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ABSTRACT: Azetidines are important motifs in medicinal chem-

istry, but there are a limited number of methods for their synthesis. 

Herein, we present a new method for their modular construction by 

exploiting the high ring strain associated with azabicyclo[1.1.0]bu-

tane. Generation of azabicyclo[1.1.0]butyl lithium followed by its 

trapping with a boronic ester gives an intermediate boronate com-

plex which, upon N-protonation with acetic acid, undergoes 1,2-mi-

gration with cleavage of the central C–N bond to relieve ring strain. 

The methodology is applicable to primary, secondary, tertiary, aryl 

and alkenyl boronic esters, and occurs with complete stereospeci-

ficity. The homologated azetidinyl boronic esters can be further 

functionalized through reaction of the N−H azetidine, and through 

transformation of the boronic ester. The methodology was applied 

to a short, stereoselective synthesis of the azetidine-containing 

pharmaceutical, cobimetinib. 

Nitrogen-containing heterocycles are the most prevalent and im-

portant heterocycles in medicinal chemistry, as evidenced by their 

presence in approximately 60% of U.S. FDA approved small-mol-

ecule drugs.1 Among this class of compounds, the saturated heter-

ocycles piperidine and pyrrolidine are some of the most commonly 

encountered. However, their four-membered ring analogue, azet-

idine,2 is much less prevalent, despite possessing a range of desira-

ble characteristics; its small, strained ring structure confers struc-

tural rigidity and fewer rotatable bonds, which has been shown to 

correlate with increased bioavailability,3 and they have been 

demonstrated to exhibit greater metabolic stability and improved 

physicochemical properties relative to their larger ring analogues.4 

Indeed, the azetidine moiety is featured in several pharmaceuticals, 

including cobimetinib (1),5 azelnipidine (2)6 and baricitinib (3)7 

(Figure 1A), as well as in biologically-active natural products.8 

However, despite these attractive features, there is a dearth of meth-

ods available to prepare azetidines.2,9 Some current methods in-

clude inter- and intramolecular alkylation of amine nucleophiles, 

reduction of -lactams,2 and the aza Paternò-Büchi reaction.10 

Therefore, the development of new methodologies that facilitate 

the modular synthesis of azetidines from common building blocks 

would be highly attractive, particularly in advancing medicinal 

chemistry programs.11 Herein, we describe a method to homologate 

readily available boronic esters with azabicyclo[1.1.0]butyl lithium 

(a novel species) to form versatile borylated azetidines, which can 

then be diversified through transformation of the amine and boronic 

ester functional groups.12  

Figure 1. (A) Selected azetidine-containing pharmaceuticals. 

(B) Strain-release 1,2-metalate rearrangement of bicyclo[1.1.0]bu-

tyl boronate complexes. (C) This work: strain-release 1,2-metalate 

rearrangement of azabicyclo[1.1.0]butyl boronate complexes. 

We recently reported the homologation of boronic esters by a cy-

clobutane unit by using bicyclo[1.1.0]butyl lithium (Figure 1B).13 

It was shown that bicyclo[1.1.0]butyl lithium could react with bo-

ronic esters to form highly strained bicyclo[1.1.0]butyl boronate 

complexes, which then underwent 1,2-metalate rearrangement 

upon treatment with electrophilic palladium(II)-aryl complexes to 

ultimately form a range of diastereomerically pure borylated cyclo-

butanes. The 1,2-metalate rearrangement is driven by relief of the 

high ring strain of the bi-cycle. We reasoned that the power inher-

ent in the relief of ring strain could be harnessed to drive 1,2-met-

alate rearrangements in other related ring systems.14 In particular, 

we were interested in the use of nitrogen-containing analogues of 

bicyclo[1.1.0]butyl lithium, such as azabicyclo[1.1.0]butyl lithium 

(4), since this would potentially enable the homologation of bo-

ronic esters to give synthetically- and pharmaceutically-important 

azetidines bearing a versatile boronic ester moiety (Figure 1C). 
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However, such a nucleophilic species (azabicyclo[1.1.0]butyl lith-

ium, 4) has not been previously reported. Reactions involving the 

parent azabicyclo[1.1.0]butane (5) are dominated by nucleophilic 

ring opening, which break the strained central C−N bond.15 

Scheme 1. (A) Lithiation of azabicyclo[1.1.0]butane and its 

trapping to form a sulfoxide. (B) Reaction optimization. 

