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A CONVERSE THEOREM WITHOUT ROOT NUMBERS

ANDREW R. BOOKER

Abstract. We answer a challenge posed in [3, §1.3] by proving a version of Weil’s converse
theorem [20] that assumes a functional equation for character twists but allows their root
numbers to vary arbitrarily.

1. Introduction

When Weil introduced his converse theorem [20], he had in mind what eventually became
known as the Shimura–Taniyama conjecture connecting elliptic curves over Q with classical
modular forms. Soon after, Weil’s theorem was recast in representation-theoretic terms by
Jacquet and Langlands [12, Theorem 11.3], for whom the motivation was Artin’s conjecture,
now seen as the prototypical case of Langlands’ functoriality [12, §12]. At the time, much
more was known about the analytic properties of Artin L-functions than of Hasse–Weil L-
functions (though as fate would have it, Shimura–Taniyama is now a theorem, while some
cases of Artin’s conjecture for 2-dimensional representations over Q remain open). However,
one hypothesis in the converse theorem emerged as a sticking point in the way of easily
applying it to Artin L-functions, namely the behavior under twist of the root number in the
functional equation, which is tantamount to proving the existence of local root numbers for
Artin representations. Langlands [16] solved this problem by a direct (i.e. local) but very
involved computation. Shortly after, Deligne [10] gave a simpler global proof by the method
of “stability of ε-factors”.

In this paper we show that the issue could have been circumvented1, in the sense that
knowledge of the root number is not needed in the converse theorem. We also incorporate
the method of [6] to allow the non-trivial twists to have arbitrary poles. Precisely, we show
the following:

Theorem 1.1. Let ξ be a Dirichlet character modulo N , k a positive integer satisfying
ξ(−1) = (−1)k, and {λn}∞n=1 a sequence of complex numbers satisfying λn = O(

√
n) and the

Hecke relations, so that

(1.1)
∞∑
n=1

λnn
−s =

∏
p

1

1− λpp−s + ξ(p)p−2s
, with λp = ξ(p)λp for each prime p - N.

For any primitive Dirichlet character χ of conductor q coprime to N , define

Λχ(s) = ΓC
(
s+ k−1

2

) ∞∑
n=1

λnχ(n)n−s

The author was partially supported by EPSRC Grant EP/K034383/1.
1That is not to say that it should have been. As Langlands makes clear in his commentary [14] and [15],

the existence of local root numbers for Artin representations was an important confirmation of the nascent
local theory.
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for s ∈ C with <(s) > 3
2
, where ΓC(s) = 2(2π)−sΓ(s). Suppose, for every such χ, that Λχ(s)

continues to a meromorphic function on C and satisfies the functional equation

(1.2) Λχ(s) = εχ(Nq2)
1
2
−sΛχ(1− s̄),

for some εχ ∈ C (necessarily of magnitude 1). Let 1 denote the character of modulus 1, and
suppose that there is a nonzero polynomial P such that P (s)Λ1(s) continues to an entire
function of finite order.

Then one of the following holds:

(i) k = 1 and there are primitive characters ξ1 (mod N1) and ξ2 (mod N2) such that
N1N2 = N , ξ1ξ2 = ξ and λn =

∑
d|n ξ1(n/d)ξ2(d) for every n.

(ii)
∑∞

n=1 λnn
k−1
2 e2πinz is a normalized Hecke eigenform in Snew

k (Γ0(N), ξ).

The result can also be stated in representation-theoretic terms, as follows.

