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ARTICLE

Genome wide analysis for mouth ulcers identifies
associations at immune regulatory loci
Tom Dudding 1,2, Simon Haworth 1,2, Penelope A. Lind 3, J. Fah Sathirapongsasuti4,

the 23andMe Research Team#, Joyce Y. Tung4, Ruth Mitchell 1, Lucía Colodro-Conde 3, Sarah E. Medland3,

Scott Gordon 5, Benjamin Elsworth 1, Lavinia Paternoster 1, Paul W. Franks6,7,8, Steven J. Thomas2,

Nicholas G. Martin 5 & Nicholas J. Timpson1

Mouth ulcers are the most common ulcerative condition and encompass several clinical

diagnoses, including recurrent aphthous stomatitis (RAS). Despite previous evidence for

heritability, it is not clear which specific genetic loci are implicated in RAS. In this genome-

wide association study (n= 461,106) heritability is estimated at 8.2% (95% CI: 6.4%, 9.9%).

This study finds 97 variants which alter the odds of developing non-specific mouth ulcers and

replicate these in an independent cohort (n= 355,744) (lead variant after meta-analysis:

rs76830965, near IL12A, OR 0.72 (95% CI: 0.71, 0.73); P= 4.4e−483). Additional effect

estimates from three independent cohorts with more specific phenotyping and specific study

characteristics support many of these findings. In silico functional analyses provide evidence

for a role of T cell regulation in the aetiology of mouth ulcers. These results provide novel

insight into the pathogenesis of a common, important condition.
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Oral ulceration is the most common ulcerative condition in
humans, affecting up to 25% of young adults1 and a
higher proportion of children2. Depending on context,

ulcers in the mouth are described as mouth ulcers or canker sores,
both of which are descriptive terms rather than clinical diagnoses.
In this article, mouth ulcers is used as an umbrella term
describing the spectrum of clinical presentation.

To date, many causes of mouth ulcers are recognised including
mucosal trauma and a range of autoimmune and inflammatory
conditions. For example, mouth ulcers are common in patients
with ulcerative colitis and Crohn’s disease3, systemic lupus
erythematosus4,5 and are considered a diagnostic feature of
Behçet’s disease, an inflammatory disorder of blood vessels that
causes ulceration of the mouth, eyes and genitals6.

Many people experience recurrent mouth ulcers which
cannot be attributed to systemic disease or obvious oral trauma.
Here, the clinical diagnosis of recurrent aphthous stomatitis
(RAS) is used, referring to a group of closely related conditions of
uncertain aetiology, whose defining feature is the presence of
clinically characteristic oral ulcers, which are painful and asso-
ciated with impaired quality of life7–9. First line management
strategies for RAS reduce the severity of ulceration without pre-
venting recurrence10. Second line management strategies involve
topical or systemic use of potent and non-specific immunomo-
dulatory drugs including thalidomide and dapsone, exposing
patients to a range of side effects11,12. Thus, there is unmet need
for a wider range of therapeutic options in the management
of RAS.

In part, the lack of satisfactory management for RAS reflects
uncertainty in the exact aetiology. A number of predisposing
factors have been reported including vitamin or haematinic
deficiency, chemicals such as sodium laurel sulphate, mechanical
trauma, stress and anxiety or infection with bacteria or viruses1,13.
Regardless of the initial trigger, it is believed that immune reg-
ulation plays a pivotal role in mediating tissue damage and the
clinical presentation of RAS1. Susceptible individuals experience
focal infiltration of the oral mucosa by monocytes and T lym-
phocytes deep to the basal membrane, followed by loss of
superficial mucosa and a proliferative healing phase14,15.

Family-based studies support a role of genetic susceptibly in
the aetiology of RAS2,16,17 yet to date the genetic basis of this
susceptibility remains poorly characterised. Previous candidate
gene association studies have investigated variation in the region
of genes encoding key cytokines (TNF-α, IL-1α, IL-1β, IL-6, IL-10,
IL-12), with varied results18–21. Genome-wide association studies
(GWAS) have the potential to identify genetic variants associated
with both susceptibility to initial triggers and the immune reac-
tion that leads to the tissue damage and ulcer formation.

A recent study used genome-wide data to look for associations
between gene pathways and specific sub-phenotypic features
(including mouth ulcers) in a case series of patients with systemic
lupus erythematosus22. The study found some evidence for an
association between the vascular endothelial growth factor
(VEGF) pathway and the oral ulcer sub-phenotype. It is not clear
how these findings relate to the general population and there are
no previous conventional genome-wide association studies for
RAS or mouth ulcers.

There is therefore a need to undertake genome-wide analysis
for RAS, but specific measures are unavailable in large cohorts.
The most appropriate strategy given available data, is to use
large collections to identify and replicate associated genetic var-
iants in a well-powered GWAS of self-reported non-specific
mouth ulcers and then validate the effects of these variants in
smaller collections with more clinically relevant RAS-specific
measures. Given that RAS is nested within mouth ulcers, the
inclusion of other causes of ulcers would introduce, at worst,

noise into the analysis and, at best, enhance it by highlighting
mechanisms which are relevant to oral mucosal breakdown
irrespective of trigger.

This genome-wide association study identifies 97 variants
which alter the odds of developing non-specific mouth ulcers and
replicates them in an independent cohort. In silico functional
analyses provide evidence for a role of T cell regulation in the
aetiology of mouth ulcers. These results provide novel insight into
the pathogenesis of a common, important condition.

