

Southerton, D., & Welch, D. (2019). After Paris: transitions for sustainable consumption. *Sustainability: Science, Practice and Policy*, *15*(1), 31-44. https://doi.org/10.1080/15487733.2018.1560861

Publisher's PDF, also known as Version of record

License (if available): CC BY-NC

Link to published version (if available): 10.1080/15487733.2018.1560861

Link to publication record in Explore Bristol Research PDF-document

This is the final published version of the article (version of record). It first appeared online via Taylor & Francis at https://www.tandfonline.com/doi/full/10.1080/15487733.2018.1560861 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Accepted Manuscript

Title: Health outcomes of asymptomatic HIV-infected pregnant women initiating antiretroviral therapy at different baseline CD4 counts in Ethiopia

Authors: Yohannes Ejigu, Jeanette H. Magnus, Johanne Sundby, Maria Magnus

Please cite this article as: Ejigu Yohannes, Magnus Jeanette H, Sundby Johanne, Magnus Maria.Health outcomes of asymptomatic HIV-infected pregnant women initiating antiretroviral therapy at different baseline CD4 counts in Ethiopia.*International Journal of Infectious Diseases* (2019), https://doi.org/10.1016/j.ijid.2019.02.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Health outcomes of asymptomatic HIV-infected pregnant women initiating antiretroviral therapy at different baseline CD4 counts in Ethiopia

Yohannes Ejigu (MSc) ^{1,2*}, Jeanette H. Magnus (MD, PhD)^{3,4}, Johanne Sundby (MD, PhD)², Maria Magnus (RN, MPH, PhD)^{5,6,7}

¹International Center for Health Monitoring and Evaluation, Institute of Health Sciences, Jimma University, Jimma, Ethiopia

²Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway

³Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health and Tropical Medicine, New Orleans, USA

⁴Faculty of Medicine, University of Oslo, Oslo, Norway

⁵MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom ⁶Department of Population Health Sciences, Bristol Medical School, Bristol, United Kingdom

⁷Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway

*Corresponding Author: Yohannes Ejigu Kochi, 05 Jimma, Po.Box 378, Ethiopia Email: yohannesejigu@yahoo.com Cellphone no: +251911700380

Highlights

- ON AVERAGE CD4(CELLS/MM³) INCREASED FROM 391 TO 523 AFTER 12 MONTHS OF ART
- RATE OF CD4 INCREASE WAS HIGHER AMONG WOMEN WITH LOWER BASELINE CD4 COUNT.
- STARTING ART AT CD4 >500 WAS POSITIVELY ASSOCIATED WITH CD4 NORMALIZATION
- NO DIFFERENTIAL RISK OF HIV-RELATED CLINICAL EVENTS BY BASELINE CD4 LEVELS

Abstract

Objective: To compare health outcome following initiation of antiretroviral therapy (ART) for asymptomatic HIV-infected pregnant women at different CD4 levels.

Methods: We analyzed data from 706 asymptomatic HIV-infected Ethiopian women initiating ART during pregnancy between February 2012 and October 2016. The outcomes evaluated were CD4 gain, CD4 normalization (CD4 count \geq 750cells/mm³) and occurrence of HIV-related clinical events after twelve months of treatment.

Result: On average, CD4 count (cells/mm³) increased from 391(95% CI: 372-409) at baseline to 523(95% CI: 495-551) after twelve months of treatment. Rate of CD4 gain was higher among women with baseline CD4 between 350 and 499 compared to CD4 >500 (207 versus 6, p < 0.001). But women with baseline CD4 between 350 and 499 could not catch up with those with CD4 >500. Women with baseline CD4 >500 had significantly higher likelihood of achieving CD4 normalization as compared to those with CD4 between 350 and 499 (AOR = 0.32, 95% CI: 0.13-0.76). No strong evidence of differential risk in the occurrence of HIV-related clinical events.

Conclusion: Starting ART for asymptomatic HIV-infected women with CD4 count >500cells/mm³ was beneficial to preserve or recover immunity after 12 months of treatment in a resource limited setting.

Keywords: HIV, Antiretroviral drugs, ART, clinical outcome

Introduction

Antiretroviral therapy (ART) is effective in reducing mortality (1), preventing mother-to-child transmission (MTCT) (2, 3), and sexual transmission of HIV (4). However, the optimal time to start treatment has been a topic of debate (5), as a result, HIV treatment guidelines have been regularly revised to balance risks and benefits of treatment. Initiation of ART immediately after diagnosis is currently recommended (5-7) following reports of clinical trials demonstrating the benefit of starting ART as early as possible (8-11).

The effectiveness of ART in actual clinical settings might be inferior to what is reported by clinical trials, because clinical trial participants are more likely to be adherent to treatment than those treated in actual program settings. The benefit of early ART might even be very minimal among young asymptomatic adults with high level of CD4 count, as they have poor treatment adherence and retention (12-14), that could increase drug resistance (15), and impact the potential benefit of early ART (14). In fact, a sub-group analysis of a clinical trial among adults aged below 30 years with CD4 count above 500cells/mm³ showed that those initiated treatment and those deferred treatment have similar rate of disease progression in the first 18 months (16). This finding demonstrates that the benefit of early ART is not uniform across various patient

groups. Therefore, observational studies are essential to clarify concerns of early initiation of ART. There are also reports indicating a greater risk of adverse outcomes (17, 18), associated with early ART initiation. Although newest antiretroviral drugs are more tolerable and have fewer side effects, they are not commonly used in low income settings.