Theorem 1.2. Let AQ denote the adèle ring of Q, and let π = π∞ ⊗
⊗

v<∞ πv be an
irreducible admissible representation of GL2(AQ) with automorphic central character and
conductor N . Assume that each πv is unitary and that π∞ is a discrete series or limit
of discrete series representation. For each unitary idèle class character ω of conductor q
coprime to N , suppose that the complete L-functions

Λ(s, π ⊗ ω) =
∏
v

L(s, πv ⊗ ωv) and Λ(s, π̃ ⊗ ω−1) =
∏
v

L(s, π̃v ⊗ ω−1v ),

defined initially for <(s) > 3
2
, continue to meromorphic functions on C and satisfy a func-

tional equation of the form

Λ(s, π ⊗ ω) = εω(Nq2)
1
2
−sΛ(1− s, π̃ ⊗ ω−1)

for some complex number εω. Suppose also that there is a nonzero polynomial P such that
P (s)Λ(s, π) continues to an entire function of finite order. Then there is an automorphic
representation Π =

⊗
v Πv which is either cuspidal or an isobaric sum of unitary idèle class

characters, and satisfies πv ∼= Πv for v =∞ and every finite v at which πv is unramified.

Many extensions and variations of the hypotheses of the two theorems are possible. We
mention a few:

(1) The restriction to discrete series representations was made for convenience and could
be removed with more work. It is also likely possible to formulate a version over
number fields, starting along the lines of [4, 5].

(2) The assumptions that λn = O(
√
n) in Theorem 1.1 and that πv be unitary in The-

orem 1.2 could be relaxed to polynomial growth of the Satake parameters, at the
expense of allowing solutions corresponding to Eisenstein series of higher weight.
Since we have allowed the untwisted L-function to have finitely many poles, that
would include the Eisenstein series of weight 2 and level 1 (which is not modular), as
in [6].

(3) If we assume that the twisted L-functions are entire then, using the method of [11],
it is enough to assume the functional equation for the trivial character and charac-
ters of a single well-chosen prime conductor q (depending on N). As shown in [2,
Theorem 2.5], the set of suitable q has density 1 in the set of all primes.
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(4) Our proof makes use of the Euler product, an idea that originates with Conrey and
Farmer [9]. It is not required in Weil’s original converse theorem, thanks to an abun-
dance of twists, and one might ask whether it is possible to eliminate both the root
numbers and Euler product. It is plausible that the answer is no, as the analogous
question for additive twists has a negative answer, as shown in [19]. However, adopt-
ing the philosophy espoused in [2], it is likely possible to linearize the Euler product,
replacing it by the functional equation under twist by Ramanujan sums, cq(n).

Finally, we note that stability of ε-factors for more general reductive groups and represen-
tations of their L-groups remains an active area of research (see [8] for a recent survey),
motivated in part by applications involving converse theorems for GLn. It would be inter-
esting to understand the extent to which our result can be generalized to higher rank.

2. Lemmas

We begin with a few preparatory lemmas. We assume the notation and hypotheses of
Theorem 1.1 throughout.

Lemma 2.1. Let q - N be a prime number, and let

cq(n) =
∑

a (mod q)
(a,q)=1

e

(
an

q

)

be the associated Ramanujan sum, where e(x) = e2πix. Define

Λcq(s) = ΓC
(
s+ k−1

2

) ∞∑
n=1

λncq(n)n−s.

Then the ratio Dq(s) = Λcq(s)/Λ1(s) is a Dirichlet polynomial satisfying the functional
equation

Dq(s) = ξ(q)q1−2sDq(1− s̄).

Proof. This holds more generally for positive integers q coprime to N , as shown in [2,
Lemma 4.12]. For completeness, we prove the claim for prime values of q. Let χ0 denote the
trivial character mod q. Then a straightforward calculation shows that cq(n) = q−1−qχ0(n),
so that

Dq(s) =
Λcq(s)

Λ1(s)
= q − 1− q

∑∞
n=1 λnχ0(n)n−s∑∞
n=1 λnn

−s = q − 1− q(1− λqq−s + ξ(q)q−2s)

= −1 + λqq
1−s − ξ(q)q1−2s,

by (1.1). Hence

ξ(q)q1−2sDq(1− s̄) = ξ(q)q1−2s
(
−1 + λqq

s − ξ(q)q2s−1
)

= −1 + ξ(q)λqq
1−s − ξ(q)q1−2s

= Dq(s),

since λq = ξ(q)λq, by (1.1). �

Lemma 2.2.

