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Is there a baseflow Budyko curve?1

Sebastian J. Gnann1, Ross A. Woods1, Nicholas J. K. Howden1
2

1Department of Civil Engineering, University of Bristol, Bristol, UK3

Key Points:4

• The fraction of precipitation that becomes baseflow cannot be estimated using the5

aridity index alone6

• In humid catchments the baseflow fraction is limited by a catchment’s wetting po-7

tential (storage capacity)8

• In arid catchments the baseflow fraction is limited by high vaporisation amounts9

Plain Language Summary Baseflow originates from stored water (e.g. groundwater) and10

sustains river flow in dry periods, which makes it an important water resource. Baseflow11

is known to vary with climate and landscape properties such as geology or vegetation, but12

there is no universal theory to explain this variability. To explore baseflow variability, we13

use data from several hundred catchments in the US and the UK. We investigate whether14

a catchment’s baseflow fraction, i.e., the fraction of rainfall that becomes baseflow, can15

be attributed primarily to the aridity index, a commonly used climate index. The aridity16

index is defined as the ratio between potential evapotranspiration (available energy) and17

precipitation (available water). We find that in humid catchments (low aridity index), base-18

flow cannot be attributed primarily to the aridity index. Rather, a catchment’s capacity19

to store water determines how much precipitation becomes baseflow. In arid catchments20

(high aridity index), the aridity index can be seen as the primary determinant of baseflow21

fraction. It strongly influences how much of the precipitation can be evaporated back to22

the atmosphere and thus cannot become baseflow. These results might help to assess how23

water availability (in the form of baseflow) changes with changing climate and land use.24
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Abstract25

There is no general theory to explain differences in baseflow between catchments, despite26

evidence that it is mainly controlled by climate and landscape. One hypothesis is that27

baseflow fraction (the ratio between baseflow and precipitation) can be primarily attributed28

to the aridity index (the ratio between potential evapotranspiration and precipitation), i.e.29

that there is a "baseflow Budyko curve". Comparing catchment data from the US and the30

UK shows, however, that aridity is not always a good predictor of baseflow fraction. We31

use the revised Ponce-Shetty annual water balance model to show that there is no single32

"baseflow Budyko curve", but rather a continuum of curves emerging from a more uni-33

versal model that incorporates both climate and landscape factors. In humid catchments,34

baseflow fraction is highly variable due to variations in a catchment’s wetting potential, a35

parameter that describes catchment storage capacity. In arid catchments, vaporisation lim-36

its baseflow generation which leads to lower variability in baseflow fraction. Generally,37

when the magnitude of precipitation is important, the aridity index only partly explains38

baseflow response. Adapting the model to explain variability of the baseflow index (the ra-39

tio between baseflow and total streamflow) shows that the aridity index is generally a poor40

predictor of baseflow index. While the wetting potentials and other parameters are ob-41

tained by fitting the Ponce-Shetty model to annual catchment data, their links to physical42

properties remain to be explored. This currently limits the model’s applicability to gauged43

catchments with sufficiently long records.44

1 Introduction45

Baseflow is defined as flow derived from groundwater and other delayed sources46

and thus sustains streamflow also during dry periods [Hall, 1968; Smakhtin, 2001]. Un-47

derstanding how baseflow varies with changing climate and landscape properties is cru-48

cial for various issues related to water quantity and quality [e.g. Smakhtin, 2001; Price,49

2011; Beck et al., 2013; Buttle, 2018]. Population growth is linked to an increase in fresh-50

water demand for agriculture, industry and human consumption and water shortages pose51

a threat even in humid regions [Price, 2011]. Baseflow is essential for ecosystem func-52

tioning and provides habitat for stream biota [Poff et al., 1997; Price, 2011]. Furthermore,53

baseflow is important with respect to water quality issues (chemistry, temperature) such as54

effluent-load from wastewater treatment plants [Smakhtin, 2001; Ficklin et al., 2016]. If we55

want to understand how humans impact baseflow, we need to understand what determines56

baseflow under (near-)natural conditions.57

Many studies found that baseflow is correlated with climate and landscape proper-58

ties such as soils, geology, topography and vegetation, but a universal relationship or gen-59

eral theory is yet to be found [Price, 2011]. Geology was found to be the key variable in60

various regional studies [e.g. Neff et al., 2005; Longobardi and Villani, 2008; Bloomfield61

et al., 2009]. Similarly, soil classes (which are correlated with geology) were used to ex-62

plain baseflow variability in the UK [Boorman et al., 1995] and Europe [Schneider et al.,63

2007]. Schneider et al. [2007] found that soils were less influential towards southern Eu-64

rope, which might be attributed to differences in topography and climate. Van Dijk [2010]65

explored catchments in Australia and concluded that climate was the most important con-66

trol on baseflow, while Lacey and Grayson [1998] found that for southeastern Australia67

vegetation-geology groups were the main influence. In summary, the studies that found68

landscape properties to be most influential were usually of regional nature and thus inves-69

tigated catchments with relatively similar climates. Continental studies and the first global70

study by Beck et al. [2013] led to somewhat inconclusive results. While some key land-71

scape and climate characteristics could be identified, the underlying processes remain to72

be explained. The influence of lakes [Neff et al., 2005] and snow [Beck et al., 2013], i.e.73

baseflow generating mechanisms different than groundwater discharge, further complicates74

the analysis.75
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Baseflow is usually quantified by the baseflow index (BFI), the long-term ratio be-76

tween baseflow and total streamflow. Alternatively, we can use the baseflow fraction KB77

[Sivapalan et al., 2011], defined as the ratio between mean annual baseflow Qb and pre-78

cipitation P (cf. to the runoff ratio, the ratio between total streamflow Q and precipitation79

