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Abstract 

This paper presents a Bayesian model updating methodology for dynamical systems with 

geometric nonlinearities based on their nonlinear normal modes (NNMs) extracted from 

broadband vibration data. Model parameters are calibrated by minimizing selected metrics 

between identified and model-predicted NNMs. In a first approach, a deterministic formulation is 

adopted, and parameters are updated by minimizing a nonlinear least-squares objective function. 

A probabilistic approach based on Bayesian inference is next investigated, where a Transitional 

Markov Chain Monte Carlo is implemented to sample the joint posterior probability distribution 

of the nonlinear model parameters. Bayesian model calibration has the advantage to quantify 

parameter uncertainty and to provide an estimation of model evidence for model class selection. 

The two formulations are evaluated when applied to a numerical cantilever beam with 

geometrical nonlinearity. The NNMs of the beam are derived from simulated broadband data 

through nonlinear subspace identification and numerical continuation. Accuracy of model 

updating results is studied with respect to the level of measurement noise, the number of 

available datasets, and modeling errors. 

Keywords: Model updating, nonlinear normal modes, nonlinear system identification, Bayesian 

inference, modeling errors. 

1. Introduction 

Finite element (FE) modeling is commonly used for predicting the dynamical response of 

structural systems to external loading [1]. However, discrepancies always exist between the 

measured response and those predicted by models, even for the most sophisticated and detailed 

models. The sources of these discrepancies can be categorized into three groups: (1) modeling 

errors, e.g., boundary condition or type of nonlinearity; (2) model parameter value errors, e.g., 

element stiffness or nonlinear coefficient values; and (3) measurement errors, e.g., sensor and 

cable noise. Model updating is a process to select the optimal values for model parameters to 

minimize the discrepancies between measurements and model predictions. This process directly 

addresses the second source of error but can also reduce some of the modeling errors through 

model class selection. 
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Model updating: FE model updating methods were initially formulated and used for 

application to linear elastic structural systems [2, 3] and have been widely used since then (e.g., 

[4-7]). However, the application of model updating to nonlinear structures is still sparse. 

Asgarieh et al. [8, 9] applied FE model updating to estimate parameters of material hysteretic 

models and studied the effects of different data features. Kyprianou et al. [10] employed model 

updating based on a differential evolution optimization algorithm for tuning  the  parameters of 

the Bouc-Wen hysteretic model. Local nonlinearities such as friction, gap or geometrical 

nonlinearities are other sources of nonlinear behavior in structural systems. The literature 

includes a few studies on identification of local nonlinearities through model updating. Schmidt 

[11] proposed an approach for model updating of dynamical systems with local nonlinearities 

such as Coulomb friction, gaps and local plasticity using time history data utilizing “modal state 

observers” to determine initial values. In [12, 13], a nonlinear model updating was performed 

using data from a drop test of a system with nonlinear foam material. The considered data 

features in these studies included peak acceleration, time of arrival and standard deviation of 

model error. Hemez and Doebling [14] discussed and compared the performance of modal 

parameters metric and time domain metric in model updating of several testbeds at Los Alamos 

National Laboratory. Meyer and Link [15] utilized FE model updating to calibrate the same 

nonlinear beam as that of this study with a local cubic spring using displacement response and 

the model was linearized using harmonic balance method. Kerschen and Golinval applied a two-

step methodology of nonlinear model updating to a numerical aeroplane-like structure, 

decoupling the estimation of the linear and nonlinear parameters [16]. Kurt et al. [17, 18] 

proposed a model updating strategy to update the system parameters of a benchmark system by 

matching the backbone branches of the frequency-energy plots with the frequency-energy 

wavelet transforms of experimental time series.  

Deterministic vs. Probabilistic: The above reviewed model updating applications were 

performed in a deterministic sense where an “optimum solution” for updating parameters is 

obtained. However, the deterministic methods have a few shortcomings that can be addressed in 

probabilistic approaches. Two of the main shortcomings of deterministic methods are their 

inability to: (1) solve locally identifiable or unidentifiable inverse problems (i.e., when there is 

no unique optimum solution), and (2) quantify the uncertainty of updating parameters. Model 

parameters uncertainties can be caused by the identification or model updating process, 

measurement noise, and/or the inherent variability of model parameters due to ambient and 

environmental conditions. Several studies have shown that the in-service environment such as 

wind speed, rain and temperature could have significant effects on the dynamical properties of 

structural systems [19, 20]. Therefore, it is preferred to perform model updating in a probabilistic 

framework such as Bayesian FE model updating. The advantages of Bayesian model updating 

over deterministic approaches include quantification of uncertainties for updating parameters, 

propagation of this uncertainty in structural response prediction, and model class selection [21, 

22]. Beck et al. [23-25] presented the probability logic and formulation of Bayesian model 

updating and validation of the proposed framework when applied to numerically simulated data. 
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Ching and Beck [26] applied Bayesian model updating to the IASC-ASCE benchmark example 

and treated the mode shapes as extra variables in model updating. Yuen et al. [27] presented 

Bayesian damage identification of the same IASC-ASCE benchmark under different 

identifiability conditions: globally identifiable, locally identifiable, and unidentifiable. Muto and 

Beck [28] employed Bayesian model updating and model class selection for hysteretic structural 

models. Ntotsios et al. [29] presented Bayesian damage identification of a highway bridge. 

Behmanesh et al. [30] implemented Bayesian damage identification to the numerical SAC 9-

story steel moment frame where they proposed a process to select optimal subset of modes and 

optimal modal residual weights to mitigate the effects of modeling errors. To account for 

inherent variability of structural mass and stiffness due to changing in-service conditions, a 

Hierarchical Bayesian model updating was proposed in [31]. 