Results
Contributing studies. In UK Biobank (UKBB) participants with
data on mouth ulcers, the mean age at questionnaire completion
was 56.7 years (range= 38.0, 73.0), 54.2% of participants were
female and 10.2% of participants reported having mouth ulcers
within the last year. In research participants from the personal
genetics company 23andMe, Inc. with data on canker sores,
67.8% were over 45 years old, 59.2% of participants were female
and 72.4% of participants reported ever having canker sores. In
the QIMR Berghofer Medical Research Institute (QIMR) Over
50s (Aged) study (AG), which examined aging and age-related
disease in twin pairs from the Australian Twin Registry, the mean
age was 61.2 years (range= 50.2, 85.6). A large proportion of
participants were female (74.1%) and the proportion reporting a
history of mouth ulcers was 18.7%. Two other studies exclusively
or partially included younger participants, the Avon Longitudinal
Study of Parents and Children (ALSPAC), a UK population-
based birth cohort (mean age= 23.9 years, range= 22.8, 25.3;
65.2% females), and QIMR Melanocytic Naevi in Adolescent
Twins (TW) study, which primarily examined melanotic naevae
in twin pairs (mean age 24.2 years, range= 10.1, 62.3 (a combi-
nation of adolescents and their parents); 53.8% females). In these
studies, the proportion reporting ulcers was much higher
(ALSPAC: ulcer cases= 74%, TW: percentage reporting having
ulcers at least rarely= 86.8%) (Table 1).

Genome-wide discovery analysis for mouth ulcers. The primary
genome-wide analysis was undertaken in UK Biobank. At an
aggregate, genome-wide level there was evidence for a genetic
contribution to mouth ulcers, with heritability estimated at 8.2%
(95% CI: 6.4%, 9.9%) under an infinitesimal model implemented
in linkage disequilibrium score regression (LDSR)23. Under a
non-infinitesimal model implemented in Heritability Estimator
from Summary Statistics (HESS)24, heritability was estimated
at 8.7% (95% CI: 8.2%, 9.2%). Genomic inflation factor
(lambda GC) was estimated at 1.20. The intercept term from
univariate LDSR was 1.03 (95% CI: 1.01, 1.05) suggesting that
most inflation in lambda GC was attributable to polygenicity
rather than bias.

After final quality control (QC), 9,851,866 genetic variants
were included in GWAS. Evidence for genome-wide association
(P < 5e−8) with mouth ulcers was seen at 7127 single variants
(Fig. 1, Supplementary Figure 1). After clumping, using a LD
threshold (r2= 0.1) in PLINK, these formed 97 approximately
independent lead variants.

Signal validation. All 97 of these independent variants showed
directional consistency in 23andMe, with comparable effect sizes
in both collections (Supplementary Figure 2). Summary statistics
for the 10 strongest associated variants after meta-analysis of UK
Biobank and 23andMe are shown in Table 2. All 97 variants are
shown in Supplementary Data 1.

Assessment of effect sizes in additional populations. Three
smaller samples were used to assess the effect sizes of the 97 lead
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variants with more RAS-specific phenotypes. In the AG and TW
studies, clinical photographs were used to help participants
identify RAS as opposed to traumatic ulcers. In the TW study,
measures of ulcer severity were collected and the adolescents
within the study (1572 of 2442 participants) were near the age of
highest RAS prevalence. In the ALSPAC study all participants
were in this high RAS prevalence age range. Twenty-four of the
97 lead variants showed consistent effect direction across all
phenotypes from the three independent collections (Supplemen-
tary Data 1).

Description of lead novel associations. The strongest evidence
for association, after meta-analysis of UK Biobank and 23andMe,
was seen at rs76830965, a common variant lying within ILAS1-
AS1 ~69 kb 5′ of IL12A on chromosome 3. This variant conferred
large effects on the odds of mouth ulcers (odds ratio (OR)

0.72 per C allele, 95% CI: 0.71, 0.73; effect allele frequency (EAF)
0.89; χ2 test P= 4.4e−483). Complementary evidence for a pro-
tective effect of the C allele was seen in all three lookup cohorts
(ALSPAC: OR 0.67, 95% CI: 0.56, 0.79; P= 4.0e−06, AG: OR
0.75, 95% CI: 0.53, 1.07; P= 0.11 and TW: OR 0.86, 95% CI: 0.77,
0.96; P= 7.8e−03) (Table 2, Fig. 2a). After clumping, other
variants in the same 3q25 locus as rs76830965 showed very strong
evidence for association and showed consistent effects in all but
the AG cohort. For example, rs7645203 2.0 kb 5′ of IL12A (OR
1.08 per C allele, 95% CI: 1.08, 1.09; EAF 0.59; P= 9.6e−80),
rs11928736 within SCHIP1 (OR 1.07 per G allele, 95% CI: 1.06,
1.08; EAF 0.56; P= 2.62e−60), and rs55667203 within RP11-
432B6.3 (OR 0.91 per C allele, 95% CI: 0.90, 0.92; EAF 0.84; P=
1.5e−64) (Table 2).

rs1800871, a variant within 1 kb 5′ of IL10, showed the second
strongest evidence for association after meta-analysis, conferring

Table 1 Demographics of samples included in analysis

Study (short name) N (genotype and phenotype data) N (%) Cases Severity level n (%) Mean age
[range]a

Proportion
female (%)

Never Rarely Sometimes Frequently

UKBB 461,106 47,079 (10.2) 56.7 [38.0, 73.0] 54.2
23andMe 355,744 98,298 (72.4) 51.1 [36.0, 66.0]a 59.2
ALSPAC 2976 2201 (74.0) 23.9 [22.8, 25.3] 65.2
AG 1120 209 (18.7) 61.2 [50.2, 85.6] 74.1
TW 2442 115 (13.2) 406 (46.7) 283 (32.5) 66 (7.6) 24.2 [10.1, 62.3] 53.8

UKBB UK Biobank, ALSPAC Avon Longitudinal Study of Parents and Children, AG QIMR Berghofer Medical Research Institute’s (Aged) study', TW QIMR Berghofer Medical Research Institute
Melanocytic Naevi in Adolescent Twins study
aFor 23andMe the interquartile range is given instead of the range
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Fig. 1 Manhattan plot of genome-wide association analysis of self-reported ulcers in UK Biobank

Table 2 Ten lead single variant results from GWAS in UK Biobank, replication in 23andMe and after Meta-analysis

