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Exact results for sheared polar active suspensions with variable liquid
crystalline order

Aurore Loisy,1 Anthony P. Thompson,1 Jens Eggers,1 and Tanniemola B. Liverpool1

School of Mathematics, University of Bristol - Bristol BS8 1TW, UK

(Dated: 17 January 2019)

We solve the problem of a confined sheared active polar liquid crystal film with varying amounts of polariza-
tion, but a uniformly aligned director. Restricting our analysis to one-dimensional geometries, we demonstrate
that with asymmetric boundary conditions, this system is characterized, macroscopically, by a linear shear
stress vs. shear strain relationship that does not pass through the origin: at zero strain rate the fluid sustains
a non-zero stress. Analytic solutions for the polarization, density and velocity fields are derived for asymp-
totically large or small systems, and are shown by comparison with precise numerical solutions to be good
approximations for finite-size systems.

I. INTRODUCTION

Swarms of bacteria1–4, mixtures of cytoskeletal
filaments and motor proteins5–7, and self-propelled
colloids8,9 are all example of active suspensions10–13 con-
sisting of anisotropic self-driven particles dispersed in a
passive liquid. Due to the orientable nature of their con-
stituents, active suspensions can exhibit long-range ori-
entational order and are often referred to as active liq-
uid crystals (LCs)10–12,14. While active LCs can exist
in ordered phases typical of liquid crystals15, they fun-
damentally differ from their passive counterparts in that
each active particle transduces free energy into system-
atic movement, maintaining the system out of equilib-
rium.

As active particles interact with each other and with
their surrounding environment, they are able to col-
lectively generate motion and mechanical stresses at
scales much larger than their individual size, endow-
ing active materials with unusual mechanical proper-
ties. An example is the reduction of the apparent vis-
cosity of bacterial suspensions under shear16–21. Re-
markably, upon increasing activity, the apparent viscos-
ity can decrease until a value of zero is achieved, giv-
ing rise to superfluid-like behaviour20,22. In the last
decade, rheological measurements16–20 have shown quali-
tative agreement with earlier theoretical predictions23–28

for the macroscopic mechanical properties of active sus-
pensions. Yet a more thorough understanding of the
underlying mechanisms driving these systems requires a
more quantitative comparison of theoretical models with
experiments29. Such a comparison is becoming possible
as more detailed information, such as transient rheologi-
cal behaviour20 and velocity profiles22, becomes accessi-
ble experimentally.

Many active materials, whether biological or synthetic,
involve head-tail asymmetric particles and can exist in
a polar phase. For such system, the broken symmetry
variable is the polarization vector which represents the
local coarse-grained orientation of the particles. When an
active polar LC is sheared, distortions in the orientation
of the polarization field induces active stresses which in
turn generate an extra flow (needed to maintain the stress

balance). This mechanism allows the apparent viscosity
(defined as the macroscopic viscosity at the scale of the
system, as would be measured by, e.g., a rheometer) of
active LCs to vanish or even become negative29. While
previous theoretical analyses29–31 have focused on how
gradients in the orientation can induce the active stresses
that lead to unconventional mechanical behaviour, here
our focus is on how variations in the magnitude of LC
order affect the mechanical properties of active LCs.

In this paper we show that a gradient in the magni-
tude of polarization of active LCs induces, even in the
absence of variations in orientation, flows that give rise to
anomalous mechanics. Specifically, we examine the effect
of a varying polarization magnitude on a one-dimensional
confined active polar LC subjected to shear. We derive
the analytical relation between the stress and the macro-
scopic strain rate, which shows in particular that this
system experiences a non-zero shear stress at zero shear
strain rate (and conversely, a non-zero strain rate is re-
quired to maintain a zero stress).