The burden of HIV/AIDS in Ethiopia is substantial. It is estimated that 665,116 (1.1%) adults were living with the virus in 2016 and the majority (61.5%) were women (19). At the time of the study, indication to start ART for adults in Ethiopia was based on CD4 count or disease progression. However, pregnant women were started on ART up on diagnosis, to prevent mother-to-child transmission (20). The CD4 count threshold for initiating treatment for asymptomatic adults was 350 cells/mm³, but was subsequently increased to 500 cells/mm³ in 2013, and ART was recommended for all HIV infected adults in 2017 (21). The recommended type of ART has also been regularly revised; at the time of the study, a combination of tenofovir, lamivudine and efavirenz (TDF-3TC-EFV) was the preferred first line ART. Prophylaxes including co-trimoxazole and isoniazid preventive therapy have been routinely provided to prevent opportunistic infections. Treatment response was monitored by CD4 count measured every six months (21). Evaluating the health benefits of ART for HIV-infected but asymptomatic Ethiopian women with high level of CD4 counts is important. To our knowledge, there are no previous Ethiopian studies addressing these questions. Therefore, the main objective of our study was to evaluate the clinical and immunological outcomes of asymptomatic HIV-infected pregnant women who initiated ART at different CD4 levels in Ethiopia.

Materials and Methods

Study population

The study was conducted in three hospitals and six health centers in Addis Ababa, Ethiopia. Information was obtained from clinical charts and ART databases of HIV-infected pregnant women attending prenatal care follow-up between February 2012 and October 2016. The clinical charts of 926 HIV-infected women who initiated ART during pregnancy were reviewed. We excluded HIV-infected pregnant women who had missing information about the type or timing of ART initiation, baseline CD4 count and WHO stage at the time of ART initiation. Women with HIV related clinical symptoms at the time of ART initiation, and those who did not return after HIV diagnoses were also excluded from the analysis. This left 706 HIV-infected asymptomatic pregnant women eligible for analysis of prospective HIV-related clinical events. Follow-up CD4 measurement was available for 668 women after six months and 297 women after twelve months of ART initiation (Figure 1). This historical chart review was regarded as clinical practice and outcome assessment and therefore did not require written consent. The study was approved by the Norway Regional Committees of Medical and Health Research Ethics of South/East Norway, Jimma University Ethical Review Board, and Addis Ababa City Administration Health Bureau.

Exposure variables

The main exposure variable was baseline CD4 count, which was measured at the time of ART initiation. Baseline CD4 count was categorized as less than 350 cells/mm³, between 350 and 499 cell/mm³ and 500 cells/mm³ or more. We also evaluated the role of the type of ART regimen. According to the Ethiopian treatment guideline, the first drug of choice was a combination of tenofovir, lamivudine and efavirenz (TDF-3TC-EFV). Alternatives include a combination of

tenofovir, lamivudine and nevirapine (TDF-3TC-NVP), zidovudine, lamivudine and nevirapine (ZDV-3TC-NVP) and zidovudine, lamivudine and efavirenz (ZDV-3TC-EFV). We categorized the type of ART as TDF-3TC-EFV compared to all other ART types (TDF-3TC-NVP, ZDV-3TC-NVP and ZDV-3TC-EFV).

Outcomes

The outcomes evaluated were average CD4 gain, CD4 normalization and incidence of HIVrelated clinical events after twelve months of treatment. To define CD4 normalization, different studies used different cutoff points, ranging from 500 to 900 cells/mm³(22-24). Two Ethiopian studies reported 723 and 775 cells/mm³ as median CD4 counts of HIV-free healthy Ethiopian adults (25, 26). We therefore defined CD4 normalization as achieving CD4 counts of at least 750cells/mm³. The WHO clinical staging categorizes HIV infection into four stages (stage I-IV), stage one indicates that the patient has no HIV-related clinical symptoms or mild symptoms, and stage four indicates severe form of HIV-related illnesses including malignancies (27). Long-term outcomes, such as AIDS-defining illnesses and death were rare, in part due to the short follow-up period. As a result, occurrences of any WHO stage II-IV clinical events during our follow-up period were combined for the analysis.

Covariates

Additional information was gathered on maternal background characteristics likely to be associated with maternal immunologic and clinical outcomes. These included age, gestational week, level of education (no education, primary, secondary and tertiary), marital status (married and other), and weight in kilogram at the time of treatment initiation. We also gathered

information on hemoglobin level (mg/dl) at the time of treatment initiation and self-reported adherence to treatment (missing less than 5% of the prescribed pills, categorized as "good", missing between 5 to 20% "fair" and missing more than 20% "poor").

Statistical analysis

We compared background characteristic of women by baseline CD4 category using chi-square for categorical covariates or Wilcoxon rank-sum test for continuous covariates. We used linear regression to examine the associations of baseline CD4 level and types of ART initiated with change in CD4 count at six and twelve months, reporting mean difference and 95% confidence intervals (CIs). We ran logistic regression to evaluate associations of baseline CD4 count and type of ART regimen with the probability of CD4 normalization, reporting odds ratios (ORs) and 95% CIs. Cox-proportional hazard regression model was used to evaluate associations of baseline CD4 level and type of ART regimen with incident HIV-related clinical events, reporting hazard ratios (HRs) and 95% CIs. We censored follow-up time for each woman at the first registration of a WHO stage II to stage IV HIV-related clinical events, at the last visit before treatment interruption for more than 3 months, or at twelve months (end of follow-up). The multivariable analyses were adjusted for known covariates including age, gestational age, weight, marital status, education, hemoglobin level and adherence to treatment. In addition, baseline CD4 count and type of ART were adjusted for each other. Covariates were categorized as indicated in table 1 and entered using dummy variables. Most of the covariates had some missing values (ranging from 31% for level of education to 2% adherence to treatment). We therefore imputed missing values of covariates using chained equations, imputing a total of 20

datasets. The imputation model included all exposures, covariates, and outcome variables. We observed similar results in the multiple imputation and complete-case analyses. We report the results based on the imputed data as main results, while the findings from the complete-case analysis are presented in the supplement. The analyses were conducted using STATA version 13 (Stata Corp., College Station, TX).