P). KB has the advantage that it relates baseflow to precipitation, a climate input that is80

(mostly) independent of catchment form. The similarity to the runoff ratio allows us to81

investigate KB in the context of the Budyko hypothesis. A disadvantage of KB is that we82

need both streamflow and rainfall data.83

The Budyko hypothesis [Budyko, 1974] is a widely applied empirical top-down ap-84

proach in catchment hydrology [Wang et al., 2016]. It hypothesises that the ratio between85

mean annual actual evapotranspiration Ea and precipitation P is primarily a function of86

the ratio between mean annual potential evapotranspiration Ep and precipitation P , i.e.87

the aridity index ϕ = Ep/P. As Ea is usually not available, Q might be used instead [An-88

dréassian and Perrin, 2012]. Figure 1a shows a Budyko-type plot for catchments in the89

US and the UK (data sources will be explained in Section 2.2). The catchments fall rel-90

atively close to a single curve, the so called the Budyko curve, for which various model91

equations exist [see e.g. review by Wang et al., 2015]. Is there a similar behaviour for92

baseflow, i.e. a baseflow Budyko curve? That is, is the aridity index the primary control93

on baseflow fraction? Wang and Wu [2013] modelled the relationship between baseflow94

fraction and aridity by means of a Budyko-type curve that approaches unity for increas-95

ing humidity. Similarly, Sivapalan et al. [2011] reported "that the fraction of precipitation96

partitioned to slow flow is highest in wet catchments (as high as 0.7) and decreases with97

increasing aridity". Both studies analysed MOPEX data [Duan et al., 2006], that is data98

from the contiguous US. Redoing this analysis with data from the US and the UK reveals99

a different behaviour. We can see from Figure 1b that the fraction of precipitation that be-100

comes baseflow does not always increase with decreasing aridity index but decreases for101

many humid catchments.102
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Figure 1. Budyko-type curves relating (a) mean annual runoff ratio Q/P to mean aridity index Ep/P and
(b) mean annual baseflow fraction Qb/P to mean aridity index Ep/P. US catchments are denoted by orange
circles, UK catchments are denoted by purple triangles. Catchments with significant snow fractions were
removed.
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106

The data presented in Figure 1 suggest that the influence of climate aridity on base-107

flow fraction is not straightforward or universal. This reinforces the variability in the liter-108

ature on the relative importance of climate and landscape characteristics. Is there a way to109

quantify and/or parametrise these relative importances? Can we disentangle the influences110

of different causal factors such as forcing and catchment form? How can we model base-111

flow variability in a process-based way? As a framework for addressing these questions,112
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we will use the revised Ponce-Shetty model [Ponce and Shetty, 1995a,b; Sivapalan et al.,113

2011] to model catchment water balance at the annual scale. The Ponce-Shetty model has114

been described as a functional model [Sivapalan et al., 2011] as it focuses on how wa-115

ter is partitioned, stored and released, i.e. a catchment’s functions [Black, 1997; Wagener116

et al., 2007]. This approach is promising as it goes beyond mere empiricism by repre-117

senting processes such as the partitioning of water at the annual scale. The processes and118

the respective parameters are arguably highly abstracted and connecting emergent param-119

eters to catchment characteristics remains challenging [Sivapalan et al., 2011]. This ap-120

proach, however, allows us to investigate large samples of catchments and thus enables us121

to explore catchment (dis-)similarity and patterns which eventually might be synthesised122

to new catchment-scale theory [Sivapalan, 2005; McDonnell et al., 2007; Wagener et al.,123

2007; Harman and Troch, 2014]. In the face of environmental change [Milly et al., 2008],124

process-based models that allow for extrapolation are more needed than ever [Wagener125

et al., 2010].126

We will use the revised Ponce-Shetty annual water balance model to obtain and in-127

vestigate a theoretical model of baseflow fraction (and baseflow index) as a function of128

mean annual climate variables [Sivapalan et al., 2011]. We will fit the Ponce-Shetty model129

to catchments in the US and the UK to obtain catchment-scale parameter values defining130

how water is partitioned at the annual scale (Ponce-Shetty parameters; described in Sec-131

tion 2). We will then assess whether this approach has the potential to explain the vari-132

ability in baseflow fraction (and baseflow index) shown in Figure 1b and the apparently133

differing behaviour exhibited by the catchments in the UK.134

2 Theory and Data135

2.1 Theory136

2.1.1 Annual Water Balance Model137

The revised Ponce-Shetty model [Sivapalan et al., 2011] is a functional approach to138

water balance modelling following Horton [1933], L’vovich [1979] and Ponce and Shetty139

[1995a,b]. A catchment’s annual water balance is conceptualised as a two-stage partition-140

ing process. First, precipitation P is partitioned into fast flow Q f (direct runoff and fast141

subsurface flow) and wetting W (water that is being stored). The stored water is then fur-142

ther partitioned into vaporisation V (water returned to the atmosphere) and baseflow (slow143

flow) Qb . Fast flow and baseflow combined yield total streamflow Q. Inter-annual water144

storage change and other water gains or losses such as inter-catchment groundwater flows145

are assumed to be negligible. Figure 2 shows a schematic of the model.146

The balance equations for the two partitioning stages are:148

P = Q f +W (1)149

W = Qb + V (2)150

The balance equations for the whole catchment are:151

P = V +Q (3)152

Q = Q f +Qb (4)153

These balance equations are used to determine V (from Equation (4)) and W (from154

Equation (1)). Data sources for Q and P and the estimation of Q f and Qb are described155

in the following subsections.156
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1

2

Precipitation P

Wetting W

Baseflow Qb

Vaporisation V

Fast flow Qf

Streamflow Q

Figure 2. Schematic of the Ponce-Shetty model indicating the two partitioning stages (1) and (2).147

