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Abstract

An assumption in modelling financial risk is that the underlying asset returns are sta-
tionary. However, there is now strong evidence that multivariate financial time series
entail changes not only in their within-series dependence structure, but also in the cor-
relations among them. For this reason, we propose a method for consistent detection of
multiple change-points in (possibly high) N -dimensional GARCH panel data set, where
both individual GARCH processes and their correlations are allowed to change. We
prove its consistency in multiple change-point estimation, and demonstrate its good
performance through an extensive simulation study and an application to the Value-
at-Risk problem on a real dataset. Our methodology is implemented in the R package
segMGarch, available from CRAN.
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1 Introduction

The increased financial uncertainty during the recent global economic crisis has confirmed

the close volatility linkage between asset markets. For example, there is now strong evidence

that the economy and oil prices (Hamilton, 2003), foreign exchange rates (Baillie, 1991),

equity markets (Baele, 2003) and crude oil and agricultural commodities (Du et al., 2011) are

related. These co-movements are naturally expected since the rate of information influences

the volatility in asset returns and therefore, the information flow from one asset market can

be incorporated into another related market (Ross, 1989). Therefore, good understanding of

the correlations among multiple markets is crucial for policy makers, financial institutions and

investors.

The joint modelling of financial returns as Multivariate GARCH processes has attracted

considerable attention in the literature, and the proposed models include the vectorised mul-

tivariate GARCH model (Bollerslev et al., 1988), Baba-Engle-Kraft-Kroner (BEKK) model

(Engle and Kroner, 1995), constant conditional correlation (CCC) model (Bollerslev, 1990),

dynamic conditional correlation (DCC) model (Engle, 2002), generalised orthogonal GARCH

model (Van der Weide, 2002), full-factor multivariate GARCH model (Vrontos et al., 2003)

and conditionally uncorrelated components-based multivariate volatility processes (Fan et al.,

2008); for a survey of multivariate GARCH modelling and inference, see Bauwens et al. (2006).

The assumption that the underlying dynamics remain unchanged is restrictive considering

that the fundamentals driving an economy, the asset markets in particular, exhibit sudden

changes or regimes switches. Empirical evidence of change-points (a.k.a. structural breaks

or breakpoints) in various macroeconomic and financial time series are well documented, see

Hansen (2001), Stock and Watson (2002) and Barigozzi et al. (2018) among many others.

Pesaran and Timmermann (2007) examined eight major currency pairs and established that

stationary volatility modelling induces an upward bias in the mean square forecast error when

change-points exist in the exchange rate volatility.

Cappiello et al. (2006) documented a change-point in the correlations between international

equity and bond returns after the introduction of the Euro currency, supporting the need for
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a method that accounts for change-points in both the conditional volatility and correlation.

Ewing and Malik (2013) found a significant stronger transmission of volatility (spillover)

between oil and gold prices when change-points in their variance were accounted for. Diebold

and Inoue (2001) and Mikosch and Stărică (2004) noted that stochastic regime switching

may be confused with long-range dependence. In this paper, we observe the importance

of accounting for the structural breaks in the volatilities and correlations of a multi-asset

portfolio. In particular, we show that the stressed Value-at-Risk, a popular measure of market

risk widely adopted by financial institutions, under-estimates the exposure of a portfolio when

a pre-selected period of a fixed length is used as the stress period, rather than the most volatile

period identified by the structural breaks.

Investigations into the tests for a single structural break in univariate conditional het-

eroscedastic models have been made in Kokoszka and Leipus (2000), Kokoszka and Teyssière

(2002), Lee et al. (2003), Berkes et al. (2004) and De Pooter and Van Dijk (2004). For multi-

ple change-point detection, Fryzlewicz and Subba Rao (2014) proposed a two-stage procedure

termed BASTA (binary segmentation for transformed ARCH) for detecting changes in the

conditional variance of univariate series, while Andreou and Ghysels (2003) studied change-

point detection in the co-movement of bivariate returns. More recent change-point methods

for (conditional) covariance structure of multivariate data include Dette et al. (2018) and

Barassi et al. (2018) on testing for a single change-point, or Wang et al. (2018) on estimating

the multiple change-points.

In this paper, we propose a change-point methodology for multiple change-point detec-

tion in multivariate, possibly high-dimensional GARCH processes. It simultaneously segments

high-dimensional GARCH processes by identifying ‘common’ change-points, each of which can

be shared by a subset or all of the component time series as a change-point in their within-

series and/or cross-sectional correlation structure. The methodology first transforms the N -

dimensional time series intoNpN`1q{2-dimensional panel data consisting of empirical residual

series and their cross-products, whereby change-points in the complex ((un)conditional vari-

ance and covariance) structure are made detectable as change-points in the simpler (mean)

structure of the panel data at the price of the increased dimensionality. A number of method-
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ologies have been investigated for change-point analysis in the means of high-dimensional

panel data, such as Horváth and Hušková (2012), Jirak (2015), Cho and Fryzlewicz (2015)

and Wang and Samworth (2018). Among many, we adopt the Double CUSUM Binary Seg-

mentation procedure (Cho, 2016), which achieves consistency in estimating both the total

number and locations of the multiple change-points while permitting within-series and cross-

sectional correlations, for simultaneous segmentation of the panel data of transformed time

series. Extending the mixing property originally derived for univariate, time-varying ARCH

processes in Fryzlewicz and Subba Rao (2011) to that of time-varying bivariate GARCH

processes, we establish the consistency of the combined methodology.

The rest of the paper is organised as follows. Section 2 introduces a time-varying mul-

tivariate GARCH model which provides a framework for the theoretical treatment of our

methodology. Section 3 is devoted to the description of the proposed two-stage methodology

and its theoretical properties. Its finite sample performance is investigated on sets of simu-

lated data in Section 4 and a real financial dataset In Section 5. Section 6 concludes the paper,

and the supplementary document provides all the proofs and additional simulation results.

Our methodology is implemented in the R package segMGarch, available from CRAN.

Notation

For any set Π Ă t1, . . . , Nu, we denote its cardinality by |Π|. For given observations trtut,

rt P RN , we denote by Ft the σ-algebra σtrs, s ď tu. Also, we use the notations a _ b “

maxpa, bq and a^ b “ minpa, bq. Besides, a „ b indicates that a is of the order of b, and a " b

indicates that a´1b Ñ 0. We denote a vector of zeros by 0 whose dimension should be clear

from the context.
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2 Time-varying multivariate GARCH model

We consider the following time-varying multivariate GARCH (tv-MGARCH) model denoted

by rt “ pr1,t, . . . , rN,tq
J, t “ 1, . . . , T :

ri,t “
a

hi,tεi,t where (1)

hi,t “ ωiptq `
p
ÿ

j“1

αi,jptqr
2
i,t´j `

q
ÿ

k“1

βi,kptqhi,t´k. (2)

The independent innovations εt “ pε1,t, . . . , εN,tq
J satisfy Epεtq “ 0N and varpεtq “ Σεptq “

rσi,i1ptqs
N
i,i1“1 with σi,iptq “ 1 for all i, i1 and t. We denote the vector of parameters involved in

modelling the within-panel conditional variance of ri,t by

Ωiptq “ pωiptq, αi,1ptq, . . . , αi,pptq, βi,1ptq, . . . , βi,qptqq
J
P R1`p`q,

and that involved in modelling the cross-correlations of εi,t by

Θiptq “ pσi,1ptq, . . . , σi,i´1ptq, σi,i`1ptq, . . . , σi,Nptqq
J
P RN´1.

Then, Ωiptq and Θiptq are piecewise constant in t and share B change-points ηb, b “ 1, . . . , B

(satisfying 0 ” η0 ă η1 ă . . . ă ηB ă ηB`1 ” T ) across i “ 1, . . . , N , in the sense that at

any ηb, there exists Πb Ă tpi, i
1q : 1 ď i ď i1 ď Nu with |Πb| ě 1, where pi, i1q P Πb iff either

Ωipηbq ‰ Ωipηb ` 1q (then pi, iq P Πb) or σi,i1pηbq ‰ σi,i1pηb ` 1q. Note that we do not require

|Πb| “ NpN ` 1q{2, i.e., it is allowed that Ωiptq or Θiptq corresponding to only a subset of the

component time series undergo a change at each ηb.

