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Abstract. The design of an optimal network of atmospheric monitoring stations for

the observation of carbon dioxide (CO2) concentrations can be obtained by applying

an optimisation algorithm to a cost function based on minimising posterior uncertainty

in the CO2 fluxes obtained from a Bayesian inverse modelling solution. Two candidate

optimisation methods assessed were the evolutionary algorithm: the Genetic Algorithm

(GA), and the deterministic algorithm: the Incremental Optimisation (IO) routine.

This paper assessed the ability of the IO routine in comparison to the more

computationally demanding GA routine to optimise the placement of a five-member

network of CO2 monitoring sites located in South Africa. The comparison considered

the reduction in uncertainty of the overall flux estimate, the spatial similarity of

solutions, and computational requirements. Although the IO routine failed to find

the solution with the global maximum uncertainty reduction, the resulting solution

had only fractionally lower uncertainty reduction compared with the GA, and at only a

quarter of the computational resources used by the lowest specified GA algorithm. The

GA solution set showed more inconsistency if the number of iterations or population

size was small, and more so for a complex prior flux covariance matrix. If the GA

completed with a sub-optimal solution, these solutions were similar in fitness to the

best available solution.

Two additional scenarios were considered, with the objective of creating

circumstances where the GA may outperform the IO. The first scenario considered

an established network, where the optimisation was required to add an additional five

stations to an existing five-member network. In the second scenario the optimisation

was based only on the uncertainty reduction within a subregion of the domain. The

GA was able to find a better solution than the IO under both scenarios, but with only

a marginal improvement in the uncertainty reduction. These results suggest that the

best use of resources for the network design problem would be spent in improvement

of the prior estimates of the flux uncertainties rather than investing these resources in

running a complex evolutionary optimisation algorithm.
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Genetic algorithm versus incremental optimisation 2

The authors recommend that, if time and computational resources allow, that

multiple optimisation techniques should be used as a part of a comprehensive suite of

sensitivity tests when performing such an optimisation exercise. This will provide a

selection of best solutions which could be ranked based on their utility and practicality.
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Genetic algorithm versus incremental optimisation 3

1. Introduction

In order to understand the role of carbon dioxide (CO2) in climate change, and to

monitor mitigation efforts to reduce emissions of CO2, estimates of land-based sources

and sinks of CO2 can be obtained through the technique of inverse modelling. This can

be achieved with accurate and precise measurement of atmospheric CO2 concentrations

at suitably located monitoring sites, a reliable atmospheric transport model, and

a Bayesian inverse modelling framework (Jackson 1979, Jackson & Matsu’ura 1985,

Rodgers 2011, Enting 2002, Gurney et al. 2003, Tarantola 2005, Ciais et al. 2010).

The reason for choosing the Bayesian approach is due to the under-determined

nature of the problem - there are far more source regions to solve for than there

are measurements. Therefore prior information on the surface CO2 fluxes is used to

regularise the problem by narrowing the parameter space of the solution. Bottom-up

approaches, such as land-atmosphere exchange models and fossil fuel inventory analyses,

provide the required prior information on the unknown CO2 fluxes.

Deciding on the placement of measurement sites is not always possible and instead

existing measurement infrastructure may be the only source of data. But when new

sites are to be installed, it is possible to exploit the experimental design in order to

optimise the inversion solution for the unknown parameters (Haber et al. 2008). This

paper considers the optimal experimental design for an atmospheric CO2 monitoring

network for South Africa. The network optimisation approach we have adopted, based

on inverse modelling, was originally based on the work of Hardt & Scherbaum (1994)

which optimised the station locations for an inversion problem applied to a seismographic

network. This was developed by Rayner et al. (1996), and the approach recently

reviewed in Kaminski & Rayner (2017).

Previous studies which have considered this optimisation problem for CO2

atmospheric monitoring networks have implemented three different optimisation

methods: simulated annealing (Rayner et al. 1996); incremental optimisation (IO)

(Patra & Maksyutov 2002); and the genetic algorithm (GA) (Rayner 2004). Simulated

annealing and the GA are evolutionary algorithms whereas the IO is a deterministic

algorithm. The IO routine has already been compared with simulated annealing (Patra

& Maksyutov 2002) for this application. This paper aims to compare the GA with

the IO routine as described by Patra & Maksyutov (2002). Both optimisation routines

are plausible candidates for the network design problem, but operate on very different

optimisation philosophies. In particular, the performance and resource use of the GA

depends on the specification of the number of iterations and the number of population

members. We consider different specifications of these parameters and compare the

results with those of the IO method. As the GA performs many more fitness evaluations

of the possible solutions compared with the IO, it is fully expected that the GA should

therefore perform better than the IO, and we also expect GAs specified with higher

number of population members or iterations to find the optimal solution with higher

probability than GAs with lower specifications. We wanted to determine what the
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Genetic algorithm versus incremental optimisation 4

variation in GA solutions for this problem would look like, and we wanted to determine

how close the IO solution would get to the best available GA solution.

The coverage of monitoring sites on land regions of the Northern Hemisphere is

far denser compared with the Southern Hemisphere. Previous studies on optimising

locations for new monitoring sites for atmospheric CO2 based on uncertainty reduction

of surface flux estimates have identified southern Africa as an important region to

constrain (Patra & Maksyutov 2002, Rayner 2004). To help meet this demand, five new

instruments have been acquired by the Council for Scientific and Industrial Research

in order to expand the existing network of monitoring stations in South Africa. These

instruments need to be placed in optimal locations in order to maximise the investment

return on the instruments through reducing the uncertainty of the estimates of CO2

fluxes from subregions in South Africa.

In addition to the original network design problem for South Africa, which required

a solution for the placement of five new stations as part of a naive observation network

to solve for the aggregated CO2 flux, we also considered two additional hypothetical

scenarios. In the first scenario we considered an established network. We used the

best solution for the five-member network from the available network solutions of the

original problem as the starting point for the base network. We then solved for an

additional five stations to add to this network. In the second scenario, we considered

optimising the uncertainty reduction over only a portion of the country. We chose a

region over the eastern side of South Africa which included the largest fossil fuel emitters

of CO2 and the areas of greatest biospheric activity. The purpose of these two additional

scenarios was to determine how well the GA performed in relation to the IO when the

observation footprints of new towers to be added to the network overlapped with those

of the new and existing members of the network, or when the prior covariance matrix of

the fluxes was made more complex. We hypothesized that these scenarios would lead to

IO solutions that would be inferior to those from an optimally parameterised GA, and

that the GA would require a greater number of evaluations in order to reach a stable

solution in comparison with the original network design problem.

We present the Bayesian inverse modelling framework in the following section, and

describe the optimisation algorithms and how these are used in the context of designing

a measurement network aimed at reducing the uncertainty in the total flux of CO2

from South Africa. In section 3 we present the network solutions obtained by the IO

and repeated implementations of the GA algorithm at different specifications for the

number of iterations and population members, followed by network solutions of the two

additional scenarios. We discuss these results in section 4.
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Genetic algorithm versus incremental optimisation 5

2. Methodology

2.1. Inverse Modelling Framework

The Bayesian inverse modelling approach to solve for surface fluxes was first

implemented by Enting & Mansbridge (1991) based on the approach described in

Tarantola (1987). This approach has since been adopted to solve for fluxes at the global

scale (Bousquet et al. 1999, Gurney et al. 2003, Baker et al. 2006, Chevallier et al.

