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INTRODUCTION 1 

Our view of oral streptococci has largely been influenced by the approach taken in 2 

the last century to identify etiologic agents of disease. As a consequence, beneficial 3 

aspects of streptococcal colonization of the oral cavity were initially overlooked. The first 4 

comprehensive analysis of the resident oral microbiota was accomplished in 2005 (1) and 5 

with this, a new picture began to emerge. With the availability of high throughput 6 

sequencing techniques and an increased sensitivity in analysis methods, the presence of 7 

a defined microbiome associated with oral health has been shown (2). Alongside this, 8 

‘omics’ techniques have revealed that prevalent oral diseases such as caries and 9 

periodontal disease are polymicrobial in nature and the result of microbial dysbiosis (3, 4). 10 

Even more striking, the metabolic output of these mixed microbial communities seems to 11 

be more relevant than their precise microbial composition (4). This is also reflected by the 12 

fact that the severity of caries and periodontal disease is heavily influenced by the 13 

synergistic interactions of the individual members of the polymicrobial consortium, 14 

including metabolic cross-feeding and interspecies signaling with transcriptional 15 

adjustment to the metabolic output. Thus, the ecological context of the microbial 16 

community seems to be of importance to understand oral health and disease 17 

development. As a consequence, polymicrobial diseases cannot be explained by the 18 

behavior of one bacterial species and certainly cannot be treated like diseases that follow 19 

Koch’s postulates (5-7). Novel approaches to combat oral polymicrobial diseases should 20 

therefore focus on the bacterial community that is present in the healthy oral cavity. Since 21 

oral streptococci are abundant during initial colonization of the tooth (8, 9), their function 22 

is to provide a favorable environment for incorporation of later species and to support 23 
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accretion of the mature oral biofilm, which in general has a health-protecting function (10, 24 

11). 25 

One of the oral Streptococcus species that is repeatedly isolated in great 26 

abundance as part of the health-associated microbiome is the initial colonizer 27 

Streptococcus sanguinis (12-14). Because of the strong association of S. sanguinis with 28 

oral health, this commensal can serve as a model to understand how an individual species 29 

is able to interact with other members of the bacterial community to shape the composition 30 

of a benign oral biofilm. S. sanguinis is in general classified as a non-spore-forming, 31 

catalase-negative, chain-forming coccus. S. sanguinis is non-beta-hemolytic, but is able 32 

to produce a green coloration on blood agar plates referred to as alpha-hemolysis, which 33 

is a consequence of hydrogen peroxide (H2O2) production (15). S. sanguinis has been 34 

placed into the mitis group of streptococci based on 16S rRNA sequence analysis; 35 

however, it has also been classified in its own group together with S. gordonii and S. 36 

parasanguinis (15). A more recent analysis using the housekeeping genes rpoB, sodA, 37 

ddl, and gdh showed a more distant relationship with S. parasanguinis, but confirmed the 38 

phylogenetic relationship with S. gordonii (16). Here we present the sanguinis-group 39 

streptococci in the context of molecular commensalism, highlighting those aspects of their 40 

biology that are important for health-associated biofilm development, including 41 

polymicrobial interactions, regulatory and mechanistic events (Figure 1). 42 

 43 

MOLECULAR DETERMINANTS OF S. SANGUINIS AS A COMMENSAL PIONEER 44 

COLONIZER 45 

Initial colonization is intimately linked to the adhesion capabilities of oral 46 

streptococci. S. sanguinis, together with S. gordonii, S. oralis and S. mitis, are well 47 
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adapted for initial colonization. These streptococci express a multitude of bacterial surface 48 

proteins, named adhesins, which are able to interact with salivary proteins covering the 49 

tooth surface (17-19). S. sanguinis seems to be particularly well equipped with adhesins 50 

that recognize this salivary pellicle (20). Overall, initial colonization has two important 51 

consequences. First, the ecological niche is occupied, which plays a significant role in the 52 

process of colonization resistance and the exclusion of potential incoming pathogens. 53 

Second, initial colonization shapes the overall composition of the biofilm, since the pioneer 54 

colonizer can produce metabolic products or provide a substratum for compatible partner 55 

species. Initial biofilm development requires the formation of macromolecular complexes. 56 

Complex formation is facilitated through electrostatic interactions of salivary proteins with 57 

the tooth surface to form the acquired enamel pellicle, a process that occurs within 58 

seconds after a clean enamel surface is exposed to saliva (21). Microbial attachment to 59 

the acquired enamel pellicle is then mediated via protein-protein and lectin-like 60 

interactions. The protein content of the acquired enamel pellicle is thus a major 61 

determinant of colonization sequence, dictating strength of microbial adhesion as well as 62 

localization, since pellicle proteins seem to differ according  to anatomical site (22).  63 

A prominent protein in saliva and the acquired enamel pellicle is -amylase, 64 

responsible for the catalytic hydrolysis of starch (23, 24). Amylase binding proteins have 65 

been identified in several oral streptococcal species (24). Best studied is the amylase-66 

binding protein A (AbpA) in S. gordonii (25). Mutation of AbpA results in deficient biofilm 67 

formation and bacterial adhesion in vitro (26). Although the sequenced reference strain S. 68 

sanguinis SK36 seems to encode an abpA homolog in a similar chromosomal context with 69 

its accessory sortase, srtB (27), its function is currently unknown. Interestingly, S. 70 
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sanguinis is able to bind directly to surface-bound amylase and vice versa (24). This 71 

function has been shown to be mediated by long filamentous pili, organized in a four-72 

gene operon (ssa1631-1634) that encodes three pilin subunits (PilA-C) and a dedicated 73 

sortase, SrtC, for cell-surface anchoring of the pilin structural proteins (28). Pili are 74 

relatively long and thin appendages and the pili of S. sanguinis can be as long as 1 µm, 75 

as shown by immune-gold staining of PilA (28). This poses a potentially interesting 76 

dynamic with AbpA, which is strictly confined to the outer cell surface, as shown for S. 77 

parasanguinis, also with immune-gold labeling (27). Taking into account that pili are 78 

flexible, one could hypothesize that binding to amylase in acquired enamel pellicle is 79 

possible even when the molecule is scarce, since the pili could serve as a flexible “arm”, 80 

latching onto free amylase within saliva. A recent publication demonstrating that 81 

amylase in acquired enamel pellicle is actually less abundant when compared to saliva 82 