In (1)–(2), we assume that the (unconditional) correlations across the components of rt are

attributed to the correlations of εt, and that the conditional variance within each component

series is modelled separately as in the standard univariate GARCH processes. Thus, the

tv-MGARCH model is reduced to the CCC model of Bollerslev (1990) over each stationary

segment rηb ` 1, ηb`1s, since Eph´1{2
i,t ri,th

´1{2
i1,t ri1,t|Ft´1q “ σi,i1pηb ` 1q. We take this approach

with the aim of specifying the parameters to which structural changes may be introduced,
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rather than the model for (possibly time-varying) conditional correlations between pairs of

component series; it can be accomplished once the structural change-points are estimated

and stationary segments are identified. We note that the literature on multivariate GARCH

processes, as those cited in Introduction, considers a relatively lower-dimensional applications

(N ď 8), whereas we consider GARCH modelling of both simulated and real datasets of

higher dimensions (N up to 100) in this paper.

We assume the following conditions on (1)–(2).

(A1) The dimensionality N satisfies N „ T θ for some θ P r0,8q.

(A2) For some ε1 ą 0, Ξ1 ă 8 and all T , we have

min
1ďiďN

inf
tPZ

ωiptq ą ε1 and max
1ďiďN

sup
tPZ

ωiptq ď Ξ1 ă 8.

(A3) For some ε2 P p0, 1q and all T , we have

max
1ďiďN

sup
tPZ
t

p
ÿ

j“1

αi,jptq `
q
ÿ

k“1

βi,kptqu ď 1´ ε2.

Assumption (A1) indicates that the dimensionality can either be fixed or increase with T

at a polynomial rate. Assumptions (A2)–(A3) guarantee that between any two consecutive

change-points, each ri,t admits a well-defined solution a.s. and is weakly stationary (see e.g.,

Theorem 4.35 of Douc et al. (2014)).

For a non-stationary stochastic process Xt, its strong-mixing rate is defined as a sequence

of coefficients

αpkq “ sup
tPZ

sup
GPσpXt`k,Xt`k`1,...q,
HPσpXt,Xt´1,...q

|PpGXHq ´ PpGqPpHq|.

For BEKK multivariate GARCH models introduced in Engle and Kroner (1995), Theorem 2.4

of Boussama et al. (2011) shows that there exists a unique and strictly stationary solution,

which is geometrically β-mixing and hence also strong mixing, i.e., αpkq Ñ 0 as k Ñ 8
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with αpkq „ αk for some α P p0, 1q. In Fryzlewicz and Subba Rao (2011) the mixing rate

of univariate, time-varying ARCH processes was investigated. Adopting the theoretical tools

of the latter paper, we establish that any pair of time-varying GARCH processes rii1,t “

pri,t, ri1,tq
J, 1 ď i ă i1 ď N , is strong mixing at a geometric rate, under the following Lipschitz-

type condition on the joint density of pε2
i,t, ε

2
i1,tq

J.

(A4) The joint distribution of ε2
i,t and ε2

i1,t, denoted by fi,i1pu, vq, satisfies the following: for

any a ą 0, there exists fixed K ą 0 independent of a such that

"
ż

|fi,i1pu, vq ´ fi,i1pup1` aq, vq|dudv

*

_

"
ż

|fi,i1pu, vq ´ fi,i1pu, vp1` aqq|dudv

*

ď Ka

uniformly over i, i1 “ 1, . . . , N, i ‰ i1.

Proposition 1. Under (A2)–(A4), there exists some α P p0, 1q such that

sup
1ďiăi1ďN

sup
GPσpri,i1,u:uět`kq,

HPσpri,i1,u:uďtq

|PpGXHq ´ PpGqPpHq| ďMαk,

where M is a finite constant independent of t and k.

See Appendix A.2 in the supplementary document for the proof.

3 Two-stage change-point detection methodology

3.1 Stage 1: Transformation of GARCH processes

For the segmentation of tv-MGARCH processes defined in Section 2, we propose to transform

rt into d ” dN “ NpN ` 1q{2 series such that any change in the conditional variance and

correlations structure of rt, which is attributed to that in any of Ωiptq or Θiptq, is detectable

as a change-point in the mean of at least one out of the d transformed series.

We first transform the N processes ri,t individually using a function g0 : R1`p`q Ñ R,

which takes rt´pi,t “ pri,t, . . . , ri,t´pq
J and ht´qi,t´1 “ phi,t´1, . . . , hi,t´qq

J as an input. We require

that g0 is bounded and Lipschitz continuous.
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(A5) The function g0 : R1`p`q Ñ R satisfies |g0| ď ḡ ă 8 and is Lipschitz continuous in its

squared arguments, i.e., |g0pz0, . . . , zp`qq ´ g0pz
1
0, . . . , z

1
p`qq| ď Cg

řp`q
k“0 |z

2
k ´ pz

1
kq

2|.

Empirical residuals have been widely adopted for detecting changes in the unconditional

variance and/or parameters of univariate, conditionally heteroscedastic processes, see Kokoszka

and Teyssière (2002), Lee et al. (2003), De Pooter and Van Dijk (2004), Fryzlewicz and Subba

Rao (2014) and Barassi et al. (2018). For stationary processes, taking empirical residuals ap-

proximates a series of i.i.d. innovations and, even in the presence of change-points, such

transformation tends to reduce the autocorrelations. Motivated by this, we select g0 such

that

Ui,t “ g0pr
t´p
i,t ,h

t´q
i,t´1q “

ri,t
b

qhi,t

, where (3)

qhi,t “ Ci,0 `
p
ÿ

j“1

Ci,jr
2
i,t´j `

q
ÿ

k“1

Ci,p`khi,t´k ` εr
2
i,t.

Following the practice adopted for the BASTA–res procedure of Fryzlewicz and Subba Rao

(2014), we add εr2
i,t to qhi,t with an arbitrary small positive constant ε, in order to ensure

the boundedness of Ui,t. We note that other transformations may work well in place of g0,

provided that they meet the conditions in (A5). When any parameter in Ωiptq undergoes a

shift over time, this change is expected to be reflected as a shift in EpU2
i,tq. More specifically,

U2
i,t “

hi,t
qhi,t

¨
r2
i,t

hi,t
“
hi,t
qhi,t

ε2
i,t “

hi,t
qhi,t

`
hi,t
qhi,t
pε2
i,t ´ 1q, (4)

so that U2
i,t contains any change in Ωiptq as a change in its level. Choices of the parameters

Ci,j, j “ 0, . . . , p`q and the treatment of (unobservable) hi,t are discussed in Section 3.3. For

notational convenience, we define

g1pr
t´p
i,t ,h

t´q
i,t´1q “ tg0pr

t´p
i,t ,h

t´q
i,t´1qu

2
“ U2

i,t “
r2
i,t

qhi,t
.

To capture any changes in the cross-sectional dependence structure of rt, we adopt the
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transformation g2 : R2`2p`2q Ñ R:

Uii1,t “ g2pr
t´p
i,t ,h

t´q
i,t´1, r

t´p
i1,t ,h

t´q
i1,t´1q “ pUi,t ´ si,i1Ui1,tq

2

where si,i1 P t1,´1u denotes the choice of a ‘sign’ to which our methodology is blind theoreti-

cally; we defer the discussion on its empirical choice to Section 3.3. Under Assumption (A5),

g2 is also bounded and Lipschitz continuous in its squared arguments (see Appendix A.5 of

the supplementary document). Similarly to (4), Uii1,t is decomposed as

Uii1,t “
hi,t
qhi,t

`
hi,t
qhi,t
pε2
i,t ´ 1q `

hi1,t
qhi1,t

`
hi1,t
qhi1,t

pε2
i1,t ´ 1q ´ 2si,i1

d

hi,thi1,t
qhi,tqhi1,t

εi,tεi1,t

from which we conclude that a change in σi,i1ptq are detectable from Uii1,t as that in its level.

Regarding Ui,t as empirical residuals obtained by applying volatility filters, the change-

point procedure of Andreou and Ghysels (2003) examines U1,tU2,t, U
2
1,tU

2
2,t and |U1,tU2,t| for

detecting structural changes in the co-movement of a pair of series pr1,t, r2,tq
J. Instead, we

adopt Uii1,t, whose formulation is motivated by the observation made in Cho and Fryzlewicz

(2015): for given pat, btq, any changes in the second-order dependence structure, Epa2
t q, Epb2

t q

and Epatbtq, are detectable by jointly examining Epa2
t q, Epb2

t q and Etpat ´ sa,bbtq
2u for any

sa,b P t1,´1u. More importantly, we can regard Uii1,t on an equal footing with U2
i,t and U2

i1,t,

which is essential in accomplishing the simultaneous segmentation of rt according to both

within-series and cross-sectional dependence structure. Under the stationarity, the choice of

Ci,0 “ ωi, Ci,j “ αi,j and Ci,p`k “ βi,k leads to U2
i,t closely approximating ε2

i,t, while Uii1,t

approximates pεi,t ´ si,i1εi1,tq
2. Upon further imposing Gaussianity on εi,t, all Ui,t and Uii1,t

follow a scaled χ2
1 distribution (approximately). Note that the same arguments do not apply

to the transformations adopted by Andreou and Ghysels (2003).

