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ABSTRACT: A new, operationally simple approach is presented to access
arynes and their fluoride-activated precursors based on Ru-catalyzed C−H
silylation of arylboronates. Chromatographic purification may be deferred
until after aryne capture, rendering the arylboronates de facto precursors.
Access to various new arynes and their derivatives is demonstrated,
including, for the first time, those based on a 2,3-carbazolyne and 2,3-
fluorenyne core, which pave the way for novel derivatizations of motifs
relevant to materials chemistry.

The trapping of aryne intermediates has evolved into an
extraordinarily powerful arylation strategy.1 It allows the

regioselective introduction of C-, B-, pnictogen-, chalcogen-,
and halogen-based functionality to electrophilic2 (hetero)arene
units via various multicomponent,1e cycloaddition,3 insertion,4

and rearrangement sequences5 as well as transition-metal-
mediated/catalyzed processes.6 Such versatility has led to the
use of aryne trapping in the synthesis of natural products,7

polycyclic aromatic hydrocarbons (PAHs),3b,8 polymers,9 and
organometallic complexes.6,10 Arguably, aryne-based method-
ology has benefitted most profoundly from the development of
fluoride-activated precursors.11 These incorporate a silane or
other fluorophile12 ortho with respect to a nucleofuge.12b,13

Thus, the highly reactive aryne triple bond may be generated
and trapped under mild, tolerant conditions. With this
advantage in hand, most of the focus has fallen on diversifying
the transformations aryne triple bonds undergo. Typically,
however, most new reactions are demonstrated on only a
handful of simple, commercially available or easy-to-make
precursors. Many, even modestly more complex precursors
require de novo synthesis, sometimes via laborious and/or low-
yielding routes or involve separate installation and removal of
directing groups to facilitate intermediate ortho-lithiation.14

Few ortho-bromophenols, the most common starting material
for precursor synthesis, are commercially available and their
selective preparation is often inefficient.
In recent years, catalytic C−H functionalization has emerged

as a powerful alternative to “classical” reactivity,15 allowing new
transformations and the circumvention of tedious stoichio-
metric routes and harsh conditions.15a

Despite this, only a small handful of C−H functionalization
routes to arynes or their precursors has been described (Figure
1). These include the Rh-catalyzed ortho-silylation of

phenols,16 the Pd-catalyzed ortho-oxygenation using a silane-
tethered directing group,17 and the direct generation of arynes
via C−H palladation−decarboxylation of benzoic acids.18 Only
the former benefits from an extended scope, although it also
requires stoichiometric MeLi. Otherwise, the use of strong
stoichiometric bases to remove a proton ortho to a good
leaving group continues to underpin a substantial portion of
modern aryne methodology.19 Our interest in C−H function-
alization and aryne chemistry20 led us to envisage an
alternative, operationally simple route to aryne precursors,
and even arynes themselves, predicated on Ru-catalyzed21

catalytic C−H silylation22 of arylboronates as the key step.
Our route starts with arylboronic acids (1), many variants of

which are commercially available or easily synthesized. The
convenience of arylboronic acids is underscored by their near
ubiquity in organic chemistry laboratories, a consequence of
the C−B bond’s considerable synthetic utility.23 The key steps
in our route (Scheme 1, top) are (1) the protection of 1 as
anthranilamido boronates, ArB(aam),24 2, (2) their direct
catalytic C−H silylation based on Suginome’s approach to give
intermediates 3, and (3) selective in situ oxidation25 of the
boronate to give ortho-silylphenols 4. These may be stored
indefinitely and used directly as aryne precursors via activation
using 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonyl fluoride
(NfF) to provide the leaving group.13b This obviates the
need for much more expensive but less stable triflate
derivatives.26 As described below, we found that phenols 4
may, alternatively, be purified via a single aqueous wash to a
degree sufficient for direct, efficient aryne generation and
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capture in a sequence that requires no chromatography until
the aryne capture product is obtained (Scheme 2). Thus,
boronic acids 1 can act as de facto aryne precursors.
Scheme 1 shows the results of our study on the scope of this

approach to generate ortho-silyl phenols, 4. At the outset, we
confirmed the greater efficiency of Ru over Ir catalysis27 and
that of HSiMe2Ph compared to HSiEt3

24e (4a vs 4b).
Substrates bearing phenyl (4g), trifluoromethyl (4h), amido
(4i), ester (4j), silyl (4k), chloro (4l, 4m, and 4p), fluoro (4n,
4o, and 4p), and amino (4q) functionality were amenable to
our general conditions. The average yield for our general
conditions across these products was 65%, corresponding to
87% average yield per step for Scheme 1. The route was also
compatible with carbazole- and fluorene-based substrates
obtained from commercially available boronic acids (products
4r and 4s, respectively). Both of these units, as well as the aryl
carbazole core of 4q, play prominent roles in various organic
electronic devices28 and photocatalysts,29 for whose synthesis
the huge potential of aryne chemistry has barely been explored.
In step 3 of the synthesis of 4r and 4s, H2O2 was replaced with
the milder oxidant H2N−OH·H2O.

30

We found that the steric profile of most substituents ortho to
B(aam) was sufficient to prevent C−H silylation. (E.g., 4d was
not obtained.) The crystal structure of 3b (Figure 2) is
illustrative: the B(aam) group rests out of the plane with
respect to its neighboring C−H bond due to steric repulsion
between B(aam) and the silane residue, thereby hindering a
second ruthenation event (e.g., in proposed intermediates of
type 3b-Ru24c). Meanwhile, ortho-bromo (4e) and ortho-
chloro (4f) silyl phenols did not form; instead, only complex
mixtures were obtained, presumably arising from the cleavage

of the C-halogen bond by Ru. Fluoride, however, proved small
enough to give 4c in 42% yield across all three steps (75%
average yield per step). Installing the silane between the
B(aam) directing group and a meta-fluoro group was met with
further success: an overall yield of 61% (85% average per step)
was obtained via the silylation en route to 4n and 4p. This is a
pleasing outcome; the regioselectivity of aryne trapping
reactions is most profoundly influenced by strongly electro-

Figure 1. Past and present approaches to aryne precursors using C−H
activation strategies.