(29) is in agreement with this hypothesis, suggesting an advantage of a flexible “arm” over 83 

a rigid arrangement on the bacterial surface. The pili also showed binding to other salivary 84 

proteins and their deletion diminished biofilm formation on saliva-coated surfaces (28). 85 

However, the mutant was still able to bind amylase, albeit with lower efficiency (28), 86 

suggesting that other surface proteins are also able to bind amylase, possibly the 87 

aforementioned AbpA homolog (27). A pilus-bound amylase also offers the advantage of 88 

retaining about 50% of its enzymatic function (30). Gaining access to the amylase 89 

substrate starch through a flexible pilus would increase the chance for hydrolysis of the 90 

alpha-1,4-glycosidic linkage into glucose, maltose and maltodextrins, promoting sugar 91 

uptake and subsequent metabolism by simply increasing the accessible radius of the cell. 92 

 Two major mucins are found in saliva, MUC7 (low molecular weight) and MUC5B 93 

(high molecular weight) (31, 32). The majority of mucins are synthesized and secreted 94 
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by the submandibular and sublingual glands, as well as minor glands located in the 95 

palatal, buccal and labial mucosae. Mucins are heavily glycosylated glycoproteins and 96 

form a lubricating, viscoelastic coating on all oral surfaces. They are abundant proteins 97 

in saliva and the acquired enamel pellicle (31, 32). Both MUC7 and MUC5B contain 98 

sialic acid as a glycoconjugate and this can be targeted by S. sanguinis SK36 sialic-99 

acid-binding adhesin SrpA (33). SrpA contains a subdomain in its binding region that is 100 

similar to the V-set Ig-like fold adopted by mammalian Siglecs (sialic acid-binding 101 

immunoglobulin-like lectins) (34, 35). Indeed, Siglec-like domains have been identified 102 

in potential adhesins of several S. sanguinis isolates and other oral streptococci (34). 103 

Glycoarray dot blots with human salivary samples and naturally occurring 104 

glycoconjugates have demonstrated a high specificity of S. sanguinis SK36 SrpA for 105 

MUC7, but no binding to MUC5B. This is in contrast to S. gordonii, which showed in 106 

general better binding to several glycoconjugates, including MUC5B and amylase (34), 107 

which are known to form a heterotypic complex (36). As mentioned above, amylase and 108 

MUC5B seem to be depleted in the acquired enamel pellicle compared to saliva (29), 109 

but this was not seen for MUC7. Thus specificity of binding to MUC7 within the acquired 110 

enamel pellicle may go some way to explain why S. sanguinis seems to be one of the 111 

first oral colonizers and found in greater abundance compared to S. gordonii. The 112 

glycoarray also revealed an interesting role for divalent cations Ca2+ and Mg2+ in the 113 

binding of S. sanguinis SK36 to MUC7, as well as to other glycoconjugates (34). 114 

Chelation of Ca2+ and Mg2+ decreased binding to several of the tested components. 115 

This was also observed with two S. gordonii strains (34), suggesting a dominant role 116 

for divalent cations in the binding process of not only S. sanguinis, but of other oral 117 

streptococci to salivary components and the acquired enamel pellicle. This is further 118 
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supported by the increased abundance of proteins known to bind divalent cations like 119 

Ca2+ in the acquired enamel pellicle compared to saliva (29). Interestingly, S. sanguinis 120 

encodes a surface-associated, dual-function protein that bridges substratum 121 

attachment and interactions with divalent cations. SsaB is able to bind to saliva-coated 122 

hydroxyapatite through an unknown mechanism (37), but its principal function seems 123 

to be the transport of divalent cations (38). While this transport was demonstrated to be 124 

specific for Mn2+ and Fe2+, playing a pivotal role in oxidative stress defense (38), other 125 

divalent cations like Ca2+ and Mg2+ might still be able to interact with SsaB to facilitate 126 

binding to the acquired enamel pellicle. 127 

Recently the ability of S. sanguinis to be motile on surfaces like solidified agar has 128 

been reported for several strains. Spreading zones after prolonged incubation can be 129 

observed around colonies, indicating active movement (39). Whether or not this so-called 130 

‘twitching motility’ has any function or is used as a means to disseminate within the oral 131 

biofilm is not yet clear. However, the pil locus that encodes the type IV pilus involved in 132 

twitching motility is conserved in most of the sequenced S. sanguinis genomes (39), 133 

suggesting biological importance. 134 

Overall, S. sanguinis does not rely on a single mechanism to bind and establish 135 

itself within the acquired enamel pellicle. Rather the process is elaborate and ensures 136 

the role of S. sanguinis as a pioneer colonizer. This correlates with the observation that 137 

signal peptidase I is required for biofilm development (40). In general, signal peptidases 138 

are membrane-bound endo-proteases that cleave the signal peptide portion from the 139 

majority of secreted proteins (41). S. sanguinis encodes two signal peptidases, 140 

