
                          Teanby, N. A., Sylvestre, M., Sharkey, J., Nixon, C. A., Vinatier, S., &
Irwin, P. G. J. (2019). Seasonal evolution of Titan’s stratosphere during the
Cassini mission. Geophysical Research Letters, 46(6), 3079-3089.
https://doi.org/10.1029/2018GL081401

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1029/2018GL081401

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Wiley at
https://doi.org/10.1029/2018GL081401 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1029/2018GL081401
https://doi.org/10.1029/2018GL081401
https://research-information.bris.ac.uk/en/publications/seasonal-evolution-of-titans-stratosphere-during-the-cassini-mission(40bc0b2f-88ee-404b-913e-2543bebda719).html
https://research-information.bris.ac.uk/en/publications/seasonal-evolution-of-titans-stratosphere-during-the-cassini-mission(40bc0b2f-88ee-404b-913e-2543bebda719).html


Seasonal Evolution of Titan's Stratosphere During the
Cassini Mission
N. A. Teanby1 , M. Sylvestre1 , J. Sharkey1 , C. A. Nixon2, S. Vinatier3, and P. G. J. Irwin4

1School of Earth Sciences, University of Bristol, Bristol, UK, 2Planetary Systems Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD, USA, 3LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université,
Université Paris Diderot, Sorbonne Paris Cité, Meudon, France, 4Atmospheric, Oceanic and Planetary Physics,
Department of Physics, and Clarendon Laboratory, University of Oxford, Oxford, UK

Abstract Titan's stratosphere exhibits significant seasonal changes, including breakup and formation
of polar vortices. Here we present the first analysis of midinfrared mapping observations from Cassini's
Composite InfraRed Spectrometer to cover the entire mission (Ls=293–93◦, 2004–2017)—midnorthern
winter to northern summer solstice. The north polar winter vortex persisted well after equinox, starting
breakup around Ls ∼ 60◦ and fully dissipating by Ls ∼ 90◦. Absence of enriched polar air spreading to
lower latitudes suggests large-scale circulation changes and photochemistry control chemical evolution
during vortex breakup. South polar vortex formation commenced soon after equinox and by Ls ∼ 60◦ was
more enriched in trace gases than the northern middle-winter vortex and had temperatures ∼20 K colder.
This suggests that early-winter and middle-winter vortices are dominated by different processes—radiative
cooling and subsidence-induced adiabatic heating respectively. By the end of the mission (Ls=93◦) south
polar conditions were approaching those observed in the north at Ls=293◦, implying seasonal symmetry in
Titan's vortices.

Plain Language Summary The Cassini spacecraft observed Saturn's largest moon, Titan,
during its 13-year tour of the Saturn system. This allowed temperature and gas composition to be measured
for almost half a Titan year, which lasts 29.46 Earth years. Spectra measured by Cassini's infrared
spectrometer show that Titan's winter poles are much colder and significantly more enriched in trace gas
species than more equatorial latitudes. These observations can be explained by the presence of winter polar
vortices, where sinking air enriches the composition of the lower atmosphere and isolation by strong
vortex winds allows enhanced cooling in the winter darkness. The coldest temperatures and most extreme
trace gas concentrations were seen at Titan's southern pole during early winter and vortex formation.

1. Introduction
Saturn's largest moon Titan has a thick atmosphere comprising ∼98% nitrogen and ∼2% methane with
∼1.5 bar surface pressure (Fulchignoni et al., 2005). Titan has a rich C-N-H photochemistry originating
from radicals formed by dissociation of N2 and CH4 by ultraviolet photons and magnetospheric electrons
(Dobrijevic et al., 2014; Krasnopolsky, 2009; Lavvas et al., 2008; Loison et al., 2015; Vuitton et al., 2019;
Wilson & Atreya, 2004). These radicals produce a wide range of higher-order hydrocarbon and nitrile
trace gas species with lifetimes ranging from a few seconds to thousands of years (Vuitton et al., 2019;
Wilson & Atreya, 2004). Oxygen species also contribute to atmospheric chemistry (Dobrijevic et al., 2014;
Hörst et al., 2008), but only H2O, CO, and CO2 have been detected so far. Trace gases are produced in the
upper atmosphere (∼1,000 km) and condense in the cold lower stratosphere, giving rise to vertical abun-
dance profiles that have increasing volume mixing ratio (VMR) with increasing altitude (Coustenis et al.,
1991; Teanby et al., 2007; Vinatier et al., 2007). The vertical mixing timescale between source and sink
regions controls the vertical gradient, with the shortest-lifetime gases having the steepest vertical gradients
due to their more rapid loss away from the source region (Teanby et al., 2009).