Scheme 1. Scope with Respect to Arylboronic Acidsa

aGeneral conditions in detail: boronic acid (0.5−1.0 mmol); (step 1)
anthranilamide (1 equiv), toluene, Dean−Stark, reflux, overnight;
(step 2) direct addition of RuH2(CO)(PPh3)3 (6 mol %), silane (5
equiv), norbornene (5 equiv), toluene, 135 °C, 20 h; (step 3)
Na2CO3, H2O2, EtOH, rt. [Ir(μ-OMe)COD]2 (5 mol %) as a catalyst,
PPh3 ligand (15 mol %). b[Ru3(CO)12] (6 mol %) as a catalyst, PPh3
ligand (36 mol %). cComplex mixture. d3:1 mixture of regioisomers
(major isomer shown). eConditions: NfF (1.1 equiv), NaH (1.1
equiv), THF or MeCN, 0 °C to rt, 16 h. fColumn chromatography
after steps 2 and 3. Conditions for step 3: NH2−OH·HCl, NaOH,
EtOH, rt.
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positive31 or electronegative groups32 at the carbon adjacent to
the aryne triple bond. Fluoride is able to induce the greatest
levels of regioselectivity among all known substituents.32b

Asymmetrically substituted boronates with two available C−H
units ortho to B(aam) underwent silylation exclusively at the
least hindered site (4m and 4p), except for 4o, in which the
less hindered position was favored in a 3:1 ratio.
We were also pleased to discover that the C−H silylation en

route to 4r proceeded with complete regioselectivity. We
attribute this to the steric influence of the C5−H unit
impeding C4−H silylation by Ru (e.g., in intermediates of type
2r-Ru, Figure 2). This finding paves a new route to exclusively
C2-silyl derivatives of the carbazole and various isosterically
related motifs. By contrast, the synthesis of related compounds
can require lithiation strategies that lead to mixtures of
regioisomers. Compounds 4p, 4r, and 4s were converted in

good yields to their corresponding nonaflates, 5a, 5b, and 5c.
The structure of 5b was confirmed using X-ray crystallography
(Scheme 1, bottom).
To the best of our knowledge, fluoride-induced generation

of 2,3-carbazolynes or any fluorenynes has not been previously
reported. Arynes 6b and 6c were generated efficiently and
converted to the corresponding products 7a−c in good to
excellent yields via [4+2] cycloaddition to furan and N-Boc-
pyrrole and an insertion into I2,

33 respectively (Scheme 2a).
The identity of 2,3-diiodo-9,9-dimethyl-fluorene (7c) was
confirmed crystallographically. These examples demonstrate a
new route to functionalized carbazole and fluorene motifs that
leverages the synthetic versatility of the aryne triple bond.
Studies on extending this to the synthesis of more complex
compounds of import to organic electronics applications are
ongoing in our laboratory.
Finally, we carried out preliminary studies on the viability of

generating aryne capture products from phenylboronic acid,
1a, without any chromatographic purification of intermediates.
Following steps 1−3 (as described above), the crude reaction
mixture was subjected to a single aqueous wash and then
directly to the conditions shown in Scheme 2b with furan, N-
Boc-pyrrole or nitrone 8 as the trapping reagent. We were also
pleased to find that the addition of exogeneous fluoride salts
was not required to produce the aryne en route to the final
products; fluoride released from the attack on NfF by the
phenolic residue appeared to suffice.11d Compounds 7d−f
were obtained in 80%, 82%, and 87% yields, respectively. This
corresponds to a mean average yield of 95% per step across all
reactions in Scheme 2b.
In summary, we have developed a new, expedient route to a

variety of arynes, their fluoride-activated precursors, and aryne
derivatives. While the procedure is relatively material-intensive
compared to non-catalytic approaches (e.g., stoichiometric
anthranilamide and high silane loadings required), it brings
several key benefits: operational simplicity, low requirements
for chromatographic purification, high average yields per step,
and the dual use of the B(aam) group as a masked phenol able
to direct C−H silylation. Moreover, it enables the use of
arylboronic acids as de facto aryne precursors; arylboronic acids
are diverse and very common reagents in organic synthesis.
Complete regioselectivity is obtained for both carbazole- and
fluorene-based substrates, leading to previously unreported
aryne intermediates of a high potential in the synthesis of
motifs relevant to materials chemistry. We envisage that this
approach may be utilized to exploit the unique nature of the
aryne triple bond in more complex chemical environments.

■ EXPERIMENTAL SECTION
General Information. Unless otherwise stated, all reactions were

performed under an atmosphere of argon with magnetic stirring.
Thin-layer chromatography (TLC) was carried out using aluminum-
backed plates coated with silica gel 60 (0.20 mm, UV 254) and
visualized under ultraviolet light (λ = 254 nm) or with KMnO4
staining solution. Purification by column chromatography was
performed using silica gel 60 H (particle size 0.063−0.100 mm).
THF was freshly distilled from Na0/benzophenone and stored over 4
Å molecular sieves under argon. Toluene and 1,4-dioxane were
predried over 4 Å molecular sieves and stored under argon prior to
use. All arylboronic acid starting materials were obtained
commercially and used “as is” without further purification. Unless
otherwise stated, all the other reagents, transition-metal salts,
anthranilamide, silanes, and norbornene were obtained commercially
and used without further purification. 1H, 13C, and 19F NMR spectra

Scheme 2. Generation and Capture of Arynes from (A)
ortho-Silyl Aryl Nonaflate or (B) an Arylboronic Acid as the
de Facto Precursora

a71 h reaction time.

Figure 2. Steric influence over regioselectivity of C−H silylation.
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were recorded on a Varian Unity 400 MHz (1H 399.5 MHz, 13C
100.6, 19F 376 MHz) or Varian Mercury Plus 300 MHz (1H 300.0
MHz, 13C 75.5 MHz) spectrometer at ambient temperature. NMR
data are reported as follows: chemical shift in ppm, multiplicity (s =
singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Chemical
shifts are reported in ppm and referenced indirectly to tetramethylsi-
lane via the residual solvent signals. 1H: CDCl3 at 7.26, DMSO-d6 at
2.50, C6D6 at 7.16 ppm. 13C: CDCl3 at 77.0, DMSO-d6 at 39.5, C6D6
at 128.1 ppm. 19F (CFCl3) chemical shifts were calibrated to an
external standard at 0.00 ppm. High-resolution accurate-mass mass
spectra were run on a VG Autospec (EI at 70 eV), Bruker micrOTOF
Focus II (ESI), or Bruker ultrafleXtreme II (MALDI with colloidal
graphite matrix).
Crystallography. Single-crystal X-ray diffraction was performed

on a Bruker APEX-II single-crystal X-ray diffractometer at 150 K
using Mo Kα radiation, and the structures were solved using direct
methods (ShlexS-2014)34 refined by full-matrix least-squares
procedures using OLEX2.35 Semiempirical absorption corrections
from equivalents (multiscan) were carried out using SADABS. CCDC
1882782−1882784 contain the supplementary crystallographic data
for compounds 3b, 5b, and 7c.
Synthesis of ortho-Silyl Phenols. Procedure A (Direct

