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We solve the problem of a confined sheared active polar liquid crystal film with varying amounts of polariza-
tion, but a uniformly aligned director. Restricting our analysis to one-dimensional geometries, we demonstrate

stress vs. shear strain relationship that does not pass through the origin:

that with asymmetric boundary conditions, this system is characterizedfacroscopically7 by a linear shear

ro strain rate the fluid sustains
a non-zero stress. Analytic solutions for the polarization, density and VGIONS are derived for asymp-
num

totically large or small systems, and are shown by comparison with

approximations for finite-size systems.

I. INTRODUCTION

Swarms of bacterial™®, mixtures of cytoskeletal
filaments and motor proteins®?, and self-propelled
colloids®? are all example of active suspensions'® '3 con-
sisting of anisotropic self-driven particles dispersed in a
passive liquid. Due to the orientable nature of their con-
stituents, active suspensions can exhibit long-range ori-
entational order and are often referred to as active lig-
uid crystals (LCs)!0121 While active LCs can e

in ordered phases typical of liquid crystals'®, th

reci: ical solutions to be good

hi‘s)lecha ism allows the apparent viscosity
¢ ' maerescopic viscosity at the scale of the
be measured by, e.g., a theometer) of
Cs tofyanish or even become negative?®. While
heorétical analyses?? 3! have focused on how
adients in the orientation can induce the active stresses
lead to unconventional mechanical behaviour, here
r fogus'is on how variations in the magnitude of LC
order affect the mechanical properties of active LCs.
In/this paper we show that a gradient in the magni-
of polarization of active LCs induces, even in the

balance).
(defined as

t

fun-
damentally differ from their passive counterparts in %\Qbsence of variations in orientation, flows that give rise to

each active particle transduces free energy int0 syste
atic movement, maintaining the system out o

>
rium.

As active particles interact with each oth\
their surrounding environment, they4are ab col-
lectively generate motion and mecham\wses at
scales much larger than their individual sizg, endow-

ing active materials with unusda hanical proper-
ties. An example is the red r“‘} apparent vis-
cosity of bacterial suspensidns under shear'2!. Re-
markably, upon increasing ‘agctivify, thetapparent viscos-
ity can decrease until ‘gifalu f Ze/o is achieved, giv-
ing rise to superfluiddiké«behavieur?®??2. In the last
decade, rheological m@é u%}wzo have shown quali-
tative agreement with :%lier theoretical predictions? 28

anical properties of active sus-
rough understanding of the

R Su&ﬁ a comparison is becoming possible
d information, such as transient rheologi-
velocity proﬁles22 becomes accessi-

materials, whether biological or synthetic,
eQd-tail asymmetric particles and can exist in

For such system, the broken symmetry
is the polarization vector which represents the
local coarse-grained orientation of the particles. When an
active polar LC is sheared, distortions in the orientation
of the polarization field induces active stresses which in
turn generate an extra flow (needed to maintain the stress

anomalous mechanics. Specifically, we examine the effect
of a varying polarization magnitude on a one-dimensional
confined active polar LC subjected to shear. We derive
the analytical relation between the stress and the macro-
scopic strain rate, which shows in particular that this
system experiences a non-zero shear stress at zero shear
strain rate (and conversely, a non-zero strain rate is re-
quired to maintain a zero stress).

Despite the nonlinearities in the equations, because of
a decoupling of the equations we are also able to obtain
exact analytical results for the velocity and density fields
as a function of the polarization field, the latter being
shown to be well approximated by asymptotic solutions
in the limit of large or small systems. This is interest-
ing because hydrodynamic equations for active LCs are
highly nonlinear, hence analytical solutions beyond lin-
earization approximations are rare even in the simplest
geometries. As a result studies of sheared active LCs
tend to be numerical?? 3%,

Il. MODEL

We consider an active LC with the possibility of polar
orientational order. At the continuum scale, its dynamics
are described by a set of long-wavelength, long-time scale
equations forming the now well-accepted hydrodynamic
theory of active matter''4. The relevant hydrodynamic
variables are the polarization vector p as well as the con-
served fields, here the particle number density p (for sim-
plicity p is normalized by its equilibrium value) and the
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FIG. 1. A thin film of active polar LC sheared between

two moving no-slip walls. The polarization field is uniformly
aligned with the walls, and only its magnitude p is allowed to
vary.

