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Abstract  24 

 25 

We found strong signals of two cooling events around 9700 and 8200 cal yrs. BP in lakes 26 

Store Finnsjøen and Flåfattjønna at Dovre, mid-Norway. Analyses included pollen in both 27 



lakes, and C/N-ratio, biomarkers (e.g. alkanes and br-GDGTs), and XRF scanning in 28 

Finnsjøen. The positions of these lakes close to ecotones (upper forest-lines of birch and pine, 29 

respectively) reduced their resilience to cold events causing vegetation regression at both 30 

sites. The global 8.2 event reflects the collapse of the Laurentide Ice Sheet. The 9.7 event with 31 

impact restricted to Scandinavia and traced by pollen at Dovre only, reflects the drainage of 32 

the Baltic Ancylus Lake. More detailed analysis in Finnsjøen shows that the events also 33 

caused increased allochtonous input (K, Ca), increased sedimentation rate, and decreased 34 

sediment density and aquatic production. br-GDGT-based temperatures indicate gradual 35 

cooling through the early Holocene. In Finnsjøen, ca. 3100 maxima-minima couplets in 36 

sediment density along the analyzed sequence of ca. 3100 calibrated years show the presence 37 

of varves for the first time in Norway. Impact of the 9.7 and 8.2 events lasted ca. 60 and 370 38 

years, respectively. Pine pollen percentages were halved and re-established in less than 60 39 

years, indicating the reduction of pine pollen production and not vegetative growth during the 40 

9.7 event. The local impact of the 8.2 event sensu lato (ca 8420 – 8050 cal yrs. BP) divides 41 

the event into a precursor, an erosional phase, and a recovery phase. At the onset of the 42 

erosional phase, summer temperatures increased. 43 

 44 

 45 

Introduction 46 

 47 

The early Holocene is characterized by a series of well-documented climate instabilities, i.e. 48 

cooling episodes, that are likely driven by a slow reorganization of the North Atlantic 49 

thermohaline circulation (e.g. Andersson et al., 2004; Berner et al., 2010; Wanner et al., 2011) 50 

in combination with a decrease in summer solar insolation (Renssen et al., 2007) and probably 51 

also periodic presence of perennial Arctic sea ice cover (Stranne et al., 2014). The most 52 

prominent early Holocene cooling episodes ca. 11.300 cal yrs. BP (PreBoreal Oscillation: 53 

PBO), 9700-9300 cal yrs. BP (Erdalen 2 event s.l.), and 8200 cal yrs. BP (Finse event) are 54 



included in the quasi-periodic Holocene “Bond-cycles” (Bond et al., 1997). These climatic 55 

cycles are thought to be related to perturbations in solar radiation and/or continental ice sheet 56 

dynamics (Bond et al., 2001; Obrochta et al., 2016). The three cold periods are clearly 57 

recorded in the marine stratigraphy of the North Atlantic and Nordic Seas (e.g. Koç and 58 

Jansen, 1992; Haflidason et al., 1995; Björck et al., 1997; Andersen et al., 2004; Berner et al., 59 

2008, 2010), and by glacial deposits showing glacial readvances in Scandinavia and the Alps 60 

(e.g. Nesje and Dahl., 2001; Dahl et al. 2002; Bakke et al., 2005; Nicolussi and Schlüchter, 61 

2012; Gjerde et al., 2016; Moran et al., 2016). 62 

 63 

The impact of these climatic events in Europe, and in particular, the impact on vegetation is 64 

less clear. Obviously, due to the remains of the decaying Weichselian Ice Sheet lingering, the 65 

records of the earliest climate oscillation are sparse in Scandinavia (Björck et al., 1997; Paus 66 

et al., 2015) compared to further south (Bos et al., 2007; Dormoy et al., 2009). In contrast, the 67 

influence on vegetation from the 8.2 event is more frequently recorded in mid- and northern 68 

Europe than southern parts of the continent (Ghilardi and O’Connell, 2013; Fiłoc et al., 2017). 69 

Nonetheless, well-established cases of this event have been identified in Spain (Davis and 70 

Stevenson, 2007), SE Europe (Budja, 2007), and as far east as Syria (van der Horn et al., 71 

2015). Few studies document the 9.7-9.3 event, and those that do only show minor changes in 72 

vegetation (Wohlfarth et al., 2004; Whittington et al., 2015; Burjachs et al., 2016). In context 73 

of the distinct 9.7-9.3 signals recorded in marine sequences and glacial deposits, the lack of 74 

vegetation responses of similar strength and frequency in continental Europe is surprising as 75 

the underlying mechanism is thought to be the same for all events. A possible cause for the 76 

fragmented records could be low sample resolution at some sites (Whittington et al., 2015), 77 

but most probably, the lack of studies at ecotonal sites could explain the limited vegetation 78 

signal for this event. It is at the vegetation boundaries, the ecotones, that vegetation is less 79 

resilient to climate change (Smith, 1965; Fægri and Iversen, 1989), and here the strongest 80 

effects of cold events are signaled. Today, numerical treatments of large pollen-data sets find 81 



regional patterns of vegetation and climate change (e.g. Seppä et al., 2007; Seddon et al., 82 

2015; Hjelle et al., 2018). However, the number of sites may not be crucial for elaborating 83 

detailed geographical patterns of these events. More important is the quality of sites studied 84 

including their ecotonal positions. 85 

  86 

This study compares multi-proxy records from two sites at Dovre (Norway): Flåfattjønna (Paus, 87 

2010) and Finnsjøen, where the pollen data are reported by Thoen (2016). The aim is to shed 88 

new light on the question whether the early Holocene “Bond”-events impacted climate and 89 

vegetation in northern Europe. The lakes were close to ecotones (Flåfattjønna: upper pine-forest 90 

line, Finnsjøen: upper birch-forest line) during the Early Holocene, and show two short-lasting 91 

vegetation fluctuations during this period. To investigate the causes of these climatic 92 

oscillations, we use AMS-dates of terrestrial macrofossils and principle component analysis 93 

(PCA) of the Finnsjøen and Flåfattjønna pollen data, combined with XRF-scanning, elemental 94 

(C/N) ratio, and biomarker (glycerol diakyl glycerol tetraethers (GDGT) and n-alkane) 95 

analyses.  96 

 97 

2. Regional setting 98 

 99 

The Dovre mountain ridge with Lake Store Finnsjøen is situated between the valleys Drivdalen 100 

and Vinstradalen in Oppdal, Trøndelag County (Norway) (Fig. 1). Lake Flåfattjønna lies 30 km 101 

to the east of the ridge, in Tynset, Hedmark County (Fig. 1 and Paus et al., 2006; Paus 2010).  102 

Features of the two lakes and their surroundings are listed in Table 1. In continental areas such 103 

as the study area, the birch-forest line roughly follows the 10 °C July isotherm (Odland, 1996). 104 

Both lakes lie in the low alpine zone characterized by lichen-dominated dwarf-shrub tundra. In 105 

Drivdalen, 2 km west of Finnsjøen (Fig. 1), birch-forests reach ca. 1100 m a.s.l., and pine-106 

forests ca. 900 m a.s.l. The region including Finnsjøen is renowned for its well-developed and 107 

species-rich flora that includes plants with a so-called centric distribution in Scandinavia. More 108 



details regarding environmental features of these sites are included in Paus et al. (2006, 2015) 109 

and Paus (2010). 110 

 111 

 112 

3. Material and methods 113 

 114 

We refer to Paus et al. (2006) and Paus (2010) for details on material and methods of the 115 

Flåfattjønna study. The Finnsjøen material and methods are described below. 116 

 117 

3.1. Sampling and lithostratigraphy 118 

The Finnsjøen lake sediments were cored at maximum water depth (14.7 m) from the ice-119 

covered lake surface during winter. A 110-mm piston corer (Nesje, 1992) modified by A. Paus 120 

and J. Kusior (Dept. of Earth Science, Univ. of Bergen) was applied, which allowed us to use 121 

6-m tubes and start sampling maximum 5 meters below the sediment surface. In Paus et al. 122 

(2015), results from the core section 1980-2195 cm below water surface were reported. The 123 

more detailed Holocene results presented in this paper, are based on the core section 1865-2040 124 

cm depth below water surface showing distinctly laminated gyttja with numerous macrofossil 125 

and/or silty layers (Fig. 2). The analyzed sediments were described (Table 2) according to the 126 

method by Troels-Smith (1955). Sediments were cored in one continuous sequence. Hiati or 127 

correlated overlaps are absent in the core. However, during the XRF logging that requires length 128 

of sections less than 180 cm, one core section was cut one cm too long. Hence, 1 cm (2015-129 