Nonlinear Normal Modes: NNMs are the extension of linear normal modes for nonlinear 

dynamical systems. NNMs were first defined by Rosenberg as “vibrations in unison” [32, 33]. 

This definition was later extended to encompass general, non-necessarily synchronous periodic 

solutions in [34]. NNMs have received attention as they provide a rigorous theoretical 

framework for interpreting many nonlinear dynamical phenomena [35-39]. NNMs were also 

shown to predict the behavior of the nonlinear structure at resonance where the risk of failure is 

the greatest. NNMs may therefore be considered as key nonlinear dynamical features and 

exploited for nonlinear model updating, as linear normal modes (natural frequencies, mode 

shapes) have been widely used in linear model updating with great successes [4-7]. Peter et al. 

[40] pioneered  model updating using NNMs in a deterministic approach. It solved a least-

squares problem to minimize the difference between measured backbone curves extracted using 

phase resonance method and their analytical counterparts computed using harmonic balance 

method, but it could not quantify the model parameters uncertainties which can be overcome by 

Bayesian approach applied in this study. Hill et al. [41] employed a probabilistic Bayesian 

identification of the parameters of nonlinear structures based on analytical models to describe the 

backbone curves. It applied the second-order normal form technique to derive the analytical 

expressions describing the backbone curves, which was limited to weakly nonlinear systems and 

introduced additional error into the model of the system since the analytical expressions only 

provided an approximate solution. These disadvantages do not exist in the proposed study here. 

Nonlinear Subspace Identification: Phase resonance method [42-44] is a well-established 

approach to extract the backbone curves of nonlinear systems using a quadrature criterion 

between response and excitation. Resonant decay method [42] is a standard phase resonance 

approach which has the capability of identifying NNMs, one at a time, with high accuracy, but it 

is time-consuming because of its trial-and-error nature and input frequency tuning process. 

Recently, new methods have been developed to overcome these issues by using control-based 

continuation and excitation power quantities in phase resonance testing [43, 44]. The two-step 

NNM identification method [45], which is applied in this paper, is capable of identifying 
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multiple NNMs under broadband excitation by combining a frequency-domain nonlinear 

subspace identification (FNSI) method with numerical continuation approach [46].  

This paper presents a FE model updating approach using NNMs residuals. The proposed 

approach is formulated in both deterministic and Bayesian frameworks and applied to model 

updating of a cantilever beam model (numerically simulated data) with local nonlinearity. 

Performance of the method in both formulations is evaluated when the updating results are 

compared to the nominal values of updating parameters. The broadband excitation input and the 

corresponding output responses are simulated and polluted with different levels of Gaussian 

white noise to represent noisy measurements. The FNSI method combined with numerical 

continuation is employed to identify the first three NNMs of the beam. Shooting method and 

pseudo-arclength continuation are used to compute NNMs from the FE model. FE model 

updating is applied to identify the linear parameter (i.e., the Young’s modulus E) and nonlinear 

stiffness parameters of the model in two separate steps. The deterministic model updating 

approach calibrates the FE model parameters by minimizing an objective function which consists 

in the difference between model-predicted and identified NNMs from (simulated) data. The 

Bayesian approach estimated the posterior probability distribution of the updating parameters 

through Bayesian inference and the principle of maximum entropy [47, 48]. The stochastic 

simulation method of Markov Chain Monte Carlo is applied to sample the joint posterior 

probability distribution. The performance of deterministic and probabilistic FE model updating is 

studied at different levels of measurement noise, number of available datasets, and in the 

presence of modeling errors.  

2. Model updating based on nonlinear normal modes 

This paper proposes a model updating strategy to calibrate the nonlinear system model 

considering the difference between identified NNMs from measured data (simulated in this 

study) and their counterparts predicted from the numerical model. The procedure of the proposed 

model updating strategy using NNMs is illustrated in Figure 1 for both deterministic and 

Bayesian formulations. The first step in the flow chart is the identification of data features 

(NNMs) from the input-output measurements of the structural system, which is done through the 

FNSI method and numerical continuation approach. The same data features are also computed 

using the numerical model through shooting method combined with pseudo-arclength 

continuation. Note that the proposed model updating method is not limited to the specific NNM 

identification and computation (from model) methods, other methods like the phase resonance 

method, harmonic balance method, or other techniques, which are capable of identifying and 

computing NNMs can also be exploited and incorporated into this model updating framework. 

The next step is to evaluate the difference between model-predicted and experimentally 

identified NNMs, and since NNMs are energy dependent, the difference should consider NNMs 

at different energy levels. Then, two different approaches are formulated to minimize the 

difference, namely the deterministic approach which involves an iterative optimization 

technique, and the Bayesian approach which implements a stochastic sampling method. Both 
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approaches require computation of NNMs for varying values of model parameters to form the 

residuals/error functions as functions of model parameters. 

 

Figure 1. Flowchart of the model updating strategy using NNMs 

2.1 Computation of NNMs from numerical model 

Defining NNMs as periodic solutions of the conservative equations of motion is appealing as 

there are numerous methods to compute periodic responses of nonlinear equations [49]. In this 

study, the shooting method, which is a popular method to solve two-point boundary value 

problems, is exploited. NNMs form families of periodic solutions that can exhibit bifurcations 

and internal resonance tongues, which pose challenges to fully track the frequency-amplitude 

dependence of the NNMs. To address this issue, the shooting method is combined with the 

pseudo-arclength continuation method, which uses a tangential prediction step and orthogonal 

correction steps to find and track the evolution of the periodic solutions. The computation of the 

NNMs is initiated at low energy where NNMs are close to the linear normal modes of the 

underlying linear system. More details about the method used for the computation of NNMs can 

be found in [46]. Note also that the proposed model updating method does not rely on the 

specific use of shooting and pseudo-arclength continuation, and other methods available in the 

literature could also be used [49]. 

