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a b s t r a c t 

An approach for aerodynamic shape optimisation is derived which is capable of handling topological de- 

sign changes as well as detailed surface control. The technique applies a material distribution, or volume 

of solid approach where design variables specify a volume fraction of solid on a fixed mesh. To convert 

this data to a solid surface, a contour is constructed around the volumes by moving points on the sur- 

face until the final shape satisfies those specified volumes. The objective of this construction procedure 

is to minimise the surface length, subject to the preset volume constraints. As a result, the method re- 

produces circular arcs exactly. Shape function analysis is then used to explore the theoretical behaviour 

of the parameterisation, and to prevent oscillatory surfaces from forming, thereby ensuring good opti- 

miser convergence. The method is extended to allow for anisotropic refinement of the parameter mesh. 

Final test cases include geometric fitting of arbitrary shapes, as well as drag minimisation of topologies 

in supersonic flow, and show the parameterisation is able to explore single and multi-body aerodynamic 

design problems. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Increases in computational power and improvements in com-

putational fluid dynamics (CFD) tools have created the possibility

of using CFD-based optimisation in industrial design. By allowing

a systematic and unbiased exploration of a design space, optimi-

sation methods can be used to expand a designer’s understanding

of the problem being tackled, allowing better overall aerodynamic

performance. As designers look to improve performance, aircraft

manufacturers are turning increasingly to numerical optimisation.

Frameworks for aerodynamic optimisation require the integration

of parameterisation methods, mesh generators and flow solvers

with optimisation methods. The tendency in this has been to use

a modular approach by integrating established modelling and CFD

packages with existing optimisers. 

The complexity of parameterisation arises from the different

origins of optimisation methods and CFD processes. Optimisation

methods are mathematical algorithms devised to find the extrema

of functions, and have rigorous mathematical underpinnings, while

CFD originated from the need to evaluate the aerodynamic proper-

ties of potential designs. The translation of the mathematical for-
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ulations used by optimisers into the geometric designs used by

FD is a complex problem with implications for the efficiency and

ffectiveness of optimisation frameworks. Parameterisation meth-

ds for aerodynamics need to be compact while not artificially lim-

ting the geometric shapes that can be represented [1,2] . This fo-

us led to aerodynamic optimisation methods capable of efficiently

andling small surface changes, using 10s to 100s of design vari-

bles in 2 dimensions and 100s to 10 0 0s in 3 dimensions. While

he compactness of aerodynamic parameterisations improves the

onvergence of optimisers, it has come at the cost of a more lim-

ted capability for creating topological changes. 

In structural design the benefits of exploring different topolo-

ies are key to generating efficient structures. The field of numeri-

al structural topology optimisation (STO) has been an active field

f research for the last 30 years and it has recently seen industrial

pplication on the Boeing CH-47 Chinook and the Airbus A380;

t allowed a weight reduction of 17% of underfloor beams com-

ared to a conventional structural optimisation method [3] on the

H-47 and weight reduction of the leading edge droop ribs on the

380. This effort in the finite elements (FE) community has led

o parameterisation methods able to represent complex topologies

ith a homogeneous set of design variables [4–6] . Recent progress

n STO has culminated in the numerical optimisation of an entire

oeing 777 wing under aerodynamic loads with 1.1 billion degrees

f freedom by Aage et al. [7] . The algorithm used in that work was
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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apable of building features 40 mm long in the 27 m half-span,

esulting in very detailed internal structures resembling bone and

eak structures in nature. 

The justification for topological optimisation is straightforward

n structural applications, from truss space-frames to honeycomb

esigns, there are a wide range of possible engineering structures;

urthermore a structural member’s impact is readily summarised

o a set of interactions at its boundary. The possibility to reduce

esigns to a set of external interactions and the Lagrangian formu-

ation of CSD solvers facilitates the implementation of structural

opological optimisation within existing designs. 

There is no such separation in aerodynamics; the aerodynamic

hape is intrinsically linked to the rest of the design by its need to

e supported by an underlying structure. This means that aerody-

amic topological optimisation of an entire aircraft or wing is un-

ikely to be a reality in the near or medium term. However, there

s scope for the aerodynamic topological optimisation of local fea-

ures; topological optimisation of wing tips would allow feathered

r split winglets of the type seen on the MD-11 and Boeing 737-

AX to be explored. No current optimisation framework for exter-

al aerodynamics supports the exploration of topological changes,

ecause none of the parameterisation methods commonly in use

an represent different topologies with a homogeneous set of de-

ign variables. 

An effective topological aerodynamic optimisation framework

ffers the possibility of radically new designs. Applications to For-

ula 1, unmanned aerial vehicles, commercial strut-braced wing

esign and internal engine design could offer significant improve-

ents in performance. This paper presents the development of

 parameterisation method which can handle topology changes

hile maintaining a compact design space, allowing the explo-

ation of new aerodynamic optimisation problems. 

.1. Existing aerodynamic and structural optimisation methods 

Earlier developments in the field of parameterisation for aero-

ynamics have yielded a wealth of different methods for the rep-

esentation of aerodynamic designs. Parameterisation methods can

e separated broadly in two categories: constructive and defor-

ative methods. Constructive methods define completely the ge-

metry from the set of design variables; these include B-Spline

nd polynomial interpolation [8] in general, and CST [9] and PAR-

EC [10] in particular. Deformative methods by comparison define

 set of modifications to a baseline geometry; notable among these

re the Hicks–Henne bump functions [11] , Singular Value Decom-

osition (SVD) deformation modes [12,13] and Free-Form Defor-

ation (FFD) methods [14,15] . While most parameterisations pre-

ented here can be extended to three dimensions, their capability

aries widely. In three dimensions a common approach is to use

FD deformation methods as these can be adapted to work directly

n an existing mesh. 

Previous systematic investigations by Vassberg et al. [1,16] have

ighlighted the impact of dimensionality on the drag minimisation

f a standard test case, showing the importance of geometric flex-

bility while maintaining a compact set of design variables. Work

y Castonguay and Nadarajah [17] , and more recently by Masters

t al. [18,19] has compared the impact of established parameter-

sation methods on geometric flexibility, pressure distribution re-

overy and optimal drag results. These studies show that effec-

ive parameterisation methods require few design variables while

till maintaining smooth control of the profile. Smooth control is

chieved when a small change in the numerical representation

eads to a similarly small change in the represented geometry. This

equirement results from the expense associated with converging

ptimisers in large design spaces, balanced against the need to
ot artificially restrict the scope of geometries that can be repre-

ented [1] . 

Most aerodynamic parameterisation methods to date have fo-

used on producing smooth designs with small numbers of de-

ign variables (in the 10s to low 10 0 0s). One key restriction that

ffects nearly all established parameterisation methods is the in-

bility to transition between topologies, so split or multi-body

onfigurations cannot be explored. This work presents an aerody-

amic parameterisation that does provide this level of topological

exibility. 

In structural topology optimisation homogenisation and level

et methods have been used to tackle complex problems in two

nd three dimensions; however these structural methods have lim-

tations in terms of their application to aerodynamics. The first

ethods developed for STO were homogenization methods ; these

ely on the segmentation of the design domain into squares in

hich the density of a material can be varied to change a design’s

eight and local load carrying ability. By affecting directly the den-

ity of the material in the discretization of the structural solver

omogenization methods do away completely with the need for

n explicit representation of a profile. These works led to the de-

elopment of the solid isotropic material with penalisation (SIMP)

ethod [20] , the most widely used STO procedure. Homogeniza-

ion methods do not maintain a representation of the outer bound-

ry of the shape and instead rely on direct interaction with the

tructural solver. 

The main alternative to homogenization are level-set meth-

ds (LSM) introduced by Wang et al. [21] . In these methods the

tructural profile is represented by the level set of a paramet-

ic function. These methods were shown to be very competitive

nd solve some of the shortcomings of homogenization meth-

ds [21] . Level sets methods include a wide range of approaches

or the definition of the level set function; each of these choices af-

ects the behaviour of optimisation processes [22] . However these

ethods have in common the implicit definition of the profile

nd can rely on three mechanisms for change: boundary profile

ariations; functional parameter variations; and topological vari-

tions. To be effective these methods rely on very close inte-

ration with the optimisation method, usually through adjoints.

riginally this was done by using the Hamilton–Jacobi up-

ates to propagate the boundary of the profile as a mov-

ng front [22] . More recently, mathematical programming ap-

roaches such as sequential quadratic programming (SQP) and

he method of moving asymptotes (MMA) have become popu-

ar as well as global, gradient free approaches [22] . For a com-

lete overview of the field of structural topology optimisation

he reader is referred to the comprehensive review by Deaton

nd Grandhi [4] . 

Both homogenization methods [23,24] and level set meth-

ds [25] have been adapted to fluid topology optimisation in

wo and three dimensions. Modelling the Stokes equations and

ncompressible flows at low Reynolds numbers, solved by finite

lement elasticity solvers, these methods have yielded good re-

ults on the optimization of micro-fluidic devices and channel

ows [24,26] . Lattice–Boltzmann methods have been used to tackle

ome very low Reynolds number problems [27,28] . Most of these

ethods rely on derivatives with regard to the porosity of the ma-

erial to drive the evolution of the topology. Recent advances have

een broader ranges of turbulent incompressible flows being tack-

ed [29,30] . These methods do not maintain a smooth and crisp

uid boundary, limiting their use for compressible aerodynam-

cs which use solutions to the Euler and compressible Reynolds

veraged Navier–Stokes (RANS) equations at high Reynolds num-

ers. One notable exception is the cutFEM method by Villanueva

t al. [31] , where a LSM is used to parameterise shape and topol-

gy at very low Reynolds number. 
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Fig. 1. Proposed Aaerodynamic shape optimisation framework for the RSVS parameterisation. 

Fig. 2. Design grid with corresponding 4 by 4 snaking grid and an r-snake recovering a profile specified using VOS design variables. 
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Some progress towards a topologically flexible compressible

aerodynamic optimisation has been achieved by Hall et al. [32,33] .

This method relies on material distribution, or volume of solid

(VOS), to generate the external geometry of an aerodynamic body.

