

Tate, J. P., Sterne, J., Justice, A., & Veterans Aging Cohort Study (VACS) and The Antiretroviral Therapy Cohort Collaboration (ART-CC) (2019). Albumin, white blood cell count, and body mass index improve discrimination of mortality in HIV-positive individuals. *AIDS*, *33*(5), 903-912. https://doi.org/10.1097/QAD.00000000002140

Peer reviewed version

Link to published version (if available): 10.1097/QAD.00000000002140

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wolters Kluwer Heath at

https://journals.lww.com/aidsonline/Abstract/publishahead/Improved_discrimination_of_mortality_with_Veterans. 97006.aspx. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

Improved discrimination of mortality with Veterans Aging Cohort Study (VACS) Index 2.0

in HIV-positive individuals

Janet P. Tate, Jonathan A. C. Sterne and Amy C. Justice for the Veterans Aging Cohort Study

(VACS) and The Antiretroviral Therapy Cohort Collaboration (ART-CC)

Corresponding Author: Janet Tate, ScD VA Connecticut Health Systems 950 Campbell Ave; West Haven, CT 06516 Tel 203-932-5711 X 5371 Fax 203-937-4926 Janet.Tate2@va.gov

Writing group members Veterans Aging Cohort Study Kathleen M. Akgun Sheldon T. Brown Kendall Bryant CC Chang Cynthia L. Gibert Mathew Bidwell Goetz Kaku So-Armah Vincent Marconi Kathleen McGinnis Krisann K Oursler Christopher T Rentsch David Rimland Maria Rodriguez-Barradas

The Antiretroviral Therapy Cohort Collaboration Jonathan AC Sterne Margaret T May Adam Trickey Robert Zangerle (AHIVCOS) John Gill (Alberta) Fabrice Bonnet (AQUITAINE)

Peter Reiss (ATHENA) Antonella D'Arminio Monforte (ICONA) Heiner Bucher (SHCS) Ramon Tiera (VACH) Timothy R. Sterling (Vanderbilt) Heidi Crane (University of Washington

Running head: Improved risk index for people with HIV infection

ABSTRACT

Objective: Despite viral suppression and immune response on antiretroviral therapy (ART), people with HIV infection experience excess mortality compared to uninfected individuals. The Veterans Aging Cohort Study (VACS) Index incorporates clinical biomarkers of general health with age, CD4 count, and HIV-1 RNA to discriminate mortality risk in a variety of HIV positive populations. We asked whether additional biomarkers further enhance discrimination.

Design and Methods: Using patients from VACS for development and from the Antiretroviral Therapy Cohort Collaboration (ART-CC) for validation, we obtained laboratory values from a randomly selected visit from 2000-2014, at least one year after ART initiation. Patients were followed for 5-year, all-cause mortality through September 2016. We fitted Cox models with established predictors and added new predictors based on model fit and Harrell's c-statistic. We converted all variables to continuous functional forms and selected the best model (VACS Index 2.0) for validation in ART-CC patients. We compared discrimination using c-statistics and Kaplan-Meier plots.

Results: Among 28,390 VACS patients and 12,109 ART-CC patients, 7,293 and 722 died respectively. Nadir CD4, CD8, and CD4:CD8 ratio did not improve discrimination. Addition of albumin, white blood count (WBC), and body mass index (BMI), improved c-statistics in VACS from 0.776 to 0.805 and in ART-CC from 0.800 to 0.831. Results were robust in all 9 ART-CC cohorts, all lengths of follow-up and all subgroups.

Conclusion VACS Index 2.0, adding albumin, WBC, and BMI to version 1.0 and using continuous variables, provides improved discrimination and is highly transportable to external settings.

Key words: albumin, BMI, cohort study, comorbidity, mortality, prognostic index, validation

Introduction

With antiretroviral treatment (ART), people with HIV infection (PWH) typically achieve viral suppression, leading to increasing CD4 count. However their health remains compromised compared with demographically similar individuals without HIV [1-4]. Traditional HIV biomarkers (CD4 count and HIV-1 RNA) are no longer sufficient for clinical management and research. The Veterans Aging Cohort Study (VACS) Index, a validated, generalizable risk index [5], employs routine clinical data to provide a summary of overall disease burden. Higher scores indicate increasing risk of all-cause mortality, hospitalization [6], medical intensive care admission [6], cardiovascular disease [7], fragility fractures [8] and cognitive compromise [9, 10]. The original Index (version 1.0) includes age, CD4, HIV-1 RNA and general health biomarkers (hemoglobin, alanine and aspartate transaminases, platelets, creatinine and hepatitis C virus [HCV] serostatus). Adding these biomarkers to an index restricted to age, CD4 and HIV-1 RNA substantially improved discrimination (c-statistic: 0.78 vs 0.72) [5].

