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A B S T R A C T

Social and physical processes often exhibit both macro-level geographic smoothness – implying positive spatial
dependence – and micro-level discontinuities – suggesting implicit step changes or boundaries in the data.
However, a simultaneous treatment of the two features in a unified statistical model poses great challenges. This
study extends an innovative locally adaptive spatial auto-regressive modelling approach to a multi-level mod-
elling framework in order to explore multiple-scale geographical data. It develops a Bayesian locally adaptive
spatial multi-level model that takes into account horizontal global spatial dependence and local step changes, as
well as a vertical group dependency effect imposed by the multiple-scale data structure. At its heart, the cor-
relation structures of spatial units implied by a spatial weights matrix are learned along with other model
parameters using an iterative estimation algorithm, rather than being assumed to be invariant and exogenous. A
Bayesian Markov chain Monte Carlo (MCMC) sampler for implementing this new spatial multi-level model is
derived. The developed methodology is applied to infer neighbourhood quality using property transaction data,
and to examine potential correlates of neighbourhood quality in Liverpool. The results reveal a complex and
fragmented geography of neighbourhood quality; besides an overall smoothness trend, boundaries delimiting
neighbourhood quality are scattered across Liverpool. Socio-economics, built environment, and locational
characteristics are statistically significantly associated with neighbourhood quality.

1. Introduction

Multi-level modelling has been demonstrated as a useful tool to
derive summary statistics for higher-level (or more aggregated) units
from outcomes measured for low-level units (e.g. individual). For in-
stance, individual pupils' educational achievement has been used to
infer school effectiveness and produce league tables to inform parents'
school and residence choices (e.g. Leckie & Goldstein, 2009). Such a
model for two levels (or scales) is shown in Eq. 1.

= + + = … = …y x β θ i n j Jϵ , 1 , ; 1, ,ij ij j ij j

= + ∼ ∼θ z γ ζ N σ ζ N σ, ϵ (0, ); (0, ).j j j ζϵ
2 2

(1)

If y measures pupils' educational outcomes, x measures pupils'
characteristics, and i and j are pupil and school indicators in Eq. (1), θj
will be derived effectiveness measure for school j. nj represents the
number of pupils in school j and J is the total number of schools. β and γ
are vectors of regression coefficients to estimate. ϵ and ζ are model
residual terms at the pupil and school levels, assumed to follow

independent Normal distributions with variances of σϵ2 and σζ2, re-
spectively.

Two important advantages pertain to the multi-level model-based
estimates. First, there is great flexibility in terms of controlling for
pupil-level characteristics (e.g. prior education achievement) and un-
derstanding the links of school-level characteristics to effectiveness.
Second, the estimates on school effectiveness are reliable because of the
borrowing strength from other data points (Goldstein, 2011;
Raudenbush & Bryk, 2002). The estimator of θj, θj, is shrunk to the
global mean of y after controlling for pupil-level covariate effects, de-
pending on the magnitudes of σζ2, σϵ2 and nj, thus less subject to sam-
pling uncertainties in particular schools (e.g. Jones, 1991; Leckie &
Goldstein, 2009). Model (1) and its variants have also been applied to
derive health statistics for aggregated spatial units by using data
available at a fine-resolution spatial scale (e.g. Arcaya, Brewster, Zigler,
& Subramanian, 2012; Ma, Mitchell, Dong, & Zhang, 2017), and serve
as an important approach in the model-based small area estimation
literature (e.g. Rao, 2003).

Directly applying standard multi-level models to spatial data using
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spatial groups as the “second (or higher) level” has been shown to be
problematic (Arcaya et al., 2012; Bivand, Sha, Osland, & Thorsen, 2017;
Dong & Harris, 2015; Dong, Ma, Harris, & Pryce, 2016). A key concern
is that geography exists both “vertically,” in the sense that observations
have regional membership, and “horizontally,” in that spillovers be-
tween adjacent observations often exist regardless of grouping
(Haining, 2003; Owen, Harris, & Jones, 2016). A few spatial extensions
on multi-level models have been developed by specifying higher-level
residuals as a simultaneously autoregressive (SAR) model (e.g. Dong &
Harris, 2015; Lacombe, Holloway, & Shaughnessy, 2014; Lacombe &
McIntyre, 2016; Savitz & Raudenbush, 2009), or as a conditional au-
toregressive (CAR) model (e.g. Dong et al., 2016; Ma et al., 2017).
Whilst global spatial auto-correlation or large-scale smoothness pattern
in the outcome variable under investigation can be captured, potential
local step changes are ignored in the proposed spatially explicit multi-
level models mentioned above. Local step changes or boundaries refer
to those geographic borders, areas on the opposite sides of which are
associated with abrupt changes in outcome values. They need to be
taken into account when modelling spatial auto-correlation as it would
be inappropriate to assume areas that are separated by boundaries to be
correlated as strongly as those that are not.

1.1. Boundary detection and a locally adaptive spatial auto-correlation
model

The detection of boundaries in the distributions of geographical
variables on its own is the key aim of the areal Wombling literature,
originating from Womble (1951). We refer to Jacquez, Maruca, and
Fortin (2000) and references therein for various detection algorithms
developed for point-referenced and image or gridded spatial data.
These techniques are often not based on statistical models, and thus less
suitable to deal with sampling uncertainties underlying data of interest
(Dean, Dong, Piekut, & Pryce, 2018; Lu & Carlin, 2005). Lu and Carlin
(2005) proposed a Bayesian areal Wombling approach where a Baye-
sian CAR model was applied to data on county-level cancer incidence in
Minnesota. This method produces rich model estimates using Markov
chain Monte Carlo (MCMC) sampling, and boundaries are then identi-
fied by comparing the distributions of expected differences between
geographically bordering areas. Given the primary focus of boundary
detection in this strand of literature, the identified local step changes or
discontinuities are not further used to inform the modelling of spatial
auto-regression. Like other domains, the connectivity structure is taken
as exogenous, and boundaries are detected on top of it.

