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Robust estimations of the region of attraction
using invariant sets
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Abstract

The Region of Attraction of an equilibrium point is the set of initial conditions
whose trajectories converge to it asymptotically. This article, building on a
recent work on positively invariant sets, deals with inner estimates of the ROA
of polynomial nonlinear dynamics. The problem is solved numerically by means
of Sum Of Squares relaxations, which allow set containment conditions to be
enforced. Numerical issues related to the ensuing optimization are discussed
and strategies to tackle them are proposed. These range from the adoption of
different iterative methods to the reduction of the polynomial variables involved
in the optimization. The main contribution of the work is an algorithm to
perform the ROA calculation for systems subject to modeling uncertainties,
and its applicability is showcased with two case studies of increasing complexity.
Results, for both nominal and uncertain systems, are compared with a standard
algorithm from the literature based on Lyapunov function level sets. They
confirm the advantages in adopting the invariant sets approach, and show that
as the size of the system and the number of uncertainty increase, the proposed
heuristics ameliorate the commented numerical issues. 1

Keywords: Region of attraction, Robust analysis, Nonlinear dynamics, Sum
of squares, Uncertainties, Local analysis

1. Introduction

In the analysis of nonlinear systems, it is of paramount importance the
concept of asymptotic stability of an equilibrium point x∗ (in the sense of Lya-
punov). If fulfilled, this property guarantees the existence of a neighbourhood of
x∗ such that all the states trajectories starting in it eventually converge to the
equilibrium. Global asymptotic stability ensures that this is true for any tra-
jectory, no matter how far from x∗ it starts. However, an inherently nonlinear
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feature is that this can hold only locally, and therefore the notion of Region of
Attraction (ROA) has been proposed. The ROA of an equilibrium point is the
set of all the initial conditions from which the trajectories of the system con-
verge to x∗ as time goes to infinity [1], and its knowledge is of practical interest
to guarantee the safe operation of nonlinear systems.

Finding analytically the exact region of attraction might be difficult or, de-
pending on the complexity of the system, even impossible [2]. Several algorithms
have thus been proposed to numerically calculate inner Estimates of the Region
of Attraction (ERA), which can be broadly classified into two categories: Lya-
punov methods and non-Lyapunov methods.
The former build on the invariance and contractiveness properties held by Lya-
punov functions (LF) sublevel sets. When the LF space is restricted to quadratic
functions, an ERA for polynomial (or even rational) systems is the largest el-
lipsoid obtained by computing the Lyapunov matrix [3], whose calculation can
be posed as a line search involving the solution of a series of Linear Matrix
Inequalities (LMIs). In the general case of higher order LF, Sum Of Squares
(SOS) techniques can be used to recast the problem as a set of SemiDefinite
Programs (SDPs) [4]. For example, in [5] an algorithm, named V -s iteration, is
formalised to solve the (non-convex) Bilinear Matrix Inequalities (BMI) needed
for evaluating LFs of arbitrary degree, whereas in [6] a BMI solver is directly
employed to determine composite LF level sets.
Non-Lyapunov methods have also been studied to reduce the conservatism typ-
ically associated with the aforementioned approaches. In [7] it is shown that
the problem can be formulated as a convex infinite-dimensional linear program,
which is solved by making use of the concept of occupation measures. The
use of Integral Quadratic Constraints to provide ROA certificates for systems
subject to generic nonlinearities was recently proposed in [8], whereas in [9, 10]
the recipes for calculating ERA are expressed in terms of positively invariant
sets. The latter approaches, prompted by the LaSalle’s theorem [1], still use
Lyapunov stability concepts but relax the conditions that must be fulfilled by
the function used to define the ERA.

This article considers the algorithm from [9] as starting point. The first
objective is to provide a comparison of results using approaches belonging to
the Lyapunov methods class. Based on two case studies from the literature fea-
turing increasing complexity, the goal is to verify and quantify the reduction in
conservatism obtained by the invariant sets approach. The second contribution
is to propose an algorithm, within the context of positively invariant sets, to
determine robust inner Estimates of the Region of Attraction (rERA), i.e. ERA
of systems with uncertain parameters. This problem was not the focus in [9]
and thus was only marginally considered therein, but has been studied by other
researchers in the past.

Within the Lyapunov method class of approaches, a first important dis-
tinction concerns the dependence of the sought LF on the uncertain parame-
ters. In [11] an algorithm restricted to systems with a specific dependence on
the uncertainties (e.g. uncertain parameters appearing affinely) is proposed,
based on parameter-independent LF, i.e. a single Lyapunov function is used to
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certify the local stability of a system over the entire parameters space. This
was refined in [12] allowing for a branch-and-bound improvement to alleviate
the conservatism associated with the parameter-independent LF. Other studies
considered parameter-dependent LFs [13, 6], with the ensuing SOS-based op-
timization problem featuring a substantial increase in computational burden.
Recent works [14, 15] addressed this problem by computing rational Lyapunov
functions of the states and uncertain parameters without recurring to SOS relax-
ations. In [14] Finsler’s Lemma and the notion of annihilators are employed to
formulate affine parameter dependent LMIs conditions for systems with rational
vector fields. A further improvement of this algorithm is proposed in [15] where
a method based on Linear Fractional Transformations is developed, which al-
lows for a more efficient computation of the LF by informing the selection of the
rational terms. Drawbacks of these approaches are the conservativeness associ-
ated with the adoption of LF level sets and the dependence of the level sets on
the uncertain parameters, which makes more difficult the interpretation of the
results. In view of these well recognised and conflicting aspects, in Section 5 a
numerical method to study robust ROA by means of invariant sets is proposed.
The main feature is that the rERA is expressed via a parameter-independent
level set, with the discussed advantages, but conservatism is reduced by intro-
ducing in the formulation a second function which is allowed to depend on the
uncertainties.

Finally, it is worth remarking that the usage of SOS techniques often leads to
bilinear problems [16], and iteration schemes are employed. This topic has not
received large attention in the community, therefore various numerical strategies
to efficiently solve the resulting non-convex optimization problems and mitigate
numerical issues typically arising when using SOS are investigated and com-
mented in Section 3.

The article, which builds on preliminary results presented in [17, 18], is struc-
tured as follows. Section 2 establishes the notation and required fundamental
definitions. Section 3 presents the problem of determining estimates of the ROA
for nominal systems and describes iterative schemes which are subsequently ap-
plied in Section 4. Section 5 finally deals with estimations of the robust region
of attraction, and Section 6 presents the Conclusions and future evolutions of
the work.

2. Notation and definitions

The set of functions g(x) : Rn → R which are m-times continuously differ-
entiable is denoted by Cm. For x ∈ Rn, the set of all polynomials in n variables
is denoted by R[x]. For g ∈ R[x], ∂(g) denotes the degree of g. Given a scalar
c > 0, the level set of g and its boundary are defined as:

ε(g, c) := {x ∈ Rn : g(x) ≤ c},
∂ε(g, c) := {x ∈ Rn : g(x) = c}.

(1)

A polynomial g(x) is said to be a sum of squares if there exists a finite set

of polynomials g1(x), ..., gk(x) such that g(x) =
∑k
i=1 g

2
i (x). The set of SOS
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polynomials in x is denoted by Σ[x]. The importance of SOS polynomials is due
to their connection with convex optimization [19]. A given polynomial g(x) with
∂(g) = 2d can be expressed as a quadratic form in all the monomials of degree
less than or equal to d, i.e. g = zTQz where z = [1, x1, x2, ..., xn, x1x2, ..., x

d
n].

