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Abstract 

The Late Cretaceous was a greenhouse world, characterized by elevated temperatures and high 

atmospheric pCO2. However, even in the context of an extreme greenhouse climate, existing 

planktic foraminiferal δ18O data from the Falkland Plateau (paleolatitude of ~55˚S) suggest 

anomalous warmth, with sea-surface temperatures (SSTs) >30°C for much of the Late 

Cretaceous, followed by cooling. Over the last two decades there has been discussion as to 

whether these high δ18O-based SSTs reflect a genuine temperature signal and, if so, whether 

there was a local temperature anomaly in the South Atlantic or whether the data are 

representative of zonal paleotemperatures at 55˚S. To provide new insights into the degree of 

ocean warming in the southern high-latitudes during the Late Cretaceous (Cenomanian to 

Campanian), new SST records from the Falkland and Kerguelen Plateaus are presented here 

using the organic geochemical paleothermometer TEX86. Overall, the TEX86 data support the 

δ18O data, indicating extreme and widespread warmth in the mid- to high southern latitudes in 

the Late Cretaceous, with SSTs from 27–37°C. Crucially, the TEX86 data show slow, steady 

cooling from the Turonian to the Campanian, and suggest that temperature gradients during the 

Campanian did not become as steep as suggested by some planktic foraminiferal data. 

 

1 Introduction 

The Late Cretaceous (100.5-66.0 Ma) was a greenhouse world, characterized by high 

temperatures and reduced latitudinal temperature gradients (Sinninghe Damsté et al., 2010; 

O’Brien et al., 2017; Robinson et al., 2019). Peak warmth was attained in the Cenomanian–

Turonian (~100-90 Ma) (Jenkyns et al., 1994; Norris & Wilson, 1998; Clarke & Jenkyns, 1999; 
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Wilson & Norris, 2001; Norris et al., 2002; Wilson et al., 2002; Voigt et al., 2004; Forster et al., 

2007) with sea-surface temperatures (SSTs) reaching ≥ 30°C in the tropics and the southern mid- 

to high-latitudes (Huber et al., 1995, 2002, 2018; Bice et al., 2003, 2006; MacLeod et al., 2013; 

O’Brien et al., 2017; Robinson et al., 2019). After this interval, sea-surface and deep-water 

temperatures decreased to the cooler greenhouse of the Campanian–Maastrichtian (80-66 Ma) 

(Huber et al., 1995, 2002, 2018; MacLeod et al., 2005; Friedrich et al., 2012; Linnert et al., 2014; 

O’Brien et al., 2017).  

However, even in the context of an extreme greenhouse climate, δ18O data from some 

parts of the Southern Hemisphere show anomalous warmth: in particular, estimates from Sites 

327 and 511 at the Falkland Plateau (Figure 1) suggest that, at paleolatitudes of ~55–60˚S, SSTs 

exceeded 30°C for much of the Late Cretaceous, before cooling rapidly in the mid-Campanian 

(Huber et al., 1995, 2018; Bice et al., 2003). By contrast, modern mean annual SSTs at ~60°S are 

~0°C (NOAA 2013). If these records from Falkland Plateau are indicative of widespread and 

prolonged warmth in the mid- to high-latitudes, there are major implications for polar climate 

and latitudinal temperature gradients in a greenhouse world. These high temperatures within 15 

to 20˚ latitude of the coast of Antarctica question the feasibility of polar ice caps and sea-ice 

during the Late Cretaceous (cf. Price, 1999; Li et al., 2000; Gale et al., 2002; Miller et al., 2003, 

2005; Bornemann et al., 2008; Davies et al., 2009; Galeotti et al., 2009; Bowman et al., 2013). In 

addition, the high δ18O-based temperatures are not easily reconciled with climate models without 

extremely high atmospheric pCO2 (≥3000 ppm; e.g. Poulsen et al., 1999; Bice et al., 2003, 

2006). Such high pCO2 values are not corroborated by most proxy or carbon-cycle models for 

the Late Cretaceous (reviewed in Foster et al., 2017).  
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Figure 1. DSDP/ODP/IODP Sites used in this study (stars) and previously published data 

(circles). Base map shows late Turonian (90 Ma) paleogeography (adapted from Blakey 2016). 

 

Considering these issues, the δ18O values might not purely reflect temperature but could 

be, at least in part, an artefact of diagenetic alteration or depletion of local δ18Osw. Diagenetic 

alteration at Sites 327 and 511 was deemed unlikely based on the high quality of preservation of 

the foraminifera and the separation between planktic and benthic values, which suggests no post-

mortem calcification (Huber et al., 1995, 2018; Bice et al., 2003). Factors leading to the isotopic 

depletion of local seawater have been similarly eliminated: there is no evidence for a drastic 

increase in freshwater flux to the surface ocean nor any means of sufficiently depleting the 

surface waters to cause such light δ18O values (Bice et al., 2003). Further, new foraminiferal 

δ18O data from the southern Indian Ocean (DSDP Site 258) spanning the Cenomanian–

Campanian interval corroborate the isotopically light values reported for the Falkland Plateau 

(Huber et al., 2018). Nonetheless, a long-standing question in paleoceanography is whether the 
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high δ18O-based sea-surface temperatures from the Falkland Plateau in the Late Cretaceous 

reflect a genuine temperature signal and, if so, is this simply a local anomaly or a more 

widespread feature of the climate at this time? 

Here, we explore this question using an independent SST proxy: the organic 

paleothermometer TEX86 (TetraEther indeX of 86 carbon atoms) applied to sediments from sites 

at the Falkland and Kerguelen Plateaus (in the southern Atlantic and Indian Oceans, respectively) 

spanning the Late Cretaceous interval. Based on the relationship between the distribution of 

archaeal membrane lipids (glycerol dialkyl glycerol tetraethers—GDGTs) in marine core-top 

sediments and SST (Schouten et al., 2002, 2003, 2013), TEX86 has been used extensively to 

reconstruct SSTs during the Cretaceous (e.g. Littler et al., 2011; Naafs & Pancost, 2016; O’Brien 

et al., 2017; Robinson et al, 2019). Through assessing potential influences on both TEX86 and 

foraminiferal δ18O values, and employing a multi-proxy approach, this study investigates the 

temperature evolution of the Falkland and Kerguelen Plateaus during the Late Cretaceous. 