In a single-level spatial data context, Lee and Mitchell (2013, 2014)
proposed an innovative locally adaptive spatial auto-correlation mod-
elling approach. The key idea of the approach is to model ambivalence
between “no correlation” and “no connectivity” in the final model
covariance matrix. Spatial correlation is conceptualised as global, with
the strength determined by the full-map (or global) spatial auto-
regressive parameter, but attenuated locally if a boundary is detected.
In other words, if a step change is detected between two geographically
adjacent areas, the (conditional) correlation between them is con-
strained to be zero by disconnecting them in the spatial weights matrix,
W. In this strategy, both the connectivity structure, the strength of full-
map spatial autoregression, and the remaining model parameters are
estimated. An appealing feature of the locally adaptive modelling ap-
proach is that it contrasts strongly with the conventional treatment of
W as exogenously known in the spatial modelling literature (e.g.
Anselin, 1988; Haining, 2003).

1.2. Innovation of this study

In this study, we develop a Bayesian locally adaptive spatial multi-
level modelling approach, in which both global spatial autoregressive
structure, local step changes and the multi-scale data structure are
captured. It adapts the locally adaptive spatial auto-regression model in

Lee and Mitchell (2013), and extends it to a multi-level modelling
framework to investigate multi-scale data. The conceptualisation of
spatial auto-regression at the neighbourhood scale (for θ) as a locally
adaptive model presents our first methodological improvement on the
ongoing development of spatially explicit multi-level modelling ap-
proaches. Second, this study extends the locally adaptive spatial CAR
model to a SAR model, and in doing so, the proposed methodology
allows spillover and feedback effects arising from neighbourhood-scale
covariate effects to be captured (detailed below). Lastly, the effects on
outcomes of independent variables measured at different scales are
distinguished, so their interpretations are more clear. This resonates
with the idea that different processes might be operating at different
spatial scales, and that outcomes at different scales tend to be influ-
enced by different sets of predictor variables. For instance, pupils'
educational outcomes are directly related to individual-level char-
acteristics while school effectiveness (θ) is linked to school-level char-
acteristics and impacts pupils' educational outcome as a composite la-
tent variable.

The locally adaptive spatial multi-level model developed here is
implemented by using an iterative algorithm following Lee and Mitchell
(2013). In a nut shell, it cycles between estimating model parameters
via a Bayesian global spatial multi-level model and updating the spatial
weights matrix W, until a convergence criterion is met. Bayesian MCMC
samplers are derived to implement the new global spatial multi-level
model, which constitutes the core component of the overall algorithm.

The proposed methodology is applied to infer neighbourhood
quality based on individual property transaction records in Liverpool,
as well as information about neighbourhood characteristics. The de-
rived neighbourhood quality estimate is a composite measure of
neighbourhood impact on property prices, net of the property-level
covariate effects. Neighbourhood quality, often measured by neigh-
bourhood socio-demographic, ethnic, and locational characteristics, has
been linked to property prices in voluminous hedonic or spatial hedonic
price studies (e.g. Anselin & Le Gallo, 2006; Dubin, 1992; Lazrak,
Nijkamp, Rietveld, & Rouwendal, 2014). Nonetheless, neighbourhood
quality, as an abstract influencing factor of property prices, includes
various facets of a neighbourhood and cannot be completely char-
acterised by a small set of observable neighbourhood attributes. As
such, the study regards neighbourhood quality as a latent variable at
the property-level equation but as an outcome variable at the neigh-
bourhood-level equation, explained by a range of observable neigh-
bourhood characteristics. This permits unobservable (to researchers)
and unmeasurable factors of neighbourhood quality to be captured
through the neighbourhood-level residual vector and, reliable estimates
on neighbourhood quality to be learned by exploiting the variations in
property prices. The locally adaptive spatial multi-level model is de-
vised for fulfilling this purpose. Neighbourhood quality indicators de-
rived as well as the associated uncertainties are useful in a variety of
contexts, both academic and policy related. From a research standpoint,
aggregate indices of this kind provide statistical summaries that capture
multi-dimensional realities of interest for urban economists, geo-
graphers and planners. From a policy point of view, the derivation of
aggregate measures of neighbourhood quality or attractiveness can be
seen as a vehicle to help translate the outputs of complex and sophis-
ticated models to non-technical audiences who are nevertheless inter-
ested in their results. For instance, local authorities and urban policy
makers may not be familiar with advanced spatial modelling but can
still benefit from accurate measures of neighbourhood attractiveness.

The remainder of this paper is structured as follows. Section 2 de-
scribes the locally adaptive spatial multi-level model and its estimation
method. Section 3 describes the data and variables used in the study. In
Section 4, we present and discuss model estimation results. Section 5
concludes with a brief summary of our findings and discussions on
potential limitations of the study.
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2. Methodology

2.1. The locally adaptive spatial multi-level model

The locally adaptive spatial multi-level model is built upon a multi-
level model with spatial auto-regression or dependency. We specify this
as a simultaneous autoregressive process within a typical multilevel
structure,

= + +y β θX Δ ϵ; (2)

= + + ∼ ∼θ θ γρW Z ζ N σ ζ N σ, ϵ (0, ); (0, ),ζϵ
2 2 (3)

where y is a N×1 vector of property transaction prices with N being
the sample size, X is a N× P matrix of property-level variables, and Δ is
a N× J random effect design matrix. β is a P×1 column vector of
regression coefficients to estimate.