Despite the nonlinearities in the equations, because of
a decoupling of the equations we are also able to obtain
exact analytical results for the velocity and density fields
as a function of the polarization field, the latter being
shown to be well approximated by asymptotic solutions
in the limit of large or small systems. This is interest-
ing because hydrodynamic equations for active LCs are
highly nonlinear, hence analytical solutions beyond lin-
earization approximations are rare even in the simplest
geometries. As a result studies of sheared active LCs
tend to be numerical29–35.

II. MODEL

We consider an active LC with the possibility of polar
orientational order. At the continuum scale, its dynamics
are described by a set of long-wavelength, long-time scale
equations forming the now well-accepted hydrodynamic
theory of active matter11,14. The relevant hydrodynamic
variables are the polarization vector p as well as the con-
served fields, here the particle number density ρ (for sim-
plicity ρ is normalized by its equilibrium value) and the
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FIG. 1. A thin film of active polar LC sheared between
two moving no-slip walls. The polarization field is uniformly
aligned with the walls, and only its magnitude p is allowed to
vary.

momentum ρmu where ρm is the fluid mass density and
u is the fluid velocity.

The passive contributions to the equations of motion
are customarily described as arising from the nonequilib-
rium analog of the free energy for a passive polar LC.
This free energy is given by11,30

F =

∫
r

(fn + fp) dr (1)

fn =
a2
2
|p|2 +

a4
4
|p|4 +

K

2
|∇p|2 +

C

2
(ρ− 1)2 (2)

fp = B1(ρ− 1)∇ · p +B2|p|2∇ · p +B3|p|2p · ∇ρ. (3)

The contribution fn is the free energy density of a ne-
matic LC. The first two terms control the isotropic-polar
transition: they favor a polar phase (|p|2 = −a2/a4)
when a2 < 0 and an isotropic phase (|p|2 = 0) when
a2 > 0. The third term describes the energy cost of defor-
mation (K is the analog of the Frank constant for passive
LCs), and the last term penalizes density variations (C is
the compression modulus). The contribution fp contains
additional terms that break the p → −p symmetry and
are allowed in a polar fluid36.

The polarization and density dynamics are governed
by

Dtp = −βpp · ∇p + λE · p−Ω · p− Γpph− Γcpg (4)

and

Dtρ =∇ · [−ρβcp + Γcph + Γccg] , (5)

where Dt = ∂t + u · ∇, Eij = (∂iuj + ∂jui)/2, Ωij =
(∂iuj − ∂jui)/2, h = δF/δp and g = ∇(δF/δρ). The

flow is assumed incompressible (∇ · u = 0) and the flow
field satisfies

ρm(∂t + ui∂i)uj = ∂iσij . (6)

The stress tensor is given by

σij = 2ηEij + σrij + σaij , (7)

where the first term is the dissipative contribution (η is
the fluid viscosity), σrij is reversible contribution (as in
passive LCs), and σaij is the active contribution. The
reversible stress is given by

σrij = −Πδij +
λ

2
(pihj + pjhi) +

1

2
(pihj − pjhi), (8)

where Π is the pressure. The active stress is

σaij = αρpipj + βσρ(∂ipj + ∂jpi), (9)

where the lowest order term ∼ α has nematic symmetry
while the higher order term ∼ βσ is present only in sys-
tems with polar symmetry. In the above equations, βc,p
and βσΓpp have the dimension of a velocity and associ-
ated terms arise in polar systems from the self-advection
of active elements along p.

Our geometry is similar to that used in prior work29,30

and is depicted in Fig. 1: a two-dimensional thin film
of active LC of thickness L is sheared between two par-
allel walls moving in opposite directions with velocity
magnitude V . We allow gradients only in the direction
normal to the walls. Due to incompressibility and wall
impermeability the flow must be parallel to the wall:
u = (u(z), 0), and we use no-slip boundary conditions:
u(L) = −u(0) = V . The fluid is therefore subjected to a

macroscopic shear strain rate γ̇ =
∫ L
0
∂zudz = 2V/L.