In summary, we transform the N -dimensional time series rt to the d-dimensional panel

data with d “ NpN ` 1q{2, as

tU2
i,t, 1 ď i ď N, Uii1,t, 1 ď i ă i1 ď N ; 1 ď t ď T u, (5)
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which ‘encode’ any changes in Ωiptq and Θiptq, i “ 1, . . . , N as changes in their levels. Then,

the problem of detecting multiple change-points in the more complex dependence structure

of rt, is transformed into a relatively easier problem of detecting change-points in the means

of the panel data. While this also brings the increase of dimensionality, the panel data

segmentation algorithm adopted in the second stage (detailed in Section 3.2) handles the high

dimensionality well under a mild assumption (A1).

To formalise the above observations, we introduce the following notations. For each b “

1, . . . , B, let trbtu
T
t“1 denote a stationary multivariate GARCH(p, q) process that follows (1)–(2)

with the parameters Ωipηb`1q, Θipηb`1q and Σεpηb`1q, and the innovations coinciding with

εt over the associated segment rηb`1, ηb`1s; we denote the corresponding conditional variance

by hbt . Then, we define rU b
i,t “ g0pr

b,t´p
i,t ,hb,t´qi,t´1q and rU b

ii1,t “ g2pr
b,t´p
i,t ,hb,t´qi,t´1 , r

b,t´p
i1,t ,hb,t´qi1,t´1q, which

are constructed similarly to Ui,t and Uii1,t yet with stationary rbt and hbt . Finally, we denote

the index of the change-point strictly to the left of and nearest to t by vptq “ maxt0 ď b ď

B : ηb ă tu, with which piecewise stationary processes r
vptq
t , h

vptq
t , rU

vptq
i,t and rU

vptq
ii1,t are defined.

Proposition 2. Suppose that (A2)–(A5) hold, and let xj,t denote an element of the d-

dimensional panel data in (5), i.e., xj,t “ Uii1,t for j ” jpi, i1q “ pN ´ i{2qpi ´ 1q ` i1 (with

Uii,t ” U2
i,t for notational convenience), 1 ď i ď i1 ď N . Then, we have the following decom-

position

xj,t “ fj,t ` zj,t, 1 ď j ď d; 1 ď t ď T. (6)

(i) fj,t are piecewise constant as fj,t “ rgii1,t (with rgii,t ” rgi,t), where rgi,t “ EtprU vptq
i,t q

2u and

rgii1,t “ EprU vptq
ii1,t q. All change-points in fj,t belong to B “ tη1, . . . , ηBu and, conversely, for

each ηb P B, there exists at least a single index j P t1, . . . , du for which |zj,ηb`1´zj,ηb | ‰ 0.

(ii) zj,t satisfies

max
1ďjďd

max
1ďsăeďT

1
?
e´ s` 1

ˇ

ˇ

ˇ

ˇ

ˇ

e
ÿ

t“s

zj,t

ˇ

ˇ

ˇ

ˇ

ˇ

“ Opp
a

log T q.

Proof of Proposition 2 can be found in Appendix A.3 of the supplementary document.
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Unlike EpU2
i,tq or EpUii1,tq, we have rgi,t and rgii1,t exactly constant between any two adjacent

change-points without any boundary effects. By its construction, zj,t “ Uii1,t ´ EprU vptq
ii1,t q does

not satisfy Epzj,tq “ 0. However, due to the mixing properties of Uii1,t derived from Proposition

1, its scaled partial sums can be appropriately bounded. In the next section, we introduce

the multiple change-point detection algorithm as that applied to the panel data xj,t in (6).

3.2 Stage 2: Binary segmentation for tv-MGARCH processes

In this section, we introduce the second stage of the proposed methodology which simultane-

ously segments the d-dimensional transformation of rt, as applied to the additive panel data

in (6).

3.2.1 Double CUSUM binary segmentation

We first describe the Double CUSUM statistics computed on a generic segment rs, es for some

1 ď s ă e ď T , and then provide a full description of the Double CUSUM binary segmentation

algorithm.

Cumulative sum (CUSUM) statistics have been widely adopted for change-point detection

in both univariate and multivariate data. We adopt the (weighted) CUSUM statistics, which

is defined as

X j
s,c,e “

c

pc´ s` 1qpe´ cq

e´ s` 1

˜

1

c´ s` 1

c
ÿ

t“s

xj,t ´
1

e´ c

e
ÿ

t“c`1

xj,t

¸

for s ď c ă e. (7)

A large value of |X j
s,c,e| typically indicates the presence of a change-point in the level of xj,t

in the vicinity of t “ c, and the asymptotic properties of the CUSUM-based test statistic

have been studied for testing the presence of a single change-point, see e.g., Csörgö and

Horváth (1997). Combined with the binary segmentation algorithm, the CUSUM statistic

has frequently been adopted to multiple change-point detection in univariate time series; see

Vostrikova (1981) and Venkatraman (1992) for the theoretical treatment of its application to

the canonical additive model with independent noise, and Fryzlewicz and Subba Rao (2014)

for its application to segment piecewise stationary ARCH processes.
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For change-point detection in multivariate data, we may apply univariate change-point

detection procedures to each xj,t separately as suggested by Andreou and Ghysels (2003),

and then prune down the estimated change-points cross-sectionally. However, identification

of common change-points is a challenging task even for moderately large d, due to the bias

in change-point estimators. Moreover, such an approach does not exploit the cross-sectional

nature of the change-points, that they may be shared cross-sectionally, which advocates the

simultaneous segmentation of the panel data.

We adopt the Double CUSUM Binary Segmentation (DCBS) algorithm proposed in Cho

(2016) for multiple change-point detection in the high-dimensional panel data. It guarantees

consistency in estimating both the number and locations of multiple change-points while

permitting both serial and cross-sectional correlations in xj,t, which is highly relevant to the

time series setting studied in this paper. The Double CUSUM (DC) statistics are computed

on the CUSUM statistics X j
s,c,e and form a two-dimensional array of DC statistics as

Ds,epc,mq “
c

mp2d´mq

2d

˜

1

m

m
ÿ

j“1

|X pjqs,c,e| ´
1

2d´m

d
ÿ

j“n`1

|X pjqs,c,e|

¸

(8)

for s ď c ă e and 1 ď m ď d, where |X pjqs,c,e| denote the ordered CUSUM statistics at each c

such that |X p1qs,c,e| ě |X p2qs,c,e| ě . . . ě |X pdqs,c,e|. Then, the test statistic is derived by maximising

the two-dimensional array over both time and cross-sectional indices, as

Ts,e “ max
sďcăe

max
1ďmďd

Ds,epc,mq, (9)

which is compared against a threshold, πd,T , for determining the presence of a change-point

over the interval rs, es. If Ts,e ą πd,T , the location of the change-point is estimated as

pη “ arg max
sďcăe

max
1ďmďd

Ds,epc,mq.

By ordering the cross-sectional CUSUMs and taking maximum over both the time and cross-

sectional dimensions, we not only locate the change-points over time, but also identify those
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cross-sections that contribute to the detection of the change-point by containing large changes

in the level of xj,t, in a data-driven way with respect to

pm “ arg max
1ďmďd

Ds,eppη,mq;

that is, those xj,t corresponding to |X plqs,c,e|, l ď pm are the cross-sectional components that

contribute to the large value of Ts,e.

Remark 1. We briefly remark upon the choice of scaling for the DC statistics in (8), namely
a

mp2d´mq{p2dq in place of
a

mpd´mq{d. While the latter is in line with the scaling

adopted for the weighted CUSUM statistic in (7), when applied to the cross-sectional dimen-

sion, it does not favour a change-point shared by more than d{2 rows of the panel data and

actually acts as a penalty when all d rows share a change-point, which is counter-intuitive.

The choice of the former scaling resolves this issue, and favourably regards the ‘density’ of a

change-point in considering its cross-sectional magnitude.

The DCBS algorithm is formulated in Algorithm 1. Initialised with s “ 1, e “ T and

pB “ H, it recursively performs testing for locating a single change-point over the segments

defined by previously detected change-points until they are no longer partitioned according

to the threshold πd,T . We discuss the choice of πd,T in Section 3.4.