The J×1 column vector θ is the neighbourhood-level substantive
effect, each neighbourhood's distinct impact on property prices.
Neighbourhood quality is itself conceptualised as simultaneously au-
toregressive in its outcome. The simultaneous autoregressive model of
response, sometimes called a “spatial lag model,” describes a full pat-
tern of response in the outcome of a spatial process (here, neighbour-
hood quality, θ) using neighbourhood-level characteristics Z, a J× K
matrix of predictors, that are paired with the K×1 neighbourhood-
level substantive effects γ, which must be estimated.

In this model of the spatial feedbacks in house price and neigh-
bourhood quality, nearby neighbourhoods have an effect on (and are
affected by) their surrounding neighbourhoods. By modelling θ as a
spatially-lagged outcome, we embed our belief that neighbourhood
quality may (in part) be a function of the desirability of nearby
neighbourhoods itself. Since property pricing is a competitive process,
we might expect high-quality neighbourhoods to drive up prices in
nearby similar neighbourhoods. Likewise, the presence of a low-priced
neighbourhood may force sellers in a nearby high-priced neighbour-
hood to start pricing downwards to compete. We do this in an en-
dogenous specification rather than in a so-called “spatial lag of X”
specification (Halleck Vega & Elhorst, 2015) since we believe the out-
comes to be mutually-constitutive rather than exogenous based on
potential inputs to neighbourhood quality; what is most relevant to the
spillover process is the price itself, not the hypothesized drivers of that
price. We note, however, that spatially lagged X can be included in Eq.
(3) to achieve a so-called spatial Durbin model (e.g. Elhorst, 2010) with
no need to adapt the model estimation algorithm derived below. It is
also possible to model spatial auto-correlation in the neighbourhood-
level residuals (ζ), leading to a spatial error model at the neighbour-
hood scale (Anselin, 1988; Elhorst, 2010). In this case, the model be-
comes equivalent to the hierarchical spatial auto-regressive model
proposed in Dong and Harris (2015), after inserting Eq. (3) to Eq. (2)
and applying minor algebraic manipulation. The implementation of
such a model is made available by an open source statistical software
package HSAR (Dong, Harris, & Mimis, 2017) in R (R Core Team,
2017).

For this model, W encodes the initial spatial relationships between
neighbourhoods. In our study, the entries of W encode geographical
proximity: wlk=1 if neighbourhoods (l,k) share a common geographic
border, and 0 otherwise. In model estimation, W is usually row-nor-
malised such that the maximum value of the spatial auto-regressive
parameter ρ is one. Finally, specifying prior distributions for each
model parameter in Eqs. (2) and (3) completes the above Bayesian
spatial multi-level model.

The schematic diagram of the above model is illustrated in Fig. 1. In
this model, neighbourhood quality (or its effects on property prices) is
conceptualised as spatially dependent latent construct, which depends
on neighbourhood-level characteristics Z and the random error term ζ.
The impacts of Z on property prices are through θ, respecting the well-
recognized argument that geographical outcomes might be influenced

by varying processes at different scales (Haining, 2003). The diagram
reveals an important departure of the methodology developed here
from the prior efforts that brings together spatial econometrics and
multi-level models (e.g. Dong et al., 2016; Dong & Harris, 2015; Dong,
Harris, Jones, & Yu, 2015) where the effects of independent variables,
measured at different scales, on an outcome variable are not separated,
i.e. the neighbourhood-scale covariates Z are directly related to y rather
than θ.

In the locally adaptive spatial multi-level model, Eq. 3 is re-for-
mulated to,

= + +
∼θ θ γρW Z ζ , (4)

in which ∼W is the final estimated W. Eqs. (2) and (4) complete the
proposed locally adaptive spatial multi-level model. The spatial auto-
regressive parameter ρ captures the strength of global spatial auto-
regression in neighbourhood quality while each element of ∼W , ∼wlk
specifically determines whether or not neighbourhoods (l,k) may be
conditionally dependent. Following Lee and Mitchell (2013), when

=
∼w 0lk and wlk=1,a boundary or step change between (l,k) is identi-
fied.

2.2. Estimation for the locally adaptive spatial multi-level model

An iterative algorithm is employed to implement the locally adap-
tive spatial multi-level model, an estimation strategy that has been used
in the contexts of a single-level spatial statistics model (Lee & Mitchell,
2013) and a spatio-temporal statistics model (Lee & Mitchell, 2014). In
this estimation strategy, model parameters are spilt into two sets:
Θ=[β,γ,θ,ρ,σϵ2,σζ2] and binary quantities in W. We note that changes
to the elements of W only consider trimming a connection, changing its
representation from 1 to 0 in a subsequent W. No additional links may
be admitted, so W is the upper bound of connectivity in the problem.
The algorithm iterates between updating Θ givenW, f(Θ|W,y,X,Z), and
updating W conditioning on Θ, f(W|Θ,y,X,Z), until a convergence
criterion is met. The estimation of f(Θ|W,y,X,Z) is done by using a
Bayesian MCMC approach, which will be detailed in the following
section.