Here we use observations of trace gas emission features taken by the Cassini spacecraft's Composite InfraRed
Spectrometer (CIRS) (Flasar et al., 2004) to determine how Titan's atmosphere changes with the seasons.
These observations can be used to determine Titan's atmospheric temperature and composition, inform
and constrain photochemical models, and probe Titan's atmospheric circulation (Bézard, 2014; Teanby,

RESEARCH LETTER
10.1029/2018GL081401

Special Section:
Cassini's Final Year: Science
Highlights and Discoveries

Key Points:
• Early- and middle-winter polar

vortices have distinct behaviors and
different dominant processes

• Large-scale dynamics and
photochemistry determine polar
chemical evolution during vortex
breakup

• The northern winter vortex persisted
until late spring, with breakup
completed by midsummer

Supporting Information:
• Supporting Information S1
• Data Set S1
• Data Set S2
• Data Set S3
• Table S1

Correspondence to:
N. A. Teanby,
n.teanby@bristol.ac.uk

Citation:
Teanby, N. A., Sylvestre, M.,
Sharkey, J., Nixon, C. A., Vinatier, S.,
& Irwin, P. G. J. (2019). Seasonal
evolution of Titan's stratosphere
during the Cassini mission.
Geophysical Research
Letters, 46, 3079–3089.
https://doi.org/10.1029/2018GL081401

Received 20 NOV 2018
Accepted 19 FEB 2019
Accepted article online 25 FEB 2019
Published online 18 MAR 2019

©2019. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits
use, distribution and reproduction in
any medium, provided the original
work is properly cited.

TEANBY ET AL. 3079

http://publications.agu.org/journals/
https://orcid.org/0000-0003-3108-5775
https://orcid.org/0000-0001-7086-8882
https://orcid.org/0000-0002-5118-0211
http://dx.doi.org/10.1029/2018GL081401
https://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1944-8007.CASSINI_FINALE1
http://dx.doi.org/10.1029/2018GL081401
https://doi.org/10.1029/2018GL081401
http://creativecommons.org/licenses/by/4.0/


Geophysical Research Letters 10.1029/2018GL081401

de Kok, et al., 2008). Cassini completed 294 Saturn orbits and 127 close Titan flybys between orbital inser-
tion on 1 July 2004 (Ls=293◦) and its final plunge into Saturn's atmosphere on 15 September 2017 (Ls=93◦).
Saturn/Titan's year lasts 29.46 Earth years, so Cassini's 13-year Saturn system tour covered almost half
a Saturn/Titan year. Saturn's, and hence Titan's, obliquity is 26.7◦, so significant seasonal effects were
observed during the mission, spanning northern winter to northern summer solstice. Terrestrial general
circulation models (GCMs) adapted to Titan's atmosphere predict that middle atmosphere (stratosphere
and mesosphere) meridional circulation is dominated by a single south-to-north circulation cell during
northern winter, with upwelling in the southern hemisphere and subsidence at the north pole. This cir-
culation reverses around equinox via a short-lived intermediate circulation with two hemispheric cells
that upwell at the equator and subside at both poles (Hourdin et al., 1995; Lebonnois et al., 2012, 2014;
Lora et al., 2015; Newman et al., 2011). Such changes have been investigated by observing how short- and
intermediate-lifetime trace gas distributions vary over the mission. For example, subsidence advects photo-
chemical species downward, which causes stratospheric abundances to increase. Therefore, gas abundance
can be used as a tracer of vertical motion (Teanby et al., 2012). This is particularly obvious over Titan's winter
poles, where subsidence can lead to very large trace gas enrichments (Coustenis et al., 2016, 2018; Teanby,
de Kok, et al., 2008; Teanby et al., 2012, 2017; Vinatier et al., 2010, 2015).