Variant Chr Position Effect allele Other allele UK Biobank (N= 461,106) 23andMe (N= 355,744) Meta-analysis (N= 816,850)

EAF Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value

rs1800871 1 206946634 A G 0.22 1.17 (1.15, 1.18) 2.10e−77 1.19 (1.18, 1.21) 3.51e−164 1.18 (1.17, 1.19) 6.05e−236
rs4683205 3 46334670 G A 0.47 1.12 (1.11, 1.14) 5.70e−64 1.08 (1.07, 1.09) 4.07e−48 1.10 (1.09, 1.11) 4.94e−106
rs34390431 3 46464940 G A 0.35 0.92 (0.90, 0.93) 1.90e−32 0.94 (0.93, 0.95) 3.11e−25 0.93 (0.92, 0.94) 2.90e−54
rs11928736 3 159565409 G C 0.56 1.08 (1.06, 1.09) 3.40e−26 1.07 (1.06, 1.08) 6.20e−36 1.07 (1.06, 1.08) 2.62e−60
rs76830965 3 159637678 C A 0.88 0.71 (0.69, 0.72) 1.60e−229 0.73 (0.72, 0.74) 3.06e−268 0.72 (0.71, 0.73) 4.4e−483
rs7645203 3 159686669 C T 0.60 1.09 (1.07, 1.10) 4.20e−33 1.08 (1.07, 1.09) 1.96e−48 1.08 (1.08, 1.09) 9.65e−80
rs55667203 3 159950798 C T 0.83 0.91 (0.89, 0.92) 2.60e−25 0.90 (0.89, 0.92) 1.96e−41 0.91 (0.90, 0.92) 1.51e−64
rs2523589 6 31327334 G T 0.50 0.93 (0.92, 0.94) 2.70e−26 0.94 (0.93, 0.95) 2.56e−30 0.94 (0.93, 0.94) 1.63e−54
rs7749390 6 137540370 A G 0.62 1.06 (1.05, 1.08) 3.30e−18 1.08 (1.07, 1.09) 1.03e−46 1.08 (1.07, 1.08) 1.98e−62
rs3764613 19 46896217 A G 0.43 0.93 (0.91, 0.94) 1.10e−28 0.93 (0.92, 0.94) 6.82e−46 0.93 (0.92, 0.93) 7.41e−73

All 97 variants reaching genome-wide significance given in Supplementary Data 1. Base pair positions are given with reference to build 37 of human genome reference consortium
Chr chromosome, CI confidence interval, EAF effect allele frequency in UK Biobank
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a large effect on mouth ulcers (OR 1.18 per A allele, 95% CI: 1.17,
1.19; EAF 0.22; P= 6.0e−236) (Table 2, Fig. 2b).

In the 3p21 locus, rs4683205 near CCR3 showed strong
evidence for a moderate effect on mouth ulcers (OR 1.10, 95% CI:
1.09, 1.11; EAF 0.47; P= 4.9e−106) (Table 2, Fig. 2c). Additional
variants in this region (e.g. rs4493469 near CCR3 and rs34390431
near CCRL2) also showed strong evidence for an association with
mouth ulcers after clumping (Supplementary Data 1).

Other associated common variants showed more modest
effects on mouth ulcers. For example, rs7749390 an intronic
variant in the IFNGR1 gene (Table 2, Fig. 2d) and rs3764613
within PPP5C (Table 2, Fig. 2e), showed very strong evidence for
associations with mouth ulcers (OR 1.08, 95% CI: 1.07, 1.08; EAF
0.61; P= 2.0e−62 and OR 0.93, 95% CI: 0.92, 0.93; EAF 0.43;
P= 7.4e−73, respectively).

Within the HLA (chromosome 6p21) there was very strong
evidence for association between rs2523589 (2.4 kb 5′ of HLA-B)
and the odds of developing mouth ulcers (OR 0.94 per G allele,
95% CI: 0.93, 0.94; EAF 0.50; P= 1.6e−54). The estimated effect
size was moderate and showed directional consistency in all three
lookup cohorts (Fig. 2f). Additional haplotype analyses were
undertaken to characterise this association, as described under
sensitivity analyses, below.

Gene prioritisation and enrichment analyses. Gene prioritisa-
tion analysis in DEPICT was performed to nominate plausible
biologically causal genes by identifying genes in different statis-
tically associated loci (P < 5e−8 after clumping) that have similar
predicted functions more often than expected by chance. This
analysis suggested genes encoding chemokines or chemokine
receptors were plausible candidates at many associated loci, for
example suggesting IL12A at the lead associated chr3:159483176-
160796695 locus and IL12B at the chr5:158741791–158757895
locus. In loci containing multiple genes with related functions,
several potential candidates were identified; for example, asso-
ciation at chr3:45864808–46621589 produced a number of can-
didates including CCR1, CCR2, CCRL2, CCR3, and CCR5 among
others (Supplementary Data 2).

DEPICT assesses whether any of 14,461 pre-computed gene
sets are enriched for genes in the associated loci more than would
be expected by a randomly distributed phenotype. This analysis
identified enrichment in 895 sets with a false discovery rate <
0.01. The strongest statistical evidence for enrichment was seen
for MP:0008560 (increased tumour necrosis factor secretion; Z-
test P= 9.74e−12). Strong evidence for enrichment in several T
cell regulatory gene sets was observed, for example, GO:0046632
(alpha-beta T cell differentiation; P= 2.00e−08), GO:0046634
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(regulation of alpha-beta T cell activation; P= 2.70e-08),
GO:200514 (regulation of CD4+, alpha-beta T cells; P= 2.88e
−08), GO:0002286 (T cell activation involved in immune
response; P= 3.75e−08), GO;0042098 (T cell proliferation; P=
3.87e−08) and GO:0045580 (regulation of T cell differentiation;
(P= 4.43e−08) amongst others (Supplementary Data 3).