2014 cm depth below water surface) was removed from one core section. This 1 cm gap is 130 

shown as hiatus in Fig. 2. 131 

 132 

3.2. Geochemical core logging 133 



The loss-on-ignition (LOI) was measured in levels at 1-10 cm intervals in the studied core 134 

section. The sub-samples were dried overnight at 105 °C, weighed and ignited at 550 °C for 1 135 

h. LOI was calculated as percentages of dry weight. 136 

 137 

To document the sediment structure in the minerogenic part of the core, sediments were X-ray 138 

photographed using a Philips X-ray 130 kV instrument. The X-ray imagery was processed on 139 

a negative film, and thereafter transferred into a positive format using a digital camera. The 140 

resulting photos are found in Figs. 2 and 7. 141 

 142 

The non-destructive ITRAX µXRF element core scanner from Cox Analytical Systems was applied to 143 

analyze variations in geochemical properties along the core surface as well as the colour- and the X-144 

ray imaging. The core was scanned using a molybdenum (Mo) tube with a downcore resolution of 200 145 

μm. The voltage and current were set to 35 kV and 50 mA, respectively, with a counting time of 10 s 146 

for each analytical step. The elements selected to represent downcore lithological variations are 147 

potassium (K) and calcium (Ca). In addition to elemental and colour scans of the core surface, a 148 

density graph was extracted from X-ray images and plotted versus depth with the same resolution like 149 

elemental analyses. Because X-rays penetrate through the core, they represent density and illustrate 150 

the overall layering that characterizes the sediment record. 151 

 152 

3.3 Radiocarbon dating, varves and age-depth modelling 153 

Eleven samples of terrestrial plant remains from the Finnsjøen sediments between 1810 and 154 

2055 cm depth below water surface were AMS radiocarbon-dated (Table 3). All dates were 155 

reported as calibrated years BP (cal yrs. BP; present = AD 1950) based on the InCal13 156 

calibration curve (Reimer et al. 2013). We converted the dates to calendar ages using CALIB 157 

7.10 (Stuiver et al., 2017).  The age-depth modelling (Fig. 3a) was obtained with the CLAM 158 

2.2 R package (Blaauw, 2010) which recognized two outliers. The small variations in 159 



sedimentation rates displayed in Fig. 3a most likely reflect dating inaccuracies. When 160 

estimating pollen accumulation rates (PAR) and plotting different sedimentary features versus 161 

age (Figs. 2, 4, 5, and 7), we used the linear sedimentation rate estimated by interpolating 162 

between the oldest and youngest dates. 163 

 164 

When Figs. 2 and 7 were enlarged, a microscale pattern of the XRF density graph and the Ca 165 

and K curves appeared showing couplets of alternating maxima and minima. For the density 166 

graph, we counted ca. 3100 couplets in the analysed sediment sequence spanning ca. 3100 167 

calibrated years, which indicates the presence of annual varves (see discussion in section 4.1). 168 

However, the density curve reflected a floating chronology with no fixed attachment points to 169 

the radiocarbon chronology (Fig. 3b). Only minor differences were noted between the two 170 

chronologies. We have chosen to use the radiocarbon chronology to date the onset of events 171 

and estimating the sedimentation rates. On the other hand, the varve chronology was used to 172 

estimate the duration of events.  173 

 174 

3.4. Pollen  175 

Material for pollen analysis was sampled at 0.5–15 cm intervals between 1865 and 2040 cm 176 

depth. The samples were treated with HF and acetolysed according to Fægri and Iversen 177 

(1989). We added Lycopodium tablets to the samples (1 cm3) for estimates of concentration 178 

and pollen accumulation rates (PAR; Stockmarr, 1971). Identifications were based on Fægri 179 

and Iversen (1989), Moore et al. (1991), and Punt et al. (1976-1996) in combination with a 180 

reference collection of modern material at University of Bergen. Betula nana pollen was 181 

distinguished using the morphological criteria of Terasmäe (1951). The pollen diagrams 182 

(Figs. 4, 5, and 6) were drawn by the computer program CORE 2.0 (Kaland and Natvig, 183 

1993).  In the pollen percentage diagram (Fig. 6), the calculation basis (ΣP) comprised the 184 

terrestrial pollen taxa. For taxon X of aquatic plants (AQP) and spores, the calculation basis 185 

was ΣP+X. We used the computer program CANOCO 4.5 (ter Braak and Smilauer, 1997-186 



2002) for detecting and plotting ordination patterns in the terrestrial vegetation development. 187 

The analysed data set included results from Lake Store Finnsjøen merged (using the option in 188 

CORE 2.0) with pollen results from the same time interval (7600-10.700 cal yrs. BP) in 189 

sediments of Lake Flåfattjønna, ca. 30 km east of Lake Finnsjøen (Paus, 2010; Paus et al., 190 

2006).  191 

 192 

Palynological terrestrial richness (PR) was estimated by rarefaction analyses (program 193 

RAREPOLL, Birks and Line, 1992) using the minimum sum of terrestrial microfossils (= 565) 194 

as the statistical base (E(T565)). Intermediate levels of disturbance maximize richness by 195 

preventing both dominance and extinction of species (Grime, 1973). In accordance with this, 196 

the low estimated terrestrial PR E(T565) for abundant tree pollen (AP) (Fig. 4) should indicate 197 

closed forests, whereas local PR maxima indicated periods when the vegetation was positioned 198 

close to and above the forest-line (e.g. Aario, 1940; Simonsen, 1980; Seppä, 1998; Grytnes, 199 

2003). However, at Finnsjøen pine-pollen was not a local signal (see section. 5.2.). To estimate 200 

local changes in palynological richness at Finnsjøen, we also estimated palynological richness 201 

(E(T102)) by subtracting the dominant regional pine pollen from the statistical basis (Fig. 4).  202 

 203 

3.5. Biochemical characterisation  204 

C/N analyses: The lake sediments were freeze-dried for 48 hrs to remove all traces of water. 205 

The freeze-dried samples were kept in a desiccator with 12M HCl (48 hours) to remove any 206 

traces of carbonates present in the sediments (Hedges and Stern, 1984). Elemental C and N 207 

were measured on a Perkin Elemental analyzer (2400 series II CHNS/O) for specific lake 208 

samples together with certified standards (Jet Rock, Svalvard Rock). The reproducibility of 209 

elemental analysis was ±10%. 210 

 211 



Lipids: Plant waxes were extracted from ca. 1-4 g of freeze-dried sediment from selected 212 

intervals (see Fig. 2) with a mixture of dichloromethane and methanol (ratio of 9:1 by 213 

volume) by an automated solvent extraction (Dionex ASE 300). The total lipid extracts were 214 

injected into an Agilent 6890 gas chromatograph with a HP5-MS column (30 m× 0.25 mm 215 

internal diameter × 0.25 μm film). The oven temperature was kept constant at 35°C for 6 216 

minutes, increased to 300 °C at 5 °C min−1 and then held for 20 minutes. The chromatograph 217 

was coupled with an Agilent 5973 mass spectrometer and operated at 70 eV to scan the full 218 

range of charged particles from m/z 50 to 600 amu. High purity standards (S-4066) from 219 

Chiron (Trondheim, Norway) and deuterated compounds from Sigma-Aldrich (Munich, 220 

Germany) were used for quantification. The total input of higher odd n-alkane concentrations 221 

(n-C27, C29 and C31) was used to calculate the input of terrestrial plant waxes derived from 222 

higher plants. In addition, the ratio Paq (Ficken et al. 2000) was calculated to estimate the 223 

input of waxes derived from in-lake algal production 224 

 225 

 226 

 227 

 228 

where Cn refers to n-alkane carbon chain length. 229 

 230 

Glycerol dialkyl glycerol tetraether (GDGT): The total lipid extract of 11 of the Finnsjøen 231 

samples was re-dissolved in hexane/iso-propanol (99:1, v/v) and filtered using 0.45 μm PTFE 232 

filters. The branched and isoprenoidal GDGT distribution was analysed by high performance 233 

liquid chromatography/atmospheric pressure chemical ionisation – mass spectrometry 234 

(HPLC/APCI-MS) using a ThermoFisher Scientific Accela Quantum Access triple 235 

quadrupole MS. Normal phase separation was achieved using the method of Hopmans et al. 236 

(2016) that consists of two ultra-high performance liquid chromatography silica columns in 237 

Paq =  
C23 + C25 

C23 + C25 + C29 + C31  



tandem. Injection volume was 15 μL from 300 μL. To increase the sensitivity and 238 

reproducibility, all analyses were performed using the selective ion monitoring mode (SIM) to 239 

detect specific ions (m/z 1302, 1300, 1298, 1296, 1294, 1292, 1050, 1048, 1046, 1036, 1034, 240 