(1) Λχ(s) is entire of finite order for every primitive character χ of prime conductor
q - N .
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(2) Λ1(s) is entire apart from at most simple poles at s ∈ {0, 1} for k = 1 and s ∈
{−1

2
, 1
2
, 3
2
} for k = 2.

Proof. These follow from the proof of [6, Theorem 1.1]. Although the statement of that
theorem includes a formula for the root number, we verify that no use of that hypothesis is
made until §3.1, where Weil’s converse theorem is applied. Thus we find that (1) holds and
that Λ1(s) is entire apart from at most simple poles at s ∈ {1±k

2
} for k 6= 2 and s ∈ {−1

2
, 1
2
, 3
2
}

for k = 2. Finally, the estimate λn = O(
√
n), together with the functional equation (1.2),

rules out poles in the case k > 2. �

Lemma 2.3. For any prime q - N and any integer a, there is a positive integer n ≡ a (mod q)
such that λn 6= 0.

Proof. Suppose the conclusion is false for some q and a. If a ≡ 0 (mod q) then we must
have λq = 0, but then the Euler product (1.1) implies that λq2 = −ξ(q) 6= 0. Hence we may
assume that (a, q) = 1.

Letting χ0 denote the trivial character mod q, we have χ0(n) = q−1−cq(n)
q

, and thus

1

q
− 1

q(q − 1)
cq(n) +

1

q − 1

∑
χ (mod q)
χ 6=χ0

χ(a)χ(n)

is the indicator function of the residue class of a. Hence, by hypothesis we have

Λ1(s) =
1

q − 1
Λcq(s)−

q

q − 1

∑
χ (mod q)
χ 6=χ0

χ(a)Λχ(s).

Applying the functional equation and making use of Lemma 2.1, this implies that

ε1N
1
2
−sΛ1(1− s̄) =

ε1ξ(q)

q − 1
(Nq2)

1
2
−sΛcq(1− s̄)−

q

q − 1
(Nq2)

1
2
−s

∑
χ (mod q)
χ 6=χ0

χ(a)εχΛχ(1− s̄).

Multiplying both sides by ε1(Nq2)s−
1
2 , replacing s by 1− s̄ and conjugating, we obtain

q1−2sΛ1(s) =
ξ(q)

q − 1
Λcq(s)−

q

q − 1

∑
χ (mod q)
χ 6=χ0

χ(a)ε1εχΛχ(s).

Comparing the Dirichlet coefficients of both sides at q, we see that λq = 0. In turn, as above,
this implies that λq2 = −ξ(q). Comparing coefficients at q2, we thus have q = −1, which is
absurd. This concludes the proof. �

In [17, Theorem 9], Li proved that a cuspform whose L-function satisfies both the Euler
product (1.1) and the functional equation (1.2) for χ = 1 must be primitive. Our final result
of this section constitutes an extension of Li’s result that includes the Eisenstein series.

Lemma 2.4. Let f ∈Mk(Γ0(N), ξ) have Fourier expansion
∑∞

n=0 fne(nz), and assume that
it is a normalized eigenfunction for the full Hecke algebra, so that

∞∑
n=1

fnn
−s− k−1

2 =
∏
p

1

1− fpp−s−
k−1
2 + ξ(p)p−2s

.
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Let

Λf (s) = ΓC
(
s+ k−1

2

) ∞∑
n=1

fnn
−s− k−1

2

be the associated complete L-function, and assume that it satisfies the functional equation

Λf (s) = εN
1
2
−sΛf (1− s̄)

for some ε ∈ C. Then one of the following holds:

(i) f is a primitive cuspform, i.e. a normalized Hecke eigenform in Snew
k (Γ0(N), ξ).

(ii) There are Dirichlet characters ξ1 (mod N1) and ξ2 (mod N2) such that ξ1 is primitive,
N1N2 = N , ξ1ξ2 = ξ and

fn =
∑
d|n

ξ1(n/d)ξ2(d)dk−1

for every n > 0. If k 6= 2 then ξ2 is primitive. If k = 2 then ξ2 need not be primitive
(and in fact it must be imprimitive if ξ1 and ξ2 are both trivial), but if N∗2 denotes
the conductor of ξ2 then N2/N

∗
2 is squarefree and (N2/N

∗
2 , N

∗
2 ) = 1.