 

a NMR yield. b Followed by Boc protection. c Isolated yield. 
d Gram-scale (4.76 mmol). 

In order to form azabicyclo[1.1.0]butyl lithium, we reasoned that 

the C−H bond at the bridgehead of 5 would be the most acidic, since 

it has the greatest s-character, and so could be selectively lithi-

ated.16 However, this route raised significant concerns since the 

strongly nucleophilic species, azabicyclo[1.1.0]butyl lithium, 

could potentially react with 5 to trigger a polymerization reac-

tion.15a,n To this end, it was discovered that azabicylo[1.1.0]butane, 

generated in situ from ammonium salt 6 by treatment with phenyl 

lithium at −78 °C,15l could be lithiated using s-butyl lith-

ium/TMEDA at −78 °C17 to form azabicyclo[1.1.0]butyl lithium 

(4). We elected to trap 4 as a sulfoxide, since this would potentially 

offer a stable, solid reagent from which 4 could be conveniently 

regenerated.13 Therefore, 4 was trapped with methyl 4-methylben-

zenesulfinate (7) to give azabicyclo[1.1.0]butyl sulfoxide 8 in 62% 

yield (Scheme 1A). Sulfoxide 8 was formed as a single regioiso-

mer, showing that selective deprotonation had indeed occurred, and 

problems relating to polymerization did not materialize, presuma-

bly due to a fast, low temperature lithiation step. The reaction was 

scalable and, as anticipated, 8 was a stable, easy-to-handle crystal-

line compound. 

With the azabicyclo[1.1.0]butyl sulfoxide 8 in hand, its conversion 

to azabicyclo[1.1.0]butyl lithium and subsequent reaction with 

cyclohexyl pinacol boronic ester 9 was investigated. Treatment of 

a mixture of 9 and 1.3 equivalents of 8 in 2-methyl tetrahydrofuran 

at −78 °C with 1.3 equivalents of tert-butyl lithium13 and then al-

lowing the reaction mixture to stir for two hours resulted in com-

plete boronate complex formation, as evidenced by a single peak at 

ca. 6 ppm in the 11B NMR spectrum of the reaction mixture. Sur-

prisingly, the boronate complex 10 did not undergo spontaneous 

1,2-metalate rearrangement, despite the high strain energy that 

would be released upon ring opening. We therefore needed to make 

the amine into a better leaving group18 and so explored different 

activating reagents.  Addition of benzyl chloroformate at low tem-

perature followed by warming did result in complete conversion of 

the boronate complex but gave an inseparable mixture of boronic 

and borinic esters 11 and 12, resulting from C-and O-migration re-

spectively, in a 1.5:1.0 ratio and a combined 92% NMR yield 

(Scheme 1B, entry 1). Benzoyl chloride behaved similarly (entry 

2). By contrast, we were pleased to find that simple protonation of 

the boronate complex with acetic acid resulted in exclusive C-mi-

gration and, following protection with a Boc group, azetidine 11 

was obtained in 78% NMR yield (Scheme 1B, entry 3). The added 

benefit of this approach is that it generates an unprotected N−H 

azetidine intermediate, which can then be reacted in any desired 

manner. Further improvements were achieved by switching the sol-

vent to THF and modifying the stoichiometry of the reagents 

(1.2 equivalents of 8 and tert-butyl lithium). The N−H azetidine 

products were easily separated from the sulfoxide by-product by 

filtering through a plug of silica gel: the azetidine acetic acid salt 

was retained on the silica and all other compounds eluted (‘silica 

catch’ method). The top layer of the silica gel plug was then col-

lected and subjected to Boc protection, giving pure 11 in 80% iso-

lated yield (1.39 g, 3.81 mmol, Scheme 1B, entry 4). It was also 

discovered that the reaction could be triggered using TsOH which 

enabled purification of the azetidine by precipitation of the tosylate 

salt without using the ‘silica catch’ purification (entry 5, see Sup-

porting Information for details). 