The update of W is via a deterministic approach, relying on the
empirical posterior samples of θ. For geographically adjacent neigh-
bourhoods (l,k), wlk is set to 0 if the 1− α% credible intervals of θl and
θk are not overlapping, and is kept as 1 otherwise. For this case study,
we use α= .05. In practice, if two adjacent neighbourhoods (k, l) have
interval-distinct estimates (θk, θl), then they have a significantly dif-
ferent estimated quality in spite of their geographic connection. It is
useful to note that having disjoint interval estimates does not mean the

Fig. 1. The schematic diagram of a spatial multi-level model specified in Eqs.
(2) and (3).
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difference between the point estimates is substantively meaningful;
large samples will pick up nuanced differences between neighbour-
hoods because the credible intervals may be quite precise. Regardless,
with ∼W , other meaningful difference thresholds can be further imposed
to select boundaries that are both statistically and substantively sig-
nificant, as demonstrated in (Dean et al., 2018). The overall algorithm
is briefly summarised as below.

Step 1—Initialise model estimation. Estimating starting values of Θ
by assuming neighbourhood quality θ to be spatially independent, la-
belled as f(Θ(0)|W,y,X,Z).

Step 2—Iterate the estimation of f(Θ|W,y,X,Z) and f(W|Θ,y,X,Z).
(a) Prune W to estimate W(t+1) based on the posterior distributions of
θ(t). To do this, set wlk

(t+1)= 0 if the marginal 95% credible intervals of
θl(t) and θk(t) are disjoint and wlk=1. Otherwise, retain wlk. Note that
this operation modifies W and not W(t), so W(t+1) may be more dense
than W(t), but can never be denser than W. (b) Estimate f
(Θ(t+1)|W(t),y,X,Z) based on the Bayesian spatial multi-level model
specified in Eqs 2 and 3 using W(t+1), the updated spatial weights
matrix estimate.

Step 3—Terminate the iteration process. This can occur when one of
two termination criteria are reached. The first is when W stops chan-
ging, i.e. W(t∗+1)=W(t∗). The second is when W cycles over k different
states, such as (W(t∗), W(t∗+1), …, W(t∗+k−1), W(t∗), …). Should this
happen, the W in this cycle that yields the smallest Moran's I for θ is
chosen as the final spatial weights matrix, ∼W .

Step 4—Estimate the final spatial multi-level based on ∼W .
The convergence of W is guaranteed as the sampling space for W is

finite despite of its large size of 21
′
W1/2 (Lee & Mitchell, 2013). In

addition, the first termination criterion is met in most cases.

2.3. Bayesian MCMC estimation of a spatial multi-level model

Before describing the estimation of the spatial multi-level model, we
illustrate the interpretation of regression coefficients of predictors at
the property and neighbourhood scales. The partial effect of an neigh-
bourhood-scale predictor (e.g. zk) on the latent neighbourhood quality
θ is expressed as,

∂

∂
= −

∼ −
θ
z

I ρW γ( ) .
k

J k
1

(5)

The effect zk on θ therefore can be interpreted in terms of direct,
indirect and total impacts following (Elhorst, 2010; LeSage & Pace,
2009). The direct impact of zk is calculated as the average of the di-
agonal elements of Eq. (5), i.e. −

∼ −γ trace I ρW(( ) )k J
1 . The total impact of

zk is γk/(1− ρ) while the indirect impact is the difference between total
impact and direct impact. The neighbourhood quality impacts of a one
unit change in zk are then passed on to changes in property prices. At
the property scale, the partial effect of a predictor (e.g. xp) on property
price is its coefficient βp, holding other variables constant.

We now describe the Bayesian MCMC estimation of the spatial
multi-level model, as specified in Eqs. (2) and (3). The joint distribution
of model parameters Θ is proportional to the product of data likelihood
f(y| .) and prior densities specified for them p(.), as expressed below

∝y y θ γ β γf W X Z f p ρ σ p ρ p σ p σ p p(Θ | , , , ) ( | Θ) ( | , , ) ( ) ( ) ( ) ( ) ( ).ζ ζ
2 2

ϵ
2

(6)

The prior distributions for regression coefficients and variance
parameters were assumed to be independent and specified following
the conventions in the Bayesian spatial econometrics and multi-level
modelling literature (e.g. Gelman et al., 2014; LeSage & Pace, 2009).
More specifically, the property-level regression coefficients β follows a
multivariate Normal distribution with mean M0 and variance matrix T0,
p(β)∼MVN(M0,T0), and for the neighbourhood-level regression coef-
ficients γ, p(γ)∼MVN(M1,T1). We assign a uniform prior to ρ over
(−1,1), thus allowing for the possibility of a negative spatial auto-
correlation. Inverse Gamma distributions (IG) are specified for the two

variance parameters σε2 and σϵ2; p(σϵ2)∼ IG(a0,b0) and p
(σζ2)∼ IG(a1,b1) with a and b being the shape and scale parameters,
respectively.

The likelihood function of the model is expressed as,

= − − − − −− − y β θ y β θf πσ σ X X(Θ) (2 ) exp{ 0.5 ( Δ ) ( Δ )}.N T
ϵ
2 /2

ϵ
2 (7)

Based on Eq. (3) and using the Jacobian method (transforming the
spatially dependent θ to an independent vector, Anselin, 1988). The
prior distribution p(θ|ρ,σζ2) is

= − − −− −θ θ γ θ γp ρ σ A πσ σ A Z A Z( | , ) (2 ) exp{ 0.5 ( ) ( )},ζ ζ
J

ζ
T2 2 /2 2

(8)

where A= IJ− ρW and ∣A∣ is the absolute value of the determinant of
A.