 

2 Study areas 

2.1 Falkland Plateau 

Samples are used from Deep Sea Drilling Project (DSDP) Sites 327 and 511 from the 

Falkland Plateau (Figure 1), which is a submarine projection of the South American continental 

margin, extending 1800 km east of the Falkland Islands. The Falkland Plateau broke away from 

southern Africa during the Aptian–Albian interval and, after final separation, subsided rapidly, 

reaching bathyal depths sometime during the late Albian–Cenomanian (Krasheninnikov & 

Basov, 1983). By the late Aptian, the Plateau was relatively isolated from the influence of 
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continental runoff from Africa (Thompson 1977), and terrigenous sediment supply from the 

Andean cordillera probably slowed after the mid-Cretaceous Andean orogeny (Barker et al., 

1977a). Deposition of organic-rich black shales under anoxic conditions typified the mid- to Late 

Jurassic but more open-marine environments with well-oxygenated sea floors and pelagic 

sedimentation was established on the Plateau by the early to middle Albian (Thompson, 1977). A 

deep connection developed between the Atlantic and Indian Oceans in the mid-Cretaceous, with 

an increase in Atlantic deep-water formation driving improved circulation and ventilation during 

the Late Cretaceous as the plateau continued to subside (Barker et al., 1977b; Robinson et al., 

2010; Robinson & Vance, 2012). Paleogeographic reconstructions indicate that Sites 327 and 

511 lay between ~55 and ~60°S during the Late Cretaceous (e.g. Huber et al., 1995; Hay et al., 

1999; Van Hinsbergen et al., 2015). The age models developed by Huber et al. (2018) are used 

for both sites. 

Site 327 is currently located at 50.5°S, 46.5°W on the Maurice Ewing Bank in the 

Falkland Plateau Basin, ~10 km northeast of Site 511. Only the Campanian section is used in this 

study (90–142 mbsf), which comprises 52 m of greenish-grey calcareous ooze (Barker et al., 

1977b, 1977c). Foraminifera are abundant in the Campanian section, with high planktic to 

benthic ratios and excellent preservation, indicating deposition above the foraminiferal lysocline 

in a lower bathyal environment at that time (Basov and Krasheninnikov, 1983). 

Site 511 is currently located at 51.0 °S, 47.6 °W in the basin province of the Falkland 

Plateau. The Turonian to Campanian section (~200–430 mbsf) is used in this study and 

comprises pale grey calcareous ooze and zeolitic foraminiferal ooze, and grey zeolitic clay and 

claystone (Ludwig et al., 1983). In general, the occurrence of planktic foraminifers in the Upper 

Cretaceous sediments is quite sporadic but, in sections with abundant foraminifera, preservation 
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is described as “excellent” (Huber et al., 1995), possibly owing to shallow burial depths and high 

clay content. Sedimentation at this site was highly episodic, with episodes of exceptionally high 

sedimentation rates separated by condensed intervals or hiatuses (Ludwig et al., 1983). 

2.2 Kerguelen Plateau 

In addition to samples from the Falkland Plateau, samples used in this study derive from 

Ocean Drilling Program (ODP) Sites 1138 and 1135 located on the Kerguelen Plateau (Figure 1). 

This plateau is a submarine Large Igneous Province, generated by the Kerguelen hot spot in the 

Early Cretaceous (Frey et al., 2000). Formed ~100 Mya on the Antarctic Plate, the Kerguelen 

Plateau has remained at a relatively constant paleolatitude of ~50–60°S since its formation, 

recording a transition from shallow-marine to deeper marine deposition throughout the Late 

Cretaceous (Meyers et al., 2009; Dickson et al., 2017).  

Site 1135 is located at 59.4°S, 84.2°E on the Southern Kerguelen Province. Samples used 

here are of Cenomanian–Maastrichtian age (~260–530 mbsf) and comprise a sequence of white 

to light greenish-grey calcareous ooze and chalk (Coffin et al., 2000; Petrizzo, 2001).  

Site 1138 is located at 53.3°S, 75.6°E on the Central Kerguelen Province. The samples 

used here are of Cenomanian–Maastrichtian age (~480–660 mbsf), and the sequence consists of 

cyclic alternations of white foraminifer-bearing chalk and grey to greenish grey to black intervals 

of nannofossil claystone (Coffin et al., 2000; Mohr et al., 2002; Dickson et al., 2017). The base 

of the sequence contains an organic-rich claystone (<20% TOC), indicative of low-oxygen 

conditions, thought to represent OAE 2 and record the Cenomanian–Turonian Boundary (Meyers 

et al., 2009, Dickson et al., 2017). Some TEX86 data have been published by Robinson et al. 

(2019) from around the Cenomanian–Turonian boundary and these data are integrated with new 

data from the Turonian–Santonian sediments. 
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Detailed foraminiferal biostratigraphy for the Turonian–Santonian at both sites (Petrizzo, 

2001) and nannofossil biostratigraphy for the Cenomanian–Campanian at Site 1138 (Russo, 

2014) allows correlation of the Kerguelen Plateau section with other localities. Age models for 

both sites have been constructed based upon combined carbon-isotope and biostratigraphy (see 

supplementary information for details). 

3. Methods 

3.1 Organic geochemistry 

All samples were oven-dried overnight at 40°C to remove residual water and the edges 

were scraped clean using a metal spatula to remove any loose rock debris or other detritus, 

before being finely ground and homogenized.  

The Total Lipid Extract (TLE) was obtained via solvent extraction, using either an 

ultrasonic bath (method described in Linnert et al., 2014) at University College London (UCL) or 

using an Analytix Advanced Microwave Digestion System at the University of Oxford. For the 

latter method, lipids were solvent-extracted from 5 g of sediment using 20 mL of DCM/methanol 

(9:1, v/v). Temperature in the microwave was programmed to increase linearly from room 

temperature to 70 °C over 10 minutes, hold at 70 °C for 10 minutes, and then cool to 25°C over 

20 minutes. 

At UCL, the TLE was split into polar and apolar fractions before analysis of glycerol 

dialkyl glycerol tetraethers (GDGTs), following the method described in Linnert et al., (2014). 

However, due to the low concentrations of organic matter in many of the samples, the TLE 

extracted at Oxford was not split before GDGT analysis (some samples were split later for 

analysis of the apolar fractions). Prior to analysis, the TLE (Oxford) or polar (UCL) fraction was 
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re-dissolved in a hexane-isopropanol mixture (99:1, v/v) and passed through a 0.45 μm 

polytetrafluoroethylene filter. 

Analysis of GDGTs at UCL and Oxford (see supplementary information) followed the 

methods described in Littler et al. (2011) and Linnert et al. (2014) using an Agilent 1200 series 

HPLC attached to a G6130A single-quadrupole mass spectrometer (note that the same 

instrument was used as it was moved from UCL to Oxford). The analytical protocol followed 

was as described in Schouten et al. (2007). For samples analyzed in Bristol (see supplementary 

information), GDGTs were analysed using a ThermoFisher Scientific Accela Quantum Access 

triple quadrupole mass spectrometer at the Organic Geochemistry Unit (University of Bristol). 