SSA_0849 and SSA_0351, which are crucial for biofilm formation. Deletion of 141 

SSA_0351 abolishes biofilm formation but does not affect planktonic growth. Although 142 
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the substrates for signal peptidase processing are not experimentally verified, in silico 143 

prediction identified 168 potential candidates, including several adhesins (40). Further 144 

characterization of signal peptidase processed surface proteins will most likely identify 145 

new proteins involved in the adhesion process. 146 

 147 

S. SANGUINIS IN BIOFILM FORMATION 148 

The initial step in biofilm development is attachment, followed by micro-colony 149 

formation of newly attached cells through growth expansion. This process then leads into 150 

a series of ordered and temporal events, in which coadhesion predominates, ultimately 151 

resulting in formation of a mature biofilm. The production of extracellular matrix material 152 

is a defining step in biofilm development and maturation. Matrix materials include 153 

polymers such as carbohydrates, proteins, extracellular DNA (eDNA) and lipids, and are 154 

collectively referred to as extracellular polymeric substances (EPS) (42). Since EPS is 155 

produced by the biofilm inhabitants themselves, specific enzymatic functions and cellular 156 

processes are associated with its formation. 157 

 Exploiting the intake of dietary sugars, many oral Streptococcus species have 158 

evolved glucosyltransferases (Gtfs) that hydrolyze sucrose and polymerize the glucose 159 

into glucans. These, in turn, promote biofilm development. A single Gtf, GtfP, is carried 160 

on the S. sanguinis genome, which synthesizes mainly water-soluble -1,6-linked glucans 161 

that branch at -3,6-linked glucose residues (43). TetR family regulator BrpT was recently 162 

identified as a repressor of gtfP expression. While a gtfP mutant formed only a fragile 163 

biofilm, the biofilm formed by the brpT mutant was thicker, more robust, and with a higher 164 

glucan content (44). By modulating levels of glucan synthesis, BrpT may therefore control 165 
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switching of S. sanguinis biofilms from an adherent to a dissemination state. S. gordonii 166 

also carries a single gtf gene, gtfG, encoding an enzyme that synthesizes both -1,3- and 167 

-1,6-linked glucans. This activity was found to promote mixed biofilm formation with 168 

Candida albicans (45), and a gtfG mutant was unable to persist on the tooth surface in 169 

rats (46). Expression of GtfG is under the positive regulation of Rgg (47), a homolog of 170 

which is present in S. sanguinis. As for other oral streptococci, it is likely that expression 171 

of Gtfs and thus glucan content of biofilms is a tightly controlled process, affected by 172 

multiple factors and transcriptional regulators. 173 

 Compared to carbohydrates, the presence of eDNA within EPS is a relatively 174 

recent discovery. Nonetheless, growing evidence suggests that eDNA is a critical 175 

contributor to cell-to-cell adherence and overall biofilm stability (48). Courtesy of its 176 

negative charge, eDNA may facilitate association with the acquired salivary pellicle (49), 177 

and cell aggregation was shown to be promoted by eDNA for S. sanguinis, although not 178 

for S. gordonii (50). Visualization of ‘yarn’ and ‘sweater’ structures of eDNA that wrap 179 

around cells within Enterococcus faecalis biofilms (51) provides compelling evidence for 180 

how eDNA may contribute to the structural integrity of biofilms, and similar structures have 181 

been seen for biofilms of S. gordonii (A.H. Nobbs, unpublished data). Moreover, eDNA 182 

regulates the viscoelastic properties of biofilms that allows them to withstand mechanical 183 

stress (52), a property that is particularly pertinent to the oral cavity environment. In line 184 

with this, the presence of DNABII proteins within EPS of S. gordonii and other oral 185 

bacterial biofilms was recently found to be essential for eDNA integrity and biofilm 186 

structure (53). The regulation of eDNA release is not fully understood, and both lytic and 187 

active mechanisms have been reported. For S. sanguinis and S. gordonii, autolysins LytF 188 
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and AtlS play significant roles via mechanisms closely linked to H2O2 production and 189 

competence development. These are discussed in more detail later. 190 

 Multicellular entities such as biofilms require a high level of coordination, and 191 

quorum sensing (QS) circuits and two component signaling systems (TCS) are intimately 192 

involved in these processes. One QS system found across several bacteria is LuxS/AI-2. 193 

LuxS is an integral component of the activated methyl cycle (AMC) for correct methylation 194 

of nucleic acids and proteins, but as a by-product of this cycle generates autoinducer 2 195 

(AI-2), an interspecies chemical signal. LuxS mutants in S. gordonii and S. sanguinis were 196 

altered in their ability to form biofilms, and lack of AI-2 resulted in altered S. gordonii 197 

microcolony architecture (54). However, a definitive role for AI-2 has not been identified 198 

and for S. sanguinis, a disrupted AMC rather than absence of AI-2 was found to underpin 199 

the luxS mutant biofilm phenotype (55). A TCS associated with regulation of biofilm 200 

formation for both S. sanguinis and S. gordonii is BfrAB (56). This modulates expression 201 

of two ABC transporters (BfrCD, BfrEFG) and a putative membrane-bound 202 

metalloprotease (BfrH). Given such functions, it is postulated that this system transports 203 

and processes proteins or peptides across the cell membrane that promote biofilm 204 

development, although the precise targets have yet to be identified. More recently, defects 205 

in TCS SptRS have been found to promote biofilm formation by S. sanguinis, associated 206 

with elevated levels of H2O2 and eDNA (57), while standalone ArcR was identified as a 207 

key regulator of S. gordonii biofilm development, perhaps via modulation of the 208 

phosphotransferase system (58). 209 

 A final aspect of streptococcal biology that is closely associated with biofilm 210 

formation is competence development. This is a QS system that controls transformation, 211 

i.e. the capacity for bacteria to actively take up exogenous eDNA, and in species such as 212 
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S. sanguinis and S. gordonii, is regulated via the comCDE operon (59, 60). Gene comC 213 

encodes a precursor molecule that is cleaved and exported via ABC transporter ComAB, 214 

releasing the mature competence stimulating peptide (CSP) into the local environment. 215 