1032, 1022, 1020, 1018, 744, and 653).  241 

The relative abundance of 6-methyl over 5-methyl br-GDGTs is expressed as the IR6me ratio 242 

(De Jonge et al., 2013). 243 

 244 

 245 

In addition, the branched versus isoprenoidal tetraether (BIT) index (Hopmans et al., 2004) 246 

that reflects the relative abundance of the major bacterial br-GDGTs versus crenarchaeol, an 247 

iso-GDGT likely produced exclusively by Thaumarchaeota (Sinninghe Damsté et al., 2002), 248 

was also quantified 249 

 250 

 251 

 252 

4. Results 253 

 254 

4.1. Lithostratigraphy  255 

The sedimentation rate appears approximately linear showing an average growth of 0.56 mm/ 256 

year (or 17.7 years/cm) in the studied time interval 10.700-7600 cal yrs. BP (Fig. 3a). The core 257 

section 1865-2040 cm below the water surface consists of distinctly laminated to sub-laminated 258 

gyttja as indicated by the high-resolution colour scan and the density graph plot. The lamina 259 

observed by eye (Figs. 2 and 7) are normally 0.5-0.6 mm thick and occur as greyish silty 260 

horizons or as darker layers of distinct concentrations (amount) of macrofossils. The variability 261 

IR6me =  
IIa’ + IIb’ + IIc’ + IIIa’ + IIIb’ + IIIc’ 

IIa +IIa’ + IIb + IIb’ + IIc + IIc’ + IIIa +IIIa’ + IIIb +IIIb’ + IIIc + IIIc’ 
 

BIT  =  
(Ia +IIa +IIa’ +IIIa + IIIa’) 

+ IIIa +IIIa’  (Ia +IIa +IIa’ +IIIa + IIIa’ + crenarchaeol) 

 



in the density graph also shows the laminated structure of the core confirming that the 262 

lamination is not only preserved in the top layer of the core, but is the structure of the entire 263 

core. Down-core density is plotted versus the number of electrons penetrating the core section 264 

for every 200 µm. The lower the cps number is, the higher the density.  And the higher sediment 265 

density is, the higher minerogenic content in the core. The shift from minerogenic sediments to 266 

an increasing amount of biogenic components is clearly shown at ca. 10350 cal yrs. BP. The 267 

shift at 9800 cal yrs. BP to lower sediment density (higher cps) reflects transfer to a period with 268 

increased biogenic production and content. These depositional conditions dominated by higher 269 

biogenic production, characterise the period studied in this core. It is punctuated by short 270 

periods of increased minerogenic content, composed of higher density and/or lower 271 

productivity, centred around 9650, 9340 and 8200 cal yrs. BP (Figs. 2 and 7). Similarly, the 272 

relative concentration of potassium (K) and calcium (Ca) reflects the lithological variability 273 

with similar amplitude as expressed in the density graph. These lithological variations around 274 

the postulated cool periods are consistent with colour imaging indicating distinct shifts in 275 

colour. Notably, the lamina appear coarser and thicker than the warm periods (Figs 2 and 7). 276 

Because K and Ca represent particles from the local bedrock, the variability measured reflects 277 

shifts in allochtonous contributions. The major increases of K and Ca around cooling periods 278 

is centred around 9650 and 8200 cal yrs. BP and illustrates the sensitivity of this parameter to 279 

local environmental changes. 280 

The lithostratigraphy also shows microscale laminations superimposed on the laminations 281 

observed by eye. Both for sediment density and the elements K and Ca there are densely shifting 282 

values where maxima alternate with minima forming couplets (Figs. 2 and 7). We counted 3117 283 

density couplets over the 3100 calibrated years spanned by the analysed Finnsjøen sediments. 284 

This strongly points to the deposition of annual varves in Finnsjøen, here reported for the first 285 

time in Norway. The density maxima (i.e. low cps) reflect increased allochtonous minerogenic 286 

input during the thawing in spring/early summer, whereas the density minima (i.e. high cps) 287 



represent autochtonous organic production during summers (consistent with lower C/N and 288 

terrestrial organic matter input albeit representing low-resolution measurements). Hence, the 289 

varve origin appears as a mixture of clastic and biogenic factors (Zolitschka et al., 2015). 290 

The clear-cut changes in K and Ca concentrations at the lower boundary of the 9.7 and the 8.2 291 

cooling events are interpreted to represent gaps of 1.1–1.5 cm of the lake record due to climate 292 

influenced erosion of the underlying laminated units. These estimates are based on the counting 293 

and thickness estimates of lamina compared with the age model (Fig. 3a). The gaps are 294 

calculated to represent a removal of maximum 12 years of sediments at the beginning of the 9.7 295 

event and maximum 20 years of sediments at the beginning of the 8.2 event. Obviously, this 296 

reflects a source of error for establishing a reliable varve chronology. 297 

 298 

4.2. Pollen results and statistical analysis  299 

We identified 47 terrestrial taxa in 47 levels of the Finnsjøen sediment-section. The pollen sum 300 

of terrestrial taxa analysed per sample varied between 535 and 2066 (mean ΣP: 1035). Seven 301 

local pollen assemblage zones were defined by visual inspection (Figs. 2, 5 and 6, Table 4). In 302 

five PAZ (S-2 to S-6), pine dominates showing values of 40-90% ΣP. During this period of pine 303 

maximum, there are two distinct and short-lasting pine minima of 40-50% ΣP (PAZ S-3 and S-304 

5). At the same time, Betula, Juniperus and algae show percentage maxima. 305 

 306 

The merged data set from lakes Finnsjøen and Flåfattjønna was subjected to a DCA 307 

ordination that showed a gradient length of 1.70 SD. This suggested linear response curves. 308 

Hence, we chose PCA as an ordination technique. A preliminary PCA including the dominant 309 

and entirely regionally represented Pinus (see section 5.2.), condensed scatter plots, and axis 310 

1 captured 62% of the variation in the data. To reduce the influence of pine and enhance the 311 

influence of local features, pine was included as passive in the PCA (Figs. 8 and 9). 312 

Palynological richness (PR) and LOI were added as environmental variables during the 313 



statistical assessment. In Fig. 8, the light-demanding pioneers are concentrated to the left with 314 

medium to low axis 2 values, along with PR. Deciduous trees (e.g. Ulmus, Corylus) and herbs 315 

(e.g. Valeriana, Geranium) on fertile soils are situated to the right and/or at high axis 2 316 

values. Pinus and LOI occur to the extreme right.  317 

 318 

4.3. Biochemical results 319 

C/N ratio varies between 12-20 indicating inputs of lacustrine algal production and higher 320 

plants from the catchment typical of lacustrine environments (Das et al., 2008). Higher values 321 

coincide with the onset of the cold 9.7 and 8.2 events due to soil erosion and increased outwash 322 

of nutrients, before it declines with the intensification of colder temperatures. C/N gradually 323 

increases after the cold periods. This transition is most evident after the 8.2 event. 324 

 325 

n-Alkane concentrations increase core upwards with inflection points coinciding with the 9.7 326 

and 8.2 cooling events (Fig. 2), interpreted as terrestrial organic matter and aquatic input.  A 327 

lower Paq ratio suggests less algal productivity. The percentage of terrestrial organic matter 328 

(mainly plant waxes) declines sharply by nearly 20% after the onset of the cold events and 329 

recovers again after climate ameliorates and vegetation recovers in the catchment. The increase 330 

of terrestrial organic matter is larger during the post-9.7 warming than during the recovery after 331 

the 8.2 event. 332 

 333 

Glycerol dialkyl glycerol tetraethers (GDGTs) are abundant biomarkers in most types of 334 

natural archives (Schouten et al., 2000; Schouten et al., 2013). Two types of main GDGTs are 335 

recognized; Archaea synthesize isoprenoidal (iso-GDGTs), whereas bacteria synthesize 336 

branched (br-GDGTs) compounds. In general, br-GDGTs are more abundant in terrestrial 337 

settings, whereas iso-GDGTs are more abundant in sediments from large lakes and marine 338 

environments (Hopmans et al., 2004). Iso-GDGTs can have between 0 and 8 cyclopentane 339 

rings, whereas crenarchaeol has four cyclopentane and one cyclohexane ring (De Rosa and 340 



Gambacorta, 1988; Schouten et al., 2000; Sinninghe Damsté et al., 2002; Schouten et al., 341 