Since the variables in z are not algebraically independent, the matrix Q is not
unique. In fact, it can be shown that the set of matrices Q satisfying the
previous relation is an affine subspace. Most importantly, g ∈ Σ[x] if and only
if Q = QT � 0, that is Q, named the Gram matrix, is positive semidefinite.
This problem can be tackled by solving a semidefinite program (SDP) [20] and
there are freely available software toolboxes allowing to accomplish this in an
efficient manner. In this work, the software SOSOPT from the suite of libraries
[21] will be used in conjunction with the SDP solver Sedumi [22]. As for the
computational aspects, note that if g is dense (i.e. no sparse monomials), the
dimension of the Gram matrix is

(
n+d
d

)
. This means that the size of the SDP

problem NSDP grows polynomially with n if d is fixed (and vice versa), but it
grows exponentially if both n and d increase.

Consider an autonomous nonlinear system of the form

ẋ = f(x), x(0) = x0, (2)

where f : Rn → Rn is the vector field. The vector x∗ ∈ Rn is called a fixed or
equilibrium point of (2) if f(x∗) = 0. Let us denote by φ(t, x0) the solution of (2)
at time t with initial condition x0. Then, the Region of Attraction associated
with x∗ is defined as:

R :=
{
x0 ∈ Rn : lim

t→∞
φ(t, x0) = x∗

}
. (3)

That is, R is the set of all initial states that eventually converge to x∗. While for
linear systems convergence to the equilibrium is a global property, for nonlinear
ones it might hold only locally (i.e. R ⊆ Rn). The origin will be assumed as
fixed point (x∗ = 0) henceforward without loss of generality.

3. Computation of nominal ERAs using invariant sets

The paper focuses on inner Estimates of the Region of Attraction formu-
lated as compact positively invariant sets and computed by means of Sum Of
Squares techniques. This section presents the main theoretical result from [9]
and discusses numerical algorithms to find the ERA under the assumption of
nominal vector field (2). A novel algorithm is proposed (Subsection 3.2) that
ameliorates the computational effort and improves the level sets estimates. This
is also used to devise a hybrid algorithm (Subsection 3.3) aimed to tackle some
of the pitfalls associated with SOS optimization.

3.1. From Lyapunov functions to positively invariant level sets

A standard approach to calculate ERA consists in applying the Lyapunov’s
direct method as defined next.
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Lemma 1. [1] Let D ⊂ Rn and let x∗(= 0) be contained in D. If there exists
V : Rn → R, with V ∈ C1 such that

V (0) = 0 and V (x) > 0 ∀x ∈ D\0,
V̇ (x) = ∇V (x)f(x) < 0 ∀x ∈ D\0,
ε(V, c) is bounded and ε(V, c) ⊆ D,

(4)

then ε(V, c) is an invariant set of R.

LeSalle’s theorem [1] points out that this characterization is usually conser-
vative due to the fact that contractiveness of the level set defining the ERA is
unnecessary. In fact, it suffices to consider compact positively invariant subsets
of D, that is, a compact set Ω ⊆ D such that every trajectory starting in Ω
stays in Ω for all future time. Invariance of Ω typically requires conditions on
its boundary to ensure that trajectories starting inside cannot leave.
Prompted by these observations, the following result has been proposed in the
literature:

Theorem 1. ([9], Th. 1) If there exist R, VN : Rn → R, with R, VN ∈ C1, and
a positive scalar γ satisfying:

∇R(x)f(x) < 0 ∀x ∈ ∂ε(R, γ), (5a)

VN (0) = 0 and VN (x) > 0 ∀x ∈ ε(R, γ)\0, (5b)

∇VN (x)f(x) < 0 ∀x ∈ ε(R, γ)\0, (5c)

ε(R, γ) is compact and 0 ∈ ε(R, γ), (5d)

then ε(R, γ) is an invariant set of R.

The proof of this result can be found in [9]. The fundamental idea is that
ε(R, γ) is a positively invariant set, due to (5a)-(5d), and that all trajectories
initiated from it converge to a level set of some LF, which is contractive and
invariant because of (5b)-(5c), therefore guaranteeing such set to be an ERA.
Note that the level set defined by R is not contractive, in that only negativity
of the gradient ∇R on the set boundary is required.

Theorem 1 involves finding functions that satisfy set containment conditions.
In order to make the problem computationally tractable, attention is restricted
to polynomial vector fields f . Known results from real algebraic geometry,
which focuses on the relationship between geometric objects and the associated
abstract algebraic structures, can then be employed to tackle this problem. In
particular, an application of the Positivstellensatz (P-satz) Theorem [23] allows
the following property to be stated.

Lemma 2. [19] Given h, f0, ..., fr ∈ R[x], the following set containment holds{
x : h(x) = 0, f1(x) ≥ 0, ..., fr(x) ≥ 0

}
⊆
{
x : f0(x) ≥ 0

}
, (6)

if there exist multipliers p ∈ R[x], s01, ..., s0r ∈ Σ[x] such that

p(x)h(x)−
r∑
i=1

s0i(x)fi(x) + f0(x) ∈ Σ[x]. (7)
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This result generalizes the well known S-procedure [20], which applies to
quadratic functions, to the case of generic degree and allows the set containments
in Lemma 1 to be expressed as SOS constraints. The ERA formulated in Th.
1 can indeed be certified with the following lemma:

Lemma 3. [9] Let VN and R be multivariable polynomials and γ a positive
scalar. If there exist SOS polynomials s1, s2 and a polynomial s0 such that:

−∇Rf − s0(γ −R) ∈ Σ[x], (8a)

VN − s1(γ −R) ∈ Σ[x], (8b)

−∇VNf − s2(γ −R) ∈ Σ[x], (8c)

then the inequalities (5) are satisfied and ε(R, γ) is an ERA of the origin.

The following SOS program can be employed to enlarge the provable ERA
based on Lemma 3.

Program 1.
max

s1,s2∈Σ[x]; s0,VN ,R∈R[x]
γ

subject to conditions (8a-8b-8c).
(9)

It is important to observe that VN and R are now part of the optimization.
While the former enters affinely in (9), there are bilinear terms featuring the
multipliers si, γ and R. If one of the two terms in the bilinearity (e.g. s0γ)
is the objective function, it was demonstrated that the problem is quasiconvex
[24], hence the global optimum can be computed via cost bisection. However the
terms in si and R (e.g. s0R) makes the above program non-convex. This can
be handled with local BMI solvers [25] or by means of iterative schemes. In [9]
the latter approach is adopted and the following 2-steps algorithm is proposed.

Algorithm 1. (IS - 2 Steps)
Output: the level set ε(R, γ) (inner estimate of the ROA).
Input: a polynomial R0 satisfying (8a) for some γ.