An example of this type of design space is shown in Fig. 2 (a). The

VOS approach is inspired from volume of fluid methods used in

multi-fluid simulations. It is, in optimisation terms, conceptually

similar to density approaches: it defines explicitly regions of space

which are full or empty based on a predefined grid. In each cell of

this grid the fraction of that cell which must be inside the profile

is specified by a value between 0 and 1, this allows the parameter-

isation to be understood intuitively by a designer. The VOS method

by Hall et al. [32] uses this information to generate a smooth level

set function from which a contour that approximately matches the

VOS is extracted. While effective on cases where topological flexi-

bility was required, it required more design variables compared to

other aerodynamic parameterisation methods for similar geometric

accuracy. 

1.2. Development of the aerodynamic topology optimisation 

framework 

These observations show that the development of a topological

aerodynamic optimisation framework has the potential to deliver

further improvements in both conventional and future aircraft con-

figurations. This paper presents development of the r-snake vol-

ume of solid (RSVS) method, an aerodynamic parameterisation that

supports topological change while still performing efficiently on

typical problems. To be useful, the RSVS needs to fit into cur-
ent modular aerodynamic frameworks, it must have: a sufficiently

ompact and smooth design space; be compatible with Eulerian fi-

ite volume CFD approaches; support adjoint gradients and be ex-

ensible to three dimensional problems. The framework developed

n this paper is summarised in Fig. 1 . To ensure compatibility with

he optimisation methods already shown to be effective in aero-

ynamic optimisation the set of design variables needs to be ho-

ogeneous; that is to say all design variables must be of the same

ype. This precludes the use of traditional aerofoil parameterisation

ethods with additional variables explicitly controlling the topol-

gy of the geometry. 

The RSVS builds upon the volumetric aerodynamic parameteri-

ation by Hall et al. [32,33] which was an early topologically flex-

ble parameterisation for external aerodynamics. Like the parame-

erisation of Hall et al., the RSVS uses volume of solid (VOS) design

ariables to control profile shape and topology, these were kept as

hey provide intuitive handling of topology change. However an ef-

ective contour generation method has been developed to improve

he geometric behaviour of the parameterisation. The main chal-

enge in this type of parameterisation is the translation of the de-

ign variables into profiles suitable for CFD analysis. This paper de-

ails how the RSVS allows to go from a VOS design space ( Fig. 2 (a))

o a specific two body profile built for a set of VOS design variable

alues ( Fig. 2 (c)). 

In volume-based parameterisation the segmentation of vol-

metric information is done through a Cartesian grid, this

eans the design variables are best understood by a designer as

rey-scale images on an underlying mesh ( Fig. 2 (a)). This obser-

ation highlights the similarity between the parameterisation of
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Fig. 3. Flow chart summarising generation of a profile using the RSVS parameterisation method. 
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eometries from volume information and the field of contour ex-

raction in image analysis. Image segmentation, and medical image

egmentation in particular, pose many of the same challenges as

he volumetric parameterisation method considered earlier. The

ecovery of complex closed contours of arbitrary topology with

imited computational expense is one that has been explored by

he medical imaging community for the last 20 years. A class

f methods for building such profiles that has seen significant

nd promising use is that of active contour methods [34,35] .

hese methods rely on explicit vertex marching until the contour

eets internal and external forcing conditions. Restricted snakes

r-snakes) developed by Kobbelt and Bischoff [36] are a type of

arametric active contour designed to handle topology changes

fficiently. Section 2 shows how r-snakes are used in the RSVS

o generate profiles of suitable aerodynamic quality that respect

he values of VOS design variables. The shape of the r-snake is

riven by a set of equations that were found to have desirable

moothness properties, these are presented in Section 3 . This

rocess was used to generate the profile in Fig. 2 (c). This ap-

roach to contour generation and representation has the benefit

f being fully explicit, bringing it in line with current established

arameterisation methods. 

In addition to the r-snake volume of solid parameterisation, sig-

ificant work has been carried out to understand and improve the

erformance of the VOS design variables used by the RSVS. Design

ariable smoothing processes and refinement are developed in this

ork to improve the behaviour of optimisation frameworks rely-

ng on the new parameterisation method. Multi-level approaches

o parameterisation by Anderson and Aftosmis [37] and Masters

t al. [38] have shown their ability to accelerate and improve the

erformance of underlying optimisation frameworks. A similar hi-

rarchical method is developed for the RSVS parameterisation in

ection 5 . This multi-level approach allows significant performance

mprovements on the basic RSVS implementation in geometric and

erodynamic optimisations while removing some of the expert

nowledge required when setting up new optimisation cases. 

To validate these developments geometric and aerodynamic de-

ign cases were explored using the RSVS parameterisation method

ith refinement. Integration of the parameterisation with optimi-

ation methods is presented in Section 6 . These cases aimed to

xploit both the topological flexibility of the parameterisation as

ell as its compact and smooth formulation. In Section 7 , the ge-

metric inverse design of single and multi-body airfoils is tackled;

n Sections 8 and 9 results for the drag minimisations of area-

onstrained single and multi-body profiles in supersonic flow are

hown. 

. Geometry and topology generation using restricted snakes 

The role of the parameterisation method is to provide an inter-

ace between an optimisation method and a solver to form a shape
ptimisation framework. Efficiency and flexibility of shape optimi-

ation frameworks is limited by the geometric capability of the

arameterisation method. This section presents how the r-snake

olume of solid (RSVS) parameterisation translates sets of volume

raction design variables specified on a fixed grid into closed con-

ours of varying topology. For optimisation frameworks to exploit

he RSVS efficiently, this process must reliably produce smooth fea-

ures at a resolution below the grid on which VOS values are de-

ned. 

To achieve this level of smooth control, the RSVS profile is

efined as the closed contour of minimum arc-length that will

atch the volumes of the design variables; it is built using a re-

tricted snake (r-snake). The r-snake (e.g. in Fig. 5 ) is a method

or “vertex marching” which allows efficient topology handling and

s tolerant of any layout of VOS design variables. The r-snake is a

ype of parametric active contour originally developed by Kobbelt

nd Bischoff [36] . This section develops the integration of the r-

nake with the RSVS condition of minimising the arc-length under

olume constraints. This condition was found to reliably produce

mooth profiles enabling a compact parameterisation. Later sec-

ions explore the analytical properties of RSVS equations to show

hat the stated smoothness and compactness targets have been

chieved. The RSVS process is summarised in Fig. 3 . 

.1. Formulation of the RSVS 

One of the difficulties in designing a parameterisation with

opological flexibility is to maintain smooth control close to topol-

gy changes, as these are geometrically discontinuous regions of

he design space. To define a set of VOS variables a grid is super-

mposed on the design space, where the design variables become

he fraction of each cell within a geometry built from this infor-

ation. This process is shown for a simple grid in Fig. 4 . This pa-

ameterisation procedure provides intuitive handling of topology

hange without maintaining explicit control of it. It is important

hat topology is not controlled explicitly as this would lead to a

everely discontinuous design space which would not be usable

ith many of the traditional local and global optimisers used for

erodynamic optimisation. 

The VOS design variables do not include in themselves rules

or building a profile. These rule must generate profiles which are

ontinuous and smooth, allow features smaller than the VOS de-

ign variables, and be indifferent to the type of grid they are being

pplied to. This last requirement opens up the possibility of us-

ng non-square grids for improved flexibility and compactness of

he method. The rule must also be extensible to the generation of

ater-tight surfaces in three dimensions with minimal modifica-

ion. 

The condition used to define the RSVS is minimisation of the

rofile length, with the constraint that the area enclosed by the

ontour within each design cell must exactly match the value for
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Fig. 4. Example RSVS profile and design grid with label definitions for the governing equation ( Eq. (1) ). 

Fig. 5. R-snake contour (solid red line) with snaxels (blue arrows) evolving on the snaking grid (dashed line). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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of the VOS. The mathematical formulation of this problem is given

in Eq. (1) . This system is analogous to the effect of a tensile force

“shrink-wrapping” the required VOS in each cell; the benefit is it

allows for smooth profiles in most cases but can also recover sharp

corners where the VOS requires it. This formulation also has a nat-

ural extension in three dimensions as the surface area minimisa-

tion under volume constraints of a geometry. 

min 

∮ √ 

1 + y ′ 2 dx 

s . t . 

∮ (
y ∩ C j 

)
dx = a j ∀ j ∈ { 0 , · · · , m } 

(1)

In the expression above y is the closed profile built by the RSVS,

m is the number of VOS cells in the design space, a j the value of

the VOS and C j the outer boundary of the j{th} cell. These are rep-

resented graphically in Fig. 4 (b). The VOS is taken as a constraint

on the area enclosed in both the profile and each cell. The next

sections detail how this mathematical program can be solved us-

ing restricted snakes to produce an effective shape and topology

parameterisation method. 

2.2. Marching of the r-snake 

To build the RSVS parameterisation method the r-snake must

be evolved until it solves the length minimisation problem speci-

fied in Eq. (1) . To allow a high degree of geometric flexibility with

few design variables, features need to be recovered below the res-

olution of the VOS grid. The restricted snake is a vertex marching

procedure where the control points (called snaxels) are constrained

to move on a predefined grid, as a consequence this snaking grid

controls the number of snaxels and the resolution of the contour.

By marching the snake on a grid finer than the VOS grid, smooth
eatures below the resolution of the volume design variables can

e recovered. 