Furthermore, DEPICT assesses whether genes in associated loci
are highly expressed in any of 209 tissue/cell type annotations.
This revealed enrichment in 36 tissues with false discovery rate
< 0.01, with the strongest evidence for enrichment in haemic and
immune cell lines. The most robust single finding was evidence
for enrichment in gene expression in leucocytes (P= 2.69e−10)
(Supplementary Data 4).

Enrichment in regulatory motifs. Non-parametric enrichment
analysis in GARFIELD25 that accounts for LD, minor allele fre-
quency, matched genotyping variants and local gene density,
identified enrichment in genic annotations and tissue-specific
annotations that are present more than would be expected by
chance. Single variants associated with mouth ulcers were enri-
ched for five prime untranslated region variants by ~18-fold
compared to permuted matched controls, suggesting the variants
identified in this study may predominantly regulate transcription
rather than altering protein structure. Associated variants had
14–18-fold enrichment in DNAse1 hypersensitive sites in a
number of T cell lineages, including CD8+ primary cells, CD4+

primary cells, T helper (Th) 1 cells and Th2 cells. These results
suggest active gene expression occurs near associated variants in a
tissue-specific manner (Supplementary Figures 3–10).

Imputed gene transcription levels. Tests for association between
ulcers and predicted gene expression were performed using S-
PrediXcan26, which uses predictive models to impute transcript
expression levels trained in 48 gene–tissue expression project
(GTeX)27 tissues and then uses full GWAS summary statistics to
test for associations between these predicted expression levels
and phenotype. Results were then assimilated using the S-
MulTiXcan28 method, which integrates information from multi-
ple tissue-specific predictions to improve statistical power. In
total, 25,839 gene transcripts were tested for association, of which
244 transcripts passed a Bonferroni-corrected multiple testing
threshold (P < 1.9e−06). The strongest evidence for association
with mouth ulcers across all tissues was at IL12A mirroring the
single variant results, with an increase in expression predicted to
increase the odds of mouth ulcers (Z-test P= 2.23e−103). Other
single variant results were mirrored in the results of this analysis
with increased expression of SCHIP1 increasing the odds of
mouth ulcers and IL10 decreasing the odds of mouth ulcers (P=
8.99e−70 and 5.60e−55, respectively). The results for all genes
are shown in Fig. 3.

Tests for genetic correlation. To assess whether the genetic
variants contributing to the heritability of mouth ulcers also
influenced other traits, genetic correlations were calculated
against publicly available GWAS summary statistics29. Genetic
correlation results were available for 222 traits, of which two
passed a Bonferroni corrected P-value threshold of P < 2.3e−04.
These were neuroticism (rg= 0.23, P= 1.80e−08) and depressive
symptoms (rg= 0.24, Z-test P= 5.73e−07) (Fig. 4). A full list of
results is included in Supplementary Data 5. For neuroticism and
depressive symptoms, the genetic correlation was further exam-
ined using the rho-HESS approach which estimates local genetic
correlation between mouth ulcers and these traits. At an aggre-
gate level (i.e. incorporating all common genetic variation in the
genome), the rg estimates from rho-HESS gave consistent

interpretation with those from LDSR (neuroticism: rg= 0.18,
P= 8.43e−107; depressive symptoms: rg= 0.33, P= 4.16e−21).
Additionally, it shows that genetic correlation between mouth
ulcers and these traits is evenly distributed across the genome,
without peaks in genetic correlation corresponding to peaks in
local heritability of either mouth ulcers or these two traits
(Supplementary Data 6 and 7).

HLA haplotype analysis. To characterise the association signal
seen in single variant results near HLA-B, analysis of imputed
haplotypes was performed within UK Biobank (n= 336,038).
This identified 24 haplotypes which were associated with mouth
ulcers at a Bonferroni-corrected P-value threshold of 0.05. The
most robust finding was DRB1*0103, an uncommon haplotype
(frequency in controls= 0.017, frequency in cases= 0.022) which
was associated with markedly increased odds of mouth ulcers in a
fully adjusted logistic regression model (OR= 1.33, 95% CI: 1.26,
1.41; χ2 P= 2.03e−24) (Supplementary Table 1, Supplementary
Figure 11).

Polygenic risk score (PRS) analysis. A PRS approach was used to
examine the ability of a series of PRS for mouth ulcers to predict
phenotypic variance in the two QIMR samples (TW and AG,
combined adults and adolescents). Using Genome-wide Complex
Trait Analysis30 to control for genetic relatedness in linear mixed
models (LMMs) in the predictions, up to 0.37% of variation in
mouth ulcer severity (n= 2442) and 0.86% in mouth ulcer case
status (n= 3562) could be accounted for using scores trained in
UK Biobank. While scores trained only from loci meeting
genome-wide significance in UKB accounted for 0.73% of varia-
tion in mouth ulcer severity and 0.21% in mouth ulcer case status.
(Supplementary Tables 2 and 3).

Drug repurposing. To assess whether associated loci might
represent targets for repurposed drug interventions we examined
the Open Targets database for pharmacological interventions
which might recapitulate the effects of naturally occurring genetic
variation. Of the 244 gene transcripts that passed Bonferroni
correction in S-PrediXcan, 27 were not recognised by the plat-
form. As the platform limits the number of genes to 200, the 17
with the weakest evidence for association in S-PrediXcan were
not included in the model. Fifty-two drugs were identified as
potential targets (Supplementary Table 4). Fourteen of these are
in phase IV trials including Ustekinumab, an antibody against the
IL12 protein, encoded by the IL12A gene.