Step A1-1 : optimize VN and

multipliers through bisection on γ

max
s1,s2∈Σ[x];s0,VN∈R[x]

γ

−∇R0f − s0(γ −R0) ∈ Σ[x]

VN − s1(γ −R0) ∈ Σ[x]

−∇VNf − s2(γ −R0) ∈ Σ[x]

set γ̄ ← γ, s̄# ← s#,# = 0, 1, 2

Step A1-2 : optimize VN and R

through bisection on γ

max
s3∈Σ[x];VN ,R∈R[x]

γ

−∇Rf − s̄0(γ −R) ∈ Σ[x]

VN − s̄1(γ −R) ∈ Σ[x]

−∇VNf − s̄2(γ −R) ∈ Σ[x]

(γ −R)− s3(γ −R0) ∈ Σ[x]

γ − γ̄ ≥ 0

set R0 ← R and go to Step A1-1
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This iterative scheme consists of two steps. In Step 1 the multipliers s# and
VN are optimised, whereas Step 2 computes again VN and the level set function
R, which is updated at the beginning of the new iteration (R0 ← R). The
iterations terminate when one of the steps fails, i.e. the associated optimization
is found unfeasible, and the last optimised values for R and γ are taken to
provide the output ε(R, γ). This approach is adopted for all the algorithms
discussed in the paper. Alternatively, a stopping criterion could be employed
to prevent slow progress in the simulations. This is not done here in order to
present an objective comparison among the algorithms, free from arbitrariness as
for example the choice for the tolerance on the progress. The last two constraints
in Step 2 ensure that ε(R0, γ) ⊆ ε(R, γ), i.e. the solution is a set that strictly
contains the previous one.
Note that a candidate R is required to initialise the algorithm. A possible
choice is any quadratic LF proving asymptotic stability of the linearised system
(provided that the associated Jacobian is Hurwitz), denoted Vlin.

3.2. A 3 step iteration scheme

An alternative algorithm to solve Program 1 is proposed here. The aim is
on the one hand to improve the run time, and on the other to overcome issues
typically arising when employing SOS (e.g. infeasibility of the program for
numerical reasons). First, a modification of Algorithm 1 is discussed. The last
two constraints in Step A1-2 commented before make Step A1-2, in addition to
Step A1-1, quasi-convex. To make it convex, the last two SOS constraints in
Step A1-2 are replaced with:

(γ −R)− s3(γ̄ −R0) ∈ Σ[x]. (10)

By direct application of Lemma 2, this constraint enforces ε(R0, γ̄) ⊆ ε(R, γ).
Thus, the estimated ROA increases at each iteration, but this is achieved now
without introducing bilinearities. In the tested cases this modification led to a
reduction in simulation and better accuracy in the results. Therefore, this is
implemented in all the analyses shown here (i.e. Algorithm 1 represents already
an improvement compared to the baseline proposed in [9]).

In addition to this, a new iteration strategy is devised which consists of
splitting Step A1-1 into two steps, Step A2-1 and Step A2-2. This aims at easing
the numerical solution of Program 1 by using first an initial guess V 0

N to find
the required multipliers s0, s1, s2 in Step A2-1, and then computing the optimal
VN in Step A2-2. Step A2-3 embeds the aforementioned modification proposed
for Step A1-2. This 3 steps iteration scheme is reported in the following.
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Algorithm 2. (IS - 3 Steps)
Output: the level set ε(R, γ) (inner estimate of the ROA).
Input: polynomials R0, V 0

N satisfying (8) for some γ.

Step A2-1 : optimize the multipliers

for fixed level sets shapes

max
s1,s2∈Σ[x];s0∈R[x]

γ

−∇R0f − s0(γ −R0) ∈ Σ[x]

V 0
N − s1(γ −R0) ∈ Σ[x]

−∇V 0
Nf − s2(γ −R0) ∈ Σ[x]

set γ̄ ← γ, s̄# ← s#,# = 0, 1, 2

Step A2-2 : optimize VN

max
VN∈R[x]

γ

−∇R0f − s̄0(γ −R0) ∈ Σ[x]

VN − s̄1(γ −R0) ∈ Σ[x]

−∇VNf − s̄2(γ −R0) ∈ Σ[x]

γ ≥ γ̄

set V̄N ← VN , γ̄ ← γ

Step A2-3 : optimize R

max
s3∈Σ[x];R∈R[x]

γ

−∇Rf − s̄0(γ −R) ∈ Σ[x]

V̄N − s̄1(γ −R) ∈ Σ[x]

−∇V̄Nf − s̄2(γ −R) ∈ Σ[x]

(γ −R)− s3(γ̄ −R0) ∈ Σ[x]

set R0 ← R, V 0
N ← V̄N and go to Step A2-1

The scheme consists of one quasi-convex step (Step A2-1) and two convex
steps (Step A2-2 and Step A2-3). Each step has a specific task: Step A2-1
provides the multipliers for the next two steps; Step A2-2 calculates the function
VN ; and Step A2-3 evaluates the sought level set ε(R, γ) based on the iterates
from the previous steps. The size γ of the ERA is maximised throughout each
iteration, although Steps Step A2-2 and Step A2-3 can also be solved as simple
feasibility problems. In this regard, note that the optimality of the solution is
already prevented by the non-convexity of (9), and that the algorithm ensures in
any case that the ERA is non-decreasing. Therefore, resorting to just feasibility
when maximization fails is a viable solution.

Algorithm 2 requires initializations for R and VN . A first option is to choose
for both Vlin, which automatically satisfies (8) for sufficiently small γ. Alter-
natively, the calculation can start with Algorithm 1 which in turn can provide
the initializations R0 and V 0

N to Algorithm 2. It is stressed the importance of
the fact that Algorithm 2 is initialized with both the functions R and VN . This
feature can be favourably used when preliminary estimations of the shape of the
ERA are available in that the search can be seeded with them. In fact, while in
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Algorithm 1 this information would be partially lost because the function VN is
optimised anew with the multipliers in Step A1-1, Algorithm 2 optimizes first
the multipliers based on the provided estimations of R and VN , and then adjusts
VN and R correspondingly in the next two steps. Even though the problem re-
mains non-convex (and thus it cannot be guaranteed that the global optimum is
found), the formulation of this iterative scheme privileges local searches, there-
fore can represent an important complement to Algorithm 1. This observation
represents the premise for the hybrid algorithm described in the next section
and leveraging the different features of the two algorithms presented so far.

Finally, the sensitivity of the estimations to the initial guess is in general an
important aspect when dealing with SOS-based computations of the ROA [9].
Despite the impossibility to give conclusive statements, Section 4 will investigate
this effect (when not specified, the algorithms are initialised with Vlin).

3.3. Hybrid scheme

The issues typically arising when computing ERA with SOS-based tech-
niques are twofold: the non-convexity due to the bilinear terms forces coordinate-
wise search algorithms to be adopted, inevitably leading to local optima; the
SDP associated with each iteration can be computationally challenging, both
in terms of run time and accuracy. In an attempt to ameliorate the latter be-
haviour, in Section 3.2 Algorithm 2 was proposed, which is nonetheless affected
by the same local optima pitfall.

The issue of local optima is well-known in the optimization field and one of
the proposed solutions is represented by so-called hybrid strategies [26]. The
essence of this approach is to cross global optimizers with problem-specific local
search algorithms. In the currently investigated programs, the non-convexity is
inherent to the adoption of SOS relaxations for the enforcement of set contain-
ments. Thus, hybrid schemes meant in the conventional sense do not look viable.
However, in this work the availability of the two distinct Algorithms 1 and 2
is exploited to implement a unified iteration scheme which makes the search of
ERA more robust to numerical issues. Taking the cue from this discussion, the
following hybrid algorithm is proposed.
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Algorithm 3. (IS - Hyb)
Output: the level set ε(R, γ) (inner estimate of the ROA).
Input: a switching criterion swcr; polynomials R0, V 0

N satisfying (8) for some
γ.

