
                          Howe, L. J., Sharp, G. C., Hemani, G., Zuccolo, L., Richmond, S., & Lewis,
S. J. (2019). Prenatal alcohol exposure and facial morphology in a UK
cohort. Drug and Alcohol Dependence, 197, 42-47.
https://doi.org/10.1016/j.drugalcdep.2018.11.031

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.drugalcdep.2018.11.031

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://doi.org/10.1016/j.drugalcdep.2018.11.031 . Please refer to any applicable terms of use of
the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-
guides/explore-bristol-research/ebr-terms/

https://doi.org/10.1016/j.drugalcdep.2018.11.031
https://doi.org/10.1016/j.drugalcdep.2018.11.031
https://research-information.bris.ac.uk/en/publications/prenatal-alcohol-exposure-and-facial-morphology-in-a-uk-cohort(dfe8e5e3-1bbd-4cbe-af5a-0c414ff34383).html
https://research-information.bris.ac.uk/en/publications/prenatal-alcohol-exposure-and-facial-morphology-in-a-uk-cohort(dfe8e5e3-1bbd-4cbe-af5a-0c414ff34383).html


 

 

Prenatal alcohol exposure and facial morphology in a UK cohort 

Laurence J Howe,1,3  Gemma C Sharp,1,4 Gibran Hemani,1 Luisa Zuccolo,1 Stephen 

Richmond,2 Sarah J Lewis,1,4 

1 MRC Integrative Epidemiology Unit, Population Health Sciences, Oakfield House, Oakfield 

Grove, University of Bristol, BS8 2BN, UK 

2 Department of Applied Clinical Research and Public Health, School of Dentistry, Cardiff, 

UK 

3 Institute of Cardiovascular Science, University College London, UK 

4 Bristol Dental School, University of Bristol, UK 

 

Declarations of interest: none 

Supplementary material can be found by accessing the online version of this paper at  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Abstract 

Background: High levels of prenatal alcohol exposure are known to cause an array of 

adverse outcomes including foetal alcohol syndrome (FAS); however, the effects of low to 

moderate exposure are less-well characterised. Previous findings suggest that differences in 

normal-range facial morphology may be a marker for alcohol exposure and related adverse 

effects.  

Methods: In the Avon Longitudinal Study of Parents and Children, we tested for an 

association between maternal alcohol consumption and six FAS-related facial phenotypes in 

their offspring, using both self-report questionnaires and the maternal genotype at rs1229984 

in ADH1B as measures of maternal alcohol consumption. 

Results: In both self-reported alcohol consumption (N=4,233) and rs1229984 genotype 

(N=3,139) analyses, we found no strong statistical evidence for an association between 

maternal alcohol consumption and facial phenotypes tested. The directions of effect estimates 

were compatible with the known effects of heavy alcohol exposure, but confidence intervals 

were largely centred around zero.  

Conclusions: There is no strong evidence, in a sample representative of the general 

population, for an effect of prenatal alcohol exposure on normal-range variation in facial 

morphology. 

Mendelian randomization; Facial morphology; Alcohol; ALSPAC 

 

 

 

 



 

 

1. Introduction 

 
Foetal alcohol spectrum disorders (FASD) refer to a broad range of outcomes relating 

to prenatal alcohol exposure (Riley et al., 2011). The most extreme phenotype, foetal alcohol 

syndrome (FAS), was first observed in case-studies of offspring of mothers with clinical 

alcoholism and is characterised by patterns of extreme foetal malformations such as growth 

retardation, cognitive issues and craniofacial anomalies (Jones and Smith, 1973).  

The potential teratogenic effects of high levels of alcohol exposure are supported by a 

murine study which demonstrated that alcohol exposure from the human equivalent of 6-

months gestation can trigger neurodegeneration of the developing brain (Ikonomidou et al., 

2000). However, the impact of lower levels of maternal alcohol consumption is less clear. 