Normal phase separation was achieved using two ultra-high performance liquid chromatography 

silica columns, following Hopmans et al., (2016). For both sample sets, the isoprenoid and 

branched GDGT (isoGDGTs and brGDGTS, respectively) abundances were measured in 

selective ion monitoring (SIM) mode (m/z 1302, 1300, 1298, 1296, 1294, 1292, 1050, 1048, 

1046, 1036, 1034, 1032, 1022, 1020, 1018, 744, and 653). Ion peaks of the GDGTs were 

integrated to determine the relative abundance of each compound. The relative abundance of 

some of the isoGDGTs was used to determine the TEX86 (Schouten et al., 2002) value for each 

sample using the following equation: 

𝑇𝐸𝑋86 =
𝑖𝑠𝑜𝐺𝐷𝐺𝑇_2 + 𝑖𝑠𝑜𝐺𝐷𝐺𝑇_3 + 𝑐𝑟𝑒𝑛. 𝑖𝑠𝑜𝑚𝑒𝑟

𝑖𝑠𝑜𝐺𝐷𝐺𝑇_1 + 𝑖𝑠𝑜𝐺𝐷𝐺𝑇_2 + 𝑖𝑠𝑜𝐺𝐷𝐺𝑇_3 + 𝑐𝑟𝑒𝑛. 𝑖𝑠𝑜𝑚𝑒𝑟
 

 In both analytical laboratories (UCL and Bristol), repeated analysis of in-house standards 

alongside the samples reported here suggests long-term reproducibility of TEX86 values of ±0.05 

(1σ). Comparison of TEX86 values measured in the different laboratories suggests no significant 

difference between them. Other GDGT-based indices used to determine the reliability of the 
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TEX86 data, e.g. BIT index (Hopmans et al., 2004), Methane Index (MI) (Zhang et al., 2011), 

%GDGT-0 (Sinninghe Damsté et al., 2012), and the Ring Index (ΔRI) (Zhang et al., 2011) were 

also calculated where possible using the relative abundances of isoGDGTs and brGDGTs. The 

BAYSPAR (Tierney & Tingley, 2014, 2015), TEXH
86 (Kim et al., 2010) and linear (O’Brien et 

al., 2017) calibrations were used to convert TEX86 to SSTs. The relative strengths and 

weaknesses of these calibrations for Cretaceous SSTs are discussed in O’Brien et al. (2017); we 

have no preference. Where TEX86- and δ18O-SSTs are compared, the TEX86 calibration with the 

minimum offset is used. 

To determine the thermal maturity of the organic matter, the C31-homohopane distribution 

in representative samples was analyzed (Mackenzie et al., 1980). For this purpose, elemental 

sulphur was removed from the apolar fractions using activated copper. The apolar fraction was 

dissolved in 1 mL hexane, to which the activated copper was added until the reaction ceased, 

then left for 24 hours. These samples were then analyzed using a Finnigan Trace gas 

chromatograph-mass spectrometer (GC–MS) in the Organic Geochemistry Unit (University of 

Bristol). The GC oven program was: 70°C (1 min hold) to 130°C at 20°C/min, then to 300°C 

(held for 24 min) at 4°C/min. Separation was achieved using a Zebron non-polar column (50 m x 

0.32 mm, 0.10 µm film thickness). The injection volume was 1 µl. The mass spectrometer 

continuously scanned between m/z 50 and 650. Using the m/z 191 trace that is characteristic for 

hopanes, the relative abundance of the different homologues of the C31-homohopane was 

quantified as a proxy for thermal maturity (Mackenzie et al., 1980) and constrain its influence on 

TEX86 values (e.g. Schouten et al., 2004). 

𝐶31 ℎ𝑜𝑝𝑎𝑛𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝛽𝛽

(𝛼𝛽 + 𝛽𝛼 + 𝛽𝛽)
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3.2 Stable isotope analysis 

Samples from DSDP Sites 327 and 511 on the Falkland Plateau were also used for 

foraminiferal δ18O analysis. Sediments were left in a beaker of deionised water for several hours 

until they disaggregated and were then wet-sieved, keeping the ≥63 μm fraction, which was 

oven-dried at 40°C overnight. For all samples, the best-preserved (glassy) specimens were 

selected to eliminate any obvious diagenetic influence on isotopic values. Also, the largest 

specimens were selected and, where possible, all from the same size fraction to minimize 

artefacts of size- and age-dependent isotopic values. ~20–50 μg of a single species were picked 

for each analysis (see supplementary information). Samples were crushed prior to analysis, but 

due to the small size of the samples and the risk of losing sample material, further cleaning was 

not conducted. Isotope measurements were performed on a Delta V Advantage isotope mass 

spectrometer fitted with a Kiel IV carbonate device. Oxygen isotope values are reported using 

the standard delta notation in parts per mil relative to VPDB. Three standards were used: NOCZ, 

NSB-18, and NSB-19; reproducibility (±1σ) of δ18O from these standards was 0.08%, 0.03%, 

and 0.06%, respectively. δ18O values are expressed in per mil variations relative to VPDB. 

Samples from ODP Sites 1135 and 1138 were analyzed for bulk carbonate stable 

isotopes. Samples were oxidized to remove organic matter; H2O2 (15%, pH 8,) was added to 

each sample and allowed to react for 30 minutes, then oven-dried at 40°C. Measurements were 

performed on a Delta V Advantage isotope mass spectrometer fitted with a Gas Bench II in the 

Department of Earth Sciences (University of Oxford); the carbonates were converted to CO2 

with 100% H3PO4. Two standards were used: NBS-18 and NBS-19. Repeat analysis of standards 

gives a standard deviation of 0.03 for δ18O and 0.03 δ13C, (n=15). δ18O and δ13C values are 

expressed in per mil variations relative to VPDB. 
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3.3 Rock-Eval 

TOC content and %Mineral Carbon data were obtained using the Rock-Eval 6 Standard 

Analyzer at the Department of Earth Sciences (University of Oxford). ~60 mg of sediment was 

analyzed in the oxidation and pyrolysis ovens, by heating with incremental temperature increases 

from room temperature to 850°C. Mineral carbon content was calculated from the S3MINC and 

S5 peaks, produced from the CO and CO2 flux from the sample and analysed by infrared detector 

(Behar et al., 2001). The TOC content was simultaneously obtained from the combined CO and 

CO2 fluxes representing the Pyrolyzable Carbon (S1 + S2 + S3CO + S3CO2) and the Residual 

Carbon (S4CO + S4CO2). An in-house standard was regularly measured every ~10 samples. The 

reproducibility (±1σ) for TOC and %Mineral Carbon was 0.43% and 0.01% respectively. 

4 Results and data interpretation 

4.1 Falkland Plateau 

4.1.1 DSDP Site 327 

16 samples of Campanian age contained quantifiable GDGTs, yielding TEX86 values 

ranging from 0.47–0.78 (Figure 2), corresponding to TEX86-SSTs of 13–34.3°C (BAYSPAR; 

supplementary information). BIT values range from 0.00 to 0.43, %GDGT-0 from 17 to 82 %, 

Methane Index from 0.21 to 0.84, and ΔRIs from |0.03| to |1.57| (see supplementary information 

for methods and data). The samples with high |ΔRI| values also have high MIs and %GDGT-0 

values, implying that methanogenesis was the likely cause of anomalous GDGT distributions. 