Algorithm 1: DCBinSeg (Double CUSUM Binary Segmentation algorithm)

Input: txj,tu, πd,T , s, e, pB
Step 1: compute Ds,epc,mq for s ď c ă e and 1 ď m ď d
Step 2: set

Ts,e Ð max
sďcăe

max
1ďmďd

Ds,epc,mq and pη Ð arg max
sďcăe

max
1ďmďd

Ds,epc,mq

Step 3: if Ts,e ą πn,T then
pB Ð pB Y tpηu
pB Ð DCBinSeg(txj,tu, πd,T , s, pη, pB)
pB Ð DCBinSeg(txj,tu, πd,T , pη ` 1, e, pB)

end

Output: pB
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3.2.2 Theoretical properties of DCBS algorithm

Recall Proposition 2 (i), which shows that piecewise constant signals tfj,tu
T
t“1, j “ 1, . . . , d

contain the B change-points ηb, b “ 1, . . . , B shared by the vectors of piecewise constant

parameters Ωiptq and Θiptq, i “ 1, . . . , N and, conversely, at each ηb, there exists

rΠb “

!

j : ∆j,b :“ |fj,ηb`1 ´ fj,ηb | ‰ 0
)

Ă t1, . . . , du

with |rΠb| ě 1. In order to establish the theoretical consistency of the DCBS algorithm, we

impose the following conditions chiefly on the quantities that control the detectability of each

change-point ηb.

(B1) There exists a fixed constant f̄ ą 0 such that max1ďjďd max1ďtďT |fj,t| ď f̄ .

(B2) There exists a fixed constant c ą 0 such that min0ďbďBpηb`1 ´ ηbq ě cT γ for some

γ P p6{7, 1s (with η0 “ 0 and ηB`1 “ T ).

(B3) The number of change-points, B ” BT , satisfies B “ oplog T q.

(B4) We have ∆d,T “ min1ďbďB |rΠb|
´1{2

ř

jPrΠb
∆j,b satisfy T 7γ{4´3{2∆d,T {

?
d log T Ñ 8 as

T Ñ 8.

The condition in (B1) holds trivially as a consequence of (A5). In general, change-point

detection becomes more challenging as the distance between two adjacent change-points de-

creases. This is reflected on (B2), which still allows the case where T´1pηb`1 ´ ηbq Ñ 0 as

T Ñ 8. In conjunction with (B2), Assumption (B3) imposes a bound on the total number

of change-points B, which is permitted to grow slowly with T . Assumption (B4) specifies the

minimum requirement on the cross-sectional size of the change, quantified by ∆d,T , for all

the change-points to be detected as well as being located with accuracy. The quantity ∆d,T

combines both the density, |rΠb|, and the magnitude of jumps,
ř

jPrΠb
∆j,b, over all b “ 1, . . . , B,

and tends to increase as both quantities increase. We highlight that our methodology does not

require each change-point to be common to all the cross-sections of tzj,tu (and, consequently,

in all Ωiptq and Θiptq) provided that Assumption (B4) is met. It is not trivial to relate the
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magnitude of a jump in fj,t “ g̃ii1,t “ EtpU vptq
ii1 q

2u (with j “ pN ´ i{2qpi ´ 1q ` i1) and the

changes in Ωiptq or Θiptq due to the presence of the complex transformation. However, the

density or sparsity of a change-point, measured by |Πb| (defined in Section 2), is preserved by

|rΠb| and, in fact, pi, i1q P Πb iff j “ pN ´ i{2qpi´ 1q ` i1 P rΠb. For a detailed discussion on the

high-dimensional efficiency of DC test statistic, see Remark 3 of Cho (2016).

Theorem 1. Let pηb, b “ 1, . . . , pB (1 ă pη1 ă . . . ă pη
pB ă T ) denote the change-points

estimated by the DCBS algorithm with a test criterion πd,T . Assume that (A1)–(A5) and

(B1)–(B4) hold and πd,T satisfies C 1d∆´1
d,TT

5p1´γq{2
?

log T ă πd,T ă C2∆d,TT
γ´1{2 for some

constants C 1, C2 ą 0. Then there exists c0 ą 0 such that

P
!

pB “ B; |pηbIpb ď pBq ´ ηb| ă c0εT for b “ 1, . . . , B
)

Ñ 1

as T Ñ 8, where εT “ d∆´2
d,TT

5p1´γq log T .

For the proof of Theorem 1, see Appendix A.4 of the supplementary document. From

the condition imposed on the rate of ∆d,T in (B4), it is easily seen that εT {T
γ Ñ 0 as

T Ñ 8. That is, in the re-scaled time interval r0, 1s, the change-point estimators satisfy

T´1|pηb ´ ηb| ď T´γ|pηb ´ ηb| Ñ 0 for all b “ 1, . . . , B. Defining the optimality in change-point

detection as when each of the true change-points and the corresponding estimated change-

point are within the distance of Opp1q (see e.g., Korostelev (1987)), it is attained up to a

logarithmic factor when the change-points are maximally spread (γ “ 1), and the jumps are

dense (|rΠb| „ d) and of large magnitude (
ř

jPrΠn
∆j,b „ d).

3.3 Choice of parameters for transformation

Empirical performance of the two-stage methodology, its power in particular, is influenced by

the choice of the transformation function g0 determined by the coefficients Ci,j, j “ 0, . . . , p`q.

As in many references given at the beginning of Section 3.1, we may replace Ci,j in (3) with

the maximum likelihood estimates (MLEs) of the GARCH parameters obtained assuming the

stationarity, say pωi, pαi,j, 1 ď j ď p and pβi,k, 1 ď k ď q.
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The BASTA–res algorithm proposed by Fryzlewicz and Subba Rao (2014) performs change-

point detection in the univariate GARCH process by analysing the transformation of the in-

put time series obtained similarly to U2
i,t. They recommend the use of ‘dampened’ versions

of the GARCH parameter estimates. In our setting, this leads to the choice of Ci,0 “ pωi,

Ci,j “ pαi,j{Fi, 1 ď j ď p and Ci,p`k “ pβi,k{Fi, 1 ď k ď q, with within-series dampening

parameters Fi ě 1.

Empirically, the motivation behind the introduction of Fi is as follows. For ri,t with

time-varying parameters, we often observe that αi,j and βi,k are over-estimated such that
řp
j“1 pαi,j `

řq
k“1

pβi,k is close to, or even exceeds, one. Therefore, using the raw estimates in

place of Ci,j’s in (3) leads to Ui,t where any change in EpU2
i,tq induced by a change-point in

Ωiptq tends to be attenuated. Hence we adopt the dampening parameter Fi which is chosen

as

Fi “ max

«

1,
minp0.99,

řp
j“1 pαi,j `

řq
k“1

pβi,kq

max
 

0.01, 1´ p
řp
j“1 pαi,j `

řq
k“1

pβi,kq
(

ff

.

By construction, Fi is bounded as Fi P r1, 99s and approximately brings pωi and
řp
j“1 pαi,j `

řq
k“1

pβi,k to the same scale.

Also, the transformation g0 involves the unobservable conditional variance hi,t, which we

propose to replace with the empirical estimates

phi,t “ pωi `
p
ÿ

j“1

pαi,jr
2
i,t´j `

q
ÿ

k“1

pβi,kphi,t´k (10)

obtained with the MLE estimates of the GARCH parameters.

Typically, the GARCH orders p and q are unknown and may even vary over time. We

propose to use pp, qq “ p1, 1q. The GARCH(1, 1) model is simple yet known to provide a

good fit to wide range of datasets (see e.g., Hansen and Lunde (2005)). We note that the

transformation g0 is adopted for change-point analysis, rather than for accurate modelling

of the time series; once all the change-points are consistently estimated, we can adopt a

more sophisticated modelling approach to each segment. In simulation studies reported in
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Section 4, we study the effect of mis-specifying the GARCH orders on change-point analysis,

which shows that the choice of pp, qq “ p1, 1q works well even when it under-specifies the true

GARCH orders.

Theoretically, both choices of si,i1 P t1,´1u within the transformation g2 are valid for

detecting change-points in EpUi,tUi1,tq. However, its choice may influence the finite sample

performance in the sense that one value results in a transformed series that reveals the struc-

tural changes better than the other. Based on the observations made in Cho and Fryzlewicz

(2015), we adopt the choice si,i1 “ signpycorrs,epUi,t, Ui1,tqq, where rs, es denotes any segment

considered by the binary segmentation as it progresses (see Algorithm 1), and ycorrs,e the

sample correlation computed over a segment rs, es.