Combining Eq. (7) and prior distributions yields the conditional
posterior distributions for model parameters. The conditional posterior
distribution for the property-scale regression coefficients θ is also a
multivariate Normal distribution, f(β| .)∼MVN(Mβ,Σβ) with

= + = − +
− − −y θX X σ T M X T MΣ ( / ) ; Σ [ ( Δ ) ].β β β

T T
ϵ
2

0
1 1

0
1

0 (9)

The conditional posterior distribution for the latent neighbourhood
quality f(θ| .) is a multivariate Normal distribution, MVN(Mθ,Σθ) with

= + = − +− y β γσ A A σ M X A Z σΣ (Δ Δ/ / ) ; Σ [Δ ( ) / ].θ θ θ
T T

ζ
T T

ζϵ
2 2 1 2

(10)

With θ having been sampled, it is treated as a dependent variable to
draw the conditional posterior distribution of regression coefficients γ
at the neighbourhood scale. As f(γ| .)∝ p(θ|ρ,σζ2,γ)p(γ), it is a multi-
variate Normal distribution, MVN(Mγ,Σγ) with

= + = +
− − −θZ Z σ T M Z A σ T MΣ ( / ) ; Σ [ / ].γ γ γ

T
ζ

T
ζ

2
1

1 1 2
1

1
1 (11)

The posterior distributions for the two variance parameters are both
Inverse Gamma: f(σϵ2| .)∼ IG(aϵ,bϵ) and f(σζ2| .)∼ IG(aζ,bζ), in which

= + = + − − − −y β θ y β θa N a b b X X/2 ; 0.5( Δ ) ( Δ )T
ϵ 0 ϵ 0 (12)

= + = + − −θ γ θ γa J a b b A Z A Z/2 ; 0.5( ) ( )ζ ζ
T

1 1 (13)

The conditional posterior distribution of the spatial autoregressive
parameter ρ is expressed as,

∝

∝ − − − −
−

θ γ

θ γ θ γ

f ρ p ρ σ p ρ

I ρW σ A Z A Z

( |.) ( | , , ) ( )

exp{ 0.5 ( ) ( )}
ζ

J ζ
T

2

2
(14)

This is not a commonly-recognized probability density function, so a
direct Gibbs sampler is not directly applicable (Gelman et al., 2014).
Following prior studies on spatial multi-level model development (e.g.
Dong & Harris, 2015), an inverse sampling approach is employed for
the posterior inference on ρ. The approach starts by empirically eval-
uating the log-posterior density function of ρ, logf(ρ| .), based on the
updated values of (θ(r),β(r),γ(r),σϵ2(r),σζ2(r)) in the rth MCMC iteration.
Using this strategy, logf(ρ| .) is evaluated as,

= − − − − +f ρ I ρW e ρe e ρe σ Clog ( |.) log ( ) ( )/2J
r

d
r T r

d
r

ζ
r

0
( ) ( )

0
( ) ( ) 2( )

(15)

= − = −− −θ θe I Z Z Z Z e W I Z Z Z Z( ( ) ); ( ( ) ).r r
J

T
d

r r
J

T
0
( ) ( ) 1 ( ) ( ) 1 (16)

In the above formulas, C is a constant or an normalised density term.
e0 and ed are two column vectors of residuals when regressing θ(r) and
Wθ(r) on neighbourhood-level independent variables Z. We then nu-
merically integrate logf(ρ| .) over the feasible range of ρ(−1,1), calcu-
late the empirical cumulative distribution, and draw samples of ρ(r).1

1 The evaluation of logf(ρ| .) takes the updated values of other model para-
meters as known inputs. Expanding the term (Aθ− Zγ) in Eq. (14), we get
(IJ− ρW)θ− Zγ. With known ρ, the term (IJ− ρW) transforms the spatially
dependent neighbourhood quality θ to an independent variable, as indicated by
Eq. (3). As such, (Aθ− Zγ) is simply the model residual term when regressing
the transformed θ on Z, with γ being the ordinary least squares
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The above MCMC samplers and the overall iterative estimation al-
gorithm for the locally adaptive spatial multi-level model are coded by
using the R language (R Core Team, 2017) and available in the Sup-
plementary Online Materials associated with the paper. In the following
analyses of property prices, statistical inferences on model parameters
are based on two MCMC chains, each consisting of 10,000 iterations
with a burn-in period of 5000. Convergence of samplers is checked by
both visual inspection of trace plots of parameters and the Brooks-
Gelman-Rubin scale reduction statistics (Brooks & Gelman, 1998;
Gelman et al., 2014).

3. Data and variables

The study primarily draws upon individual property transaction
records, made publicly available in the UK through the HM Land
Registry. The Land Registry gathers information about property trans-
actions in England and Wales on a monthly basis since 1995 and
compiles a database called Price Paid Data (PPD).2 The PPD contains a
few property-level characteristics, including property address, trans-
action price, type and dates. In this study, we extracted all property
transactions from 2010 to 2015 for the Liverpool Local Authority Dis-
trict (LAD). The dataset was subsequently cleaned to include only
properties sold for full market values, since property transfers through
repossessions or buy-to-lets seldom reflect real property market values.
This leads to a final sample of 26,468 property transaction records used
in the following analyses. The sample mean property price is £132,900
with a standard deviation of £ 90,460. To reduce potential hetero-
skedasticity impacts on model estimates, property prices were log-
transformed in all models.