Proof (sketch). Let X denote the set of pairs (ξ1, ξ2), where ξ1 (mod N1) and ξ2 (mod N2)
are primitive Dirichlet characters such that N1N2 | N , ξ1(−1)ξ2(−1) = (−1)k and if k = 1
then ξ1(−1) = 1. To any pair (ξ1, ξ2) ∈ X we associate the L-series

Lξ1,ξ2(s) = L(s+ k−1
2
, ξ1)L(s− k−1

2
, ξ2),

where the factors on the right-hand side are the usual Dirichlet L-functions.
Next let C denote the set of all primitive weight-k cuspforms g of conductor dividing N .

To g ∈ C with Fourier expansion
∑∞

n=1 gne(nz) we associate the L-series

Lg(s) =
∞∑
n=1

gnn
−s− k−1

2 .

Let Lf (s) =
∑∞

n=1 fnn
−s− k−1

2 denote the finite L-series of f . Then by newform theory and
the description of Eisenstein series in [18, §4.7], there are Dirichlet polynomials Dξ1,ξ2 and
Dg such that

(2.1) Lf (s) =
∑

(ξ1,ξ2)∈X

Dξ1,ξ2(s)Lξ1,ξ2(s) +
∑
g∈C

Dg(s)Lg(s).

Further, the coefficients of each Dirichlet polynomial are supported on divisors of N .
Following [13], we will say that Euler products L1(s) and L2(s) are equivalent if their

Euler factors agree for all but at most finitely many primes, and inequivalent otherwise.
It follows from the Rankin–Selberg method (see, e.g., [7, Corollary 4.4]) that the elements
of {Lξ1,ξ2 : (ξ1, ξ2) ∈ X} ∪ {Lg : g ∈ C} are pairwise inequivalent. Combining this with
[13, Theorem 2], we see that the right-hand side of (2.1) has exactly one nonzero term. If
the nonzero term corresponds to a cuspform g ∈ C then f is also cuspidal, and thus the
conclusion follows from Li’s theorem [17, Theorem 9].

Hence we may suppose that Lf (s) = Dξ1,ξ2(s)Lξ1,ξ2(s) for some pair (ξ1, ξ2) ∈ X. Since
the function Λξ1,ξ2(s) = ΓC(s + k−1

2
)Lξ1,ξ2(s) satisfies a functional equation of level N1N2,
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Dξ1,ξ2(s) = Λf (s)/Λξ1,ξ2(s) satisfies a functional equation of level N/N1N2, i.e.

(2.2) Dξ1,ξ2(s) = εξ1,ξ2

(
N

N1N2

) 1
2
−s

Dξ1,ξ2(1− s̄)

for a suitable constant εξ1,ξ2 . On the other hand, since the coefficients of Dξ1,ξ2(s) are
supported on divisors of N , from the Euler products for Lf (s) and Lξ1,ξ2(s) we have

Dξ1,ξ2(s) =
∏
p|N

(1− ξ1(p)p−s−
k−1
2 )(1− ξ2(p)p−s+

k−1
2 )

1− fpp−s−
k−1
2

.

This ratio must be entire, and by the functional equation (2.2), its zeros are symmetric with
respect to the line <(s) = 1

2
. By the Q-linear independence of log p for primes p, the same

is true of each individual Euler factor.
Now, if k 6= 2 then a straightforward case-by-case analysis shows that this is only possible

if

(1− ξ1(p)p−s−
k−1
2 )(1− ξ2(p)p−s+

k−1
2 )

1− fpp−s−
k−1
2

= 1

for each p, so that Dξ1,ξ2(s) = 1. Thus, Lf (s) = Lξ1,ξ2(s), and by the functional equation
(2.2) we have N = N1N2. This yields the desired conclusion for k 6= 2.