Cassini's varied orbital tour provided a unique vantage point for observing Titan's winter pole, which has
been known since the Voyager flybys to be the most enriched in trace gases (Coustenis & Bézard, 1995).
Cassini observations are particularly valuable as observing the winter pole is not possible from Earth due
to viewing geometry. Subsets of the Cassini data have been analyzed previously and show that in northern
winter the north pole was much more enriched in trace gases than other latitudes (Coustenis et al., 2007,
2010, 2016; Flasar et al., 2005; Sylvestre et al., 2018; Teanby et al., 2006, 2010b; Teanby, Irwin, et al., 2008;
Vinatier et al., 2010). Thermal winds derived from stratospheric temperature fields show that the northern
winter pole was surrounded by a strong polar vortex, which isolated the polar air mass, allowing extreme
gas enrichments to develop (Achterberg et al., 2008, 2011; Teanby, de Kok, et al., 2008; Teanby et al., 2010b).
However, there is also some evidence for cross-vortex mixing of intermediate-lifetime species such as HCN
in the middle stratosphere (Teanby, de Kok, et al., 2008). Short-lifetime gases are more enriched due to their
steeper vertical gradient and resulting greater sensitivity to downward advection (Teanby et al., 2009, 2010a).

Later in the mission, after the 2009 northern spring equinox, the south pole began to become enriched in
trace gases, indicating that the circulation had reversed and subsidence was now occurring at the southern
pole (Teanby et al., 2012). There was also compositional evidence for the transitional two-cell circulation
predicted by numerical models (Vinatier et al., 2015). Following equinox, enrichment at the south pole was
greater than that observed in the north at the start of the mission (Coustenis et al., 2018; Teanby et al.,
2017). The south polar stratosphere also achieved extremely cold temperatures, which created ice clouds of
HCN (de Kok et al., 2014) and benzene (Vinatier et al., 2018) at ∼300 km. These cold temperatures were
not observed in the north and could be caused by extreme trace gas enrichments acting as infrared coolers,
combined with slow initial subsidence producing only modest levels of adiabatic heating (Teanby et al.,
2017). This illustrates the importance of trace gases in Titan's overall atmospheric energy budget (Bézard et
al., 1995, 2018; Teanby et al., 2017).

The meridional circulation also affects Titan's aerosols. Cassini's Visual and Infrared Mapping Spectrome-
ter observations show winter subsidence is associated with thick lower stratosphere condensate clouds over
the poles (Le Mouélic et al., 2018). Cassini's Imaging Science Subsystem observations of Titan's detached
haze layer at 350–500 km imply upwelling speeds greater than haze particle free-fall velocity are required to
dynamically clear the lower mesosphere of haze (West et al., 2018). These Visual and Infrared Mapping Spec-
trometer and Imaging Science Subsystem observations further confirm the meridional circulation inferred
from Cassini CIRS and GCMs.

Here we present the first analysis of all CIRS midinfrared mapping sequences from the entire Cassini mis-
sion, spanning 2004–2017 (Ls = 293–93◦, ΔLs = 160◦), almost half a Titan year. This unique data set allows
stratospheric temperature and composition to be determined along with seasonal variations. Previous CIRS
studies have been limited to southern latitudes only (e.g., Teanby et al., 2017) or only included data taken
up until 2016 (e.g., Coustenis et al., 2018). In addition, our analysis uses an improved methodology, incorpo-
rating limb observation-based temperature a priori, which gives more robust temperature and composition
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Figure 1. Cassini's Composite InfraRed Spectrometer data summary for the entire Cassini mission. (a) Evolution of
subsolar latitude (black), subspacecraft latitude projected onto Saturn (gray), and Sun-Saturn distance throughout the
mission (red). Saturn orbit insertion (SOI) until the end of mission (EoM) covers northern winter, northern spring
equinox, and northern summer solstice. The complex tour includes four high orbital inclination periods, which give
coverage of the north and south poles. (b) Latitude-time coverage of the 2.5-cm−1 resolution Cassini's Composite
InfraRed Spectrometer nadir mapping observations. There are several data gaps at the poles, but overall, the CIRS data
set has excellent coverage. (c–e) Examples of observation binning to improve signal-to-noise ratio. Gray shows the
footprint of all spectra in an observation sequence, blue shows spectra which satisfy emission angle and geometry
constraints, and red shows examples of spectra included in a 10◦ latitude bin (30–40◦N). Example bin locations are
indicated in (b).