2.1.2 Baseflow Estimation157

To obtain an estimate of fast flow and baseflow we perform a hydrograph separa-158

tion using digital filtering techniques. Following Troch et al. [2009] who reported that the159

choice of the filter has no significant influence on annual water balance metrics (they anal-160

ysed the Horton index), many subsequent studies used only one hydrograph separation161

technique [e.g. Sivapalan et al., 2011; Harman et al., 2011]. Since in the original Troch162

et al. [2009] paper only 33 catchments were analysed, we perform a comparative analysis163

of baseflow separation methods for all the catchments investigated here. We use the one-164

parameter Lyne-Hollick digital filter [Lyne and Hollick, 1979] which is applied forwards,165

backwards and forwards again using a filter parameter of 0.925. As an alternative, we test166

the UK Institute of Hydrology (UKIH) smoothed minima method [Institute of Hydrology,167

1980]. Both filters have the advantage of being only minimally parameterised (one param-168

eter) and thus being easily applied to a large sample of catchments. Knowing P, Q (both169

measured), Q f , Qb (both estimated), we can then calculate V and W .170

2.1.3 Ponce-Shetty Equations171

Based on empirical observations Ponce and Shetty [1995a] presented a mathematical172

model of the two-stage partitioning which was re-introduced by Sivapalan et al. [2011].173

The form of the equations follows the curve number runoff equation [NRCS, 2004], which174

is an empirical equation that satisfies conservation of mass. The idea of two competing175

processes (here: fast flow vs. wetting and baseflow vs. vaporisation) was later generalised176

by means of the so called proportionality hypothesis and the Maximum Entropy Produc-177

tion (MEP) principle was identified as a possible thermodynamic basis for this mathemati-178

cal form [Wang and Tang, 2014; Wang et al., 2015; Zhao et al., 2016].179

The first partitioning stage is modelled as follows:180

Q f =

{
0, if P ≤ λPWp
(P−λPWp )

2

P+(1−2λP )Wp
, if P > λPWp

(5)181

W =

{
P, if P ≤ λPWp

P − (P−λPWp )
2

P+(1−2λP )Wp
, if P > λPWp

(6)182

P→∞, Q f → P −Wp, W → Wp (7)183
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where λP is the fast flow initial abstraction coefficient and Wp is the wetting potential.184

Their product λPWp is the fast flow generation threshold. This form is convenient as λP185

ranges between zero and unity [Ponce and Shetty, 1995a]. The second partitioning stage is186

modelled as follows:187

Qb =

{
0, if W ≤ λWVp
(W−λWVp )

2

W+(1−2λW )Vp
, if W > λWVp

(8)188

V =

{
W, if W ≤ λWVp

W − (W−λWVp )
2

W+(1−2λW )Vp
, if W > λWVp

(9)189

W →∞, Qb → W − Vp, V → Vp (10)190

where λW is the baseflow initial abstraction coefficient and Vp is the vaporisation poten-191

tial. Their product λWVp is the baseflow generation threshold.192

Figure 3. Example L’vovich-type curves: (a) precipitation-wetting curve (Equation (6)), (b) wetting-
vaporisation curve (Equation (9)), (c) precipitation-fast flow curve (Equation (5)), (d) wetting-baseflow curve
(Equation (8)). The dotted lines indicate the lines through the origin, which (in theory) cannot be exceeded.
The dashed lines indicate the potentials. The ticks indicate the thresholds.

193

194

195

196

Figure 3 shows curves derived from the Ponce-Shetty model equations. Both the P-197

W-plot (Figure 3a) and the W-V-plot (Figure 3c) start at the origin and approach a limit198

(their potentials). The wetting potential Wp can be seen as some sort of storage capacity199

of a catchment. The vaporisation potential Vp can be seen as some sort of energy limit200

(somewhat analagous to potential evapotranspiration). The P-Q f -plot (Figure 3b) and the201

W-Qb-plot (Figure 3d) start to rise after a certain threshold and then rise without a (the-202

oretical) limit. The precipitation threshold is a minimum amount of rainfall required to203

generate fast slow. The baseflow threshold is a minimum amount of wetting required to204

generate baseflow. This reflects the idea that if there is only little rain (or wetting), the205

water will not reach the stream and evaporate (e.g. interception). The physical meaning206

of these parameters is somewhat ambiguous as they are emergent parameters represent-207

ing processes over a large area (catchment) and over a long time (years). Links to physical208

(observable) catchment characteristics remain to be explored, but will be discussed qualita-209

tively in Section 4.210
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2.1.4 Rescaled Form of the Ponce-Shetty Equations211

In order to compare between catchments the (mean annual) Ponce-Shetty variables212

can be normalised using the Ponce-Shetty parameters [Sivapalan et al., 2011]. We define213

two rescaled driving variables: rescaled (mean annual) precipitation P̃ and a rescaled va-214

porisation potential Ṽp .215

P̃ =
P − λPWp

(1 − λP)Wp
(11)216

Ṽp =
Vp − λWVp

(1 − λP)Wp
(12)217

2.1.5 Catchment Indices218

We define two catchment indices: the baseflow fraction KB (note that this definition219

is slightly different from the usual definition as it includes the parameter λWVp) and the220

baseflow index BFI.221

KB =
Qb

P − λWVp

(13)222

BFI =
Qb

Q
(14)223

We can approximate these indices using the rescaled driving variables (Equations224