To pick out the effects of variations in the amount of
LC order only, we further assume that the polarization
field is parallel to the walls and only its (signed) magni-
tude is allowed to vary: p = (p(z), 0). Previous work has
focused on the role of varying orientation with fixed mag-
nitude, here in contrast we fix the orientation and focus
on the role of varying magnitude of p only. Our choice of
orientation is consistent with expected boundary condi-
tions on the walls. A nice feature of this approximation
is that it makes the problem tractable analytically due
to a decoupling of the equations. Such an aligned state
is physically relevant to situations where strong paral-
lel anchoring is precribed at the walls, provided that the
coupling between the polarization orientation and the lo-
cal shear is negligible, that is, for systems which satisfy
ΓppK � UL (with U a characteristic velocity scale for
the flow). The governing equations reduce to

∂tp = −Γpp(a2 + a4p
2)p+ ΓppK∂

2
zp, (10)

∂tρ = ∂z
[
− 2b2p∂zp+ (d+ b3p

2)∂zρ
]
, (11)
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ρm∂tu = ∂zσ, (12)

with

σ = η∂zu+ (βσρ+mb2p
2)∂zp+

m

2
(b1− b3p2)p∂zρ, (13)

where σzx is now simply denoted σ, and where we have
introduced d = ΓccC−ΓcpB1, b1,2,3 = ΓcpB1,2,3, andm =
(1 − λ)/Γcp. At the boundaries the flux of ρ across the
walls must be zero, and we require that the polarization
vectors at the walls are antiparallel: p(L) = −p(0) =

peq =
√
−a2/a4 (here we assume a2 < 0).

It is interesting to note that the coupling terms in the
governing equations are those which break the p → −p
symmetry. For a nematic fluid (b1,2,3 = 0, βσ = 0), the
equation for ρ reduces to a diffusion equation, and the
expression of the stress only contains the viscous term.
Therefore, in the simple configuration we consider here, a
nematic active fluid would behave as an isotropic passive
one.

III. RESULTS

Let us consider a continuous steady solution p(z) for
the polarization field. Then the steady solution to Eq.
(11) is

ρ =
b2
b3

ln
(
d+ b3p

2
)

+ ρ0, (14)

where d + b3p
2 > 0 is assumed37 and where ρ0 is a con-

stant determined by the condition L−1
∫ L
0
ρ dz = 1. At

steady state the shear stress is uniform across the gap
(∂zσ = 0). One can then integrate Eq. (13) for a con-
stant (unknown) σ and obtain the velocity field

u =
σ

2η
(2z−L)−ξp+

√
d

b3
ξ arctan(

√
b3
d
p)− βσ

η
pρ (15)

with

ξ =
b2
ηb3

(mb1 +md− 2βσ). (16)

The (macroscopic) steady-state flow curve σ = f(γ̇), as
would be measured by a rheometer, is then obtained from
Eq. (15) by satisfying the no-slip boundary conditions at
the moving walls. One finds

σ = ηγ̇ + σ0 (17)

with

σ0 =
2η

L

{
ξpeq −

√
d

b3
ξ arctan(

√
b3
d
peq)

+
βσ
η
peq

[
b2
b3

ln
(
d+ b3p

2
eq

)
+ ρ0

]}
. (18)

The slope dσ/dγ̇ is simply the fluid viscosity η, as for an
isotropic passive fluid, however the stress at zero strain
rate, σ0, is not zero: the active LC has a yield stress and
effectively behaves, from a rheological point of view, in
a similar way to a Bingham fluid38. Indeed gradients in
p induce reversible and active contributions to the stress
which exist independently of the applied strain rate. The
converse is also true: a non-zero macroscopic strain rate
is required in order to maintain a zero stress. More-
over σ0 can be of either sign, meaning that the apparent
viscosity, defined as σ/γ̇, can be negative (while passive
contributions can only add to σ, active ones ∼ βσ can
either add or subtract to σ).