3.4 Choice of threshold for DCBS algorithm

Theorem 1 provides a range for the rate of πd,T that returns consistent estimation of multiple

change-points. However, the theoretical range involves typically unattainable knowledge on

the quantities such as γ or ∆d,T . Moreover, even when such knowledge is available, finite

sample performance may be affected by the choice of the multiplicative constant to the given

rate. Instead, we propose a parametric resampling procedure, which enables us to approximate

the distribution of DC test statistic in the presence of no change-points. A similar approach

has widely been adopted in the change-point literature including Kokoszka and Teyssière

(2002) in the context of testing the presence of a change-point in the parameters of univariate

GARCH models. Algorithm 2 outlines the proposed resampling scheme, where we derive the

segment-dependent threshold π
ps,eq
d,T for each segment rs, es considered at some iteration of the

DCBS algorithm (see Algorithm 1).
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Algorithm 2: Bootstrap algorithm for threshold selection

Input: tri,tu, tphi,tu (see (10)), s, e, R, g1, g2, α

Step 1: compute the empirical residuals pεi,t Ð ph
´1{2
i,t ri,t

Step 2: for ` “ 1, . . . , R do
Step 2.1: generate bootstrap samples tε`tu

T
t“1 of tpεt “ ppε1,t, . . . , pεN,tq

JuTt“1

Step 2.2: simulate the MGARCH process

r`i,t “ ph
`
i,tq

1{2ε`i,t, where h`i,t “ pωi `
p
ÿ

j“1

pαi,jpr
`
i,t´jq

2
`

q
ÿ

k“1

pβi,kh
`
i,t´k

Step 2.3: generate tx`j,tu as

!

g1pr
`,t´p
i,t ,h`,t´qi,t´1q, 1 ď i ď N, g2pr

`,t´p
i,t ,h`,t´qi,t´1, r

`,t´p
i1,t ,h`,t´qi1,t´1q, 1 ď i ă i1 ď N ; 1 ď t ď T

)

Step 2.3: calculate T `s,e from tx`j,tu as in (9)

end

Step 3: select π
ps,eq
d,T as the 100p1´ αq%-percentile of of T `s,e, ` “ 1, . . . , R

Output: π
ps,eq
d,T

4 Simulation study

4.1 Models

We study the change-point detection consistency of the two-stage change-point detection

methodology described in Section 3 on the datasets simulated from the following models. The

choices of parameters for (M0)–(M1) are considered in Fryzlewicz and Subba Rao (2014),

while those for (M2)–(M3) are considered in Kokoszka and Teyssière (2002), in the context of

single change-point test in univariate GARCH processes.

(M0) Stationary MGARCH (1, 1) processes. Let ωi “ ω ` δω,i, αi,1 “ α ` δα,i and

βi,1 “ β ` δβ,i, where δ¨,1
iid
„ Up´∆,∆q for some small ∆ ą 0 is added to each GARCH

parameter so that every ri,t has a slightly different set of GARCH parameters. The

innovations are generated from two different distributions, namely (i) εt
i.i.d
„ N p0,Σεq

where σi,i1 “ ρ|i´i
1| with ρ “ ´0.75 and (ii) εi,t

i.i.d
„ t10 for each i and t. We consider

T “ 1000 and N P t50, 100u.

(M0.1) pω, α1, β1q “ p0.4, 0.1, 0.5q.
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(M0.2) pω, α1, β1q “ p0.1, 0.1, 0.8q.

(M1) tv-MGARCH (1, 1) processes with a single change-point. Change-points are

introduced to GARCH parameters in (1)–(2) at η1 P trT {2s, r0.9T su, where T “ 1000

and N P t50, 100u. For a randomly chosen i P S1 Ă t1, . . . , Nu, GARCH parameters

ωiptq, αi,1ptq and βi,1ptq for i P S1 change at t “ η1 as ωiptq “ ωp1qIpt ď η1q ` ωp2qIpt ą

η1q`δω,i, αi,1ptq “ α
p1q
1 Ipt ď η1q`α

p2q
1 Ipt ą η1q`δα,i and βi,1ptq “ β

p1q
1 Ipt ď η1q`β

p2q
1 Ipt ą

η1q ` δβ,i, where |S1| “ r%N s with % P t1, 0.75, 0.5, 0.25u controlling the ‘sparsity’ of the

change-point. We have δ¨,i
i.i.d
„ Up´∆,∆q is as in (M0), and εt „ N p0,Σεptqq with

Σεptq “ Σε defined in (M0).

(M1.1) pω, α1, β1q : p0.4, 0.1, 0.5q Ñ p0.4, 0.1, 0.6q.

(M1.2) pω, α1, β1q : p0.4, 0.1, 0.5q Ñ p0.4, 0.1, 0.8q.

(M1.3) pω, α1, β1q : p0.1, 0.1, 0.8q Ñ p0.1, 0.1, 0.7q.

(M1.4) pω, α1, β1q : p0.1, 0.1, 0.8q Ñ p0.1, 0.1, 0.4q.

(M1.5) pω, α1, β1q : p0.4, 0.1, 0.5q Ñ p0.5, 0.1, 0.5q.

(M1.6) pω, α1, β1q : p0.4, 0.1, 0.5q Ñ p0.8, 0.1, 0.5q.

(M1.7) pω, α1, β1q : p0.1, 0.1, 0.8q Ñ p0.3, 0.1, 0.8q.

(M1.8) pω, α1, β1q : p0.1, 0.1, 0.8q Ñ p0.5, 0.1, 0.8q.

(M2) tv-MGARCH (1, 1) processes with two change-points. We introduce the first

change-point η1 “ rT {4s to the GARCH parameters as in (M1), where:

(M2.1) pω, α1, β1q : p0.1, 0.3, 0.3q Ñ p0.15, 0.25, 0.65q.

(M2.2) pω, α1, β1q : p0.1, 0.3, 0.3q Ñ p0.125, 0.1, 0.6q.

(M2.3) pω, α1, β1q : p0.1, 0.3, 0.3q Ñ p0.15, 0.15, 0.25q.

Also, a change-point is introduced to Σεptq at η2 “ r3T {5s as below. Initially, εt „

N p0,Σεptqq with Σεptq “ Σε defined in (M0) up to t “ η2. Then, for a randomly

chosen i P S2 Ă t1, . . . , Nu, rows of Σεptq corresponding to such εi,t swap their locations
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arbitrarily. We set |S1| “ |S2| “ r%N s with % P t1, 0.75, 0.5, 0.25u, and consider the

sample size T “ 500 and N P t50, 100u.

(M3) Mis-specification of the orders p and q.

(M3.1) Over-specification. The two change-points are introduced to tv-MGARCH(1,

1) processes as in (M2.1)–(M2.2) (referred to as (M3.1.1)–(M3.1.2)), but the GARCH

orders are mis-specified in Stage 1 as pp, qq “ p2, 2q.

(M3.2) Under-specification. The two change-points are introduced to tv-MGARCH(2,

2) processes as in (M2), with the GARCH parameters change at η1 as:

(M3.2.1) pω, α1, α2, β1, β2q: p0.1, 0.1, 0.2, 0.1, 0.2q Ñ p0.15, 0.15, 0.1, 0.35, 0.3q; or

(M3.2.2) pω, α1, α2, β1, β2q: p0.1, 0.1, 0.2, 0.1, 0.2q Ñ p0.125, 0.1, 0, 0.3, 0.3q.

The covariance matrix of the innovations change at η2 as in (M2). The GARCH

orders are mis-specified in Stage 1 as pp, qq “ p1, 1q.

(M4) Full-factor multivariate GARCH(1, 1) model with time-varying factors and

loadings. Proposed in Vrontos et al. (2003), each ri,t is generated as a linear combina-

tion of the independent factors fj,t, j “ 1, . . . , N which are GARCH(1, 1) processes.

rt “ Wft, ft|Ft´1 „ NNp0,Htq, Ht “ diagph1,t, . . . , hN,tq,

where hi,t “ ωi ` αi,1f
2
i,t´1 ` βi,1hi,t´1, t “ 1, . . . , T ; i “ 1, . . . , N,

with wi,i1
i.i.d
„ N p1, 1q for the loading matrix W. For a randomly chosen i P S1 Ă

t1, . . . , Nu, GARCH parameters of f change at η1 “ rT {4s as in (M2.1)–(M2.2) (referred

to as (M4.1)–(M4.2)). Another change-point is introduced to the loading matrix at

η2 “ r3T {5s, by swapping the rows of W corresponding to randomly chosen i P S2 Ă

t1, . . . , Nu, which brings in a change in the conditional cross-correlations as well as

within-series conditional variance. The cardinality of S1 and S2 is controlled as in (M2)

with % P t1, 0.75, 0.5, 0.25u, and we consider T “ 500 and N P t50, 100u.
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4.2 Results

Firstly, we performed the at-most-one-change test on the data simulated from (M0)–(M1)

over 100 realisations by conducting only the first iteration of Algorithm 1, which enables us to

investigate its size and power behaviour, respectively, along with the accuracy in change-point

estimation; see Tables 1–3; results from (M1) when N “ 50 can be found in the supplementary

document.