(11) and (12)) [for the full derivation of KB see Sivapalan et al., 2011, and for the deriva-225

tion of BFI see Appendix A: ]:226

KB =
P̃

(1 + P̃)(P̃ + Ṽp + Ṽp P̃)
(15)227

BFI =
1

(1 + P̃)(1 + Ṽp)
(16)228

These expressions can be used to model the observed catchment indices (Equa-229

tions (13) and (14)). These equations are functions of two variables (Ṽp and P̃) and not230

just a single variable such as aridity (which might be defined here as rescaled aridity231

index ϕ̃ = Ṽp

P̃
). Note that in the derivation of these equations we assume a parameter232

K = λPWp−λWVp

(1−λP )Wp
(not presented here for brevity) to be zero. This assumption led to in-233

significant differences which is consistent with Sivapalan et al. [2011].234

2.2 Data235

We use data from the contiguous US and Great Britain. CAMELS [Newman et al.,236

2015; Addor et al., 2017a] includes daily precipitation, potential evapotranspiration and237

streamflow data as well as a wide range of catchment attributes for 671 catchments in the238

contiguous US. The UK Benchmark Network (UKBN2) [Harrigan et al., 2017] describes239

catchments in the UK that are near-natural. It consists of 146 catchments whereof 8 catch-240

ments in Northern Ireland are not considered. The data is obtained from different sources.241

Daily streamflow data, catchment characteristics and catchment boundaries are obtained242

from the NRFA [National River Flow Archive, 2018], precipitation data from CEH-GEAR243

[Tanguy et al., 2016], and potential evapotranspiration data from CHESS-PE [Robinson244

et al., 2016]. We trim the daily data to contain only full water years (starting 1 October).245

We then aggregate daily data to obtain annual data, which are used to calibrate the Ponce-246

Shetty model for each catchment. For all other calculations we use mean annual data, i.e.247

data averaged over all full water years. To obtain a suitable dataset we remove some of the248

catchments according to the following criteria:249
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- Catchments with areas smaller than 10 km2 as measurement errors and catchment250

delineation errors tend to be significant for very small catchments.251

- Catchments with records shorter than 15 years as calibrating the Ponce-Shetty model252

requires many annual values. This threshold is chosen to remove some rather short253

and thus potentially unreliable records, while trying to keep enough catchments for254

the ongoing analysis.255

- Catchments where snow and lakes are influential, as these processes are not consid-256

ered in the Ponce-Shetty model. We remove catchments with fractions of precipi-257

tation falling as snow > 0.2 and catchments with significant surface water bodies.258

The latter is done by removing UKBN2 catchments with FARL < 0.8 (a parameter259

quantifying the influence of lakes and reservoirs) and CAMELS catchments with260

frac_water > 0.05.261

- Catchments with runoff ratios larger than unity in any year of record (Q/P > 1),262

resulting in negative vaporisation values (V < 0), as this indicates significant water263

balance issues and thus violates the assumptions of the Ponce-Shetty model.264

The final dataset consists of 571 out of 817 catchments.265

3 Results266

3.1 Baseflow Estimation267

Table 1 shows several metrics comparing results obtained using the Lyne-Hollick268

filter [Lyne and Hollick, 1979] and the UKIH method [Institute of Hydrology, 1980]. The269

two methods show good agreement. While the choice of filter might have a significant270

impact on individual catchments, it does not alter the overall results. We continue using271

the baseflow estimates obtained by using the Lyne-Hollick filter.272

Table 1. Comparison of mean annual baseflow Qb , Ponce-Shetty parameters, KB and BFI using different
baseflow separation techniques (Lyne-Hollick filter and UKIH method). The relative error (RE) is defined as
RE =

���1 − xa
xb

���. The absolute error (AE) is defined as AE = |xa − xb |.

273

274

275

Qb [mm] Wp [mm] λP [-] Vp [mm] λW [-] KB [-] BFI [-]

Pearson correlation 1.00 0.84 0.98 0.95 0.97 0.99 0.93
Spearman correlation 1.00 0.99 0.96 0.99 0.95 0.99 0.96
Median RE 0.07 0.05 0.17 0.05 0.31 0.07 0.07
Median AE 11 159 0.01 147 0.00 0.01 0.03

3.2 Parameter Estimation and Uncertainty276

The Ponce-Shetty parameters are fitted to each individual catchment by means of a277

non-linear least squares fitting algorithm, whereby λP and λW are restricted to be between278

zero and unity (their theoretical limits), and Wp and Vp are restricted to be between 0 mm279

and an upper limit. We choose an (arbitrary) upper limit of 50000 mm which is deemed280

high enough to not affect the parameter estimation. An even higher limit does not affect281

the estimated parameter values except for very few catchments with Wp and/or Vp values282

which are (almost) at the limit. The problem that some of the obtained parameter values283

are at the upper limit is discussed in the next paragraph. We can use two values for the284

wetting W to fit the second partitioning stage. Either the observed W obtained from Equa-285

tion (1) or the modelled W following from the fitted model for the first partitioning stage286

–8–



Manuscript submitted to Water Resources Research on 21 November 2018 and accepted on 8 March 2019

(Equation (6)). Following [Sivapalan et al., 2011] we use the modelled W to obtain an in-287

ternally consistent water balance.288

To fit a meaningful parameter set, the catchments should exhibit their functional be-289

haviour [Sivapalan et al., 2011]. If the vaporisation values (wetting values) are far away290

from the vaporisation potential (wetting potential), we will have a roughly linear relation-291

ship and hence fitting the functional form is not possible (see Figure 4a). This can be seen292

especially for Vp in arid catchments (e.g. in the middle of the US). In these catchments,293

the obtained potentials are at the specified upper limit (50000 mm). Similarly, being at the294

potential all the time does not allow us to fit a functional relationship either; this can be295

seen especially for Vp in humid catchments (e.g. along the west coast of the UK). In these296

catchments the obtained initial abstraction coefficient is unity (see Figure 4b). We remove297

these catchments from the analysis because the Ponce-Shetty model is unable to describe298

them adequately.299

0 500 1000
0
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1000

0 200 400 600 800
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200

400

0 500 1000
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1000

0 200 400 600 800
0

200

400
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Figure 4. Examples of catchments (station numbers in brackets) with fitted W-V-curves. (a) Coleto Creek,
Texas (08176900): extremely high Vp , Vp not identifiable. (b) Aire, Yorkshire (27035): V always approx-
imately equal to Vp , λW not identifiable. (c) Bear Creek, Texas (08158810): Vp and λW identifiable. (d)
Pincey Brook, Essex (38026): Vp and λW identifiable.