Stage 1 :Execute Algorithm 1

if Stage 1 converged then set R0 ← R and V 0
N ← VN

if swcr is true then go to Stage 2

else restart Stage 1

else go to Stage 2

Stage 2 :Execute Algorithm 2

if Stage 2 converged then set R0 ← R and V 0
N ← VN

if swcr is true then go to Stage 1

else restart Stage 2

else set go to Stage 1

The iterative scheme builds on the advantageous capability of switching from
one algorithm to the other in case of failed solution or slow progress. The
switching criterion swcr can be formulated based on the idea of associating with
each Stage a reward [27], that is, a figure of merit of the executed algorithm.
If performance in terms of slow progress is considered, the size of the level
set γ can be employed. A possible metric to quantify the expansion rate of
the ERA for a certain algorithm is obtained comparing values of γ referred to
the same shape function R. The cost bisections in the first steps of both the
algorithms (Step A1-1 and Step A2-1) are performed keeping fixed R at the
value of the previous iteration. Thus, swcr can be defined as a tolerance on
the ratio between γ computed at the end of the first step and at the end of
the previous iteration respectively. Note that when Algorithm 2 is employed,
another choice for swcr is the ratio between γ computed at Step A2-2 and Step
A2-1 respectively, because the shape R is held fixed over the two steps. The
number of failures in convergence experienced by the used algorithm can also
be used to define the reward, because it reveals the suitability of adopting a
certain search strategy for the problem considered.

The adoption of a switching criterion can reduce the run time by pointing at
faster search directions, and can help taking advantage of the different features
of the two algorithms. However, it should not be underestimated the utility of a
scheme whose goal is simply to carry on the optimization in case of failed solution
of one algorithm. It is indeed often the case that infeasibility of one of the steps
is not caused by the fact that the ERA is close to the actual ROA (and thus
that no further optimization is possible), but by numerical issues of the SDPs
(exacerbated when the size of the program increases). This aspect motivates
the choice made in this work of testing Algorithm 3 with swcr defined such
that the algorithm crosses the Stages sequentially (i.e. the inner if condition is
always true). The selection of swcr is deemed a problem-specific feature, and
the study of alternative solutions is on itself an interesting research study that
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can be undertaken in future works focused on the study of ROA with hybrid
approaches.

3.4. V-s iteration

This section concludes presenting another algorithm known as V−s iteration
(from reference [5]). This algorithm allows to solve the ROA problem using the
LF level set approach, and is given as it will serve in the next section as a
benchmark to the invariant set original algorithm (IS - 2 Steps) and the newly
proposed ones (IS - 3 Steps and IS - Hyb).

Lemma 1 is the starting point, and the resulting set containment conditions
are transformed into SOS constraints similarly to what was done previously.

Algorithm 4. (LF)
Output: the level sets ε(V, γ) and ε(p, β) (both inner estimates of the ROA).
Input: a polynomial V 0 satisfying (4) for some γ.

γ-Step : bisect on γ

for a given V

max
s1∈Σ[x]

γ

−∇V 0f − s1(γ − V0) ∈ Σ[x]

set γ̄ ← γ, s̄1 ← s1

β-Step : maximize the size of

ε(p, β) such that ε(p, β) ⊆ ε(V, γ)

max
s2∈Σ[x]

β

(γ̄ − V 0)− s2(β − p) ∈ Σ[x]

set β̄ ← β, s̄2 ← s2

V-Step : compute a new shape V for a given γ

V ∈ Σ[x];

−∇V f − s̄1(γ̄ − V ) ∈ Σ[x]

(γ̄ − V )− s̄2(β̄ − p) ∈ Σ[x]

set V 0 ← V and go to γ-Step

An important difference compared to Algorithm 1, other than the obvious
one relative to the problem solved, is the usage of a given shape function p.
Given N ∈ Rn×n, N = NT > 0 (shape matrix), the shape function p(x) =
xTNx defines an ellipsoid based on important directions in the state space. The
goal of the optimization is to maximize the value of β for which the containment
of ε(p, β) in ε(V, γ) can be certified. ε(V, γ) is also an ERA of the system, but
as will be discussed in the following sections this might not be available for
uncertain systems depending on the employed method. Finally, in contrast
with Algorithm 1, no guarantees that the estimation is strictly non-decreasing
hold.
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4. Numerical examples of ERA

The nominal ERA algorithms discussed in Section 3 are applied here to two
numerical examples. All the analyses are performed on a 3.6 GHz desktop PC
with 16 GB RAM. Before presenting the study cases and detailed results, Table 1
summarises the computational statistics. Recall that each algorithm is iterative
and each iteration features two or three Steps. Therefore, for each algorithm
only the number of decision variables Nvar and size of the Gram matrix NSDP
for the most demanding step are reported. In addition, the averaged processing
time per iteration Titer as well as the overall time Ttot required to determine
the ERA are given.

Table 1: Computational statistics for nominal analyses

Case study Algorithm Nvar NSDP Titer [s] Ttot [s]
VdP (∂=4) LF 12 142 2.5 150
VdP (∂=4) IS - 2 Steps 27 362 4.8 88
VdP (∂=4) IS - 3 Steps 15 362 4.4 114
VdP (∂=4) IS - Hyb 15 362 4.5 123
SP (∂=4) LF 120 3866 14 840
SP (∂=4) IS - 2 Steps 246 12322 78 1872
SP (∂=4) IS - 3 Steps 126 12322 70 1260
SP (∂=4) IS - Hyb 246 12322 72 2742

4.1. Van der Pol oscillator

The Van der Pol (VdP) oscillator [6] is a nonlinear system with 2 states
given by:

ẋ1 = −x2,

ẋ2 = x1 + (x2
1 − 1)x2.

(11)

The VdP steady-state solutions are characterized by an unstable limit cycle and
a stable origin. The ROA for this system is the region enclosed by its limit cycle
and thus can be easily obtained from the numerical solution of the associated
ordinary differential equations.

Fig. 1 shows different estimates of the ROA for this system (the aforemen-
tioned limit cycle is reported for reference and labelled ROA). IS stands for
invariant sets, whereas LF indicates that the LF level set approach (with Al-
gorithm 4) is adopted. For the IS approach, Algorithms 1 (IS - 2 Steps), 2
(IS - 3 Steps), and 3 (IS - Hyb) are tested. For the LF level set approach,
the sensitivity to the selection of p is investigated and two cases are considered:
p1 = x2

1 + x2
2 (LF-p1 ) and p2 = 0.378x2

1 + 0.278x2
2 − 0.274x1x2 (LF-p2 ) taken

from [28]. The degree of the optimized polynomials V, VN , R is 4 in all cases.
As a preamble, it should be noted that all the algorithms are able to provide a
good approximation of the ROA of the system. In fact, VdP is often used as a
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Figure 1: ERA of VdP with different approaches. ∂(V, VN , R) = 4.

benchmark study for newly developed algorithms and in the same spirit was also
adopted in this work. Nonetheless, a few differences among the predictions can
be detected and will be commented next. Fig. 1 highlights that the invariant
set approach leads to a better estimate of the ROA, and that the choice of p
is important when Algorithm 4 is used. Indeed, p1 does not specify particular
directions in the phase plane, as opposed to p2 which is aligned with the ROA.
As a result, the estimation provided by the latter is better. This aspect is clearly
displayed in this study case, and it is representative of a more general trend of
the V−s algorithm, whose performance is sensitive to the shape function p [28].
With regard to the invariant set approach, it can be observed that all the algo-
rithms give in this case similar results. The small differences are better seen in
the insets of Fig. 1, which help to highlight that the hybrid strategy provides
overall the largest estimation of ROA among the considered approaches (note
that the curve IS - Hyb lies close to the outermost curves in every region of the
state-plane).