2013). br-GDGTs can have between 0 and 2 cyclopentane rings and/or between 0 and 2 342 

additional methyl groups at either the C5 and C6 position ( De Jonge et al., 2013; Schouten et 343 

al., 2000, 2013; Sinninghe Damsté et al., 2000).  344 

 345 

In mineral soils, peat, and lake sediments, the degree of methylation of br-GDGTs is 346 

correlated with mean annual air temperature (MAT), while the degree of cyclization of br-347 

GDGTs and the relative abundance of 6-methyl br-GDGTs over 5-methyl br-GDGTs is 348 

correlated with the pH (e.g., Weijers et al., 2007; Loomis et al., 2012; De Jonge et al., 2014; 349 

Naafs et al., 2017; Russell et al., 2018). 350 

 351 

In all 11 samples from Finnsjøen, taken between 2022 and 1870 cm below water depth, 352 

GDGTs were present in abundance. The GDGT distribution was dominated by bacterial br-353 

GDGTs over archaeal iso-GDGTs. The dominant archaeal lipid was iso-GDGT-0 with a 354 

relative abundance over iso-GDGT-1, -2, and -3 above 90%. Crenarchaeol was present in low 355 

abundance and the BIT index, reflecting the ratio between br-GDGTs and crenarchaeol, 356 

varied between 0.98 and 1.00. The br-GDGTs were dominated by acyclic 5-methyl 357 

homologues Ia, IIa, and IIIa with the latter being the most abundant compound with a relative 358 

abundance over all br-GDGTs of ~ 30%. In all samples, 5-methyl br-GDGTs were the most 359 

abundant, but 6-methyl br-GDGTs were also present. The IR6me ratio, reflecting the ratio 360 

between 6- and 5-methyl br-GDGTs, ranged from 0.3 to 0.4.  361 

 362 

The dominance of br-GDGT over iso-GDGTs, the small size of the lake, as well as the 363 

broader biomarker distribution (see above) suggests that the majority of GDGTs are derived 364 

from the surrounding soils. As such we used the global mineral-soil based calibration to 365 

convert the br-GDGT distributions into temperature and pH estimates (De Jonge et al., 2014).  366 

 367 
MATmr (OC) =  7.17 + 17.1 x {Ia} + 25.9 x {Ib} + 3.44 x {Ic} 

-28.6 x {IIa} (RMSE = 0.46 oC ) 



 368 

 369 

 370 

 371 

 372 

 373 

The MATmr-based temperatures range between 3 and 6 ± 4.6 ºC. Temperatures gradually 374 

decrease along the core with highest temperatures recorded in the oldest samples. The pH was 375 

relatively constant around 6.5 and mimics the temperature decline with slightly higher pH 376 

values in the oldest samples (Fig. 2). 377 

 378 

5. Discussion 379 

 380 

5.1. Background climate 381 

The low-resolution biomarker data based on n-alkanes and br-GDGT provides 382 

complementary information about the organic matter sources and how the changes were 383 

driven by climate fluctuations. 384 

 385 

The br-GDGT based terrestrial temperatures (MATmr) from Finnsjøen (Fig. 2) provide a 386 

general context of background climate in the region on which the “Bond”-events are 387 

superimposed. We explicitly assume that 1) br-GDGTs in the mineral soils surrounding the 388 

lake are the main source of these compounds accumulating in the lake sediments, and 2) br-389 

GDGT distribution is biased towards the warmer season. It is hard to confirm these 390 

assumptions, but given that we do not detect the novel hexamethylated GDGT only known 391 

from lacustrine production (Weber et al., 2015), the small size of the lake, abundant presence 392 

of  higher plant waxes and elevated C/N values, it is likely that most of the organic matter in 393 

the lake sediments is not derived from in situ production in the lake. At present, the region 394 

pH  =  7.15 + 1.59 x CBT’         (RMSE = 0.52) 

CBT’= log 
(Ic + IIa’ + IIb’ + IIc’ + IIIa’ + IIIb’ + IIIc’) 

(Ia +IIa + IIIa) 



experiences temperatures well below freezing during winter months with average 395 

temperatures in January around -11.5 ºC (Table 1). Temperatures are on average 7.5 ºC in 396 

July. It is not clear whether br-GDGTs in soils that experience <0 ºC temperatures during part 397 

of the year are predominantly produced during the warmer season (Peterse et al., 2009; 398 

Weijers et al., 2011; Deng et al., 2016), but as bacterial growth is temperature dependent, it is 399 

likely that production of br-GDGTs in top soils is dominated by production when 400 

temperatures are above freezing, before being washed into the lake. The reconstructed 401 

temperatures for the early Holocene between 3 and 6 ± 4.6 ºC are 5 to 8 ºC higher than 402 

present-day annual mean temperatures of -2.5 ºC, further supporting a bias in br-GDGT 403 

production to periods when temperatures are above freezing. For comparison, the average of 404 

mean monthly temperatures above zero is today estimated to 3.5 to 4 ºC at the altitude of 405 

Finnsjøen. The temperature evolution with ~2 ºC higher MATmr around 10.000 cal yrs. BP 406 

compared to 8000 cal yrs. BP, follows the local summer insolation pattern (Fig. 2), providing 407 

additional evidence that the record is biased towards the warm season. Thus, it does not 408 

represent the annual mean temperatures. Our data supports the hypothesis that the Holocene 409 

thermal maximum (HTM) in Scandinavia occurred during the early Holocene, and may have 410 

occurred earlier than the pine maximum in this region. 411 

 412 

The MATmr calibration error of ± 4.6 ºC and sample resolution prevent the identification of 413 

Bond-events in the temperature record. However, MATmr does provide information about the 414 

regional background climate, which was a few degrees C warmer than at present. This is 415 

consistent with palaeobotanical records from southern Scandes Mountains (Kullman, 2013; 416 

Paus, 2013; Paus & Haugland, 2017). 417 

 418 

5.2. Regional pine pollen 419 

The period in focus includes the Early Holocene pine maximum that is distinctly displayed in 420 

pollen diagrams from alpine areas in South-Scandinavia (e.g. Bergman et al., 2005; Bjune, 421 



2005; Gunnarsdottir, 1996; Velle et al., 2005, Segerström and Stedingk, 2003). During this 422 

pine maximum, numerous megafossils show that the pine-forests reached their maximum 423 

elevation in south-Scandinavia (Selsing, 1998; Kullman, 2013; Paus and Haugland, 2017). 424 

These pine forests perhaps never reached much higher than 1105-1110 m a.s.l. in the study 425 

area because no megafossils are found above this elevation (Paus, 2010; Paus et al., 2011). 426 

According to Paus & Haugland (2017), pine-forests did not reach more than ca. 250 m higher 427 

than present forests during the pine maximum. This would imply an early Holocene pine 428 

forest-line at ca. 1150 m a.s.l. at Dovre, which is ca. 100 m lower than the altitude of 429 

Finnsjøen. Pollen and macrofossil data from Råtåsjøen (1169 m a.s.l.), ca. 16 km SSE of 430 

Finnsjøen, supports this conclusion (Velle et al. 2005).  431 

 432 

On the other hand, the pine sedaDNA (Paus et al., 2015), the extremely high pine PAR (45 433 

103 grains cm-2 a-1), and the high pine pollen percentages (90 % ΣP) in sediments of Finnsjøen 434 

(1260 m a.s.l.) could contradict this conclusion. We regard these evidences of local pine 435 

forests as doubtful based on the following arguments. Pine sedaDNA was only found in one 436 

core-interval (Paus et al., 2015) which could reflect long-distance transport of pine remains or 437 

single specimens of low-growing “Krumholz” pine that are currently found up to 1200 m 438 

a.s.l. at Dovre. The PAR values are ca. 40 times higher than the threshold for indicating local 439 

pine forests (Jensen et al.; 2007; Seppä and Hicks, 2006) and reflect extreme sediment 440 

focusing (Davis et al., 1984; see discussion in Paus et al., 2015). Lastly, lowland hillsides in 441 

Drivdalen (Fig. 1) where tree-birch and pine grow today, would have been important sources 442 

for long-distance pollen. Such pollen could be dominant when local pollen production was 443 

low. Moreover, it is macrofossils of Betula pubescens and not pine that are found in the 444 

Finnsjøen sediments (Table 3) indicating presence of birch-forests in adjacent areas. The pine 445 

derived pollen is nevertheless dominant in the lacustrine record. Perhaps the birch-forests 446 

were open and had low pollen-production. Hence, the representation of long-distance pine 447 

pollen was enhanced in the sedimentary record. It is well known that pine is represented by 448 



dominant long-distance transport in other pollen based studies from the Arctic-Alpine regions 449 