300

301

302

303

Table 2 shows overall statistics for the parameter estimation after having removed304

the catchments described in the last paragraph. The parameter uncertainty (in the form305

of 95% confidence intervals) is particularly high for extremely large values for either of306

the potentials (� 10000 mm). These large values are consistently uncertain, which co-307

incides with Sivapalan et al. [2011] who found that for some catchments the (apparently308

very high) potentials could not be properly identified. The confidence intervals for λP and309

λW need careful interpretation, as these two parameters have heavily skewed distributions310

(most catchments have parameter values close to zero). We do not remove catchments311

with high uncertainty from the analysis as a threshold would necessarily be subjective,312

which leaves us with 545 catchments for the ongoing analysis.313

3.3 Maps of Ponce-Shetty Parameters and Baseflow Metrics318

Figure 5 shows maps of the fitted parameters for CAMELS catchments. The pat-319

terns agree well with Sivapalan et al. [2011] who used MOPEX catchments. High wetting320
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Table 2. Parameter statistics and uncertainty for all catchments used in the analysis. CI 95% denotes the
95% confidence interval. Rel. CI 95% denotes the relative confidence limits, i.e. the confidence limits nor-
malised by the parameter values. Spearman denotes the Spearman correlation of the relative confidence limits
with the parameter values.

314

315

316

317

Min Median Max Median CI 95% Median Rel. CI 95% Spearman

Wp [mm] 756 3044 42857 1591 0.50 0.32
λP [-] 0 0.05 0.64 0.12 >1 -0.91

Vp [mm] 316 2911 44652 2264 0.74 0.49
λW [-] 0 0.02 0.91 0.13 >1 -0.91

potentials Wp can be seen in the middle of the US (Great Plains), in the east (southern321

parts of the Appalachians), south east (around Florida) and in parts of the central north322

(Michigan). High vaporisation potentials Vp can be seen in the middle of the US (Great323

Plains) and in all southern regions. The fast flow thresholds WpλP are high in the south,324

the south east and in the middle of the US except for the north. The baseflow thresholds325

VpλW are similarly high in most of these areas, but also in some catchments along the326

west coast. The spatial similarity of the thresholds is reflected by a significant rank corre-327

lation of 0.61 between WpλP and VpλW .328

Figure 5. The fitted parameters for CAMELS catchments: wetting potential (a), fast flow threshold (b), va-
porisation potential (c), and baseflow threshold (d). Crosses denote catchments where some of the parameters
could not be identified properly.

329

330

331

Figure 6 shows maps of the fitted parameters for UKBN2 catchments. On average,335

the values are lower than for the CAMELS catchments, especially for Vp , which is consis-336

tent with generally lower vaporisation intensities (cf. to Ep). High wetting potentials Wp337

can be found in the south west, the south, the middle (the Midlands) and along the south338

eastern coast. The vaporisation potentials Vp are high in the south, especially in the south339

east. High WpλP can be found in the south east and for a few catchments in the north.340
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Figure 6. The fitted parameters for UKBN2 catchments: wetting potential (a), fast flow threshold (b), va-
porisation potential (c), and baseflow threshold (d). Crosses denote catchments where some of the parameters
could not be identified properly.

332

333

334

High VpλW can be found in catchments scattered throughout the UK, most notably all341

along the west coast and in the south east.342

Figure 7 shows maps of KB and BFI for CAMELS and UKBN2 catchments. Gen-346

erally, KB is lower than BFI as it compares Qb to P rather than Q, which is always lower347

than P. This is reflected in the ranges of values shown in Figure 7. While in some regions348

both KB and BFI are rather high (e.g. in the eastern US and in the south west of the UK),349

in other regions BFI can be high while KB is rather low (e.g. in the southern US and in350

the middle of the US and in the south east of the UK) , which broadly agrees with Santhi351

et al. [2008] who found that catchments with high BFI can still have low baseflow vol-352

umes. This coincides with the maps showing the Ponce-Shetty parameters (Figures 5 and353

6). Catchments with high KB generally have a high Wp , low WpλP and low Vp . Catch-354

ments with high BFI also occur in areas with high Vp .355

3.4 Baseflow Variability with Climate Variables356

Figure 8 shows how the baseflow fraction varies with the rescaled climate variables.357

To show the dependence of KB on both P̃ and Ṽp we make use of a contour plot (see Fig-358

ure 8a). We plot P̃ and Ṽp on the x- and y- axes, respectively, and use contours to rep-359

resent the model for KB (Equation (15)) and coloured dots to represent the observed KB360

values (Equation (13)). Figure 8b, shows an equivalent plot using the ratio between P̃ and361

Ṽp (rescaled aridity index ϕ̃) with some example model curves with either fixed P̃ or Ṽp ,362

respectively – this is comparable to common Budyko-type plots. To get a better under-363

standing it is useful to recall how a contour plot of the rescaled aridity index would look364

like, which is shown in Figure 8c. The line through the origin represents a rescaled arid-365

ity index of unity, above that line (top left) are humid catchments, below that line (bottom366

right) are arid catchments. Note that we are using rescaled variables and hence we are not367

looking at the common aridity index. P̃ is a relative rainfall amount and Ṽp is a relative368

vaporisation potential, both rescaled by their thresholds and the wetting potential of the369

catchment. The general notion that low ϕ̃ indicates humid (energy-limited) catchments and370

that high ϕ̃ indicates arid (water-limited) catchments is still valid.371

The contours in Figure 8a start parallel to the line through the origin and thus paral-379

lel to the rescaled aridity index. They start to bend for higher values of P̃ (humid side of380

the plot) and become perpendicular to the rescaled aridity index. This demonstrates that381

a catchment having a certain rescaled aridity index can have very different values of KB.382