As for the computational statistics reported in Table 1, Algorithm 2 features
a smaller Titer than Algorithm 1 (bearing in mind the similarity of the results
commented before). Even though the former consists of 3 steps (as opposed to
Algorithm 1 which has only 2), this performance is a result of the redistribution
of the computational effort driving the proposal of Algorithm 2 (also benefitting
Algorithm 3). However, when looking at the overall time Ttot the trend is
opposite, despite the fact that the two achieved estimations of the ROA are
very close. This is due to the fact that the algorithms are carried out until
an optimization step is unfeasible, and there is no condition preventing slow
progress. Algorithm 2 performs more iterations before reaching unfeasibility,
but with no tangible improvement on the estimation for this case study, and
this results in a greater Ttot. This could be overcome by using a stopping
condition based for example on one of the options discussed in Sec. 3.3 for the
switching criterion swcr. Tests carried out with this rationale lead to an overall
smaller time Ttot for Algorithm 2, too.
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4.2. Controlled short-period aircraft dynamics

The second case study consists of a closed-loop nonlinear short-period (SP)
model of an aircraft longitudinal dynamics [11]. It features 3 open-loop states
(pitch rate z1, angle of attack z2, pitch angle z3) and 2 controller states η1, η2.

ż =

 −3 −1.35 −0.56
−0.91 −0.64 −0.02

1 0 0

 z +

1.35− 0.04z2

0.4
1

u
+

0.08z1z2 + 0.44z2
2 + 0.01z2z3 + 0.22z3

2

−0.05z2
2 + 0.11z2z3 − 0.05z2

3

0

 ,
η̇ =

[
−0.6 0.09

0 0

]
η +

[
−0.06 −0.02
−0.75 −0.28

]
y,

y = [z1 z3]T , u = η1 + 2.2η2.

(12)

By defining x = [z η]T , the system is recast in the formalism of (2).
In Fig. 2 the same nomenclature as in the previous plot is adopted. The

shape function p is taken as the spheroid (i.e. N is the identity matrix),
and two cases differing for the degree of the polynomials are considered, (i.e.
∂(V, VN , R) = 2 and 4). Since the system has more than 2 states and thus
projections of the ERA onto particular planes have to be considered to graph-
ically visualize the predictions. In general, the analyst will focus on the states
which are supposed to experience larger perturbations during the operation of
the system. In this work, the aim is to show as much information relative to the
analyses as possible. Therefore, different planes for each plot will be considered,
with a focus on z1 and z2 since the studied nonlinearities arise from their dy-
namics. In Fig. 2, the z1− z2 (solid line) and η1−η2 (dashed line) phase-planes
are both depicted in each subplot.
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(b) ∂(V, VN , R) = 4

Figure 2: ERA of the short-period model. Different degrees of the polynomials.

The results in Fig. 2 confirm that the invariant set approach (Algorithm 1 in
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this case) leads to a larger (i.e. less conservative) estimation of the ROA than
the LF level set one, whose predictions obtained with an in-house implementa-
tion of the V − s algorithm are in good agreement with the results presented
in [11]. This is visible in all the considered planes, and for both the polynomial
degrees considered.
Comparing Fig. 2(a) and Fig. 2(b) it is also apparent that if the degree is
increased the obtained ERA is larger. It is worth noting that this feature is
less evident for the red (LF ) curves. This aspect is ascribed to the fact that,
while in the invariant set algorithm the higher degree of the polynomials is fully
exploited to optimize R and VN , in the V−s iteration this greater flexibility is
hampered by the decisive role played by p. In these analyses, as in [11], the
spheroid p = xTx was adopted and this does not exploit the directionality of
the ROA observed in Fig. 2.

In general, working with larger polynomial degrees enables to improve on
the estimation of the ERA. However, this inherently entails a more involved
computation which, on the one hand, increases the run time, and on the other
makes the SDP solution more delicate (computational aspects are detailed in
Table 1). Therefore, it is interesting to perform a comparative study of the
different invariant sets-based algorithms discussed in Section 3 in order to assess
how they cope with this scenario. This is displayed in Fig. 3, where IS - 3
Steps In.1 is obtained with Algorithm 2 initialized with the first iterate from
Algorithm 1.
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Figure 3: Sensitivity of the ERA to the iteration schemes.

The effect of the iteration scheme adopted is, as expected, more significant
here than in the case of the VdP study case. In this regard, it is worth noting
from Table 1 that there is an important difference in the associated computa-
tional burden. This was also commented in [11] and will be furthered in Section
5.3. Although no general conclusive remarks can be stated based on these re-
sults, it is worth discussing some trends also observed in other analyses, which
considered different definitions for the multipliers and for the level set functions
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degrees. The algorithms are sensitive to the initialization, especially Algorithm
2 which requires a guess for both VN and R. When initialised with the first
iterate from Algorithm 1, the use of Algorithm 2 improves the accuracy of the
ROA estimation and can outperform the results of the other scheme. When the
two algorithms are used in conjunction, i.e. the hybrid algorithm is employed,
the estimated ERA is usually larger (as displayed in Fig. 3).

It can be appreciated from Table 1 that the reduction in Titer from Algo-
rithm 1 to Algorithm 2 is even greater for this case study. This was expected
since it features a larger size in both number of states n and polynomial degree
∂(f), thus the effect of lowering the SDPs dimension (which drove the design
of Algorithm 2) is magnified. Algorithm 2 also features the smallest Ttot. Note
that the high value observed for Algorithm 3 can be motivated observing that
the associated ERA is markedly larger than the others and thus more iterations
will be involved in its computation. This is an important aspect to keep in mind
when using the metric Ttot to compare different algorithms.

Finally, the comparison of different ERA can enhance insight into the actual
boundaries of the ROA, which is not known for the SP case. For example,
from a closer inspection of Fig. 3, a dense presence of curves in some regions,
marked with circles in the plot, can be identified. It can be speculated that
these correspond to boundaries of the actual region of attraction of the system
on the basis of an approximate overlap of the estimations given by different
algorithms. These insights can be of great help since they can inform extensive
refined time-marching simulations as well as provide initializations for further
analyses (recall the importance of the initial guess and the possibility to exploit
it in Algorithm 2 due to the required initialization of two functions).

In order to verify these inferences and quantify an upper bound on the size
of the estimates, the following algorithm is proposed.

Algorithm 5.
Output: the value of γf such that ε(R, γf ) 6⊂ R; a set of initial conditions
which do not belong to R.
Input: ∂ε(R, γ), integer Ns, and a small scalar εγ .

1. Simulate the nonlinear system using as initial conditions Ns random points
X0 on the boundary ∂ε(R, γ) (extensive time-marching simulation cam-
paign);

2. Define F :=
{
X0 ∈ Rn : limt→∞ φ(t,X0) 6= x∗

}
;

3. If F = ∅, update the size γ = (1 + εγ)γ and repeat from 1. Otherwise,
γf = γ and F holds a set of initial conditions which do not belong to R.