momentum p,,w where p,, is the fluid mass density and
wu is the fluid velocity.
The passive contributions to the equations of moti

rium analog of the free energy for a passive polar LC*

are customarily described as arising from the nonequi)'b&

This free energy is given by!!30

F:/T(fnJrfp)dr \‘\\Q
N\

Se)

fo=Bi(p—1)V -p+ Ba|pffV - APFP'VA (3)

The contribution f, is t e’gner v density of a ne-
matic LC. The first twoderms c tr@f the isotropic-polar
transition: they favor a pelar phase (|p|? = —az/a4)
when ap < 0 and n@tropl hase (|p|? = 0) when
as > 0. The third,t scribes the energy cost of defor-
mation (K is t f the Frank constant for passive

LCs), and the lizes density variations (C is
the compre Si‘(_){l . The contribution f, contains

as 2 Qg4 4 K 2
n:* e 7V
b 2|p|+4|p|+2|p|+2

—

Dtﬂ =V. [—pﬁcp + Fcph + Fccg] ) (5)

where Dt = 825 +u- V, Eij = (aﬂt] + Gjuz)/Q, Qij
(Oiu; — Oju;)/2, h = 0F/ép and g = V(0F/ép). The

flow is assumed incompressible (V - u = 0) and the flow
field satisfies

The stress tensor is given by

Uij = anU + U:j + O'%,

(7)

where the first term isghe dissipative contribution (7 is

the fluid viscosity), gf;«is reversible contribution (as in

passive LCs), and g ?s\d%ictive contribution. The
. by

(8)

9)

ere th ést order term ~ o has nematic symmetry

rile‘the higher order term ~ S, is present only in sys-
tems with'polar symmetry. In the above equations, .,
a B}P;,p have the dimension of a velocity and associ-
ated‘terms arise in polar systems from the self-advection
active elements along p.
ur geometry is similar to that used in prior work?%-30

d is depicted in Fig. 1: a two-dimensional thin film
of active LC of thickness L is sheared between two par-
allel walls moving in opposite directions with velocity
magnitude V. We allow gradients only in the direction
normal to the walls. Due to incompressibility and wall
impermeability the flow must be parallel to the wall:
u = (u(z),0), and we use no-slip boundary conditions:
u(L) = —u(0) = V. The fluid is therefore subjected to a

macroscopic shear strain rate < = fOL 0,udz = 2V/L.

To pick out the effects of variations in the amount of
LC order only, we further assume that the polarization
field is parallel to the walls and only its (signed) magni-
tude is allowed to vary: p = (p(z),0). Previous work has
focused on the role of varying orientation with fixed mag-
nitude, here in contrast we fix the orientation and focus
on the role of varying magnitude of p only. Our choice of
orientation is consistent with expected boundary condi-
tions on the walls. A nice feature of this approximation
is that it makes the problem tractable analytically due
to a decoupling of the equations. Such an aligned state
is physically relevant to situations where strong paral-
lel anchoring is precribed at the walls, provided that the
coupling between the polarization orientation and the lo-
cal shear is negligible, that is, for systems which satisfy
I'p)pK > UL (with U a characteristic velocity scale for
the flow). The governing equations reduce to

ppip; + Bop(Oipj + Ojpi),

Op = —Tpplas + asp®)p + Tpp KO2p, (10)

Oip = 0. — 2bap0.p + (d + bsp®)d.p],  (11)
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with

PmOru = 0,0, (12)

m
o =n0.u+ (Bop+mbap®)d.p+ 5 (b= bsp?)pd.p, (13)

where o, is now simply denoted o, and where we have
introduced d = I'ccC—T'¢p B1, b123 = I'epB1,2,3, and m =
(1 = X)/T¢p. At the boundaries the flux of p across the
walls must be zero, and we require that the polarization
vectors at the walls are antiparallel: p(L) = —p(0) =
Peq = \/—a2/ay (here we assume ag < 0).

It is interesting to note that the coupling terms in the
governing equations are those which break the p — —p
symmetry. For a nematic fluid (b123 = 0, 8, = 0), the
equation for p reduces to a diffusion equation, and the
expression of the stress only contains the viscous term.
Therefore, in the simple configuration we consider here, a
nematic active fluid would behave as an isotropic passive
one.