A fine-resolution census geography, Lower Layer Super Output Area
(LSOA), was used as neighbourhood units in the study. LSOA serves as
the main geography through which the Office for National Statistics and
other government departments in the UK release small area statistics.
Based on the 2011 census data, LSOAs in Liverpool LAD have an
average population of about 1565 with a standard deviation of about
296. The LSOA (neighbourhood) boundaries in Liverpool was shown in
Fig. 2, with colour shaded based on the quintiles of LSOA-scale average
property prices. A clear spatial clustering pattern of the average prop-
erty prices appears. This produces a Moran's I statistic of 0.699 (p
value<0.001), indicating a significant positive spatial auto-correlation
in neighbourhood-scale average prices. Equally clear in Fig. 2 are
spatial discontinuities or step changes in the distribution of property
prices: pairs of neighbourhoods sharing geographical borders are
however associated with contrasting property prices. These features
revealed by the simple choropleth map implies the necessity of cap-
turing both global spatial auto-regression and local step changes when
modelling geographical variables.

The independent variables were extracted at the property and
neighbourhood scales. Property characteristics included in the model
are property types (detached, semi-detached, terrace or flats) and te-
nure status (leasehold versus freehold). To control for temporal fluc-
tuations in the overall housing markets of Liverpool during the study
period, both year and month dummy variables are included in our
model. At the neighbourhood scale, a set of social, ethnic, built en-
vironment, and locational variables were linked to neighbourhood
quality, following prior hedonic price literature (e.g. Anselin & Le
Gallo, 2006; Dubin, 1992; Lazrak et al., 2014). They include propor-
tions of non-white British population, unemployment rates, and

population density of each LSOA extracted from the 2011 census data;
crime counts in each LSOA during the study period calculated by using
the open UK policing data portal (https://data.police.uk/); green space
areas provided by the Ordnance Survey-Greenspace product; the
number of bus stops in each LSOA calculated by using the National
Public Transport Access Nodes (NaPTAN) database; geographical
proximity to the nearest retail centre publicly available from the Con-
sumer Research Data Centre (CDRC); and geographical proximity to the
nearest primary schools and General Practice (GP) extracted from the
English index of multiple deprivation in 2015. All these data are pub-
licly available and also provided in the Supplementary Online Materials
associated with the paper. Summary statistics of variables included in
the study are displayed in Table 1.

4. Results and discussions

Table 2 displays estimation results for both the locally adaptive and
global spatial multi-level models. Before interpreting the estimated
geography of neighbourhood quality and covariate effects, we first
discuss the comparison of the two model specifications and its im-
plications. Deviance Information Criterion (DIC, Spiegelhalter, Best,
Carlin, & Van Der Linde, 2002), a commonly used model fit index in
Bayesian inference, has been calculated for each model. A better model
specification is indicated by a smaller DIC value. A decrease of 6 in DIC
values from the non-adaptive to the locally adaptive spatial multi-level
model provides evidence on the improved model fit.

The estimated global spatial autoregressive parameter ρ is slightly
larger in the non-adaptive spatial multi-level model than in the adap-
tive model. This is driven by the step changes identified in the neigh-
bourhood quality surface, since quite a few neighbourhoods are

Fig. 2. The spatial distribution of neighbourhood (LSOA) scale property prices.

(footnote continued)
estimator—γ=(ZTZ)−1Z(θ− ρWθ). Substituting γ with its estimator in
(Aθ− Zγ) gives Eq. (16) in the main text.
2 Contains HM Land Registry data ©Crown copyright and database right

2017. This data is licensed under the Open Government License v3.0. All the
data used in the study is under the same license.
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disconnected from nearby neighbourhoods over the course of iterations.
The statistical significance of ρ in both models demonstrates the ne-
cessity of taking the spatial autoregressive effect into account when
using multi-level models of explicitly geographical processes.

The geography of estimated neighbourhood quality (θ) is illustrated
in Fig. 3, divided into six categories using the natural break scheme.
There are 1642 pairs of geographically continuous neighbourhoods
(LSOAs sharing common borders), of which 1006 pairs are associated
with statistically significant differences in the estimated neighbourhood
quality. A further difference threshold (also discussed in Dean et al.,
2018), the mean of the distribution of border-paired absolute differ-
ences of neighbourhood quality plus one standard deviation, is enforced
for the identification of step changes. The left panel of Fig. 3 displays
these step changes. The global clustering pattern of neighbourhood
quality as measured by average house sale prices controlling for prop-
erty-level characteristics is clear: the middle south of Liverpool and the
waterfront area are places with good neighbourhood quality while
North and South Liverpool are with poor neighbourhood quality.