Samples with high BIT values may have been influenced by terrestrial-derived GDGTs. After 

removing samples with unacceptable BIT (≥0.4), %GDGT-0 (≥67%), Methane Index (≥0.5), or 

Ring Index (≥|0.3|) values, 6 samples remained with TEX86 values from 0.47–0.78. These 
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samples show no discernible stratigraphic trend. Tmax values were ≤463°C (supplementary 

information). A C31-hopane ratio was only obtained for one sample, which gave a value of 0.50. 

15 samples contained sufficient foraminifera for analysis, 13 of which contained enough 

for the analysis of two different species. These analyses produced δ18Opf values of -1.12 to 

0.05‰ (Figure 2). δ18Opf values were converted to paleotemperatures using the equation of 

Bemis et al., (1998). Following the methods outlined in O’Brien et al. (2017), a value of -1.27‰ 

VPDB was used for global δ18OSW. A paleolatitudinal correction was also applied to the global 

δ18OSW value (Zachos et al., 1994), using a paleolatitude of 55°S. This approach yields SST 

estimates of 8–16°C (supplementary information). As with the TEX86 values, these data show no 

discernible stratigraphic trend. 

4.1.2 DSDP Site 511 

From the TLEs it was possible to quantify GDGT abundances in 79 samples spanning the 

Cenomanian–Campanian interval. The TEX86 values range from 0.53–0.95 (Figure 2); 

reconstructed paleotemperatures are generally relatively high with values from 17–44.8°C 

(BAYSPAR; supplementary information). BIT indices range from 0.09 to 0.76, %GDGT-0 from 

0 to 96%, Methane Index from 0.18 to 0.88, and ΔRIs from |0.00| to |2.38| (supplementary 

information). High |ΔRI| values commonly correspond to high BIT, suggesting the influence of 

terrestrial GDGTs in those samples. After removing samples with unacceptable BIT, %GDGT-0, 

Methane Index or Ring Index values, 34 samples remained, with TEX86 values from 0.69–0.80. 

These data show a steady decrease in TEX86 from the Turonian to the Campanian. There are no 

trends in the other GDGT indices. Tmax values were ≤606°C and C31-hopane ratios were 0.22–

0.43 (supplementary information). 
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15 samples contained enough planktic foraminifera for analysis and only 7 of these had 

enough for multiple analyses of different species. Foraminifera were sparse through large 

sections of this core, as reported previously (e.g. Huber et al., 1995), which limited sampling. 

The low abundances of foraminifera (and to some extent also GDGTs) can be attributed to the 

high clay sedimentation rate through sections of this core (Ludwig et al., 1983). Foraminiferal 

δ18O values for these samples range from -3.10 to 0.07 ‰ (Figure 2), corresponding to SSTs of 

10–25.5°C. These data show no discernible trend due to the scatter in the values. The δ13C values 

exhibit no stratigraphic trend. 

  

Figure 2. New TEX86 and stable-isotope data generated from DSDP Sites 511 and 327, plotted 

against depth. For TEX86 values, closed circles indicate reliable data and open circles indicate 

samples with GDGT indices exceeding acceptable thresholds (see supplementary information for 

details). 
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4.2 Kerguelen Plateau 

4.2.1 ODP Site 1135 

No GDGTs were detected in the Santonian-Maastrichtian, and in older sediments only 3 

samples contained quantifiable GDGTs. These yield TEX86 values from 0.74–0.83 (Figure 3), 

corresponding to SSTs of 29–35.0°C (BAYSPAR; supplementary information). These values are 

interpreted to reliably reflect SST, as all other GDGT indices have acceptable values (see 

supplementary information). Only one sample yielded quantifiable C31-hopanes and this sample 

had a hopane ratio of 0.53 (supplementary information). 

Bulk δ18O values range from -3.56–0.70‰ (Figure 3), increasing steadily from the 

Cenomanian to the Campanian. δ13Ccarb values range from 0.82–3.29‰, showing no stratigraphic 

trend but two negative excursions at ~308 and 373 m. 

4.2.2 ODP Site 1138 

15 samples from the Cenomanian and lowest Turonian contained quantifiable GDGTs, 

yielding TEX86 values from 0.83–0.90 (Figure 3), corresponding to SSTs of 27.2–32.8°C 

(BAYSPAR; supplementary information). These values are interpreted to reliably reflect SSTs, 

as all other GDGT indices have acceptable values (see supplementary information). TEX86 

decreases through time. 

Bulk carbonate oxygen-isotope values range from -4.73–0.48‰ (Figure 3), increasing 

steadily from the Turonian to the Maastrichtian. δ13Ccarb ranges from 1.32–3.46‰. Negative δ13C 
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excursions occur at ~640 m, and ~655 m, and positive excursions occur at ~500 , ~630 m, and 

~650 m. 

 

Figure 3. New TEX86 and stable-isotope data generated from ODP Sites 1135 and 1138, plotted 

against depth. 

 

5 Discussion 

5.1 TEX86 from Falkland Plateau and Kerguelen Plateau 

5.1.1 Veracity 

A number of samples from Sites 327 and 511 at the Falkland Plateau yielded values for 

various quality-control indices that suggest their TEX86 values might not reflect temperature. 
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This phenomenon could be due to a range of processes, such as input of terrestrial GDGTs from 

soils or in situ production in the sediments by benthic (methanogenic) archaea. After removing 

these data points, the remaining TEX86 data clearly indicate very high paleotemperatures at these 

sites during the Late Cretaceous. These data are supported by similar TEX86 values from Sites 

1135 and 1138 at the Kerguelen Plateau. In isothermal culture studies, the degree of cyclisation 

decreased with higher rates of ammonia oxidation; higher ammonia oxidation rates (i.e., faster 

growth rates) produced cooler TEX86 temperature estimates, and low ammonia oxidation rates 

gave warmer temperatures. The authors attribute the correlation between TEX86 and temperature 

to be actually reflecting depth in the water column, which also corresponds with ammonia 

oxidation. This mechanism is invoked to explain TEX86 values indicating warmth in oxygen 

minimum zones (Basse et al. 2014; Hernández-Sánchez et al. 2014), where ammonia oxidation 

rates are low, and cold SSTs in high productivity sites such as upwelling zones (Huguet et al. 

2007; Lee et al. 2008). Hurley et al. (2016) state that it is possible that the ammonia oxidation 

rate itself depends on temperature, making the two inseparable variables. However, there is no 

evidence from the lithology or GDGT ratios to indicate the presence or influence of an oxygen 

minimum zone on the samples used in this study. 