If k = 2 then, since the zeros of 1 − ξ2(p)p−s+
1
2 lie on the line <(s) = 1

2
, there are two

possibilities for each p:

(i)
(1− ξ1(p)p−s−

1
2 )(1− ξ2(p)p−s+

1
2 )

1− fpp−s−
1
2

= 1;

(ii) ξ2(p) 6= 0 and
(1− ξ1(p)p−s−

1
2 )(1− ξ2(p)p−s+

1
2 )

1− fpp−s−
1
2

= 1− ξ2(p)p−s+
1
2 .

Let S denote the set of p | N for which case (ii) applies. Then we have

Dξ1,ξ2(s) =
∏
p∈S

(1− ξ2(p)p−s+
1
2 ).

For each p ∈ S, note that 1−ξ2(p)p−s+
1
2 satisfies a functional equation of level p. Comparing

with (2.2), we see that N/N1N2 =
∏

p∈S p. Moreover, since ξ2(p) 6= 0 for each p ∈ S, we

have (N/N1N2, N2) = 1. Replacing ξ2 by the character of modulus N/N1 that it induces, we
get the conclusion of the lemma. �

3. Proof of Theorem 1.1

We first apply Lemma 2.2 to constrain the poles of Λ1(s) and Λχ(s) for primitive characters
χ of prime conductor q - N . When k ≤ 2 we suppose for now that Λ1(s) is entire, and return
to the general case below. Thus, both Λ1(s) and Λχ(s) are entire of finite order. By the
Phragmén–Lindelöf convexity principle, they are bounded in vertical strips.

Let H = {z ∈ C : =(z) > 0} denote the upper half-plane. For z ∈ H, set

fn = λnn
k−1
2 , f(z) =

∞∑
n=1

fne(nz) and f̄(z) =
∞∑
n=1

fne(nz).
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For any function g : H → C and any matrix γ = ( a bc d ) ∈ GL2(R) of positive determinant,
let g|γ denote the function

(g|γ)(z) = (det γ)k/2(cz + d)−kg

(
az + b

cz + d

)
.

Then, by Hecke’s argument [18, Theorem 4.3.5], the functional equation (1.2) for χ = 1
implies that f |( −1

N ) = ikε1f̄ . Note that

(
1
N 1

)
=

(
−1

N

)(
1 1

1

)−1( −1
N

)−1
.

Since f and f̄ are Fourier series, it follows that f |( 1 1
1 ) = f and f |( 1

N 1 ) = f .
If γ, γ′ ∈ Γ0(N) have the same top row, then a computation shows that γ′γ−1 is a power

of ( 1
N 1 ), so that f |γ′ = f |γ. Thus, f |γ depends only on the top row of γ. With this in

mind, we will write γq,a to denote any element of Γ0(N) with top row ( q −a ).
Let q be a prime not dividing N , and let χ be a character modulo q, not necessarily

primitive. Define

fχ =
∑

a (mod q)
(a,q)=1

χ(a)f

∣∣∣∣(1 a/q
1

)
and f̄χ =

∑
a (mod q)
(a,q)=1

χ(a)f̄

∣∣∣∣(1 a/q
1

)
.

Substituting the Fourier expansion for f , we see that fχ has a Fourier expansion with coef-
ficients

fn
∑

a (mod q)
(a,q)=1

χ(a)e

(
an

q

)
= fn

{
cq(n) if χ is trivial,

τ(χ)χ(n) otherwise,

and similarly for f̄χ. Set

Cχ =

{
ξ(q) if χ is trivial,

χ(−N)ε1εχτ(χ)/τ(χ) otherwise.

Then, by (1.2), Lemma 2.1 and Hecke’s argument, we have fχ|
( −1
Nq2

)
= ikχ(−N)ε1Cχf̄χ.