2.2 Identification of NNMs from experimental data 

One of the most popular methods for identification of NNMs is the phase resonance method 

[42-44]. It has the capability to extract modal parameters from the free-decay response of the 
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system after turning off the excitation when the system is in resonance at a specified energy 

level. This method can identify one NNM at a time with high accuracy. This paper applies a 

different NNM identification approach, i.e., the two-step NNM identification method [45], which 

is capable of identifying multiple NNMs at a time under broadband excitation by combining a 

FNSI method with the numerical continuation approach [46].  

The first step of the identification approach applies FNSI method to the measured input-

output data and derives a state-space model of the system. The input data consists in the 

broadband excitations in this study and output data could be displacement or acceleration 

measurements. The FNSI method is a frequency domain method which allows the analyst to 

focus on specific frequency intervals and discard uninformative data. FNSI can handle multi-

input and multi-output systems with high modal density and strong nonlinearities, and does not 

rely on a preexisting numerical model. Typically, in FNSI, the basis functions used to fit the 

observed nonlinearities are polynomials or splines, but any linear-in-the-parameter function can 

be used. 

The second step is a numerical continuation approach to compute NNM branches after the 

state-space model derived from FNSI method is transformed into modal space. This numerical 

continuation approach uses the same technique of shooting combined with pseudo-arclength 

continuation, which has been presented in section 2.1. For more details about the two-step 

NNMs identification method, readers are referred to [45]. 

2.3 Model updating steps using NNMs 

In the model updating process, system parameters such as linear stiffness and nonlinear 

stiffness parameters are calibrated through an inverse problem to match the model predicted 

NNMs to the identified ones. For structures with local nonlinearities (as considered in this 

study), the linear and nonlinear stiffness parameters can be calibrated separately. Indeed, at low 

energy level, the nonlinear stiffness has very limited influence on the dynamics and the linear 

stiffness parameters may be updated using the linear normal modes estimated as NNMs at low 

energy level. After identifying the underlying linear behavior of the system, the nonlinear model 

parameters can be estimated using NNMs at higher energy levels. This two-step model updating 

strategy simplifies the inverse problem and mitigates the potential issue of internal resonance and 

bifurcation of NNMs under different combinations of linear and nonlinear stiffness parameters. 

The inverse problem can then be solved through a deterministic or a probabilistic/Bayesian 

formulation. 

2.3.1 Deterministic formulation (least-squares) 

In the deterministic model updating formulation, a least-squares problem is solved through 

an iterative optimization algorithm. Model updating is performed by minimizing an objective 

function which consists of the discrepancies between model-predicted and identified NNMs by 

adjusting the model parameters. The objective function in this study is defined as 



 

7 

 

1 1

( ) ( ) ( )
m mN N

m m

m m

f e e 

= =

= + θ θ θ  (1) 

in which θ  is the vector of updating parameters, Nm is the total number of modes,
 

( )me θ  and 

( )me θ  are the frequency and mode shape residuals for mode m, respectively. 

( )

,

2

, ,

2
1

( )1
( )

m
p

m i

N
m i m im

m
ip

e
N





 

=

−
= 

θ
θ  (2) 

, , , ,

, ,2
1 , ,, ,

( ) ( )1 1
( )

( ) ( )

m
p

m

T
N

m m i m i m i m i

m i m im
ip m i m im i m i

e a a
N



=

    
= − −   

    
   


Φ Φ θ Φ Φ θ

θ
Φ θ Φ θΦ Φ

 (3) 

where ,m i

 

and , ( )m i θ

 

refer to the identified and model predicted eigenfrequency of mode m at 

energy level i, respectively, with 
2

, ,(2 )m i m if =  and ,m if is identified natural frequency of 

NNMs in Hz. ,m iΦ

 

and , ( )m iΦ θ

 

are the identified and model predicted mode shapes of mode m 

at energy level i. 
m
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mode m. 1m
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for estimating linear stiffness parameters since the lowest energy level is 

considered, and 
m
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the number of available points on the NNM branches for estimating 

nonlinear stiffness parameters. Γ is the matrix that picks the corresponding components of 
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to be compared with the experimentally measured components of ,m iΦ . 
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is scaling factor as defined in Eq. (6). 
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In Eq. (4) and (5), wm is the weight assigned for each mode. Weights are usually decided based 

on the identification uncertainty of each mode, i.e., higher weight is assigned for mode with 

lower identification uncertainty. In this study, equal weights are assigned for the three NNMs 

since comparable identification uncertainties are observed. Ns is the number of components in 

mode shapes which is equal to the number of sensors. CoV is the coefficient-of-variation (ratio 

of standard deviation to the mean value) of identified eigenfrequencies, averaged over different 

modes and energy levels. 
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2.3.2 Probabilistic formulation (Bayesian inference) 

This section presents the formulation of probabilistic model updating using Bayesian 

inference. In this process, the posterior probability distribution of updating parameters is 

estimated based on the likelihood of parameters given the measured datasets as well as the prior 

knowledge. This section provides the error functions used in this study and the derivation of the 

likelihood function. More details about the general formulation of Bayesian model updating can 

be found in [21-25]. 