inversions. CIRS has the advantage of high spatial and temporal resolution, including the polar regions,
from a single instrument, which we take full advantage of by simultaneously analyzing the entire data set
with the same methodology. Previous studies have only analyzed partial data sets, which made direct com-
parison between seasons more difficult. We use our analysis to answer three key questions: (1) are thermal
and chemical behaviors of Titan's north and south polar vortices comparable? (2) what are the main factors
controlling chemistry during polar vortex breakup? (3) how long does the winter polar vortex breakup take?
These questions are essential for understanding Titan's atmospheric chemistry and dynamics, in addition
to constraining future GCMs and photochemical models.

2. Radiative Transfer Analysis
CIRS observation coverage and example spatial binning to improve signal-to-noise ratio are shown in
Figure 1. Observations sequences and data preprocessing are summarized in supporting information Table
S1 and Text S1.

The inversion method is explained in detail in previous papers (Irwin et al., 2008; Teanby et al., 2006, 2010b;
Teanby, Irwin, et al., 2008) and is briefly summarized here. Spectra were inverted for temperature and
composition using the NEMESIS retrieval code (Irwin et al., 2008), which employs an optimal estimation
technique. Partial derivatives of the forward modeled radiances were calculated analytically with respect to
each model variable using radiative transfer theory. The temperature and composition were then iteratively
adjusted to fit the data while remaining as close to the a priori profiles as possible (Irwin et al., 2008).
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Figure 2. Example fits to Cassini's Composite InfraRed Spectrometer spectra at 75◦N from Cassini's final Titan flyby
(orbit 293). (a) Fit to the 𝜈4 CH4 band in FP4 and (b) retrieved temperature profile used for the fit. (c, e) Fits to the trace
gas vibrational features in the FP3 spectrum and (d, f) corresponding trace gas volume mixing ratio (VMR) profiles. All
gases are assumed to have a uniform abundance profile above the condensation level. This simplified parameterization
is sufficient to fit these data. Note that C2H4 does not condense under Titan's atmospheric conditions.

Here we use a two-stage inversion process similar to that in Teanby et al. (2010b). First, a continuous tem-
perature profile was retrieved for each binned spectrum using the 𝜈4 methane band in FP4 over the spectral
range 1,240–1,360 cm−1. A latitude- and time-dependent temperature a priori (supporting information Text
S2) was used as the starting point, with an a priori error 𝜎 varying as a function of latitude 𝜃 between 𝜎eq =
2 K at the equator and 𝜎pole = 5 K at the poles according to 𝜎 = 𝜎pole − (𝜎pole − 𝜎eq) cos 𝜃. This accounted
for the greater uncertainty in polar temperatures compared to the more stable and well-constrained equa-
tor, where we have the advantage of Huygens probe direct temperature measurements (Fulchignoni et al.,
2005). A correlation length of 1.5 atmospheric scale heights was assumed for the off-diagonal elements of
the temperature a priori covariance matrix to ensure a smooth temperature profile was retrieved (Irwin et
al., 2008). Second, the temperature was fixed and uniform a priori gas profiles (supporting information Text
S3) were scaled to provide the best fit to the observed spectra. Example fits to the data are shown in Figure 2
along with the corresponding fitted temperature and composition profiles.