2010, Ciais et al. 2010), at the regional scale (Gerbig et al. 2003, Lauvaux et al. 2008,

Broquet et al. 2013), and more recently at the city-scale (Bréon et al. 2015, Lauvaux

et al. 2016). The inverse modelling framework used in this study is described in detail in

Ziehn et al. (2014) and Nickless et al. (2015) and is based on the methodology outlined

in Rodgers (2011), Enting (2002), and Tarantola (2005). This approach assumes that

the atmospheric concentrations, c, can be modelled based on the surface CO2 fluxes, s,

(hereafter referred to as surface fluxes) based on the following linear relationship:

cmod = Hs (1)

where cmod are the modelled concentrations at the measurement sites, and H is the

sensitivity matrix, derived from the atmospheric transport model, which is driven by

inputs derived from a regional climate model. The sensitivity matrix provides the

sensitivities of modelled concentrations, cmod, to the surface fluxes (s) (Enting 2002,

Tarantola 2005). H maps the sources onto the observed concentrations and transforms

the contribution of these sources from emission rates into CO2 concentrations.

c − cmod represents the observation errors. These errors can be random

or systematic, and can be split into measurement errors and modelling errors.

Measurement errors in the CO2 observation network, particularly those sites accredited

by the Global Atmospheric Watch, have errors that are typically negligible, usually

below 0.2 ppm, and can be assumed to be random. Even if s were perfectly known,

errors in cmod would occur due to the errors in atmospheric transport model contained in

H, whose parameters are not constrained by the inversion. Modelling errors can occur

due to an imperfectly parameterised transport model, and also due to representation

discrepancies, where we use a point estimate to represent the concentration of a volume,

and due to aggregation, as we homogenised patchy surface fluxes within each grid cell.

In reality, the air will pass over only parts of the grid cell and collect information which

we relate back to the whole grid cell. Tarantola (2005) shows that modelling errors can

be accounted for in the inversion by adding these to the measurement errors represented

by uncertainty covariance matrix of the observations, Cc.

If it is assumed that the observation errors and surface fluxes have unbiased

Gaussian error distributions, the Bayesian cost function can be solved as follows (Enting

et al. 1995, Rodgers 2011, Enting 2002, Tarantola 2005):

J(s) =
1

2

(
(cmod − c)TCc

−1(cmod − c) + (s− s0)TCs0
−1(s− s0)

)
(2)
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Genetic algorithm versus incremental optimisation 6

where c are the observed concentrations, Cc is the uncertainty covariance matrix of

observations, s0 is the vector of prior surface flux estimates, and Cs0 is the prior

uncertainty covariance matrix of the surface fluxes. In regional inversion problems, the

sources are usually represented by a spatial temporal grid of surface fluxes. The number

of sources solved for by the inversion are then equal to the number of spatial pixels

multiplied by the number of periods for which the emissions are solved. For example, if

weekly fluxes are solved for by the inversion, separated into day and night sources, and

if the inversion is run over a month, there will be eight periods. Therefore the number

of sources solved for by the inversion is equal to the number of pixels multiplied by

eight. In our South African region the domain was divided into 50×25 spatial pixels

and we solved for weekly fluxes, day and night separately, therefore eight periods per

month. The total number of sources which would be solved for by the inversion are

10,000. The prior and posterior uncertainty covariance matrices of these sources had

dimensions 10,000×10,000.

The solution for the posterior covariance matrix of the surface fluxes, which we will

use to assess the uncertainty reduction of the different network designs, is:

Cs =
(
HTCc

−1H + Cs0
−1
)−1

(3)

= Cs0 −Cs0H
T
(
HCs0H

T + Cc

)−1
HCs0 (4)

The solution of the posterior uncertainty covariance matrix of the sources does not

depend on the measured concentrations at the site, only on the error covariance matrix

of the modelled concentrations and the prior uncertainty estimates of the surface fluxes.

This makes it possible, before any concentration measurements are obtained at the

site, to assess to what extent a new site can contribute to the reduction in the total

uncertainty of the aggregated surface flux estimate, relative to the total uncertainty

in this estimate under the base network. In our original network design problem, the

base network consisted of two background measurement sites located at Cape Point and

Gobabeb. Cs does depend on the transport matrix H, and therefore depends on which

stations are in the observation network.

The aggregation errors need to be added to the observation errors, as shown by

Kaminski et al. (2001) and Tarantola (2005), and are dependent on the resolution at

which the surface fluxes are solved. As shown in Nickless et al. (2015), to determine

the aggregation error for each of the candidate measurement sites, the surface fluxes

at a higher resolution of 0.6◦ × 0.6◦ were used to represent the real, patchy surface

fluxes, where these grid cells fit exactly into the grid cells of the surface solved for by

the inversion. We could then use the method described in Kaminski et al. (2001) to

approximate the aggregation error, where it was shown that the aggregation error Cc,m

can be calculated as:

Cc,m = HP−Cs0hP
T
−H

T , (5)

where P− = I−P+ and P+ is the projection matrix which, if multiplied with the high
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Genetic algorithm versus incremental optimisation 7

resolution surface flux estimates, s0h, produces the lower resolution flux estimates, s0, in

positions of the corresponding high resolution fluxes. The solution of Cc,m was obtained

for each measurement site, and as a conservative approach, the maximum value of the

diagonal was assigned as the aggregation error for that measurement site.

We assigned values of 4 ppm2 as the diagonal elements of Cc. For the regional

inversion performed by Wu et al. (2013), observation errors were determined to be

between 2.9 and 3.6 ppm. We used the slightly lower uncertainty value of 2 ppm since

our region occurs in the Southern Hemisphere where the variability in observed CO2

concentrations is lower than in the Northern Hemisphere, and CO2 fluxes are believed

to be generally smaller as well. This value accounted for measurement error and errors

in the atmospheric transport model. The aggregation errors determined using Equation

5 for each site were added to the diagonal elements. Therefore the observation errors

were specific to each site.

The transport matrix, H, is derived from a Lagrangian particle dispersion model.

We have used the model developed by Uliasz (1994), which we refer to as LPDM. This

model is run in backward mode for each of the potential measurement sites. A number

of particles are released from the receptor point at regular intervals (every 20 seconds

in this case) and tracked backwards in time. The particle counts at the surface and

boundaries are recorded at each time step, where the surface is represented as a grid

with a resolution of 1.2◦ × 1.2◦ over the domain of southern Africa. The derivation of

the conversion of particle counts to the influence functions which make up the elements

of H is described in Ziehn et al. (2014) and follows Seibert & Frank (2004).