Result

A total of 706 HIV-infected asymptomatic (WHO Stage I) women initiating ART during pregnancy were included in the analysis of occurrence of HIV-related clinical events. Background characteristics of women included (n=706) and excluded (n=220) from the analysis were largely similar, except that excluded women were younger and less compliant to treatment (Supplemental table 1). Median age at ART initiation was 28 years (IQR: 25-30) and median gestational week at initiation was 20 weeks (IQR: 15-27). The majority of women (80.5%) initiated TDF-3TC-EFV. Women with baseline CD4 count \geq 500cells/mm³ were younger and had higher hemoglobin level than women with CD4 below 500 cells/mm³. The distributions of other background characteristics were largely similar across baseline CD4 levels (Table 1). The distribution of background characteristics of the subsample of women included in the evaluation of CD4 recovery at 6 months (n=668) and 12 months (n=297) after treatment initiation is presented in supplemental table 2.

CD4 count recovery

On average, CD4 count increased from 391 (95% CI: 372-409) cells/mm³ at the time of ART initiation, to 497 (95% CI: 478- 515) cells/mm³ after six months, and to 523 (95% CI: 495-551)

cells/mm³ after twelve months. We observed a decrease in the CD4 count in 20% of the women after six months and 18% of the women after twelve months. The median CD4 count measured during follow-up according to baseline CD4 category and type of ART is shown in figures 2 and 3. The average CD4 gains after twelve months were 175 cells/mm³ (SD = 187) among women with baseline CD4 below 350 cells/mm³, 207 cells/mm³ (SD = 162) among women with baseline CD4 below 350 and 499 cells/mm³, and 6 cells/mm³ (SD = 211) among women with baseline CD4 of 500 cells/mm³ or more (p < 0.001). On average, CD4 count after twelve months reached 390, 624, and 698 cells/mm³ for women with baseline CD4 counts below 350, 350 to 499 and 500 cells/mm³ are respectively. After twelve months of treatment, a CD4 count of above 500 cells/mm³ was achieved by 22%, 75% and 82% of women with baseline CD4 below 350, 350 to 499 and 500 cells/mm³ or more respectively.

We also evaluated CD4 normalization, which was defined as reaching CD4 count of 750 cells/mm³ or more. CD4 normalization was achieved by 18% of women after twelve months. As compared to those with baseline CD4 count less than 500 cells/mm³, a higher proportion of women with baseline CD4 count of 500 cells/mm³ or more achieved CD4 normalization after twelve months, as compared to the rest of women (43.6% versus 8.6%, p<0.001).

In adjusted regression analysis, treatment initiation at low level of CD4 count was associated with higher CD4 gains during follow-up. For example, compared to women with baseline CD4 count of 500 cells/mm³ or more, those with baseline CD4 count between 350 and 499 cells/mm³ had a larger CD4 gain after six (adjusted mean difference = 142 cells/mm³, 95% CI: 101, 183) and twelve months (adjusted mean difference = 207 cells/mm³, 95% CI: 140, 275) (Table 2).

Compared to TDF-3TC-EFV, women who initiated other types of ARTs had lower CD4 gains after twelve months (adjusted mean difference = -80 cells/mm³, 95% CI: -140, -21) (Table 2).

After adjusting for relevant covariates, we found that higher baseline CD4 count was positively associated with CD4 normalization following ART in these asymptomatic women. Compared to women with CD4 count of 500 cells/mm³ or more at treatment initiation, a lower proportion of women with baseline CD4 count between 351 and 499 cells/mm³ achieved CD4 normalization after six (adjusted OR = 0.10, 95% CI: 0.04-0.24) and twelve months (adjusted OR = 0.32, 95% CI: 0.13 -0.76) (Table 3). We observed no strong evidence that the likelihood of CD4 normalization differed according to type of ART regimen (Table 3).

Clinical outcomes

A total of 706 pregnant women who contributed 682 person-years of follow-up were included in the analysis of clinical events. A total of 54 women were censored because treatment was interrupted for 3 or more months and one woman was censored after having died. During the follow-up, 24 women experienced HIV-related clinical events. Of these, 20 (2.9%) were WHO stage II, three (0.5%) were WHO stage III and one (0.2%) was WHO stage IV. Incidence rate of HIV-related clinical events was 3.5 per 100 person-years of follow-up (95% CI: 2.4-5.2 per 100 person-years). Incidence of HIV related event was 5.3 per 100 person-years, among women with baseline CD4 count below 350 cells/mm³; 2.2 per 100 person-years among women with baseline CD4 count below 351 and 499 cells/mm³; and 1.1 per 100 person-years among women with CD4 count 500 cells/mm³ (p= 0.01).

In adjusted analysis, the incidence of HIV related clinical events among women with baseline CD4 of 500 cells/mm³ or more was not significantly different from women with a baseline CD4 count between 350 and 499 cells/mm³ (adjusted HR = 2.01, 95% CI: 0.35-12.55), or from women with a baseline CD4 count of less than 350 cells/mm³ (adjusted HR = 4.10, 95% CI: 0.91-18.47) (Table 3). Similarly, the association between type of ART and incidence of clinical events observed in unadjusted analysis was attenuated in adjusted analysis (Table 5).