Nadir observation sensitivity is limited to midstratosphere to lower mesosphere (∼5–0.1 mbar), with peak
information content at ∼1 mbar. Near the winter pole the range of sensitivity is 1–0.01 mbar for cases with a
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Figure 3. (a–i) Temperature and composition seasonal latitude variation at the 1-mbar pressure level. Temperature shows a warm equator and cold winter
poles, with the south winter pole reaching the coldest temperatures. Composition variations show trace gas enrichment at the winter poles, again with the most
extreme enrichment at the southern winter pole. Short-lifetime gases (C4H2 and HC3N) have the largest enrichment, whereas the longest-lifetime gas (CO2)
does not vary significantly. North polar enrichment persists for ∼60–90◦ of Ls after equinox. Vertical dashed lines show the 2009 northern spring equinox
(Ls=0◦) and 2017 northern summer solstice (Ls = 90◦). The 1-mbar surfaces are fitted to irregularly spaced inversion results using a 2-D spline in tension
(Smith & Wessel, 1990) with a grid spacing of 0.1 years (∼1◦ of Ls) and 1◦ latitude. Gray areas indicate data gaps. Units of composition are log10(VMR).

hot stratopause and very cold lower to middle stratosphere. Contribution functions for both these cases are
plotted in Teanby, Irwin, et al. (2008, their Figure 3).

3. Results
Figure 3 shows the latitudinal variation of temperature and composition at the 1-mbar pressure level with
season for the entire Cassini mission. Figure 4 shows the seasonal variation in time series form for latitudes
80◦S, 50◦S, 0◦N, 50◦N, and 80◦N. In this section we briefly discuss gross features of the temperature and
composition results. Implications for Titan's atmosphere are considered in section 4.

3.1. Seasonal Temperature Variations
The midstratosphere 1-mbar temperatures shown in Figure 3 are warmest at the equator, with peak tem-
peratures occurring at Ls ∼ 30◦. The equatorial temperature maximum moves northward as the season
progresses from northern winter to northern summer, from ∼10◦S at Ls = 293◦ to ∼0◦N from Ls ∼ 30◦

onward. Equatorial temperatures at 1 mbar are relatively stable until Ls ∼ 30◦, after which they reduce by
∼5 K between Ls = 30◦ and 93◦. Temperatures at 1 mbar are coldest over the winter poles. The south pole
has the coldest observed temperatures at this pressure level, occurring at Ls ∼ 60◦ in early southern winter.

Figure 4 shows the temperature variation at 5, 1, and 0.1 mbar for comparison. The temperature at 0.1 mbar
displays the most seasonal variation, especially near the poles with a ∼20 K preequinox cooling at the north
pole and a ∼45 K postequinox cooling and subsequent recovery at the south pole. The 5-mbar temperature
exhibits a steady postequinox decrease for the equator and southern hemisphere and a steady increase in
the northern hemisphere.
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Figure 4. (a–o) Seasonal variation of temperature and composition at five latitudes. Temperature is shown at 5, 1, and 0.1 mbar. The 0.1-mbar pressure level is
near the stratopause and is most sensitive to seasonal changes; for example, cooling of the stratopause hot spot preceding equinox and adiabatic heating from
Ls ∼ 60◦ onward. Vertical dashed lines show the 2009 northern spring equinox and 2017 northern summer solstice. Points with errors are individual
measurements, and lines with error envelopes are cubic b-spline fits under tension using a knot spacing of 15◦ of Ls for 0 and ±50◦N, or 30◦ of Ls for ±80◦N
where data coverage is sparser (Teanby, 2007). VMR = volume mixing ratio.

3.2. Seasonal Composition Variations
Seasonal composition variations in Figure 3 are most appropriate for the 1-mbar level, based on contribution
functions for the uniform profiles assumed here. Gases display a consistent behavior, with high concentra-
tions over the poles during winter and approximately constant abundance at the equator, except for CO2,
which is roughly constant at all latitudes. The degree of enrichment over the poles depends on the gas
species; HC3N and C4H2 show the most extreme polar enrichments (2–3 orders of magnitude), whereas
HCN, C2H2, C2H4, C2H6, and C3H4 have more modest enrichments (∼1 order of magnitude or less). HC3N
and C4H2 react faster to the seasons than the more modestly enriched species, with HC3N changing the
fastest.