Discussion
This large-scale genome-wide association study used a non-
specific measure of mouth ulcers finding that, in common with
studies of specific ulcer types, mouth ulcers are partly
heritable2,16,17. Although the estimate of heritability from this
study is likely an under-estimate and only provides the lower
bound, it is substantially less than the heritability previously
estimated in twin studies16. Some of this heritability is attribu-
table to genetic variants with large effects on the odds of devel-
oping mouth ulcers, such as the lead variant identified here
(rs76830965). Effect estimates in samples with RAS-specific
phenotypes provide further evidence that these variants are
associated with this specific type of oral ulceration. These variants
with large effects are closely related to biological mechanisms
thought to be relevant to the formation of mouth ulcers. The
remainder of the heritability is likely driven by indirect effects of
large numbers of variants with modest effects on the odds of
developing mouth ulcers. Given these genetic variants, which
act indirectly, likely also contribute to a wide range of distal
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health-related phenotypes, it is perhaps unsurprising that neu-
roticism and depressive symptoms show detectable genetic cor-
relation with mouth ulcers in both the LDSR and rho-HESS
analyses. The view that this correlation is driven by non-specific
associations across the genome, rather than effects at lead-
associated variants, is supported by the location specific genetic
correlation performed in rho-HESS.

The variants with larger effects on the odds of mouth ulcers are
likely to be clinically informative. Many are located in or near
genes or are enriched in pathways relating to T cell immunity,
and tend to impose a Th1-type immune response, a biologically
plausible mechanism that supports previous literature and reso-
nates with clinical practice. Complementary evidence of these
variants having true causal associations with RAS is provided by
the consistent effect directions seen for many of them in the three
independent look-up cohorts with more specific phenotypes.

PRSs, generated using variants selected with a range of sig-
nificance thresholds, explained only a small amount of variance in
the ulcer phenotypes. At present, these PRSs are unlikely to be a
clinically useful tool in predicting which patients are at risk of
developing mouth ulcers or in predicting severity of mouth
ulcers.

Association in the HLA region at the single-SNP level was
recapitulated by haplotype analysis, which identified multiple
HLA haplotypes which are associated with odds of mouth ulcers.
The most striking finding was an association between the
DRB1*0103 haplotype and increased odds of mouth ulcers.
DRB1*0103 is an uncommon haplotype of HLA-DRB1 which
encodes the beta chain of the HLA-DR heterodimer, forming a
ligand for the T cell receptor.

There are traits that commonly present with similar clinical
symptoms to mouth ulcers, and the loci identified in this study
show commonality with previous GWAS of these traits. Behçet’s
disease is thought to relate to inappropriate T-cell-mediated
inflammatory response and presents clinically with mouth ulcers
among other features31. Genetic variants at IL12A, IL10, STAT4,
RIPK2, IRF8, and CEBPB-PTPN1 which have been reported in
previous GWAS for Behçet’s disease32–34, are in high LD and
have consistent effect direction with those reported here. This
raises the possibility of a similar mechanism leading to clinical
presentation with mouth ulcers in both conditions. Elsewhere in
the literature there is striking overlap with the genetics of coeliac
disease, where T cell-mediated responses are also believed to be
important35. In particular, rs17810546 (a variant in close LD with
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rs76830965, the top associated variant in our analysis, r2= 0.98)
was reported as early as 2008 to have large effects on coeliac
disease36, a finding which has since been validated37, whilst CCR3
has been reported more recently38. The HLA-DRB1*0103 hap-
lotype has previously been reported as associated with ulcerative
colitis39,40 and both Crohn’s and ulcerative colitis41 in candidate
gene association studies. It is possible that the overlap in lead
variants between these diseases is driven by specific tag variants
flagging particular biological events affecting auto-immune traits
of the digestive system.

Immune regulatory loci identified here may influence the
susceptibility of infective or non-infective risk factors for mouth
ulcers. A range of viral42–44, bacterial45 and other changes in the
oral microbiome46 have been suggested as acquired risk factors
for mouth ulcers. It is possible that the genetic loci identified in
this study relate to mouth ulcers through regulation of the host
microbiome; a similar view has recently been proposed for both
Behçet’s and coeliac disease47,48. Hematinic status, especially
deficiencies of folate, vitamin B12, ferritin or haemoglobin are
thought to be risk factors for mouth ulcers49 and these defi-
ciencies might occur secondary to genetically determined
inflammatory or immune states, such as pernicious anaemia or
coeliac disease.

Loci identified in the present study may also have an effect at a
tissue response level, where the cellular response to minor oral
trauma is either proportionate and leads to resolution or dis-
proportionate, leading to the clinical experience of mouth ulcers.
One current view is that dysregulation of local cell-mediated
response leads to an inappropriate focal accumulation of CD8+ T
cell populations within the oral mucosa following minor triggers,
leading to tissue damage and clinical manifestation as oral
ulceration44,50. These upstream and downstream processes are
not mutually exclusive and future research may wish to examine
the effect of specific genetic loci across strata of potential risk
factors to gain further insight into the aetiology.

A limitation of this study is that the presence or absence of
mouth ulcers was inferred from questionnaire data rather than
clinical examination. This is a necessary limitation as clinical oral
examination data were not available and because the short
duration and intermittent nature of mouth ulcers means they are
often not visible on clinical examination even for affected indi-
viduals. In common with any questionnaire-derived data this may
lead to some misclassification. For example, the phenotypes used
in this study do not distinguish between RAS (which is in any
case a clinical diagnosis) and other causes of mouth ulcers. For
the most part we believe non-RAS ulceration (such as traumatic
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ulceration) will be uncorrelated with genotype, and will therefore
bias single SNP results and heritability estimates towards the null
rather than generating false positive findings. Participants with
Behçet’s disease or ulcerative colitis may report mouth ulcers
which are secondary to their underlying diagnosis which could
lead to false positive findings, but these conditions are uncom-
mon compared to RAS. There may also be participants who have
a genetic predisposition to over-report or under-report their
symptoms which would mean misclassification is correlated with
genotype. As discussed above these non-specific associations
across the genome are anticipated to have small effects and are
therefore considered unlikely to influence the lead-variant results
but may bias the heritability estimates away from the null.