Individuals exposed to low to moderate levels of alcohol do not typically present with facial, 

anthropometric or cognitive abnormalities, and there is inconsistent evidence from population 

studies for an association between maternal alcohol consumption and adverse outcomes in the 

offspring. Some studies have reported no clear or inconsistent evidence for adverse effects of 

low to moderate alcohol exposure (Flak et al., 2014) (McCormack et al., 2018) (Kelly et al., 

2013) (Mamluk et al., 2017), while other studies have reported evidence that low to moderate 

alcohol exposure may have modest adverse effects (Lewis et al., 2012; Zuccolo et al., 2013), 

with a review concluding that lower levels of alcohol exposure may contribute to adverse 

cognitive outcomes in children (Huizink and Mulder, 2006).  

The diagnosis of FASD relates to the presentation of various developmental 

anomalies, including: stunted anthropometric growth, structural brain anomalies and minor 

facial anomalies such as a smooth philtrum, a thin upper lip vermillion and shortened 

palpebral fissures. These dysmorphic patterns can lead to increased risk of adverse social 

experiences for children with FASD, who may be more likely to present with learning 



 

 

difficulties and behavioural problems (Hoyme et al., 2005). Traditionally, facial morphology 

has been phenotyped using facial landmarks, taken either directly from the face or derived 

from photographs or radiographs. These landmarks are defined by identifiable/describable 

facial features, e.g. nasion, inner/outer canthi, and can be used to generate Euclidean 

distances, angles, and ratios (Farkas, et al. 2004; Farkas, et al. 2005; Farkas, et al. 2002). 

Multiple facial landmarks can be used to generate principal components, geodesic distances, 

geodesic arrays, facial shells and signatures that categorise facial feature patterns (Abbas, et 

al. 2018; Hallgrimsson, et al. 2015; Hammond and Suttie 2012; Tsagkrasoulis, et al. 2017). 

An alternative method involves using anthropometric masks where five landmarks are used to 

crudely orientate 3D facial shells, which are then non-rigidly mapped on to a template to 

generate 10,000 quasi landmarks (Claes, et al. 2012). All techniques are valid however 

simple facial landmarks (for distances and angles) can be used as a proxies to highlight subtle 

and significant patterns of facial dysmorphia.   

FAS-related facial features have been shown to correlate with the severity of 

structural brain abnormalities and behavioural problems (Riley et al., 2011) (Astley and 

Clarren, 2001), suggesting that facial morphology may be a marker of alcohol related 

cognitive impairments. This is supported by a previous study which found that children 

exposed to alcohol, that have more FAS like facial symptoms, perform worse on 

psychometric tests relating to verbal IQ and learning (Suttie et al., 2013). It follows that an 

association between low levels of alcohol exposure and differential facial morphology would 

support the hypothesis that low levels of alcohol have adverse effects. Indeed, a previous 

study found evidence that low levels of prenatal alcohol exposure are associated with facial 

differences in infants aged around 12 months (Muggli et al., 2017). 

 



 

 

However, epidemiological studies investigating the effects of self-reported alcohol 

intake on health outcomes are problematic because alcohol consumption is often correlated 

with potential confounders such as tobacco smoking, age and socio-economic status. For 

example, maternal alcohol consumption during pregnancy has been shown to be previously 

associated with smoking and demographic variables in a UK cohort (Alati et al., 2013). 

Observational studies have often reported U- or J- shaped curves where moderate alcohol 

intake can be associated with improved mortality or morbidity (Alati et al., 2005; Marmot 

and Brunner, 1991; Marmot et al., 1981) but follow-up investigations have suggested that 

these results may be attributable to residual confounding (Alati et al., 2005; Holmes et al., 

2014; Shaper et al., 1988).  

Mendelian randomization (MR) is an instrumental variable approach using genetic 

variants associated with an exposure to explore possible causal relationships between that 

exposure and an outcome. The underlying premise is that, assuming a random mode of 

inheritance, genetic variants associated with the exposure are less likely to be associated with 

confounders than the measured exposure itself, while because genotype is fixed from birth, 

MR analyses are robust to reverse-causation. MR analyses generating unbiased causal 

estimates relies on several assumptions; first, that variants used in MR analyses are robustly 

associated with the exposure, second, that variants do not influence the outcome 

independently of the exposure, and third, that variants are not associated with confounders of 

the exposure-outcome relationship (Davey Smith and Ebrahim, 2003; Haycock et al., 2016). 