To drive the position of the r-snake the original continuous

ength minimisation problem ( Eq. (1) ) is discretised in terms of

he r-snake and snaxel variables into the mathematical program

n Eq. (2) . This discretization process needs six properties from

he r-snake geometry and the snaxel positions. The first three of

hese properties are part of the snaking algorithm; the last three

roperties of the snaxels are derived from connectivity and grid in-

ormation, and are needed for the implementation of the discrete

ength minimization problem. These properties are: the snaxel in-

ex ( i ), used to reference it in all operations; the normalised posi-

ion along an edge ( d i ∈ [0, 1]); the scalar velocity along that edge

 v i ∈ R ); the snaxel position in Cartesian coordinates ( p i ); the di-

ection of travel of the snaxel ( �g i ) and the vertex of origin ( g i,1 );

he normal vectors to the preceding and following edges ( n i and

 i +1 ). These properties are represented graphically on Fig. 5 (a). 

min 

d 

n ∑ 

i =1 

| p i − p i −1 | with p i = �g i d i + g i, 1 

s . t . A (d ) − a = 0 

(2)

In Eq. 2 d is the column vector of all snaxel distances d i , a is

he column vector of target volumes a j in each VOS cell and A ( d ) is

he current volume in each VOS cell contained by the r-snake. The

ormalised snaxel positions ( d ) are used as the design variables of

he length minimisation problem. This formulation has the benefit

f being very general, it can be tackled on an arbitrary volume grid

ith any underlying snaking grid with any optimisation method.

his generality guarantees a high degree of flexibility in the range

f shapes that can be represented. The following sub-sections show

ow this problem can be solved efficiently by using a Newton step
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Fig. 6. Evolution of the r-snake driven by the SQP algorithm solving the RSVS governing equation, showing 4 profiles: (1) initial (solid red, outer); (2) before topological 

change (dashed blue, intermediate); (3) after topological change (solid blue, intermediate); (4) final (solid green, inner). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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equential quadratic programming (SQP) procedure. The availabil-

ty of analytical gradients for the profile length condition (the ob-

ective function) and the volume information (constraints) means

 gradient based method may be applied efficiently. 

To solve this surface length minimisation a method was re-

uired that would converge in few iterations and function eval-

ations. For this reason a sensible choice is to use a gradient

ased method. The availability of analytical first and second deriva-

ives means that sequential quadratic programming (SQP) is a

iable option. A damped Newton step defined from a quadratic

pproximation to the full mathematical program is used to spec-

fy the snaxel velocities. The full derivation of the Newton step

QP is originally presented in Boggs and Tolle [39] . Only the fi-

al velocity update formula used in the RSVS is presented below

 Eq. (3) ). 

u 

k +1 = 

(
[ ∇ d h ] 

T 
[ H d f ] 

−1 
[ ∇ d f ] 

)−1 (
h − [ ∇ d h ] 

T 
[ H d f ] 

−1 
[ ∇ d f ] 

)
�k +1 

d 
= d 

k +1 − d 

k = −[ H d f ] 
−1 
(
[ ∇ d f ] + [ ∇ d h ] u 

k +1 
) (3) 

The change in distances �k +1 
d 

is used as the velocities ( v i ) of

he snaxels, letting the snaking process handle damping and con-

ectivity changes. The derivative terms required by this equation

re: the Jacobian of the constraints [ ∇ d h ]; the gradient of the ob-

ective [ ∇ d f ] and the Hessian of the objective [ H d f ]. Thanks to the

ormulation of the snaking process all these values are available

nalytically by differentiating the appropriate area and snaxel posi-

ion with respect to the design variable to the length minimisation

rogram, the distances d i . 

Calculation of the derivatives necessary to the evaluation of

q. (3) is done analytically. The derivation of these is beyond the

cope of the main body of this paper but is useful for the imple-

entation of the RSVS. It is therefore presented in Appendix A .

alidation of this process is presented in Section 4.1 . 

.3. Topology initialisation and evolution 

While the RSVS rules specified in the previous section define

esirable properties for the profile and a method to evolve an ex-

sting profile, they do not specify a starting geometry. External

erodynamic optimisation is usually concerned with the design of

uter surfaces, for this reason the r-snake is initialised at the outer

oundary of non-empty VOS cells. An example of this type of ini-

ialisation is shown in Fig. 6 , by the outer red profile. This ap-

roach to initialisation has the benefit of always being defined and
as an intuitive behaviour: it is similar to a force shrink wrapping

he VOS design variables. 

The benefit of using the restricted snake is that the topology

an be modified if the volume fractions require it. This process is

gain illustrated in Fig. 6 by the intermediate blue profiles. The

ashed contour shows the r-snake before topology cutting and the

olid blue line after the topology cut. 

The topology change is handled efficiently by the restricted

nake. The change in the geometry around the cut (shown in the

lose-up in Fig. 6 ) is due to the r-snake algorithm removing in-

alid snaxel connections as specified by Bischoff and Kobbelt [40] .

o maintain the integrity of the profile the r-snake algorithm lim-

ts the possible connections of a snaxel with it’s neighbours. The

ules as developed by Kobbelt and Bischoff [36] are: no 2 con-

ected snaxels can be on the same edge; snaxels must travel out

f the profile. When two snaxels meet the profile connectivity

s altered to by-pass them in what results in a change of pro-

le topology. The connectivity rules are then applied removing the

nvalid connections that were generated. This process is detailed

n [36] . 

.4. Extension to 3-dimensions 

One of the benefits of the RSVS is that all the elements are

aturally extensible to three dimensions. In three dimensions, the

overning equation becomes the minimisation of surface area un-

er volume constraints of the generated geometry. Parametric ac-

ive contour with topological flexibility have also been used before

or the segmentation of 3-dimensional medical images [34] , and

he extension of the restricted snake to a surface is possible. Finally

n SQP can still be used to update snaxel positions thanks to the

ifferentiability of the problem in 2 and 3 dimensions. The chal-

enge in 3 dimensions is that the SQP system solved using Eq. (3) is

onsiderably larger (thousands of snaxels) making the use of direct

ingle core solvers slow. Fortunately, the matrices of the system

re sparse allowing the efficient use of parallel solvers and itera-

ive methods. 

. Behaviour of the restricted snake volume of solid (RSVS) 

arameterisation 

Performance of aerodynamic optimisation frameworks is highly

ependent on the behaviour and flexibility of the parameterisation

ethod. To understand how the RSVS will perform in this con-

ext it is useful to explore the properties of the curves generated
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by this new method. The discrete constrained length minimisation

which governs the behaviour of RSVS profiles can be expressed

for an analytical continuous profile. This analytical formulation to

the problem can be explored using calculus of variations and this

section shows that piecewise continuous circular patches are the

solution to the analytical RSVS problem. This result is validated

in Section 4.1 by showing the geometric convergence of practical

profiles with increasing snaxel densities compared to an analyti-

cal solution. Also of interest in shape optimisation is the response

of profiles to small changes of the design variables; the analyti-

cal formulation of the length minimisation allows the calculation

of the shape response due to small changes in the volume con-

straints which are the design variables for shape optimisations that

use RSVS. This section shows that for well parameterised profiles

the response is a quadratic spline. 

The formulation of the RSVS presented in Eq. (1) can be anal-

ysed using calculus of variations to arrive at analytical expressions

for the profiles generated. This analysis shows that the curves gen-

erated are continuous splines made of one arc of circle in each

design cell. These curves can themselves be represented as sec-

ond order non-uniform rational b-splines (NURBS). To make the

derivation of these curves more straightforward it is useful to con-

sider the simplified case of a curve minimising length between two

points of coordinates ( b 1 , 0) and ( b 2 , 0) with a single volume con-

straint of value a . This minimisation problem needs to be solved

for the expression of curve y ( x ). The optimum is the solution to

the Euler–Lagrange equation of this problem which is expressed in

Eq. (4) . Eq. (4) can be solved for y ′ and then for positive values

integrated into Eq. (5) . 

∂ 

∂y 

(√ 

1 + y ′ 2 − λy 

)
+ 

d 

dx 

∂ 

∂y ′ 
(
λy −

√ 

1 + y ′ 2 
)

= 0 

⇒ −λ − d 

dx 

( 

y ′ √ 

1 + y ′ 2 

) 

= 0 (4)

y = c 1 ∓ 1 

λ

√ 

1 − λ2 ( x − c 0 ) 
2 (5)

Constants c 0 and c 1 are integration constants, λ is the Lagrange

multiplier, these variables are to be chosen based on limit condi-

tions. The equation for y ( x ) is found to be the equation of a cir-

cle in Cartesian coordinates. To understand the effect of the vari-

ous integration coefficients it is useful to rearrange Eq. (5) into the

canonical form of the circular equation. 

( x − c 0 ) 
2 + ( y − c 1 ) 

2 = 

1 

λ2 
(6)

From Eq. (6) it becomes clear that c 0 and c 1 control the x and

y positions, respectively, of the centre of a circle of radius 1/ λ. Ex-

actly the same reasoning that was applied to a single volume con-

straint can be extended to a multi-constraint problem correspond-

ing to a full RSVS profile. The many constraint problem shows that

the RSVS profile is a piecewise continuous curve with each patch

an arc of circle. C 0 and C 1 continuity of this piecewise profile come

out of the assumption behind the Euler–Lagrange process ( Eq. (4) )

used for solving the RSVS governing equation. 

One of the benefits of the length minimisation problem re-

sulting in a set of patched arcs of circles is that it can be rep-

resented exactly by NURBS of degree 2. The ability of the RSVS

to generate curves of this class is likely to enhance its usability

at early design stages, and allows existing work on NURBS to be

leveraged in the design of refinement procedures and equivalences

with other geometry generation tools. To guarantee smooth pres-

sure distributions, aerodynamic shapes are expected to be curva-

ture (G2) continuous. In optimisation this needs to be traded off
ith the geometric flexibility and generality of the parameterisa-

ion: wings and aerofoils while mostly smooth present disconti-

uities at the trailing edges that must be represented. The deriva-

ive continuity of the RSVS allows the representation of sharp cor-

ers and smooth shapes. Continuity of higher order derivatives can

e achieved by the optimiser naturally producing smoothly dis-

ributed design variables. If this additional levels of smoothness

s required smoothness constraints can be applied on the design

ariables to achieve much the same effect as a smoother parame-

erisation [41] . 

A similar process can be followed to analyse the response of the

SVS to a small change in volume fraction. This is a useful prop-

rty as the performance of gradient-based aerodynamic optimisa-

ion frameworks depends on the geometric change caused by small

hanges in design variables. While not presented here the deriva-

ion shows that, for a profile with low curvature in the parameter

ells, the response will tend to a C 1 continuous quadratic spline.

ractical uses of RSVS result in profiles with low curvature in each

esign cell which means that the response of the RSVS to a small

isturbance will be close to a quadratic spline, a well understood

lass of functions. 