The robustness of these optimized conditions is illustrated by the 

preparation of over 25 unique azetidines (Scheme 2B). The scope 

of the boronic ester component was first explored and was found to 

encompass a broad range of primary, secondary and tertiary bo-

ronic esters. The range of primary boronic esters included n-alkyl 

(13), allylic (14), benzylic (15) and methyl (16), the latter being an 

important substituent in medicinal chemistry.19 The methyl group 

is normally a poor migrating group20 and so we were concerned that 

competing O-migration might occur, as had been observed when 

using benzyl chloroformate as an activating reagent. However, ex-

clusive C-migration was observed when using acetic acid as the ac-

tivator with this challenging substrate to give 16 in modest yield. 

Notable secondary boronic esters included an -amino boronic es-

ter,21 giving azetidine 23 featuring a piperidine substituent in 54% 

yield, and -alkoxy boronic ester, giving 3-oxypropylamine 24 in 

59% yield, both of which are motifs present in previously reported 

azetidine-containing pharmaceuticals.5,22 The tertiary boronic es-

ters included tert-butyl (27), adamantyl (28), substituted cyclobutyl 

(29),13 bicyclo[2.2.2]octyl (30),23 dimethyl phenyl silyl (31), and a 

doubly benzylic (32)24 boronic ester, giving the azetidine products 

in good to excellent yields. It was also possible to regioselectively 

homologate the primary boronic ester of a 1,2-bis(boronic ester),25 

giving 1,3-bis(boronic ester) 33, and perform a mono-homologa-

tion of a 1,1-bis(boronic ester),26 giving 1,2-bis(boronic ester) 34, 

in moderate yields. The enantiospecificity (e.s.)27 of the transfor-

mation was demonstrated using two enantioenriched boronic es-

ters, which gave products 18 and 32 with complete retention of ste-

reochemistry (100% e.s.). Furthermore, four diastereomerically 
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pure boronic esters were homologated to give the corresponding 

azetidine products, 20, 25, 26 and 29, with complete 

diastereospecificity (100% d.s.)28 Aryl and vinyl boronic esters 

could also be employed, giving the desired azetidines 35−38 in 

good yields.29

Scheme 2. Substrate scope of the azetidine homologation of boronic esters. (A) Optimized reaction conditions. (B) Boronic 

ester substrate scope. (C) Reaction performed without use of sulfoxide. 

 
All reactions were performed using 0.24 mmol of the boronic ester and all yields refer to isolated material. a NMR yield. PMP = para-

methoxyphenyl. e.s. (enantiospecificity) = [e.e. of product/e.e. of starting material] × 100%. d.s. (diastereospecificity) = [d.e. of product/d.e. 

of starting material] × 100%.

Finally, we explored whether the reaction could be achieved di-

rectly from the ammonium salt 6, thereby by-passing the sulfoxide 

intermediate 8, which could be more convenient when a single azet-

idine product is required. Thus, treatment of the ammonium salt 6 

with phenyl lithium, followed by sec-butyl lithium/TMEDA, cy-

clohexyl pinacol boronic ester, acetic acid and finally Boc protec-

tion, gave the homologated azetidine boronic ester product 11 in 

68% yield (Scheme 2C). 