The Alcohol Dehydrogenase (ADH) genes are a family of genes known to be involved in the 

production of enzymes that oxidise alcohol (Thomasson et al., 1991). rs1229984 in ADH1B is 

involved in the metabolism of alcohol to acetaldehyde, individuals with one or more risk 

alleles are more likely to find drinking unpleasant (Luczak et al., 2006). Increased sensitivity 

to alcohol intake related to this genetic variant has been shown to lead to modified alcohol 



 

 

intake, including alcohol intake in pregnancy (Zuccolo et al., 2009). Although rs1229984 is 

common in Asian populations (Eng et al., 2007), it is relatively rare in European populations 

with a minor allele frequency of 2 to 5% (Zuccolo et al., 2009). Despite this, previous MR 

studies have successfully utilised this variant as a proxy for alcohol intake in European 

populations as it has a sizeable effect on alcohol consumption, one or more minor alleles is 

associated with a 17.2% reduction in weekly alcohol consumption (Holmes et al., 2014; 

Lawlor et al., 2013; Zuccolo et al., 2013).  

In this study, we first investigated whether self-reported low to moderate maternal 

alcohol intake is associated with facial morphology in the Avon Longitudinal Study of 

Parents and Children (ALSPAC). Secondly, we used genetic variation in ADH1B in an MR 

framework to estimate the effect of low to moderate maternal alcohol exposure on normal-

range facial morphology. 

2. Methods 

2.1 Study participants 

We used data on children from the ALSPAC a longitudinal study that recruited 

pregnant women living in the former county of Avon (UK) with expected delivery dates 

between 1 April 1991 and 31 December 1992. The initial number of enrolled pregnancies 

was 14,541, which resulted in 14,062 live births and 13,988 children alive at the age of 1. 

When the oldest children were approximately 7 years of age, the initial sample was boosted 

with eligible cases who had failed to join the study originally. For analyses of children after 

the age of 7, the total possible sample size is 15,247 pregnancies, resulting in 14,775 live 

births. Full details of enrolment have been documented elsewhere (Boyd et al., 2012; 

Golding, 2001). Data was collected from mothers and their partners (during pregnancy and 

post birth) and from the children (post birth), by self-report questionnaires and clinical 



 

 

sessions. Ethics approval for the study was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committee. The study website contains details of 

all available data through a searchable data dictionary 

(http://www.bristol.ac.uk/alspac/researchers/dataaccess/datadictionary/). 

 

2.2 Measures 

2.2.1 Facial phenotypes of ALSPAC children 

A subset of ALSPAC, consisting of 5,253 children, attended a clinic at the age of 15 

years, where high-resolution facial images were taken by Konica Minolta Vivid 900 laser 

scanners. 4,747 individuals had usable images (506 individuals did not complete the 

assessment, or the scans were of poor quality and consequently excluded). The derivation of 

the facial phenotypes are described in more detail in a previous publication (Paternoster et al., 

2012).   

The coordinates of 22 facial landmarks were derived using the scans. In this study, 

facial phenotypes were defined as 3D Euclidean distances between derived facial landmarks, 

i.e. the distance between two points in three dimensions. The 3D Euclidean distance between 

points a and b with coordinates (x, y, z) was calculated as follows: 

√(𝑎𝑥 − 𝑏𝑥)2 + (𝑎𝑦 − 𝑏𝑦)2 + (𝑎𝑧 − 𝑏𝑧)2. To alleviate multiple testing issues, this study 

tested 6 facial phenotypes known to be related to the FAS spectrum: average eye palpebral 

length, average eye palpebral width, inter-orbital width, nasal length, lip width and philtrum 

width (Figure 1). The relevance of these distances to FAS have been described previously 

(Astley and Clarren, 2001).  