. Parameterisation results 

This section presents and discusses profiles and behaviour of

he RSVS parameterisation method. The profiles shown in this sec-

ion were all designed with fixed volume fraction values to test

he capability of the parameterisation method; profiles generated

y shape optimisation frameworks where VOS values are changed

teratively as design variables are shown in Sections 7 and 8 .

ection 4.1 presents validation of the RSVS parameterisation while

ub- Section 4.2 shows results for the geometric recovery of com-

on aerofoil sections. 

.1. Validation tests 

This section presents some of the validation tests carried out

n the parameterisation method. The focus is on the convergence

f the RSVS parameterisation: first in terms of the optimality of

he r-snake as a solution to the discrete length minimisation; and

econdly the geometric convergence of the optimum r-snake onto

he analytical solution to the governing equations. 

The geometric and topological flexibility of this parameterisa-

ion is demonstrated through Fig. 7 for an aerofoil with flap. It

as found that the number of snaking steps scales slowly with

he number of volume cells (see Table 1 ). This is explained by the

roperties of the Hessian of the profile length and the Jacobian

f the area constraints. Both have few off diagonal terms which

eans that interaction between snaxels and with the constraints

s limited to those in close proximity. These properties mean that

he algorithm is scalable and can be used to represent complex

eometries with large numbers of snaxels and constraints. This is

mportant as it ensures that the algorithm is capable of converging

n few iterations for larger sets of design variables that could be

ecessary for complex topological optimisation cases. 

The key consideration in allowing good performance of the al-

orithm is the relation between the design grid (carrying the VOS

nformation) and the snaking grid (over which the r-snake evolves).

f the underlying grid is too coarse the optimisation process cannot

onverge as the combination of volume constraints and smooth-

ess conditions makes for a very stiff system. If the underlying grid

s too fine there is a significant computational cost increase. For

ost applications a cell refinement level of 4 (each volume cell is

plit into 16) yields good results. Where high curvature is required

ithin a single volume cell it can be desirable to increase the re-
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Fig. 7. Multi-body airfoil with parameter (volume) grid and background (snaking) grid as well as snake convergence history of the r-snake volume error and snaxel velocity. 

Table 1 

Table presenting convergence data for various RSVS layouts (profiles in Appendix E ). 

Design variable layout 1 ×1 1 ×2 1 ×3 2 ×8 2 ×8 2 ×8 9 ×6 4 ×18 

Figure 24 (a) 24 (b) 24 (c) 25 27 28 26 7 

Iterations to volume convergence (error < 10 −9 ) 61 64 61 73 80 76 160 92 

fi  

t  

 

g  

t  

R  

t  

fi  

e  

i  

a  

fi  

r  

o  

w

 

p  

A  

p  

v  

f  

l

a  

t  

k  

r  

c  

t  

u  

o  

fi  

e

4

 

i  

v  

u  

s  
nement level, however in most cases it is preferable to increase

he number of volume cells as these afford more design flexibility.

However the resolution of the snaking grid controls the conver-

ence of the RSVS on the circular arcs derived in Section 3 . Due

o the discrete nature of the r-snake, the profiles generated by the

SVS only approach the shape predicted by the analytical calcula-

ions. As the number of snaxels per VOS cell is increased by using

ner snaking grids the distance between the circular patches gen-

rated by NURBS and the r-snake converge. This error convergence

s shown for the representation of a NACA 0012 airfoil going from

 very coarse snaking grid of 2 snaxels per design variables to a

nest grid of 300 snaxels per design variable in Fig. 8 . The NURBS

epresentation is built by keeping the snaxels that lie on the edges

f the design grid. These are then linked by a circular NURBS patch

hich satisfies the VOS requirement in the cell. 

One of the key benefits of this parameterisation method over

revious VOS methods is its natural ability to build sharp corners.

s the required volume fraction is decreased at the edge of the

rofile, the minimisation of the profile length tends to create a

ery small feature which tends to a sharp corner as the volume
Fig. 8. Change in normal distance between analytically derived NUR
raction tends to 0. This effect can be seen in Fig. 8 , where both the

eading and trailing edge are fixed in place by VOS values of 10 −5 

t the extremeties. This use of small volume fractions to modify

he properties of the curves is analogous tot the introduction of a

not inside a spline. A smoother leading edge can be achieved by

emoving these volume fractions or by designing grids with more

ontrol at the leading edge as in Fig. 9 . This ability to transition be-

ween sharp and smooth shapes is very important to the design of

seful aerodynamic bodies which often require sharp trailing edges

r leading edges. These small volume fractions can also be used to

x the length of a profile by effectively pinning leading and trailing

dge position. 

.2. Geometric inverse design of aerofoils 

To validate the geometric flexibility of the r-snake parameter-

sation and its suitability for aerodynamic profile generation in-

erse design of aerofoils was performed. The profiles were eval-

ated against Kulfan’s Wind Tunnel Tolerance (WTT) [9] using the

ame process as the one used in the review of aerodynamic pa-
BS representation and r-snake with increasing snaxel density. 
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Fig. 9. Inverse design of the NACA 4412 on a 17 by 4 anisotropic VOS grid. 

Table 2 

Result of the Inverse design of 4 aerofoils using 68 design variables. 

NACA 0012 NACA 4412 ONERA M6 RAE2822 

max( w i y i, ERR ) 2.301E −04 2.297E −04 3.590E −04 6.285E −04 

Weighted RMS Error 4.123E −05 4.281E −05 6.195E −05 9.353E −05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

i  

a  

c  

a  

f  

T  

m  

e  

c

 

t  

t  

t  

c  

c  

s  

d  

s  

t  

t

5

 

t  

m  

r  

m  

s  

l  

s  

p  

c  

s  

s  

b  

e  

m  
rameterisation methods by Masters et al. [42] . The volume fraction

values are specified on the RSVS grid by superimposing the pro-

files onto the grid and working out the intersection with each cell.

Kulfan’s WTT prescribes bounds in the maximum distance between

profiles, given in Eq. (7) . 

WTT : max ( w i ( y target − y approx ) ) ≤ 8 × 10 

−4 

with : 

{
w i = 2 for x < 0 . 2 

w i = 1 for x ≥ 0 . 2 

(7)

In order to achieve this tolerance for aerofoils with a reasonable

number of design variables a highly anisotropic VOS grid was used.

A longitudinal distribution with cells clustered at the leading edge

and at the trailing edge was devised to enable accurate position-

ing and definition of the leading and trailing edges. In the trans-

verse direction cells were clustered close to the chord line to allow

the lower surface to cross over without causing large interferences

with the upper surface. The VOS grid with the design variable val-

ues and the r-snake is shown in Fig. 9 for the case of a NACA4412

aerofoil meeting the WTT. 

A detailed study of the inverse design using this VOS grid was

performed on 4 aerofoils representative of common aerodynamic

sections; these are the NACA 0012, the NACA 4412, the ONERA D

aerofoil and the RAE 2822. The error values for these aerofoils are

presented in Table 2 . Kulfan’s WTT is matched for each aerofoil

using the grid in Fig. 9 . This grid was tested on a further 65 NACA

aerofoils of which 63 were recovered to the WTT (97%), the aver-

aged results for this second set are in Table 3 . 

While 68 design variables is more than the 20 to 30 design

variables required by the established aerodynamic parametrisa-

tions studied by Masters et al. [18] for this level of fidelity; the
Table 3 

Result of the Inverse design of 65 NACA aerofoils using 6

Population Values Mean 10 MEAN ( log(w i y i,ERR )

Weighted RMS Error 5.573E −05 4.42E −05 

max( w i y i, ERR ) 6.179E −04 3.10E −04 
umber of active VOS design variables that need to be controlled

n an optimisation is smaller than the total number of design vari-

bles in the grid used in this case. During the optimisation pro-

ess only the design variables which contain the edge of the profile

re of interest, this reduces the number of active design variables

rom 68 to 38 in the case of the NACA 4412 presented in Fig. 9 .

his design variable reduction is then coupled with an overflow

ethod which ensures smooth transition between design variables

nsuring the optimisation framework only sees smooth geometric

hanges. 

The largest errors appeared for the RAE 2822 aerofoil at the

railing edge, this is due to the very thin and curved trailing edge;

his causes both the upper and lower surface to be contained in

he same VOS cell which does not allow sufficient control. This

ase highlights the difficulty in building knowledge about a spe-

ific aerodynamic case into a very general and flexible parametri-

ation method. Rather than tuning the design grid to each case in-

ividually a generalised method based on local refinement of de-

ign variables is developed in Section 5 . This hierarchical approach

o parameterisation offers the possibility of the RSVS tuning itself

o the requirements of a given optimisation problem. 

. Design variable refinement 

One of the drawbacks of the RSVS parameterisation method is

hat a regular Cartesian VOS grid contains much less implicit infor-

ation about aerodynamic problems compared to traditional pa-

ameterisation methods. This means that the RSVS, while being

ore general than other parameterisations, also requires careful

etup of the design variable layout to tackle an optimisation prob-

em efficiently. To alleviate this, a hierarchical approach to the de-

ign variables is developed. These approaches start an optimisation

roblem with few design variables, this allows large but coarse

hanges to the design. As this process converges additional de-

ign variables are added allowing progressively finer and smaller

cale changes to the design to be added. Hierarchical approaches

y Anderson and Aftosmis [37] and Masters et al. [43] have accel-

rated and improved convergence on complex aerodynamic opti-

isation problems. Similar approaches have been successfully ex-
8 design variables. 

 ) Median Maximum WTT satisfied 

4.137E −05 5.864E −04 

2.613E −04 1.109E −02 96.9% 
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Fig. 10. Process for the exact translation of a profile from a coarse RSVS design grid to a finer RSVS design grid using information from the snaking grid. 
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loited in structural topology optimisation by Kim et al. to im-

rove the performance of agent based optimisers [44] and by Ban-

ara et al. to build a mutli-resolution framework based on sequen-

ial shape and topology optimisation using subdivision curves [45] .

he RSVS lends itself to such hierarchical approaches, the refine-

ent of design VOS design variables is intuitive and exact. A lo-

ally adaptive hierarchical process is developed in sub- Section 5.2 .

inally, the effects of local refinement are shown on inverse de-

ign and aerodynamic optimisation cases in Sections 7 and 8

espectively. 