According to Bayes’ theorem, the posterior probability distribution of updating parameters 

given the measured data writes: 

( | , ) ( | )
( | , )

( | )

p M p M
p M

p M
=

d θ θ
θ d

d
 (7) 

In Eq. (7), ( | , )p Mθ d

 

is the posterior probability density function (PDF) of updating parameters 

θ

 

given measured datasets 1[  ... ]N=d d d , M denotes the considered model class, ( | , )p Md θ  is 

the likelihood function, and ( | )p Mθ

 

is the prior PDF which reflects the prior knowledge about 

the updating parameters. In this study, the prior PDFs are assumed to be uninformative, i.e., have 

uniform distributions. ( | )p Md  is the evidence which normalizes the posterior PDF. The 

conditioning on model class M is omitted in the following discussion for brevity. 

Based on the principle of maximum entropy [47, 48], Gaussian PDF provides the maximum 

uncertainty of an unbounded variable with finite mean and variance. Therefore, the prediction 

error ei which is the difference between model-predicted and experimentally identified data 

feature is assumed to follow a zero-mean Gaussian PDF: 

( )i i ie d d= − θ  (8) 
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i
i i

ii

e
p d p e
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In this equation, ( | )ip d θ  is the corresponding likelihood function which has the same 

distribution as the prediction error (with a moved mean value) for given values of updating 

parameters θ . ,  ( )i id d θ

 

denote the measured and model-predicted data features, i.e., NNMs in 

this study, and i

 

refers to their corresponding standard deviations evaluated from identified 

NNMs.  

The considered NNM prediction errors in this study include eigenfrequency error and mode 

shape error, similar to deterministic approach. Assuming that all prediction errors (also referred 



 

9 

 

to as error functions) are independent, the joint likelihood function given one dataset nd  can be 

written as 
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In the case of having multiple independent datasets of system identification results, the 

likelihood function can be expressed as: 
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The posterior PDF is then formulated as Eq. (13) when the prior distributions are assumed to be 

uniform. 

1

1
ˆ( | ) exp ( , )

2

N

n

n

p c J
=

 
= − 

 
θ d θ d  (13) 

where ĉ  is a constant. Evaluating the posterior PDF in Eq. (13) analytically is a challenging task 

because computing the unknown constant ĉ  requires solving high dimensional integrals. Markov 

Chain Monte Carlo (MCMC) methods can evaluate Eq. (13) numerically without needing to 

compute the constant.  

By comparing the deterministic objective function in Eq. (1) and Eq. (11) in the Bayesian 

approach, it can be seen that they have the same formulation of residuals/error functions. 

Therefore, the optimal values of updating parameters from deterministic approach would 

coincide with the maximum a-posterior (MAP) values of the Bayesian approach if the same 

datasets are used in both approaches, i.e., the optimal values which minimize Eq. (1) will 

maximize the posterior probability function of Eq. (13). Note that no regularization term is 

considered in Eq. (1) which corresponds to consideration of uniform (uninformative) prior 

distribution in Eq. (13). In case of having an informative prior in the Bayesian approach, a 

regularization term should be added in the corresponding deterministic objective function so the 

optimal deterministic and MAP values coincide as it is shown in [50]. 

 

3. Numerical evaluation of the proposed framework 

3.1 Description of the considered structure 

To verify and evaluate the performance of the proposed model updating strategy, an 

application to numerically simulated data of a nonlinear beam is considered. The nonlinear beam 
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is a numerical model of the COST Action F3 benchmark shown in Figure 2(a) [51, 52]. The 

benchmark consists of a main beam with one end clamped to the base, the other end connected to 

a thin beam using a bolt. For the purpose of simulating measured data, force sensor and 

accelerometers are considered on the beam as they were used in an actual test to measure the 

input excitation force and acceleration response of the beam. In Figure 2(a), A1~A7 refer to seven 

accelerometers and F1 refer to input force sensor. In this study, a representative FE model of the 

beam (shown in Figure 2(b)) is used to simulate its nonlinear response to periodic broadband 

excitations. The numerically simulated data of the beam are used for evaluation of the proposed 

model updating approach since it allows studying the effect of controlled levels of modeling 

error and measurement noise on the updating results. Based on the experimental study and 

physical examination of the beam, the following modeling and discretization strategy is 

employed: the left end of the main beam is modeled as a pin support with a rotational spring of 

stiffness k1; the connection of two beams is modeled with a lumped mass of 11.15 g (the mass of 

the bolt connection) and a rotational spring of stiffness k2; the right end of the thin beam is 

considered as a pin support with a soft rotational spring of stiffness k3; the main and thin beams 

are discretized into 14 and 3 two-dimensional Euler-Bernoulli beam elements, respectively. 

Seven accelerometers are modeled as lumped masses with 2.1 g each. According to the 

dynamical test of the beam, a local nonlinearity at the connection of the two beams is introduced 

by the large displacement of the thin beam, leading to a nonlinear geometrical effect, and a small 

asymmetry in the thin beam requires the introduction of a quadratic term in addition to the cubic 

term, in order to capture the softening-hardening behavior observed experimentally [52]. The 

nonlinear coefficients c1 and c2 are assigned for the cubic and quadratic terms, respectively. The 

geometrical and mechanical properties of the FE model are summarized in Table 1 and Table 2, 

respectively. 

 
(a) 

 

A1 A2 A3 A4 A5 A6 A7

F1

A1 A2 A3 A4 A5 A6 A7

F1
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(b) 

Figure 2. (a) Test setup of the benchmark beam at University of Liege (taken from [52]); (b) FE 

model of the nonlinear beam used for numerical simulation of data 

For the studied nonlinear beam, three updating parameters are considered to represent the 

linear and nonlinear stiffness parameters: the Young’s modulus E, and the nonlinear coefficients 

c1 and c2. Note that the stiffness k1, k2, k3 of the rotational springs are not updated together with E 

since they would make the inverse problem ill-conditioned. However, to study the effect of 

modeling errors, a case where the values of k1, k2, k3 are assumed as infinity (i.e., perfectly rigid 

connections) will be considered. The nominal values of the three updating parameters are shown 

in Table 2. In the first step of the proposed two-step modeling updating strategy, the Young’s 

modulus is estimated using NNMs at the lowest energy level, while the whole NNM branches 

are used to estimate the nonlinear coefficients c1 and c2 in the second step.  