Discussion

Our findings indicated that starting ART for asymptomatic HIV-infected pregnant women before their CD4 count falls below 500 cells/mm³ is beneficial for CD4 normalization (CD4 recovery to 750 cells/mm³ or more) in resource-limited settings. Women who started ART at lower baseline CD4 count (<500 cells/mm³) could not catch up with those who had higher baseline CD4 count (\geq 500 cells/mm³) after twelve months of treatment although the rate of CD4 gain was faster among women initiating ART at lower baseline CD4 count. It is well known that having a CD4 count within the normal range among HIV infected individuals is associated with lower risk of HIV-related illnesses (23, 28) and a greater life expectancy (29).

Although the benefit of early initiation of ART has been demonstrated by clinical trials (9, 10), the benefit was not uniform across various patient groups. In addition, it is not certain that the observed effectiveness in clinical trials can be replicated in different real program settings in low income settings. Moreover, the type of ART regimen used in clinical trials was not common in low income settings which make generalization of the findings to these settings problematic. Therefore, observational studies demonstrating the benefit of early ART in real clinical settings

is necessary. Our study showed that early initiating ART may be beneficial in preserving or recovering immunity in resource limited settings. The finding ease the concerns that early ART may not be effective for asymptomatic adults with high level CD4 count and supports the recent recommendations of early initiation of ART for all HIV-infected individuals by the WHO and the Ethiopian government (5, 30). Previous studies also reported that initiating ART when the CD4 count is >500 cells/mm³ compared to deferring treatment until the CD4 drops below 500 cells/mm³ significantly increase the likelihood of CD4 normalization (22, 24, 31). The benefit of early initiation of treatment is further reinforced by previous findings which showed that early initiation of ART preserves immune function (23).

On average CD4 count increased across all baselines CD4 categories during follow-up. However, the rate of CD4 count increase during follow-up was higher among women who initiated ART at a lower baseline CD4 count. The finding is not unexpected as most women who initiated treatment at higher baseline CD4 count already have normal or near normal CD4 count, and are therefore not expected to have large CD4 gains during follow-up. The likely CD4 count trajectory without treatment is a progressive decline after a transient increase during the acute HIV infection phase (23). Preventing CD4 count decline is the likely benefit of treatment among women who have high baseline CD4 count. Previous studies reported inconsistent findings. Some studies reported a larger CD4 increase among patients with lower baseline CD4 count (32, 33), and others demonstrated a similar rate of CD4 increase despite the difference in baseline CD4 count (34, 35).

Our study could not determine the long term change in CD4 count, as the follow-up time was only twelve months. Findings from a few previous studies evaluating CD4 trajectories over time demonstrated that the CD4 counts continued to increase up to 3 to 4 years after initiation of ART before reaching a plateau after 4 to 5 years in all CD4 categories (24, 32). Other studies indicated that the CD4 counts continue to increase for 7 years among those who initiated treatment at CD4 count less than 350 cells/mm³ (22, 33). However, these studies did not evaluate the effect of treatment initiation at different CD4 levels among asymptomatic HIV-infected individuals.

We also evaluated clinical outcomes according to baseline CD4 count. Outcomes, such as AIDS defining illnesses and mortality during follow up period were very rare due to the short followup time. As a result, we considered WHO stage II-IV HIV-related clinical events in combination. The study demonstrated some evidence of lower risk of HIV-related clinical events, among women who initiated ART at baseline CD4 count of 500cells/mm³ as compared to women who initiated treatment with a CD4 count below 500 cells/mm³, although the confidence intervals were wide due to the small number of events.

The "90-90-90 treatment target" which aims at diagnosing 90% of HIV-infected individuals, treating 90% of those diagnosed and achieve viral suppression for 90% of treated individuals, is a key strategy to achieve one of the sustainable development goals (SDG) of ending AIDS as a public health threat by 2030 (36). However, low level of treatment adherence, lost to follow-up, and drug resistance needs to be addressed to achieve the SDG goals. ART should be taken for life with adequate level of adherence to get the desired benefit. However, asymptomatic individuals with a high level of CD4 count might have poor adherence and less motivated to

continue treatment (12). For example, a study in Malawi reported that 73% of women continued ART treatment three months after initiation but only 56% were adherent to treatment (37). Drug resistance is another problem that should be taken into account. The 2017 WHO HIV drug resistance report showed that the level of HIV drug resistance among the first line drugs used in most low and middle income countries was very high; three of the four sub-Saharan African countries included in the report had greater than 10% pretreatment resistance for non-nucleoside reverse transcriptase inhibitors (NNRTIs) (ranging from 8.1% to 15.4%) (38). Mathematical modeling estimates showed that if NNRTI pretreatment resistance exceeds 10%, and NNRTI-based ART continue to be a first-line treatment in the next 15 years, NNRTI pretreatment resistance could become responsible for 16% of AIDS deaths (n = 890 000) and 9% of new HIV infections (n = 450 000) in sub-Saharan Africa alone (39). Notably, early initiation of treatment is found to reduce the risk of HIV drug resistance compared to delaying treatment (40, 41).

Our findings should be understood in the light of the following limitations. Because of the observational nature of the study, different confounding factors could bias findings; but we were able to adjust for a broad range of known potential confounders. We also explore influence calendar year at the start of ART but we found no association between calendar year at the start of ART and treatment outcome. The study was conducted in resource limited urban settings which might limit its generalizability to other settings. Moreover, our study was limited by exclusion of substantial number of women due to missing information, although our comparison of characteristics of those excluded and those included showed that the two groups were very similar. More women with lower CD4 counts were started on other types ART. This is because of evolution of the treatment guideline. Before 2013, efavirenz was not recommended during

early pregnancy for fear of side effects; meanwhile eligibility for ART was based on CD4 count (< 350 cell/mm3) or disease progression. Viral load and CD4 to CD8 ratio which are important clinical indicators of treatment success were not measured. Our study was also limited by short follow-up period; as a result we could not evaluate the long term trend of CD4 count and clinical outcomes. Notably, previous studies indicate that most of the CD4 gains in patients on ART are achieved within one year of treatment (32, 42).