Although widely used, VACS Index 1.0 has limitations. It categorizes predictors to simplify calculation and interpretation, limiting its ability to detect small changes. While discrimination (how well those who die are distinguished from those who do not) is better than other risk indices in common use [11-14] adding predictors might further improve discrimination. Blood pressure, cholesterol and smoking did not improve VACS Index 1.0 [15], but team clinicians suggested other variables shown to be associated with poor outcomes. These include: nadir CD4, CD8, CD4:CD8 ratio [16, 17], albumin [18-21], white blood count (WBC) or absolute neutrophil count (ANC) [22, 23], and body mass index (BMI) [24, 25].

We aimed to 1) develop an improved VACS Index (2.0), 2) externally validate using data from European and North American cohorts participating in the Antiretroviral Therapy Cohort Collaboration (ART-CC), and 3) evaluate generalizability among important subgroups.

Methods

Development of VACS Index 2.0

We developed VACS Index 2.0 using patients from VACS, a cohort of all HIV-infected US military veterans in Veterans Health Administration (VA) care [26]. For this analysis, eligible patients were at least 18 years old, initiated ART between 1996 and 2014, and had a visit between 2000 and 2014. We excluded 2,782 individuals who had negative HCV RNA (at any time during the study period) after previously having detectable HCV RNA, because they may have received treatment for HCV infection or spontaneously cleared the virus. Few patients were treated for HCV prior to availability of direct acting antivirals (DAA) starting in 2014 and there is not yet long-term follow-up for those treated with DAAs. We obtained all laboratory values and BMI for a given individual for each visit date, at least one year after ART initiation. Values obtained prior to the visit date were allowed to carry forward for up to 180 days, resulting in complete information for 75% of visits. In sensitivity analysis, allowing values to carry forward for one year, 87% of visits had complete data. We randomly selected a visit date for each patient from among those with complete data to represent a typical patient in care. In addition to outpatient data, laboratory results obtained during hospitalization were included to provide a wider range of values. We only included one random day per hospitalization in the visit pool to avoid over-representation in the sampled visit days. Patients were followed up to five years for, all-cause mortality until September 30, 2016. Ascertainment of deaths of VA patients is excellent [27, 28].

We first replicated the previously published VACS Index (1.0) by fitting a Cox model in the newly derived dataset using categorical predictors (age, CD4 count, HIV-1 RNA and laboratory measurements of hemoglobin, aspartate and alanine transaminases (AST, ALT), platelets, creatinine, and HCV status). Composite markers of liver and renal injury (FIB-4 and estimated glomerular filtration rate [eGFR] based on the CKDEPI equation) were calculated. FIB-4 is a validated indicator of liver fibrosis [29]. eGFR is a validated indicator of impaired renal function [30]. HCV infection status was based on detectable plasma HCV-RNA (85%), positive antibody test (10%), or documented diagnosis (5%). Once testing HCV positive, patients were assumed to remain positive (since we excluded treated patients). For comparison, we also modeled VACS Index 1.0 predictors as continuous variables, as described below.

We then evaluated additional candidate variables, one at a time and in combination using Akaike's information criterion (AIC, lower is better) for model fit and Harrell's c-statistic (range 0.5 to 1.0, higher is better) for discrimination. We used categorical variables with 10-level categories for each predictor with equal number of deaths in each category. We fitted a Cox model and plotted coefficients of categorized variables by median of each category. Categories were refined to assess shape of the curve, maintaining at least 100 deaths per level. We determined an appropriate continuous functional form for each variable including quadratic, cubic, and natural log terms to account for U-shaped associations. Extreme values were replaced with the 1st or 99th percentile to avoid undue influence; most variables were centered at the median. Splines were used if a suitable polynomial form was not found. Once a candidate final model was developed, we left out one variable at a time to see if any predictor could be dropped without affecting model fit and discrimination.

To create scores, we used regression coefficients, estimated in this sample, for VACS Index 1.0 (original index, categorical variables) and VACS Index 2.0 (additional predictors, continuous variables). We applied regression equations to each patient using their lab values and the model coefficients to create linear predictors for each index, which were then scaled to create scores of approximately 0 to 100. To illustrate in a clinically meaningful way, we calculated scores using a range of plausible values (between lowest and highest included in the

5

model) for each predictor, while setting all others to the median. The range of scores showed which predictors had the greatest influence .