An important feature of these step changes or boundaries is that
many of them are not enclosed – a LSOA could be substantially different
from some of its geographic neighbours in certain directions but blend
into others. Step changes can be also classified by magnitude. For in-
stance, if the difference on the opposite sides of a boundary was larger
than the mean of all boundary-pair differences, it could be referred to as
a hard boundary, and a moderate boundary otherwise, as depicted in
the right panel of Fig. 3. Many of these hard boundaries are con-
centrated along the waterside of Liverpool to the river Mersey. Li-
verpool's waterfront area has been under a regeneration scheme in-
volving replacement of the old dock areas with residential buildings
and cultural and recreational amenities. The area exhibiting high
property values extending from the waterfront inwards represents the
Liverpool Georgian Quarter, an area historically occupied by affluent
merchants that has been revitalised recently. The model clearly iden-
tifies the division between these two sections of the city turned around
by recent investment and regeneration, and areas where funding has
been much scarcer, such as the neighbourhood of Toxteth, immediately
located on the south of the Georgian Quarter (Sykes, Brown, Cocks,
Shaw, & Couch, 2013). Toxteth's southern border is also picked up by
the model to differentiate it from the more affluent suburbs starting
directly to its south. Equally evident are abrupt changes scattering
across the study area and within the areas with good neighbourhood
quality. In general, areas where the local mix of land uses diverges from
the surrounding areas (e.g. as a result of public policy, infrastructure or
new development) tends to produce boundaries. The locality where step
changes take place might be due to multiple reasons including large
spatial gradients in neighbourhood characteristics, physical environ-
ment, urban infrastructure and so on. It is possible that mechanisms of
boundary formation might vary across space, requiring in-depth field
work to be conducted to understand the nuanced geography of neigh-
bourhood quality in Liverpool, which is beyond the scope of the current
research.

With respect to property-level characteristics, estimates on their
coefficients in the two models are much similar. Prices of detached
properties are on average 38%, 64.3% and 96.5% higher than that of
semi-detached properties, terrace properties and flats, respectively.
Property tenure is not found to be significantly related to prices, after
controlling for property types and time (both year and month) fixed
effects.

Next, we turn to estimates on regression coefficients of neighbour-
hood characteristics. In terms of population ethnic composition, a non-
linear association between proportions of non-white British population
and neighbourhood quality is found, ceteris paribus. Neighbourhood
quality tends to first increase with increasing non-white British popu-
lation shares until a point where the proportion reaches about 37.6%
(0.5× 0.7/1.287+ 0.104), and then declines with further increases of
non-white population. This raises a question in relation to how property
market and people's residence choices response to the concentration of
ethnic minorities or population ethnic integration at a fine spatial scale.
Similar non-linear effects of ethnic minority concentration on neigh-
bourhood population dynamics have been found in the US context (e.g.

Table 1
Statistical summaries on data and variables.

Variable names Description Mean/
proportions

Log Price Log of property transaction prices 11.6 (0.6)
Property-level independent variables
Property type Detached 8.6%

Semi-detached 26.1%
Flat 20.6%
Terrace 44.6%

Tenure Freehold 63.5%
Leasehold 36.5%

Time The month and year of a property
transaction

Neighbourhood-level independent variables
Non-white Proportion of non-white British

population
0.10 (0.11)

Unemployment Unemployment rate 0.11 (0.03)
Population density Log of population density (persons per

square kilometer)
4.28 (0.46)

Crime Log of crime counts 5.12 (0.72)
Green space Log of green areas in each LSOA 7.30 (4.71)
Primary school Log of distance to the nearest primary

school
6.49 (0.43)

GP Log of distance to the nearest General
Practice

6.60 (0.43)

Retail centre Log of distance to the nearest retail
centre

6.74 (0.76)

Bus Log of the number of bus stops per 1000
persons

1.51 (0.63)

N Number of property transactions 26,468
J Number of neighbourhoods (LSOA) 298

Table 2
Estimation results from spatial multi-level models.

Locally adaptive model Non-adaptive model

Variables Median 2.5% 97.5% Median 2.5% 97.5%

Property-level independent variables X
Intercept 12.17a 12.08 12.23 12.39a 12.29 12.47
Flat −0.965a −0.988 −0.943 −0.968a −0.991 −0.944
Semi-detached −0.380a −0.397 −0.363 −0.382a −0.399 −0.365
Terrace −0.643a −0.660 −0.625 −0.645a −0.663 −0.627
Leasehold 0.001 −0.012 0.013 0.001 −0.014 0.012
Year dummy

variables
YES YES

Month dummy
variables

YES YES

Neighbourhood-level independent variables Z
Intercept 0.790a 0.224 1.385 0.681a 0.069 1.271
Non-white 0.70a 0.348 1.058 0.803a 0.439 1.172
Non-white

squared
−1.287a −2.103 −0.440 −1.742a −2.622 −0.834

Unemployment −4.007a −4.894 −3.189 −3.273a −4.220 −2.369
Population

density
−0.060a −0.119 −0.003 −0.094a −0.154 −0.031

Crime −0.040a −0.078 −0.002 −0.038 −0.080 0.004
Green space 0.001 −0.003 0.006 0.001 −0.004 0.006
Primary school 0.012 −0.037 0.059 0.021 −0.030 0.070
GP −0.057a −0.104 −0.009 −0.022 −0.071 0.026
Retail centre 0.019 −0.010 0.047 0.001 −0.029 0.031
Bus 0.056a 0.016 0.097 0.046a 0.002 0.088
σε2 0.107 0.105 0.108 0.107 0.105 0.108
σζ2 0.025 0.020 0.030 0.028 0.023 0.033
ρ 0.635 0.572 0.693 0.712 0.638 0.782
DIC 16,152 16,158

a Represent statistical significance at the 95% credible interval.
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Card, Mas, & Rothstein, 2008). As expected, larger unemployment rate
and crime prevalence are associated with lower neighbourhood quality,
everything else equal. Population density is negatively related to
neighbourhood quality due to possible congestion effects or high
competition for resources at a local scale. At a more aggregated spatial
scale such as cities, higher population density tends to be more linked to
higher labour productivity and various agglomeration economies than
negative externalities, thus positively linked to average property prices
(e.g. Glaeser, Gyourko, & Saks, 2005).

