ≥ 4) explosive eruptions in
the last 289 years, which gives an annual exceedance probability of p0 = 0.042,
with a 90% 30-year prospective interval of (0.038, 0.050).

arising in Iceland the next few years, and adopt NUU. I believe that an HPP

is a suitable model for large eruptions of groups of volcanoes for periods of at

least a thousand years (Rougier et al., 2016). I will use the LaMEVE database

to assess a and m (Crosweller et al., 2012; Brown et al., 2014), version dated 7

June 2018. As discussed in Rougier et al. (2018a), two relatively recent events415

create gaps in the Icelandic record: the shipwreck of Hannes Þorleifsson in

the late 17th century, and the 1728 fire in Copenhagen. Therefore I use the

LaMEVE record since 1730. Relative to today (end of 2018, there were no

large events in 2018), this gives a = 289 yrs, and m = 12. Figure 2 shows the

resulting assessment: p0 = 0.042 with a 90% 30-year prospective interval of420

0.038 to 0.050. The 90% 5-year prospective interval is 0.042 to 0.045, but a

longer duration is often more appropriate for a natural hazard.

I am not an expert on Icelandic volcanoes. Like everyone else, though, I am
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entitled to form my own beliefs, and sometimes to hold them strongly. It is the

responsibility of the risk manager to choose his expert carefully. In the ‘bazaar425

of experts’ (see section 5) I hope the risk manager would be impressed by the

transparency of my reasoning, and my willingness to provide a benchmark by

which I can be judged. But I would fully expect him to select a volcanologist

who is able to provide both a probability and a personal confidence assess-

ment, and whose reasoning is at least as transparent as mine. My role as a430

‘statistician expert’ is to set the bar on what is required of a ‘subject matter

expert’.

9. Richer models, and a caveat

NUU-HPP is the simplest case of a class of models which might be used by

the expert within the NUU framework to model her beliefs. Under NUU, p0435

and F0,k are always computed using (6), but the stochastic process P−a can

be much richer.

One direction is to allow the process for N to remain Poisson, but to be

non-homogeneous. For example, λ could be a known function of time, or a

known function of other known variables, or an unknown function of those440

variables. If an unknown function, then P−a would need to include beliefs

about the functional form (e.g. in terms of a finite set of parameters). Those

other variables could be known in the future or unknown in the future. If they

are unknown in the future, then P−a would need to include beliefs about those

variables in the future. And so on.445

Another direction is to move away from a Poisson process for N , to allow

the process to be self-exciting or self-damping. For example, a self-exciting pro-

cess might be used to model terrorism events, under the belief that successful

events spawn new events. Although this has to be set against the post-event

response of the security services to reduce the success probability of similar450
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events in the future. I am not an expert in this field, and my speculations are

not worth much.

A caveat. I would caution against using the richer models described here.

Each extension of HPP requires a substantial increase in the amount of sta-

tistical modelling, difficulties in selecting a prior distribution, and extensive455

computation, all of which are absent in the HPP case of a single unknown λ.

Statistical models are blunt tools, and we do not expect to represent all of

our relevant beliefs in them (Cox and Donnelly, 2011). Instead, we use them

as a springboard. The point about NUU-HPP is not that it is an adequate

reflection of our beliefs, but that it is very easy to use. The expert who wants460

to compute a p0 and a 90% 5-year prospective interval only has to ask herself

a single question: how much of the well-recorded past do I believe is relevant

for the next 5 years? Once she has answered this question with her choice of

a, and found m from the database, she has candidate values for p0 and her

prospective interval. She could work a lot longer and harder to develop a more465

general model, making her values hostage to her modelling assumptions and

coding, and still not close the gap very much between her statistical model

and her beliefs. Better to use the NUU-HPP model, report its results, and

then decide whether to let them stand, or to adjust them in some way. The

following final section puts this suggestion into a more formal framework.470

10. Implications for national-scale risk assessment

“The database is too small for confident predictions.”

(Perrow, 2007, p. xxvi)

Most OECD countries undertake a periodic national risk assessment (OECD,

2018), which is required to evaluate existing response and recovery capabilities,475

and consequently to shape spending priorities. Confidence measures are valu-
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able to risk managers (senior civil servants and government ministers) because

they draw attention to the high-risk low-confidence hazards which complicate

policy decisions. Such hazards could be the target of science research funding.

National-scale hazards span many classes, covering natural hazards (e.g.,480

volcanic eruptions), biological hazards (flu epidemic), accidents (pollution of

the water supply), and malicious acts (terrorism). The purpose of national risk

assessment is to compare hazard classes, and therefore it is important that all

hazard classes be assessed using the same metrics. This is very challenging,

given that different hazard classes have very different profiles in terms of their485

impact, and that the risk cultures of subject matter experts (SMEs) in different

hazard classes can vary widely. Another challenge is that risk assessments

must be regularly updated, given that the national risk landscape is constantly

changing. These challenges favour simple and transparent methods which can

be widely applied, over bespoke methods that emerge from the deliberations490

of SMEs separately for each risk class.

The evidence suggests that people make better uncertainty assessments

when they anchor on an empirical base-rate (Tetlock and Gardner, 2015).

With this in mind, and favouring simplicity and transparency, I propose the

following approach, for each hazard class:495

1. Compile or identify a publicly-available database of occurrences of the

hazard class.