Mouth ulcers become less common with age and there may be
a genuine shift in aetiology with time. This was reflected in the
different samples; the studies which include younger participants
(ALSPAC and TW) had much higher mouth ulcer prevalence
compared to the studies with older participants (UK Biobank and
AG). A major motivation for the use of the look-up collections
was to assess the effects of the lead genetic variants on more RAS-
specific phenotypes and in studies with younger participants.
However, a limitation of this strategy is the wide confidence
intervals for effect estimates in each of the three smaller lookup
cohorts, meaning that only variants with larger effects are
expected to exclude the null and the heterogeneity across the
three studies which precludes the use of meta-analysis.

The Open Targets analysis identified 52 drugs which might
recapitulate the effects of naturally occurring genetic variation.
Some of these agents are tumour necrosis factor targets and are
licenced for immune-related diseases, such as rheumatoid
arthritis (Infliximab51) while others such as Ustekinumab target
IL12A and are licenced for several diseases (psoriasis52, psoriatic
arthritis53 and Crohn’s disease54), and are being repurposed for
other immune diseases such as systemic lupus erythematosus55.
This vignette may help illustrate how the availability of GWAS
results for mouth ulcers could facilitate repurposing of existing
drug interventions or the development of novel, specific inter-
ventions for mouth ulcers.

In conclusion, this GWAS of mouth ulcers identified multiple
associated loci including a common variant near IL12A with large
effects on risk of mouth ulcers. Follow-up analyses provide
insight into the aetiology of this common ulcerative condition
and prioritise topics for future basic and applied research.

Methods
Overview. A GWAS for mouth ulcers was performed within UK Biobank. Variants
passing a conventional threshold for genome-wide significance (P ≤ 5.0e–08) were
replicated in 23andMe. All variants which showed directional consistency across
the two cohorts were further explored in three independent resources with more
specific mouth ulcer phenotypes and genetic data; namely the ALSPAC, the QIMR
Over 50s (Aged) study (AG) and the QIMR Melanocytic Naevi in Adolescent
Twins (TW) study.

Participants and phenotypes. UK Biobank is a population-based health research
resource consisting of ~500,000 people, aged between 38 and 73 years, who were
recruited between the years 2006 and 2010 from across the UK56. Participants
provided a range of information pertinent to adult and later life health outcomes
via questionnaires, interviews, physical measurement and donating biological
samples (data showcase available at www.ukbiobank.ac.uk)57. In the baseline
questionnaire participants were asked to supply information about their oral
health. The question stem was: Do you have any of the following? (You can select
more than one answer). The possible answers included mouth ulcers and partici-
pants were prompted to answer this question thinking about the past year, if they
pressed the help button. Participants who selected this answer were coded as cases.
Participants who did not select this answer were coded as controls. Participants
who chose the option for prefer not to answer, or did not complete the ques-
tionnaire session were coded as missing and not included in further analysis. UK
Biobank received ethical approval from the North West Multi-centre Research
Ethics Committee (REC reference for UK Biobank is 11/NW/0382).

23andMe Inc. is a personal genomics company that provides genotype and
health-related information to customers58. Individuals included in the analyses
provided informed consent and answered surveys online in accordance with the
23andMe human subjects protocol, which was reviewed and approved by Ethical
and Independent Review Services, a private institutional review board (http://www.
eandireview.com). Mouth ulcer cases were defined as those who answered yes to
the question: Have you ever had a canker sore (an open sore on the soft tissue
inside the mouth)? Those who answered no were considered controls, and those
who responded don’t know were not included in the analysis.

The ALSPAC longitudinal birth cohort recruited pregnant women living near
Bristol, UK with an estimated delivery date between 1991 and 1992. There were
15,247 pregnancies resulting in 14,973 live births59. Follow up has included clinical
assessment and questionnaires and is ongoing. Ethical approval for the study was
obtained from the ALSPAC Ethics and Law Committee and the Local Research
Ethics Committees. Informed consent for the use of data collected via
questionnaires and clinics was obtained from participants following the
recommendations of the ALSPAC Ethics and Law Committee at the time. Study
children were asked to complete questionnaires about oral health at age 23.9 years.
Participants were asked if they had ever had mouth ulcers (no/yes, but only once or
twice/yes, on several occasions). An ever ulcers phenotype was generated with any
answer of Yes,… used to define case status and No to define controls. Those who
did not answer the question were set to missing. Study data were collected and
managed using REDCap electronic data capture tools60.

The QIMR Over 50s (AG) study was initiated in 1992–1993 to understand the
role of genetics in healthy aging and age-related disease. AG recruited twin pairs
from the Australian Twin Register who were over 50 years of age. This study was
approved by the QIMR Berghofer Human Research Ethics Committee (HREC
reference number P1204). Participants were asked whether they had mouth ulcers
now/previously/both or never. This was used to derive case control status for ever
or never having ulcers.

The QIMR melanocytic naevi in adolescent twins (TW) study was established in
1992 to investigate melanotic naevae. Twin pairs aged around 12 years of age were
recruited from schools in Brisbane and the surrounding area in Queensland,
Australia. This study was approved by the QIMR Berghofer Human Research
Ethics Committee (HREC reference number P193). All twins and most parents
donated blood for DNA extraction and completed a questionnaire. Children and
mothers of nuclear families were asked independently about mouth ulcers. Mothers
also answered a questionnaire on mouth ulcers on behalf of the entire family, with
each family member given a score for ulcers which was scaled to allow comparison
with the studies with binary ulcer phenotypes (never= 0, rarely= 1/3, sometimes
= 2/3, frequently= 1). Pictures of RAS were used to help participants identify
whether they had this specific type of oral ulceration. These ulcer questions were
treated as a severity score preserving all four possible responses. Severity scores
from both parents and children were combined into a mixed cohort.

Oral health phenotypic data collection in the ALSPAC study was conducted
between November 2015 and September 2016, the AG study was conducted
between 1992 and 1993 (n= 1120). Mouth ulcer data in the TW study were
collected from 1992 until 2016 (n= 2442).