Preparation). A 25 mL round-bottomed flask equipped with magnetic
stir bar was charged with a mixture of the appropriate arylboronic acid
(0.50−1.00 mmol, 1.0 equiv), anthranilamide (1.0 equiv), and toluene
(10 mL/mmol). The mixture was heated at reflux in a Dean−Stark
apparatus overnight. The toluene was then removed under reduced
pressure or by draining the Dean−Stark trap. The resulting crude
ArB(aam) was transferred to a predried 5 mL Young’s tube equipped
with a magnetic stir bar, to which were added RuH2(CO)(PPh3)3 (6
mol %) and norbornene (5.0 equiv). The flask was then evacuated
and backfilled three times with Ar. The indicated silane (5.0 equiv)
and toluene (0.5 mL/mmol) were added via a septum. The mixture
was heated at 135 °C for 20 h, cooled to rt, and transferred to a 100
mL round-bottomed flask, and the toluene was removed under
reduced pressure. To this mixture, at rt and under air, were added
Na2CO3 (1.0 equiv) and ethanol (40 mL/mmol), followed the
dropwise addition of H2O2 (30% w/w, 10 mL/mmol). Reaction
progress was monitored by TLC. After consumption of the ortho-silyl
arylboronate, the mixture was extracted with CH2Cl2 (3 × 25 mL).
The combined organic layers were dried (MgSO4), filtered, and
concentrated under reduced pressure. Unless otherwise indicated, the
product was purified by column chromatography using pentane/
EtOAc as the eluent.
Procedure B (Sequential Preparation). Step 1: Protection of

Arylboronic Acids. A 25 mL round-bottomed flask equipped with
magnetic stirrer bar was charged with a mixture of arylboronic acid
(1.0 equiv), anthranilamide (1.0 equiv), and toluene (10 mL/mmol)
and heated at reflux in a Dean−Stark apparatus overnight. The
ArB(aam) intermediate was obtained by the removal of toluene,
either under reduced pressure or by draining the Dean−Stark trap.
Step 2: Silylation. To a predried 5 mL Young’s tube equipped with

a magnetic stir bar were added ArB(aam) (1.0 equiv), RuH2(CO)-
(PPh3)3 (6 mol %), and norbornene (5.0 equiv). The tube was
evacuated and backfilled with argon three times, and then silane (5.0
equiv) and toluene (0.5 mL/mmol of substrate) were added. The
reaction mixture was heated at 135 °C for 20 h. After the mixture
cooled to rt, the ortho-silyl arylboronate was purified by flash column
chromatography.
Step 3: Oxidation of Aromatic Boronates. A 100 mL round-

bottomed flask equipped with a magnetic stir bar was charged with
ortho-silyl arylboronate, NaOH (2.0 equiv), NH2OH·HCl (1.5 equiv),
and ethanol (20 mL/mmol boronate). The mixture was stirred at rt
and monitored by TLC until completion. The crude reaction mixture
was extracted with EtOAc (3 × 25 mL). The combined organic layers
were dried (MgSO4), filtered, and concentrated under reduced
pressure. The product was purified by column chromatography using
pentane/EtOAc as the eluent.
Analytical Data for Aryl Anthranilamido Boronate. 2-(4-(9H-

Carbazol-9-yl)phenyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-

4(1H)-one (2a). The compound was prepared using general
procedure B (step 1). Yield: 0.387 g (98%, based on 1.00 mmol of
4-(9H-carbazol-9-yl)phenyl)boronic acid). Beige solid. 1H NMR (400
MHz, DMSO-d6): δ 9.84 (s, 1H), 9.47 (s, 1H), 8.34 (d, J = 7.9 Hz,
2H), 8.25 (d, J = 8.1 Hz, 2H), 8.04 (d, J = 8.0 Hz, 1H), 7.71 (d, J =
8.1 Hz, 2H), 7.59 (dd, J = 7.6 Hz, 1H), 7.49−7.42 (m, 5H), 7.34−
7.25 (m, 2H), 7.12 (dd, J = 7.6 Hz, 1H). 13C{1H} NMR (100 MHz,
DMSO-d6): 166.8, 145.9, 140.4, 139.3, 135.7, 133.9, 128.4, 126.8,
126.2, 123.3, 121.4, 121.0, 120.7, 119.3, 118.7, 110.2. HRMS-ESI:
calcd for C25H18BN3O [M + H]+, 388.1616; found, 388.1612.

2-(9,9-Dimethyl-9H-fluoren-2-yl)-2,3-dihydrobenzo[d][1,3,2]-
diazaborinin-4(1H)-one (2b). The compound was prepared using
general procedure B (step 1). Yield: 0.661 g (93%, based on 2.10
mmol of (9,9-dimethyl-9H-fluoren-2-yl)boronic acid). Colorless solid.
Rf: 0.5 (petroleum ether/EtOAc = 2:1). 1H NMR (400 MHz, DMSO-
d6): δ 9.75 (s, 1H), 9.35 (s, 1H), 8.33 (s, 1H), 8.09−8.04 (m, 2H),
7.91 (d, J = 7.7 Hz, 1H), 7.89−7.87 (m, 1H), 7.61−7.54 (m, 2H),
7.47 (d, J = 7.7 Hz, 1H), 7.38−7.32 (m, 2H), 7.14−7.10 (m, 1H),
1.50 (s, 6H). 13C{1H} NMR (100 MHz, DMSO-d6): δ 166.4, 153.8,
152.7, 145.6, 140.8, 138.4, 133.4, 132.3, 131.0, 128.0, 127.8, 127.1,
122.8, 120.7, 120.6, 119.5, 118.8, 118.1, 46.5, 26.9. HRMS-ESI: calcd
for C22H20BN2O [M + H]+, 339.1667; found, 339.1668.

Analytical Data for ortho-Silyl Aryl Anthranilamido Boro-
nate Intermediates. 2-(3-(Dimethyl(phenyl)silyl)-9,9-dimeth-
yl-9H-fluoren-2-yl)-2,3dihydrobenzo[d][1,3,2]diazabo rinin-
4(1H)-one (3a). The compound was prepared using general
procedure B (step 2). Yield: 0.069 g, (77%, based on 0.25 mmol of
2b). Colorless solid. Rf: 0.5 (pentane/EtOAc = 5:1). 1H NMR (400
MHz, CDCl3): δ 8.20−8.18 (m, 2H), 7.87−7.84 (m, 1H), 7.64 (s,
1H), 7.52−7.48 (m, 3H), 7.44−7.36 (m, 6H), 7.27 (s, 1H), 7.11 (t, J
= 7.6 Hz, 1H), 6.19 (d, J = 7.9 Hz, 1H), 6.03 (s, 1H), 1.53 (s, 6H),
0.56 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3): δ 166.5, 154.1,
153.8, 143.5, 140.4, 139.9, 139.7, 138.7, 134.0, 133.7, 129.5, 128.9,
128.5, 127.9, 127.4, 127.1, 126.9, 122.7, 121.8, 120.3, 118.6, 117.6,
47.1, 27.0, −1.1. HRMS-ESI: calcd for C30H30BN2OSi [M + H]+,
473.2221; found, 473.2212.