Algorithm 5 is applied to the level set ε(R, γ) obtained with the hybrid it-
eration scheme, which gave γ=14.7. Note that in Fig. 3 the boundary of the
level set is a curve because only the projection of ε(R, γ) is displayed, but the
samples X0 in Algorithm 5 are taken on the hypersurface ∂ε(R, γ). The algo-
rithm, applied using Ns = 300 and εγ = 0.03, returns γf=15.6, i.e. there is
a 6% gap between the lower bound γ obtained by the hybrid scheme and the
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upper bound γf from Algorithm 5. However, it is important to stress that Algo-
rithm 5 gives an upper bound on the size of the ERA for a fixed shape R. This
means that, even when the bounds are close, the ERA might still not capture
accurately the region of attraction. A heuristic method to assess this consists
in checking the set F returned by Algorithm 5. The more uniformly distributed
around ∂ε(R, γ) are the points in F , the closer the shape of the level set is to
the actual ROA. Especially when the parameter εγ is small (desirable to find a
tight estimate of γf ), the set F might hold only a few points. For this reason,
Algorithm 5 can be run for γ > γf in order to have a more significant collection
of points.
Fig. 4 shows the results obtained applying this methodology to the SP case.
Projections in two phase planes, z1− z2 (Fig. 4(a)) and z2− η2 (Fig. 4(b)), are
considered. In each plot, the ERA is shown as well as cross markers correspond-
ing to initial conditions whose trajectories do not converge to the equilibrium.
Note that the markers are not confined in one area of the plane, but are dis-
tributed around distinct regions of the ERA. Specifically, the points certified
to be outside of the ROA in Fig. 4(a) lie in the same regions highlighted in
Fig. 3 by circle markers and discussed therein. This hints at the fact that
the estimations obtained in Section 4.2 capture also the actual shape of the
ROA, and not only its size as inferred from the upper bound γf . By increasing
∂(VN , R), an improvement on the ERA was observed along the directions where
violations were not detected. Or, put it differently, where the curves in Fig. 3
were scattered.
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Figure 4: Upper bounds tests on the estimated ROA.

5. Region of Attraction of systems with uncertainties

The previous sections considered the case of nominal vector fields. However,
uncertainties might be present due to different sources. In fact, errors due to
modeling assumptions (e.g. a local polynomial approximation of a generic vec-
tor field with associated bounded error) or parameters with uncertain values are
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typically encountered in realistic engineering problems. Also, it was discussed
how the use of SOS optimization often compels to limit the size of the problem
(in terms of number of states n and vector field degree 2d), therefore the dy-
namics might have to be simplified (e.g. higher degree terms truncation).
For these reasons, this section deals with the estimation of the Region of At-
traction for systems affected by uncertainties. First, the problem is theoretically
framed into the context of positively invariant sets, and an algorithm to com-
pute robust inner Estimation of Regions of Attraction is proposed. Then, its
capabilities are verified with two numerical examples and the section concludes
with some important observations related to computational issues.

5.1. An algorithm for Robust Estimation of Regions of Attraction

Let us consider the system described by:

ẋ = f(x, δ), (13)

where δ ∈ ∆ ⊂ Rj is the vector of constant unknown parameters, ∆ is a
known bounded set, and f : Rn × ∆ → Rn. It is assumed that f satisfies
conditions to provide uniqueness and local existence of solutions of (13) [1]
and that f(0, δ) = 0 ∀δ ∈ ∆, i.e. the equilibrium point does not depend on
the uncertainties. This latter hypothesis is largely established in the literature
[13, 11, 29], although strategies to overcome this limitation have been proposed
[30, 31] and could be applied here. The robust Region of Attraction (rROA) is
defined as the intersection of the ROAs for all systems governed by (13):

Rδ := ∩δ∈∆

{
x0 ∈ Rn : lim

t→∞
φ(t, x0, δ) = 0

}
, (14)

with φ(t, x0, δ) denoting the solution of (13) at time t with initial condition x0

and subject to δ.
The problem of finding a robust inner estimate of the Region Of Attraction

represents an active area of research [12, 32, 33, 15], even though it has not
received as much attention as the nominal case. In this work, the problem
is formulated within the invariant sets approach presented in Section 4. The
starting point is represented by the following result.

Theorem 2. ([9], Th. 4) Given R : Rn → R, VN : Rn ×∆ → R, R, VN ∈ C1

and a positive scalar γ satisfying:

∇R(x)f(x, δ) < 0 ∀(x, δ) ∈ ∂ε(R, γ)×∆, (15a)

VN (0, ·) = 0 and VN (x, δ) > 0 ∀(x, δ) ∈ ε(R, γ)\0×∆, (15b)

∇VN (x, δ)f(x) < 0 ∀(x, δ) ∈ ε(R, γ)\0×∆, (15c)

ε(R, γ) is compact and 0 ∈ ε(R, γ), (15d)

then ε(R, γ) is an invariant set of Rδ.

The proof follows the rationale of that for Theorem 1 (see the reference for
details).
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In this paper it is proposed to describe ∆ as a semialgebraic set [29]:

∆ =
{
δ ∈ Rj : mi(δ) ≥ 0,mi ∈ R[δ], i = 1, ..., j

}
. (16)

This strategy is quite general and allows both time-invariant and time-varying
parametric uncertainties to be taken into account, as well as norm bounded
operators. Moreover, no hypotheses on how the uncertainties enter the vector
field are made. This is different from previous approaches, where, for example,
f is required to depend affinely on the uncertain parameters [11], or ∆ must be
within a polytope [12].

A useful result is recalled next.

Lemma 4. [28] For each y satisfying g3(y) ≤ 0,

{x | g1(x, y) ≤ 0} ⊆ {x | g2(x, y) ≤ 0},
iff {(x, y) | g1(x, y) ≤ 0, g3(y) ≤ 0} ⊆ {(x, y) | g2(x, y) ≤ 0}.

(17)

It is stressed that the last set-containment can be easily enforced with
Lemma 2.

Based on these preliminaries, the following Lemma allowing to study robust
ERA within the framework of invariant sets is stated.

Lemma 5. Given R ∈ R[x], VN ∈ R[x, δ] with VN (0, ·) = 0, and a positive
scalar γ, if there exist s1, s2, s0i, s1i, s2i ∈ Σ[x, δ] and s0 ∈ R[x, δ] such that:

−∇Rf − s0(γ −R)− Γ0j ∈ Σ[x, δ], (18a)

VN − s1(γ −R)− Γ1j ∈ Σ[x, δ], (18b)

−∇VNf − s2(γ −R)− Γ2j ∈ Σ[x, δ], (18c)

with Γ#j = s#1m1 + ...s#imi + ...+ s#jmj , # = 0, 1, 2 (18d)

then the conditions of Theorem 2 are satisfied and ε(R, γ) ⊆ Rδ.

Proof. The proof of (18a)⇒(15a) is given here. By virtue of the uncertainty
description in (16), condition (15a) can be stated as

For each δ satisfying mi(δ) ≥ 0, (for i = 1, ..., j){
x : γ −R(x) = 0

}
⊆
{
x : −∇Rf(x, δ) ≥ 0

}
.

(19)

For Lemma 4, this holds if and only if{
(x, δ) : γ −R(x) = 0,mi(δ) ≥ 0, i = 1, ..., j

}
⊆
{

(x, δ) : −∇Rf(x, δ) ≥ 0
}
.

(20)
This set containment constraint is in the form of (6). Indeed, it is enough to
take h = γ −R(x), fi = mi and f0 = −∇Rf(x, δ). By applying the generalized
S-procedure (Lemma 2) it is obtained the SOS constraint (18a), which hence
provides a sufficient condition for (15a) to hold. A similar rationale applies to
the other constraints in the Lemma.
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This Lemma compounds results previously commented in the article, and
provides a novel recipe for the determination of robustly invariant sets. The
corresponding program to enlarge the provable rERA is:

Program 2.
max

s1,s2,s0i,s1i,s2i∈Σ[x,δ]; s0,VN∈R[x,δ]; R∈R[x]
γ

subject to conditions (18a-18b-18c).
(21)

Program 2 leads again to bilinearities and, to tackle this, adaptations of
Algorithms 1, 2, and 3 can be employed. As an example, the extension of
Algorithm 2 is reported next. Notice that, despite the apparent similarities
with the latter, Algorithm 6 allow to extend the invariant set framework to the
uncertainty case in a formal manner by addition of the terms Γ#j . Their role
and other distinctive features of this approach are commented later.