Overall, we observe that our proposed methodology handles the high dimensionality of the

data well both in terms of its size and power behaviour. When the innovations are generated

from a Gaussian distribution with cross-correlations, the test manages to keep the size below

the significance level α “ 0.05 when N “ 50, while spurious false alarm is observed as the

dimensionality grows for (M0.2). We note that, although not directly comparable, Table 1

of Fryzlewicz and Subba Rao (2014) observed similar size behaviour from their procedure as

well as the change-point test from Andreou and Ghysels (2002) applied to univariate GARCH

processes generated with the same GARCH parameters as in (M0.2). When the innovations

are drawn from a t10-distribution, the parameter configuration of (M0.2) brings in greater size

distortion.

As expected, the test achieves higher power when the change-point is ‘dense’ cross-sectionally

(with larger %) and located centrally, and the same applies to the location accuracy of the

change-point estimator. For most GARCH parameter configurations, the test attains power

above 0.9 even when the change-point is relatively sparse (% “ 0.25), but for (M1.2), (M1.4)

and (M1.8). Even when the location of the change-point is skewed (η1 “ r0.9T s), our method

generally attains high power and location accuracy if the change-point is not too sparse, in

most settings where it shows good performance when the change-point is centrally located

(η1 “ rT {2s).

Tables 4 reports the results from applying the proposed methodology to multiple change-

point detection from tv-MGARCH processes generated as described in (M2); the supplemen-

tary document contains figures summarising the locations of estimated change-points. When

the change is restricted to GARCH parameters, it appears that the change-point that results
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in time-varying varpri,tq, i P S1 (see (M2.1)–(M2.2), with (M2.1) bringing a change in a larger

jump in the variance) are better detected than the change-point at which varpri,tq i P S1 is

kept approximately constant (see (M2.3)). Between the two types of change-points considered

in (M2), the detection of η1 is more challenging as it becomes sparser and N increases. It is

explained by the fact that, the sparsity of η1, measured by the number of series containing η1

scaled by d, is in the order of %N´1 whereas that of η2 is in the order of %2.

Tables 5–6 indicate that mis-specifying the GARCH orders pp, qq does not noticeably

worsen the performance of our methodology, confirming the robustness of our methodology

to the choice of p and q. For the full-factor MGARCH model in (M4), Table 7 shows that

our methodology manages to estimate the two change-points with high accuracy, when their

presence is detected, albeit the presence of spurious change-points (see also Figures 7–8 in

the supplementary document). It shows that possible limitation of the re-sampling based

choice of the threshold when the cross-sectional correlations are strong due to the presence of

common factors.

Table 1: (M0) Size of the change-point test at α “ 0.05 when T “ 1000.

Gaussian εi,t t10-distributed εi,t
n (M0.1) (M0.2) (M0.1) (M0.2)
50 0.01 0.05 0.03 0.13
100 0.02 0.09 0.02 0.3

Table 2: (M1) Power of the change-point test at α “ 0.05 and the accuracy of pη1 when
N “ 100, T “ 1000 and η1 “ rT {2s.

(M1.1) (M1.2) (M1.3) (M1.4)
% power accuracy (%) power accuracy (%) power accuracy (%) power accuracy (%)

1 1.00 100 1.00 100 1.00 100 1.00 96
0.75 1.00 100 1.00 100 1.00 100 1.00 93
0.5 1.00 100 1.00 100 1.00 100 0.94 83
0.25 1.00 98 1.00 90 1.00 100 0.46 36

(M1.5) (M1.6) (M1.7) (M1.8)
% power accuracy (%) power accuracy (%) power accuracy (%) power accuracy (%)

1 1.00 100 1.00 100 1.00 100 1.00 100
0.75 1.00 100 1.00 100 1.00 100 1.00 100
0.5 1.00 100 1.00 100 1.00 100 1.00 99
0.25 1.00 100 1.00 100 1.00 100 0.98 93
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Table 3: (M1) Power of the change-point test at α “ 0.05 and the accuracy of pη1 when
N “ 100, T “ 1000 and η1 “ r0.9T s.

(M1.1) (M1.2) (M1.3) (M1.4)
% power accuracy (%) power accuracy (%) power accuracy (%) power accuracy (%)

1 1.00 100 1.00 100 1.00 100 0.87 78
0.75 1.00 100 1.00 100 1.00 100 0.65 57
0.5 1.00 100 1.00 100 1.00 100 0.18 15
0.25 1.00 100 0.81 76 1.00 100 0.07 1

(M1.5) (M1.6) (M1.7) (M1.8)
% power accuracy (%) power accuracy (%) power accuracy (%) power accuracy (%)

1 1.00 100 1.00 100 1.00 100 1.00 98
0.75 1.00 100 1.00 100 1.00 100 1.00 97
0.5 1.00 100 1.00 100 1.00 100 0.93 84
0.25 1.00 100 0.52 52 1.00 100 0.31 26

Table 4: (M2) The number of estimated change-points (%) and the accuracy in change-point
location when α “ 0.05, N “ 50 (left), N “ 100 (right) and T “ 500.

pB accuracy (%) pB accuracy (%)
% 0 1 2 3 ě 4 η1 η2 0 1 2 3 ě 4 η1 η2

(M2.1)

1 0 0 100 0 0 100 100 0 0 100 0 0 100 100
0.75 0 0 100 0 0 100 100 0 0 100 0 0 100 100
0.5 0 0 100 0 0 100 100 0 0 100 0 0 100 100
0.25 0 7 92 1 0 100 93 0 91 9 0 0 100 6

(M2.2)

1 0 0 100 0 0 100 100 0 0 100 0 0 100 100
0.75 0 2 98 0 0 96 100 0 0 100 0 0 100 100
0.5 0 38 62 0 0 60 100 0 2 98 0 0 98 100
0.25 0 95 5 0 0 2 100 0 80 20 0 0 32 84

(M2.3)

1 0 89 11 0 0 3 100 0 68 31 1 0 13 100
0.75 0 89 11 0 0 3 100 0 85 15 0 0 3 100
0.5 0 94 6 0 0 0 100 0 88 12 0 0 3 100
0.25 0 97 3 0 0 0 100 1 96 3 0 0 0 98

Table 5: (M3.1) The number of estimated change-points (%) and the accuracy in change-point
location when α “ 0.05, N “ 50 (left), N “ 100 (right) and T “ 500.

pB accuracy (%) pB accuracy (%)
% 0 1 2 3 ě 4 η1 η2 0 1 2 3 ě 4 η1 η2

(M3.1.1)

1 0 0 98 2 0 100 100 0 0 100 0 0 100 100
0.75 0 0 100 0 0 100 100 0 0 99 1 0 100 100
0.5 0 0 95 5 0 100 100 0 0 100 0 0 100 100
0.25 0 18 73 8 1 100 80 0 97 3 0 0 100 1

(M3.1.2)

1 0 1 97 2 0 99 100 0 0 99 1 0 100 100
0.75 0 8 90 2 0 92 100 0 0 99 1 0 100 100
0.5 0 50 47 3 0 46 100 0 7 85 8 0 93 100
0.25 1 88 10 1 0 5 99 3 79 18 0 0 27 78

23



Table 6: (M3.2) The number of estimated change-points (%) and the accuracy in change-point
location when α “ 0.05, N “ 50 (left), N “ 100 (right) and T “ 500.

pB accuracy (%) pB accuracy (%)
% 0 1 2 3 ě 4 η1 η2 0 1 2 3 ě 4 η1 η2

(M3.2.1)

1 0 0 100 0 0 100 100 0 0 100 0 0 100 100
0.75 0 0 98 2 0 100 100 0 0 98 2 0 100 100
0.5 0 0 99 1 0 100 100 0 0 99 1 0 100 100
0.25 0 5 92 2 1 95 100 0 15 74 11 0 100 83

(M3.2.2)

1 0 0 99 1 0 100 100 0 0 100 0 0 100 100
0.75 0 0 97 3 0 100 100 0 0 99 1 0 100 100
0.5 0 0 98 2 0 100 100 0 0 98 2 0 100 100
0.25 0 45 51 4 0 48 100 0 12 79 9 0 92 93

Table 7: (M4) The number of estimated change-points and the accuracy in change-point
location when α “ 0.05, N “ 50 (left), N “ 100 (right) and T “ 500.

pB accuracy (%) pB accuracy (%)
% 0 1 2 3 ě 4 η1 η2 0 1 2 3 ě 4 η1 η2

(M4.1)

1 0 5 34 52 9 91 97 0 0 45 44 11 95 97
0.75 0 3 36 49 12 95 90 0 0 33 60 7 95 96
0.5 0 4 37 52 7 89 89 0 3 17 64 16 96 88
0.25 0 14 42 39 5 77 53 0 6 32 48 14 92 70

(M4.2)

1 0 13 87 0 0 87 99 0 4 96 0 0 96 98
0.75 0 22 78 0 0 79 96 0 7 93 0 0 93 97
0.5 0 74 24 2 0 29 93 0 38 61 1 0 64 97
0.25 6 89 5 0 0 8 70 0 93 7 0 0 8 92
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5 Real data analysis

In this section, we examine the effect of ignoring possible changes in the volatility and corre-

lation of a multi-asset portfolio, and apply our method to calculate the Value-at-Risk (VaR)

of a portfolio, a widely used measure of market risk embraced by financial institutions for

regulatory or other internal purposes.