Il. RESULTS

Let us consider a continuous steady solution p(z) fo
the polarization field. Then the steady solution
(11) is

&

stant determined by the condition L~! %S?x 1. At

steady state the shear stress is uniform across the gap
(0,0 = 0). One can then integrate (13) for a con-
stant (unknown) o and obtai velocity field

o

2n

b
p= iln(d+b3p2) + po, \
where d + b3p? > 0 is assumed?” and > poNis ancon-
0

U (2z—L)—¢&p+

5N\

by + md — 28,). (16)

with

nbs
'c{ste y-state flow curve o = f(4), as

o=ny+oo (17)
277 d b3
o9 = N[ EPeq — \/Eﬁ arctan(4/ EPEQ)

. [b
+ %peq {bz In (d + bspZ,) + po] } (18)

The slope do/d% is simply the fluid viscosity 7, as for an
isotropic passive fluid, however the stress at zero strain
rate, og, is not zero: the active LC has a yield stress and
effectively behaves, from a rheological point of view, in
a similar way to a Bingham fluid®®. Indeed gradients in
p induce reversible and active contributions to the stress
which exist independently of the applied strain rate. The
converse is also true: a non-zero macroscopic strain rate
is required in order togmaintain a zero stress. More-
over o( can be of eitlz(sign, meaning that the apparent
viscosity, defined as &/7;%an be negative (while passive

contributions can ‘a:fl‘d\Q
act o o).

either add or su
There exist as we know, two limiting cases
nalytical solution to Eq. (10)
limit —ayL?/K > 1, a good ap-

o, active ones ~ 3, can

= Deq tanh [ ;—I;(z - zl)] (19)

e

here Ds the (undetermined) location of the interface

(which thickness decreases with increasing —aqs/K) be-
tween two polar phases pointing in opposite directions.
is profile results in a depletion (or accumulation, de-

Nending on the sign of by) of p localized at the interface

and in a non-uniform, non-monotonic velocity profile.

In the opposite limit —ayL?/K < 1, the solution for
the polarization magnitude can be approximated by a
linear profile

2pe
p= _peq + qu' (20)

Note however that this latter limit may require that the
width L be comparable to the active particle size for
which the validity of the hydrodynamic equations are in
question and is mostly of interest here as a bound.

In addition to these limiting cases, Egs. (10), (11)
and (13) were also solved numerically. Our algorithm is
based on second-order implicit finite difference schemes
(Crank-Nicolson scheme for time integration and cen-
tered schemes for spatial discretization) with adaptive
time-stepping. Time-dependent equations were solved to
steady-state, starting from a linear profile for p and a uni-
form p. A comparison between the asymptotic solutions
and the numerical ones is shown in Fig. 2, together with
additional results for an intermediate value of —asL?/K.
The estimate of oy obtained from asymptotic expressions
is remarkably accurate (deviation not greater than 1 %)
even for —as L2/ K = O(1).

IV. DISCUSSION AND CONCLUSIONS

We considered the minimal problem of a one-
dimensional sheared active LC under confinement, with
a uniform orientation of the polarization field, focusing
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=
=]
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g
=
o
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ffect of system size: (a) polarization magni-
7(b) density field, (c) velocity field, (d) deviation

Eq. (19) for L > 1 and Eq. (20) for L < 1 (here we set for
simplicity —az/K = 1). Parameters are: az = —1, ag = 1,
K:LT]:L b172’3:0.1,m:—1,d:17ﬂo‘:—1,’:}/:0
(arbitrary units).

on the effect of varying its signed magnitude p. Our
analysis thereby complements prior studies of the same
system which allowed gradients in the orientation field
while keeping the magnitude of liquid crystalline order
constant??:30:40,

As the dynamics of p is not coupled to that of the
density or the velocity, the uniform equilibrium solution
is always stable and gradients in p must be generated
through boundary conditions. Here we imposed p to be
of equal magnitude g of opposite signs at the walls.
Such asymmetric polarizagion at the boundaries could

lly thgough manipulation of the
apchitecture®! 45,
orientation leads to a rich phe-
ontaneous transition to a flow-
e of external driving?®, and the
strain rate flow

be realized experi

died hére does not yield such unusual mechanical
properties: the relationship between the stress and the
{aeroscopl rain rate is linear, and, for a nematic ac-
t1 C‘,‘?ould not differ from that for an isotropic fluid.

or a ml_ r active LLC though, there exist elastic and ac-

tivescontributions to the total stress in addition to the
viscouis one, and the flow curve does not pass through
t

rigin. This indicates that macroscopic stresses are
present in the uniformly aligned polar active LC even in
the absence of external driving.

One of the advantages of the simple configuration con-
sidered here lies in the fact that analytical solutions can
be explicitly obtained. We hope that these solutions will
provide insight into the role played by gradients of liquid
crystalline order, and could be used as a starting point
and benchmark reference for numerical work on sheared
active polar LCs, where both the magnitude and direc-
tion of the LC order parameter vary>? 34,
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