Analytical Data for New ortho-Silyl Phenols. 2-(Triethylsilyl)-
phenol (4a). Prepared according to general procedure A. Yield: 0.095
g (47%, based on 0.50 mmol of the corresponding boronic acid).
Yellow oil. Rf: 0.4 (pentane/EtOAc = 4:1). 1H NMR (400 MHz,
CDCl3): δ 7.36 (dd, J = 7.3, 1.7 Hz, 1H), 7.24 (dd, J = 7.7, 1.7 Hz,
1H), 6.93 (ddd, J = 7.3, 7.3, 0.9 Hz, 1H), 6.68 (dd, J = 7.7, 0.9 Hz,
1H), 4.77 (br s, 1H), 0.98 (d, J = 7.7 Hz, 9H), 0.91−0.82 (m, 6H).
13C{1H} NMR (101 MHz, CDCl3): δ 160.7, 136.4, 130.6, 122.5,
120.5, 114.6, 7.8, 3.7. HRMS-MALDI: calcd for C12H19OSi [M −
H]−, 207.1211; found, 207.1215. Alternative procedure using
[Ir(OMe)(COD)]2: To a predried 5 mL Young’s tube equipped
with a magnetic stir bar were added ArB(aam) (0.25 mmol, 1.0
equiv), [Ir(OMe)(COD)] (5 mol %), PPh3 (15 mol %) and
norbornene (5.0 equiv). The tube was evacuated and backfilled with
argon three times and then H-SiEt3 (5.0 equiv) and toluene (2 mL)
were added. The reaction mixture was heated at 135 °C for 20 h.
After cooling to rt, the ortho-silyl arylboronate was subjected to
oxidation conditions listed in procedure A and the resulting ortho-silyl
phenol was purified by flash column chromatography to afford
product 4a in 48% yield. Alternative procedure using [Ru3(CO)12]:
To a predried 5 mL Young’s tube equipped with a magnetic stir bar
were added ArB(aam) (0.25 mmol, 1.0 equiv), [Ru3(CO)12] (6 mol
%), PPh3 (36 mol %) and norbornene (5.0 equiv). The tube was
evacuated and backfilled with argon three times and then H-SiEt3 (5.0
equiv) and toluene (2 mL) were added. The reaction mixture was
heated at 135 °C for 20 h. After cooling to rt, the ortho-silyl
arylboronate was subjected to oxidation conditions listed in procedure
A and the resulting ortho-silyl phenol was purified by flash column
chromatography to afford product 4a in 40% yield.

2-(Dimethyl(phenyl)silyl)phenol (4b). Prepared according to
general procedure A. Yield: 0.092 g (81%, based on 0.50 mmol of
the corresponding boronic acid). Colorless oil. Rf: 0.4 (Pentane/
EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.61−7.59 (m, 2H),
7.41−7.32 (m, 4H), 7.28−7.22 (m, 1H), 6.93 (ddd, J = 7.3, 0.6 Hz,
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1H), 6.67 (d, J = 8.0 Hz, 1H), 4.77 (s, 1H), 0.59 (s, 6H). 13C{1H}
NMR (100 MHz, CDCl3): δ 160.4, 138.0, 136.0, 134.2, 131.2, 129.3,
128.0, 123.1, 120.6, 115.0, −2.3. HRMS-MALDI: calcd for C14H15OSi
[M − H]−, 227.0898; found, 227.0894.
2-(Dimethyl(phenyl)silyl)-6-fluorophenol (4c). Prepared according

to general procedure A. Yield: 0.052 g (42%, based on 0.50 mmol of
the corresponding boronic acid). Colorless oil. Rf: 0.6 (pentane/
EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.62−7.59 (m, 2H),
7.42−7.35 (m, 3H), 7.12−7.09 (m, 1H), 7.07−7.03 (m, 1H), 6.83
(ddd, J = 7.7, 7.7 4.6 Hz, 1H), 5.26 (s, 1H), 0.63 (s, 6H). 13C{1H}
NMR (100 MHz, CDCl3): δ 150.7 (d, JCF = 239.6 Hz), 147.9 (d, JCF
= 12.5 Hz), 137.9, 134.2, 130.9 (d, JCF = 4.0 Hz), 129.2, 127.8, 126.5,
120.1 (d, JCF = 5.6 Hz), 116.6 (d, JCF = 18.3 Hz), −2.4. 19F NMR
(376 MHz, CDCl3): δ −142.58 to −142.61 (m). HRMS-MALDI:
calcd for C14H14FOSi [M − H]−, 245.0803; found, 245.0799.
3-(Dimethyl(phenyl)silyl)-[1,1′-biphenyl]-4-ol (4g). Prepared ac-

cording to general procedure A. Yield: 0.108 g (71%, based on 1.00
mmol of the corresponding boronic acid). Colorless solid. Rf: 0.5
(pentane/EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.65−7.63
(m, 2H), 7.57 (d, J = 2.3 Hz, 1H), 7.52−7.50 (m, 3H), 7.43−7.37 (m,
5H), 7.30 (t, J = 7.3 Hz, 1H), 6.78 (d, J = 8.3 Hz, 1H), 4.82 (s, 1H),
0.64 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3): δ 160.1, 141.1,
137.8, 134.6, 134.2, 133.7, 130.0, 129.5, 128.7, 128.1, 126.8, 126.6,
123.6, 115.4, −2.20. HRMS-MALDI: calcd for C20H19OSi [M − H]−,
303.1211; found, 303.1209.
2-(Dimethyl(phenyl)silyl)-4-(trifluoromethyl)phenol (4h). Pre-

pared according to general procedure A. Yield: 0.101 g (68%, based
on 1.00 mmol of the corresponding boronic acid). Colorless oil. Rf:
0.3 (pentane/EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.62−
7.60 (m, 3H), 7.52 (dd, J = 8.4, 2.0 Hz, 1H), 7.46−7.38 (m, 3H), 6.74
(d, J = 8.4 Hz, 1H), 5.14 (s, 1H), 0.63 (s, 6H). 13C{1H} NMR (100
MHz, CDCl3): δ 162.9, 136.8, 134.2, 133.0 (q, JCF = 3.7 Hz), 129.8,
128.6 (q, JCF = 3.7 Hz), 128.2, 124.5 (d, JCF = 285.4 Hz), 124.2, 123.0
(d, JCF = 44.3 Hz), 115.1, −2.5. 19F NMR (376 MHz, CDCl3): δ
−61.40. HRMS-MALDI: calcd for C15H14F3OSi [M − H]−,
295.0772; found, 295.0771.
N-(tert-Butyl)-3-(dimethyl(phenyl)silyl)-4-hydroxybenzamide