Suppose that a and m are integers satisfying Nam ≡ −1 (mod q). Then

γq,a = q

(
−1

N

)(
1 m/q

1

)(
−1

Nq2

)−1(
1 a/q

1

)−1
=

(
q −a

−Nm Nam+1
q

)
7



is an element of Γ0(N) with top row ( q −a ). Thus, we have
(3.1)∑

a (mod q)
(a,q)=1

Cχχ(a)f

∣∣∣∣(1 a/q
1

)
= Cχfχ = ikχ(−N)ε1f̄χ

∣∣∣∣∣
(

−1
Nq2

)−1

= ikε1
∑

m (mod q)
(m,q)=1

χ(−Nm)f̄

∣∣∣∣∣
(

1 m/q
1

)(
−1

Nq2

)−1

=
∑

m (mod q)
(m,q)=1

χ(−Nm)f

∣∣∣∣∣
(

−1
N

)(
1 m/q

1

)(
−1

Nq2

)−1

=
∑

a (mod q)
(a,q)=1

χ(a)f

∣∣∣∣γq,a(1 a/q
1

)
.

Fix a residue b coprime to q. Multiplying both sides by χ(b) and averaging over χ, we
obtain

f

∣∣∣∣γq,b(1 b/q
1

)
=

1

ϕ(q)

∑
χ (mod q)

χ(b)
∑

a (mod q)
(a,q)=1

Cχχ(a)f

∣∣∣∣(1 a/q
1

)
.

Replacing a by ab on the right-hand side, writing

Ĉq(a) =
1

ϕ(q)

∑
χ (mod q)

Cχχ(a)

and applying
(
1 −b/q

1

)
on the right, we obtain

f |γq,b =
∑

a (mod q)
(a,q)=1

Ĉq(a)f

∣∣∣∣(1 (a− 1)b/q
1

)
.

From this we see that f |γq,b has a Fourier expansion, with Fourier coefficients fnSq(bn),
where

Sq(x) =
∑

a (mod q)
(a,q)=1

Ĉq(a)e

(
(a− 1)x

q

)
.

Now, let γ =
(

q −b
−Nm r

)
be an arbitrary element of Γ1(N). If m = 0 then γ is (up to sign,

if N ≤ 2) a power of ( 1 1
1 ), so that f |γ = f . Otherwise, multiplying γ on the left by ( 1 1

1 )−j

leaves f |γ unchanged and replaces q by q + jmN . By Dirichlet’s theorem, we may assume
without loss of generality that q is prime. Since q ≡ 1 (mod N), we have(

q −1
1− q 1

)
=

(
1 1

1

)−1(
1
N 1

) 1−q
N

,

8



so that f |γq,1 = f . Given any residue x (mod q), by Lemma 2.1 we may choose n such that
n ≡ x (mod q) and fn 6= 0. Equating Fourier coefficients of f |γq,1 and f , it follows that
Sq(x) = 1. In turn, this implies that f |γq,b = f , and thus f |γ = f for all γ ∈ Γ1(N).

Next consider an arbitrary γ = γq,b ∈ Γ0(N). As above, we may assume that q is prime.
Moreover, for any a coprime to q, we have γq,aγ

−1 ∈ Γ1(N), so that f |γq,a = f |γ. Taking χ
equal to the trivial character mod q in (3.1), we thus find that

(3.2)
∑

a (mod q)
(a,q)=1

(
f |γ − ξ(q)f

) ∣∣∣∣(1 a/q
1

)
= 0.

We showed above that f |γ has a Fourier expansion. Writing an for the Fourier coefficients,

(3.2) implies that (an − ξ(q)fn)cq(n) = 0 for every n. Since cq(n) never vanishes, we have

an = ξ(q)fn, so that f |γ = ξ(q)f . Thus, we have shown that f ∈Mk(Γ0(N), ξ).
Next, by Lemma 2.4, either f is a primitive cuspform or there are Dirichlet characters

ξ1 (mod N1) and ξ2 (mod N2) such that N1N2 = N , ξ1ξ2 = ξ and

(3.3) fn =
∑
d|n

ξ1(n/d)ξ2(d)dk−1

for every n. For k ≥ 2, we consider (3.3) at n = q1 · · · qm, where q1, . . . , qm are the m smallest
primes ≡ 1 (mod N). For this n we see that

λn = fnn
− k−1

2 =
m∏
i=1

(
q

k−1
2

i + q
− k−1

2
i

)
≥

m∏
i=1

(
q

1
2
i + q

− 1
2

i

)
,

so that
λn√
n
≥

m∏
i=1

(
1 + q−1i

)
.