2.2.2 ALSPAC mothers self-reported alcohol consumption 

http://www.bristol.ac.uk/alspac/researchers/dataaccess/datadictionary/
http://www.bristol.ac.uk/alspac/researchers/dataaccess/datadictionary/


 

 

 At around 18 and 32 weeks gestation, ALSPAC mothers completed questionnaires on 

the average amount and frequency of their alcohol consumption during pregnancy. Mothers 

were asked questions regarding the number of alcoholic drinks consumed at different stages 

of their pregnancy and the number of binges (defined as drinking four or more units of 

alcohol in a day) in the past month. The results of these self-report questionnaires were 

combined to estimate each mother’s weekly alcohol consumption in units (one alcohol unit is 

equivalent to approximately 8g of ethanol) and classify mothers into three categories (non-

drinkers during pregnancy, ≤6 units a week and >6 units a week). Further details on 

questionnaire variables and derivation of classifications are contained in Supplementary 

Table 1 1.   

2.2.3 Measurement of potential confounders 

 Maternal and child data pertaining to covariates included in analyses were measured 

within the ALSPAC study from questionnaires and clinic sessions. Maternal age at delivery 

was calculated using the difference between the mother and child’s dates of birth and 

gestational age was recorded at birth. Information on maternal smoking was extracted from a 

questionnaire completed by the mother at 18 weeks gestation; mothers who reported any 

form of smoking in the first 3 months of pregnancy or in the preceding 2 weeks to the 

questionnaire were classified as smokers while the non-smokers category included smokers 

who gave up for pregnancy. Information on maternal education was extracted from a 

questionnaire completed by the mother at 32 weeks gestation; mothers were asked for their 

education qualifications and the highest qualification was derived. The height and age of 

children with available facial scans were recorded at the clinic session. 

                                                           
1 Supplementary material can be found by accessing the online version of this paper at  



 

 

2.2.4 ALSPAC mother’s ADH1B genotype 

The ADH1B polymorphism rs1229984 was genotyped by KBioscience using the 

KASPar chemistry (http://www.kbioscience.co.uk/genotyping/genotyping-chemistry.htm). 

Blind duplicates, plate-identifying repeat samples and Hardy–Weinberg equilibrium tests 

were used as quality control checks (Zuccolo et al., 2009). The SNP had a minor allele 

frequency of 2.1% in the sample of mothers with complete offspring phenotype data. 

2.3 Statistical analysis 

2.3.1 Observational analysis 

 Firstly, to test the association between self-reported maternal alcohol consumption 

and child facial morphology, we dichotomised mothers into non-drinkers (0 units a week) and 

mothers reporting alcohol intake (1-6 units a week or >6 units a week). We ran a linear 

regression of the facial morphology variables on drinking status; adjusting for sex, maternal 

age, maternal education, maternal smoking and the height and age of the child at the face-

shape measurement clinic.  

 Next, we stratified mothers reporting alcohol intake by alcohol consumption (1-6 

units a week and >6 units a week). We re-ran the same analysis, testing differences between 

the non-drinkers and the two strata separately.  

2.3.2 Mendelian randomization analysis 

 For purposes of this analysis, we used the maternal genotype at the SNP rs1229984 in 

ADH1B as a proxy for self-reported maternal intake. To test assumptions about the 

association of rs1229984 with other traits, we used the GeneATLAS 

(http://geneatlas.roslin.ed.ac.uk/) (Canela-Xandri et al., 2017), a data-base of associations 

between genetic variants and phenotypes in the UK Biobank (Sudlow et al., 2015). For 

http://www.kbioscience.co.uk/genotyping/genotyping-chemistry.htm
http://geneatlas.roslin.ed.ac.uk/
http://geneatlas.roslin.ed.ac.uk/


 

 

continuous traits, we presented effect sizes and p-values. For categorical traits, where effect 

sizes are less interpretable, we presented p-values and direction of effect.  