Algorithm 6. (ISR - 3 Steps)
Output: the level set ε(R, γ) (parameter-independent inner estimate of the
rROA).
Input: polynomials R0, V 0

N satisfying (18) for some γ.

Step A6-1 : optimize the multipliers

for fixed level sets shapes

max
s1,s2,s0i,s1i,s2i∈Σ[x,δ]; s0∈R[x,δ]

γ

−∇R0f − s0(γ −R0) − Γ0j ∈ Σ[x, δ]

V 0
N − s1(γ −R0)− Γ1j ∈ Σ[x, δ]

−∇V 0
Nf − s2(γ −R0)− Γ2j ∈ Σ[x, δ]

set s̄# ← s#,# = 0, 1, 2

Step A6-2 : optimize VN

max
VN∈R[x,δ]

γ

−∇R0f − s̄0(γ −R0)− Γ̄0j ∈ Σ[x, δ]

VN − s̄1(γ −R0)− Γ̄1j ∈ Σ[x, δ]

−∇VNf − s̄2(γ −R0)− Γ̄2j ∈ Σ[x, δ]

set V̄N ← VN , γ̄ ← γ

Step A6-3 : optimize R

max
s3∈Σ[x,δ]; R∈R[x]

γ

−∇Rf − s̄0(γ −R)− Γ̄0j ∈ Σ[x, δ]

V̄N − s̄1(γ −R)− Γ̄1j ∈ Σ[x, δ]

−∇V̄Nf − s̄2(γ −R)− Γ̄2j ∈ Σ[x, δ]

(γ −R)− s3(γ2 −R0) ∈ Σ[x, δ]

set R0 ← R, V 0
N ← V̄N and go to Step A6-1

where Γ#j is defined in (18d) and Γ̄#j = s̄#1m1 + ...s̄#imi + ... + s̄#jmj .
In addition to the options discussed previously for the nominal case, the ini-
tialization of R and VN can be done with the corresponding functions obtained
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with the ERA calculation. The independent variables of the optimization now
include the states of the system x and the uncertain parameters δ. The polyno-
mial multipliers s can thus potentially be function of both x and δ (as reported
in Algorithm 6), but in practice there is a trade-off between computational time
and accuracy. One of the advantages of this formulation is that the level set
function is R = R(x) (i.e. uncertain parameter-independent), whilst VN is pa-
rameter dependent, i.e. VN (x, δ). On the one hand, this is a less conservative
approach than the one represented by parameter-independent LF level sets. On
the other, the fact that ε(R, γ) is parameter-independent avoids the compu-
tation of the intersection of the parameterised estimates, resulting in a more
accurate and easier to visualise outcome. This favorable twofold behaviour is
the result of using two distinct functions, R and VN , which allows for greater
flexibility in the optimization.

The description of the set in (16) entails the definition of the polynomials mi,
which depend on the type of uncertainties featuring the system. This work will
focus on parametric uncertainties, and thus possible definitions will be discussed
for this case. Let us denote with δi and δi the minimum and maximum allowed
values for each uncertain parameter δi respectively. Then, at each parameter a
polynomial mi can be associated as follows:

mi(δi) = −(δi − δi)(δi − δi),
δ ∈ ∆⇐⇒ mi(δi) ≥ 0,

δ = [δ1...δi...δj ]
T .

(22)

Recalling the definition of Γ#j in (18d), it is worth noting that for each employed
mi there are three multipliers s0i, s1i, s2i (one for each constraint). Therefore, as
the number of uncertain parameters increases, so does the size of the associated
optimization problem. However, an alternative solution is to define a single
polynomial mc:

mc(δ) = −
j∑
i=1

(δi − δi)(δi − δi) =

j∑
i=1

mi(δi),

δ ∈ ∆ =⇒ mc(δ) ≥ 0,

(23)

which specializes (18d) to Γ#1 = s#cmc.
This definition gives only a sufficient condition (as opposed to the one in (22)
which is also necessary), because there are values of δ 6∈ ∆ for which the in-
equality mc(δ) ≥ 0 is satisfied. Therefore, the obtained rERA is valid for a
larger range of uncertainties. However, the adoption of mc has the advantage of
adding only 3 multipliers s0c, s1c, s2c regardless of the number of uncertainties.

5.2. Uncertain Van der Pol oscillator

In [11] the VdP with an uncertain scalar parameter δ1 ∈ [−1, 1] was consid-
ered. Its dynamic is:

ẋ1 = −x2(1 + 0.2δ1),

ẋ2 = x1 + (x2
1 − 1)x2.

(24)
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The estimation of the ROA was performed in [11] via parameter-independent
LF enforcing the constraints used in the V -s iteration on both vertices of the
uncertainty range (in full generality, the method prescribes to do this on each
vertex of the uncertain polytope).
Fig. 5 shows the rERA obtained applying the extensions of Algorithm 1 (ISR
- 2 Steps), Algorithm 2 (ISR - 3 Steps), and the hybrid approach (ISR - Hyb)
to the scenario with uncertainties. The cases with ∂(V, VN , R) = 4 (Fig. 5(a))
and ∂(V, VN , R) = 6 (Fig. 5(b)) are plotted. VN (x, δ1) is built from monomials
in x and δ1 up to degree ∂(VN ), with the property that VN (0, ·) = 0. All the
algorithms are initialised with the functions VN and R from nominal analyses.
The predictions from [11] are displayed labelled as LF, along with the unstable
limit cycle of the system corresponding to eight values of δ1 across its range
(ROA(δ)).
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Figure 5: Robust estimates of the region of attraction for the uncertain VdP.

In both cases the rERA obtained with the invariant set approaches are larger
than the level sets from [11], although in Fig. 5(b) they are very close. Moreover,
the algorithm ISR - 3 Steps outperforms in these cases the other two ISR
algorithms. Table 2 provides the computational aspects.

Table 2: Computational statistics for rERA of VdP ∂ = 4

Algorithm Nvar NSDP Titer [s] Ttot [s]
LF 30 392 3.5 175

IS - 2 Steps 54 1200 17.5 105
IS - 3 Steps 24 1200 13.5 270

IS - Hyb 54 1200 15 217
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5.3. Uncertain controlled short-period aircraft dynamics

The uncertain short-period was studied in [11, 34]. Compared to the nominal
plant (12), two parametric uncertainties δ1 and δ2 affect now the open loop
dynamics:

ż =

 −3 −1.35 −0.56
−0.91 −0.64 −0.02

1 0 0

 z +

1.35− 0.04z2

0.4
1

u
+

(1 + δ1)(0.08z1z2 + 0.44z2
2 + 0.01z2z3 + 0.22z3

2)
(1 + δ2)(−0.05z2

2 + 0.11z2z3 − 0.05z2
3)

0

 ,
δ1, δ2 ∈ [−0.1, 0.1].