.1. Refinement of RSVS design grids 

The process of implementing local refinement into the RSVS pa-

ameterisation relies on the accurate translation of design variables

rom coarse to fine fidelity levels. Exact translation of a profile

rom a coarse to a finer layout of design variables requires only

hat the coarse cell boundaries is present in the finer grid. The

olume fractions on the finer grid can be calculated by overlay-

ng the profile onto the fine grid and calculating the intersection

f cells and profile. This approach is analytically exact, however in

ractice it can lead to slightly different profiles after refinement as

he snaking grid is also refined, changing the discretization of the

rofile. 

Calculation of containments on the new design grid can be

kipped by using volume fractions defined on the snaking grid cal-

ulated during the evolution of an RSVS profile. Because in most

ases the snaking grid is a 4 by 4 refinement of the design grid,

xact profile translation can be done using information from the

naking grid for all VOS grid refinements up to 2 by 2. The differ-

nt elements of this process are presented in Fig. 10 . To fully lever-

ge the benefits of a hierarchical approach the algorithm needs to

dentify and refine regions of the design space where refinement

ill lead to an improved objective function. 
.2. Criterion for refinement of design variables 

Both uniform and local refinement of design variables have

een considered by previous studies. Uniform approaches split all

esign variables regardless of their influence on the design; local

ethods aim to identify regions of the design which are more im-

ortant to the reduction of the objective function and refine only

hose locations. Global refinement approaches have been very suc-

essful: the hierarchical approach based on subdivision curves pre-

ented by Masters et al. [43] show the best published results for

he ADODG NACA0012 Case 1 [46] . Results for local refinement

ave been mixed, with previous studies showing that improved

erformance could be achieved, but the increased complexity of

he optimisation method had a negative impact on the robustness

f the process [43] . 

Previous parameterisations that were used with refinement

ere tailored specifically to the aerofoil optimisation problem; this

eant that the need for local adaptation by the parameterisation

as limited, and that global refinement was sufficient. The goal of

he method presented in this paper is to be able to tackle any

hape optimisation problem with minimal tuning of the design

ariables by the user. For this general approach to be possible and

fficient, the process developed must be able to adjust the local fi-

elity as the optimisation progresses. This was achieved using a lo-

al refinement algorithm which selects which VOS cells should be

efined and the direction in which they should be split. The most

ffective criterion to be investigated refined cells with the most

urvature of the profile. Curvature reliably indicates the difficulty

he parameterisation is having to represent a given geometry be-

ause the minimum length objective tends to create the straightest

ine possible. Unlike previous methods [38,43,47] which relied on

djoint sensitivities of the objective function, this criterion relies

nly on information provided by the shape parameterisation. 

Eq. (8) shows the calculation of the refinement criterion ( r j ) for

ell j . Snaxel indices i s and i e refer to the first and last snaxel con-

ained in the VOS cell. One critical requirement for a refinement
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Fig. 11. Possible cell cuts under the local refinement algorithm. 
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t  
criterion is that its value must decrease as refinement is carried

out, otherwise refinement can go into a self reinforcing loop which

is unlikely to lead to desirable design variable layouts. It is for this

reason that coefficient r j depends on the sum of the curvature of

the snake inside a cell multiplied by its length. The curvature is

approximated by the second difference of the profile. The scaling

using the length is needed to counteract the increasing value of

curvature as feature size decreases. 

r j = 

i e −1 ∑ 

i = i s 
( �s i +1 ) 

i e ∑ 

i = i s 

∥∥∥∥−p i ( �s i + �s i +1 ) + p i +1 �s i + p i −1 �s i +1 

�s 2 
i 
�s i +1 + �s i �s 2 

i +1 

∥∥∥∥
with : �s i = | p i − p i −1 | and �s i +1 = | p i +1 − p i | 

(8)

Once a cell has been marked for refinement, the orientation of

the split must be decided. Selecting the refinement direction relies

on a heuristic method which yields fine grids which still enable

easy movement of the profile and high quality modes. Because of

the cell-bounded volume of solid formulation transition of the pro-

file from one cell to a previously empty cell can be discontinuous.

In order to minimize such transitions new cell boundaries should

be normal to the profile. To achieve this, cells are split in half in

the same direction as each VOS cell edge which is crossed by the

r-snake. This leads to three possible refinement outcomes which

are presented in Fig. 11 . 

6. Optimisation framework 

This section presents the optimisation framework that was used

to test and validate the RSVS parameterisation developed in ear-

lier sections. To test the topological flexibility of this new param-

eterisation each element of the optimisation framework must be

able to handle the increased flexibility of the design space. The

framework includes two optimisers: conjugate gradient for local

optimisation and differential evolution for problems where multi-

modality (multiple local minima) is expected. This is coupled with

an unstructured Eulerian flow solver with a cut-cell mesh genera-

tor for aerodynamic analysis. 

6.1. Optimisers 

The RSVS parameterisation is integrated in an aerodynamic op-

timisation framework which supports gradient-based and agent-

based optimisers. This optimisation framework uses the volumes

of the VOS cells as design variables which are translated into ge-

ometry changes by the RSVS process. 

CG optimisers are easy to implement and provide adequate

convergence behaviour in aerodynamic applications. The Polak-

Ribiere [48] conjugate gradient formulation was adopted as it dis-

played better performance in early tests. The line-search is per-

formed using backtracking until a minimum is bracketed, that min-

imum is then used as the step length. 
Differential evolution is a heuristic global optimisation method

roposed by Storn and Price [49] , and was selected due to its ro-

ustness and ease of implementation both in serial and parallel.

nlike other heuristic methods it requires few internal parameters

nd has shown good results on a range of applications [50] , no-

ably for constrained optimization cases. 

Constraints on the design variables are handled by forcing the

ptimisation method to keep them satisfied at all times. For in-

quality constraints in addition to a hard-stop imposed on the de-

ign variables, gradients which are pointing the optimisation to-

ards a constraint are scaled by a factor tending to 0 as the design

ariables tend to the constraint. This allows infeasible directions to

e removed from the gradient vector and avoids the optimisation

talling close to constraints. 

.2. Smoothing of the RSVS geometric response 

Desirable characteristics of parameterisation methods have

een identified by previous studies into aerodynamic optimisa-

ion [18,19] . These include: smoothness, appropriate scaling and

ompactness. To ensure gradient based optimisers could use the

SVS efficiently the response of the parameterisation to small

hanges in VOS is smoothed. The smoothing removes oscillations

hat were found to arise from small perturbations of RSVS pro-

les 12 (a). This smoothing of the response is done by smearing

olume fraction increments to neighbouring cells following the

onnectivity of the profile, this process is shown in Fig. 12 (b). 

A VOS response of 25% in the first neighbours to a change in

esign variables was found to smooth out the oscillations on Carte-

ian grids. On anisotropic grids additional work is required to ob-

ain consistent mode shapes and mode size. To smooth out oscil-

ations on anisotropic grids the value of 25% in each neighbour is

caled by using Eq. (9) . This equation is used to reflect the different

ize the responses will have in neighbouring cells with very differ-

nt aspect ratios and size. Finally, for anisotropic grids, the result-

ng smooth basis functions are scaled to have either equal height

r volume depending on the objective function. This is to ensure

hat the resulting sensitivities are appropriately scaled. 

or j ∈ { −1 , 1 } q j = 

1 

4 

l j 

l 0 + 

√ 

V 0 δa 

V 0 

V j 

(9)

In each VOS cell j the grid adapted coefficient ( q j ) for a smooth

esponse is dependant on the length of the profile in the cell ( l j )

nd the volume of the cell ( V j ) relative to the value for the central

ell (0). It is also dependent on δa , the size of the VOS disturbance

n the central cell. 

.3. Objective functions 

To test the performance of the parametrisation method on dif-

erent optimisation cases the framework includes two objective

unctions. The first is a geometric error function which is used

o perform geometric inverse design optimisations, the second is
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Fig. 12. Volume fraction perturbations for standard and smoothed gradient calculations. 

Fig. 13. Geometric recovery of a NACA4412 using 6 refinement steps; with the RSVS grid and the target profile (left), the VOS values for the geometry (centre) and the 

corresponding profile coloured according to its normal distance to the target profile (right) at the first and final iteration. 
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n inviscid Eulerian flow solver. The geometric error objective pro-

ides a fast and relatively inexpensive test case to evaluate the ca-

ability of the parameterisation method. This allows rapid evalua-

ion of changes to the parameterisation without running a full set

f aerodynamic test cases. 

The geometric error is calculated as the area of the polygons

reated by intersecting a test geometry and a target profile. This

rror calculation allows the intersection of curves with different

urface point distributions. This flexibility simplifies the handling

f changing topology compared to an approach based on point to

oint distances. 

Aerodynamic optimisation relies on the successful integration of

FD, parameterisation and an optimiser into a cohesive framework.

or this purpose, the RSVS parameterisation method was coupled

ith a surface-exact cut-cell mesh generator, an unstructured Eu-

erian flow solver and an optimiser. In order to exploit the topolog-

cal flexibility of the parameterisation all elements of the optimisa-

ion method need to support profiles made of an arbitrary number

f bodies. Cut-cell mesh generators provide the required flexibility

ith sufficient accuracy at a low computational cost [51,52] . The

ow solver is an inviscid, compressible unstructured code based on

he cell-centred approach of Jameson [53] and following the imple-

entation of Eliasson [54] . The cut-cell mesh generator and flow

olver were used in previous studies by Hall et al. [55] . A mesh

onvergence study was performed on the zero-lift drag coefficient

alue for NACA 0012 at a Mach number of 0.85, giving 469.1 drag

ounts, which is within 0.3 counts of previous studies using differ-

nt solvers [56,57] . 

Because the RSVS uses traditional boundary fitted meshes it can

e used with RANS solvers or any other physical solvers which

ses that type of mesh. The main challenge to using the RSVS with

iscous CFD is the generation of a suitable mesh without apriori

nowledge of the topology. However unsupervised automatic mesh

eneration for viscous layers has been an active area of research

ecently seeing implementation in industrial codes [58] . 
In the current optimisation framework the gradients are ob-

ained by central difference on the flow solution. While adjoint

radients could also be used, the ease of implementation and par-

llelisation of finite differences made it a suitable option for the

est cases considered in this paper. Mesh motion was carried out

sing the multi-scale RBF algorithm of Kedward et al. [59] as it

llows efficient and exact movement of large meshes. 