For S. gordonii this is a 19-amino acid peptide, while the CSP of S. sanguinis is 17-amino 216 

acid residues, thereby minimizing interspecies cross-talk. The CSP is sensed by TCS 217 

ComDE. Once the CSP pheromone exceeds a threshold concentration, ComD 218 

phosphorylates ComE, which upregulates expression of early competence genes 219 

including comCDE and comAB, establishing a positive feedback loop, and comX. ComX 220 

then drives expression of the late competence genes required for DNA binding, uptake 221 

and recombination. The coordination of competence and biofilm development contributes 222 

to the adaptability of bacteria such as S. sanguinis to changing environmental conditions 223 

via horizontal gene transfer (HGT). This will be explored in more detail later. 224 

 225 

S. SANGUINIS IN COMMUNITY DEVELOPMENT 226 

 S. sanguinis and S. gordonii can form monospecies biofilms, but within the host the 227 

biofilm communities are typically polymicrobial in nature. As pioneer colonizers, these 228 

streptococci can have profound consequences for niche occupation and subsequent 229 

colonization by incoming species and thus significantly influence whether a community is 230 

predisposed to health or disease. Such interactions do not occur at random, but rather 231 

are directed in an ordered and temporal manner as a consequence of direct physical 232 

engagement (coadhesion), metabolic relationships and interspecies communication. 233 

 Alongside streptococci, Actinomyces species constitute the predominant, health-234 

associated early colonizers of the oral cavity, and both S. sanguinis and S. gordonii are 235 

able to coadhere with Actinomyces oris. This is mediated by recognition of streptococcal 236 
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receptor polysaccharide (RPS) containing linkages GalNAcβ1-3Gal or Galβ1-3GalNAc by 237 

the FimA subunit of A. oris type 2 fimbriae (61, 62), with variations in the genetic loci for 238 

synthesis of RPS (rps) and RPS precursors (rml, galE1, galE2) subtly altering the 239 

coadhesion profile with different streptococcal species (63). In addition, S. gordonii 240 

antigen I/II family protein SspB targets an extracellular polysaccharide produced by A. 241 

oris, although the precise composition and structure of this polysaccharide has yet to be 242 

determined (64). Once bound, A. oris may then promote S. gordonii survival under low 243 

arginine conditions by stabilization of arginine biosynthesis (65). Similarly, S. gordonii 244 

adhesin Hsa binds surface receptor Hag1 of early colonizer Veillonella species (66), but 245 

this interaction is also underpinned by a strong metabolic dependency. Lacking a fully 246 

functional glycolytic pathway, veillonellae must utilize hydroxyl acids for growth. These 247 

are provided by streptococci as excreted metabolic waste product lactate and utilization 248 

of lactate, in turn, protects streptococci from low pH (67). Once established, this 249 

community of pioneer colonizers then supports the incorporation of secondary or late 250 

colonizers, with Fusobacterium nucleatum serving as an important ‘bridging’ organism 251 

due to its promiscuous coadhesion capabilities. S. sanguinis supports this engagement 252 

via interaction with the arginine-inhibitable adhesin RadD of F. nucleatum (68), while a 253 

second fusobacterial outer membrane protein, coaggregation mediating protein A 254 

(CmpA), has recently been shown to promote biofilm formation with S. gordonii (69). 255 

 These community interactions with compatible species illustrate how sanguinis-256 

group bacteria are able to promote development of a health-associated microbiota. 257 

Nonetheless, the social life of these bacteria is not exclusively beneficial and other 258 

microbial partnerships may facilitate a more disease-prone state. Such examples have 259 

largely been described for S. gordonii, rather than for S. sanguinis, leading to the 260 
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designation of S. gordonii as an ‘accessory pathogen’. Some of the best characterized 261 

interactions are with periodontopathogens Porphyromonas gingivalis (70, 71) and 262 

Aggregatibacter actinomycetemcomitans (72), and with fungal pathogen C. albicans (73). 263 

Evidence from in vitro studies and animal models shows that these relationships can 264 

enhance both the persistence and virulence potential of the microbes involved (74).  265 

 Chemical communication in modulation of the oral microbial community is 266 

exemplified by the complex effects of interspecies signaling molecule AI-2. This molecule 267 

promotes dual species biofilm formation between S. gordonii and S. oralis but can also 268 

modulate the relative proportions of these species in a concentration-dependent manner 269 

(75). Likewise, while AI-2 from F. nucleatum promotes biofilm development with S. 270 

gordonii, it has the opposing effect on S. oralis (76). AI-2 from S. gordonii is essential for 271 

mutualistic biofilm growth with A. oris (77), but may also promote biofilm formation with P. 272 

gingivalis (78) and C. albicans (79). Ultimately, QS molecules and peptide pheromones 273 

work together with the molecular mechanisms described above to exquisitely coordinate 274 

biofilm development. The result is a community optimized to survive and persist under the 275 

prevailing environmental conditions in a manner that exceeds the capabilities of the 276 

individual component species.    277 

 278 

COMPETITIVE BEHAVIOR - INHIBITION BY S. SANGUINIS H2O2 AND BACTERIOCIN 279 

PRODUCTION 280 

Addressed above are examples of synergistic interactions with sanguinis-group 281 

streptococci that promote incorporation and retention of the partner microbes within the 282 

biofilm community. Nonetheless, within a defined ecological niche, resources are limited 283 

and thus, competitive forces also work to shape the developing biofilm. One of the best 284 
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investigated competitive measures of S. sanguinis (and the vast majority of oral 285 

streptococci) is the production of H2O2 (80). The enzyme responsible for the production of 286 