Genotypes. The UK Biobank genotype data (July 2017 release) contains
488,377 successfully genotyped samples. 49,979 individuals were genotyped using
the UK BiLEVE array and 438,398 using the UK Biobank axiom array. Pre-
imputation QC, phasing and imputation were completed61. In brief, prior to
phasing, multiallelic variants or those with minor allele frequency ≤ 1% were
removed. Phasing of genotype data was performed using a modified version of the
SHAPEIT2 algorithm62. Genotype imputation was performed to a combined
UK10K haplotype63 and Haplotype reference consortium (HRC) reference panels
using IMPUTE2 algorithms64. A further QC protocol was then applied at the
Wellcome Trust Centre for Human Genetics prior to release (http://biobank.ctsu.
ox.ac.uk/crystal/docs/genotyping_qc.pdf). The analyses presented here were
restricted to autosomal variants using a graded filtering so that rarer genetic var-
iants are required to have a higher imputation INFO score (Info > 0.3 for MAF >
3%; Info > 0.6 for MAF 1–3%; Info > 0.8 for MAF 0.5–1%; Info > 0.9 for MAF
0.1–0.5%). Monomorphic and uncommon variants with MAF < 0.1% were
removed. In addition, all variants not included in the HRC site list were removed.
Individuals with sex-mismatch (derived by comparing genetic sex and reported
sex) or individuals with sex-chromosome aneuploidy were excluded from the
analysis (n= 814). A k-means cluster analysis was performed with four clusters
using the first four principal components provided by UK Biobank in the statistical
software environment R65. The current analysis includes the largest cluster from
this analysis (n= 464,708), of whom 461,106 individuals (47,100 with mouth
ulcers) had non-missing phenotype data and were included in GWAS66.

Sensitivity analyses of the HLA region used imputed HLA haplotypes provided
by UK Biobank. As this analysis was performed using logistic regression rather
than mixed models, analysis was restricted to individuals of white British ancestry.
In addition, one individual from each pair of closely related (third degree or
closer) individuals was removed until no related pairs remained. Following these
exclusion criteria, 337,115 individuals had genotype data available, of which
336,038 had non-missing phenotype data and were included in logistic regression
models.
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In 23andMe, DNA extraction and genotyping were performed on saliva samples
by CLIA-certified and CAP-accredited clinical laboratories of Laboratory
Corporation of America. QC, imputation and genome-wide analysis were
performed by 23andMe67. Briefly, samples were genotyped on a 23andMe custom
genotyping array platform (Illumina HumanHap550+Bead chip V1 V2,
OmniExpress+Bead chip V3, custom array V4) with a minimum call rate of 98.5%.
Missing participant genotype date was imputed using the UK10K and 1000
genomes combined reference panel. Analysis was conducted on a maximal set of
unrelated individuals.

Genetic data for the ALSPAC participants has been collected (n > 10,000).
Genotyping was conducted on the Illumina HumanHap550 quad chip for children
and Illumina human660W quad array for mothers. Prior to imputation, samples
with >3% missingness, indeterminate heterozygosity, extreme autosomal
heterozygosity or which clustered outside the CEU HapMap2 population using
multidimensional scaling were removed. In addition, variants with minor allele
frequency of <1%, call rate of <95% or violations of Hardy–Weinberg equilibrium
(P < 5e−07) were removed. Samples and variants passing these QC measures were
carried forward to a joint phasing stage, prior to imputation to the HRC reference
panel using the Michigan imputation server (r1.1, 2017 release).

Genetic data for the participants of AG and TW with mouth ulcer data have
been collected as part of a larger project by QIMR that comprises multiple waves of
genotyping. In total, 3562 participants had phenotype and genotype data available
(n= 1120 for AG, n= 2442 for TW). Most participants were genotyped on the
Illumina Human610-Quadv1_B (n= 1942) or HumanCoreExome-12v1-0_C (n=
1019) arrays; genotyping on a small number of additional individuals was
conducted on the Illumina HumanOmni25M-8v1-1_B (n= 144), 317 K (n= 247),
HumanCNV370 (n= 91), Human660W-Quad_v1_C (n= 8),
HumanOmniExpress-12v1-1_A (n= 21) and PsychArray-B (n= 92) platforms.
Genotype data from all assays was jointly imputed using HRC reference panel
(r1.1)68–70.

Statistical methods. A GWAS was performed using a LMM implemented in
BOLT-LMM (v2.3)71,72 using an in-house GWAS pipeline73. A subset of 143,006
high quality variants were used to estimate and account for genetic relatedness and
ancestry, allowing for the inclusion of closely and distantly related individuals in
genetic analyses74. Age, sex and genotyping array were included as covariates in
association testing. The Bayesian model was not predicted to provide a sub-
stantially better fit than a conventional LMM72, so results are presented for the
standard bolt_lmm_inf model. BOLT-LMM association statistics are on the linear
scale. As such, test statistics (betas and their corresponding standard errors) were
transformed to log odds ratios and their corresponding 95% confidence intervals
on the liability scale using a Taylor transformation expansion series75. Other
methods for transforming betas to odds ratios that take into account allele fre-
quency have been suggested. Both methods for deriving transformed OR showed
excellent concordance (Supplementary Figure 12) so only the values from Taylor
transformation expansion series are reported. Genome wide significance was
defined at P < 5.0e−08.

Associated loci that passed the genome-wide association threshold were
clumped based on LD values using PLINK (version 1.9)76 to identify approximately
independent associated variants (options --clump-kb 10000 –clump-p1 5e-08
--clump-p2 1 --clump-r2 0.1), using an independent sample of HRC imputed
genetic data to estimate LD. These variants were selected for replication in
23andMe.

In 23andMe, associations between the UK Biobank genome-wide associated
variants and the mouth ulcer phenotype were assessed using linear regression
assuming an additive model and using a 23andMe internally developed pipeline.
Replication was considered successful if directionality was consistent across the two
studies. Where replication was successful the estimates from UK Biobank and
23andMe were meta-analysed using the meta package in R77.