Given the age of these sediments, it is possible that the TEX86 values have been altered 

during burial and thermal degradation. However, with increasing thermal maturity TEX86 values 

generally appear to be biased towards lower SST reconstructions (Schouten et al., 2004). 

Thermal maturity can be assessed by measuring the abundance of hopanes possessing the 

biological 17β,21β(H) stereochemical configuration relative to the more thermally stable 

17α,21β(H) isomers (Mackenzie et al., 1980). Hopane ratios (ββ/(ββ+αβ+βα)) < 0.5 could be 

associated with sufficiently high thermal maturities that TEX86 has been biased (Schouten et al., 
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2004). Only one sample from Site 1135 yielded quantifiable C31 hopanes, with a ratio of 0.53, 

indicating thermal maturity too low to impact TEX86. Older, deeper samples from Site 1138 have 

previously yielded high hopane ratios (~0.5–0.8; Dickson et al., 2017). At both Sites 1135 and 

1138, Tmax values of Upper Cretaceous sediments are low (≤431 °C), supporting the evidence 

from hopanes for low thermal maturity and no impact on TEX86 values. 

At Site 511, mid-Jurassic–Upper Cretaceous samples have previously yielded GDGTs 

and high hopane ratios, suggesting a generally low thermal maturity (Jenkyns et al., 2012). 

Intriguingly, the samples analyzed in this study from Sites 511 and Site 327 yielded hopane 

ratios between 0.3 and 0.5, suggesting elevated thermal maturity, which might have influenced 

TEX86. However, the hopanes are present in very low abundances, and Tmax values from samples 

with reliable S2 values (>0.2 mg HC/g TOC; Hart & Steen, 2015; Carvajal-Ortiz & Gentzis, 

2015) yield a range of values consistent with both thermal immaturity (< 400 °C) and high 

maturity (< 463 ˚C). At both sites, the available Tmax data show no discernible stratigraphic 

trends. 

The conflicting thermal maturity indicators recorded in both Falkland Plateau sites and 

older sediments at Site 511 (Jenkyns et al., 2012) are difficult to reconcile, suggesting that the 

maturity recorded by the low-concentrations of organic-matter in the Late Cretaceous sediments 

may not reflect a primary burial signal, i.e. the hopanes could be associated with reworked 

kerogen (Handley et al., 2012; Hefter et al., 2017), though previous work suggests no evidence 

for organic diagenesis (Robert & Malliot, 1983). Irrespective of these different perspectives on 

the thermal maturity, if in situ maturity has affected the TEX86 values, then the values measured 

likely represent minimum estimates of SSTs. As such, thermal diagenesis of the organic matter 

cannot explain the high temperatures at the Falkland and Kerguelen Plateaus. Therefore, after the 
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filtering for samples with unreliable index values (i.e. BIT, MI, %GDGT-0, and ΔRI), we 

consider the remaining TEX86 values to be robust indicators of paleotemperature trends. 

5.1.2 Temperature trends in TEX86 

The similarity of TEX86 values during the Turonian at Sites 511 and 1138 and the 

Santonian at Sites 511 and 1135, suggests that both the Falkland and the Kerguelen Plateau 

experienced broadly similar long-term trends in SST. Taken together, the data suggest that peak 

warmth occurred in the early Turonian, followed by a long-term cooling trend into the Santonian 

and Campanian (Figure 4). This trend is comparable to low- and mid-latitude TEX86 records that 

also show a slow decline in SSTs through to the late Campanian (Forster et al., 2007; Alsenz et 

al., 2013; Linnert et al., 2014). Around the Cenomanian–Turonian boundary, many sites yield 

very similar TEX86 values, as the proxy is close to the upper limit (TEX86 = 1) in the low-

latitudes (as also noted by Sinninghe Damsté et al., 2010; O’Brien et al., 2017; Robinson et al., 

2019). For the upper Turonian to lower Campanian interval, the TEX86 data from Sites 511, 1135 

and 1138 are offset towards lower values compared with those from lower paleolatitude sites. By 

contrast, the six TEX86 data points from the upper Campanian at Site 327 do not present a 

consistent pattern. To explore this inconsistency further, it is useful to contextualize these data by 

comparison with other late Campanian TEX86 records. One data point from Site 327 is almost as 

high as data from Shuqualak, which lies at ~35˚N (Linnert et al., 2014), whereas other samples 

from Site 327 have TEX86 values as low as those from the PAMA Quarry in Israel (0˚ latitude; 

Alsenz et al., 2013). It has been suggested that the depositional environment at the PAMA 

Quarry was influenced by upwelling (Alsenz et al., 2013). Such an effect may explain why the 

PAMA Quarry yields lower TEX86 values than Shuqualak (Linnert et al., 2014), that are, perhaps 

coincidentally the same as those recorded at Site 327. The one sample from Site 327 with a 
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TEX86 value similar to Shuqualak is not easily explained and the limited size of the dataset from 

Site 327 prohibits a confident interpretation of late Campanian SSTs at the Falkland Plateau. 

 

Figure 4. Compilation of benthic foraminiferal δ18O, bulk carbonate δ18O, planktic foraminiferal 

δ18O, and TEX86 data. All oxygen isotope values are reported VPDB. 1Huber et al., 2018; 2Huber 
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et al., 1995; 3Barrera & Savin, 1999; 4Friedrich et al., 2009; 5Barrera & Huber, 1990; 6Falzoni et 

al., 2016; 7Clarke and Jenkyns, 1999; 8Ando et al., 2013; 9Woelders et al., 2018; 10Bice et al., 

2003; 11Forster et al., 2007; 12Schouten et al., 2003; 13Bornemann et al., 2008; 14Sinninghe 

Damsté et al., 2010; 15Robinson et al., 2019; 16Alsenz et al., 2013; 17van Helmond et al., 2014; 

18Linnert et al., 2014; 19van Helmond et al., 2015; 20Woelders et al., 2017. All age models from 

original sources, plotted on the 2016 timescale. Bulk carbonate and fine-fraction δ18O values are 

plotted with the benthic foraminifera δ18O values as the carbonate is assumed to have either a 

bottom-water diagenetic overprint and/or offsets related to vital effects in the calcareous 

nannoplankton that contribute much of carbonate to the sediment (e.g. Falzoni et al., 2016). 

5.2 δ18O values from Falkland Plateau and Kerguelen Plateau 

The new Falkland Plateau δ18Opf data presented here are within the range of previous 

values (Huber et al., 1995; Barrera & Savin, 1999; Fassell & Bralower, 1999; Bice et al., 2003), 

albeit with slightly lower maximum temperatures. The most negative δ18Opf values from Site 511 

are as high as those at the Exmouth Plateau, ~10° further north, and the most positive values are 

comparable to benthic values from sites in both the Atlantic and Tethys (Figure 4). At Site 511, 

there is an apparent warming event in the Turonian (~91.5 Ma in Figure 4), which has previously 

been the focus of discussion by Bice et al., (2003). The absence of a similar event in other 

records (Figure 4) suggests that this might be a consequence of local processes (e.g. local 

warming, variable preservation and/or species effects). Unfortunately, insufficient GDGTs are 

preserved in the same interval to test whether SSTs increased locally at that time. 