Table 1. Geometrical properties of the FE model 

 Length (mm) Thickness (mm) Width (mm) 

Main beam 700 14 14 

Thin beam 40 0.5 14 

 

Table 2. Mechanical properties of the FE model 

Young’s modulus 

E (Pa) 

Density 

(kg/m3) 
k1 (N/rad) k2 (N/rad) k3 (N/rad) c1 (N/m3) c2 (N/m2) 

112.05 10  7800 114700 42.2 40 98 10  71.05 10−   

 

The two-step identification process is applied to the simulated measurements to identify the 

first three NNMs. To study the effect of noise on identified NNMs, the simulated sensor 

responses are polluted with three different noise levels, namely 1%, 2% and 5%. The added noise 

is Gaussian white noise with standard deviation equal to the noise level (e.g., 1%) multiplied by 

the root-mean-square (RMS) of acceleration response at the tip of the main beam. Independent 

Gaussian white noise vectors are added to the simulated time histories at the location of the 

seven accelerometers. For each noise level, 20 sets of NNMs are identified with independent 

realizations of added noise. Figure 3 shows the frequency-energy plots of the identified NNMs 

under different noise levels and mode shapes at energy levels corresponding to tip displacements 

of 0.01 mm, 0.5 mm and 0.95 mm. The mode shapes are normalized to make the tip 

displacements equal to unity. It can be observed that the identified NNM branches exhibit 

softening-hardening behavior with larger frequency discrepancies for the higher noise levels; 

mode shapes of NNM 2 and 3 evolve significantly with energy level, but no evident change can 

be seen for NNM 1. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. (a, c, e): Frequency-energy plots of identified NNM 1, 2 and 3 with different noise 

levels (only one dataset is shown for each noise level); (b, d, f): identified mode shapes (1% 

noise) at energy levels corresponding to tip displacements of 0.01 mm, 0.5 mm and 0.95 mm 

(mode shapes are normalized to make the tip displacement equal to one) 

3.2 Deterministic model updating results 
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This section presents the model updating results when using the deterministic formulation for 

the three considered noise levels and 20 independent noise vector realizations at each level. The 

optimization is performed in MATLAB [53] using the built-in interior point optimization 

algorithm [54], which does not require the gradients of the objective function with respect to the 

updating parameters.  In solving the least-squares problem, the updating parameters are 

constrained to avoid instability in the inverse problem. Table 3 summarizes the initial values of 

the updating parameters and their considered bounds in the optimization process. Note that the 

reported values are normalized to their nominal (exact) counterparts. The initial values are 

intentionally selected to be far from the exact values. These far-off initial guesses make sure 

good estimates of the updating parameters can be achieved even if the initial guess is not close to 

the true values. For simple systems, better initial guesses can be obtained using simple 

identification techniques, or curve fitting the NNMs [41, 43]. Large bounds account for big prior 

uncertainties of the updating parameters (smaller bounds would facilitate optimization process if 

prior knowledge is available). 

Table 3. Initial guesses and bounds of updating parameters 

 E/Eexact c1/c1
exact c2/c2

exact 

Initial guess 0.2 1.8 0.2 

Lower bound 0.1 0.1 0.1 

Upper bound 3 2 2 

 

For each noise level, deterministic model updating is performed to adjust the initial FE model 

parameters to match each of 20 datasets of identified NNMs, resulting in 20 sets of updating 

parameters. The results are shown as boxplots in Figure 4, where the bottom and top of the boxes 

denote the first and third quartiles, the lower and the upper end of the whisker denote the lowest 

and highest values within 1.5 interquartile range of the lower and upper quartile, respectively, the 

line in the middle of the box denotes median, and the black circle indicates the mean value. The 

statistics of deterministic model updating results are summarized in  

Table 4. It can be observed that: (1) the Young’s modulus E is estimated very accurately with 

very small variability, which is due to the small uncertainty in the identified linear normal modes 

(estimated as NNMs at the lowest energy level), as shown in Figure 3; (2) c1 and c2 are estimated 

closely to their true values but with larger variability than E, and the largest variability is 

observed for the coefficient of the quadratic term, c2, which is due to the large identification 

uncertainty in the NNMs at higher energy levels; (3) small bias is observed for both c1 and c2 

which comes from the error in the two-step NNM identification process; and (4) in general, 

larger variability is observed for higher noise levels.  
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Figure 4. Boxplot of deterministic model updating results 

 

Table 4. Statistics of deterministic model updating results 

Noise level  E/Eexact c1/c1
exact c2/c2

exact 

1% 
Mean 0.9999 0.9839 0.9891 

Std 52.39 10−  0.0039 0.0054 

2% 
Mean 0.9999 0.9841 0.9903 

Std 54.87 10−  0.0037 0.0083 

5% 
Mean 0.9999 0.9837 0.9967 

Std 41.13 10−  0.0117 0.0223 

Note: Std means standard deviation. 

3.3 Bayesian model updating results 

The Bayesian model updating approach is implemented for estimation of the three considered 

model parameters for three noise levels and four different dataset numbers (Nd = 1, 5, 10, or 20), 

resulting in 3 4 12 =

 

cases of Bayesian model updating. For the case of a single dataset (Nd = 

1), the average NNMs over the total 20 datasets are used. For 5, 10 and 20 datasets cases (Nd = 5, 

10, 20), the first 5, 10 and all 20 datasets of identified NNMs are considered.  