The elements of the prior uncertainty covariance matrix, Cs0 , were determined

by the uncertainties in the fossil fuel emissions and natural biospheric fluxes for each

surface flux grid cell. The fossil fuel uncertainties were determined from ten realisations

of the fossil fuel fluxes from the Fossil Fuel Data Assimilation System (FFDAS) product

(Rayner et al. 2010), which is produced at a resolution of 0.1◦ × 0.1◦. The fluxes

were first aggregated to the network design resolution of 1.2◦ × 1.2◦, and then the

variances calculated for the ten realisations for each grid cell. The uncertainty values

for the bioshperic fluxes, or net ecosystem productivity (NEP), were estimated as the

net primary productivity (NPP) as described in Nickless et al. (2015), similar to the

approach of Chevallier et al. (2010). These estimates were derived from an assessment of

the natural carbon sinks of South Africa (Nickless et al. 2015). The NPP estimates were

aggregated to the resolution of 1.2◦ × 1.2◦ and these used as the uncertainty estimates

of the natural fluxes. The NPP estimates are high across most of the country during

the month of January, which is when most of the country has its growing season and

receives the most rainfall. Conversely, during the month of July the NPP estimates

are small and the majority of activity is concentrated along the Western Cape coast,

which receives winter rainfall. The total flux uncertainty is dominated by biospheric flux

uncertainty in January, whereas in July it is dominated by fossil fuel flux uncertainty,

which is concentrated within a few small regions, mainly near major cities and power

stations, spread out across the country. Figure 1 provides the spatial distribution of the
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Genetic algorithm versus incremental optimisation 8

uncertainty prescribed to the NEP and fossil fuel prior fluxes.
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Figure 1: Prior uncertainty assigned to the net ecosystem productivity (NEP) fluxes

in January and July, and the uncertainty in the fossil fuel fluxes, expressed as standard

deviations (g C m−2 week−1)
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Genetic algorithm versus incremental optimisation 10

Let Y represent the sum of two surface fluxes, such that Y = si + sj, where si and

sj are the surface fluxes in grid cells i and j respectively. The variance of Y is equal to

V ar(Y ) = Csii + 2Csij + Csjj . (6)

If we sum over all surface fluxes, the variance of this total is the sum of all the elements

of the covariance matrix. The overall uncertainty in surface fluxes was determined by

summing over all the elements of Cs (cost function JCe ) and then taking the square

root, to obtain the uncertainty of the total flux estimate for South Africa expressed as

a standard deviation:

JCe =

√√√√ n∑
i=1

n∑
j=1

Csij (7)

The cost function used to assess the network members was based on the uncertainty

reduction calculated as:

UR = 1− ĴCe

JCe base

(8)

where ĴCe is the posterior standard deviation of the total flux estimate of the proposed

network containing the additional five stations, and JCe base the standard deviation

estimate of the total estimate of the base network, which is determined from the posterior

covariance matrix of the surface fluxes if only the existing Cape Point and Gobabeb

stations are in the network. The use of the uncertainty reduction as a proportion of the

prior uncertainty was used by Rayner (2004). Here the trace of Cs was used instead of

the sum of the covariance elements to represent the total uncertainty. We performed

a sensitivity analysis that compared these approaches, and found that the resulting

network solutions were similar. A more generalised approach to optimal experimental

design in inverse problems in provided in Haber et al. (2008), where they use the trace of

the posterior covariance matrix, and show how this can be used to optimise measurement

networks for inverse problems using alternative methods of regularisation.

The candidate stations and the existing background stations are displayed in Figure

2.
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Figure 2: Location of candidate stations within South Africa together with the existing

background stations at Cape Point and Gobabeb. Of these candidate stations, five

locations are required for the placement of new monitoring sites for atmospheric CO2

concentrations to solve the original network design problem.

2.2. Optimisation Routines

2.2.1. Incremental Optimisation A description of the use of Incremental Optimisation

(IO) to solve general optimisation problems is provided by Hartline & Sharp (2006).

IO for CO2 monitoring network design problems was proposed by Patra & Maksyutov

(2002), where the addition of new stations to an existing measurement network was

considered. The optimal network was thought of as a problem which consisted of several

subproblems, where each was solved incrementally. Given an existing network, the first

subproblem was to determine the first station to add to the network that would result

in the greatest reduction in uncertainty. The candidate list of stations was derived

from equally spaced locations within South Africa; a total of 36 stations (Figure 2).

Adding each of the candidate stations in turn to the base network, the cost function

was calculated, and the candidate station yielding the greatest uncertainty reduction

was removed from the candidate list and added to the base network list. This procedure

was repeated until the desired network size was reached. In this case the network size

would be seven - two existing and five new stations.

The IO routine results in an evolution of the network solution, allowing the user

to determine the best station to add to the network at each iteration, as well as the

uncertainty reduction that each of the unselected stations would have had, providing a

list of best alternatives. In addition, the IO routine is computationally inexpensive. This

is an advantage due to the already high computational costs of solving for the posterior
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Genetic algorithm versus incremental optimisation 12

covariance matrix that would need to be calculated for each potential solution.

2.2.2. Genetic Algorithm The genetic algorithm (GA) draws on the concept of ‘survival

of the fittest’ from evolutionary biology to determine the best solution for a numerical

optimisation problem, and has a wide range of applications (Chambers 2001). GA

optimisation has been used to solve various network design problems, such as placement

of wind turbines to maximise the power output (Grady et al. 2005) and the design of

a telecommunications network to support the expected communications traffic between

pairs of connections (Berry et al. 1999). For our optimisation problem the solution

would be a list of stations to add to the existing network to best reduce the surface flux

uncertainty. Each of the five stations in the network solution represents a parameter in

the algorithm. The GA procedure carried out in this study is based on Rayner (2004).

The GA does not evolve a single solution, but rather a population of solutions. The

population is made up of a number of potential five station solutions for the network

problem. Each solution represents a member of the population. Through a process of

culling, mutation and reproduction, population members are lost, evolved and replicated

for the next iteration, all based on pseudo-random numbers generated from the uniform

distribution. The algorithm begins by randomly generating a population of solution

members of size N, where each solution consists of a list of five stations, based on the

candidate list of stations; the same candidate list used by the IO. For this network design,

candidate stations may appear only once in a solution. The first part of a GA iteration is

the pairwise swap over of parameter values (i.e. stations) between two randomly selected

population members, determined by whether a random uniform number is between zero

and a pre-selected cross-over probability. Individual parameter values are also changed

based on a random uniform number and the specified mutation probability. Based on a

criterion for fitness, calculated as:

F = 1− r − 0.5

N
(9)

where r is the ordinal ranking of the member according to each member’s cost function

and N is the population size, solutions are removed (or culled) from the population of

solutions if a pseudo-random number generated from the uniform distribution for each

of the population members is greater than F. The resulting probability of a member

being culled is therefore 1 - F.