Association between the replicated variants and the mouth ulcer phenotypes
were assessed using a LMM with age and sex as covariates in the three lookup
cohorts. In ALSPAC this was implemented in BOLT-LMM (v2.3)71,72 as described
above for UK Biobank. For AG and TW this was implemented in RareMetalWorker78.
As with the GWAS association statistics, the results were transformed using a Taylor
transformation expansion series to express log odds ratios on the liability scale. Variant
lookups were in additional collections with better phenotypic data. These lookups
aimed to provide conducted to provide complementary evidence for the effects sizes of
the lead variants from independent sources of data. Insufficient power in individual
studies and heterogeneity in phenotype across studies, which precludes meta-analysis,
mean they were not used as further replication sets. Therefore, all variants identified in
UK Biobank and followed up in 23andMe were taken through to in-silico functional
analyses to avoid incorrectly disregarding potentially causal variants.

Tests for polygenicity bias and heritability. Univariate LD score regression
was performed using the LDSC software package (v1.0.0, April 2017 release)23 to
quantify the relative contribution of polygenicity and bias to inflation in
single variant test statistics from UKBB. We used LDSC to estimate heritability
under the infinitesimal model assumption and obtained contrasting estimates
from the HESS method which may be more robust under certain genetic
architectures24.

HLA haplotype analysis. Analysis of the HLA region in UK Biobank used 362
imputed haplotypes (provided by UK Biobank). Unadjusted analysis was per-
formed using logistic regression and an additive model for each haplotype which
used haplotype dosage to account for uncertainty in haplotype imputation.
Seventeen haplotypes were not observed within the final sample, whilst 345 were
present in at least one individual and produced test statistics. Of these 345 hap-
lotypes, 24 passed a Bonferroni-corrected P-value threshold (P < 1.5e−04) and
were examined further in a fully adjusted model which included adjustment for
age, sex, 40 genetic principal components and genotyping array.

In-silico functional analysis. Tests for association between ulcers and predicted
gene expression were performed using S-PrediXcan26, which uses predictive
models to impute transcript expression levels in specific tissues and then uses full
GWAS summary statistics to test for associations between these predicted
expression levels and phenotype. A threshold was applied on predicted perfor-
mance (a measure of ability to accurately infer transcription levels at a given locus
in a specific tissue) with a cut-off at 0.1. After filtering, all remaining predicted
expression levels were tested for association with mouth ulcers. S-MulTiXcan28 was
then applied to these tissue-specific estimates, which harnesses information from
the sharing of expression quantitative trait loci (eQTL) across multiple tissues, to
increase power to detect the effects of gene expression on the phenotype of interest.
A Bonferroni correction for multiple testing was applied which takes into the
correlation between tissues and equates to 0.05 divided by the number of genes
with a prediction model in at least one tissue (P < 1.9e−06). Analysis was per-
formed using the MetaXcan standalone package, which includes the S-PrediXcan
and S-MulTiXcan methods.

Gene prioritisation, gene set enrichment and tissue enrichment analysis were
performed using the DEPICT software package79. DEPICT anticipates that
association signals for a biologically causal gene will co-localise with genes encoding
other members of a co-regulated gene network elsewhere in the genome. By using
publicly available gene expression data to define co-regulated gene networks, DEPICT
can take account of association patterns elsewhere in the genome to nominate
biologically plausible candidate genes at a statistically associated locus. DEPICT
analysis was performed using variants that passed the genome-wide threshold (P <
5e−8) after clumping and default settings in the standalone java software.

Enrichment in regulatory motifs was assessed using the non-parametric
enrichment analysis package GARFIELD25. Garfield performs greedy LD pruning of
GWAS summary statistics using reference data from the UK10K project. LD-tagged
genomic regions are then annotated with information on 1005 regulatory features
identified in ENCODE, GENCODE and Roadmap epigenomics projects. These
features include genic annotations, chromatin states, histone modifications, DNase1
hypersensitive sites and transcription factor-binding sites in a range of cell lines.
GARFIELD tests whether regulatory information is present in trait-associated loci
more frequency than expected by chance by performing adaptive permutations at
various significance thresholds (p= 10−1, 10−2,…, 10−8) but requires full GWAS
data. Trait-associated loci are matched with appropriate null loci using many features,
such as LD information from the ENCODE and ROADMAP projects. Analysis was
conducted using default settings in standalone GARFIELD (v1.0) software.

Tests for genetic correlation. Genetic correlation between mouth ulcers and
other traits was assessed using bivariate LD score regression implemented in the
LD Hub platform29. For traits that passed the Bonferroni-corrected threshold for
association the rho-HESS approach80 was applied to estimate local correlation
between mouth ulcers and these phenotypes.

PRS analysis. PRSs were generated in plink v1.9 at a range of P-value thresholds
between 1 and 5e−08. PRS were standardised using a mean of 0 and a standard
deviation of 1. Association between PRS and mouth ulcers was assessed using
LMMs in GCTA30, including a genetic relatedness matrix to account for family
structure and relatedness in QIMR.

Drug repurposing. The Open Targets database for pharmacological interventions
(https://www.targetvalidation.org) was used to assess whether any of the ulcer-
associated genes might represent targets for drug repurposing. The S-PrediXcan
analysis was used to select gene transcripts.

Data availability
All phenotypes and genotypes used in UK Biobank are available to bona fide researchers
through a process described at ukbiobank.ac.uk. The ALSPAC study website contains
details of all the data that are available through a fully searchable data dictionary (www.
bristol.ac.uk/alspac/researchers/our-data). The data access procedures for ALSPAC data
are described in full online (http://www.bristol.ac.uk/alspac/researchers/access/).
Researchers interested in using QIMR data can contact Nick Martin (Nick.
Martin@qimrberghofer.edu.au). All software packages referred to in the methods are
available online. The summary statistics of the UK Biobank GWAS have been deposited
at data.bris [https://doi.org/10.5523/bris.459eyiulzf9y25yh6nsf550y4] and the summary
statistics for the 97 lead variants from 23andMe, inc. and the meta-analysis of these with
the UK Biobank variants can be found in Supplementary Data 1.
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