. Geometric inverse design with refinement 

The refinement process was tested on the geometric inverse de-

ign of a NACA 4412 aerofoil, using the smoothing described ear-

ier combined with the conjugate gradient optimiser. The goal of

his test is to explore the flexibility of the method and the quality

f the integration with the optimiser. This case was tackled with 6

efinement steps starting from a coarse grid of 2 by 6 design vari-

bles, the grid at the first and final refinement step is shown in

ig. 13 along with the corresponding profile and volume fractions.

he set-up of this case was done to test the effectiveness of the

SVS parameterisation with local refinement rather than the ca-

acity of the RSVS to recover a NACA 4412. For this reason the

rofile was allowed to evolve freely over the grid with no con-

traint on the position of leading edge and trailing edges. The final

rofile ( Fig. 14 (b)) shows the parameterisation successfully built a

mooth leading edge and sharp trailing edge. Building sharp trail-

ng edges is straightforward in the RSVS parameterisation, it sim-

ly needs very small volume fractions in design cells. However this

equires a design grid intersection very close to the desired loca-

ion of the trailing edge which requires many refinement steps to

onverge as shown in Fig. 13 (b). 

The same process with the same starting condition but with

ight refinement stages was used to tackle the geometric recov-

ry of a multi-body aerofoil composed of 2 NACA 4 digit profiles.

ig. 15 shows the evolution of the RSVS profile and grid through

he optimisation; Fig. 16(b) the final profile with the normal dis-
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Fig. 14. Convergence history and final local profile error for the Geometric Inverse design of the NACA 4412 over 8 refinement steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Drag results (counts) for ADODG NACA 0012 benchmark 

case. 

ADODG Case 1 Optimisation mesh 

Cell height 0.153% 

Optimised Profile (drag counts) 58.3 

NACA 0012 (drag counts) 469.3 

�C D (counts) −411.0 

Relative Change −87.58% 
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T  
tance to the target profile. This second case highlights the versatil-

ity of the RSVS with refinement, their combination allows two op-

timisation cases with very different solutions to be tackled without

user intervention. 

Figs. 14 (a) and 16(a) display the convergence behaviour of the

optimisations which exhibits a step by step convergence. This is

the desired behaviour: as the optimisation converges on a coarse

set of design variables, the refinement process selects an appropri-

ate portion of the design variables to refine enabling further reduc-

tion of the objective function. The effectiveness of the contour cur-

vature condition ( Eq. (8) ) is shown by the improvements brought

by each refinement level; ineffective selection would lead to stag-

nation of the objective function. 

While aerodynamic optimisation benefits from fine geometric

control, it is also dependant on global parameters, especially in

three dimensions global transformations such as angle of attack,

sweep, twist and span must be handled concurrently to the finest

design variables. In the RSVS parameterisation this can be achieved

by applying those transformations to the grid so that they are re-

flected in the profile. 

Contrary to the previous local refinement scheme developed by

Masters et al. [43] which relied on the adjoint of the objective, this

refinement process relies exclusively on information from the pa-

rameterisation and the profiles it generates. Instead, the objective

function passes information indirectly to the refinement process

through the optimisation process which drives the shape of the

profile. This effect, inherent to any optimisation framework, is cou-

pled with a measure of the ‘stress’ that is experienced by the pa-

rameterisation (here the curvature of the profile) to identify areas

where the current parameterisation is not fine enough. This means

this approach can be directly applied to any problem tackled using

the RSVS parameterisation method with no modification. 

8. Validation of the aerodynamic optimisation framework 

8.1. NACA 0012 under local thickness contraints (ADODG Case 1) 

To benchmark the optimisation framework and validate the

RSVS method the ADODG case 1 was modelled [46] . The formula-

tion of this optimisation problem is presented in Eq. (10) , where

the constraint is a localised thickness constraint at every point
long the aerofoil chord. 

min : C D 

s . t . : y PROF ILE ≥ y NACA 0012 

M = 0 . 85 

(10)

Work in the ASO community has highlighted many of the

hallenges associated with the aerodynamics of this case. These

ifficulties include: premature convergence on sub-optimal pro-

les [60] , assymetric flow solutions for symmetric profiles [60,61] ,

scillatory CFD solutions [62] and hysteretic behaviours with Mach

umber [63] . The range of observed behaviours was reviewed by

estarac et al. [64] . 

This case was tackled with the CG optimiser with the mesh res-

lution at the 14 th refinement level which corresponds to a cell

eight of 0.153% of chord. This is equivalent to approximately 1300

ells uniformly distributed around the aerofoil profile. To avoid

oor optimiser convergence due to assymetric flow solutions on

ymetric profiles, the optimisation was run on a half mesh with

 symmetric boundary. Mesh-motion was performed using the

ulti-scale radial basis function method developed by Kedward

t al. [59] . Constraints were enforced directly on the volume frac-

ions, constraining them to be larger than required for the inverse

esign of the NACA 0012 aerofoil. While this does lead to a slight

onstraint violation in front of the point of maximum thickness it

s sufficiently precise to capture the complexity of the problem. A

2 by 2 VOS grid was used: half the VOS cells are distributed in

 half cosine distribution from leading edge to the 30% chord and

ntil the trailing edge. Symmetric profiles are generated by mir-

oring the VOS values along the horizontal axis, meaning that the

ptimiser controls 12 effective design variables. 

This framework allowed a drag reduction from 469 counts for

he NACA 0012 to 58.3 counts for the optimised profile ( Table 4 ).

his drag reduction is close to the drag values between 50 and
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Fig. 15. Geometric recovery of a multi body airfoil over 8 refinement steps. 

2  

o  

t  

s  

a  

t  

t  

t  

w  

p  

o  

framework. 
5 counts achieved by other aerodynamic parameterisation meth-

ds in recent comparative studies [19,64] . The shock pattern at

he trailing edge of the RSVS optimised airfoil displays a super-

onic/supersonic wave with a single supersonic region over the

erofoil ( Fig. 17 ). This shock pattern is similar to that observed in

he review of this case performed by Destarac et al. [64] . While
he drag is not as low as some previous available results, this op-

imisation case shows that the combination of the RSVS method

ith the cut-cell mesh generator is capable of exploring a com-

lex aerodynamic design space. Flow features expected in this

ptimisation case are successfully discovered by the optimisation
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Fig. 16. Convergence history and final local profile error for the Geometric Inverse design of the multi-body aerofoil over 8 refinement steps. 

Fig. 17. Optimisation of the ADODG Case 1 using 10 active design variables. 
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8.2. Drag minimisation for fixed area aerofoils at Mach 2 

The following drag minimisations in this paper are inviscid,

supersonic, constant area optimisations. Significant research into

these cases was carried out in the 1950s using linearised equations

for supersonic flow which yielded analytically optimal solutions. In

3 dimensions, this effort led to the now famous Sears–Haack pro-

file for minimum wave drag [65,66] . Similar research by Klunker

and Harder [67] used non-linear supersonic pressure coefficient re-
ationships to obtain the profile for minimum pressure drag under

hickness and volume constraints. The availability of analytical re-

ults for these cases provides useful benchmarks for non-linear nu-

erical optimisation frameworks. 

Supersonic flows are also an excellent test bed for topology

ptimisation: there exist multiplane profiles where shock inter-

actions produce bodies with no wave drag [68] . The most well

nown of these is the Busemann biplane first proposed in the

930s by Busemann [69] . These cases are of particular interest
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Fig. 18. Three types of analytical optima at Mach 2 with an area ( c A ) of 0.08. Note that each can potentially be the global optimum, depending on the chosen area constraint; 

for the constraint value of 0.08, the Busemann bi-plane is optimal. 
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s these multi-body profiles can be built using the VOS param-

terisation method: they are known cases for which topological

exibility should bring significant drag reduction. An example of

he flow around each of the three known analytical optima is

hown in Fig. 18 . 

The mathematical programming representation of these prob-

ems are expressed in Eqs. (11) and (12) , for the single topology

ase and the multi-body case respectively. The behaviour of the

ptimisation is dependant on the area constraint value c A . An ad-

itional constraint is added for the multi-body cases to ensure that

he optimised profile fits inside the region occupied by the Buse-

ann biplane, the maximum height of the profile ( �y max ) can-

ot be larger than the maximum height of a buseman biplane

 �y BUSEMANN ). Indeed if the optimisation is allowed to generate

rofiles far apart it can effectively maintain bodies operating in

ows sufficiently separated to be independent of each other. 

min C D 

s . t . 
∑ 

a = c A 

M = 2 

(11) 

min C D 

s . t . 
∑ 

a = c A 

�y max < = �y BUSEMANN 

M = 2 

(12) 

The volume constraint was applied before the parameterisation

tage by controlling the values of the volume fractions: if a con-

traint violations is detected the volume fractions are scaled such

hat their sum matches the constraint. 

.3. Impact of refinement on aerodynamic optimisation case 

The first cases used to validate the current optimisation frame-

ork were the drag minimisation of profiles at Mach 2 for a fixed

olume and unit chord presented in Eq. (11) using the conjugate

radient optimiser. Using the smoothed design variables the single-

ody supersonic aerodynamic case was tackled for constraint val-

es between 0.01 and 0.16 for two setups of the parameterisation. 

The first was using a 2 by 10 layout of VOS design variables in

 cosine distribution with symmetry of the design variables about

he horizontal axis. The chord is fixed by maintaining a small vol-

me fraction in the volume cells at the leading edge and the trail-

ng edge. This setup is similar to traditional aerofoil parametri-
ation methods where more control points are clustered towards

he leading edge and trailing edges and movements in the verti-

al direction dominate. This approach uses engineering knowledge

o build a suitable grid for the RSVS parameterisation to perform

fficiently on the given problem. 