There exists, as far as we know, two limiting cases
where an explicit steady analytical solution to Eq. (10)
can be written. In the limit −a2L2/K � 1, a good ap-
proximation for p is the solution for an infinite system39

p = peq tanh

[√
−a2
2K

(z − zi)

]
(19)

where zi is the (undetermined) location of the interface
(which thickness decreases with increasing −a2/K) be-
tween two polar phases pointing in opposite directions.
This profile results in a depletion (or accumulation, de-
pending on the sign of b2) of ρ localized at the interface
and in a non-uniform, non-monotonic velocity profile.

In the opposite limit −a2L2/K � 1, the solution for
the polarization magnitude can be approximated by a
linear profile

p = −peq +
2peq
L

z. (20)

Note however that this latter limit may require that the
width L be comparable to the active particle size for
which the validity of the hydrodynamic equations are in
question and is mostly of interest here as a bound.

In addition to these limiting cases, Eqs. (10), (11)
and (13) were also solved numerically. Our algorithm is
based on second-order implicit finite difference schemes
(Crank-Nicolson scheme for time integration and cen-
tered schemes for spatial discretization) with adaptive
time-stepping. Time-dependent equations were solved to
steady-state, starting from a linear profile for p and a uni-
form ρ. A comparison between the asymptotic solutions
and the numerical ones is shown in Fig. 2, together with
additional results for an intermediate value of −a2L2/K.
The estimate of σ0 obtained from asymptotic expressions
is remarkably accurate (deviation not greater than 1 %)
even for −a2L2/K = O(1).

IV. DISCUSSION AND CONCLUSIONS

We considered the minimal problem of a one-
dimensional sheared active LC under confinement, with
a uniform orientation of the polarization field, focusing
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FIG. 2. The effect of system size: (a) polarization magni-
tude field, (b) density field, (c) velocity field, (d) deviation
from asymptotic results in the stress at zero strain rate (in-
set: stress). Analytical profiles and stress were obtained using
Eq. (19) for L � 1 and Eq. (20) for L � 1 (here we set for
simplicity −a2/K = 1). Parameters are: a2 = −1, a4 = 1,
K = 1, η = 1, b1,2,3 = 0.1, m = −1, d = 1, βσ = −1, γ̇ = 0
(arbitrary units).

on the effect of varying its signed magnitude p. Our
analysis thereby complements prior studies of the same
system which allowed gradients in the orientation field
while keeping the magnitude of liquid crystalline order
constant29,30,40.

As the dynamics of p is not coupled to that of the
density or the velocity, the uniform equilibrium solution
is always stable and gradients in p must be generated
through boundary conditions. Here we imposed p to be
of equal magnitude and of opposite signs at the walls.
Such asymmetric polarization at the boundaries could
be realized experimentally through manipulation of the
surface chemistry or architecture41–45.

The case of variable orientation leads to a rich phe-
nomenology, including a spontaneous transition to a flow-
ing state in the absence of external driving40, and the
existence of non-monotonic stress vs. strain rate flow
curves29,30. In contrast, the case of variable polariza-
tion studied here does not yield such unusual mechanical
properties: the relationship between the stress and the
macroscopic strain rate is linear, and, for a nematic ac-
tive LC, would not differ from that for an isotropic fluid.
For a polar active LC though, there exist elastic and ac-
tive contributions to the total stress in addition to the
viscous one, and the flow curve does not pass through
the origin. This indicates that macroscopic stresses are
present in the uniformly aligned polar active LC even in
the absence of external driving.

One of the advantages of the simple configuration con-
sidered here lies in the fact that analytical solutions can
be explicitly obtained. We hope that these solutions will
provide insight into the role played by gradients of liquid
crystalline order, and could be used as a starting point
and benchmark reference for numerical work on sheared
active polar LCs, where both the magnitude and direc-
tion of the LC order parameter vary32–34.
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