Validation of VACS Index 2.0

We validated VACS Index 2.0 using data from ART-CC (described elsewhere [31]), an international collaboration combining data on PWH from Europe and North America. Eligible cohorts contributed data on laboratory values of interest and reported at least 40 deaths in such patients. These were the AIDS Therapy Evaluation Project Netherlands (ATHENA), Austrian HIV Cohort Study (AHIVCOS), Italian Cohort of Antiretroviral-Naive Patients (ICONA), Aquitaine Cohort (France), Swiss HIV Cohort Study (SHCS), VACH (Spain), South Alberta Clinical Cohort (Canada), Tennessee Center for AIDS Research Cohort (US), and the University of Washington HIV Cohort (US). Included cohorts were randomly assigned a letter from A through I for anonymity. Patients and laboratory values were selected using the same approach as described for VACS patients, but without any limitation of values obtained during hospitalization (hospitalization dates were not available). The proportion of visit dates with complete information varied between 5% and 82% by cohort. Those with linkage to an electronic health record (EHR) had more complete data. In sensitivity analysis we compared discrimination between cohorts with at least 50% completeness to those with less than 50%.

Using VACS Index scores as predictors we compared performance in VACS and ART-CC (overall and by cohort). We evaluated discrimination using c-statistics, hazard ratios per 5unit increase in VACS Index 2.0 score in Cox models, and Kaplan-Meier (KM) plots by decile of risk (customized for VACS and ART-CC to have equal number of deaths per decile). We evaluated discrimination at varying lengths of follow-up (30 days, 90 days, 6 months, 1, 2, 3, 4 and 5 years) using fixed weights from 5-year outcome models developed in VACS.

Performance across subgroups

Finally, development and validation datasets were combined to evaluate performance in important patient subgroups [women; those with HIV-1 RNA<500 copies/mL; HCV co-infected patients; and low-risk patients (age <50 years, CD4 \geq 200 cells/mm³ and HIV-1 RNA \leq 500 copies/mL)]. Those not meeting criteria for low-risk were categorized as high-risk. We calculated c-statistics and mortality rates in patients defined as low- and high-risk as a function of VACS Index 2.0 score.

We used SAS version 9.4 (SAS Institute, Cary, NC, USA) for all analyses, except that calculation of Harrell's c-statistic used Stata version 14 (Stata Corp., College Station, TX, USA). Institutional review boards from each cohort approved analysis of routinely collected data.

Results

Half the randomly selected visit dates were in 2010 and later (Table 1). Among 28,390 VACS patients there were 7,293 deaths (7.2 per 100 person-years (PY)); 39% occurred in the first year of follow-up. Median time on ART at the random visit date was 4.2 years; subsequent median follow-up was 4.1 years. Among 12,109 ART-CC patients there were 722 deaths (2.0 per 100 PY, ranging 1.2 to 4.5 by cohort); 44% occurred in the first year. Median time on ART was 4.2 years, median follow-up was 3.2 years. Compared to ART-CC, VACS patients were older (median 53 vs 43 years), more likely to be male (98% vs 74%) and more likely to have initiated ART before 1999 (Table 1). VACS patients were less likely than ART-CC patients to be virally suppressed (76% vs 88%) or defined as low-risk (24% vs 60%).

In VACS (development) data, model fit and discrimination improved with addition of CD4:CD8 ratio, BMI, albumin and WBC, individually and in combination, compared to VACS Index 1.0 (Appendix Figure 1). However, removal of CD4:CD8 ratio from the candidate final model did not decrease performance so it was dropped. Prediction was not improved with

addition of nadir CD4 or CD8 count. WBC and ANC were highly correlated (r = 0.87) and performed equally well, but WBC was more widely available. The final VACS Index 2.0, using all continuous variables, included all original variables (age, CD4 count, HIV-1 RNA, hemoglobin, FIB-4, eGFR, and HCV status) plus albumin, WBC, and BMI. Polynomial forms were found for all variables except eGFR which was modeled using splines (Appendix Table 1). Extending last value carried forward time to one year provided <3% additional visit dates or deaths, and all estimates were similar to those obtained using 180 days in the main analysis.

When scores were calculated across a plausible range: age and albumin had the greatest influence. To illustrate, age 30 corresponds to 32 points and age 75 corresponds to 59 points, for a range of 27 points. An albumin of 2.0 g/dl corresponds to 65 points and 5.0 g/dl corresponds to 39 points, for a range of 26 points (Appendix Table 2). CD4 count (10-900 cells/ul, 23 points), HIV-1 RNA (1.3-5.0 log₁₀ copies/mL, 18 points), FIB4 (0.5-7.5, 20 points), BMI (15-35 kg/m², 20 points), hemoglobin (9-16 g/dl, 16 points), and eGFR (0-180 ml/min, 16 points) were also influential on total score. In contrast HCV (yes or no, 6 points) was the least influential, as in VACS Index 1.0.