Once the culling procedure is completed, new members are added to the population

through a process of reproduction until the population size is back to N. The current

population members are repeated if a randomly generated number is below the member’s

fitness score. The probability of a member being replicated in the new generation is

therefore equal to F. Sampling of the members is with replacement, so those population

members with good fitness scores will have a better chance of appearing multiple times

in the population of solutions. To ensure that the diversity of the solutions in the

population is high enough to avoid the algorithm getting stuck at a local extrema, an

additional process of mutation is applied to the population members. Here a random
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Genetic algorithm versus incremental optimisation 13

uniform number is generated for every parameter of each population member. If the

value is below the mutation threshold, then the current value of the parameter is replaced

from a randomly selected parameter from the candidate list of stations. We used the

recommended mutation rate of 0.1 suggested by Rayner (2004). This concludes one

iteration of the GA. The algorithm iterates until the pre-determined number of iterations

is achieved.

Elitism is maintained, so that set of five candidate stations with the highest fitness is

replicated unchanged into the next generation of population members at every iteration.

Once the algorithm is complete, the member of the population with the best score is

selected as the final solution.

2.3. Optimal Network Comparisons

For two representative months, January for summer and July for winter, the transport

matrix, H, was derived from the particle counts generated by LPDM, and the prior

covariance matrices for weekly surface fluxes, Cs0 , for these periods were constructed.

The IO routine was run to determine the optimal network for the two months separately.

The optimisation was repeated, using the GA under different specifications of the

number of iterations and the population size. Since the outcome of the algorithm has

the potential to be inconsistent from run to run, due to the use of pseudo-random

numbers, the algorithm was run five times for each configuration. The purpose of this

was to demonstrate some of the variability in the GA solution set. The configurations

considered were population sizes of 50 or 100 with either 50, 75 or 100 iterations.

These configurations therefore result in GAs with different numbers of evaluations.

For example, a GA with 50 population members and 50 iterations would have 2,500

evaluations whereas a GA with 100 population members and 100 iterations would have

10,000 evaluations. We expected the solution set from the GA to stabilise as the number

of evaluations increased. The time taken to run each of the algorithms was recorded in

order to compare the efficiency of the algorithms.

The utility (or fitness) of a network of monitoring stations was assessed by means of

the percentage uncertainty reduction in the total posterior flux estimate for the region

relative to the uncertainty of the base network, as calculated from Equation 8. We

expected the IO to obtained an inferior solution to the GA, and we wanted to assess

how the IO solution compared in fitness to the best available GA solution. How similar

two networks were in terms for their placement was assessed using the dissimilarity index

(DI). How similar two network solutions were was of interest, because if two solutions had

identical uncertainty reductions, but very different placement of stations, considerations

such as the cost of establishing the network and the feasibility of the network in practice

would need to be used to make a decision on which network would be implemented. The

DI was calculated as the sum of the distance to the nearest neighbour in the compared
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Genetic algorithm versus incremental optimisation 14

network, over all the members in the pair of assessed networks.

DI =
5∑

i=1

min
j

√
∆x2

ij + ∆y2
ij +

5∑
j=1

min
i

√
∆x2

ij + ∆y2
ij (10)

where i and j ∈ [1,2,3,4,5], and ∆x2
ij and ∆y2

ij are the squared differences between

the Cartesian coordinates of the ith station in the first network and the jth station in

the second network. The first term in the DI calculation is the sum of the nearest

neighbour distances between each site in the first network solution and its nearest

neighbour in the second solution set (a sum of five nearest neighbour distances). The

second term sums the nearest neighbour distances between each station in the second

network solution and its nearest neighbour in the first network solution (a sum of five

nearest neighbour distances). Therefore the DI is the sum of ten nearest neighbour

distances when comparing two five-member networks.

In cases where the two networks compared were the same, the index results in a

value of zero. Networks which did not contain exactly the same members would always

have a DI of greater than zero. The index increases as the networks become more

dissimilar in space. This provides a one-number measure of network similarity that can

consistently be used for the network comparisons, provided each solution consists of

the same number of stations, and allows for an objective assessment of how different

the positioning of sites are between two network solutions which may not be obvious

to the eye. The index provides a measure of distance between solutions in terms of

kilometres. The distribution characteristics of the DI if it were used to compare two

randomly selected five-member networks are provided in the appendix.

To assess the degree to which sites in a particular network solution were clumped

together, we calculated the centroid of the spatial points from each network solution,

and calculated the mean distance between each station in the solution and this centroid.

The centroid provides additional information on where in South Africa the stations were

concentrated. We measured the degree of clumping or clustering of stations in order

to assess if the network solutions were concentrated over a particular region, or if the

stations in the network solution were spread over the domain.

2.4. Additional Scenarios

Optimisations were performed for the original network problem, which required five

additional stations to add to the existing background stations at Cape Point and

Gobabeb. In this scenario it would be expected that the optimal solution would be one

where the observation footprints of the towers are not overlapping, in order to view us

much of the uncertainty across the country as possible. Both GA and IO should be able

to achieve solutions which we would not expect to differ greatly, but as the optimisation

problem was more complex than the original problem, the GA could potentially find

solutions that were inaccessible through the IO.

We considered two additional hypothetical scenarios. In the first of these scenarios

we considered the situation which may be in existence once the five new stations are
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Genetic algorithm versus incremental optimisation 15

established. The base network under this scenario had seven stations (two background

stations and five new stations), and the purpose of the network design was to find a

solution for the placement of five additional stations, to take the network to 12 stations.

We used the best solution out of all available solutions from the original network problem

for these five existing stations, and the optimisation routine was used to solve for the

five-member network to add to this established network. Under these conditions, the

new stations would more likely have observation footprints which were overlapping

with those from the new elements and old elements of the network. The observation

footprint of a site would depend on the prevailing atmospheric conditions around that

site, described by the sensitivity matrix. Compared to the original network problem,

which aimed to reduce the uncertainty of the total flux estimate that was almost entirely

unconstrained by the base network, the established network design problem had the

objective of applying additional constraint to a network that already covered the main

sources of uncertainty. Therefore, the aim of the established network design problem

was to plug the holes in an existing network. The prior covariance matrix of the fluxes

would be more complex under this scenario and we wanted to determine if the GA,

which considers the global parameter solution, would be better suited than the IO

to find an optimal solution under these circumstances, where assessing the additional

stations simultaneously rather than sequentially could be an advantage.

The second hypothetical scenario was to adjust the original network problem so that

the uncertainty reduction resulting from the network was optimised over a subregion of

the country, rather than over the total land surface of South Africa. This was achieved

by summing the variance and covariance terms of the posterior covariance matrix, Cs,

for only those elements related to the subregion. The region we selected comprises

a large grid on the eastern half of South Africa which includes the largest fossil fuel

emitters and the largest biospheric sinks of CO2. Under this scenario, the observation

footprints of the measurement towers would be closer and may overlap in order to view

the uncertainty over this subregion. The optimal network solution should be dependent

on how much overlap (i.e. redundancy) can be afforded. A solution may require two

sites close to each other in order to get a more comprehensive view of a source with large

uncertainty. There would then be a trade-off between reducing the large uncertainty

from this source and the lost opportunity to view elsewhere in the domain not already

covered by the network. Stations did not necessarily need to be located within the

subregion to reduce the subregion uncertainty. We wanted to assess if the GA would

be better suited to optimising the overlap between observation footprints compared

with the IO method to obtain a better uncertainty reduction in the overall flux in the

subregion.