We next demonstrated that a range of different transformations of 

the nitrogen atom of the intermediate N−H azetidine is possible 

(Figure 2A). In addition to the Boc protecting group, the nitrogen 

atom could also be protected with the tosyl (39) and Cbz (40) pro-

tecting groups in good yields. An amide coupling reaction with 

benzoic acid, using HATU as the coupling reagent, gave 41 also in 

good yield. A representative Buchwald−Hartwig cross-coupling30 

using 4-bromobenzonitrile gave aniline 42 in 71% yield. The inter-

mediate could also be engaged in SNAr reactions with a range of 

(hetero)aryl halides to give 44−49 in good yields. These reaction 

classes are among the most commonly used reactions within the 

field of medicinal chemistry.31 

To demonstrate the synthetic utility of the borylated azetidine prod-

ucts, azetidinyl boronic ester 11 was subjected to a range of repre-

sentative boronic ester transformations, including oxidation to the 

corresponding alcohol (48), vinylation (49),32 arylation to incorpo-

rate a pyridine (50)33 and formation of trifluoroborate salt 51 (Fig-

ure 2B).24 In all cases, good to excellent yields of the functionalized 

azetidines were achieved. Finally, a deboronative fluorination was 

performed,34 yielding fluorinated azetidine 52 in moderate yield. 

Fluorinated amines are important motifs since the fluorine atom can 

lead to beneficial modulation of the molecules’ physical and chem-

ical properties, including the pKa of the amine.35 

Finally, to showcase the application of this new method we targeted 

the preparation of cobimetinib (1), an MEK inhibitor used in the 

treatment of melanoma.5 Starting from ammonium salt 6, azabicy-

clo[1.1.]butyl lithium 4 was prepared by deprotonation (see 

Scheme 2C) and reacted with (R)-N-Boc piperidyl 2-pinacol bo-

ronic ester 5321,36 to give the N−H azetidine intermediate 54. 
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Subsequent in situ acylation of 54 with the required acid fluoride5 

delivered boronic ester 55 in 62% yield and with complete enanti-

ospecificity. Finally, oxidation with basic peroxide gave alcohol 56 

in 89% yield, and subsequent Boc deprotection gave cobimetinib 

(Scheme 3).5 This asymmetric synthesis of cobimetinib is shorter 

than previously reported routes,37 and provides a modularity that 

potentially enables facile preparation of analogues through use of 

different boronic esters, acid halides, and/or boronic ester transfor-

mations. 

In conclusion, we have developed a procedure that enables the 

modular construction of a diverse family of azetidines by the  

Figure 2. Synthetic transformations of borylated azetidines. (A) 

Alternative reactions at nitrogen. See Scheme 1A for conditions to 

form the acetic acid ammonium salt intermediate. Abbreviated re-

action conditions: a TsCl, Et3N; b benzyl chloroformate, Et3N; 
c PhCOOH, N,N-diisopropylethylamine, HATU; d Tosic acid salt 

used, Pd2(dba)3, Xantphos, 4-bromobenzonitrile, NaOtBu; e Ar-X 

(X = F or Cl), Et3N. (B) Boronic ester transformations using 11 as 

the substrate. Abbreviated reaction conditions: f H2O2/NaOH; g vi-

nyl lithium, then I2, then NaOMe; h ArLi, then 2,2,2-trichloroethyl 

chloroformate, then H2O2/NaOH; i KHF2; j trifluoroacetic acid, 

AgNO3, Selectfluor®, then Boc2O, Et3N. Cbz = carboxybenzyl. Ts 

= para-toluenesulfonyl. 

homologation of boronic esters with an azetidine unit. Key to suc-

cess was the generation of azabicyclo[1.1.0]butyl lithium either di-

rectly from the ammonium salt 6 or via the sulfoxide 4. This novel 

nucleophilic source of azabicyclo[1.1.0]butane is an unusual chem-

ical building block that is likely to find broader applications in syn-

thesis. 

Scheme 3. Modular synthesis of cobimetinib. 
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