H2O2 is pyruvate oxidase, SpxB (81, 82). SpxB is encoded by the majority of commensal 287 

oral streptococci, with an unusually high degree of conservation of over 96% amino acid 288 

identity when compared to SpxB of S. sanguinis strain SK36. SpxB catalyzes the 289 

conversion of pyruvate to acetyl phosphate, CO2, H2O2, and ATP. Therefore, besides 290 

generating inhibitory amounts of H2O2, SpxB confers a growth advantage on the producer 291 

via ATP generation during biofilm development (81, 82). 292 

The overall importance of H2O2 production is further indicated by the fact that 293 

neither S. sanguinis nor spxB-encoding oral streptococci seem to encode for the H2O2 294 

detoxifying enzyme catalase. Consequently, these bacteria are able to produce 295 

considerable amounts of H2O2 that can influence the surrounding environment and inhibit 296 

susceptible species. H2O2-dependent competitive behavior faces two challenges. First, 297 

SpxB requires oxygen for its activity (83, 84). Its production therefore declines once biofilm 298 

formation reaches a certain density resulting in an anaerobic environment. Second, 299 

released H2O2 is a substrate for detoxifying enzymes like salivary lacto-peroxidase (85). 300 

Therefore, the effect of H2O2 production on biofilm development is confined to the 301 

immediate vicinity of the producer and most likely does not result in active killing of 302 

competitors.  Rather, H2O2 will affect susceptible species just enough to gain a growth 303 

advantage. For S. sanguinis, the oxygen dependent production of H2O2 makes perfect 304 

sense from an ecological point of view. As initial colonizer, S. sanguinis finds a sparse 305 

inhabited environment with enough salivary oxygen tension to promote H2O2 production 306 

(86). However, once biofilm growth through proliferation and integration of compatible 307 

species is sufficient to result in a decline in oxygen tension, S. sanguinis will already be 308 
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an established member of the community and so H2O2 production is no longer required 309 

(80). The inhibitory spectrum of H2O2 as evaluated in vitro with deferred antagonism plate 310 

assays includes cariogenic S. mutans, as well as periodontopathogens A. 311 

actinomycetemcomitans, Prevotella intermedia and P. gingivalis (83, 87). 312 

The genetic regulation of spxB expression holds a mystery. A clear repressive 313 

function of the carbon catabolite repressor CcpA has been shown since deletion of CcpA 314 

in S. sanguinis strain SK36 lifts spxB repression (88). Further, two cre sites (carbon 315 

responsive element) for the binding of CcpA have been verified experimentally (89), yet 316 

no glucose effect on spxB expression and H2O2 production can be observed. This is in 317 

contrast to other species like S. gordonii, which follows classic carbon catabolite 318 

repression in the presence of glucose (90). Why CcpA in S. sanguinis does not respond 319 

to the presence of glucose, and if any environmental factor influences spxB expression, 320 

has yet to be determined. Compared to S. gordonii and other oral streptococci, S. 321 

sanguinis H2O2 production in general seems to be less (89, 91) and a clue to the 322 

consequences of low H2O2 production and tight control by CcpA might be explained by 323 

the increased susceptibility of a S. sanguinis CcpA knockout mutant towards its own H2O2 324 

production (88). However, whether or not this is a direct effect of H2O2 or the result of 325 

altered gene expression from other CcpA-controlled genes is not currently known. From 326 

the ecological standpoint, the numerical abundance of S. sanguinis over other species 327 

might not require high production of H2O2 while other species like S. gordonii, known to 328 

be a less prominent member of the oral biofilm, might require more aggressive H2O2 329 

production to establish itself within the oral community. Taking into account that oral 330 

streptococci intermingle during biofilm formation and can be found at the same location 331 

(92), the sum of H2O2 production could be more important than the quantity produced by 332 
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individual species. Nevertheless, competitive H2O2 production and its role in community 333 

development is important and can be used to study biofilm dynamics. 334 

Interestingly, S. sanguinis is also able to produce antimicrobial activity via 335 

bacteriocins. Several reports describe the antimicrobial activity of sanguicins (93, 94). 336 

Initial characterization showed bacteriostatic activity against a number of oral species, 337 

including A. naeslundii, but not periodontopathogens P. gingivalis, P. intermedia and F. 338 

nucleatum (53). However, a more recent study using purified sanguicin demonstrated 339 

antimicrobial activity against such pathogens (93). Since both studies used a different 340 

strain of S. sanguinis and reported different molecular weights (65 kDa vs 280 kDa) for 341 

the purified peptide, it is most likely that different sanguicins were characterized. It is also 342 

worth mentioning that none of the studies determining the effect of H2O2 on 343 

periodontopathogens or S. mutans reported an inhibitory effect when catalase was added 344 

to the deferred antagonism assay (87, 95). Therefore, either strain-specific antagonistic 345 

activity exists, or the culture conditions used in the studies were selective for specific 346 

production of bacteriocins or H2O2. 347 

  S. sanguinis bacteriocins are also reported to exhibit anti-fungal activity (96, 97). 348 

As part of the normal microbiota, C. albicans is commonly isolated from subjects, but can 349 

also cause problems like oral candidiasis (98). S. sanguinis produces a bacteriocin that 350 

can cause changes in cell surface hydrophobicity of several Candida spp., a factor that 351 

influences the initial adhesion of Candida to oral epithelium. Furthermore, the bacteriocin 352 

can impair fungal cell membrane permeability and general cell structure (96, 97). How this 353 

ultimately affects survival of the fungal cell in vivo is not known but, analogous to the effect 354 

of H2O2 production, it might provide a competitive advantage to S. sanguinis by impairing 355 

growth of competing oral fungi. 356 
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 357 