In conclusion, initiation of ART for asymptomatic HIV-infected pregnant women with CD4 count > 500 cells/mm³ was beneficial to preserve or recover immunity after 12 months of treatment in resource limited settings. Our finding supports the recent WHO recommendations of universal ART for HIV-infected individuals including pregnant women as early as possible. A large-scale study on drug toxicity and drug resistance in resource-limited settings among men and women who initiate ART at different CD4 counts is warranted.

Authors' contribution

YE, JHM, JS and MCM participated in designing the study. YE carried out data collection and first draft report preparation. YE, MCM, JHM, and JS have participated in data analysis, data interpretation and writing the manuscript. All authors contributed to edit the final report.

Conflict of interest: We declare that we have no conflicts of interests.

Acknowledgments

This publication was supported by NORAD (Norwegian Agency for Development Cooperation) under the NORHED-Program, agreement no. ETH-13/0024. MCM works at the MRC Integrative Epidemiology Unit which receives infrastructure funding from the UK Medical Research Council (MRC) (MC_UU_12013/5). MCM was funded by a UK MRC fellowship (MR/M009351/1). This work was also partly supported by the Research Council of Norway through the Centers of Excellence funding scheme (project number 262700).

References

1. Detels R, Muñoz A, McFarlane G, Kingsley LA, Margolick JB, Giorgi J, et al. Effectiveness of potent antiretroviral therapy on time to AIDS and death in men with known HIV infection duration. Jama. 1998;280(17):1497-503.

2. Birth outcomes following zidovudine therapy in pregnant women. MMWR Morbidity and mortality weekly report. 1994;43(22):409, 15-6.

3. Connor EM, Sperling RS, Gelber R, Kiselev P, Scott G, O'sullivan MJ, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. New England Journal of Medicine. 1994;331(18):1173-80.

4. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. New England journal of medicine. 2011;365(6):493-505.

5. WHO. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. Geneva: World Health Organization; 2016.

6. Günthard HF, Saag MS, Benson CA, del Rio C, Eron JJ, Gallant JE, et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2016 Recommendations of the International Antiviral Society–USA Panel. JAMA. 2016;316(2):191-210.

7. Ryom L, Boesecke C, Gisler V, Manzardo C, Rockstroh J, Puoti M, et al. Essentials from the 2015 European AIDS Clinical Society (EACS) guidelines for the treatment of adult HIV-positive persons. HIV medicine. 2016;17(2):83-8.

8. Kitahata MM, Gange SJ, Abraham AG, Merriman B, Saag MS, Justice AC, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med. 2009;360(18):1815-26.

9. Group TAS. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. New England Journal of Medicine. 2015;373(9):808-22.

10. Group ISS. Initiation of antiretroviral therapy in early asymptomatic HIV infection. New England Journal of Medicine. 2015;373(9):795-807.

11. O'Connor J, Vjecha MJ, Phillips AN, Angus B, Cooper D, Grinsztejn B, et al. Effect of immediate initiation of antiretroviral therapy on risk of severe bacterial infections in HIV-positive people with CD4 cell counts of more than 500 cells per μL: secondary outcome results from a randomised controlled trial. The Lancet HIV.4(3):e105-e12.

12. Nachega JB, Uthman OA, Del Rio C, Mugavero MJ, Rees H, Mills EJ. Addressing the Achilles' heel in the HIV care continuum for the success of a test-and-treat strategy to achieve an AIDS-free generation. Clinical Infectious Diseases. 2014;59(suppl_1):S21-S7.

13. Grimsrud A, Cornell M, Schomaker M, Fox MP, Orrell C, Prozesky H, et al. CD4 count at antiretroviral therapy initiation and the risk of loss to follow-up: results from a multicentre cohort study. J Epidemiol Community Health. 2015:jech-2015-206629.

14. Hu R, Zhang F, Wang V, Dou Z, Shepard C, Zhao D, et al. Comparing Outcomes of HIV-Infected Chinese Adults on Antiretroviral Therapy by CD4 Count at Treatment Initiation: A Nationwide Retrospective Observational Cohort Study, 2012-2014. AIDS Patient Care STDS. 2017;31(10):413-20.

15. Meresse M, March L, Kouanfack C, Bonono RC, Boyer S, Laborde-Balen G, et al. Patterns of adherence to antiretroviral therapy and HIV drug resistance over time in the Stratall ANRS 12110/ESTHER trial in Cameroon. HIV Med. 2014;15(8):478-87.

16. Schechter M. Prioritization of antiretroviral therapy in patients with high CD4 counts, and retention in care: lessons from the START and Temprano trials. Journal of the International AIDS Society. 2018;21:e25077.

17. Nansseu JR, Bigna JJ. Antiretroviral therapy related adverse effects: Can sub-Saharan Africa cope with the new "test and treat" policy of the World Health Organization? Infectious diseases of poverty. 2017;6(1):24.

18. Jose S, Quinn K, Hill T, Leen C, Walsh J, Hay P, et al. Laboratory adverse events and discontinuation of therapy according to CD4(+) cell count at the start of antiretroviral therapy. Aids. 2014;28(9):1333-9.

19. UNAIDS. AIDS by the Numbers [Internet]. 2016 [cited October 2017]. Available from: http://www.unaids.org/sites/default/files/media_asset/AIDS-by-the-numbers-2016_en.pdf.

20. Federal HIV Prevention and Control Office of Ethiopia. HIV/AIDS Strategic Plan 2015-2020 in in an investment case aproach [Internet]. December 2014 [cited October 2017]. Available from: http://www.moh.gov.et/web/guest/bycategory

21. Federal Ministry of Health Ethiopia. Guidelines for Comprehencive HIV Prevention, Care and Treatment 2014, Addis Ababa, Ethiopia.