Note that absolute VMR values depend on profile assumptions, which can vary with latitude and season.
For most gases, which have modest vertical gradients, this effect is small and the absolute VMRs can be
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considered representative of the stratosphere. However, for short-lifetime gases like HC3N and C4H2 that
have very steep vertical gradients, the peak of the contribution function can shift to lower pressures, which
leads to an overestimate of the stratospheric abundances (Teanby et al., 2006). Therefore, the uniform pro-
file results presented here should only be used to inspect relative abundance variations as these are robust
to profile assumptions. For example, relative abundance comparisons of HC3N for different latitudes and
times are valid, but absolute abundance comparisons between HC3N and C2H2 are not valid. This is a fun-
damental limitation of the CIRS nadir spectra, which are sensitive to a broad pressure range and contain
limited vertical information. Where absolute abundances are critical (e.g., for photochemical model profile
comparisons) limb viewing data is required (e.g., Teanby et al., 2012; Vinatier et al., 2015).

4. Discussion
4.1. Polar Vortex General Characteristics
In general, Titan's stratospheric winter polar vortices are characterized by cold temperatures at 1 mbar, 20–50
K colder than at the equator (Figure 3). These cold temperatures cause a strong thermal gradient, which
drives strong circumpolar winds, creates a potential vorticity gradient and mixing barrier, and effectively
isolates the polar airmass from more equatorial latitudes (Achterberg et al., 2008, 2011; Flasar et al., 2005;
Teanby, de Kok, et al., 2008). This allows subsiding air masses to enrich the polar stratosphere in trace gas
species, which are advected down from the upper atmosphere photochemical production zone where they
are more abundant (Teanby et al., 2009). Subsidence causes significant adiabatic heating at low pressures
and leads to a hot stratopause over the winter pole (Achterberg et al., 2008; Teanby et al., 2017). Trace gas
enrichment is largest for short-lifetime gases (HC3N and C4H2), which tend to have steeper vertical gradients
and are more susceptible to enrichment by subsidence (Teanby et al., 2009). The polar isolation is also most
effective for short-lifetime species, whereas intermediate-lifetime species such as HCN and C2H2 can be
mixed across the vortex barrier and leach to lower latitudes (Teanby, de Kok, et al., 2008). Longer-lifetime
species are less enriched, with the very long lifetime species CO2 showing virtually no variation, indicating
a more uniform vertical profile consistent with a lifetime much longer than any dynamical timescale. This
general picture is confirmed by our new results (Figures 3 and 4), but our longer time series covering the
whole Cassini mission (Ls = 293–93◦) allows further insight into vortex breakup and formation processes
by observing both north and south poles (sections 4.2 and 4.3).

4.2. North Polar Vortex Evolution
The northern winter vortex was already well established when Cassini arrived at Ls = 293◦ and extended
from the north pole down to ∼45◦N. Initially, the 1-mbar temperatures were around 140 K, compared to
170 K at the equator, but had warmed to 160 K by the end of the mission at Ls = 93◦ (Figure 4). As the
mission progressed the vortex shrank in extent, being limited to latitudes north of 60◦N from Ls = 20◦ onward
(Figure 3). Our results show the north polar vortex endured well beyond the northern spring equinox (Ls
= 0◦), maintaining cold temperatures and enriched trace gas abundances until at least late spring (Ls ∼
60◦). After this point vortex dissipation was first visible in temperature and short-lifetime gases (HC3N and
C4H2) as a warming and abundance reduction. Early stages of vortex breakup were also visible in a subset
of observations taken at 70◦N before mid-2016 (Ls < 80◦) by Coustenis et al. (2018).