2.5. System configuration

The optimisation routines were carried out using Python version 2.7 on a desktop

computer with a Linux operating system and a Intel Core i7-3770K processor running
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at 3.50 GHz with four cores and eight logical processors, and 16 gigabytes of RAM.

3. Results

3.1. Original Network Design Problem

Table 1 gives the uncertainty reduction results of the optimal network solutions under

the different algorithm runs, as well as the mean distances to the centroid, DI’s with

the IO solution, and run times. The uncertainty reduction ranged between 76.5% and

78.8% in January, and between 42.9% and 43.3% in July. The IO, for both January

and July, did not find the global maximum, but a local maximum with uncertainty

reduction very close to the best GA solution, differing by an absolute amount of only

0.5% in January and 0.3% in July. As these are percentage uncertainty reductions, given

all of the assumptions needed for the inversion solution, networks differing by 1%, or

even up to 5%, in uncertainty reduction may be considered to have the same utility. The

uncertainty reductions obtained by the different GA network solutions were very similar,

a difference of only 0.4%. As expected, the consistency in the GA solutions increased

as the number of evaluations increased. Comparing between months, the consistency of

the GA solutions in July was much higher compared with the GA solutions in January.

The mean distance to the centroid will reduce as all sites are located nearer and

nearer to a central point. As more sites are located far from the central point, this metric

will increase. The mean distances to the centroid for the IO solution when compared

with the best GA result were not the same for either January or July, indicating that

the clumping of stations differed between the IO and GA solutions, with the best GA

solutions having slightly higher values for the mean distance to the centroid indicating

more spread in the placement of sites. The mean distance to the centroid was generally

greater for January solutions compared with July solutions, indicating that stations

were more spread out for the network solutions obtained for the winter month than for

the summer month. We would expect this as the network would need to have stations

concentrated on the eastern side of South Africa to cover both the high uncertainty in

the biospheric fluxes occurring here during summer, and the large contribution of fossil

fuel emissions. In the winter months the uncertainty would be mainly due to fossil fuel

emissions, and therefore the network would need to view the cities such as Johannesburg,

Pretoria and Durban, and also Cape Town to the south west of the country. Therefore

sites would be spread out in order to reduce the fossil fuel emission uncertainty.

In January and July, the dissimilarity index for IO was greater than zero when

compared with the best GA result, with a value of 772 km in January and 879 km

in July. For the current set of candidate sites, a comparison between two randomly

generated networks would on average result in a dissimilarity index of 2763 km, with

a standard deviation of 720 km, determined through simulation methods. A histogram

showing the distribution of the mean dissimilarity index for two random networks is

given in the appendix. The lower limit of the normal range (approximately the 2.5th
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Genetic algorithm versus incremental optimisation 17

percentile) for the DI of randomly generated networks is 1350 km. The DI’s obtained

between the GA solutions and the IO solution were all below this value, which suggests

that IO and GA solutions were more similar than two randomly selected solutions (Table

1). This provides evidence that both optimisation routines were aiming towards similar

solutions.

The time taken to obtain a result ranged between 5 and 18 times longer under

the GA compared with under the IO, with the largest run times associated with a

population size of 100 and 100 iterations. Increasing the population size for the GA

from 50 to 100 or increasing the iterations from 50 to 100 led to roughly doubling of the

run time. Increasing both the number of iterations and population size to 100 resulted

in a run time between 3.6 and 3.8 times longer than the initial GA setup. Therefore the

computational cost of even the lowest configured GA is substantially larger compared

with the IO routine.

The GA run under the initial setup of 50 iterations and 50 population members

produced consistent network solutions for July but not for January, where all five of

the July GA solutions were the same but only two of the five January solutions were

the same. Greater inconsistencies were observed in solutions for January across the

different GA configurations. In January the spatial distribution of fluxes, particularly

biospheric fluxes, was far more dispersed across the whole of South Africa, and the prior

uncertainties in the surface fluxes were much larger in January compared with July. This

result is illustrated using the heat maps presented in Figures 3a and 3b. Much larger

variability in the DI’s is apparent when comparing GA solutions under fewer population

members and iterations compared with GA solutions under larger population sizes or

with greater number of iterations, as indicated by the lighter blocks in the heat map

for January in the top right hand corner. This implies that for the month of January,

the GA was converging towards a solution under larger population sizes and number of

iterations. This convergence occurred more readily for July, where the heat map already

showed lighter blocks compared with the initial setup just from increasing the iterations

from 50 to 75. Across the different configurations of the GA the DI values for July were

always lower compared with those for January (Figures 3a and 3b).

The best solution was not obtained under the cheapest GA configuration for either

January or July. For the month of January when the number of iterations was increased

to 75, two of the five GA runs converged to this solution, but when increased to

100 iterations, three of the five solutions converged to this solution. As expected,

increasing the population size to 100 improved the chances of obtaining this best solution

relative to the initial configuration, and this probability also increased as the number

of iterations increased. But only two of the five solutions obtained the best solution

when the population size and number of iterations were 100. Under this configuration

the DI values between the network solutions were the lowest relative to comparisons

within any of the other GA configurations (Figure 2a) Therefore, even when these two

GA parameters were set relatively high, there was no guarantee of obtaining the best

solution under the January scenario, although the differences between network solutions
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did decrease. In January the surface flux uncertainty was high, relative to July, and

dispersed unevenly across South Africa, particularly concentrated in the northern and

eastern parts of the country where the greatest biological activity takes place in Summer,

but also where the large cities are located. Figures 4a and 4b provide the locations of

all the sites from the different network solutions, together with the NPP surface fluxes

(representative of the biospheric flux uncertainty) for January and July respectively.

In January the sites of the different solutions are concentrated towards the central

and eastern parts of the country, supporting the lower mean distances to the centroid

obtained in January. Some sites are consistently selected, such as site 27 located at the

border of South Africa and Zimbabwe, or site 11 located south of Lesotho. Other sites

appear far less frequently, such as site 28 and site 10. Both these sites are located one

step away from the most frequently selected sites, and therefore would be in a position to

view much of the same uncertainty. In general, the network solutions have placed sites

next to locations with the highest uncertainty in either fossil fuel or biogenic surface

fluxes.