(Aario, 1940; Gajewski, 1995; Paus, 2000).  With these interpretative constraints on the pine 450 

pollen signal, we reconstruct the following local vegetation and climate development for the 451 

Finnsjøen area. 452 

 453 

5.3. General trends of local vegetation development 454 

The PCA ordination (Figs. 8, 9) roughly displays gradients of vegetation density/soil 455 

thickness increasing towards the right (axis 1) and soil fertility increasing upwards (axis 2). 456 

At Finnsjøen, pollen from Pinus and the warmth-demanding Corylus, Ulmus, and Quercus 457 

shows the strong influence of long-distance pollen transport. Nevertheless, local successions 458 

can be distinguished. Species-diverse pioneer vegetation on shallow soils developed (PAZ S-459 

1; lower left in Figs. 8, 9), and is followed by forests with Betula pubescens, Populus tremula, 460 

and (from 9300 cal yrs. BP) Alnus incana on more organic-rich soils (PAZ S-2 to S-6). 461 

Thereafter, tall-herb Betula/Sorbus/Alnus forests with e.g. Valeriana, Geranium, Filipendula, 462 

and Urtica, developed on the fertile soils in protected sites locally, whereas dwarf-shrub 463 

heaths expanded on wind-exposed ridges (PAZ S-7). 464 

 465 

Within the same period (7600-10.700 cal yrs. BP), the local development at Flåfattjønna 466 

followed a similar pattern (Paus, 2010), but deviated chronologically in some successional 467 

stages. First, Flåfattjønna was deglaciated more than 800 years later than Finnsjøen (Paus et 468 

al., 2015), and therefore showed a lagged succession by a delay in leaching of soil minerals 469 

into the lake. Fig. 9 shows that pioneer plant communities on unweathered mineral-soils (PAZ 470 

F-2) developed ca. 10.700 cal yrs. BP at Flåfattjønna; a successional stage that was reached 471 

earlier at Finnsjøen (Paus et al., 2015). However, even if weathering and leaching of soils 472 

started just after local deglaciation, soil pH was still high at Finnsjøen in PAZ S-1 (Fig. 2). 473 

Second, even if pine-forests thrived at Flåfattjønna (1110 m a.s.l.) and did not at Finnsjøen 474 

(1260 m a.s.l.), the pollen record showed maximum pine values for a longer period at 475 



Finnsjøen (ca 10.000 – 8000 cal yrs. BP) compared to Flåfattjønna (9700 – 8500 cal yrs. BP; 476 

Fig. 4). It is likely that Drivdalen (2 km west of Finnsjøen and 700 m a.s.l.; Fig. 1), where 477 

temperatures allowed pine to grow for a longer period than at higher elevations, was an 478 

important contributor to the regional pollen representation at Finnsjøen. This would result in a 479 

stronger and longer-lasting percentage signal at the high-altitude Finnsjøen with vegetation of 480 

lower local pollen production than at Flåfattjønna (cf. Aario, 1940; Ertl et al., 2012).  481 

 482 

During the pine maximum, when Finnsjøen was situated close to the upper birch-forest 483 

ecotone, and Flåfattjønna was situated close the upper pine-forest ecotone, the two distinct 484 

episodes of reduced pine percentages occur around 9700 cal yrs. BP and 8400-8200 cal yrs. 485 

BP at both Finnsjøen and Flåfattjønna (Fig. 4).  486 

 487 

5.4. The 9.7 cold event – Erdalen event 2 488 

Around 9700-9600 cal yrs. BP in the Finnsjøen sediments, pine percentages, pine PAR, and 489 

LOI (Figs. 2, 4, 5 and 6) reach short-lasting minima, K and Ca element intensity and X-ray 490 

density (Fig. 2) reflect increased soil erosion and outwash resulting in increased lamina 491 

thickness, whereas n-alkanes show lowered input of both terrestrial organic matter and 492 

aquatic homologs (Fig. 2). The short-lasting C/N maximum is interpreted to reflect erosion 493 

and outwash of terrestrial organic matter, whereas declining C/N values show that colder 494 

conditions reduced terrestrial input more than the aquatic production (cf. alkanes of terrestrial 495 

organic matter vs. Paq). The first part of the subsequent C/N rise reflects lower aquatic 496 

production, whereas the later rise shows a warming that increased the terrestrial input more 497 

than the aquatic production according to the n-alkane trends. 498 

 499 

In PAZ S-3 of the Finnsjøen pollen diagram, constituting the three-level pine percentage 500 

minimum (Fig. 6), PAR values of Betula, Juniperus, and Salix show little change from the 501 

previous S-2 (Fig. 5). Hence, their S-3 percentage maxima reflect the reduction of pine 502 



entirely represented by regional/long-distance pollen (see section 5.2.). In addition, after 503 

removing regional pine from the calculation basis, palynological richness shows no distinct 504 

changes (Fig. 4). However, PCA with pine removed from the data set, shows that the local S-505 

3 vegetation returned towards previous pioneer stages of S-1 (Fig. 9). Altogether, the 506 

stratigraphical trends indicate the 9.7 changes as a cold event that influenced lacustrine and 507 

terrestrial productivity. However, the GDGT temperature estimates show no distinct changes 508 

(see section 5.1). 509 

 510 

The onset of the 9.7 cold event is signaled by both regional (i.e. decline in pine) and local 511 

(e.g. Ca and C/N increase) parameters. The floating varve chronology (see section 4.1) 512 

suggests that LOI decreased ca. 10 years later than pine. This delayed LOI decrease might 513 

reflect the time needed to erode top soil within the lake’s catchment. The soil-independent 514 

algae (cf. Pediastrum) took advantage of nutrients washed out during the cold event. They 515 

flourished around the same time as regional pine abruptly increased (Figs 2, 5 and 6) both 516 

trends support the onset of climate warming during this period. Local vegetation regrowth and 517 

soil formation, shown by increasing LOI, lagged climate amelioration by 10-15 years 518 

according to the varve chronology. The upper boundary of the dark eroded layer occurs when 519 

LOI reached pre-9.7 values. 520 

 521 

According to the floating varve chronology (Figs. 3b, 7), the impact of the 9.7 cold event 522 

lasted ca. 56-58 years. Increased soil erosion and outwash during the event seem to have 523 

increased varve thickness above the average sedimentation rate of 0.56 mm/yr to a rate of ca. 524 

0.77 mm/yr. Accordingly, the influence on regional pine lasted for ca. 56-58 years before pine 525 

pollen production recovered. Missing sediments from this section could add maximum 12 526 

years to the duration of the 9.7 impact (see section 4.1).  Most probably, a period of about 60-527 

70 years is too short for pine forests to recover totally after being decimated by very cold 528 

conditions (cf. Kullman, 1986, 2005).  We think that the distinct pine oscillation reflects a 529 



multi-decadal cold period whereby pine survived, but experienced reduced pollen production. 530 

According to Dahl et al. (2002), the 9.7 glacial advance at Jostedalsbreen, ca. 150 km WSW 531 

of Finnsjøen reflects a cooling of at least 1oC. This would have reduced the pine pollen 532 

production by a similar magnitude as displayed in the Finnsjøen pollen diagram (cf. Hicks, 533 

2006). 534 

 535 

Notably, at Flåfattjønna, an erosion layer distinctly reflects the 9.7 event. This layer including 536 

pine seeds and needles shows that pine pollen percentages and LOI decrease after the decline 537 

in pine PAR (Paus, 2010). The pine percentage maximum at the pine PAR minimum (Fig. 4) 538 

reflects outwash of soils containing remains of local pine (pollen and macrofossils) when 539 

regional and local total pollen production was reduced (Paus, 2010). In addition, at 540 

Flåfattjønna, PCA indicates regression of local vegetation towards pioneer stages during the 541 

9.7 event (Fig. 9). 542 

 543 

According to the radiocarbon chronology (Fig. 3a), this cold event occurred ca. 9605-9675 cal 544 

yrs. BP interpolated (Figs. 2), but the varves suggest the duration to be around 56-58 years 545 

(Fig. 7). At Flåfattjønna, the cold event is predicted based on fewer 14C dates (Fig. 4). This 546 

low-resolution and inaccurate chronology dates the event to ca. 9500-9700 cal yrs. BP (Paus, 547 

2010).  548 

 549 

5.5. The 9.3 cold event 550 

At both Flåfattjønna and Finnsjøen, the post-9.7 warming initiated a vegetation closure 551 

reaching the Holocene maximum according to total PAR (Fig. 4). At Finnsjøen, the 552 

vegetation closure strongly reduced palynological richness. This warming also initiated the 553 

rapid establishment of broad pine-forest belts in mid-Scandinavia, reflecting the July mean 554 