Roughly, if both P̃ and Ṽp are low, we get a rather high KB and if both are high, we get383
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Figure 7. KB (a) and BFI (b) for CAMELS and UKBN2 catchments. Note that the colour scales are differ-
ent to reflect the range of the values. Crosses denote catchments where some of the parameters could not be
identified properly. Note that the maps of the US and the UK are not to the same scale.

343

344

345

a rather low KB. The contours are not just bending on the humid side (top left), they are384

also indicating higher gradients and thus a high variability in KB. In contrast, there is rel-385

atively little variation on the arid side (bottom right), i.e. most of the catchments have a386

similar KB. The observed values (represented by coloured dots) agree well with the model387

contours (median absolute error = 0.02, median relative error = 0.14). This can be ex-388

pected, since the model has sufficient degrees of freedom to fit the data well (the Ponce-389

Shetty model is fitted to each individual catchment). The Budyko-type plot shown in Fig-390

ure 8b reflects these observations with a tight ensemble of curves for arid catchments and391

a spread out ensemble of curves for humid catchments. The observed values agree with392

this general behaviour, they are tight for arid catchments and scattered for humid catch-393

ments.394

Figure 9 shows how BFI varies with P̃ and Ṽp . The contours shown in Figure 9a are395

symmetric around the line through the origin. The BFI is highest for low values of both396

P̃ and Ṽp and gets lower for both higher P̃ and Ṽp . The observed values agree well with397

the model contours (median absolute error = 0.05, median relative error = 0.14). Again,398

this can be expected, since the model has sufficient degrees of freedom to fit the data well.399

Figure 9b shows that there is no clear relationship between BFI and the rescaled aridity400

index. This is in agreement with the observed values, which are scattered over most areas401

of the plot.402
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Figure 8. (a) Contour plot of KB as a function of the rescaled vaporisation potential Ṽp and rescaled pre-
cipitation P̃ (Equation (15)). The dots indicate the observed values (Equation (13)). (b) KB as function of
the ratio between Ṽp and P̃ (i.e. rescaled aridity index ϕ̃). The black and grey lines (solid and dashed) are
example model curves with either fixed Ṽp or P̃. The dots indicate the observed values. (c) Logarithm of the
rescaled aridity index ϕ̃ as a function of Ṽp and P̃. The grey line denotes a rescaled aridity index of unity (log
equals zero). (d) Different regions of the KB contour plot are annotated, a more detailed explanation is given
in Section 4.

372

373

374

375

376

377

378
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Figure 9. (a) Contour plot of BFI as a function of the rescaled vaporisation potential Ṽp and rescaled pre-
cipitation P̃ (Equation (16)). The dots indicate the observed values (Equation (14)). (b) BFI as function of
the ratio between Ṽp and P̃ (i.e. rescaled aridity index ϕ̃). The black and grey lines (solid and dashed) are
example model curves with either fixed Ṽp or P̃. The dots indicate the observed values.

403

404

405

406

4 Discussion407

The ranges of the parameter values (see Table 2) are in general agreement with Siva-408

palan et al. [2011] who also used a non-linear least squares method, and Harman et al.409

[2011] who used a Bayesian framework. The high parameter uncertainty for some catch-410

ments and problems in parameter identifiability might have two reasons. As described be-411

fore, it could simply be a consequence of not having sufficient data to meaningfully fit the412

Ponce-Shetty model. It could, however, also indicate that the Ponce-Shetty model is not413

adequate for certain catchments. Even a good fit does not necessarily mean that the model414

is correctly representing the processes, which are arguably very simplified. We assume415

inter-annual water storage change as well as other water gains and losses to be negligible.416

This might not be a valid assumption for every catchment investigated here, and hence417

adds uncertainty to the parameter estimation. To assess the influence of inter-annual water418

storage change we alternatively calculated 3-year averages and calibrated the Ponce-Shetty419

model to these. This leads to overall similar parameter values (Pearson correlations: Wp:420

0.86, λPWp: 0.81, Vp: 0.79, λWVp: 0.67). There are, however, problems associated with421

averaging. Extreme years, which are especially important to fit the Ponce-Shetty model,422

are averaged out and thus information is lost. Furthermore, by averaging and fitting a non-423

linear function, we introduce some bias ["the average of the function will not be the func-424

tion of the average inputs", see Rouholahnejad Freund and Kirchner, 2017]. This makes it425

difficult to tell whether inter-annual water storage change is the cause for the deviations in426

the parameter values. For now we argue that the model fits our data sufficiently well for427

the purpose of this work. Being capable of explaining the observed variations in baseflow428

further corroborates the model’s suitability. For specific places, however, the uncertainty429

might be very large and conclusions or predictions should therefore be made with care. It430

would be interesting to see whether more detailed modelling approaches would lead to the431

emergent behaviour inherent in the Ponce-Shetty theory and/or similar parameter values.432