The first step of Bayesian model updating is to estimate the Young’s modulus E using NNMs 

at the lowest energy level. A Markov Chain Monte Carlo (MCMC) approach is implemented to 

sample the posterior probability distribution formulated in section 2.3.2. Unlike Monte Carlo 

method which estimates the probability distribution by drawing independent samples, the 

MCMC method builds a Markov Chain which eventually converges to the static distribution 

(posterior PDF). The Markov Chain starts with an initial guess which is not necessarily in the 

high probability region of the static distribution but after the initial transition steps the chain will 

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

U
p

d
a

te
d

 v
a
lu

e
s

 

 

 E  c1  c2

Noise 1%

Noise 2%

Noise 5%



 

15 

 

converge to the static distribution given that enough samples are generated. The Metropolis-

Hastings (MH) algorithm [55, 56] is chosen for the MCMC sampling of the Young’s modulus E. 

A Gaussian distribution is used as the proposal distribution in the MH algorithm and its standard 

deviation is selected such that acceptance ratio of samples in the algorithm becomes close to 

40%, as suggested by [57] to provide the optimal sample estimations. A burn-in strategy is 

utilized to remove the initial transitional samples to give a better estimate of parameter 

distribution. The generated sample statistics after the burn-in period are reported in Table 5 for 

different noise levels and dataset numbers. It can be observed that the sample means are very 

close to the exact values of E and the sample standard deviations are very small in all cases 

indicating very low estimation uncertainty. It can also be seen that the standard deviation 

increases for higher noise levels, while it is reduced as more datasets are used in the updating 

process. This can also be seen in Figure 5 that shows the standard deviation of posterior PDF of 

E as a function of dataset numbers and different noise levels. Figure 6 plots histogram of the 

samples of E and evolution of sample statistics for 2% noise level and Nd = 1 after burn-in. It can 

be seen that the Markov Chain converges to the high probability region after the first few 

thousand samples and the sample mean and standard deviation tend to stay constant as more 

samples are generated. This confirms that the number of samples used in this study is sufficient 

to give accurate estimation for the posterior PDF of E. 

Table 5. Sample information and statistics of Bayesian model updating of E 

                                             𝑁𝑑 

Noise level 
1 5 10 20 

1% 

Num. of samples 100,000 200,000 200,000 200,000 

Burn-in 10,000 20,000 30,000 30,000 

Sample mean 0.9999 0.9999 0.9999 0.9999 

Sample std 42.36 10−  41.05 10−  57.43 10−  55.25 10−  

2% 

Num. of samples 100,000 200,000 200,000 200,000 

Burn-in 10,000 20,000 30,000 30,000 

Sample mean 0.9999 0.9999 0.9999 0.9999 

Sample std 44.61 10−  42.06 10−  41.46 10−  41.03 10−  

5% 

Num. of samples 100,000 200,000 200,000 200,000 

Burn-in 10,000 20,000 30,000 30,000 

Sample mean 0.9999 0.9999 0.9999 0.9999 

Sample std 31.16 10−  45.23 10−  43.68 10−  42.60 10−  
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Figure 5. Posterior standard deviation of E for different noise levels and dataset numbers 

  
(a) (b) 

Figure 6. (a): Histogram of samples of E; (b): mean and standard deviation excluding burn-in 

samples 

After the Young’s modulus E is estimated in the first step, the nonlinear coefficients c1 and c2 

are estimated in the second step using the complete NNM branches. Since the estimated 

uncertainty of E is very small, the value of Young’s modulus is fixed at the most probable value 

(the same value as MAP) in the second step. The Transitional Markov Chain Monte Carlo 

(TMCMC) [58] method is used to sample the joint posterior probability distribution of c1 and c2. 

It is worth noting that the MH algorithm was not effective for sampling the joint posterior PDF 

of c1 and c2 which has a more complex form and is more challenging to sample. The MH 

algorithm was initially implemented but could not generate enough samples at the high 

probability regions of the posterior PDF. TMCMC is a powerful tool to sample complex 

functions such as multimodal functions and those with highly localized peaks (as in this study). 

The key idea of TMCMC is that it creates a series of intermediate posterior PDFs and utilizes 

sampling and resampling strategies to make samples move step by step to high probability 
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regions, avoiding directly sampling the final posterior PDF, which may be numerically 

challenging to do in a single step. Another advantage of TMCMC is that it is capable of 

estimating the evidence function ( | )p Md which can be used for model class selection and hyper 

robust response prediction through model class averaging [58].  

In the application of TMCMC method, through a trial and error process, and to create a 

smooth transition between intermediate PDFs and reduce computation effort, seven intermediate 

PDFs ( | )jp θ d  are considered as shown in Eq. (14): 

( | ) ( ) ( | )              =1,...,7js

jp p p j θ d θ d θ

   

 (14) 

The power sj of different stages are selected as 0, 1e-5, 1e-3, 0.1, 0.2, 0.5 and 1, with the last 

stage 7( | ) ( | )p p=θ d θ d . The prior PDF ( )p θ  is assumed to be a joint uniform distribution over 

the area of 1 20.1 , 2c c  . One thousand samples are generated in each stage of TMCMC. 