Holocene maximum (Paus and Haugland, 2017). Shortly thereafter, during the first half in 555 

Finnsjøen PAZ S-4 (Fig. 6), a small-scale cooling parallel to the 9.7 event is detected around 556 



9300 cal yrs. BP (at 1963 cm depth, see also table 2), showing a minimum in sediment density 557 

and decreasing pine, and a delayed increase in freshwater algae (Pediastrum, Botryococcus; 558 

Figs. 2, 6). Furthermore, local vegetation became more open shown by decreasing total PAR 559 

(Fig. 5), increasing light-demanding shrubs and dwarf-shrubs (Fig. 6), and an increase in 560 

long-distance pollen (cf. Corylus). We think these changes reflect a climate cooling, though 561 

its local effect was less extensive than the 9.7 impact at Finnsjøen. As for the 9.7 event, the 562 

delayed increase in freshwater algae could indicate the warming following the short-lasting 563 

cold event. The 9.3 cooling reflects the collapse of the Laurentide Ice Sheet (Yu et al., 2010; 564 

Gavin et al., 2011) with distinct impacts in Canada (Gavin et al., 2011), Greenland (Young et 565 

al. 2013), Iceland (Brynjolfson et al., 2015), and further south at the Iberian Peninsula 566 

(Burjachs et al., 2016; Iriarte-Chiapusso et al., 2016). The 9.3 event is also recorded in the 567 

Greenland ice-cores (Vinther et al., 2009; Rasmussen et al., 2014).  Furthermore, signals of 568 

the 9.3 south of Svalbard are weak (Werner et al., 2016). This, in line with the scarcity of 569 

Fennoscandian 9.3 records in eastern Europe and its limited impact at Finnsjøen, indicate that 570 

the 9.3 cooling had its main influence in western and southern coastal Europe. 571 

 572 

In Finnsjøen, the 9.7 event (Erdalen 2) and 9.3 event are recorded as two distinct separate 573 

events. We therefore emphasize that the 9.7 event, which seems to have a Fennoscandian 574 

origin, i.e. the drainage of the Baltic Ancylus Lake  (Nesje et al., 2004), is not formally a 575 

“Bond” event, and must therefore not be confused with the 10.3 or 9.3 “Bond” events of 576 

North Atlantic Ocean origin (Bond et al., 1997, 2001). 577 

 578 

5.6. The 8.2 cold event – Finse event 579 

At Finnsjøen, the post-9.3 changes with slight increase in vegetation density (Fig. 5), favored 580 

the moisture-demanding Alnus to expand within the area. Thereafter, stable records of 581 

vegetation and other parameters indicate a period of stable climate until ca. 8420 cal yrs. BP 582 

at the PAZ S-4/S-5 transition (Fig. 6), where colder temperatures are signaled. Here, pine 583 



percentages and PAR values decrease, probably due to a decline in summer temperatures that 584 

decreased regional pollen production (Paus and Haugland, 2017). The slightly later increase 585 

in tree-birch and alder PAR values (Fig. 5) could in addition reflect the lowering of vegetation 586 

belts within the region and the descent of the more warmth-demanding pine-forest. The rise in 587 

Alnus PAR indicates the presence of more moist and fertile soils in the region, whereas 588 

macrofossils (Table 3) show the local presence of birch-forests. The increase in juniper (Figs. 589 

5 and 6) reflects more open vegetation locally, and PCA (Fig. 9) shows the recurrence 590 

towards more pioneer vegetation. The decreasing LOI and sediment density in the last part of 591 

S-5 (Fig. 2) point to increased soil erosion and outwash.  592 

 593 

Around the S-5/S-6 transition at ca. 8225 cal yrs. BP, pollen data indicate harsher conditions 594 

showing a maximum in palynological richness (Fig. 4) and representation of pioneers 595 

(Saxifraga oppositifolia type, Empetrum) in a short period with low total PAR between the 596 

earlier birch and alder decrease and the later pine rise in the pollen diagrams (Figs. 5 and 6). 597 

Apparently, the birch-forest ecotone was lowered which displaced the local area towards the 598 

tundra vegetation zone. This opening of local vegetation occurs at the same time when 599 

erosion of terrestrial organic matter intensified, and further supported by the short-lasting 600 

maximum in C/N-ratio (Fig. 2). Thereafter, the deposition of a dark minerogenic layer (Figs. 601 

2 and 7, Table 2) is initiated showing minimum sediment density, K, Ca, and LOI. This 602 

reflects maximum erosion and outwash due to deteriorating climate conditions. At the same 603 

time, an increase in pine in early S-6 (Figs. 5 and 6) reflects expanding regional pine-forests 604 

and/or increasing pine-pollen production. Both alternatives reflect warmer conditions during 605 

summer. A warmer lake could also be indicated by decreasing C/N values due to increased 606 

algal growth. This apparently contrasting evidence of climate points to the 8.2 weakening of 607 

the Atlantic current (Daley et al., 2011; Holmes et al., 2016) that resulted in an increased 608 

continental climate and enhanced amplitude of seasonal temperatures and involved at least 609 

colder winters (Alley and Ágústdóttir, 2005). Hence, even if widespread local areas were 610 



exposed to maximum freezing/thawing and erosion due to a period of less snow and more 611 

wind during colder winters, summers became warm enough to allow regional pine to expand 612 

and/or increase its pollen production.  613 

 614 

The bio- and litho-stratigraphy in PAZ S-5 and S-6 shows a two-step climate deterioration. 615 

The first of moderate impact is mainly signaled by the biostratigraphy at the PAZ S-4/S-5 616 

transition, from ca. 8420 cal yrs. BP, whereas the second and strongest period is mainly 617 

reflected by geochemistry and a dark erosional layer that deposited from ca. 8225 cal yrs. BP 618 

close to the PAZ S-5/S-6 transition. The varve chronology suggests that this dark layer spans 619 

a period of ca. 38 years (Fig. 7). Probably, missing sediments could add maximum 20 years to 620 

this duration (see section 4.1.), which indicates that climate deterioration intensified ca. 8245 621 

cal yrs. BP or a few years later. This coincides approximately with minimum δ18O-derived 622 

temperatures in the Greenland ice core (Fig. 2).  623 

 624 

According to Rasmussen et al. (2014), the 8.2 event started ca. 8250 cal yrs. BP which is 625 

close to the estimated age of PAZ S-5/S-6 transition and the deposition of the erosion layer. It 626 

is likely these abrupt stratigraphical changes signal the sudden outburst of Lake Agassiz and 627 

the strong meltwater pulse into the North Atlantic that caused colder, drier and windier 628 

conditions globally (Alley et al., 1997; Alley and Áugústdóttir, 2005). Most probably, the 629 

moderate changes ca. 8420 cal yrs. BP reflects a longer-term cooling upon which the 8.2 630 

event is superimposed (Rohling and Pälike, 2005). 631 

 632 

A third phase, representing a  recovery phase, from ca. 8175 to 8050 cal yrs. BP, shows 633 

increasing sediment density, K content, LOI, and total PAR (Figs. 2 and 5), which reflects 634 

stabilizing soils and re-development of vegetation cover. This long-lasting re-establishment 635 

phase of more than hundred years indicates that conditions gradually improved. The exposed 636 

position of Finnsjøen could partly explain the slow regrowth locally. On the other hand, the 637 



short-lasting algal-maximum ca. 8100 cal yrs. BP could indicate further warming that 638 

differentiates an older and still rather cold and unfavorable phase from a younger and warmer 639 

phase. In total, 370 years elapsed extending from ca. 8420 to 8050 cal yrs. BP, before the 640 

Finnsjøen vegetation totally recovered from the 8.2 impact. 641 

 642 

At Flåfattjønna, the low-resolution chronology displays a 400 years local response (ca. 8550 643 

to 8150 cal yrs. BP; Paus, 2010) to the 8.2 (sensu lato) impact appearing in a two-step moist-644 

dry pattern. However, both steps were regarded as cold periods (Paus, 2010). Similar two-step 645 

patterns are a wide-spread phenomenon as reported by other researchers (e.g. Nesje and Dahl, 646 

2001; Ojala et al., 2008; Rasmussen et al., 2008; Filoc et al. 2017). According to Rasmussen 647 

et al. (2014), the impact of the freshwater impulse into the North Atlantic lasted ca. 150 years 648 

(ca 8250 to 8090 cal yrs. BP), but terrestrial sites show longer-lasting responses of varying 649 

lengths (Filoc et al., 2017). Although a varying degree of dating precision must be considered, 650 

one must expect that the duration of vegetation responses to the same impact depends on both 651 

the geographical position (e.g. N-S, E-W, distance from coast) and distance from ecotones. 652 