22. Gras L, Kesselring AM, Griffin JT, van Sighem AI, Fraser C, Ghani AC, et al. CD4 cell counts of 800 cells/mm3 or greater after 7 years of highly active antiretroviral therapy are feasible in most patients starting with 350 cells/mm3 or greater. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2007;45(2):183-92.

23. Le T, Wright EJ, Smith DM, He W, Catano G, Okulicz JF, et al. Enhanced CD4+ T-cell recovery with earlier HIV-1 antiretroviral therapy. N Engl J Med. 2013;368(3):218-30.

24. García F, de Lazzari E, Plana M, Castro P, Mestre G, Nomdedeu M, et al. Long-term CD4+ T-cell response to highly active antiretroviral therapy according to baseline CD4+ T-cell count. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2004;36(2):702-13.

25. Tsegaye A, Messele T, Tilahun T, Hailu E, Sahlu T, Doorly R, et al. Immunohematological Reference Ranges for Adult Ethiopians. Clinical and Diagnostic Laboratory Immunology. 1999;6(3):410-4.

26. Abuye C, Tsegaye A, West CE, Versloot P, Sanders EJ, Wolday D, et al. Determinants of CD4 counts among HIV-negative Ethiopians: role of body mass index, gender, cigarette smoking, khat (Catha Edulis) chewing, and possibly altitude? Journal of clinical immunology. 2005;25(2):127-33.

27. WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva, Switzerland2013.

28. Baker JV, Peng G, Rapkin J, Abrams DI, Silverberg MJ, MacArthur RD, et al. CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection. AIDS (London, England). 2008;22(7):841.

29. May MT, Gompels M, Delpech V, Porter K, Orkin C, Kegg S, et al. Impact on life expectancy of HIV-1 positive individuals of CD4+ cell count and viral load response to antiretroviral therapy. AIDS (London, England). 2014;28(8):1193.

30. Cain LE, Logan R, Robins JM, Sterne JA, Sabin C, Bansi L, et al. When to initiate combined antiretroviral therapy to reduce mortality and AIDS-defining illness in HIV-infected persons in developed countries: an observational study. Ann Intern Med. 2011;154(8):509-15.

31. Okulicz JF, Le TD, Agan BK, Camargo JF, Landrum ML, Wright E, et al. Influence of the timing of antiretroviral therapy on the potential for normalization of immune status in human immunodeficiency virus 1-infected individuals. JAMA internal medicine. 2015;175(1):88-99.

32. Lifson AR, Krantz EM, Eberly LE, Dolan MJ, Marconi VC, Weintrob AC, et al. Longterm CD4+ lymphocyte response following HAART initiation in a U.S. Military prospective cohort. AIDS Research and Therapy. 2011;8:2-.

33. Sempa JB, Kiragga AN, Castelnuovo B, Kamya MR, Manabe YC. Among Patients with Sustained Viral Suppression in a Resource-Limited Setting, CD4 Gains Are Continuous Although Gender-Based Differences Occur. PLoS ONE. 2013;8(8):e73190.

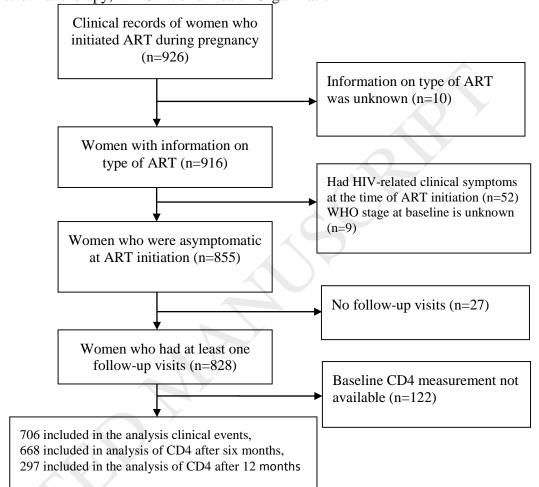
34. Lawn SD, Myer L, Bekker L-G, Wood R. CD4 cell count recovery among HIV-infected patients with very advanced immunodeficiency commencing antiretroviral treatment in sub-Saharan Africa. BMC infectious diseases. 2006;6(1):59.

35. Lewden C, Chêne G, Morlat P, Raffi F, Dupon M, Dellamonica P, et al. HIV-infected adults with a CD4 cell count greater than 500 cells/mm3 on long-term combination antiretroviral therapy reach same mortality rates as the general population. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2007;46(1):72-7.

36. UNAIDS. 90-90-90. An ambitious treatment target to help end the AIDS epidemic.
[Internet]. 2014 [cited April 2017]. Available from: http://www.unaids.org/sites/default/files/media_asset/90-90-90_en_0.pdf.

37. Hauser BM, Miller WC, Tweya H, Speight C, Mtande T, Phiri S, et al. Assessing Option
B+ retention and infant follow-up in Lilongwe, Malawi. Int J STD AIDS.
2017:956462417721658.

38. WHO. HIV drug resistance report 2017. Geneva 2017 [Internet]. [cited May 01 2018].Available from: http://www.who.int/hiv/topics/drugresistance/en,.


39. Phillips AN, Stover J, Cambiano V, Nakagawa F, Jordan MR, Pillay D et al. Impact of HIV drug resistance on HIV/AIDS associated mortality, new infections and antiretroviral therapy program costs in sub-Saharan Africa. J Infect Dis. 2017; 215:1362–5.

40. Hamers RL, Sigaloff KC, Wensing AM, et al. Patterns of HIV-1 drug resistance after first-line antiretroviral therapy (ART) failure in 6 sub-Saharan African countries: implications for second- line ART strategies. Clin Infect Dis. 2012; 54:1660–1669.