The combined δ18Opf data from DSDP Sites 327, 511, and 690 (Weddell Sea) show an 

apparent drastic cooling at ~76 Ma—a trend not seen at other locations. However, this shift 



Confidential manuscript submitted to Paleoceanography and Paleoclimatology 

22 

 

arises largely from a change from samples from the Falkland Plateau to the Weddell Sea, which 

lies ~10° to the south. The individual sites only show long-term steady cooling. 

At Site 1138, bulk-carbonate δ18O exhibits an apparently sharp increase of about 2‰ in 

the earliest Turonian following OAE 2, and then a steady increase through to the Campanian 

(Figure 4). The long-term trend is also observed at Site 1135. The most negative δ18O at Site 

1138 could either be a response to peak warmth in the Early Turonian (e.g. Jenkyns et al., 1994; 

Robinson et al., 2019) or a consequence of the transition of the seafloor (and hence the diagentic 

environment) from relatively warm, shallow-water depths in the earliest Turonian to cooler, 

deeper water environments as the Plateau subsided. This event is not seen in other records 

(including in the TEX86 record from the same site; Robinson et al., 2019) and suggests that it 

might be predominantly a local environmental signal. However, the gentle increase in δ18O 

values from the Turonian to Campanian at Sites 1135 and 1138 shows a strong similarity to 

planktic foraminiferal, benthic foraminiferal, and bulk carbonate δ18O values from the Exmouth 

Plateau, approximately 10˚ further north (Clarke and Jenkyns, 1999; Falzoni et al., 2016) and is 

thus interpreted to reflect dominantly bottom-water temperature trends. These data further 

suggest slow, steady cooling through the Late Cretaceous. 

5.3 Comparison of trends in δ18O with TEX86  

The overall Late Cretaceous TEX86 trend from the Falkland and Kerguelen Plateaus is 

consistent with the slow, steady cooling inferred from benthic foraminiferal δ18O and most 

planktic foraminiferal and bulk carbonate δ18O records from the South Atlantic and Indian 

Oceans (Figure 4). However, the evolution of surface-water temperatures through time does 

show some important differences between both proxies and localities. 
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For much of the Turonian–mid-Campanian, the benthic compilation, the Indian Ocean 

planktic foraminiferal δ18O record from Site 762, and the combined TEX86 record from Sites 

511, 1135 and 1138 suggests a broadly similar steady trend towards a cooler climate (Figure 4). 

This trend broadly follows the proxy and model reconstructions of long-term atmospheric CO2 

evolution (e.g. Berner 2006; Foster et al., 2017), which indicate a decrease in its concentration 

from the mid- to latest Cretaceous. During this same interval, the planktic foraminiferal δ18O 

record from Site 511 shows, on average, a similar pattern of cooling but displays considerable 

scatter and an interval (e.g. ~81 to 78 Ma) in which the lightest δ18O values are a few per mil 

greater than those before or after. The scatter in δ18Opf at Site 511 is largely due to the inclusion 

here of all planktic species, irrespective of depth habitat. Although the depth habitats of some 

common taxa have been suggested by cross-plotting carbon and oxygen isotopes, others, most 

notably Heterohelix, exhibit inconsistent behavior (Huber et al., 1995). The apparent cooling in 

the Campanian (at ~76 Ma) is manifested within the shallow dwelling planktics, which would 

suggest that this event is not an artifact of changing depth habitats, yet the absence of such an 

event elsewhere (or in the, albeit limited, TEX86 data from Site 511), suggests another 

explanation is required. One possibility is that the relative paucity of δ18Opf data through this 

interval, or subtle differences in carbonate preservation, may be impacting the apparent 

temperature signal from this site. If this interval is excluded, then the lightest δ18O values from 

Site 511 support a broadly smooth cooling trend from the Turonian to the mid-Campanian. 

From the mid-Campanian onwards, commonality in trends becomes harder to discern. In 

the benthic and bulk δ18O records there is a slight trend towards heavier values, which is also 

seen in the planktic record from Site 690 in the South Atlantic. In the Indian Ocean at Site 762, 

planktic δ18O values appear to show some minor variability over this time. The TEX86 records 
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from the Southern Hemisphere do not, unfortunately, capture this time interval well and the 

record from Site 327 is, as discussed previously, difficult to interpret. Intriguingly, the planktic 

foraminifera from Site 327 of late Campanian age suggest cooler conditions on the Falkland 

Plateau compared to the immediately older samples from Site 511 at ~77 Ma. A similar drop in 

temperatures is not observed in any other records from the Southern Hemisphere. The range of 

δ18O planktic values from Site 327 is less than that from Site 511 and, counter-intuitively, the 

absolute δ18O values are as positive as, or more positive than, those observed at Site 690, ~10˚ 

further south. Surprisingly, our observations indicate that the preservation of the planktic 

foraminifera from Site 327 is actually better than that at Site 511 (Figure 5), suggesting that 

diagenesis cannot explain the positive δ18O values. With all of these uncertainties regarding Site 

327, we suggest that the evolution of temperature in the late Campanian was likely not marked 

by a step-changes in temperature and that for the Falkland Plateau the evolution of temperature 

from the late Campanian–Maastrichtian remains unresolved. 

 

Figure 5. Photographs of planktic foraminifera showing excellent preservation. Scale = 0.1 mm. 

a) A. australis from DSDP Site 327 Core 11 Section 1 50–53 cm; b) H. planata from DSDP Site 

327 Core 11 Section 1 50–53 cm; c) M. marginata from DSDP Site 511 Core 44 Section 5 50–

53 cm; d) H. globulosa from DSDP Site 511 Core 44 Section 5 50–53 cm . 
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5.4 Absolute SST value comparison from Site 511 and implications 

The absolute values of TEX86-SSTs from the Falkland Plateau (using all three 

calibrations) are close to the maximum SSTs suggested by planktic foraminiferal δ18O-SST 

records from the Southern Atlantic and Southern Tethys (e.g. Huber et al., 1995, 2018; Falzoni et 

al., 2016), and provide further evidence supporting the existence of extremely warm 

temperatures at southern paleolatitudes of ~55 to 60˚S in the Late Cretaceous (e.g. Huber et al., 