We then ran a linear regression of the child’s facial morphology variables on the 

maternal ADH1B SNP, adjusting for child’s sex, the first 10 genetic principal components of 

the mothers, and the height and age of the child at the face-shape measurement clinic. Due to 

the rarity of the homozygous rare genotype in our modest sample size, we assumed a 

dominant effect of the rare allele. 

 

3. Results 

3.1 Study sample demographics  

3.1.1 Observational analysis 

Facial phenotype data were available for 4,747 ALSPAC children. We then restricted 

the sample to maternal-child pairs with complete phenotype data, including; maternal alcohol 

behaviour during pregnancy, gestational age, maternal age, maternal education, maternal 

smoking during pregnancy and information on the height and age of the child at the time of 

the facial scans. The final sample consisted of 4,233 children-mother pairs. More information 

on the demographics of this sample are contained in Table 1.  

3.1.2 Mendelian randomization analysis 

Again, starting with the 4,747 ALSPAC children with facial phenotype data, we 

selected maternal-child pairs with the maternal ADH1B SNP genotyped and information on 

the height and age of the child at the time of the facial scans. The final sample consisted of 

3,139 child-mother pairs. More information on this sample is contained in Table 1. 



 

 

3.2 Observational analysis 

 We did not find strong statistical evidence for an association between self-reported maternal alcohol consumption and the 6 facial 

phenotypes tested, although the directions of effect in our results were compatible with the symptoms of FAS for facial phenotypes tested (Table 

2). In the stratified analysis, effect sizes of higher magnitude were observed in the >6 units a week for 5 out of 6 phenotypes, suggestive of a 

possible dose-response relationship although wide confidence intervals prevent stronger conclusions. However, in the stratified analysis we also 

did not find strong evidence of an association between alcohol exposure and facial morphology (Supplementary Table 2 2). 

3.3 Mendelian randomization analysis 

3.3.1 Maternal ADH1B SNP, alcohol behaviour and pleiotropy 

 We confirmed that the ADH1B SNP was strongly predictive of alcohol behaviour in our sample; one or more of the rarer A alleles of 

rs1229984 was associated with reduced odds of reported maternal drinking relative to no drinking OR: 0.54 (95% C.I. 0.38, 0.75; P < 0.001). 

While self-reported maternal drinking was associated with all four potential confounders (maternal education, smoking, gestational age at 

delivery and maternal age), there was weak evidence for an association between these variables and the ADH1B SNP (Supplementary Table 3 

2).   

                                                           
2 Supplementary material can be found by accessing the online version of this paper at  



 

 

In the GeneATLAS (which used an additive model), the rare A allele was strongly associated with a categorical variable for reduced 

alcohol intake frequency (P = 1.59 x 10-148). In this much larger sample, there was strong evidence that the SNP is associated with non-alcohol 

related traits such as variables relating to socio-economic status. Of note, the rare A allele was strongly associated with reduced deprivation on 

the Townsend deprivation index at recruitment (P = 6.96 x 10-8, each A allele was associated with a 0.097 decrease) and reduced number of 

vehicles in household (P=1.9 x 10-10). Furthermore, there was evidence of an association with measures of adiposity such as body mass index (P 

= 2.65 x 10-11, each A allele associated with a 0.17 decrease). Information on the associations between rs1299884 and over 700 phenotypes is 

publicly available at the following web address: 

(http://geneatlas.roslin.ed.ac.uk/phewas/?variant=rs1229984&representation=table).   

 

3.3.2 Maternal ADH1B genotype and child’s facial morphology 

We then tested for association between the maternal ADH1B SNP and 6 facial phenotypes. We found no strong statistical evidence that 

the maternal ADH1B SNP was associated with the 6 facial phenotypes, but we did find that the directions of effect were consistent with the 

symptoms of FAS, as in the observational analysis (Table 2).  

http://geneatlas.roslin.ed.ac.uk/phewas/?variant=rs1229984&representation=table
http://geneatlas.roslin.ed.ac.uk/phewas/?variant=rs1229984&representation=table


 

 

4. Discussion 

In this study, we used self-reported maternal alcohol intake and the maternal genotype for rs1229984 in ADH1B to test the hypothesis 

that alcohol exposure has a detectable effect on normal-range facial variation in the general population. In both observational and MR analyses, 

we found no clear evidence for an effect. The directions of effect were compatible with the known effects of heavy alcohol exposure, but 

confidence intervals were wide. The implication of these results is that there is no strong evidence for an effect of alcohol exposure on the FAS-

related facial phenotypes tested in our study sample. 