In July, the best GA solution was obtained by increasing either the number of

iterations or the population size. By increasing the number of iterations to 75, four

out of the five network solutions resulted in the best GA solution. Under the different

configurations with iterations or population size greater than 50, between two and four of

the network solutions converged to the best solution, with the maximum configuration

resulting in four out of five network solutions as the best solution. Under the July

scenario, the overall uncertainty in the surface fluxes was much lower compared with

January, and the largest uncertainties were concentrated towards the south west, where

the greatest amount of biological activity would be taking place in winter and where

the city of Cape Town is located, but also around the cities of Johannesburg and

Pretoria in the central part of the country, and Durban to the south east. Figure 4b

illustrates the network solutions for July. There was far less variability in the placement

of stations compared with January. The stations were now split between those that view

uncertainty around Cape Town and in the northern parts of the Western Cape province,

where fossil fuel emission uncertainty and biogenic flux uncertainty are both high, and

between those on the eastern side of the country, located near fossil fuel sources.
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Figure 3: Heat maps displaying Dissimilarity Indices (DIs) for the January (top) and

July (bottom) optimal network solutions. Network solutions which have similar placement

of stations in space will have DIs closer to zero. The abbreviated names for the GA runs

are the same as for Table 1.
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Figure 4: Maps of the optimal network locations for (a) January and (b) July from each

of the algorithm runs, overlaid on the net primary productivity (NPP) (g C m−2 month−1).

Code numbers for the GA solutions are the same as for Table 1. Numbers appearing on

the maps are the station locations which have appeared in one or more network solutions.

Black triangles - existing network stations of Cape Point and Gobabeb. Open circles -

Major South African. Black closed circles - IO network solution. Coloured closed circles -

GA solutions. Each colour represents a different GA solution. Points are laid out row by

row, with the top row corresponding to the GA 50 50 and the bottom corresponding to

the GA 100 100.
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3.2. Established Network Design Problem

In the established network scenario, the percentage uncertainty reduction achieved by

each network solution was lower compared with the original network problem. In

January the uncertainty reduction was approximately 78% for the original network

problem, whereas for the established network solution, the reduction in the uncertainty

remaining after a five-member network was established could only be improved by 50%

(Table 2). Similarly in July, the original network solution was able to achieve an

uncertainty reduction in the region of 43%, but once a network was established the

remaining uncertainty in the total flux solution could only be reduced by 14%. This

shows the diminishing returns of adding more stations to the network.

For the month of January the GA procedure was able to achieve a better solution

by 3% compared to the solution obtained by IO. The GA configured with 50 iterations

and 50 population members obtained the best solution as well as the worst solution

with an uncertainty reduction of 45.2%. The IO solution reduced the uncertainty

by 46.9%, whereas the best solution GA was able to obtain an uncertainty reduction

of 49.9% (Table 2). This solution was obtained more reliably when the number of

iterations and population size were at higher settings, with all GA configurations with

100 iterations obtaining the best solution. In July the GA always found a better solution

compared with IO. The IO obtained a solution with 13.7% uncertainty reduction,

whereas the solutions from the GA showed very little variation and all solutions with

14.2% uncertainty reduction. Figure 5 shows the cumulative influence of the surface

sources on the concentration observations observed at the sites in the best solution

for each month and for each of the scenarios. These maps show which sources (i.e.

which of the surface pixels) are in view of the measurement sites in the best solution.

As expected, the observation footprints of the measurement towers for the solutions

under the established network design problem showed some overlap; more so than under

the original network design problem (Figure 5). Under the established network design

solutions, there is greater coverage of the coastal cities, such as Port Elizabeth and

Durban.

The mean distances to the centroid and the map of the network solution show that

more clustering of the stations towards a central point occurred in the January solutions

than the July solution, with mean distances to the centroid of between 295 and 338 km

in January verses 526 km on July, but the clustering in January was to a lesser extent

compared with that of the original network problem which was between 303 and 357

km (Table 2 and Figure 6). The map of the January solutions indicates that stations

tended to be placed along the central vertical line of the country, between the area of

lowest uncertainty and the area of highest uncertainty, with one station located near

the largest cities (Johannesburg and Pretoria) and power generation sites (Figure 6).

The July solutions also tended to place stations along a boundary, this time between

areas of high winter biogenic activity in the Western Cape and low activity in the rest

of the country, with two stations located near the cites of Johannesburg and Pretoria;
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one north and one south of these two cities (Figure 6).

The pattern of DI values revealed that there was much more consistency between

the solutions from the GA compared with the original network design problem, with

more dissimilarity occurring in January, when biospheric flux uncertainty was higher

and more spread out across the eastern side of the country (Figure 7). The DI values

for the July solutions show almost no variation between the network solutions, with GA

solutions for iterations at 75 or above, or population size at 100, all resulting in the

same network solution.

Run times to complete the optimisation routines were slightly higher compared

with the original network problem, as the sensitivity matrix (H) and observation error

covariance matrix (Cc) for the established scenario were larger in size due to a larger

number of monitoring stations, and therefore larger number of hourly observations. The

relative time differences to complete an optimisation between the IO and the different

GA configurations remains similar to the original network problem.

In both January and July, under the established network scenario, the GA was able

to find a better solution compared with the IO method, but the IO was within 3% of

the uncertainty reduction achieved by any of the GA solutions. Only the GA at the

lowest configuration had one solution with lower uncertainty reduction compared with

the IO for the month of January. The improvement of the GA best solution over the

IO was small; more so in July where the regions of high uncertainty were concentrated

over small areas spread out across the domain. The spatial differences in these solutions

were small, as evidenced by the small DI values.
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Figure 6: Optimal network locations for extended network case for (a) January and (b)

July from each of the algorithm runs, overlaid on the net primary productivity (NPP)

(g C m−2 month−1). Code numbers for the GA solutions are the same as for Table 2.

Numbers appearing on the maps are the station locations which have appeared in one or

more network solutions. Black triangles - existing network stations of Cape Point and

Gobabeb. Open circles - Major South African. Black closed circles - IO network solution.

Coloured closed circles - GA solutions. Each colour represents a different GA solution.

Points are laid out row by row, with the top row corresponding to the GA 50 50 and the

bottom corresponding to the GA 100 100.
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Figure 7: Heat maps displaying Dissimilarity Indices for the January (top) and July

(bottom) optimal network solutions under the established network scenario, where the

established network consists of the best five-member network from the original network

design problem. The abbreviated names for the GA runs are the same as for Table 2.
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3.3. Subregion Design Problem

For the subregion scenario, the uncertainty reduction was based only on the uncertainty

within a subregion located on the eastern side of South Africa. The background stations,

both located on the western side of the domain, would provide very little information

about this region. The uncertainty reduction achieved for the January solutions ranged

between 78.6% and 79.1%, and in July ranged between 51.1% and 51.4% (Table 3).

The IO had the lowest uncertainty reduction for both the January and July solutions,

although very close to the maximum uncertainty reduction achieved, differing by only

0.5% in January and 0.3% in July. In January, when there were both large fossil fuel

sources and a large amount of biospheric activity in the subregion, the GA was always

able to obtain a better solution compared with the IO. The consistency in the GA

solutions for July was achieved with fewer evaluations compared with January.

For the subregion scenario, footprints of the measurement towers showed more

overlap compared with both the original network design problem and the established

network design problem, with the highest cumulative sensitivity occurring in January

(Figure 5). This occurred in a pixel over the north eastern edge of South Africa, close

to the Swaziland border, where the biospheric flux uncertainty was high. In all the best

network solutions, across both January and July, the optimisation algorithms aimed

to reduce the uncertainty over this region. By restricting the uncertainty optimisation

over a subregion which contained this pixel, the network solutions could include multiple

sites which viewed this location in order to have more comprehensive information about

this source and therefore to produce a large uncertainty reduction overall.