Further, geographical accessibility to both public transport and
health care facilities (e.g. GP) are associated with elevated neighbour-
hood quality. However, the association between primary school
proximity and neighbourhood quality is not significant in this study.
One reason might be the partial role of geographical proximity in the
complex delineation of school catchment areas in the English school
admission system (Harris, Johnston, & Burgess, 2016; Singleton,
Longley, Allen, & OBrien, 2011). Proximity to local retail centres and
the proportion of green areas of each LSOA are also not significantly
related to neighbourhood quality, after controlling for other neigh-
bourhood characteristics.

Comparing estimates on neighbourhood-level independent variables
from the two models, some interesting differences with respect to in-
ference on statistical significance were spotted. For instance, crime
prevalence and proximity to GP are not statistically significantly asso-
ciated with neighbourhood quality in a non-adaptive spatial multi-level
model. They become significant after capturing the local steps changes
or discontinuities of neighbourhood quality in the preferred locally
adaptive spatial multi-level model. Although our primary interest is not
on exploring the true effects of crime and proximity to health care on
neighbourhood quality, differences in the statistical significance of ef-
fects under changes in spatial structure highlight the importance of a
proper treatment of spatial dependence or group dependence, as is the
case elsewhere in the literature (Hodges & Reich, 2010).

A range of neighbourhood socio-demographic, economic and

geographical accessibility characteristics have been included in our
model to explain neighbourhood quality variations. This is, by no
means, an exhaustive list. Nor is our purpose to enumerate all relevant
factors contributing to neighbourhood quality. The estimates on coef-
ficients of neighbourhood-scale variables in the developed metho-
dology take into account the discontinuity in neighbourhood quality
(θ), thus being more reliable than that from a global spatial multi-level
model that only captures large-scale smoothness in θ.

5. Conclusion

This study developed a locally adaptive spatial multi-level model,
drawing upon a recently proposed spatial statistics methodology that
estimates the correlation structure among spatial units and regression
coefficients at the same time. The methodology provides a unified
framework for simultaneously modelling global or overall spatial de-
pendence, local discontinuities or step changes, and group dependency
effects such that multiple-scale spatial data could be better investigated.
Further, the general idea of iteratively updating spatial correlation
structures and estimating model parameters in a locally adaptive spatial
multi-level model can be generalised to many more standard spatial
econometrics models familiar to spatial analysts. The methodology also
produces intuitive interpretation on regression coefficients for in-
dependent variables at different scales or levels. In short, higher-level
covariates affect the outcome variables measured for lower-level units
indirectly through a latent higher-level outcome variable whilst lower-
level covariates are linked to the outcome variable directly. This avoids
the conflation of effects on the outcome variables from covariates at
different scales.

Based on individual property transactions provided in the Land
Registry data, we applied the developed methodology to infer neigh-
bourhood quality and explore its potential correlates. The derived
geography of neighbourhood quality in Liverpool shows interesting
features. It depicts a clear spatial clustering pattern of neighbourhood

Fig. 3. The geography of neighbourhood quality in Liverpool, superimposed by estimated step changes or boundaries.
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quality. Meanwhile, local step changes are observed across Liverpool,
especially within the cluster of neighbourhoods with good quality
surrounding the city centre. The co-existence of a global smoothness
trend and significant local departures demonstrates a complex and
fragmented geography of neighbourhood quality, which makes a sim-
plified abstraction of the distribution of neighbourhood quality as a
global autoregressive process inappropriate. Estimates on the geo-
graphy of neighbourhood quality in Liverpool can be disseminated as
useful urban indicators at a fine-resolution spatial scale, which would
be of great potential to inform residents' housing choices and local
government's urban (re)generation and development policies.

Neighbourhood socio-demographic, economic and built environ-
ment characteristics are statistically significant determinants of neigh-
bourhood quality. Suitable levels of ethnicity integration, low un-
employment rate and a good social security promotes good
neighbourhood quality. In addition, low population density and high
geographical accessibility to public transport and health care are po-
sitively related to neighbourhood quality. The differences in estimates
on coefficients of neighbourhood characteristics variables and, more
importantly, their statistical inferences between the adaptive and non-
adaptive models highlight the importance of taking into account local
step changes when modelling spatial dependence.

Some limitations remain in the study. The first is in relation to the
property transaction data from Land Registry. Property size information
is not available in the data, which might have an impact on the esti-
mated neighbourhood quality. A promising way to address this lim-
itation is to link property transaction records from Land Registry with
property energy performance data recently made available to re-
searchers. Our future work on neighbourhood quality estimation would
be based on the linked property transaction data. The second limitation
is related to our methodological development. Potential spatial de-
pendence among properties is not explicitly modelled in the study. The
key reason is computational – further incorporation of spatial depen-
dence at the property level is likely to make the estimation of a locally
adaptive spatial multi-level model impractical because of the large
sample size. However, both group dependence between properties lo-
cated in the same neighbourhood and spatial dependence among
neighbourhoods are captured in our model. Since neighbourhoods are
approximated by spatial units with fine granularity, we would expect
the influence on our model estimation results of property-level spatial
dependence to be insignificant. Lastly, potential temporal dependence
effect at the neighbourhood-scale model is not captured in the devel-
oped methodology. An important avenue for future work is to in-
corporate temporal auto-correlation into the current model so that
temporal dynamics in neighbourhood quality could be investigated.
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