(25)

In [11, 34] the adopted algorithms were based on: (i) a suboptimal strategy to
avoid enforcing the V − s iteration at each vertex of the polytope [11]; and (ii)
a branch-and-bound refinement of the suboptimal algorithm consisting in parti-
tioning the uncertainty set and determining a different parameter-independent
LF for each cell [34]. In both cases, the rERA was expressed in the form of
ε(p, β) because a unique LF V certifying the ROA over the entire uncertainty
set was not computed by the algorithms.
The plot in Fig. 6 shows the analyses using ∂(R, VN ) = 2 (the nomenclature
of Fig. 5(a) applies). The largest estimate available in the published litera-
ture, taken from [34] and obtained with quartic LFs employing the suboptimal
(branch-and-bound refined) algorithm, corresponds to β = 11.1 and p = xTx
and is reported in here for comparison. Projections of the rERA onto the z1−z2

plane (Fig. 6(a)) and z1 − z3 plane (Fig. 6(b)) are depicted. The results show-
case that the three proposed rERA algorithms based on invariant sets are close
to each other and outperform the estimation given with the LF level set ap-
proach (which was obtained with a higher degree for the LF). The analyses in
Fig. 6 were obtained describing the uncertainty set with a single polynomial
mc(δ1, δ2) following the definition in (23).
Similar to the nominal case, an upper bound on the rERA of Fig. 6 is evaluated
making use of an extension of Algorithm 5. Since now the system is subject
to uncertainties, the evaluation of Nδ random samples of the uncertainty vec-
tor δ is performed first and, for each of them, Algorithm 5 is applied. Similar
investigations to the one discussed at the end of Section 4.2 can be applied to
assess in detail the accuracy of the estimation. The Algorithm 5 is used here to
determine the smallest value of γf such that ε(R, γf ) 6∈ Rδ. Tests are conducted
using Nδ = 100, Ns = 300, and εγ = 0.03. The results are visualised in Fig. 7
by plotting the projections of ε(R, γf ) (giving an upper bound UB) and ε(R, γ)
(giving a lower bound LB) onto the same planes used in Fig. 6.
Finally, in Table 3 are reported the computational statistics for the algorithms
employed to determine Fig. 7. Note that in [34] there is no reference to com-
putational time or size of the problem. However, in [11] a smaller estimation
(i.e. without branch-and-bound refinement) was achieved in approximately 2300
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Figure 6: Robust estimates of the region of attraction for the uncertain SP.
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Figure 7: Upper and lower bounds of the rERA.

seconds (and this is taken as lower bound on the total processing time of algo-
rithm LF ).

5.4. Computational issues related to SOS optimization

It is well-known in the community that the usefulness of SOS in optimization
and control studies is partially mitigated by the so-called scalability, i.e. the sig-
nificant growth in simulation time and corresponding decrease in computational
efficiency, as the size of the analysed system increases. Although no conclusive
statistics can be given, well established teams [11, 35] have concurred in setting
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Table 3: Computational statistics for robust analyses - SP ∂ = 2

Algorithm Nvar NSDP Titer [s] Ttot [s]
LF - - - > 2300

IS - 2 Steps 744 41772 220 2420
IS - 3 Steps 714 41772 210 1890

IS - Hyb 744 41772 203 2770

a limit on the problems that can be solved currently via a direct SOS based
analysis in approximately n ∼= 6 number of variables and ∂(g) ∼= 4 polynomials
degree.

The short-period example from Section 5.3 features 5 states, nonlinearities
up to degree 3 and also includes 2 uncertainties, thus it represents a challeng-
ing case study for the state of practice of ROA analysis tools. In the article,
algorithmic strategies, such as the adoption of different iteration schemes and
approximated polynomial descriptions of semialgebraic sets, have been proposed
in order to provide with alternative ways to solve the optimization problem so
that difficulties in the convergence with one strategy do not hamper the esti-
mation of the ROA. A concrete example of the sensitivity of the rERA to the
size of the SOS problem is shown here with regard to the adoption of different
descriptions for the uncertainty set.
The analyses in Fig. 6 were obtained with a single polynomial mc and it is
thus interesting to investigate which differences arise when the necessary and
sufficient condition in (22) is employed. Fig. 8 shows the comparison, based
on the 2 Steps algorithm, between the case of one single polynomial (mc) and
the case when one polynomial per each uncertainty is used (mi, i = 1, 2). The
result from the level set approach (LF ) is plotted for reference and again two
projections are used (in the z1 − z2 and z2 − η2 planes).
It can be noted that, although the definition of the uncertainty set with mc is
in principle more conservative, it provides in this case a larger estimate of the
robust ROA. Indeed resorting to a stronger but cheaper description (23) might
have the benefit of relaxing the underlying optimization, and thus provide a more
tractable numerical problem. It is for this reason that the alternative option
proposed in this work (consisting of only one term and thus only one multiplier)
can represent an advantage when dealing with systems of medium-large size (to
be interpreted in the context of SOS problems).

The research community is actively working on rigorous improvements to
the well recognised issue of computational efficiency in the application of SOS
techniques. For example, in [35] a method to decompose nonlinear dynamical
systems into lower order ones and then compute the stability certificates on the
latter is proposed. This method, suitable for systems which have a modular
structure, can be further expedited if sparsity is imposed on the polynomials
calculated for each subsystem. Different ways of exploiting sparsity are reviewed
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in [36], where a survey on recent advances in the SOS technique is presented.
One idea, originally proposed in [37], is to relax the requirement that the Gram
matrix Q is semidefinite with stronger but cheaper conditions. Namely, diago-
nally dominant and scaled diagonally dominant matrices Q are sought so that
g = zTQz still implies that the polynomial g is non-negative. This has the
benefit that the optimization underpinning the determination of Q is a linear
and a second order cone program respectively, in both cases more tractable that
an SDP.

These references (and those cited therein) show the potential for efficient
advanced numerical tools which can make the SOS programs presented in this
article more amenable for higher order systems.

6. Conclusions

This article considers the problem of estimating the region of attraction of
nominal and uncertain nonlinear systems described by polynomial vector fields.
A recently proposed formulation based on invariant (but not contractive) level
sets is adopted as the theoretical foundation to propose computationally effi-
cient calculation algorithms for nominal ROA.
The above is then extended to the study of uncertain nonlinear systems, which is
the main contribution of the article. The uncertainties are described as a semi-
algebraic set and new conditions are derived which allow the study of robust
region of attractions. This approach can handle various types of uncertainties
and does not make restrictive hypotheses on the dependence of the vector field
on them.
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The article comments also on well-known computational issues associated with
the usage of Sum Of Squares relaxations, and possible heuristic solutions to ame-
liorate them are discussed. An iteration scheme to tackle the bilinearities arising
in the corresponding programs is proposed, and the advantages of jointly use
different iterative algorithms in order to overcome infeasibility or slow progress
is demonstrated via two example systems.
For the presented study cases, the invariant sets algorithms outperform the ones
based on Lyapunov functions level sets (well established in the community and
considered here for benchmarking). The advantage in adopting the invariant set
approach is more pronounced when the size of the analysed system is increased,
and the same holds for the adoption of the specific iterative schemes proposed in
this article. Finally, upper bounds on the estimated ROA evaluated by means
of extensive time-marching simulation campaigns confirm accuracy in capturing
both the size and the shape of the ROA.
Future works can, on the one hand, apply recent results in the SOS community
in order to make the analysis of higher order system with proposed framework
more computationally efficient. On the other hand, the idea of adopting an
hybrid search for the estimation of ROA can be furthered by studying possible
switching criteria and quantifying their performance.
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