The mean distances to the centroid for the January solutions were similar to

those obtained for the original network design, with stations scattered throughout the

subregion, particularly close to the major cities in the region (Figure 8). Two stations

were outside of the subregion close to the borders of the subregion, one to the west of the

subregion, near the city of Johannesburg and areas of high fossil fuel activity, and one to

the south near regions of high biospheric activity. In July the clustering was lower, and

stations tended to be located near the cities in the subregion, with one station located

in the central part of South Africa, outside of the subregion. The DI values were higher

in January and showed diversity in the solutions between the different optimisation

runs, whereas for July the DI values were smaller and showed that there were only two

solution sets that were obtained from the GA runs, where the best solution was obtained

more reliably under either high number of iterations or high population size (Figure 9).

The run times for the optimisation procedures were very similar to those obtained

for the original network design problem.
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Figure 8: Optimal network locations for subregion case for (a) January and (b) July

from each of the algorithm runs, overlaid on the net primary productivity (NPP) (g C

m−2 month−1). Subregion is represented by the grid box. Code numbers for the GA runs

are the same as for Table 3. Numbers appearing on the maps are the station locations

which have appeared in one or more network solutions. Major South African - open circles.

Black triangles - existing network. Black closed circles - IO network solution. Coloured

closed circles - GA solutions. Each colour represents a different GA solution. Points are

laid out row by row, with the top row corresponding to the GA 50 50 and the bottom

corresponding to the GA 100 100.

Page 30 of 39AUTHOR SUBMITTED MANUSCRIPT - IP-101528.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Genetic algorithm versus incremental optimisation 31

IO
GA 50 50
GA 50 50
GA 50 50
GA 50 50
GA 50 50
GA 75 50
GA 75 50
GA 75 50
GA 75 50
GA 75 50

GA 100 50
GA 100 50
GA 100 50
GA 100 50
GA 100 50
GA 50 100
GA 50 100
GA 50 100
GA 50 100
GA 50 100
GA 75 100
GA 75 100
GA 75 100
GA 75 100
GA 75 100

GA 100 100
GA 100 100
GA 100 100
GA 100 100
GA 100 100

IO
G

A
 5

0 
50

G
A

 5
0 

50
G

A
 5

0 
50

G
A

 5
0 

50
G

A
 5

0 
50

G
A

 7
5 

50
G

A
 7

5 
50

G
A

 7
5 

50
G

A
 7

5 
50

G
A

 7
5 

50
G

A
 1

00
 5

0
G

A
 1

00
 5

0
G

A
 1

00
 5

0
G

A
 1

00
 5

0
G

A
 1

00
 5

0
G

A
 5

0 
10

0
G

A
 5

0 
10

0
G

A
 5

0 
10

0
G

A
 5

0 
10

0
G

A
 5

0 
10

0
G

A
 7

5 
10

0
G

A
 7

5 
10

0
G

A
 7

5 
10

0
G

A
 7

5 
10

0
G

A
 7

5 
10

0
G

A
 1

00
 1

00
G

A
 1

00
 1

00
G

A
 1

00
 1

00
G

A
 1

00
 1

00
G

A
 1

00
 1

00

0

500

1000

1500

(a) January

Dissimilarity
Index (km)

IO
GA 50 50
GA 50 50
GA 50 50
GA 50 50
GA 50 50
GA 75 50
GA 75 50
GA 75 50
GA 75 50
GA 75 50

GA 100 50
GA 100 50
GA 100 50
GA 100 50
GA 100 50
GA 50 100
GA 50 100
GA 50 100
GA 50 100
GA 50 100
GA 75 100
GA 75 100
GA 75 100
GA 75 100
GA 75 100

GA 100 100
GA 100 100
GA 100 100
GA 100 100
GA 100 100

IO
G

A
 5

0 
50

G
A

 5
0 

50
G

A
 5

0 
50

G
A

 5
0 

50
G

A
 5

0 
50

G
A

 7
5 

50
G

A
 7

5 
50

G
A

 7
5 

50
G

A
 7

5 
50

G
A

 7
5 

50
G

A
 1

00
 5

0
G

A
 1

00
 5

0
G

A
 1

00
 5

0
G

A
 1

00
 5

0
G

A
 1

00
 5

0
G

A
 5

0 
10

0
G

A
 5

0 
10

0
G

A
 5

0 
10

0
G

A
 5

0 
10

0
G

A
 5

0 
10

0
G

A
 7

5 
10

0
G

A
 7

5 
10

0
G

A
 7

5 
10

0
G

A
 7

5 
10

0
G

A
 7

5 
10

0
G

A
 1

00
 1

00
G

A
 1

00
 1

00
G

A
 1

00
 1

00
G

A
 1

00
 1

00
G

A
 1

00
 1

00

0

500

1000

1500

(b) July

Dissimilarity
Index (km)

Figure 9: Heat maps displaying Dissimilarity Indices for the January (top) and July

(bottom) optimal network solutions under the subregion scenario, requiring a solution to

reduce the uncertainty in the eastern half of the country. The abbreviated names for the

GA runs are the same as for Table 2.
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4. Discussion and Conclusion

The results of this study show that although IO routine was not able to find the network

with the global maximum uncertainty reduction, it found a network with uncertainty

reduction only fractionally different from the best result obtained by means of the GA,

at a much lower computational cost. Out of a five-member network solution, the IO

differed by between one and two stations from the best GA solution. This occurred

for the original network design problem, when solving for additional stations to an

established network, and when solving for only a subregion of the domain. Moreover, the

metrics for clustering of stations and dissimilarity showed that a very similar placement

of stations would result. The advantage of the IO method over the GA method is

that an evolution of results is obtained, which is useful for practical purposes. By

identifying the station which on its own reduces the uncertainty by the most, it gives

the decision makers the location of the site which should be prioritised. In addition, the

running time for the IO is significantly shorter compared with the GA, which can play

a role when computational resources are limited or when dealing with a larger or more

complex domain, and where sensitivity tests need to be performed, for example using

different configurations and estimates of the covariance matrices or using an alternative

transport model. Therefore the IO algorithm is a viable alternative to the GA for

optimal network design of atmospheric monitoring stations. In January, when the prior

covariance matrix of the surface fluxes was more complex due to larger and more variable

surface fluxes across a large proportion of the domain when compared with July, the

difference in the uncertainty reduction between the best GA and IO solutions was also

larger. In order to be confident of achieving the largest possible uncertainty reduction,

the number of iterations and population size needed to be made large, and for the

original network problem where the majority of the domain was unconstrained by the

base network observations, there was still inconsistency between solutions in terms of

placement. Fortunately, even if the GA settled on a sub-optimal solution, the fitness of

this network was similar to the best available GA solution.

For the original network design problem, the GA was able to find the best solution,

but not consistently, particularly for the month of January when the prior uncertainties

of the fluxes were larger and more complex. In July, when the covariances were smaller

and concentrated in small areas spread throughout the domain, the chances of the

GA finding the best solution improved, resulting in greater consistency between runs.