41. Fogel JM, Hudelson SE, Ou S-S, Hart S, Wallis C, Morgado MG, et al. HIV drug resistance in adults failing early antiretroviral treatment: results from the HIV Prevention Trials Network 052 trial. Journal of acquired immune deficiency syndromes (1999). 2016;72(3):304.

42. Gezie LD. Predictors of CD4 count over time among HIV patients initiated ART in Felege Hiwot Referral Hospital, northwest Ethiopia: multilevel analysis. BMC Research Notes. 2016;9:377.

Figure 1. Flow diagram: health outcomes of asymptomatic HIV infected pregnant Ethiopian women initiated ART at different baseline CD4 count. **Legend**: ART: antiretroviral therapy, WHO: World Health Organization

Figure 2. Median CD4 count during follow-up by baseline CD4 count category in asymptomatic HIV infected pregnant women

Legend: CD4 count measurement was available for 706 women at baseline, 668 after six months and 297 at twelve months. Of 706 women, 179 women had baseline CD4 500 cells/mm³ and more, 137 women had baseline CD4 350 to 499 cells/mm³ and 352 women had baseline CD4 less than 350cells/mm³

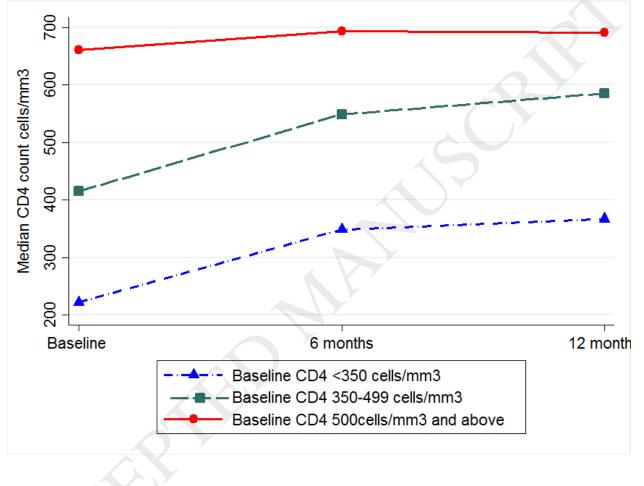
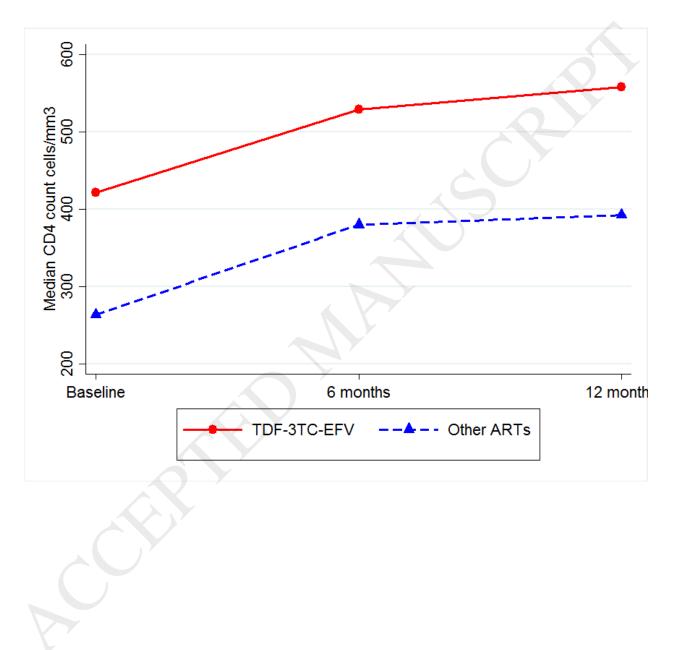



Figure 3. Median CD4 count during follow-up by type of ART regimen initiated in asymptomatic HIV infected pregnant women.

Legend: CD4 count measurement was available for 706 women at baseline, 668 after six months and 297 at twelve months. Of these, 569 women at the start of ART, 538 after six months and 130 after twelve months were on TDF-3TC-EFV.

Characteristics	Total Baseline CD4 category				
	(n=706)	<350 cells/mm ³ (n=373)	350- 499cells/mm ³	>500cells/mm ³ (n=188)	P-value ^a
			(n=145)		
Age in years (median +IQR)	28(25-30)	28(25-30)	28(25-30)	27(24-30)	0.02 ^b
Gestational age in weeks at	20(15-27)	21(16-28)	20(15-26)	19(13-26)	0.04 ^b
ART initiation (Median					
+IQR)					
Marital status					
Married	659(93)	340(91.2)	137(94.5)	182(96.8)	0.04
Others	44(6)	31(8.3)	7 (4.8)	6(3.2)	
Unknown	3(0.4)	2(0.5)	1(0.7)	0(0)	
Educational status					
No education	60(9)	26(7.0)	15(10.3)	19(10.1)	0.54
Primary	188(27)	96(25.7)	40(27.6)	52(27.7)	
Secondary	188(27)	103(27.6)	35(24.1)	50(26.6)	
Higher	51(7)	32(8.6)	7(4.8)	12(6.4)	
Unknown	219(31)	116(8.6)	48(33.1)	55(29.3)	
Baseline weight in kg (median +IQR)	56(50-64)	56(50-62.5)	56(51-62)	56(50-65)	0.87b
Hemoglobin in mg/dl (median +IQR)	12(11-13)	12(11-13)	12(11-13)	12(12-13)	0.001 ^b
Adherence to treatment					
Good	612(87)	318(85.3)	130(89.7)	164(87.2)	0.47
Fair	38(5)	21(5.6)	7(4.8)	10(5.3)	
Poor	42(6)	28(7.5)	6(4.1)	8(4.3)	
Unknown	14(2)	6(1.6)	2(1.4)	6(3.2)	
Types of ART initiated					
TDF-3TC-EFV	569(81)	258(69.2)	137(94.5)	174(92.6)	<0.001
Other ART types ^c	137(19)	115(29.8)	8(5.5)	14(7.4)	

Table 1. Characteristics of 706 HIV infected asymptomatic pregnant Ethiopian women by baseline CD4 count category

Data are n(%) or median (IQR). ZDV: Zidovudine, 3TC: lamivudine, NVP: nevirapine, EFV: efavirenz, TDF: tenofovir, ART: antiretroviral therapy, IQR: Interquartile range.