5.1 VaR, stressed VaR and its backtests

VaR measures the extreme loss (change in value) of an asset or a portfolio of assets with a

prescribed probability level during a given holding period. It has been criticised due to its

unrealistic assumptions (linearity and normality), parameter sensitivity (to estimation and

holding periods) and its inadequacy during crises especially when correlations between assets

are observed to vary over time (Persaud, 2000; Danielsson, 2002). The last point is of par-

ticular interest, since compared to the period of market stability, correlations are observed

to be significantly higher when markets are falling (Li et al., 2017). Jäckel and Rebonato

(2001) noted that a risk manager ‘would greatly over-estimate the degree of diversification

in his portfolio in the event of a crash if he used the [correlation] matrix estimated during

normal periods’. Works to address the criticism on VaR exist: Valentinyi-Endrész (2004)

examined whether detecting and taking into account change-points improves upon VaR fore-

cast. Similarly, Spokoiny (2009) proposed the local change-point analysis to detect regions of

volatility homogeneity as an alternative to stationary GARCH modelling, and found that the

local volatility estimator performed well in the application to VaR.

The Basel Accord (1996 Amendment) requires the use of stressed VaR (sVaR) which is

based on a covariance matrix from a crisis period in the past. The accord does not specify

the exact time period to be used but instead proposes the judgement-based and the formulaic

approaches (European Banking Authority, 2012). The former relies on a high-level analysis

of the risks related to the holding portfolio, while the latter is a more systematic, quanti-

tative approach where our proposed methodology can contribute to providing a robust risk

management, by supplying the information about the latest stressed periods.
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We first introduce the VaR metric which can be formulated as follows:

VaRtpαq “ ´F
´1
pα|Gtq,

where F´1p¨|Gtq is the quantile function of the loss and profit distribution. This distribution

changes over time due to market and portfolio specific conditions, which is embodied in Gt.

The accuracy of a model to estimate VaR is tested by examining the null hypothesis that the

observed probability of occurrence over a specified horizon is equal to the probability level α,

the violation of which signals concerns. Typically, a financial institution should backtest its

VaR by means of statistical tests before reporting it to the interested parties, e.g., stakeholders

and regulators. Kupiec (1995) proposes two methods, the Proportion of Failure (PoF) and

the Time until First Failure (TFF), to accomplish this. For a sample of T observations, the

Kupiec test statistics takes the form of likelihood ratio

LRPoF “ ´2 log

˜

p1´ αqT´xfαxf
`

1´
xf
T

˘T´xf
`xf
T

˘xf

¸

and LRTFF “ ´2 log

¨

˚

˝

αp1´ αqtf´1

´

1
tf

¯´

1´ 1
tf

¯tf´1

˛

‹

‚

,

where xf denotes the number of failures occurred and tf the number of days until the first

failure within the T observations. Under H0, both LRPoF and LRTFF are asymptotically

χ2
1-distributed, and their exceedance of the critical value implies that the VaR model is inad-

equate.

However, these tests cannot control for the dependence of violations, i.e., violations may

cluster while the overall (unconditional) average of violations is not significantly different from

αT . To address this limitation, a regression-based test is proposed by Engle and Manganelli

(2004). Formally, let us define Hittpαq “ Iprt ă ´VaRtpαqq ´ α where rt is the time series

of portfolio returns. The function Hittpαq assumes the value 1 ´ α when rt is less than the

VaR level α and ´α otherwise. The unconditional expectation of Hittpαq is, obviously, zero.

The conditional expectation should also be zero meaning that Hittpαq is uncorrelated with its

own past and other lagged variables (such as rt, r
2
t or the one-step ahead forecast VaR). To

test this assumption, the dynamic conditional quantile (DQ) test is adopted which involves

26



the following statistic

DQ “ T´1
pHitJXpXJXq´1XJHitq{αp1´ αq

where X is the matrix of explanatory variables (e.g., raw and squared past returns) and Hit

the vector collecting Hittpαq. Under the null hypothesis, Engle and Manganelli (2004) show

that the proposed statistic DQ follows a χ2
q̄ where q̄ “ rankpXq.

We use these three backtests to examine the performance of our method in the applications

to stressed VaR.

5.2 Detecting change-points in a multi-asset portfolio

We collect the daily US Treasury zero-coupon yield curves from the US Federal Reserve

Board, which are based on a large set of outstanding bonds and notes with maturity from

1 to 30 years, as well as the daily prices of S&P500 index, see Figure 1. The unconditional

correlations between the 30 log-differenced Treasury price time series range from 0.787 to

0.994. The thirty time series along with the log-returns of the S&P500 index, from 1 January

2000 to 31 December 2014 (the training set), serve as an input to our methodology for change-

point detection (N “ 31, dN “ 496 and T “ 3730). For validation of our method, we also

collect the same data from 1 January 2015 to 31 December 2016 which serves as the out-of-

sample test set. We form a portfolio by allocating 50% on S&P500 and the remaining 50%

equally on the 30 Treasury bonds to avoid creating a portfolio consisting mainly of bonds.

We also de-mean the return vector, albeit this does not change the results.

Our method, using the default parameters described in Section 3.3 and the re-sampling

scheme described in Section 3.4, returns three change-points and therefore four periods as

reported in Table 8 (Periods 1–4). The same table also reports Period 5, which covers the 12-

month period following the bankruptcy of Lehman Brothers in September 2008 as the crisis

period, with its length chosen in accordance with Basel 2.5 (Basle Committee on Banking

Supervision, 2010). The results indicate that the highest VaR (found by simply calculating

the quantiles of the portfolio returns and taking the modulus) was obtained from the period
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Figure 1: Daily Treasury prices for three different maturities (left y-axis) and the S&P500
index (right y-axis).

spanning from 11 September 2008 to 26 March 2009 (Period 3), a rather expected outcome

given the high volatility that the markets experienced after the Lehman Brothers bankruptcy.

We note that this period spans less than 12 months, and is shorter than the maximum allowed

duration by Basel 2.5. It also coincides with the Bank of England’s view on the historical

periods per region with the worst market moves (Bank of England (2018)). Period 4 also

exhibits high stress characteristics, but less severe than those from the aftermath of the

Lehman Brothers collapse. If a bank selects Period 5 (the 99% VaR of which is 4.95%) to

calibrate its sVaR model, it will likely under-estimate the measure compared to that calibrated

with Period 3 for which the 99% VaR is 5.39%. In the remainder of this section, we explore

this argument in detail.

In order to assess which stressed period is the most appropriate for an sVaR measure, we

conduct two exercises: the historical simulation (unconditional, Section 5.3) and the condi-

tional covariance modelling using the DCC model of Engle (2002) (Section 5.4). The former

is the most popular VaR model used by banks, and the latter is a natural choice given the

underlying time-varying multivariate model of our proposed method. We note that our pro-

posed methodology serves as a change-point detection technique, and does not automatically

lead to the choice of a VaR (sVaR) model. Our suggestion is, after the change-points are
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estimated from a given dataset, a user should decide on the VaR model separately based on

regulatory or internal requirements.

Table 8: The table reports the three change-points detected by our methodology (bold) from 1 January
2000 to 31 December 2014, and the corresponding periods of stationarity. In addition, for each period it also
reports the 95% and 99% VaR of a portfolio with 50% allocated on S&P500 and the rest 50% equally on the
30 Treasury bonds.