Increasing the number of iterations or population members did not guarantee the best

solution, but uncertainty reductions were always higher or the same compared with the

IO result. Therefore if very small reductions in the uncertainty reduction are worth

pursuing, such as in the case where the existing network is already well established,

the GA routine is preferable. Under these circumstances a large amount of resources,

relative to the IO routine, would be required in order to run the GA with sufficient

iterations and population members. These specifications depend on the complexity of

the prior covariance matrix, with a larger number of iterations and population members
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required to solve for networks under greater spatial variability in surface flux uncertainty.

Therefore the number of iterations or population members should be tuned according

to prior information available for a given network design problem.

We showed that even under more complicated scenarios, such as solving for

additional stations to add to an established network or solving for the uncertainty in the

fluxes of a subregion, the IO method was able to achieve a solution similar to the best GA

solution, in terms of both location of stations and the uncertainty reduction achieved,

but that the GA was always able to find a slightly better solution. The GA performed

more consistently when the sources were concentrated within specific regions, such as

around cities which occurred for the month of July. When the uncertainty resulting

from the biospheric sources, which were more dispersed across the domain than the

fossil fuel sources, had a dominant contribution to the overall uncertainty, such as for

January in our case, the GA showed much more diversity in the network solutions, and

a larger number of iterations and population members were required for convergence.

The variability in the solutions was greater for the original network design problem than

for the two additional scenarios, and the established network design for the month of

July, where the gain in the uncertainty reduction was much lower and where the main

sources of uncertainty were concentrated in a few places, showed the least amount of

variability in the optimisation solutions.

The disadvantage of the GA procedure is that it does not supply the station which

on its own results in the highest uncertainty reduction. This would require having to run

the algorithm for a one station network. It also requires significantly more computational

resources compared with the IO, without the guarantee of improvement over the IO.

This implies that the user should not rely on a single run of the GA if the best solution

is required, but rather have it run multiple times. Where computational resources

are not limiting, the exact number of runs could be determined by the variability

in the uncertainty reductions produced by multiple GA runs, where the number of

evaluations of the GA can steadily be increased until the standard error of the mean

uncertainty reduction under the set number of evaluations is below a required level. This

would further increase the computation resources required to obtain the final solution,

but would give the user alternative network solutions and an indication of the most

important stations, as these would repeatedly appear in the solutions. With the gain

in the uncertainty reduction so small for the GA best solution over the IO solution

under all scenarios, it would suggest that it would be more worthwhile to invest in

the improvement of the prior covariance estimates than in implementing a complex

and resource intensive optimisation algorithm for this network design application. The

network solution itself and the computational resources required for convergence of the

GA is dependent on the complexity of the uncertainty covariance matrix of the prior

surface fluxes. The network solution, regardless of optimisation algorithm, is only as

good as the information provided for the uncertainties in the prior fluxes.

The GA and IO show that more than one good solution exists for the network

design. Pragmatic considerations should be taken into account so that the resulting
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network is feasible and cost effective. A network that is guaranteed to result in a

reliable measurement record would be more valuable for constraining the overall flux

uncertainty than one which has a slightly better assumed uncertainty reduction but

more likely to have measurement gaps.

In this investigation we only considered the population size and number of iterations

specified for the GA. We could also consider changing the probabilities assigned to cross-

over and mutation. This could provide better ability of the GA solution to get away

from local extrema. If we were to compare the specification of these parameters for the

GA, we would need to ensure that the algorithms were compared under fair conditions

(Črepinšek, Liu & Mernik 2014). If elitism is maintained, it would guarantee that the

best solution always moves forward to the next iteration, which would ensure stability

of the final solution. We recommend that the GA and its alternative parametrisations

be used as part of a comprehensive sensitivity analysis when undertaking such an

optimisation exercise.

We compared an evolutionary algorithm to a simple deterministic algorithm. An

alternative deterministic algorithm to the IO is Decremental Optimisation (DO) (Curtis

et al. 2004). DO starts with the maximal network, and eliminates sites from this network

solution based on a fitness criterion, until the required network size is reached. Under

the computational resources used for this analysis, DO would not have been possible as it

would have resulted in a H approximately 7 times larger than for a five-member network,

and a Cc that was 72 larger, which would have significantly increased the memory

requirement for a single inversion result. This type of optimisation may be possible

under a system with larger memory resources to allow the large matrix multiplications

and matrix inversions required.

We assumed that the observation errors and flux uncertainties followed a Gaussian

distribution. This is common practice in the field CO2 flux inversions, and has made

the technique described in this paper possible. This optimisation problem could be

extended to relax the assumption of Gaussian errors.
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6. Appendix

Mean Dissimilarity Index
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Figure 10: Histogram showing the distribution of the means for the dissimilarity index

arising for 2000 generated pairs of network members. The expected mean and standard

deviation for the dissimilarity index, together with Monte Carlo errors, are provided.

As the dissimilarity index (DI) was likely to have a non-normal distribution, the

distribution characteristics were determined via simulation. The DI was calculated

between every pair of randomly generated five-member networks within the domain,

where 2000 of these five-member networks were randomly sampled from the set of

available stations. For each simulation of 2000 network solutions, the mean, variance,

minimum and maximum of the DI’s was determined. These distribution characteristics

should be invariant to the number of randomly generated solutions, which represents a

large pool of potential network solutions. This was repeated 2000 times (the bootstrap

sample size). The distribution of the mean DI’s is plotted in Figure 9, and the expected

mean and standard deviation, as determined from the empirical summary statistics of

the bootstrap samples, together with Monte Carlo error estimates are provided.

Page 35 of 39 AUTHOR SUBMITTED MANUSCRIPT - IP-101528.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



REFERENCES 36

References

Baker, D. F., Law, R. M., Gurney, K. R., Rayner, P., Peylin, P., Denning, A. S.,

Bourquet, P., Bruhwiler, L., Chen, Y., Ciais, P., Fung, I. Y., Heimann, M., John, J.,

Maki, T., Maksyutov, S., Masarie, K., Prather, M., Pak, B., Taguchi, S. & Zhu, Z.

(2006), ‘Transcom 3 inversion intercomparison: impact of transport model errors on

the interannual variability of regional co2 fluxes, 1988–2003’, Global Biogeochemical

Cycles 20(1), GB1002.

URL: http://dx.doi.org/10.1029/2004GB002439

Berry, L. T. M., Murtagh, B. A., McMahon, G., Sugden, S. & Welling, L. (1999),

‘An integrated galp approach to communication network design’, Telecommunication

Systems 12, 265–280.

URL: http://dx.doi.org/10.1023/A:1019102930443

Bousquet, P., Ciais, P., Peylin, P., Ramonet, M. & Monfray, P. (1999), ‘Inverse modeling

of annual atmospheric co2 sources and sinks: 1. method and control inversion’, Journal

of Geophysical Research: Atmospheres 104(D21), 26161–26178.

URL: http://dx.doi.org/10.1029/1999JD900342
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