HORIZONTAL GENE TRANSFER AND ANTIBIOTIC RESISTANCE RESERVOIR 358 

An important feature of oral streptococci is the ability to take up eDNA when 359 

developing competence, as discussed earlier. While the process of competence 360 

development is well characterized at the molecular level (99), the origin of DNA in the 361 

environment and the molecular mechanisms of DNA release from bacterial cells are less 362 

well understood. As a vital part of the oral biofilm matrix, eDNA available for uptake by 363 

competent bacteria is quite abundant (100, 101). In general, cell lysis can contribute to 364 

the release of DNA from bacterial cells. This process can be an active autolysis process 365 

involving murein hydrolases that weaken or completely lyse the cell wall, consequently 366 

expelling DNA into the environment (102). Interestingly, both S. sanguinis and S. gordonii 367 

release DNA in a H2O2-dependent manner under aerobic conditions (83). The eDNA is 368 

largely intact, high molecular weight DNA of chromosomal origin. Release of eDNA peaks 369 

when S. sanguinis grows aerobically under optimal H2O2-producing conditions and release 370 

declines when cells are grown under oxygen-limiting conditions, when no H2O2 is 371 

produced. Furthermore, deletion of spxB severely impacts the release (83). However, 372 

eDNA release can be induced even under anaerobic conditions with the addition of H2O2, 373 

as shown for S. gordonii, but only when cells are metabolically active (103). Addition of 374 

H2O2 to cells suspended in buffer will not release DNA, indicating the requirement for 375 

active metabolism, gene expression or protein synthesis. This is also consistent with the 376 

observation of a time delay between the production of H2O2 and the appearance of the 377 

released DNA, and the evidence that addition of chloramphenicol, known to block 378 

synthesis of new proteins, also blocks release of DNA (103). This is relevant in the context 379 

of the oral biofilm, where SpxB-positive streptococci that have access to oxygen can 380 
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produce H2O2 that might then diffuse through the oral biofilm with limited or no oxygen. 381 

Remarkably, the H2O2-dependent release of DNA is not the result of obvious cell lysis 382 

(50), as reported for other streptococci like S. pneumoniae (104). Although the exact 383 

molecular mechanism involved in the release is not known at this moment, S. sanguinis 384 

might encode a dedicated system for eDNA release. This could involve partial lysis and/or 385 

active transport across the membrane. In a recent study, the transport of eDNA in H. 386 

influenzae was found to be dependent upon competence-related protein ComE (105), the 387 

transporter involved in the uptake of DNA. S. sanguinis encodes for ComE and intriguingly 388 

expression of competence genes seems to be increased under aerobic conditions ideal 389 

for H2O2 production in streptococci (83, 103). However, experimental evidence that this 390 

mechanism is conserved in S. sanguinis is not available. When grown under anaerobic 391 

conditions, eDNA release is not completely absent suggesting another mechanism 392 

involved in the release (50). One autolytic enzyme involved in this process in S. sanguinis 393 

is LytF, also under the control of the competence system as one of the early competence 394 

genes (106). LytF is a secreted autolysin and can be recovered from the environment in 395 

its active form. LytF is a fratricin, but also acts on neighboring cells causing release of 396 

eDNA not only from S. sanguinis but also other streptococci (106). In general, streptococci 397 

seem to control or connect competence development with the release of eDNA (107), 398 

exemplifying their role as masters of efficacy. Utilizing this approach increases the chance 399 

that DNA is available for uptake and transformation. 400 

Uptake of eDNA has two pronounced functions; first, it serves in horizontal gene 401 

transfer during bacterial transformation and therefore plays a pivotal role in the promotion 402 

of diversity among oral bacterial species, and is an important mechanism of evolution 403 

allowing the acquisition of new genetic traits stored in the genomic information contained 404 
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in the multispecies biofilm (108). Second, eDNA in the oral cavity can serve as a reservoir 405 

for diverse antibiotic resistance mechanisms (109). A recent comparison of S. sanguinis 406 

and S. gordonii genomes revealed the presence of several genes potentially associated 407 

with antibiotic resistance determinants, including GNAT acetyltransferases, parE, and 408 

TetR family regulators (110). Combined they potentially provide resistance to diverse 409 

antibiotics like aminoglycosides, fluoroquinolones and many more. Additionally, several 410 

genes were identified encoding anion channels in S. sanguinis that confer resistance to 411 

fluoride (111), particularly important since fluoride is successfully used to prevent caries. 412 

Although the direct transfer of antibiotic resistance determinants via eDNA from other 413 

species to S. sanguinis has not been confirmed, evidence exists that in general the 414 

acquisition of new genetic traits occurs. For example, the pathway for vitamin B12 415 

biosynthesis as well as the degradation of ethanolamine and propanediol, which are 416 

encoded on a large genomic region, has been acquired through horizontal gene transfer 417 

(112), although it is unknown if this was mediated through conjugation, transduction or 418 

transformation. The best evidence for the potential of H2O2-induced transfer of antibiotic 419 

resistance was shown with S. gordonii, using engineered strains carrying antibiotic 420 

resistance cassettes. Co-incubation of strains encoding distinct antibiotic cassettes under 421 

ideal H2O2-producing conditions increased the occurrence of intraspecies genetic 422 

exchange by 300-fold when compared to non-permissive conditions (103). Overall, 423 

antibiotic resistance in the oral biofilm seems to be mainly acquired through horizontal 424 

gene transfer as suggested by a recent review (113). The dental biofilm is an ideal 425 

environment for the development and transfer of antibiotic resistance, even under 426 

conditions where no external pressure through antibiotic administration is present. This is 427 

supported by the finding that biofilm evolution and selective pressure through competitive 428 
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bacterial interactions mediated by bacteriocins alone gave rise to antibiotic resistance 429 