The same suite of cases was then tackled using the refinement

riterion specified in Section 5.2 . The optimisation was started

rom a 2 by 4 Cartesian grid of RSVS design variables with symme-

ry and five refinement steps were carried out. The goal of the re-

nement is to do away with the need for expert knowledge when

etting up an optimisation method for a specific case. By adapting

tself to the optimisation problem as it is being solved the RSVS

emoves a layer of complexity and improves the robustness of the

ntire process. 

Drag results and optimum profiles for these aerodynamic cases

re shown in Fig. 19 . Fig. 19 (a) shows the evolution of the drag co-

fficient for the analytical and non-linear optima with refinement.

he inset shows the behaviour of the different optima between

.04 and 0.048, importantly the optimisation framework success-

ully negotiates this complex region where two theoretical optima

xist. Fig. 19 (b) shows the difference in drag value between the

est analytical optima and each stage of the refinement process. 

For low values of area the first refinement stages are suf-

cient to exceed the analytical optimum. Fig. 19 (c) shows the

ptimum profiles for each value of the volume constraint. The

ases up to areas of 0.07 result in profiles close to parabolic but

s the required volume increases, the point of maximum thick-

ess is shifted towards the trailing edge. This finding is similar

o a previous study by Palaniappan and Jameson [70] . This be-

aviour allows the shock to be weaker for the non-linear opti-

um than for the corresponding ogive, which more than makes

p for the increase in back pressure. This simple geometric be-

aviour is easily captured by RSVS geometries with or without

efinement. 

For values of area above 0.09 it is very clear that the pro-

les tend to the truncated ogives of Klunker and Harder [67] . The

arge discontinuity poses a challenge to the parameterisation lead-

ng to difficulties for the optimisations. However, refinement en-

bles the blunt trailing edge to be represented to a sufficient level

nd significantly improves the optimum that could be recovered

ompared to the cosine grid with smooth design variables. The be-

aviour through the refinement stages seen in Fig. 19 (b) is similar

o that observed for the inverse design case presented earlier: each

efinement stage unlocks a new portion of the design space to sig-

ificantly improve the objective function. This helps to validate the

se of curvature as a measure of the need for finer parameteri-

ation. While there is no change in the number of bodies these

esults are enabled by the flexibility of the parameterisation and
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Fig. 19. Summary of Supersonic Optimisation results using local refinement and smoothing compared to the best single body analytical solutions. 
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flow solver, traditional parameterisations are not always capable of

transitioning between smooth and sharp corners as is required by

the larger area cases. 

The higher area cases, notably 0.15 and 0.16 exhibit a small os-

cillation of the profile at the trailing edge ( Fig. 19 (c)). These os-

cillations are the result of the optimiser minimising the turning

circle of the flow to favour inviscid separation when the design

variable resolution is insufficient to represent a blunt trailing edge.

The large area of recirculatory flow behind the blunt trailing edge

leads to poor flow convergence and poor quality gradients, pre-

venting the optimiser from recovering at higher refinement levels.

This highlights a limitation of using an Eulerian flow solver for this

case: physical modelling of the boundary layer and separation is

required. 

The RSVS parameterisation with refinement allows the explo-

ration of the flow for profiles of different areas in supersonic

flow. The parameterisation shows that there are two different flow

regimes that result in optimum solutions: attached flows for low

areas and detached flows at the trailing edge for higher areas. This

can be seen clearly in Fig. 19 (c): the points of maximum thickness

show clear separate trends for the parabolic profiles (up to an area

of 0.08) and the truncated ogives (after an area of 0.09). These re-

sults also highlight the existence of possible multi-modality around
an area of 0.08. v  
.4. Impact of topological flexibility on aerofoil optimisation 

While the topological flexibility is not expressly needed to solve

his suite of shape optimisation, it can still reveal interesting de-

igns within the constraints of the aerofoil design space. Fig. 20

hows the flow around the best profile at iteration 4 of a fixed grid

ptimisation. At this point the CG optimiser has found a two body

rofile to be beneficial. This profile is reminiscent of the aerospike

onfiguration used to reduce drag on the Lockheed Martin Trident

-5 submarine launched ballistic missile. This shows the capability

f the topological optimisation framework as a tool for exploratory

esign studies. The convergence history ( Fig. 20 (a)) shows that

opology change creates additional complexity in a small design

pace with the behaviour between iterations 2 and 6, close to the

opology change, resembling convergence on a local optimum. This

eans that effective topology optimisation requires a method for

voiding local minima and warrants the use of a global optimiser. 

. Topological aerodynamic optimisation results 

The approach used for the supersonic single body area con-

trained optimisation cases was repeated for the multi-body case.

n those cases the non-linear optimum is compared to the drag

alue of the Busemann bi-plane. The topological flexibility is en-
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Fig. 20. Aerospike profile appearing at iteration 4 of the CG optimisation for an area constraint of 0.11. 
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bled by using a larger RSVS grid layout, in this case a 10 by 6

OS grid was used. Symmetry of the profile was enforced by mir-

oring the VOS design variable values: meaning the optimiser con-

rols 30 effective design variables. To ensure exploration of the lay-

ut is effective the differential evolution (DE) optimiser is used.

he starting population is of critical importance to ensure that ex-

loration is sufficient but convergence is quick. The optimisation

tarts from a family of random multi-plane profiles with sharp

railing and leading edges. Starting from a population of bodies

ith good aerodynamic qualities reduces the convergence time sig-

ificantly while still allowing the design space to be explored. A

opulation of 100 was used as smaller populations showed incon-

istant behaviour in repeated runs. The optimisation was stopped

nce the population showed no topological diversity. This was as-

essed through the convergence of the population on a set of non-

ero VOS design variables, This occurred between iterations 200

nd 300. 

Fig. 21 presents the drag results and profiles resulting from

he topological optimisation process. Fig. 21 (b) shows the drag of

he optimised profiles is below that of the Busemann biplane or

he best analytical optima for all values of the constraint above

.02. This good performance above 0.02 is because the optimisa-

ion tends to build very efficient profiles which resemble conver-

ent divergent nozzles with flat outer edges. The smooth compres-

ion which results from these has a much lower drag on a discrete

rid compared to the Busemann bi-plane which relies on perfect

hocks and expansion fans. Below 0.02 the profiles are extremely

hin, building planes less than 1% thick. This means that the sharp-

ess of the leading and trailing edge play an outsize role in the

uality of the optimum, however the optimiser struggles to adjust

hese sufficiently. 

Above an area of 0.1 the flow in the Busemann bi-plane is

hoked which can be seen in the very large increase in drag (18

imes larger between areas of 0.1 and 0.11). In Fig. 21 (c) the pro-

le of area 0.12 displays the internal features similar to the optima

f area 0.0315 but with curved outer edges. Fig. 22 (c) shows that

he optimiser is combining the flow features of an optimised Buse-

ann bi-plane (flow similar to Fig. 22 (a)) with one of the single

ody optima of Fig. 19 (flow similar to 18 (c)). This allows low drag

o be maintained where a traditional Busemann bi-plane would

hoke. 

The optimum profile for an area of 0.06 shows a penta-

lane profile ( Fig. 22 (b)), while for 0.0315 the optimum is a

ri-plane ( Fig. 22 (a)). This difference in optimum topology is
ecause the main factor in drag reduction is the minimisa-

ion of the external shocks which can be achieved with ei-

her topology. This also explains the large number of iterations

equired to converge the topology of the optimisation case in

ig. 23 : the optimum topology is not stable before the 234 th

teration. 

These differences in optima highlight a limitation of the differ-

ntial evolution on this topological aerodynamic optimisation case.

hile DE provides good exploration, the convergence on the global

ptimum is not guaranteed; this is because each of the local min-

ma has a very similar drag value but with different topology. Al-

ernate algorithms for niching and hybrid gradient/agent search

ethods could help improve the performance of the framework

n these cases. Despite these limitations, the combination of pa-

ameterisation, global optimiser and flow solver is effective at ex-

loring these optimisation problems. The relative compactness of

he set of design variables as well as the smoothness of the recov-

red profiles ensures that good aerodynamic bodies are generated

ost of the time without arbitrarily restricting the design space.

his allows this topological optimisation framework to explore

he complex behaviour of the optimal solution for large values of

rea. 

0. Conclusions 

Optimisation for external aerodynamics has usually focussed on

mall surface changes, but including topological change within the

alculation makes accessible a rich landscape alternative designs.

n some circumstances, exploring these widely varying alternatives

horoughly can be critical for the success of the optimisation. 

To achieve this flexibility, a technique using a local fraction of

olid across a design parameter grid has been developed for rep-

esenting two-dimensional shapes, including changes in topology.

lthough a coarse parameter grid may be used initially, sequen-

ial anisotropic refinement of the parameter grid is able to recon-

truct aerofoils to a good degree of accuracy. The method does not

chieve the same level of efficiency (in terms of numbers of design

ariables required) compared to parameterisation methods specific

o aerofoils, but it does create a flexible, general method for any

hape. 

The construction of the surface is implemented using r-snakes,

nd the snaxel positions of the r-snakes are determined so as to

atch each specified cell volume of solid while also minimising

he surface arc length. Calculus of variations shows that this for-
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Fig. 21. Results of Supersonic Topological Optimisation for a range of area constraints compared to analytical solutions. 

Fig. 22. Flood plots of Cp and Mach number for Supersonic Topological Optimisation results presented in Fig. 21 (c). 
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mulation leads to a surface built of circular arcs, and therefore

the surface may also be represented exactly using NURBS if re-

quired. Small perturbations in the parameters lead to parabolic

shape changes, and these permit a system of smoothing to be con-
structed. p  
When tested for geometric reconstruction, the method is able

o reconstruct both single and multiple aerofoil sections. Fixed vol-

me drag minimisation in supersonic flow has revealed known

arabolic and truncated shapes for single shapes, and when multi-

le shapes are allowed, Busemann multi-planes are generated. Fu-
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Fig. 23. C P and Mach flood plots for the best solutions at selected iterations. 

t  

p  

n

A

 

o  

-  

b  

t  

t

A

f

 

t  

T  

s  

t  

m  

f

A

 

r  

t  

t  

r  

f  

a  

f  

fl  

d

A

 

t  

d  

t  
ure work will extend the technique to three dimensions and ex-

lore the potential for other search methods to explore aerody-

amic topology optimisation cases more effectively. 
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ppendix A. Calculation and differentiation of the volume 

raction 

Calculation of the volume fraction is performed using Green’s

heorem which allows the calculation of the area of closed curves.

he two dimensional form of the theorem for a polygon is pre-

ented in Eq. (13) ; the results of this theorem can be extended

o higher dimensions for a 3 dimensional implementation of this

ethod. q is the centre of the edge of polygons and n the outward
acing normal to the edge. 