Figure 7 plots the samples at stages 1 to 7 for the case of 2% noise level and Nd = 1. The zoom-in 

plot of the final stage shows the superposition of 1%, 2% and 5% noise level results. It can be 

seen that: (1) at stage 1, the samples are uniformly distributed in the space as the prior PDF is 

assumed to be uniform; (2) samples quickly converge to the high probability area as the stage 

power sj increases; (3) at the final stage, all the samples are concentrated in a very small area 

close to the exact values, which means the nonlinear coefficients c1 and c2 are estimated 

accurately with small uncertainty; and (4) a strong correlation, indicated by the angle of the point 

cloud, is observed between c1 and c2 as shown in the zoom-in plot of the final stage. The 

correlation is positive because an overestimation of one nonlinear coefficient leads to an increase 

in the other coefficient to compensate. Note that the nonlinear coefficients are normalized by 

their nominal values and therefore, an increase in c2 would mean a decrease in its real value since 

its nominal value is negative. The histogram and kernel marginal PDFs of c1 and c2 are shown in 

Figure 8. It can be seen that the marginal PDFs of c1 and c2 are close to Gaussian distributions. 

The sample statistics and correlation coefficient between c1 and c2 in all cases are reported in 

Table 6. It is observed that: (1) means of c1 and c2 in all cases are very close to the exact values 

with slight bias observed due to the identification errors of NNMs, as observed in the 

deterministic case. (2) Noise level and dataset amount Nd do not have a significant influence on 

the estimation bias. (3) Standard deviations of c1 and c2 increases with higher noise level. 

However, the standard deviations are generally reduced with more datasets used as shown in 

Figure 9. (4) The correlation coefficients between c1 and c2 are close to 1, indicating very strong 

correlation between these two modeling parameters, as explained above.  
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Figure 7. Transitional samples at each stage with 2% noise level and Nd = 1 (with results from 

1% and 5% noise levels superimposed in the zoom-in plot of final stage) 

 

 
Figure 8. Histogram and kernel posterior marginal PDFs of c1 and c2 with 2% noise level and Nd 

= 1 
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Table 6. Sample statistics of Bayesian model updating results of all cases 

                                       Nd 

Noise level 
1 5 10 20 

1% 

c1 mean / std (%) 0.981 / 0.65 0.982 / 0.18 0.981 / 0.18 0.983/ 0.18 

c2 mean / std (%) 0.987 / 0.46 0.990 / 0.11 0.988 / 0.12 0.988 / 0.13 

 0.98 0.94 0.97 0.97 

2% 

c1 mean / std (%) 0.984 / 1.41 0.986 / 0.79 0.981 / 0.39 0.979 / 0.33 

c2 mean / std (%) 0.991 / 0.99 0.995 / 0.54 0.989 / 0.25 0.986 / 0.24 

 0.98 0.99 0.97 0.98 

5% 

c1 mean / std (%) 0.985 / 3.46 0.976 / 1.17 0.985 / 0.91 0.985 / 0.74 

c2 mean / std (%) 0.998 / 2.47 0.998 / 0.79 1.000 / 0.61 0.997 / 0.51 

 0.98 0.97 0.97 0.97 

Note:  indicates the correlation coefficient between c1 and c2. 

 
Figure 9. Comparison of standard deviations of different cases 

As stated before, the objective function used in the deterministic approach has the same 

formulation as Eq. (11) used in Bayesian formulation. Therefore, the optimal values of updating 

parameters from deterministic approach coincide with the MAP value of the Bayesian approach 

when the same datasets are used. However, the optimal values obtained in section 3.2 are not 

exactly the same as the results of Bayesian approach with Nd = 1 in section 3.3, because the latter 

approach uses the average values of 20 datasets of NNMs while the deterministic approach uses 

one of the 20 datasets each at a time. Note that the obtained standard deviations from the two 

approaches are not comparable because they represent different uncertainties. The standard 

deviation of the deterministic approach reflects the variability of system identification results 

across different datasets and would converge to a non-zero value with increasing datasets. 

However, the estimated standard deviation in the Bayesian approach represents the estimation 
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uncertainty of optimal values in the view of measured data and would consistently be reduced as 

more data are used in the algorithm. In terms of the computational cost, the optimization process 

in deterministic approach requires approximately 150 iterations to converge resulting in a total of 

150 20 3000 =  for the 20 datasets. In application of the TMCMC algorithm, 1000 samples are 

generated at each stage requiring a total of 6000 samples, making the Bayesian approach 

computationally more expensive. However, it should be noted that the implemented optimization 

approach in the deterministic case is a local method and is not capable of finding the global 

optimal solution in the case of non-convex and multi-modal objective function while the 

TMCMC is robust for finding the global optima in a non-convex and multi-modal objective 

function.  

3.4 Bayesian model updating with modeling error 

Modeling errors are inevitable in structural dynamics due to simplification, idealization and 

discretization assumptions used in the modeling process. Such errors pose a significant challenge 

in response prediction of complex dynamical systems. In the Bayesian model updating 

framework, statistics (mean and variance) of the error functions provide a measure of modeling 

error that can be used in model predictions. In this study, two cases of modeling errors are 

considered. In the first case, the boundary conditions of the beam are considered to be rigid at the 

left and right end (k1, k3 = ∞), and the connection of the main and thin beams is assumed to be 

perfect (k2 = ∞). This model represents the case with wrong assumptions regarding the 

underlying linear model but correct form of nonlinearity. The second case of modeling error 

assumes the correct underlying linear model but neglects the quadratic term in the local 

nonlinearity, i.e., a cubic spring with coefficient c models the original combination of cubic and 

quadratic terms. The same two-step Bayesian model updating process is employed to identify the 

linear stiffness parameter Young’s modulus E and the nonlinear coefficients c1 and c2 for the first 

case and c for the second case. The effects of modeling errors are studied for the case of 2% 

noise level and 1 dataset.  