From Figure 8 we can see how KB varies with P̃ and Ṽp . Generally, KB cannot be433

described by a single Budyko-type curve, but by a continuum of curves that depend on434

the catchment’s (Ponce-Shetty) parameters. KB is consistently low for high rescaled aridity435

values, which can be attributed to relatively high amounts of vaporisation (KB is domi-436

nated by the second partitioning stage, i.e. Vp). The behaviour of KB is more complicated437

for humid catchments. Starting at the origin of Figure 8a and moving along the y-axis438
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towards more humid catchments, KB first increases, then reaches a peak and decreases439

again. This decrease can be attributed to an exhausted wetting potential leading to "sat-440

uration excess fast flow" (KB is dominated by the first partitioning stage, i.e. Wp). This441

was already recognised by Milly [1994] who stated that finite water storage capacity and442

finite permeability are possible causes for runoff. In such humid catchments, an increase443

in precipitation thus mainly leads to an increase in fast flow, which agrees with Harman444

et al. [2011] who found that fast flow elasticities are clearly larger than baseflow elastici-445

ties in humid catchments. Similarly, Trancoso et al. [2017] found that "higher precipitation446

in tropical regions may be generating more overland flow, which tends to reduce the slow447

component [...]". . Baseflow fraction can hence be low for both arid and humid catch-448

ments, but for different reasons. This may help to explain the diversity of results from449

empirical studies on controls on baseflow.450

Figure 9 shows how the BFI varies with P̃ and Ṽp . The magnitude of P̃ and Ṽp451

rather than the ratio between them determines the BFI. If both P̃ and Ṽp are low, BFI452

is high. That means that at the first partitioning stage precipitation becomes mainly wet-453

ting, and at the second partitioning stage this wetting becomes mainly baseflow. If either454

P̃ and Ṽp are high, we obtain a lower BFI. In the first case, most of the precipitation be-455

comes fast flow and thus the BFI is low. In the second case, most of the precipitation456

becomes wetting, but most of that wetting evaporates, so that Qb and thus the BFI will457

be rather low. In comparison to KB, BFI is highly variable also for high rescaled arid-458

ity. Low amounts of baseflow (compared to precipitation) can lead to a high BFI if the459

amount of fast flow is even lower. This explains most of the differences between KB and460

BFI (see Figures 5 and 6 and the description in Section 3.3).461

The results show that KB (and BFI) is influenced by the magnitude of P̃ and Ṽp and462

not just their ratio. This explains the scatter especially for humid catchments (see Fig-463

ure 8b). While an aridity index is certainly useful, it can be restrictive in cases where464

the magnitude of precipitation is important. This agrees for example with Berghuijs et al.465

[2017] who found that runoff is most sensitive to changes in precipitation and this sen-466

sitivity is not captured by only looking at the aridity index. Similarly, the ratio between467

precipitation and the wetting potential (≈ P̃) explains most of the variability in baseflow468

fraction which the aridity index could not explain (see Figure 8a, especially region II, and469

Figure 10).470

Especially in humid catchments, the ratio of precipitation to a catchment’s wetting471

potential can be a major control on baseflow. Given the same climate, a catchment with a472

higher wetting potential will have a higher baseflow fraction and BFI. This is a possible473

explanation for the partly inconclusive results found in studies before. Regional studies474

with similar climate could relate the amount of baseflow to a catchment’s form, mostly475

soils [Boorman et al., 1995] and geology [Neff et al., 2005; Longobardi and Villani, 2008;476

Bloomfield et al., 2009]. These attributes are parametrised by the Ponce-Shetty parameters477

(especially Wp), yet in a rather abstract way which so far eludes a quantitative linking to478

landscape characteristics. Continental [Schneider et al., 2007; Van Dijk, 2010; Trancoso479

et al., 2017] and global studies [Beck et al., 2013, 2015] found catchment form to be less480

influential and often couldn’t come to conclusive results, as it is neither climate nor form481

alone that lead to a certain catchment response, but their interaction.482

Figure 10 shows the Qb/P vs. Ep/P plot (from Figure 1) with catchments stratified487

and coloured according to their wetting and vaporisation potentials, respectively. Three488

different ranges of Wp are shown and they form three somewhat distinct point clouds. The489

remaining variation can be attributed to differences in the thresholds, the rather broadly490

defined categories and differences in the magnitude of Ep and P. The cloud with the low-491

est Wp exhibits the lowest baseflow fraction and vice versa. High values of KB are usu-492

ally associated with low values of Vp (indicated by the lightness of the colours). We can493

also see that CAMELS and UKBN2 catchments do not generally behave differently, but494

since certain catchment types occur predominantly in the US or the UK, the CAMELS495
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Figure 10. Scatter plots of mean annual baseflow fraction Qb/P vs. mean aridity index Ep/P. CAMELS
catchments are denoted by circles, UKBN2 catchments are denoted by triangles. Catchments are highlighted
according to their wetting potential Wp : (a) low wetting potentials, (b) medium wetting potentials, and (c)
high wetting potentials. Darker shading indicates higher vaporisation potential Vp . All units are in mm.
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and UKBN2 point clouds appear to be different. Very humid catchments with rather low496

Wp are mostly located in the UK and they are most clearly deviating from the point cloud497

representing CAMELS catchments (see also Figure 1).498

We did not include catchments with significant snow fraction or lakes. While these499

catchments might be seen as having an "extended" wetting potential (storage), they repre-500

sent conceptually different processes, for which additional explanatory variables might be501

needed. These processes might be added as an additional partitioning stage to the model502

to make it more universal. Especially the snowy catchments show an increase in KB for503

increasing humidity almost up to unity (not shown here), which could explain e.g. why504

Wang and Wu [2013] used a baseflow Budyko model that approaches unity. Snowy catch-505

ments might be considered to have virtually unlimited storage potential as the snowpack506

can grow continuously, and thus baseflow fractions in these catchments can get very high.507

The Ponce-Shetty parameters are emergent, rather abstract properties and relating508

them to catchment characteristics might not be straightforward. The Ponce-Shetty param-509

eters are lumping a variety of processes and characteristics, notably soils, geology, vege-510

tation, topography and climate seasonality. This means that for now, the presented model511

can only explain and predict annual baseflow variability in gauged catchments where the512

model was calibrated. It might be used to investigate the effects of a changing climate513