Our findings are consistent with the well-characterised difficulties of identifying the effects of prenatal alcohol exposure (Suttie et al., 

2013) as well as with the findings of previous studies that found no clear evidence of an association between prenatal alcohol exposure and 

adverse effects (Flak et al., 2014; Kelly et al., 2013; Mamluk et al., 2017; McCormack et al., 2018). Contrastingly, a previous investigation by 

Muggli and colleagues found evidence of sub-clinical facial differences at 12 months between offspring of non-drinking mothers and offspring 

of light to moderate drinking mothers (Muggli et al., 2017). The discordance in results may be explained by differences in the timing and 

complexity of facial morphology measurements used in both studies; the study by Muggli and colleagues measured facial morphology at age 12 

months using a 3-D surface registration algorithm consisting of 69,587 points, whereas our study measured facial morphology using six 

Euclidean distances at age 15. Poor statistical power is unlikely to explain the lack of replication, because the sample size in our study was more 

than 10 times that of the study by Muggli and colleagues.  



 

 

A considerable strength of this study is the use of triangulation of methods (Lawlor et al., 2016); using both self-reported alcohol intake 

and the ADH1B SNP as measures of alcohol exposure and finding concordant results between the two methods. A further advantage is the 

substantially large sample size used in our analyses, compared to similar previous studies (Astley et al., 1992; Das et al., 2004; Klingenberg et 

al., 2010; Muggli et al., 2017). However, although our MR analysis included over 3000 mother-child pairs, it may still lack statistical power 

because of the low frequency of the rs1229984 minor allele. A further limitation of the study is that both the observational and MR analyses may 

be susceptible to confounding. In theory, MR analyses are less affected by confounding but there is some evidence that the ADH1B SNP may be 

associated with potential confounders such as social class and education (Holmes et al., 2014). It is unclear if these associations relate to 

downstream effects of alcohol consumption of are related to non-random mating on alcohol consumption. Our use of relatively simple facial 

phenotypes compared to a previous study (Muggli et al., 2017), that constructed phenotypes from thousands of facial landmarks, may also be a 

limitation. More detailed facial phenotyping may better capture surface topography and overall facial shape, although it is worth noting that 

some of the phenotypes tested in this study are included in the latest diagnostic criteria for FAS (Hoyme et al., 2016). A further limitation is that 

when estimating the effect of maternal genotypes using MR, the child’s genotypes may be a confounder if they also affect the phenotype of 

interest. In this instance, although unlikely, there may be an effect of offspring’s alcohol consumption on facial morphology rather than an effect 

of prenatal exposure (Lawlor et al., 2017). Finally, a previous study has highlighted possible selection and loss to follow-up issues with respect 

to participation in ALSPAC, which may have affected our analyses (Taylor et al., 2018). 



 

 

To conclude, in a large sample size of children, we found no strong evidence for an association between maternal alcohol consumption 

and facial morphology of their offspring. A lack of statistical power in the MR analysis limits the interpretation of the genetic analysis. Currently 

genetic approaches in the prenatal alcohol exposure area have primarily used ALSPAC, so replication in other cohorts and future meta-analyses 

of MR studies could allow more definitive conclusions to be made using genetic evidence. The absence of strong evidence for an effect in our 

well-powered observational analysis suggest that any effect, if one exists, is likely to be small. Further work in ALSPAC could utilise more 

complex facial phenotyping software to better identify fine-scale facial-structure differences (Claes et al., 2018; Muggli et al., 2017).  
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