(4i). Prepared according to general procedure A. Yield: 0.103 g (63%,
based on 1.00 mmol of the corresponding boronic acid). Colorless
solid. Rf: 0.2 (pentane/EtOAc = 15:1). 1H NMR (400 MHz, CDCl3):
δ 7.63 (s, 1H), 7.58−7.52 (m, 4H), 7.37−7.30 (m, 3H), 6.71 (d, J =
8.4 Hz, 1H), 5.82 (s, 1H), 1.43 (s, 9H), 0.58 (s, 6H). 13C{1H} NMR
(100 MHz, CDCl3): δ 167.7, 164.5, 137.9, 134.8, 134.2, 130.2, 129.2,
127.8, 126.5, 123.6, 114.8, 51.6, 28.9, −2.5. HRMS-MALDI: calcd for
C19H24NO2Si [M − H]−, 326.1582; found, 326.1589.
Methyl 3-(Dimethyl(phenyl)silyl)-4-hydroxybenzoate (4j). Pre-

pared according to general procedure A. Yield: 0.120 g (84%, based
on 0.500 mmol of the corresponding boronic acid). Gray solid. Rf: 0.2
(pentane/EtOAc = 15:1). 1H NMR (400 MHz, CDCl3): δ 8.09 (d, J
= 2.2 Hz, 1H), 7.95 (dd, J = 8.5, 2.2 Hz, 1H), 7.61−7.58 (m, 2H),
7.42−7.35 (m, 3H), 6.72 (d, J = 8.5 Hz, 1H), 5.71 (s, 1H), 3.87 (s,
3H), 0.62 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3): δ 167.3,
164.7, 138.1, 137.3, 134.1, 133.3, 129.6, 128.1, 123.4, 122.3, 114.9,
51.9, −2.4. HRMS-MALDI: calcd for C16H17O3Si [M − H]−,
285.0952; found, 285.0949.
2-(Dimethyl(phenyl)silyl)-4-(trimethylsilyl)phenol (4k). Prepared

according to general procedure A. Yield: 0.092 g (61%, based on 0.50
mmol of the corresponding boronic acid). Yellow oil. Rf: 0.4
(pentane/EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.65−
7.59 (m, 2H), 7.49 (d, J = 1.7 Hz, 1H), 7.44 (dd, J = 7.9, 1.7 Hz, 1H),
7.41−7.33 (m, 3H), 6.70 (d, J = 7.9 Hz, 1H), 4.90 (s, 1H), 0.61 (s,
6H), 0.22 (s, 9H). 13C{1H} NMR (100 MHz, CDCl3): δ 161.3,
141.3, 138.1, 136.6, 134.2, 131.0, 129.4, 128.0, 122.4, 114.5, −0.9,
−2.2. HRMS-MALDI: calcd for C17H23OSi2 [M − H]−, 299.1293;
found, 299.1289.
4-Chloro-2-(dimethyl(phenyl)silyl)phenol (4l). Prepared according

to general procedure A. Yield: 0.092 g (70%, based on 1.0 mmol of
the corresponding boronic acid). Yellow oil. Rf: 0.3 (pentane/EtOAc
= 20:1). 1H NMR (400 MHz, CDCl3): δ 7.60−7.58 (m, 2H), 7.44−
7.37 (m, 3H), 7.26 (d, J = 2.4 Hz, 1H), 7.20 (dd, J = 8.5, 2.4 Hz, 1H),

6.63 (d, J = 8.5 Hz, 1H), 4.77 (s, 1H), 0.60 (s, 6H). 13C{1H} NMR
(100 MHz, CDCl3): δ 158.9, 137.1, 135.2, 134.2, 130.9, 129.7, 128.2,
125.9, 125.8, 116.6, −2.5. HRMS-MALDI: calcd for C14H14ClOSi [M
− H]−, 261.0508; found, 261.0502.

4,5-Dichloro-2-(dimethyl(phenyl)silyl)phenol (4m). Prepared ac-
cording to general procedure A. Yield: 0.106 g (71%, based on 0.500
mmol of the corresponding boronic acid). Brown oil. Rf: 0.4
(pentane/EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.59−
7.56 (m, 2H), 7.44−7.38 (m, 3H), 7.33 (s, 1H), 6.82 (s, 1H), 4.94 (s,
1H), 0.58 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3): δ 159.2,
136.7, 136.5, 134.2, 134.1, 129.9, 128.3, 124.7, 124.3, 117.2, −2.5.
HRMS-MALDI: calcd for C14H13Cl2OSi [M − H]−, 295.0118; found,
295.0114.

2-(Dimethyl(phenyl)silyl)-3,5-difluorophenol (4n). Prepared ac-
cording to general procedure A. Yield: 0.081 g (61%, based on 0.55
mmol of the corresponding boronic acid). Yellow oil. Rf: 0.3
(pentane/EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.71−
7.67 (m, 2H), 7.50−7.43 (m, 3H), 6.37 (ddd, J = 9.3, 9.3 2.2 Hz,
1H), 6.23 (ddd, J = 10.2, 2.2, 1.3 Hz, 1H), 5.29 (s, 1H), 0.66 (s, 3H),
0.65 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 168.2 (dd, JCF =
241.2, 15.1 Hz), 163.9 (dd, JCF = 247.8, 17.0 Hz), 162.3 (dd, JCF =
17.2, 13.9 Hz), 136.7, 134.4, 130.5, 128.8, 105.1 (dd, JCF = 33.2, 3.5
Hz), 99.6 (dd, JCF = 23.4, 3.8 Hz), 96.2 (dd, JCF = 31.6, 24.7 Hz),
−1.2 (two silyl methyl peaks appears). 19F NMR (376 MHz, CDCl3):
δ −94.41 to −94.47 (m), −107.81 to −107.89 (m). HRMS-MALDI:
calcd for C14H13F2OSi [M − H]−, 263.0709; found, 263.0702.

2-(Dimethyl(phenyl)silyl)-4,5-difluorophenol (4o). Prepared ac-
cording to general procedure A. Yield: 0.075 g (57%, based on 0.50
mmol of the corresponding boronic acid). Colorless oil. Rf: 0.4
(pentane/EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.60−7.57
(m, 2H), 7.45−7.38 (m, 3H), 7.06 (dd, J = 10.2, 9.8 Hz, 1H), 6.54
(dd, J = 11.4, 6.0 Hz, 1H), 4.79 (s, 1H), 0.58 (s, 6H). 13C{1H} NMR
(100 MHz, CDCl3): δ 156.5 (dd, JCF = 8.5, 2.2 Hz), 151.4 (dd, JCF =
250.2, 14.2 Hz), 145.9 (dd, JCF = 241.9, 11.7 Hz), 136.8, 134.1, 129.8,
128.3, 123.1 (dd, JCF = 16.5, 1.8 Hz), 119.7 (dd, JCF = 3.8, 2.0 Hz),
104.8 (d, JCF = 18.9 Hz), −2.5. 19F NMR (376 MHz, CDCl3): δ
−134.01 to −134.12 (m), −149.17 to −149.27 (m). HRMS-MALDI:
calcd for C14H14F2NaOSi [M + Na]+, 287.0674; found, 287.0670.