 C = 

1 

2 

∑ 

C 

q · n (13) 

This equation is used within each cell to define the area cur-

ently contained by the snakes. Manipulation of Eq. (13) allows it

o be formulated into the matrix product in Eq. (14) . Vector p is

he list of coordinates of the vertices where p n is the coordinate

ow vector of the n 

th vertex defining polygon C . Eq. (14) is derived

rom the decomposition of q and n into, respectively, the mean

nd the difference of neighbouring vertices which is readily trans-

ormed into simple matrix equations that can be assembled to re-

ect the connectivity information of a polygon. More detail of the

erivation of matrix R A is presented in Appendix B . 

 C = 

1 

2 

i ∑ 

C 

1 

2 

( p i + p i −1 ) 
T 

[
0 1 

−1 0 

]
( p i − p i −1 ) 

= 

1 

2 

p 

T R A p where : p = 

{
p 1 , p 2 , · · · , p n 

}T 
(14) 

The SQP algorithm being developed requires the derivation of

he Jacobian of the area constraints with respect to the non-

imensional snaxel distances. Applying the matrix form of Green’s

heorem to the VOS cells greatly simplifies the calculation of the

http://www.bris.ac.uk/acrc/
https://doi.org/10.13039/501100000266
https://doi.org/10.13039/501100000883
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derivatives as all the connectivity information is precomputed and

hidden into matrix R A . For the derivative to be computed, vector p

is readily separated into a variable and constant part. Recalling the

formulation of p i ( Eq. (2) ) and of p ( Eq. (14) ). 

p = �G d C + g 1 

where 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�G = 

⎡ 

⎣ 

�g 1 ,x �g 1 ,y 0 0 0 

0 0 �g 2 ,x �g 2 ,y 0 

0 0 0 0 

. . . 

⎤ 

⎦ 

T 

d C = { d 1 , d 2 , · · · , d n } T 
g 1 = { g 1 , 1 , g 2 , 1 , · · · , g n, 1 } T 

(15)

This formulation shows that p is only a function of the dis-

tance along edges of the snaxels ( d i ) and properties of the snaxel

grid, the direction of a travelling snaxel ( �g i ) and the originat-

ing grid point ( g i ,1 ). For any vertex of the polygon which is not a

snaxel the entry into d C is replaced by a 0. Replacing Eq. (15) into

Eqs. (14) and (16) is developed. This form of the equation simpli-

fies the differentiation process with regard to d . 

A C = 

1 

2 

[(d 

T 
C �G 

T 
)[ R A ]( �G d C ) + 2 g 

T 
1 [ R A ]( �G d C ) + g 

T 
1 [ R A ] g 1 ] 

(16)

∇ d A C = I d �G 

T 
[ R A ] �G d C + g 

T 
1 [ R A ] �G I d (17)

H d A C = I d �G 

T 
[ R A ] �G I d (18)

The differentiation relies on simple matrix derivation rules and

the symmetric nature of [ R A ]. In the previous equations I d is the

result of the operation ∇ d d C ; it is a rectangular matrix of ones

and zeros which has the effect of deleting rows and columns from

the equations corresponding to static vertices and inactive snaxels.

∇ d A C is the gradient of a VOS cell; it is a column vector of length

n (the number of snaxels in the profile). To build the full Jacobian

of the constraint ( ∇ d h ) the gradient in each VOS cell is calculated

using Eq. (17) and the resulting vectors are assembled to form the

matrix of Eq. (19) . 

∇ d h = 

[∇ d A 1 , ∇ d A 2 , · · · , ∇ d A j , · · · , ∇ d A m 

]
(19)

Appendix B. Green’s Theorem in matrix form 

Green’s theorem can be expressed in the matrix form with the

matrix built to match the connectivity of the control points. Recall-

ing Eq. (14) . 

A C = 

1 

2 

i ∑ 

C 

1 

2 

( p i + p i −1 ) 
T 

[
0 1 

−1 0 

]
( p i − p i −1 ) 

= 

1 

2 

p 

T R A p where : p = 

{
p 1 , p 2 , · · · , p n 

}T 
(20)

Focusing on a single term within the sum the expression can

be expanded. 

1 

2 

( p i + p i −1 ) 
T 

[
0 1 

−1 0 

]
( p i − p i −1 ) 

= 

1 

2 

(
p 

T 
i 

[
0 1 

−1 0 

]
p i + p 

T 
i −1 

[
0 1 

−1 0 

]
p i 

−p 

T 
i 

[
0 1 

−1 0 

]
p i −1 − p 

T 
i −1 

[
0 1 

−1 0 

]
p i −1 

)

b

= 

1 

2 

[
p 

T 
i 

p 

T 
i −1 

]
⎡ 

⎢ ⎣ 

0 1 0 −1 

−1 0 1 0 

0 1 0 −1 

−1 0 1 0 

⎤ 

⎥ ⎦ 

[
p i 

p i −1 

]
(21)

This matrix equation can then be summed over all vertices to

uild matrix R A present below. 

 A = 

1 

2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 1 . . . 0 . . . 0 −1 

0 0 −1 0 . . . 0 . . . 1 0 

0 −1 0 0 0 1 

1 0 0 0 −1 0 

. . . 

0 −1 0 0 

. . . 
. . . 1 0 0 0 

0 0 

. . . 
. . . 

. . . 

. . . 
. . . 0 0 0 1 

0 0 −1 0 

0 1 . . . 0 . . . 
. . . 0 −1 0 0 

−1 0 . . . 0 . . . 1 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

p = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p 

T 
1 

. . . 

p 

T 
i 

. . . 

p 

T 
n 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(22)

ppendix C. Differentiation of the objective function 

.1. Formulation of the objective 

The SQP algorithm described in Eq. (2) requires the gradient

 ∇ d f ) and the Hessian ( H d f ) of the objective function with re-

ard to the design variable vector d . These can be calculated for

ach segment of the snake. The norm of the edge vector can be

ecomposed into Eqs. (23) and (24) . Using the same notation as

q. (2) and defining p i − p i −1 = F i . 

 F i | = 

√ 

a i d 
2 
i 
+ a i −1 d 

2 
i −1 

+ a i,i −1 d i d i −1 + b i d i + b i −1 d i −1 + c + a i a i −1 ε2 (23)

ith : a i = �g i · �g i b i = 2 �g i · ( g i, 1 − g i −1 , 1 ) 
a i −1 = �g i −1 · �g i −1 b i −1 = −2 �g i −1 · ( g i, 1 − g i −1 , 1 ) 

a i,i −1 = − 2 �g i · �g i −1 c = ( g i, 1 − g i −1 , 1 ) · ( g i, 1 −g i −1 , 1 ) 

(24)

This form allows a much more readable representation of the

rst and second derivatives of the function. ε is a small positive

umber used to stabilise the derivatives as the edge length goes to

ero. Only the properties of the Hessian and Jacobian are discussed

n this section; the equations for the derivatives of Eq. (23) are

resented in Appendix D . The Hessian is a tridiagonal symmetric

atrix ( Eq. (18) ) which means the cost of inverting it for the cal-

ulation of the Newton step ( Eq. (3) ) is low. This is due to the for-

ulation of the tensile force, as it only relies on one neighbour on

ach side it leads to a sparse Hessian which favours the stability

f the system. The value of ε ( Eq. (23) ) is chosen to ensure that

he denominator of the derivatives does not go to 0 and is suffi-

iently high to ensure good conditioning of the Hessian. A value is

elected such that the impact on the derivative is limited to a small

egion around singularities. A typical value for this parameter will

e of the order 10 −5 . 
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ppendix D. 1 st and 2 nd differences of the objective function 

The differentiation of 23 is considered in terms of d γ an arbi-

rary component of d , three cases are identified. 

γ � = i and γ � = i − 1 then : 
∂| F i | 
∂d γ

= 0 

γ = i then : 
∂| F i | 
∂d i 

= 

( 2 a i d i + a i,i −1 d i −1 + b i ) 

2 | F i | 
γ = i − 1 then : 

∂| F i | 
∂d i −1 

= 

( 2 a i −1 d i −1 + a i,i −1 d i + b i −1 )

2 | F i | 
(25) 
Fig. 24. Smoothness validation cases for o

Fig. 25. Pseudo-aerofoil reconstruc
A similar process is followed for the second differences where
he differentiation is carried out with respect to d γ and d α . 

γ or α � = { i, i − 1 } then : 
∂ 2 | F i | 

∂ d γ ∂ d α
= 0 

γ = α = i then : 
∂ 2 | F i | 
∂d 2 

i 

= 

4 a i | F i | 2 − ( 2 a i d i + a i,i −1 d i −1 + b i ) 
2 

4 | F i | 3 

γ = α = i − 1 then : 
∂ 2 | F i | 
∂d 2 

i −1 

= 

4 a i −1 | F i | 2 −( 2 a i −1 d i −1 + a i,i −1 d i + b i −1 ) 
2

4 | F i | 3 

γ = i ; α = i − 1 then : 
∂ 2 | F i | 

∂ d i ∂ d i −1 

= 

2 a i,i −1 | F i | 2 −( 2 a i d i + a i,i −1 d i −1 + b i ) 

× ( 2 a i −1 d i −1 + a i,i −1 d i + b i −1 ) 

4 | F i | 3 
(26) 

ppendix E. Additional convergence of the RSVS 

This appendix presents profiles generated using the RSVS along

ith the convergence history of the r-snake. This data is presented

n figures 24 to 28 . 
ne, two and three design variables. 

ted with 16 design variables. 
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Fig. 26. Reconstruction of a Busemann biplane [69] using 6 longitudinal design variables. 

Fig. 27. Profile reconstructed by random design variables. 

Fig. 28. Paraboloid profile for low supersonic wave drag. 
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Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.compfluid.2019.02.
008 . 
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