1995, 2018; Falzoni et al., 2016). Nonetheless, the SSTs calculated from TEX86 at Site 511 are 

slightly warmer than the corresponding δ18O values (Figure 6). Unfortunately, only a few 

samples (n=15) yielded both sufficient GDGTs and planktic foraminifera to directly compare 

absolute temperatures, but these also indicate that TEX86-derived SSTs are warmer than those 

derived from δ18O values. However, such an offset is not unprecedented. In the Cenozoic, TEX86 

generally agrees well with the trends and absolute temperatures reconstructed from alkenones 

(e.g. UK
3

’
7), foraminiferal δ18O and Mg/Ca ratios, and clumped isotopes (Δ47) of carbonates, 

though commonly showing a slight offset to warmer SSTs (Zachos et al., 2006; Huguet et al., 

2006; Menzel et al., 2006; Pearson et al., 2007; Bijl et al., 2009, 2010; Hollis et al., 2009, 2012; 

Casteñada et al., 2010; Richey et al., 2010; Keating-Bitonti et al., 2011; Shintani et al., 2011; 

Lopes dos Santos et al., 2013; Douglas et al., 2014; Meyer et al., 2018; Naafs et al., 2018; 

Woelders et al., 2018). The causality of these higher temperatures remains unresolved, but has 

been attributed by many authors to a summer bias of the Thaumarchaeota or a winter bias of the 

other proxies. 
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Figure 6. A comparison of benthic and upper ocean temperatures at DSDP Site 511, calculated 

from δ18O and TEX86. Planktonic foraminifera include all taxa, irrespective of depth habitat. See 

4.1.1. for description of approach used to calculate temperatures from oxygen-isotopes. SSTs 

were calculated from TEX86 using the following empirical calibrations: TEX86
H  (Kim et al., 2010), 

TEX86-linear (O’Brien et al., 2017) and the deep-time version of BAYSPAR (Tierney & Tingley, 

2014, 2015). Age model from Huber et al. (2018). 
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TEX86 is assumed to reflect mean annual SST, but as nutrient availability, food-web 

activity, and temperatures vary throughout the year, seasonality in Thaumarchaeotal abundance 

and export can result in bias. Thaumarchaeota and their GDGTs have been found to exhibit 

pronounced seasonal variations in the modern ocean, although the timing of peak abundance 

varies significantly both geographically and environmentally. Observations from sediment traps 

in the Arabian Sea (Wuchter et al., 2005) and the Mediterranean Sea (Castañeda et al., 2010) 

indicate a warm (summer) bias in TEX86, whereas data from the North Sea (Wuchter et al., 2005; 

Pitcher et al., 2011) and Santa Barbara Basin (Huguet et al., 2007) indicate a cold (winter) bias. 

This effect is exacerbated by the fact that GDGTs almost certainly are produced in the shallow 

subsurface associated with the zone of maximum ammonia oxidation (Hurley et al., 2018). The 

strong seasonality in sunlight at high latitudes may further exacerbate any seasonality in nutrient 

regimes, and thus TEX86 in the water column. Nonetheless, despite the indications for highly 

seasonal GDGT production, sedimentary TEX86 values both at a regional (e.g. North Sea; Pitcher 

et al., 2011) and global scale suggest that the best correlation is obtained between TEX86 and 

mean annual SSTs (Kim et al., 2010). 

Foraminiferal tests can undergo alteration via dissolution, recrystallization, and/or the 

addition of diagenetic calcite overgrowths, all of which have the potential to compromise the 

δ18O signal. Calcite precipitated from pore waters during water column, sea-floor and shallow 

burial recrystallization are generally more enriched in 18O than the original planktonic tests (e.g. 

Pearson et al., 2001; Pearson 2012), equating to lower paleotemperatures. Despite efforts to 

select only the best-preserved (glassy) specimens for isotopic analysis, there is a possibility that 

there is some degree of diagenetic influence on some tests. 
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Planktic foraminifera can live over a range of depths—from the surface mixed layer to 

the (sub)thermocline—and therefore over a range of temperatures. The analysis of species from 

only a certain depth habitat may bias temperature estimates. Foraminifera can change depth 

habitat over their life cycle; in the modern ocean, many planktic species descend through the 

water column at maturity to reproduce at greater depths, typically in the upper thermocline (e.g. 

Hemleben et al., 1989). This behavior can present problems when using foraminiferal δ18O for 

SST reconstructions as the descent through the water column can bias temperature estimates to 

the colder values at depth. Ontogeny can also bias δ18O values, as the metabolic rates of 

foraminifera were found to change throughout their life cycle (Spero & Lea, 1996), with 

decreasing 18O depletion with age. If fractionation and depth habitat change with age, the δ18O 

signal can be offset from SST. As such, this ontongenic effect can skew temperature estimates 

towards the more abundant size fraction/age. 

While there are many caveats to the use of both TEX86 and foraminiferal δ18O, with 

appropriate screening both are valuable tools for paleoclimate reconstruction. However, the 

contrast in reconstructed temperatures and trends at Site 511 suggests that (at least) one of the 

proxies at this location does not record mean annual SST. The Site 511 TEX86 values also exhibit 

a strong similarity to the Site 511 benthic record as well as the global compilation of TEX86, 

planktic δ18O, and benthic δ18O records, suggesting that the TEX86 record accurately reflects 

long-term regional and global climatic trends. As noted previously, although isoprenoid GDGTs 

are produced throughout the water column (Shah et al., 2008), modern sedimentary TEX86 values 

correlate best with SSTs suggesting that the dominant signal in sediments is exported from the 

surface ocean (e.g. Schouten et al., 2013). Thus the similarity in trends at Site 511 between 

benthic temperatures and TEX86 reflects temperature throughout the water column. In contrast to 
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the TEX86 and benthic records, the planktic δ18O values show much more temporal variability, 

likely reflecting short-term changes in climate and environment, and/or the effects of subtle 

diagenesis and under sampling. 

In general, all proxy data indicate very high SSTs in the southern mid/high latitudes 

during the Late Cretaceous. If correct, then why do models struggle to reproduce such warmth 

and reduced latitudinal gradients? A long-standing problem in paleoclimatology is the 

discrepancy between proxy data and model simulations for high latitudes in a greenhouse world. 

Proxy records indicate equable conditions and reduced latitudinal temperature gradients (e.g. 

Huber et al. 1995; Huber et al. 2002; Amiot et al. 2004; Pearson et al. 2007; Hollis et al. 2009; 

Sinninghe Damsté et al. 2010; Keating-Bitonti et al. 2011; Naafs et al., 2018), whereas models 

indicate cooler polar conditions and steeper latitudinal gradients (Barron 1987; Huber & Sloan 

1999, 2001; Bice et al. 2006; Huber & Caballero 2011; Lunt et al. 2012; Upchurch et al. 2015; 

Lunt et al. 2016; Tabor et al. 2016). 