By Dirichlet’s theorem, the right-hand side grows without bound as m → ∞. This contra-
dicts the hypothesis that λn = O(

√
n), so f must be a primitive cusp form. When k = 1, f

need not be cuspidal, but in this case Lemma 2.4 asserts that ξ1 and ξ2 are primitive. Thus,
we have verified the conclusion of Theorem 1.1.

It remains only to handle the possibility that Λ1(s) has poles when k ≤ 2. In this
case we fix an odd prime q - N and a primitive character χ (mod q), and consider the
sequence λ′n = λnχ(n) in place of λn, ξχ2 in place of ξ and Nq2 in place of N . Then all
of the hypotheses of Theorem 1.1 are satisfied for these data, and the associated L-function
Λ1(s) is entire. Thus, by what we have already shown, either there is a primitive cuspform

f ′ ∈ Snew
k (Γ0(Nq

2), ξχ2) with Fourier coefficients λ′nn
k−1
2 , or k = 1 and there are primitive

characters ξ′1 and ξ′2 such that λ′n =
∑

d|n ξ
′
1(n/d)ξ′2(d).

Consider the cuspidal case first. By newform theory [1, Theorem 3.2], we can twist f ′ by
χ, i.e. there is a primitive cuspform f of conductor Nqj for some j, with Fourier coefficients

λ′nχ(n)n
k−1
2 = λnn

k−1
2 for every n coprime to q. Since q was arbitrary, we can apply this

argument to two different choices of q. Then strong multiplicity one implies that f has

conductor N and Fourier coefficients λnn
k−1
2 for every n, as desired.

In the non-cuspidal case, let ξi (mod Ni) (i = 1, 2) be the primitive character inducing
ξ′iχ. Then as above we find that λn =

∑
d|n ξ1(n/d)ξ2(d) for all n coprime to q. In particular,

(3.4) λp = ξ1(p) + ξ2(p) for all sufficiently large primes p.
9



Note that ξ1 and ξ2 have opposite parity. If we normalize ξ1 to be even then, since ξ1 and ξ2
are primitive, Dirichlet’s theorem implies that they are uniquely determined by (3.4). Hence,
using two choices for q, we see that N1N2 = N and λn =

∑
d|n ξ1(n/d)ξ2(d) for all n. This

completes the proof.
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10. P. Deligne, Les constantes des équations fonctionnelles des fonctions L, (1973), 501–597. Lecture Notes
in Math., Vol. 349. MR 0349635

11. A. Diaconu, A. Perelli, and A. Zaharescu, A note on GL2 converse theorems, C. R. Math. Acad. Sci.
Paris 334 (2002), no. 8, 621–624. MR 1903358 (2003f:11066)

12. H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Mathematics, Vol. 114,
Springer-Verlag, Berlin, 1970. MR 0401654 (53 #5481)

13. J. Kaczorowski, G. Molteni, and A. Perelli, Linear independence in the Selberg class, C. R. Math. Acad.
Sci. Soc. R. Can. 21 (1999), no. 1, 28–32. MR 1669479 (2000h:11094)

14. Robert P. Langlands, Author’s comments on “Correspondence leading to the book written with Jacquet”,
http://publications.ias.edu/rpl/paper/53.

15. , Author’s comments on “Problems in the theory of automorphic forms”, http://publications.
ias.edu/rpl/paper/47.

16. , On the functional equation of the Artin L-functions, http://publications.ias.edu/sites/
default/files/a-ps.pdf.

17. Wen Ch’ing Winnie Li, Newforms and functional equations, Math. Ann. 212 (1975), 285–315.
MR 0369263

18. Toshitsune Miyake, Modular forms, English ed., Springer Monographs in Mathematics, Springer-
Verlag, Berlin, 2006, Translated from the 1976 Japanese original by Yoshitaka Maeda. MR 2194815
(2006g:11084)

19. Raphael S. Steiner, Near counterexamples to Weil’s converse theorem, 2017, https://arxiv.org/abs/
1606.06923.
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