^a Statistical tests did not consider missing values.

^b Wilcoxon rank-sum tests, the rest are chi-square test results

° Other type of ARTs which include: TDF-3TC-NVP, ZDV-3TC-NVP or ZDV-3TC-EFV

Table 2. Association of baseline CD4 count and ART regimen with CD4 count gain from baseline to six and twelve months follow-up in asymptomatic HIV infected pregnant women.

variables (CD4 count gain (cells/mm ³) at six months (N=668)				CD4 count gain (cells/mm ³) at 12 months (N=297)			
	n	Mean (SD)	Unadjusted β(95%Cl)	Adjusted β(95%CI) ^a	n	Mean (SD)	Unadjusted β(95%CI)	Adjusted β(95%Cl) ^a
Baseline								
CD4								
(cells/mm ³)								
>500	179	-4.5(224)	Reference	Reference	78	6(211)	Reference	Reference
350 to 499	137	130(152)	134(97, 172)	142(101, 183)	66	207(162)	201(139 <i>,</i> 264)	207(140, 275)
< 350	352	158(141)	162(132, 193)	173(139,208)	153	175(187)	169(118, 221)	200(141, 259)
Type of ART								
TDF-3TC-EFV	538	106(185)	Reference	Reference	235	144(210)	Reference	Reference
Other ART types*	130	121(174)	16 (-19, 51)	-29(-65, 7)	62	111(178)	-33(-90, 24)	-80(-140, -21)

ART: antiretroviral therapy, TDF-3TC-EFV: a combination of tenofovir, lamivudine and efavirenz,

^a The regression analyses were adjusted for age at treatment initiation, gestational age at ART initiation, weight at treatment initiation, marital status, level of education, hemoglobin level and treatment adherence. In addition, baseline CD4 count and type of ART were adjusted for each other.

^b Other type of ARTs include: ARTs comprised of TDF-3TC-NVP, ZDV-3TC-NVP or ZDV-3TC-EFV

Table 3. Association of baseline CD4 count and type of ART regimen with CD4						
normalization (CD4 > 750 cells/mm ³) at six and twelve months in asymptomatic HIV						
infected pregnant women.						

Exposures	CD4 normali	ization at six mon	ths (n=668)	CD4 normali			
	n/N(%)	Unadjusted	Adjusted	n/N(%)	Unadjusted	Adjusted	
		OR (95%CI)	OR(95%CI) ^a		OR (95%CI)	OR(95%CI) ^a	
Baseline CD4 (cells/mm ³)							
>500	65/179(36)	1	1	34/78(44)	1	1	
350 to 499	8/137(6)	0.11(0.05-	0.10(0.04-0.24)	13/66(20)	0.32(0.15-	0.32(0.13-	
		0.24)			0.67)	0.76)	
< 350	9/352(3)	0.05(0.02-	0.06 (0.03 -	6/153(4)	0.05(0.02-	0.06(0.02-	
		0.10)	0.13)		0.13)	0.18)	
Type of ART							
TDF-3TC-EFV	78/538(15)	1	1	50/235(21)	1	1	
Other ART	4/130(3)	0.19 (0.07-	0.43(0.12-1.63)	3/62(4.8)	0.19 (0.06-	0.48 (0.12-	
types*		0.52)			0.63)	2.00)	

OR: odds ratio, ART: antiretroviral therapy, TDF-3TC-EFV: a combination of tenofovir, lamivudine and efavirenz, ^a The regression analyses were adjusted for age at ART initiation, gestational age at ART initiation, weight at ART initiation, marital status, level of education, hemoglobin level and treatment adherence. In addition, baseline CD4 count and type of ART were adjusted for each other.

^b Other type of ARTs: include ARTs composed of TDF-3TC-NVP, ZDV-3TC-NVP or ZDV-3TC-EFV

Table 4. Association of baseline CD4 count and type of ART with occurrence of HIVrelated clinical events in asymptomatic HIV infected pregnant women who contributed 682 person-years

Exposures	Person years of follow-up	Number of events	Unadjusted HR (95% Cl)	Adjusted ^a HR (95% CI)
Baseline CD4 (cells/mm ³)				
>500	184	2	1	1
350 to 499	141	3	1.95(0.33-11.65)	2.01 (0.35-12.55)
< 350	357	19	4.92(1.15-21.12)	4.10 (0.91-18.47)
Type of ART				
TDF-3TC-EFV	553	14	1	1
Other ART types ^b	129	10	3.12(1.39-7.03)	2.28(0.94-5.51)

HR: hazard ratio, ART: antiretroviral therapy, TDF-3TC-EFV: a combination of tenofovir, lamivudine and efavirenz,

^a The regression analyses were adjusted for age at treatment initiation, gestational age at ART initiation, weight at treatment initiation, marital status, level of education, hemoglobin level and treatment adherence. In addition, baseline CD4 count and type of ART were adjusted for each other.

^b Other type of ARTs: include ARTs composed of TDF-3TC-NVP, ZDV-3TC-NVP or ZDV-3TC-EFV