Warming appears to be amplified in the polar regions, particularly in periods of extreme 

warmth (Huber et al. 2000; Johannessen et al. 2004; Sluijs et al. 2006; Miller et al. 2010; Lee 

2014), leading to reduced latitudinal temperature gradients. Climate modelling demonstrates that 

the contributions to polar amplification include the greenhouse effect of CO2 (Manabe & 

Wetherald 1980), additional water vapor (Graversen & Wang 2009), cloud feedbacks (Sloan & 

Pollard 1998; Vavrus 2004; Kump & Pollard 2008; Kiehl & Shields, 2013; Sagoo et al., 2013), 

methane concentration (Kirk-Davidoff et al. 2002; Schmidt & Shindell 2003; Bice et al. 2006), 

vegetation–climate interactions (Zhou et al. 2012), and/or changes in atmospheric (Manabe & 

Wetherald 1980) and oceanic heat transport (Holland & Bitz 2003; Khodri et al. 2001; 

Spielhagen et al. 2001). One study found that at high temperatures the greatest contribution to 
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polar amplification derives from temperature feedbacks wherein more energy is radiated back 

into space from the tropics than the poles (Pithan & Mauritsen 2014). However, the relative 

influence of these drivers is debated, and these studies suggest that no single mechanism can 

produce the temperatures and latitudinal gradients such as those suggested for the Cretaceous 

and early Paleogene, but rather a complex interplay of multiple drivers is required. For example, 

through the addition of CH4 and stratospheric water vapor, Schmidt & Shindell (2003) were able 

to reconcile global warmth of the PETM without a significant CO2 increase. Other studies 

maintain that methane production must be consistently high for stratospheric water vapor to 

drive warming (Sloan & Pollard 1998; Kirk-Davidoff et al. 2002). 

It appears that previous models of greenhouse climate lack the physio-chemical inputs 

that allow for the magnitude of polar amplification recorded by a range of temperature proxies. 

With sufficiently high CO2, models are increasingly showing agreement with proxy records, 

especially terrestrial data (e.g. Huber et al., 2011; Lunt et al. 2012), but the mechanisms vary 

between different models. Comparisons with SST data are also improving, though problems 

remain with high latitudes; for example, δ18O- and TEX86-SST uncertainties only just overlap 

with that of the model for the Eocene (Lunt et al. 2012). However, if seasonality is an important 

component of some Late Cretaceous proxy reconstructions then this could lead to discrepancies 

in model-data comparisons that cannot be easily accounted for without better approaches to 

determining the seasonal influence on planktic organisms in the geological record. 

 

6. Conclusions 

New TEX86- and δ18O-SST estimates from the Falkland Plateau confirm previous studies 

indicating extreme warmth through the Late Cretaceous at the high southern latitudes, suggesting 
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that the depleted δ18O values cannot simply be ascribed to diagenesis or anomalously light 

δ18OSW. The compilation of data from the Falkland and Kerguelen Plateaus indicates high SSTs 

across the southern high-latitudes, and steady cooling from the Turonian to Campanian. The 

extreme warmth in the southern high latitudes suggests that latitudinal gradients remained low 

throughout the Late Cretaceous, and that polar ice caps at low altitudes are hence deemed 

unlikely.  

Because both the TEX86 and δ18Opf data from Site 327 on the Falkland Plateau are 

interpreted to be problematic and are therefore excluded at this point, it is suggested that the 

evolution of temperature in the late Campanian was likely not marked by any step-changes in 

temperature and that, for the Falkland Plateau, the exact pattern of climate change from the late 

Campanian–Maastrichtian remains unresolved. However, with so little data, and from so few 

sites, it is difficult to determine precise climate dynamics in the Late Cretaceous southern high-

latitudes, impeding the accurate modelling of global climate at this time. 

When compared to other data from a similar paleolatitude, it appears that the Falkland 

Plateau SSTs are not especially anomalous, indicating a global forcing mechanism, probably a 

combination of elevated atmospheric CO2, CH4, and water vapor. However, the precise tectonic 

and volcanic mechanisms by which CO2 remained high, the sources and amount of atmospheric 

methane, and the role of the hydrological cycle in greenhouse climates, remain issues that, 

although debated over decades, are still to be fully resolved. This problem highlights the fact that 

major uncertainties exist in our understanding of Late Cretaceous carbon cycling and climate and 

the operation of the Earth system in a greenhouse world.  
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Figure 1. DSDP/ODP Sites used in this study (stars) and previously published data (circles). 

Adapted from Blakey 2016. 

Figure 2. New TEX86 and stable-isotope data generated from DSDP Sites 511 and 327, plotted 

against depth. For TEX86 values, closed circles indicate reliable data and open circles indicate 

samples with GDGT indices exceeding acceptable thresholds (see supplementary information for 

details). 

Figure 3. New TEX86 and stable-isotope data generated from DSDP Sites 511 and 327, plotted 

against depth. 

Figure 4. Compilation of benthic foraminiferal δ18O, bulk carbonate δ18O, planktic foraminiferal 

δ18O, and TEX86 data. All oxygen isotope values are reported VPDB. 1Huber et al., 2018; 2Huber 

et al., 1995; 3Barrera & Savin, 1999; 4Friedrich et al., 2009; 5Barrera & Huber, 1990; 6Falzoni et 

al., 2016; 7Clarke and Jenkyns, 1999; 8Ando et al., 2013; 9Woelders et al., 2018; 10Bice et al., 2003; 

11Forster et al., 2007; 12Schouten et al., 2003; 13Bornemann et al., 2008; 14Sinninghe Damsté et al., 

2010; 15Robinson et al., 2019; 16Alsenz et al., 2013; 17van Helmond et al., 2014; 18Linnert et al., 

2014; 19van Helmond et al., 2015; 20Woelders et al., 2017. All age models from original sources, 

plotted on the 2016 timescale. Bulk carbonate and fine-fraction δ18O values are plotted with the 

benthic foraminifera d18O values as the carbonate is assumed to have either a bottom-water 
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diagenetic overprint and/or offsets related to vital effects in the calcareous nannoplankton that 

contribute much of carbonate to the sediment (e.g. Falzoni et al., 2016). 

Figure 5. Photographs of planktic foraminifera showing excellent preservation. Scale = 0.1 mm. 

a) A. australis from Site 511; b) H. planata from Site 511; c) M. marginata from Site 327; d) H. 

globulosa from Site 327. 

Figure 6. A comparison of benthic and upper ocean temperatures at DSDP Site 511, calculated 

from δ18O and TEX86. Planktonic foraminifera includes all taxa, irrespective of depth habitat. See 

text for description of approach used to calculate temperatures from oxygen-isotopes. SSTs were 

calculated from TEX86 using the following empirical calibrations: TEX86
H  (Kim et al., 2010), 

TEX86-linear (O’Brien et al., 2017) and the deep-time version of BAYSPAR (Tierney and Tingley, 

2014, 2015). Age model from Huber et al. (2018). 