(114). The oral microbiome is able to elicit this evolutionary pressure due to the 430 

abundance of bacteriocins (115). 431 

 432 

S. SANGUINIS AS A MODULATOR OF THE HOST 433 

While the predominant ecological niche of S. sanguinis is the tooth surface, dental 434 

plaque formed at the gingival margin brings the oral biofilm into contact with the oral 435 

epithelium and associated immune defenses. The host-microbe interplay that occurs at 436 

these sites represents a critical step in determining progression of the biofilm community 437 

below the gum line, and potential transition from oral health to onset of gingivitis, 438 

periodontitis or other disease manifestations. Another facet of the S. sanguinis persona 439 

as coordinator of the microbial community is therefore its interactions with host tissues. 440 

  Under conditions of oral health, an equilibrium exists between microbiota and host, 441 

representing a delicate balance of antimicrobial factors from immune cells, together with 442 

pro- and anti-inflammatory molecules released from the host in response to the sustained 443 

microbial challenge. By contrast, disruption of this homeostasis is the hallmark of chronic 444 

inflammatory periodontal disease and resultant tissue damage. In keeping with this, S. 445 

sanguinis biofilms were found to be a poor stimulant of proinflammatory cytokines IL-1 446 

IL-6 and IL-8 from OKF4 oral epithelial cells compared to biofilms of F. nucleatum (116). 447 

Likewise, in contrast to cell wall extracts of F. nucleatum or P. gingivalis, those of S. 448 

sanguinis failed to induce significant upregulation by gingival keratinocytes of genes 449 

encoding human β defensin peptides, proinflammatory cytokines (e.g. IL-8) or matrix 450 

metalloproteinase-9. These keratinocyte responses were mediated by TLR2, with 451 
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differences in acylation patterns of bacterial lipopeptides purported to underpin the 452 

differential outcomes of TLR2 stimulation by the bacterial species (117). Moreover, while 453 

only a weak stimulant of host responses itself, S. sanguinis is also able to suppress the 454 

effects of other microbes. In mixed culture, S. sanguinis impaired induction of IL-8 release 455 

from gingival HOK-18A epithelial cells by A. actinomycetemcomitans. Such effects were 456 

also seen with S. sanguinis spent culture medium alone, implying a secreted molecule as 457 

the mediator (118). Similarly, through blocking LPS engagement with monocyte receptors 458 

LPS-binding protein (LBP) and CD14, peptidoglycan from S. sanguinis was able to inhibit 459 

induction of genes encoding TNF, IL-6 and IL-8 by periodontopathogens P. gingivalis, 460 

A. actinomycetemcomitans and Tannerella forsythia (119). This mechanism correlates 461 

well with the observation that Gram-positive bacteria release large quantities of 462 

peptidoglycan fragments, muropeptides, during cell division (120). Such coordination of 463 

both host responses and of the oral microbiota is likely critical to the role of S. sanguinis 464 

as a health-associated member of the oral biofilm community.       465 

 466 

S. SANGUINIS AS AN ETIOLOGICAL AGENT OF EXTRAORAL DISEASES 467 

Despite its main role as a benign oral commensal, the name S. sanguinis derives 468 

from its role in cardiovascular disease infective endocarditis (IE). In a note to the Journal 469 

of Bacteriology, Niven and White described a new species isolated from approximately 470 

100 cases of subacute bacterial endocarditis (121). About one third of the isolates failed 471 

characterization as previously described streptococci and were referred to as 472 

Streptococcus s.b.e. (for subacute bacterial endocarditis) (121). Overall the group was 473 

quite homogeneous in its physiological characteristics (122). Further serological 474 
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characterization confirmed the isolation of a new species since no cross reactivity was 475 

observed between rabbit serum from Streptococcus s.b.e. and other identified 476 

streptococci belonging to various Lancefield groups (123). Interestingly, isolation of 477 

Streptococcus s.b.e. from the human throat was unsuccessful at that time, despite testing 478 

over 800 streptococcal isolates. The only other positive culture came from an extracted 479 

tooth, which we now know coincides with the preferred colonization site. However, in the 480 

original publication, the natural habitat was not identified and the only source was from 481 

the blood of endocarditis patients, hence the species name sanguis; Latin for blood (122, 482 

124). This has been changed fairly recently to the grammatically correct version, S. 483 

sanguinis (125).  484 

IE is a relatively rare, but potentially fatal disease and can affect the heart valves 485 

or endocardium. The annual incidence ranges from 3-7 cases per 100,000 people per 486 

year and has been relatively constant, whereas the etiology of IE has changed over time 487 

(126, 127). A major concern with this disease is that mortality rates remain high; the in-488 

hospital mortality rate ranges from 15-22%, with a 5-year mortality rate around 40%. 489 

Currently, Staphylococcus aureus is the most common pathogen associated with IE. 490 

However, oral streptococci are responsible for an estimated 35-40% of cases, with 491 

sanguinis-group species the most common isolates (128). 492 

 Understanding the molecular mechanisms that might contribute to the capacity for 493 

S. sanguinis to cause IE has benefited from the availability of an excellent animal model 494 

for IE. New Zealand white rabbits can be catheterized at specific sides of the heart causing 495 

injury-induced IE after bacterial blood inoculation (129). The injury provides exposed ECM 496 

components, fibrin and platelets for attachment of the bacterial cells and subsequent 497 

aberrant clot formation, which leads to infective vegetations forming on the heart valves. 498 
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Todd Kitten’s group, Virginia Commonwealth University, have used this model to decipher 499 

molecular determinants expressed by S. sanguinis during the infection process. Using a 500 

random signature-tagged mutagenesis approach, six chromosomal loci were identified 501 

from an initial screen of 800 mutants. The mutants carried transposons in an intergenic 502 

region and in genes encoding undecaprenol kinase, homoserine kinase, anaerobic 503 

ribonucleotide reductase, adenylosuccinate lyase, and a hypothetical protein (130). The 504 

screening method is certainly elegant but has some technical limitations, since important 505 

determinants like surface-exposed proteins, which have been shown to contribute to the 506 

infection process (131), were missed. Nonetheless, the identification of determinants 507 

regarded as house-keeping genes involved in cell wall (undecaprenol kinase), amino acid 508 