2-(Dimethyl(phenyl)silyl)-3,4-difluorophenol (4o′). Prepared ac-
cording to general procedure A. Yield: 0.017 g (13%, based on 0.50
mmol of the corresponding boronic acid). Yellow oil. Rf: 0.3
(pentane/EtOAc = 20:1). 10% of regioisomer 4o present. 1H NMR
(400 MHz, CDCl3): δ 7.68−7.66 (m, 2H), 7.46−7.41 (m, 3H),
7.06−6.99 (m, 1H), 6.39 (ddd, J = 8.9, 3.3, 1.7 Hz, 1H), 4.86 (s, 1H),
0.68 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3): δ 155.9 (dd, JCF =
12.0, 2.5 Hz), 154.2 (dd, JCF = 241.5, 12.5 Hz), 144.9 (dd, JCF =
241.6, 16.9 Hz), 136.6, 134.2, 130.3, 128.6, 119.0 (dd, JCF = 18.7, 2.3
Hz), 112.0 (dd, JCF = 28.1, 2.6 Hz), 111.2 (d, JCF = 5.0, 3.4 Hz), −1.2
(two silyl methyl peaks appears). 19F NMR (376 MHz, CDCl3): δ
−122.73 to −122.84 (m) −148.47 to −149.29 (m). HRMS-MALDI:
calcd for C14H14F2NaOSi [M + Na]+, 287.0674; found, 287.0670.

5-Chloro-2-(dimethyl(phenyl)silyl)-3-fluorophenol (4p). Prepared
according to general procedure A. Yield: 0.086 g (61%, based on 0.50
mmol of the corresponding boronic acid). Colorless oil. Rf: 0.5
(pentane/EtOAc = 20:1). 1H NMR (400 MHz, CDCl3): δ 7.72−7.60
(m, 2H), 7.50−7.37 (m, 3H), 6.65 (dd, J = 8.8, 1.7 Hz, 1H), 6.51 (d,
J = 1.7 Hz, 1H), 5.18 (s, 1H), 0.65 (s, 3H), 0.64 (s, 3H). 13C{1H}
NMR (100 MHz, CDCl3): δ 167.8 (d, JCF = 242.7 Hz), 161.7 (d, JCF
= 15.8 Hz), 137.3 (d, JCF = 14.4 Hz), 136.6, 134.3, 130.4, 128.7, 112.3
(d, JCF = 3.4 Hz), 108.5 (d, JCF = 32.0 Hz), 108.2 (d, JCF = 32.7 Hz),
−1.2 (two silyl methyl peaks appear). 19F NMR (376 MHz, CDCl3):
δ −95.78 to −95.80 (m). HRMS-MALDI: calcd for C14H13ClFOSi
[M − H]−, 279.0414; found, 279.0418.

4-(9H-Carbazol-9-yl)-2-(dimethyl(phenyl)silyl)phenol (4q). Pre-
pared according to general procedure A. Yield: 0.082 g (39% based on
0.33 mmol of anthranilamido boronate 2a). Brown oil, Rf: 0.2
(pentane/EtOAc = 5:1). 1H NMR (400 MHz, CDCl3): δ 8.16 (d, J =
7.8 Hz, 2H), 7.71−7.63 (m, 2H), 7.54−7.48 (m, 1H), 7.44−7.38 (m,
5H), 7.37−7.22 (m, 5H), 6.91 (d, J = 8.4 Hz, 1H), 5.15 (s, 1H), 0.64
(s, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 159.7, 141.3, 137.3,
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134.7, 134.2, 130.3, 130.1, 129.7, 128.2, 125.8, 125.3, 123.1, 120.2,
119.6, 116.4, 109.7, −2.3. HRMS-ESI: calcd for C26H23NOSiNa [M +
Na]+, 416.1441; found, 416.1433.
2-(Dimethyl(phenyl)silyl)-9-phenyl-9H-carbazol-3-ol (4r). The

compound was prepared using a modified version of procedure A.
9-Phenyl-9H-carbazol-3-yl)boronic acid (1.00 mmol, 0.287 g) and
anthranilamide (1.00 mmol, 0.136 g) were heated at reflux in toluene
(15 mL) in a Dean−Stark apparatus overnight. Silylation was
performed according to silylation conditions listed in procedure A
to yield 2-(2-(dimethyl(phenyl)silyl)-9-phenyl-9H-carbazol-3-yl)-2,3-
dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one. The crude mixture
was transferred to a 100 mL round-bottomed flask and concentrated
under reduced pressure. The resulting mixture was suspended in
ethanol/THF (5:2 volume ratio, 35 mL). NH2OH·HCl (4.0 mmol,
0.278 g) and NaOH (5.0 mmol, 0.200 mmol) were added in one
portion, and the resulting mixture was stirred at rt for 3 h. The
reaction was quenched with H2O, extracted with EtOAc, dried
(MgSO4), filtered, and concentrated under reduced pressure. Yield:
0.248 g (63%, based on 1.00 mmol of the corresponding boronic
acid). Beige solid. Rf: 0.3 (pentane/EtOAc = 25:1). 1H NMR (400
MHz, CDCl3): δ 8.04 (d, J = 7.8 Hz, 1H), 7.63−7.53 (m, 6H), 7.45−
7.35 (m, 8H), 7.26−7.19 (m, 1H), 4.68 (s, 1H), 0.61 (s, 6H).
13C{1H} NMR (101 MHz, CDCl3): δ 154.4, 141.4, 138.3, 137.9,
135.9, 134.2, 129.7, 129.3, 127.9, 127.0, 126.7, 126.3, 125.7, 123.0,
122.8, 120.5, 119.5, 116.5, 109.9, 105.5, −2.1. HRMS-ESI: calcd for
C26H23NOSiNa [M + Na]+, 416.1441; found, 416.1444.
3-(Dimethyl(phenyl)silyl)-9,9-dimethyl-9H-fluoren-2-ol (4s). The