(e.g. changing precipitation) on baseflow in different types of (gauged) catchments [cf.514

Buttle, 2018]. A transfer to ungauged catchments requires a regionalisation procedure.515

Qualitatively, links between parameters and catchment characteristics can be seen. Vp516

is correlated with energy availability (comparable to potential evapotranspiration), yet517

it rather emerges from the interaction of the available energy with vegetation and other518

catchment characteristics. Large wetting potentials can be seen in moorland and wetland519

areas (e.g. south west UK, Florida) and in the presence of major aquifers (e.g. Chalk in520

southern England, Great Plains aquifer). A quantitative linking of the Ponce-Shetty param-521

eters to landscape properties or other regionalisation approaches are, however, beyond the522

scope of this work.523

5 Conclusions524

The present work shows that there is no single baseflow Budyko curve, that is, in525

general baseflow fraction cannot be modelled as a function of an aridity index alone. Even526

if samples of catchments seem to form a single curve, this might be misleading as many527

of them might actually sit on different curves (see Figure 9b). The influence of catchment528

water storage on long-term water balance has long been recognised [e.g. Milly, 1994].529

The approach employed here incorporates that in a simple way by modelling baseflow530

fraction as a function of two variables. A rescaled precipitation, that is the ratio between531

precipitation and a catchment’s wetting potential, and a rescaled vaporisation potential.532

These two variables reflect the two-stage partitioning underlying the Ponce-Shetty model,533

namely the partitioning between fast flow and wetting, and the subsequent partitioning534

between slow flow and vaporisation. Depending on the climatic regime, one of these par-535

titioning stages dominates. In arid catchments, baseflow fraction is mainly limited by high536

amounts of vaporisation. In humid catchments, baseflow fraction is mainly limited by the537

storage capacity of a catchment.538

The differences between CAMELS (US) and UKBN2 (UK) catchments shown in539

Figure 1b and Figure 10 have two main causes. Firstly, using aridity as a ratio is restric-540

tive. Catchments with a similar aridity index usually have lower precipitation and vapor-541

isation intensities in the UK than in the US. Secondly, the wetting potentials in the UK542

differ from the ones in the US. Most of the very humid catchments in the UK have rather543

low wetting potentials, i.e. they are (almost) fully saturated and a large fraction of precip-544

itation runs off quickly to the stream. This difference is, however, not a clear distinction545
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as it can be seen from Figure 10. Catchments in the US and the UK do not behave funda-546

mentally differently, they rather happen to have predominantly different characteristics.547

Baseflow (a catchment function) can be seen as the result of climate interacting with548

landscape [forcing acting on form, cf. Wagener et al., 2007]. To explain baseflow vari-549

ability in a process-based way, we should try to disentangle forcing and form, knowing550

that this might only be partially possible as catchment form (and function) may reflect a551

co-evolution with climate forcing. The Ponce-Shetty approach partly disentangles forcing552

and form, yet in a rather abstract way. Furthermore, the parameters still lump together a553

variety of processes that are not only reflecting catchment form (e.g. topography, geology,554

vegetation, etc.), but also climate (e.g. seasonality, storminess). Intra-annual climate vari-555

ability can have a significant impact on such lumped parameters [Roderick and Farquhar,556

2011; Berghuijs and Woods, 2016].557

Using large samples of catchments allows us to detect and explain (dis-)similarities558

and patterns and to synthesise already available data [Falkenmark and Chapman, 1989;559

Sivapalan, 2005; Harman and Troch, 2014]. While large sample hydrology arguably ne-560

glects many details, synthesising data to find new theory has proven to be a fruitful ap-561

proach that – besides improved understanding – might help to constrain models [Shafii562

et al., 2017], to transfer knowledge to ungauged catchments [Hrachowitz et al., 2013] and563

to deal with predictions under change [Wagener et al., 2010; Ehret et al., 2014]. It is es-564

sential to include a variety of catchments, both in terms of climate and landscape char-565

acteristics, which is exemplified by the "unexpected behaviour" of UK catchments in this566

work. Even more data are needed to corroborate the theory, to understand more of the567

details (e.g. Ponce-Shetty parameters) or to detect limitations of the presented approach,568

which eventually advances our understanding.569

Simple approaches such as the Ponce-Shetty model are useful as they are easily ap-570

plied to large samples. They also allow us to better understand the model’s dynamics and571

stop us from being lost in the calibration stage. We acknowledge that there is a danger in572

being too simple or simple due to lack of understanding (cf. Schwartz et al., 2017), which573

might partly be true for the hydrograph separation approach and the Ponce-Shetty model574

here. We are confident, however, that the chosen methods are appropriate for the present575

work as they are capable of explaining the observed phenomena and thus help to improve576

our understanding of how baseflow varies with climate and landscape.577

A: Appendix578

To obtain an equation for the BFI we make use of another catchment index pre-579

sented in Sivapalan et al. [2011], the runoff ratio KR:580

KR =
Q f +Qb

P − λWVp

(A.1)581

KR can be approximated theoretically by:582

KR =
P̃(1 + Ṽp)

P̃ + Ṽp + Ṽp P̃
(A.2)583

We can write the BFI using KB and KR:584

BFI =
Qb

Q f +Qb

=
KB

KR
(A.3)585

BFI =
P̃(1 + P̃)−1

P̃ + Ṽp + Ṽp P̃

(
P̃(1 + Ṽp)

P̃ + Ṽp + Ṽp P̃

)−1

(A.4)586

BFI =
1

(1 + P̃)(1 + Ṽp)
(A.5)587
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