2. Identify the starting-point of the relevant history in that database; this

gives a value a for the length in years of the relevant history and m the

number of large occurrences in that history.500

3. Use a and m within a NUU-HPP framework to produce an exceedance

probability p0 and a confidence assessment (`, u) for some specified time

into the future, e.g. a 90% 5-year prospective interval.
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4. Publish the source of the data, the values a, m, p0, and (`, u), and an

explanation of why a was chosen.505

5. Provide final values for probability and confidence, plus an explanation,

if required, of why these differ from the database values.

The explanations in the final stage might not be publicly-available, if restricted

information is used, e.g. in the case of terrorist acts.

Across hazard classes, the biggest source of additional relevant information510

is likely to be near-misses (Woo, 2018). For example, globally there have been 3

‘super-eruptions’ in the last 100 thousand years, for an exceedance probability

of p0 = 3.5 × 10−5, with a 90% 30-year prospective interval of nearly zero

width. A more nuanced approach also considers eruptions smaller than super-

eruptions, which can be incorporated into the exceedance probability of super-515

eruptions by assuming a smooth magnitude-frequency curve. This raises the

exceedance probability of super-eruptions to 5.9×10−5 (Rougier et al., 2018b).

Some hazard classes will need rescaling to represent risk at the national

scale, which will vary by nation. For example, there have been three major ac-

cidents at nuclear power facilities in approximately 17 thousand reactor-years520

of commercial nuclear power operation, according to http://www.world-nuclear.

org/information-library/safety-and-security/safety-of-plants/safety-of-nuclear-power-reactors.

aspx (downloaded 28 Jan 2019). Based on these figures, my exceedance prob-

ability for a major accident at a nuclear reactor is p0 = 0.21 × 10−3 with a

30-year prospective interval of nearly zero width. The UK Office for Nuclear525

Regulation (ONR) regulates 36 nuclear facilities, and ignoring, for simplicity,

the difference between a reactor and a facility, this equates to a UK exposure of

36 reactor-years, per year. My exceedance probability for a major accident in

the UK would be 36 times larger, i.e. p0 = 7.4× 10−3. The actual UK analysis

will be much more nuanced than this, taking into account reactor type and530

age, and variations in regulations between countries, and possibly taking into
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account smaller accidents, other accidents not in the public domain, and near-

misses. But this does not stop the final values being anchored on database

values.

To give another example from the opposite end of the spectrum, since the535

start of 2010 (9 years ago at the time of writing) there have been approx-

imately 11 terrorist vehicle-ramming attacks in western European countries,

according to the list compiled on the Wikipedia page https://en.wikipedia.

org/wiki/Vehicle-ramming_attack (downloaded 29 Jan 2019), for which

p0 = 0.70 with a 90% 1-year prospective interval of (0.67, 0.75). These values540

have to be scaled down for the UK, which I believe experiences perhaps one

third of all such attacks in Western Europe: for me, 1/3 is a simple resting-

place between 1/2, which seems too large, and 1/4, which seems too small.

Scaling down in this case is more complicated, because p0/3 is not small. Using

a Poisson approach,545

p0 = 1− e−λ, q0 = 1− e−λ v (14a)

where p0 = 0.70 is given, q0 is required, and v = 1/3 is the multiplicative

factor. Eliminating λ, the solution is

q0 = 1− (1− p0)v (14b)

where the approximation q0 ≈ p0 v only holds for small p0 v. For vehicle

ramming attacks in the UK, my beliefs are q0 = 0.33 with a 90% 1-year

prospective interval of (0.31, 0.37). Again, the actual UK analysis will be550

much more nuanced than this, but the final values can still be anchored on

database values.

The crucial feature of the above approach is that it starts the SMEs with

a well-defined set of tasks, resulting in values which are directly comparable
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across hazard classes. For a given hazard class, some of the deviations between555

database values and final values will be due to deficiencies in the database.

These deficiencies can be addressed during the repose period between risk

assessments, possiby with science research funding. This type of improvement

activity is perfectly aligned with the capabilities of the SMEs, and is the

obvious source of changes through time in the risk assessment of a particular560

hazard class. It should be stressed that the sequence given above does not

replace the careful deliberations of SMEs, for which there is still much scope

in stages 2 and 5. Instead, its purpose is to shape those deliberations in order to

increase their value to the risk manager, particularly in a comparative analysis

across hazard classes.565
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Appendix

Here is a function to compute F0,k for NUU-HPP, in the statistical computing

environment R (R Core Team, 2017).

#### compute F_{0,k} for NUU-HPP

## returns the steps of F0 as (x = u, y = Fu) and also p0

## a : the length of the historical time-interval, > 0
## m : the number of events in that interval, >= 0 integer
## k : the length of the prospective period, > 0

F0 <- function(a, m, k = 5) {
stopifnot(a > 0, m >= 0, m == round(m), k > 0)
alpha0 <- 0.5 + m
beta0 <- a; betak <- a + k
p0 <- 1 - (beta0 / (1 + beta0))^alpha0
ytop <- qnbinom(0.999, size = alpha0, prob = beta0 / betak)
y <- seq(from = 0, to = ytop, by = 1)
u <- 1 - (betak / (1 + betak))^(alpha0 + y)
list(

x = c(0, u, 1),
y = c(0, pnbinom(y, size = alpha0, prob = beta0 / betak), 1),
p0 = p0)

}

## quantile function, use named arguments in ...

F0inv <- function(p = c(0.05, 0.95), ...) {
stopifnot(0 <= p, p <= 1)
ff <- F0(...)
ii <- findInterval(p, ff$y, left.open = TRUE) # 0 .. N-1
ff$x[ii + 1L]

}
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