compound was pepared according to general procedure B. Yield:
0.042 g (81%, based on 0.15 mmol of the corresponding boronic
acid). Colorless solid. Rf: 0.2 (pentane/EtOAc = 20:1). 1H NMR
(400 MHz, CDCl3): δ 7.69 (s, 1H), 7.67−7.65 (m, 2H), 7.62−7.60
(m, 1H), 7.42−7.37 (m, 4H), 7.29 (ddd, J = 7.4, 7.4, 1.3 Hz, 1H),
7.25−7.21 (m, 1H), 6.77 (s, 1H), 4.84 (s, 1H), 1.45 (s, 6H), 0.65 (s,
6H). 13C{1H} NMR (100 MHz, CDCl3): δ 160.5, 157.7, 152.9, 139.1,
138.1, 134.3, 132.1, 129.4, 128.1, 127.0, 126.9, 126.1, 122.4, 121.5,
119.0, 109.9, 46.7, 27.2, −2.1. HRMS-EI calcd for C23H24OSi [M]+,
344.1591; found, 344.1599.
Sulfonylation Procedure. Nonaflation of ortho-silyl ethers was

performed according to a modified literature procedure.13b ortho-Silyl
phenol (0.30 mmol, 1.0 equiv) and NaH (0.30 mmol, 1.0 equiv) were
added to a 10 mL oven-dried round-bottomed flask equipped with a
stir bar. The flask was then evacuated and backfilled three times with
argon. Dry THF or MeCN (3.0 mL, 0.1 M) was added, and the
mixture was stirred for 1 h in room temperature. The flask was cooled
on an ice bath for 15 min followed by dropwise addition of
perfluorobutanesulfonyl fluoride (NfF) (0.33 mmol, 1.1 equiv). After
30 min, the ice bath was removed and the reaction was stirred at rt for
16 h. The reaction was quenched with water (20 mL) and extracted
with CH2Cl2 (3 × 25 mL). Organic phases were combined, dried over
Na2SO4, and reduced under a vacuum. The products were purified by
column chromatography using EtOAc/pentane or Et2O/pentane as
the eluent.
Analytical Data for Aryne Precursors. 5-Chloro-2-(dimethyl-

(phenyl)silyl)-3-fluorophenyl-1,1,2,2,3,3,4,4,4-nonafluorobutane-1-
sulfonate (5a). The compound was synthesized from ortho-silyl
phenol 4p according to the general sulfonylation procedure listed
above. Yield: 0.131 g (78%, based on 0.300 mmol of 4p). Colorless
oil. Rf: 0.9 (pentane/EtOAc 15:1). 1H NMR (400 MHz, CDCl3): δ
7.56−7.50 (m, 2H), 7.40−7.33 (m, 3H), 7.21−7.18 (m, 1H), 7.07
(dd, J = 8.4, 1.7 Hz, 1H), 0.71 (s, 6H). 13C{1H} NMR (101 MHz,
CDCl3): δ 167.1 (d, JCF = 249.0 Hz), 154.4 (d, JCF = 16.4 Hz), 137.5
(d, JCF = 13.2 Hz), 136.3 (d, JCF = 1.3 Hz), 133.6, 133.0, 129.6, 127.9,
127.7, 125.3, 117.6 (d, JCF = 33.6 Hz), 117.1 (q, JCF = 2.6 Hz), 116.0
(d, JCF = 30.8 Hz), −0.82, −0.86. 19F NMR (376 MHz, CDCl3): δ
−80.60 to −80.80 (m), −90.86 to −91.07 (m), −108.82 to −109.06
(m), −120.82 to −121.03 (m), −125.73 to −125.91 (m). HRMS-ESI:
calcd for C18H13ClF10O3SSiNa [M + Na]+, 584.9776; found,
584.9772.
2-(Dimethyl (phenyl )s i l y l ) -9-phenyl -9H-carbazol -3-y l

1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (5b). The com-

pound was synthesized from ortho-silyl phenol 4r according to the
general sulfonylation procedure listed above. Yield: 0.164 g (78%,
based on 0.300 mmol of 4r). Colorless solid. Rf: 0.8 (pentane/Et2O =
3:1). 1H NMR (400 MHz, CDCl3): δ 8.15 (d, J = 7.9 Hz, 1H), 8.11−
8.05 (m, 1H), 7.60−7.50 (m, 4H), 7.49−7.42 (m, 5H), 7.42−7.29
(m, 5H), 0.70 (s, 6H). 13C{1H} NMR (101 MHz, CDCl3): δ 149.3,
141.8, 138.8, 136.9, 136.9, 134.1, 129.9, 129.3, 128.2, 127.8, 127.7,
127.4, 126.7, 125.2, 122.5, 120.9, 120.5, 117.7, 111.4 (t, JCF = 2.6 Hz),
110.3, −2.0. 19F NMR (376 MHz, CDCl3): δ −80.54 to −80.69 (m),
−109.66 to −109.84 (m), −120.84 to −121.04 (m), −125.63 to
−125.88 (m). HRMS-ESI: calcd for C30H22F9NO3SSiNa [M + Na]+,
698.0838; found, 698.0846.

3-(Dimethyl (phenyl)s i ly l ) -9 ,9-dimethyl-9H-fluoren-2-
yl1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (5c). The com-
pound was synthesized from ortho-silyl phenol 4s according to the
general sulfonylation procedure listed above. Yield: 0.532 g (85%,
based on 1.00 mmol of 4s). Colorless solid. Rf: 0.4 (pentane). 1H
NMR (400 MHz, CDCl3): δ 7.68 (s, 1H), 7.61−7.57 (m, 3H), 7.44−
7.38 (m, 4H), 7.36 (s, 1H), 7.33−7.40 (m, 2H), 1.49 (s, 6H), 0.71 (s,
6H). 13C{1H} NMR (100 MHz, CDCl3): δ 157.5, 155.0, 153.8, 138.3,
137.4, 136.7, 134.2, 129.5, 129.2, 128.0, 127.9, 127.9, 127.2, 122.7,
120.2, 114.3 (t, JCF = 2.5 Hz), 47.3, 26.8, −2.0. 19F NMR (376 MHz,
CDCl3): δ −80.61 to −80.67 (m), −109.65 to −109.74 (m), −120.94
to −121.01 (m), −125.71 to −125.86 (m). HRMS-ESI: calcd for
C27H23F9O3SSiNa [M + Na]+, 649.0886; found, 649.0891

Cycloadditions of Arynes (Trapping Procedure 1). A predried
microwave vial equipped with a magnetic stir bar was charged with an
aryne precursor (1.0 equiv), N-Boc-pyrrole or furan (3.0 equiv), and
CsF (3.0 equiv), and CH3CN was added to obtain a 0.10 M solution
with respect to the aryne precursor. This mixture was heated at 60 °C
for 16 h. The resulting capture product was purified by column
chromatography using pentane/EtOAc as the eluent.