(homoserine kinase) and nucleic acid (ribonucleotide reductase) synthesis suggested a 509 

potential role for these genes in pathogenesis that had not previously been appreciated. 510 

Furthermore, since these genes are not found in humans, they may represent potential 511 

targets for drug development. However, a functional analysis of the clonal structure of S. 512 

sanguinis strains isolated from the oral cavity and from subjects with IE demonstrated that 513 

house-keeping and virulence genes are subject to considerable intra-species 514 

recombination events. Thus potential drug targets in such genes may correlate with a high 515 

potential for the selection of resistant mutants (132). Interestingly, the same study also 516 

concluded that the endocarditis strains did not form a distinct sub-cluster. This supports 517 

the notion that S. sanguinis strains are human pathobionts, and thus all strains have the 518 

potential to cause IE (132). 519 

  Following on from this study, a targeted signature-tagged mutagenesis approach 520 

was employed to identify surface proteins important in IE. Thirty three proteins were 521 

classified as cell wall-associated and of these, mutants in 31 were tested in the 522 
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aforementioned rabbit model of IE, alongside mutants in 3 sortase genes (133). 523 

Interestingly, no single cell wall-associated protein was found to be essential for the 524 

development of IE (133). It may be concluded from this that no specific virulence 525 

determinants are required by S. sanguinis to cause IE. Rather, what is expressed and 526 

present during colonization of the oral cavity may be sufficient to colonize the 527 

endocardium. In support of this, surface adhesins Hsa, PadA and SspA/B from S. gordonii 528 

have been implicated in IE through their engagement with platelets, yet also contribute to 529 

the capacity for S. gordonii to bind salivary pellicle and other oral microbes (134-137). 530 

Such highly optimized genomes might explain the success of these bacteria as early 531 

colonizers, with their ability to cause IE on rare occasions coincident in their ubiquitous 532 

presence and abundance within the oral cavity.  533 

 Mutations in the genes encoding lipoprotein SsaB (a putative manganese transport 534 

protein) (38), spxA1 (encoding a global regulator involved in H2O2 production) (138) and 535 

nox (encoding an NADH oxidase that also influences H2O2 production) (139), together 536 

with the anaerobic ribonucleotide reductase already mentioned, have all been shown to 537 

impair the capacity of  S. sanguinis to cause IE. This suggests that the ability of S. 538 

sanguinis to adapt to differences in oxygen tension and the production of and resistance 539 

to reactive oxygen species are important in the development of IE, although molecular 540 

details have yet to be explained. A surface-bound nuclease, designated SWAN 541 

(streptococcal wall-anchored nuclease), has also been proposed to enable S. sanguinis 542 

to evade killing by neutrophil extracellular traps (NETs), and so promote survival both in 543 

the bloodstream and within infective vegetations (140). 544 

 Survival within the bloodstream to access extraoral sites and induction of 545 

thrombosis are key steps in IE, but these capabilities also associate S. sanguinis with 546 
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other systemic diseases. These include meningitis, following infection of the lining of the 547 

spinal cord or brain, and disseminated intravascular coagulation, in which aberrant 548 

activation of the coagulation cascade leads to the formation of small clots that can occlude 549 

blood flow to major organs and tissues (141, 142). It is also widely recognized that oral 550 

streptococci such as S. sanguinis exist in biofilm communities with Pseudomonas 551 

aeruginosa in the lungs of cystic fibrosis (CF) patients. However, with evidence that H2O2 552 

production by these streptococci can impair P. aeruginosa growth (143), the impact of S. 553 

sanguinis on CF disease progression remains to be fully understood. 554 

 555 

CONCLUSION/OUTLOOK 556 

 With the impact upon the individual, it is easy to understand why disease outcomes 557 

have historically dominated microbiological research. Nonetheless, technological 558 

advances are providing a growing appreciation for the importance of our resident 559 

microbiota. Within the oral cavity, bacteria such as S. sanguinis are ubiquitous and 560 

abundant, reflecting their evolution to be exquisitely adapted to colonization of their 561 

ecological niche. As a consequence, S. sanguinis is able to orchestrate accretion of the 562 

dental plaque biofilm, promoting the acquisition of beneficial microbes while serving as an 563 

imposing competitor to others, and ultimately serving as the foundation of a health-564 

associated biofilm community. Complex molecular mechanisms regulating physical 565 

interactions and communication networks underpin these capabilities. If these can be 566 

understood at both the molecular and ecological level, they offer immense potential for 567 

exploitation in the development of novel strategies to combat infections from a point of 568 

health as opposed to disease. 569 

 570 
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FIGURE LEGENDS 977 

Figure 1. Summary of key Streptococcus sanguinis components important in 978 

commensalism. The schematic shows important components for the role of S. sanguinis 979 

as a commensal organism, including community integration and biofilm development, 980 

community interference and streptococcal antagonism, and interactions with salivary 981 

proteins, host cells, and the immune system. Pg, Porphyromonas gingivalis; Fn, 982 

Fusobacterium nucleatum; Sg, Streptococcus gordonii; eDNA, extracellular DNA; CSP, 983 

competence stimulating peptide. Reprinted with permission from Kreth et al. (2017). The 984 

road less traveled – defining molecular commensalism with Streptococcus sanguinis. Mol 985 

Oral Microbiol 32:181–196. doi:10.1111/omi.12170. 986 