Period range Value-at-Risk
From Until 95% 99%

Period 1 01/01/2000 31/12/2007 0.01267 0.01793
Period 2 01/02/2008 11/09/2008 0.01834 0.02597
Period 3 12/09/2008 26/03/2009 0.03809 0.05392
Period 4 27/03/2009 31/12/2014 0.01912 0.02708
Period 5 12/09/2008 14/09/2009 0.03496 0.04951

5.3 sVaR calculation using historical simulation

We consider the vector of the returns rt, its covariance matrix Σrptq and portfolio weights

w (allocating 50% to S&P and the rest to the Treasury bonds equally divided) for the test

period. We index the five periods identified in Table 8 with b “ 1, . . . , 5 and denote the

unconditional covariance matrix for each regime by Σ
pbq
r . A financial institution typically uses

historical simulation over one year (roughly Tsv “ 250 days) to forecast the 1-day ahead sVaR,

as

zsVaR
b

t`1 “ ´

”

upper 100ˆ α-th percentile of tRb
τu
t
τ“t´Tsv`1

ı

, (11)

where Rb
t “ rJt tL

pbqLptqu´1w (12)

with Lpbq being the Cholesky decomposition of Σ
pbq
r and Lptq the Cholesky decomposition of

Σrptq. Equation (12) transforms the return vector rt with covariance matrix Σrptq into the

portfolio return Rb
t of a return vector with a (stressed) covariance Σ

pbq
r , for each b “ 1, . . . , 5

(see Duffie and Pan (1997)). To estimate Σrptq, we use the data from 1 January 2015 to 31

December 2015. For each b, we repeatedly forecast the 1-day ahead sVaR using zsVaRt`1 in

(11) by rolling the 250-day estimation window forward one day at a time until we reach the

end of the time series on 31 December 2016.
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The results from sVaR backtesting using the historical simulation approach are provided

in Table 9 for α “ 0.01 and 0.05, and Figure 2 displays zsVaR
b

t`1 obtained with α “ 0.01

along with the daily portfolio return. In particular, the table indicates that Period 3 can

be safely used to calibrate sVaR. The number of failures is far below the expected number

of violations for the 250 day period at 95% and 99% levels (12 and 2, respectively). Note

that the alternative hypothesis in the PoF test is two-side and a small number of violations

will also reject the adequacy of an sVaR model. The sVaR model calibrated using Period

3 yields a favourable, albeit conservative, result and is more likely to be accepted by the

regulators. Besides, it passes the traffic light test (Basle Committee on Banking Supervision,

1996), whereby a VaR model is deemed valid if the cumulative probability of observing up to

xf failures is less than 0.95 (green zone) under the binomial distribution with Tsv and α as

the parameters. Testing the same period using the TFF test, the first failure occurred only

after 120 days at the 95% level and there was no violation at the 99% level (the TFF test is

also two-side). The results of the DQ tests confirm that Period 3 is the best candidate for

the sVaR calibration. Period 5 also exhibited a small number of violations, rather expected

behaviour considering that it overlaps with Period 3 for nine months.

Table 9: sVaR backtesting using the historical simulation approach calibrated on five different stress periods.
The table reports the number of sVaR violations (PoF, top); the number of days until the first violation in
sVaR (TFF, middle); the DQ test statistic (bottom). Small p-values (given in brackets) indicate the rejection
of H0: the sVaR measure is adequate.

Period 1 Period 2 Period 3 Period 4 Period 5
PoF

99% 8 (0.00) 2 (0.75) 0 (0.02) 4 (0.37) 1 (0.28)
95% 19 (0.07) 7 (0.08) 1 (0.00) 11 (0.67) 1 (0.00)

TFF
99% 9 (0.07) 120 (0.85) - 20 (0.19) 120 (0.85)
95% 2 (0.06) 7 (0.35) 120 (0.01) 7 (0.86) 120 (0.01)

DQ
99% 70.16 (0.00) 85.56 (0.00) 2.45 (0.96) 86.08 (0.00) 1.70 (0.98)
95% 22.56 (0.00) 16.43 (0.03) 10.90 (0.20) 9.91 (0.27) 10.88 (0.20)
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Figure 2: Returns of a portfolio of US Treasury zero-coupon bonds (50%) and the S&P500
index (50%) for the testing (rolling) period. The coloured lines indicate the one-day ahead
forecast of sVaR in (11) obtained from the historical simulation using the five periods in Table
8 as the stressed period.

5.4 sVaR calculation using a conditional covariance model

In the second exercise, we adopt the DCC model of Engle (2002) in which the conditional

covariance is factorised as

Ht “ DtRtDt (13)

where Dt “ diagph
1{2
1,t , ..., h

1{2
N,tq and hi,t, i “ 1, . . . , N follows the conditional variance GARCH(p, q)

model

hi,t “ ωi `
p
ÿ

j“1

αi,jr
2
i,t´j `

q
ÿ

k“1

βi,khi,t´k. (14)

The model (14) is the stationary version of the model (1) as we estimate the DCC within

each stationary segment identified by our change-point detection methodology. Engle (2002)

proposes the following dynamic correlation structure

Σt “ p1´ adcc ´ bdccqΣ̄` adccvt´1v
J
t´1 ` bdccΣt´1 (15)

Rt “ diagpΣtq
´1{2 Σt diagpΣtq

´1{2 (16)

where vt “ D´1
t rt is the standardised residual vector, and Σ̄ “ rρi,js

N
i,j“1 with ρi,j denoting
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the unconditional sample correlations between vi,t and vj,t.

Similarly to the approach taken in Section 5.3, we consider a portfolio of assets with the

return vector rt, its covariance matrix Σrptq and the vector of portfolio weights w over the test

period. Here, we set w so that it allocates 50% on the S&P500 index and the remaining 50%

equally on the ten Treasury bonds with the highest maturity. This is because the estimation

of DCC becomes numerically unstable with all thirty Treasury bonds included. For the b-

th stationary segment, we estimate a DCC model and obtain the parameters âdcc, b̂dcc along

with ω̂i, α̂i,j, β̂i,j of the individual GARCH models. We consider GARCH(1, 1) with normally

distributed innovations for maximum likelihood estimation, but results were similar with other

model orders p, q or innovations. With the estimated DCC parameters for each segment, we

obtain the 1-day ahead forecast of the covariance matrix, pΣ
pbq
t`1, applying (15) to the data

from 1 January 2015. Finally, we forecast the portfolio volatility

pσ
pbq
t`1 “

b

wJ
pΣ
pbq
t`1w for b “ 1, . . . , 5,

and compare ´1.96 ˆ pσ
pbq
t`1 (95% sVaR up to its sign) and ´2.33 ˆ pσ

pbq
t`1 (99% sVaR) to the

actual portfolio returns.

The backtesting results are given in Table 10. Using the estimated parameters from Period

3 resulted in the smallest number of violations compared with the rest. At the 99% level, the

first violation occurred after 121 days compared to the 16 days taken for Periods 1,2,4 and 5.

The DQ test also indicates that Period 3 is the most suitable for calibrating the 95% sVaR

metric. This is not the case for the 99% case, but there were not enough observations (three

violations) for a reliable calculation of the DQ statistic.

6 Conclusions

In this paper, we propose a methodology for detecting multiple change-points in both within-

series and cross-correlation structures of multivariate volatility processes. The two-stage

methodology first transforms the N -dimensional series so that the structural change-points
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Table 10: sVaR backtesting using the DCC model calibrated on five different stress periods. The table
reports the number of sVaR violations (PoF, top); the number of days until the first violation in sVaR (TFF,
midle); the DQ test statistic (bottom). Small p-values (given in brackets) indicate the rejection of H0: the
sVaR measure is adequate.

Period 1 Period 2 Period 3 Period 4 Period 5
PoF

99% 7 (0.38) 7 (0.38) 3 (0.33) 7 (0.38) 7 (0.38)
95% 36 (0.01) 20 (0.30) 13(0.00) 27 (0.66) 24 (0.86)

TFF
99% 16 (0.15) 16 (0.15) 121 (0.84) 16 (0.15) 16 (0.15)
95% 1 (0.01) 1 (0.01) 16 (0.82) 16 (0.82) 1 (0.01)

DQ
99% 33.01 (0.00) 31.72 (0.00) 39.78 (0.00) 31.50 (0.00) 31.46 (0.00)
95% 15.85 (0.02) 13.23 (0.06) 10.10 (0.18) 7.53 (0.37) 15.20 (0.03)

are detectable as change-points in the means of NpN ` 1q{2-dimensional transformed data,

which serves as an input to the multiple change-point detection algorithm in the second stage.

We show the consistency of the methodology in terms of the total number and locations of

estimated change-points, and propose a bootstrap procedure for threshold selection, which

shows reasonably good performance in our simulation studies. Finally, we apply the proposed

method to demonstrate its usage in identifying periods of ‘stress’ in a multivariate financial

dataset consisting of thirty US Treasury zero-coupon yield curves and the S&P500 index. This

exercise indicates the efficacy of our methodology in risk management tasks, such as when

calculating the (stressed) Value-at-Risk of a portfolio of risky assets.
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