5-Phenyl-7,10-dihydro-5H-7,10-epoxybenzo[b]carbazole (7a).
The compound was synthesized from aryne precursor 5b according
to trapping procedure 2 using furan as an arynophile. Yield: 0.042 g
(94%, based on 0.20 mmol of 5b). Colorless solid. Rf: 0.2 (pentane/
EtOAc = 25:1). 1H NMR (400 MHz, CDCl3): δ 8.08−8.01 (m, 1H),
7.98−7.93 (m, 1H), 7.63−7.56 (m, 2H), 7.55−7.50 (m, 2H), 7.50−
7.43 (m, 1H), 7.38−7.30 (m, 3H), 7.28−7.23 (m, 1H), 7.14−7.07
(m, 1H), 7.05−6.98 (m, 1H), 5.89−5.83 (m, 1H), 5.76−5.71 (m,
1H). 13C{1H} NMR (101 MHz, CDCl3): δ 147.2, 143.6, 142.4, 141.0,
140.0, 138.6, 137.6, 129.9, 127.6, 127.3, 124.9, 123.4, 119.9, 119.7,
119.5, 112.3, 109.9, 104.0, 82.6, 82.4. HRMS-ESI: calcd for
C22H16NO [M + H]+, 310.1226; found, 310.1231.

tert-Butyl 11,11-Dimethyl-9,11-dihydro-6H-6,9-epiminobenzo-
[b]fluorene-12-carboxylate (7b). The compound was synthesized
from aryne precursor 5c using N-Boc-pyrrole as the arynophile. Yield:
0.055 g (94%, based on 0.10 mmol of 5c). Colorless solid. Rf: 0.2
(pentane/EtOAc = 25:1). 1H NMR (500 MHz, CDCl3): δ 7.64−7.60
(m, 2H), 7.40−7.37 (m, 1H), 7.33−7.31 (m, 1H), 7.31−7.24 (m,
2H), 7.02 (m, 2H), 5.55−5.52 (m, 2H), 1.44 (s, 3H), 1.42 (s, 3H),
1.39 (s, 9H). 13C{1H} NMR (75 MHz, CDCl3): δ 155.1, 154.0,
151.0, 147.8, 147.5, 143.0, 139.2, 136.0, 126.8, 126.6, 122.3, 119.4,
115.8, 113.1, 80.6 (2C), 66.5, 46.6, 28.2, 27.0, 26.7. HRMS-ESI: calcd
for C24H25NO2Na [M + Na]+, 382.1777; found, 382.1781.

Iodine Insertion into Aryne (Trapping Procedure 2). 2,3-
Diiodo-9,9-dimethyl-9H-fluorene (7c). A predried microwave vial
equipped with a magnetic stir bar was charged with aryne precursor
5c (1.0 equiv), iodine (4.0 equiv), and CsF (8.0 equiv), and CH3CN
was added to obtain a 0.10 M solution with respect to the aryne
precursor. This mixture was heated at 60 °C for 71 h. The resulting
product 7c was purified by column chromatography using pentane as
the eluent. Yield: 0.054 g, 77% (based on 0.10 mmol of 5c). Colorless
solid. Rf: 0.9 (pentane).

1H NMR (500 MHz, CDCl3): δ 8.23 (s, 1H),
7.95 (s, 1H), 7.66−7.65 (m, 1H), 7.42−7.40 (m, 1H), 7.38−7.33 (m,
2H), 1.46 (s, 6H). 13C{1H} NMR (75 MHz, CDCl3): δ 155.2, 153.2,
141.3, 136.9, 133.8, 130.7, 128.5, 127.3, 122.7, 120.4, 105.6, 105.5,
46.8, 26.8. HRMS-EI: calcd for C15H12I2 [M]+, 445.9023; found,
445.9041
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Direct Generation and Cycloaddition of Benzyne (Trapping
Procedure 3). ortho-Silyl phenol (1.0 mmol, 1.0 equiv) was prepared
according to a modified procedure A. After completion of the
oxidation, without further purification of the ortho-silyl phenol by
column chromatography, the crude mixture was extracted with
CH2Cl2 (25 mL × 3). The combined layers were dried over MgSO4
and concentrated under reduced pressure. To this mixture were added
Cs2CO3 (1.5 mmol, 1.5 equiv), 18-crown-6 (0.6 mmol, 0.6 equiv),
NfF (1.2 mmol, 1.2 equiv), arynophile (3.0 mmol, 3.0 equiv), and
CH3CN (10 mL, 0.10 M). This mixture was heated at 60 °C for 18 h.
The reaction mixture was extracted with CH2Cl2 (25 mL × 3). The
combined organic layers were dried (MgSO4), filtered, and
concentrated under reduced pressure. The product was purified by
column chromatography using pentane/EtOAc as the eluent. Yields
are reported over four steps.
1,4-Dihydro-1,4-epoxynaphthalene (7d). The compound was

synthesized in a four-step procedure from phenylboronic acid
according to trapping procedure 1 using furan as an arynophile.
Yield: 0.100 g (70%, based on 1.00 mmol of phenylboronic acid).
Colorless solid. Rf: 0.3 (pentane/EtOAc = 20:1). Spectral data agrees
with previously reported values.36

tert-Butyl 1,4-Dihydro-1,4-epiminonaphthalene-9-carboxylate
(7e). The compound was synthesized in a four-step procedure from
phenylboronic acid according to trapping procedure 1 using N-Boc-
pyrrole as an arynophile. Yield: 0.126 g (52%, based on 1.00 mmol of
phenylboronic acid). Colorless solid. Rf: 0.2 (pentane/EtOAc = 25:1).
Spectral data is in accordance with previously reported values.37

2-(tert-Butyl)-3-phenyl-2,3-dihydrobenzo[d]isoxazole (7f). The
compound was synthesized in a four-step procedure from phenyl-
boronic acid according to trapping procedure 1 using N-tert-butyl-α-
phenylnitrone as an arynophile. Yield: 0.176 g (69%, based on 1.00
mmol of phenylboronic acid). Colorless solid. Rf: 0.5 (pentane/
EtOAc = 20:1). Spectral data is in accordance with previously
reported values.38
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Peŕez, D.; Guitiań, E.; Peña, D. From Perylene to a 22-Ring Aromatic
Hydrocarbon in One-Pot. Angew. Chem., Int. Ed. 2014, 53 (34),
9004−9006. (d) Xiao, X.; Hoye, T. R. The domino hexadehydro-
Diels−Alder reaction transforms polyynes to benzynes to naphthynes
to anthracynes to tetracynes (and beyond?). Nat. Chem. 2018, 10 (8),
838−844. (e) Alonso, J. M.; Quiroga, S.; Codony, S.; Turcu, A. L.;
Barniol-Xicota, M.; Peŕez, D.; Guitiań, E.; Vaźquez, S.; Peña, D.
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