Study sites at ecotonal positions, i.e. being less resilient to disturbance (such as the Finnsjøen 653 

and Flåfattjønna sites), seem to show long-lasting responses to the 8.2 event. Such sites 654 

probably were more vulnerable to the background climate variations such as the 8.2 precursor 655 

(Rohling and Pälike, 2005). Most probably, ecotonal sites also show a slow recovery after 656 

cold events. 657 

 658 

5.7. The 9.7 and 8.2 events compared 659 

Both at Flåfattjønna and Finnsjøen, the impact of the 8.2 event sensu lato (ca 370-400 years) 660 

lasted longer than the influence from the 9.7 cooling event (60 to < 200 years). At 661 

Flåfattjønna, the distinct PCA responses (Figs. 4 and 9a) show that the 8.2 event had a 662 

stronger impact on local vegetation than the 9.7 event. At Finnsjøen, with a better 663 

stratigraphic time resolution than Flåfattjønna, the strength of the two events could be 664 



reflected by increased sedimentation rate of their erosional layers. According to the varve 665 

chronology, the sedimentation rate of the 9.7 erosional layer is ~ 4.4 cm during 56-58 years 666 

(0.79-0.76 mm/yr), whereas the 8.2 erosional layer show a sedimentation rate of ~2.8 cm 667 

during 38 years (0.74 mm/yr). On the other hand, the 8.2 erosion occurred at a higher 668 

successional stage with denser vegetation on more mature soils (Fig. 9), i.e. when local 669 

vegetation was at a distance from ecotones and more resilient to disturbance. In spite of that, 670 

erosion during the 8.2 event shows similar values as during the 9.7 cold spell. Hence, the 8.2 671 

cold event appears to have been stronger than the 9.7 cold event in the Finnsjøen area, and 672 

probably also over larger regions as signals of the 9.7 event are scarce. 673 

 674 

To estimate patterns of impact, it would have been of interest to compare these results with 675 

studies from a wider area. To the best of our knowledge, other pollen records of the 9.7 event 676 

in Scandinavia are absent, whereas pollen signals of the 8.2 event are sparse in alpine south 677 

Norway.  678 

 679 

At Topptjønna, 1.7 km south of Finnsjøen, the 8.2 event also shows a moist-dry two-step 680 

pattern, but the study was carried out with a much lower time resolution than at Finnsjøen 681 

(Paus et al., 2011). In Jotunheimen, ca. 110 km SW of Finnsjøen, the 8.2 event appears as a 682 

short reduction in pine pollen (Barnett et al. 2001; Gunnarsdottir, 1996). The Leirdalen site of 683 

Barnett et al. (2001) shows a strong pine oscillation from 90 % to 45 % and back to 90 %, 684 

lasting less than 80 years. Pine stomata show the presence of pine during the pine pollen 685 

minimum. Otherwise, the pollen percentages of Betula, Salix and herbs increased. This has 686 

been interpreted as a short-lasting cold event that affected pine pollen production but not the 687 

vegetative growth locally (Hicks, 2006). The similar pollen-stratigraphical patterns during the 688 

short-lasting Finnsjøen 9.7 event have been interpreted similarly (see section 5.4). During the 689 

9.7 event, Finnsjøen was lying in open birch-forests well above the pine-forest line (see 690 

section 5.2.), whereas the Leirdalen site (920 m a.s.l.) was situated in closed pine-forests 691 



during the 8.2 event and far below the upper pine-forest ecotone. Even being situated at 692 

opposite sides of an ecotone, the border between pine-forest and birch-forest, the two sites 693 

showed similar pollen responses to the weaker 9.7 and the stronger 8.2 cooling, respectively.  694 

This demonstrates how vegetation response is determined by both the impact and the ecotonal 695 

position of the vegetation cover (cf. Smith, 1965; Fægri and Iversen, 1989) 696 

 697 

6. Conclusions 698 

 699 

• The sediments of Finnsjøen and Flåfattjønna show exceptionally strong stratigraphical 700 

signals of the 9.7 and 8.2 cooling events. The positions of these sites close to ecotones 701 

(vegetation borders) were decisive in reducing their resilience against climate 702 

fluctuations. 703 

• At Finnsjøen and Flåfattjønna, the impact of the 8.2 event was stronger than the 9.7 704 

event. 705 

• During the abrupt 9.7 cooling event at Finnsjøen, pine pollen percentages became 706 

halved and re-established in less than 60 years indicating that pine pollen production 707 

was severely reduced due to lower summer temperatures.  708 

• At Finnsjøen, the 8.2 event sensu lato (ca. 8420 – 8050 cal yrs. BP) can be divided 709 

into a precursor lasting ca. 195 years, an erosional phase lasting ca. 50 years, and a 710 

recovery phase lasting ca. 125 years. At the onset of the erosional phase, summer 711 

temperatures increased. 712 

• In the Finnsjøen sediments, weak signals indicate a cold spell at 9300 cal yrs. BP. 713 

Both the 8.2 and 9.3 events reflect collapses of the Laurentide Ice Sheet and represent 714 

two of the global “Bond” events. The 9.7 event most probably reflects the drainage of 715 

the Baltic Ancylus Lake hat had restricted regional impact.  716 



• The XRF sediment density graph documents annual varves throughout the studied 717 

Finnsjøen sediments.  718 

• br-GDGT-based temperatures are biased towards warmer seasons and indicate gradual 719 

cooling throughout the Early Holocene, following local summer insolation. 720 

• C/N ratios indicate input of lacustrine algal production and higher plant matter from 721 

the catchment area. 722 

• Higher C/N values coincide with the onset of cold events and declines with its 723 

intensification; C/N increases again after the cold period. 724 

• Input of terrestrial organic matter (plant waxes) decreases during cold conditions 725 

followed by its steady increase afterwards. 726 

 727 
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Figure and table captions 1126 

 1127 

Fig. 1: Maps of the Lake Finnsjøen and Lake Flåfattjønna areas. Numbers show altitudes in m  1128 

a.s.l. 1129 

Fig. 2: Selected sediment features from the Finnsjøen core displayed along the linear 1130 

age/depth model. From left: X-ray colour image, pollen-assemblage zones (PAZ), 1131 

XRF scanning results of sediment density, K and Ca (cps: counts per second), loss-on-1132 

ignition (LOI), Pinus and Pediastrum percentages, C/N ratios, n-Alkanes (terrestrial 1133 

organic matter and aquatic input), br-GDGT-based estimates of pH and mean annual 1134 

temperatures (MATmr), mid-month summer solar insolation 60 oN (Berger, 1978), 1135 

and temperature deviations from present in oC  based on 18O values from the Renland 1136 

ice core, Greenland (Vinther et al., 2009), The 9.7, 9.3, and 8.2 cold events are shaded. 1137 

The 8.2 event (sensu lato) is displayed by a tripartite development: the early precursor 1138 

from ca. 8420 cal yrs. BP, the erosional phase from ca. 8225 cal yrs. BP, and the 1139 



recovery phase from ca. 8175 to ca. 8050 cal yrs. BP. Stippled red lines show the one 1140 

cm thick sediment slice missing from the core (see section 3.1). 1141 

   1142 

Fig. 3: a): Age-depth relationship for the Finnsjøen sediments. Grey area illustrates the 95% 1143 

probability range. Two outliers marked with bold crosses, are recognized. The average 1144 

linear sedimentation rate (white line) represents the preferred chronology (see section 1145 

3.3). 1146 

b): The floating varve chronology based on microscale patterns of the XRF  1147 

sediment density graph and compared with the radiocarbon based age-depth 1148 

 chronology. The youngest part of the varve chronology is tentatively attached to the 1149 

uppermost level 7600 cal yrs. BP dated by the radiocarbon-based age-depth model.  1150 

 1151 

Fig. 4: Comparison of selected features from the Finnsjøen and Flåfattjønna merged data set. 1152 

The 9.7 and 8.2 cold events are shaded. Radiocarbon-dated levels are marked in the 1153 

Flåfattjønna age column. Shaded curves are 10x exaggerations of the scale. 1154 

 1155 

Fig. 5: Pollen accumulation rates (PAR) for selected Finnsjøen taxa. Shaded curves are 10x 1156 

exaggerations of the scale. 1157 

 1158 

Fig. 6: Pollen percentage diagram from Finnsjøen. Calibrated dates are shown as mean 1159 

probabilities (Stuiver et al., 2018). Shaded curves are 10x exaggerations of the scale. 1160 