3.4.1 Modeling error in boundary conditions (k1 = k2 = k3 = ∞)  

For modeling error case 1, the stiffness of rotational springs, k1, k2 and k3 are assumed to be 

infinity. Similar to the case of no modeling error, in the first step of Bayesian model updating, 

the MH algorithm is used to sample the posterior PDF of the Young’s modulus E. A total of 

2×105 samples are generated and their statistics are shown in Figure 10. The sample mean and 

standard deviation are reported in Table 7. It can be seen that the Young’s modulus is 

underestimated to compensate for the stiffer boundary conditions. In the second step, the 

Young’s modulus is fixed at its MAP value, and nonlinear parameters c1 and c2 are estimated 

using total NNM branches. The TMCMC method is applied again to sample the joint posterior 

PDF of c1 and c2 with the same 7 intermediate stages considered in section 3.3. The samples at 

the final stage are shown in Figure 11, with samples from previous no modeling error case 

superimposed. It can be observed that there is an evident estimation bias for c1 and c2 due to 
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modeling error in the underlying linear model. Strong correlation can still be observed for these 

two parameters similar to previous case.  

  
(a) (b) 

Figure 10. (a): Histogram of samples of E; (b): sample mean and standard deviation after burn-in 

 

Figure 11. Samples for modeling error case 1 at the final stage with 2% noise level and Nd = 1 

(samples from previous no modeling error case are superimposed) 

Table 7. Sample statistics of E, c1 and c2 (modeling error case 1) 

 E/Eexact c1/c1
exact c2/c2

exact 

Sample mean 0.9560 1.085 1.111 

Sample std (%) 24.23 10−  1.81 1.19 

Note: For E, mean and std are calculated after burning in the first 10,000 samples. 
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For the second case of modeling error, the underlying linear model is exact and therefore, the 

first step of updating of Young’s modulus E will provide the same result as in section 3.3. For 

the second step of estimating the nonlinear coefficient c (which is normalized to the nominal 

value of c1 in Table 2), through similar trial and error process and to reduce computation time, 

seven intermediate PDFs with the power sj of each stage equal to 0, 1e-3, 0.02, 0.1, 0.2, 0.5 and 1 

are considered in TMCMC algorithm. A total of 1000 samples are generated at each stage. The 

histograms of transitional samples at stages 1-4 and 7 are shown in Figure 12. It can be observed 

that the samples converge to high probability area very quickly and the variability of samples at 

the final stage is small. The sample mean and standard deviation at the final stage is equal to 0.07 

and 0.0031. The mean value is significantly different from the exact value of c1 which is 

expected since the nonlinearity is modeled differently and a cubic spring alone cannot possibly 

reproduce the softening-hardening behavior caused by quadratic and cubic terms combined.  

The estimated evidence ( | )jp Md
 
of the calibrated models for both cases of modeling errors and 

the case without modeling error are computed and reported in Table 8. Larger evidence indicates 

the corresponding model is more probable in the view of measured data. It can be seen that the 

evidence of the two calibrated models with modeling errors are considerably smaller compared 

to the model without modeling error. Also, among the two cases of modeling errors, the model 

with error in boundary conditions is more probable than the model with missing nonlinear 

quadratic term. Note that computation of evidence is usually a challenging task; however, the 

implemented TMCMC algorithm is capable of providing model evidence as a by-product with 

no additional computation cost. Recently studies in [59, 60] show that the TMCMC method 

provides slightly biased estimates for the evidence. However, the biased estimates will not affect 

the qualitative results presented in this paper since the evidence estimates for each model class 

are far apart, as denoted in Table 8. 
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Figure 12. Histogram of transitional samples of nonlinear coefficient c for modeling error case 2 

at stages 1-4 and 7 

Table 8. Estimated evidence of different model classes 

Model class Evidence ( )log ( | )p Md  

Correct model 32.3 

Modeling error case 1 (wrong underlying linear model) -205.5 

Modeling error case 2 (wrong nonlinearity) -2292.9 

 

4. Conclusions 

A model updating strategy using NNMs is proposed and evaluated when applied to a numerical 

nonlinear beam model. The FNSI method combined with a numerical continuation approach is 

employed for identification of NNMs from simulated data while shooting method combined with 

pseudo-arclength continuation approach is used to compute NNMs from the model. A two-step 

model updating strategy is proposed to identify the linear stiffness parameter in the first step and 

the nonlinear stiffness parameters in the second step to simplify the inverse problem. Two model 

updating approaches are formulated and implemented in the paper, namely a deterministic 

approach and a Bayesian approach. In the Bayesian approach, stochastic simulation methods are 

used to sample the posterior probability distribution of updating parameters: MH algorithm is 

used for estimating Young’s modulus E and TMCMC algorithm is used for estimating c1 and c2. 

The numerical application to the nonlinear beam shows that both deterministic and Bayesian 
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modeling errors, and the estimation uncertainties increase for higher noise level. However, using 

more datasets will reduce the estimation uncertainty for the Bayesian formulation while it is not 

the case for the deterministic approach. In both formulations, small estimation bias is observed 

due to the NNMs identification error. It is important to note that the model updating results are 

very sensitive to the estimation error (bias) of NNMs, however, the implemented NNM 

identification method can handle measurement noise in the form of zero-mean Gaussian white 

noise relatively well. In a case where noise is caused by unmeasured input disturbances, the 

NNMs are expected to be identified with larger estimation errors resulting in less accurate model 

updating parameters. To study the effect of modeling errors, two modeling error cases are 

considered, one with error in underlying linear model and the other with error in local 

nonlinearity. The results verify that Bayesian approach has the capability of providing 

parameters estimation uncertainties and selecting the more suitable model class based on the 

measured data.  
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