The hot stratopause at 0.1 mbar driven by adiabatic heating was already cooling at Ls ∼ 320◦ and had
stabilized in temperature by Ls = 0◦, indicating a weakening in north polar subsidence. The midstratosphere
at 1 mbar was slower to respond because of the longer radiative time constant, with temperatures increasing
more gradually by ∼20 K between Ls = 0◦ and 90◦, due to increased insolation. These observations indicate
weakening of the vortex. A reduction in HC3N and C4H2 abundance starting at Ls ∼ 50◦ is the first sign
of vortex breakup. Longer-lifetime species dissipated over the proceeding Ls ∼60–90◦ period. There was a
north polar data gap at Ls ∼ 70◦, but the final orbits of Cassini around northern summer solstice (Ls = 90◦)
showed that north polar gases had attained almost equatorial abundances and vortex breakup was complete.

Interestingly, our results show that after vortex breakup, spreading of air enriched in trace gases to lower
latitudes did not occur (Figure 3). This shows that polar gas depletion by small-scale cross-latitude mixing,
which would enhance trace gas abundances at subpolar latitudes postvortex breakup, is small compared to
other effects. Furthermore, this suggests that the bulk of stratospheric trace gas loss must be due to a combi-
nation of large-scale dynamics and photochemistry. In this scenario, upwelling from the reversed meridional
Hadley circulation would advect trace gas depleted air from lower latitudes into the north polar midstrato-
sphere, leading to a reduction in abundances. Photochemical loss, enabled by increasing insolation after
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equinox, could also contribute to a reduction in polar stratospheric trace gas abundance during northern
spring.

4.3. South Polar Vortex Evolution
South polar nadir observations have a data gap after equinox, but previous limb viewing observations showed
the south polar winter vortex formed almost immediately after northern spring equinox (Teanby et al., 2012;
Vinatier et al., 2015). Early southern winter vortex temperatures dramatically cooled to ∼120 K during Ls
= 0–60◦ at 1 mbar. This is much colder than was observed in the middle-winter north polar vortex and can
explain the high-altitude HCN and C6H6 ice clouds observed by de Kok et al. (2014) and Vinatier et al. (2018).
The extremely cold temperatures could be caused by enhanced radiative cooling from enriched trace gases,
which are effective infrared coolers (Bézard et al., 2018; Teanby et al., 2017). In the early stages of vortex
formation this cooling was not mitigated by significant adiabatic heating as the reversed meridional Hadley
circulation was initially quite sluggish (Teanby et al., 2012, 2017). It is also possible that enhancement of
infrared cooling gases may form a radiative feedback, contributing to establishing the reversed circulation
(Teanby et al., 2017). Postequinox the south polar vortex continued to grow and by Ls ∼ 90◦ it was similar
in extent to the middle-winter northern vortex, reaching 45◦S. It is likely that the early northern winter
vortex also exhibited this behavior, but this phase would occur for Ls = 180–270◦ prior to Cassini's arrival,
so remains unobserved.

For the shortest-lifetime gases (e.g., HC3N and C4H2), there appeared to be some overshoot of enrichment
during vortex formation, with south polar abundances being enhanced by up to an order of magnitude
compared to those observed in the middle-winter north polar vortex. This can be seen in Figure 4, with
abundances peaking around Ls = 60–90◦ at 80◦S. Therefore, the largest winter polar trace gas enrichments
occurred between equinox and winter solstice. This effect was also visible in limb observations (Teanby
et al., 2012, 2017; Vinatier et al., 2015), but with peak abundances occurring earlier (Ls < 60◦) at high
altitude (>300 km, <0.1 mbar) and later (Ls > 60◦) at low altitude (<300 km, >0.1 mbar). Near the end
of the mission (Ls = 93◦), temperatures and abundances appeared to be trending toward those observed in
northern midwinter (Figure 4). This suggests that north and south polar vortices have similar temperatures
and chemistry at similar seasonal phases.