 1161 

Fig. 7:  Detailed data of the 9.7 and 8.2 events at Finnsjøen. Figure displays scanning results 1162 

(Xray colour image, sediment density, the elements K and Ca, loss-on-ignition (LOI), 1163 

Pinus, and temperature deviation (oC)  from present based on 18O values in Renland 1164 

ice core, Greenland (Vinther et al., 2009). To the right, the enlarged sediment densities 1165 



during the 9.7 and 8.2 erosion layers show couplets of alternating maxima and minima 1166 

values representing varves. Shading highlights the 9.7 and the 8.2 erosion layers. 1167 

 1168 

Fig. 8: Plot of pollen taxa along the first two axes of the PCA of the merged pollen data set 1169 

from Flåfattjønna and Finnsjøen. Merged data set includes 121 samples, 108 terrestrial 1170 

taxa. Eigenvalues axis 1: 0.5020, axis 2: 0.1578, axis 3: 0.0896, axis 4: 0.0502. In the 1171 

analysis, Pinus was treated as a passive taxon whereas loss-on-ignition (LOI) and 1172 

palynological richness (PR) were included as environmental variables. See section 5.3 1173 

for ecological interpretations of the axes. 1174 

 1175 

Fig. 9: PCA of spectra from Flåfattjønna (a) and Finnsjøen (b). Pollen assemblage zones 1176 

(PAZ) follow Paus (2010) and Fig. 6. Levels in PAZ S-4 are not encircled. Figures 1177 

show the general vegetation development and the 9.7 and 8.2 impacts on vegetation in 1178 

a two-dimensional gradient space. See section 5.3 for ecological interpretations of the 1179 

axes. The data from the two lakes are from the same time interval: 7600 - 10.700 cal 1180 

yrs. BP. 1181 

 1182 

Table 1: General features of the sites studied. Local temperatures are extrapolated from the 1183 

nearest meteorological stations (DNMI, 2016) using a lapse rate of 0.6 OC change per 1184 

100 m.  1185 

Table 2: Description of the Finnsjøen sediment lithology.  1186 

 1187 

Table 3: Results of seven AMS dates of plant macrofossils from Finnsjøen. Calibrated dates 1188 

according to Stuiver et al. (2018) are shown with two standard deviations. When 1189 

dating results appear as two or more intervals, the two extreme values define the 1190 

interval displayed. Median probabilities are shown in brackets. Lab. reference 1191 



numbers of two outliers are marked with A: ETH-48538 A and TRa-4470 A. Dates 1192 

previously published (Paus et al., 2015), are marked with an asterisk. 1193 

 1194 

Table 4:  Names, dates, and biostratigraphical features of the Finnsjøen local pollen 1195 

assemblage zones (PAZ). 1196 
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Table 1 

 

 Lake Finnsjøen 
(1260 m a.s.l.) 
 

Lake Flåfattjønna 
(1110 m a.s.l.) 

Geographical 
position 

62°24’N, 9°41’E 62o20’N, 10o24’E 

Coring point position 
UTM  32V NQ 

0535133 E 
6918753 N 

0572506 E 
6911883 N 

Basin size   
Basin area  

800m x 390m   
23.7 ha 

425m x 225m 
6 ha 

Maximum water depth  14.7 m 13 m 
Catchment size incl. basin  69 ha 25 ha 
No of inlets /outlets 0 / 1 0 / 1 
Local bedrock greenschists, slate,  

amphibolite 
Phyllite, 
micashists 

July mean  7.5 OC  9  OC 
January mean  -11.5 OC -13 OC 
Annual mean -2.5 OC -1.5 OC 
Annual precipitation  450 mm 500 mm 
Local birch-forest line 1100 m a.s.l. 1030 m a.s.l. 
Local pine-forest line 900 m a.s.l. 820 m a.s.l. 

 

Table 2 
 
 
Depth 
(cm) 

Description  
(Troels-Smith 1955) 

Colour Comments 

1865-1898 Ld3 3, Dh 1, Ag + Dark brown 
(nig 3÷) 

Laminated gyttja. Less laminated in the upper part. 
Distinct laminations rich in macrofossils are found at 1893 
and 1867 cm. One distinct silty lamina occurs at 1885 cm.  

1898-1901 Ld4 2, Dh 1, Ag 1 Dark brown 
(nig 3+) 

Silty layer rich in macrofossils and without laminations. 
Shining from mineral particles. 

1901-1978 Ld3 4,  Dh +, Tb +, Ag + Dark brown 
(nig 3) 

Laminated gyttja, brown - grey brown in silty laminations. 
Distinct macro-layers at 1911, 1922, and 1963 cm. Distinct 
silt layers at 1921, 1929, 1957, 1960, and 1971 cm. One 
sand lens at 1904 cm 

1978-1983 Ld3 3, Ag 1 Grey brown 
(nig 3÷) 

Unstratified silty gyttja 

1983-2021  Ld3 4,  Dh +, Tb +, Ag + Dark brown 
(nig 3) 

Laminated gyttja with macro remains 

2021-2040 Ld2 2, Dh 1, Ag 1, As + Brown  
(nig. 2+) 

Laminated clay/silt gyttja. Includes several dark (nig 3) 
macrofossil-layers less than 1 cm thick. Most distinct 
between 2021 and 2023 cm (Ld21, Tb1, Dh1, Ag+). Two 
mm thick and light (nig 1) clay layer at 2026 cm depth. 

   



Table 3. 1230 

  1231 

Table 4. 1232 

 1233 
PAZ Name Age 

(cal. BP) 
Pollen zone characteristics Diagnostic taxa not included in pollen 

diagrams (Fig. 6 )  
S-7 Alnus-Betula-

Betula nana 
7580-7930 Pine declines to 45% ΣP and 10 103 grains cm-2 a-1, respectively whereas Alnus, Betula, 

Ulmus, Betula nana, Juniperus and algae rise. Both palynological richness (PR) and LOI rise. 
Rubiaceae, Rubus sp., Sinapis-type 

S-6 Pinus-Betula 7930-8270 Pine percentages rise earlier than pine PAR, both reaching max values (82% ΣP, 41 103 grains 
cm-2 a-1, respectively) in mid S-6. Alnus, Betula, Juniperus and PR show distinct minima. In 
early S-6, LOI drops to 15% and rises to 24% in late S-6. 

 

S-5 Alnus-Betula-
Juniperus 

8270-8520 Pine declines and reaches a minimum (50% ΣP, 3 103 grains cm-2 a-1) in late S-5. Alnus, 
Betula, Corylus, and juniper show maxima. PAR values for all taxa rapidly drops in late S-5. 
LOI and PR show no changes from S-4. 

 

S-4 Pinus-Betula-
Populus 
 

8520-9680 Pine strongly rises to its Holocene maximum (90% ΣP, 45 103 grains cm-2 a-1) at 9.4 ka BP, 
thereafter pine slightly decrease. At 9.4 ka BP, Alnus establishes. In S-4, LOI reaches 20-25%, 
whereas Betula, Salix, and algae drop to moderate values. PR reaches its Holocene minimum. 

Astragalus-t, Campanula, Circium, Euphrasia, Geranium, 
Geum, Myricaria germanica, Onagraceae  

S-3 Betula-
Juniperus-
Salix 

9680-9730 Pine abruptly decreases to 40% and 3 103 grains cm-2 a-1, total PAR reaches a minimum of 7 
103 grains cm-2 a-1, and LOI drops to 14%. Betula, Juniperus, Salix, and algae show distinct % 
maxima, but their PAR values show no changes. PR reaches a maximum of 26. 

 

S-2 Pinus-Corylus 9730-
10,070 

Early S-2 shows marked increases in pine (65-70%), LOI (20%), and total PAR (48 103 grains 
cm-2 a-1). Tree-birch, juniper, Empetrum, Betula nana, and algae decrease. PAR and PR 
decrease in the last half of S-2. 

Myricaria germanica, Picea abies, Plantago lanceolata 

S-1 Betula-
Juniperus-
Salix 

10,070 – 
10,670 

Sparse pine (< 35 % ΣP) and distinct representation of Betula, shrubs/dwarf-shrubs, and algae 
characterize S-1. Total PAR (< 6 103 grains cm-2 a-1) and LOI (< 15%) are low. Palynological 
richness (PR) is high (24-33) and includes many light-demanding pioneer taxa. 

Arctous alpinus, Botrychium, Ephedra dist.-t, Euphrasia, 
Humulus, Myricaria germanica, Picea abies, Polypodium 
vulgare, Saxifraga hirculus-t, Sax. stellaris-t,  Sinapis-t 
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