One potential explanation for the extreme south polar enrichments observed during Ls = 0–90◦ requires a
combination of photochemistry, insolation, and dynamics. Close to equinox, upper atmosphere abundances
of trace gases were highest because the southern hemisphere was just exiting summer—a period of rela-
tively high insolation and photochemical production. Then, after equinox, as the circulation reversed and
subsidence developed, the trace gas vertical profiles were advected downward, leading to large stratospheric
enrichments. However, as the season progressed, overall insolation in the southern hemisphere steadily
decreased, in turn reducing upper atmosphere photochemical production, which led to lower trace gas abun-
dances at high altitude. This reduced the supply of trace gases into the vortex and led to less extreme polar
enrichments. The latitude extent of the vortex also could play a role. Initially, the vortex had a small-latitude
extent, so drew air from the upper atmosphere directly above the pole, which had constant illumination
above 300-km altitude throughout winter, but as the vortex grew the air in the vortex was sourced from a
wider region of the southern hemisphere, which had lower insolation and reduced upper atmosphere trace
gas abundances. This conceptual explanation would need a coupled GCM and photochemical model to
investigate further.

4.4. Equatorial Temperatures
The 1 mbar temperature maximum was skewed toward the subsolar point but stayed within 10◦ of the
equator. The temperature at 5 mbar exhibited a steady 5-K cooling from Ls = 293–93◦, which was caused
by the increase in Sun-Saturn distance over the mission (Figure 1a). This effect was also clearly observed in
the lower stratosphere (10–30 mbar) in previous analysis of far-infrared FP1 spectra (Sylvestre et al., 2019).
At lower pressures (∼1–0.1 mbar) dynamics had a larger effect on the temperature (Bézard et al., 2018) and
the effect of the increasing Sun-Saturn distance was less apparent.

5. Conclusions
Cassini CIRS nadir mapping observations of Titan were analyzed for the entire mission duration, which ran
from northern midwinter (Ls = 293◦) until just after northern summer solstice (Ls = 93◦), to obtain seasonal
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latitude variation maps at the 1-mbar pressure level. The equatorial composition was stable for all the species
analyzed, whereas the midlatitudes and polar regions exhibited significant variability.

Winter vortices were observed at both poles with cold temperatures and isolated air masses enriched in trace
gas species. The enrichments were largest for short-lifetime gases and more modest for those with longer
lifetimes, in keeping with previous studies (Teanby et al., 2009, 2010a). However, early- and middle-winter
vortices evidently had very different properties. When newly formed, the south polar vortex was significantly
more enriched in trace gases and achieved colder temperatures than its established northern counterpart.
Trace gas abundances were up to an order of magnitude greater at the southern early-winter pole than the
northern middle-winter pole. This could be due to enhanced radiative cooling from trace gases combined
with a relatively weak subsidence and initially steeper photochemical profiles during vortex formation. This
suggests early vortex temperature structure was dominated by radiative cooling, whereas middle-winter
vortex temperatures were dominated by subsidence-driven adiabatic heating.

Dissipation of the north polar vortex was a gradual process and was only complete ∼90◦ of Ls after equinox.
Gas enrichments did not appear to spread from high to low latitudes during vortex breakup, suggesting that
photochemistry and depletion due to large-scale dynamics related to the meridional circulation (upwelling)
were more important loss mechanisms than small-scale cross-latitude mixing. Near the end of the mis-
sion the temperature and composition of the south polar vortex were trending toward those observed in
the north at the start of the mission. However, as the Cassini data set covers ΔLs = 160◦, we are 20◦ of Ls
short of a complete half Titan year record. Therefore, it is not possible to definitively confirm that north and
south poles reach equivalent states for equivalent seasons, although a short extrapolation of the data sug-
gests seasonal equivalence is very likely. This implies temperature and composition differences between the
middle-winter north polar vortex and early-winter south polar vortex were primarily due to seasonal phase,
not any hemispheric asymmetry.

Over the next few years it will be important to observe the north polar temperature and composition using
ground- and space-based facilities such as ALMA and JWST. ALMA has already produced moderate resolu-
tion latitude maps, which have the potential to complete the CIRS record at high northern latitudes (Thelen
et al., 2019, 2018). Unfortunately, with the loss of Cassini, the winter poles can no longer be observed until
we next visit Titan.
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