VACS Index 2.0 scores were 10 points higher in VACS (median 51, interquartile range 39-66) than in ART-CC (41, 33-52), with little variation by cohort except for Cohort C (35, 27-46). Scores were approximately normally distributed, but slightly right skewed (means: VACS, 54 i, ART-CC, 44). Mortality hazard ratios per 5-point increment of score were 1.31 (95% confidence interval [CI], 1.30-1.31) in VACS and 1.37 (1.35-1.39) in ART-CC with little variation by cohort (range 1.34 to 1.41) (Appendix Table 3). In VACS data, the c-statistic increased from 0.779 (95% CI 0.774, 0.784) for VACS Index 1.0 to 0.786 (0.781, 0.791) using VACS Index 1.0 predictors as continuous variables. The c-statistic further increased to 0.805 (0.800, 0.810) after addition of albumin, WBC, and BMI (VACS Index 2.0). Corresponding c-statistics in ART-CC data were 0.800 (0.782, 0.818) for VACS Index 1.0; 0.808 (0.790, 0.825) for continuous VACS 1.0 predictors and 0.831 (0.814, 0.847) for VACS Index 2.0. C-statistics improved in all 9

ART-CC cohorts (Figure 1a). In cohorts with at least 50% completeness in the visit pool and in those with less than 50% completeness, the c-statistic was greater with VACS Index 2.0, with no separation in confidence intervals comparing completeness. At all follow-up intervals VACS Index 2.0 had greater discrimination than 1.0 (Figure 1b and 1c). As expected, c-statistics were greater for shorter follow-up. Additionally, improvement from VACS Index 1.0 to 2.0 was greatest for shorter follow-up.

KM plots by decile of risk (Figure 2, Appendix Table 4) in VACS showed better separation with VACS Index 2.0 compared to 1.0. While VACS Index 1.0 deciles 6 and 7 overlapped until 1 year, VACS Index 2.0 deciles were all distinct around 6 months of follow-up. Survival at 5-years expanded from 13-92% with VACS Index 1.0 to 8-93% with VACS Index 2.0.

In ART-CC, with only one-tenth as many deaths, curves were less distinct, but also showed improvement with VACS Index 2.0 (Figure 2, Appendix Table 4). The range of 5-year survival expanded from 35-97% with VACS Index 1.0 to 25-98% with 2.0. Similar patterns were seen with 1-year survival. In both VACS and ART-CC median survival was less than a year for those in the highest VACS Index 2.0 decile. Based on above findings we combined VACS and ART-CC data to look at subgroups.

Combined data demonstrated higher c-statistics for VACS Index 2.0 than 1.0 for all subgroups (Figure 3): age <50 (0.85, 0.83), age 50+ (0.79, 0.75), men (0.82, 0.79), women (0.84, 0.80), suppressed virus (0.82, 0.78), unsuppressed virus (0.77, 0.75), HIV mono-infected (0.82, 0.79) and HCV co-infected (0.75, 0.72) and patients defined as low-risk (0.79, 0.73) and high-risk (0.79, 0.76). Mortality rates in both low-risk and high-risk patients had strong and similar associations with VACS Index 2.0 score (Figure 4).

Discussion

VACS Index 2.0 had better discrimination than 1.0 in development (VACS) and external validation (ART-CC) data. This was achieved by study design; treating all predictors as continuous; and adding albumin, WBC, and BMI. Improved discrimination was evident across a variety of important subgroups, varying length of follow-up and across ART-CC cohorts. Improved discrimination was evident beyond c-statistics. Compared to VACS Index 1.0, KM plots comparing deciles of 2.0 showed better separation of mortality risk during the first 6-12 months of follow-up that persisted across the 5-year follow up. In both low- and high-risk patients there was a strong and consistent gradient of higher mortality with increasing score. Improved discrimination of VACS Index 2.0 was shown to be transportable to other settings [32].

Thus, VACS Index 2.0 can be used as a measure of disease burden for risk adjustment and/or as an outcome for clinical research. With automated calculation and risk interpretation by way of smartphone apps, online calculators, or decision support modules in EHRs, it can also be incorporated in medical decision making.

Generalizability of VACS Index 2.0 was likely enhanced byourstudy design . Because we started follow-up from a randomly selected date, the index was designed around a typical patient in care, rather than optimizing for some fixed point in clinical managment. Including laboratory values obtained during hospitalization increased the range of severity of illness represented in model development data.

VACS Index 2.0 predictors are continuous, offering important advantages over the thresholds in VACS Index 1.0. For example, on the day a patient turns 50 the VACS Index 1.0 score increases by 12 points, translating to roughly 40% increased risk of mortality. While this risk is accurate in aggregate for those aged 50-64 years, no individual would experience such an abrupt change. VACS Index 2.0 models this change in risk smoothly across ages. Thresholds in VACS Index 1.0 limited investigator's ability to use the index as an outcome to detect change from baseline to end of observation. With continuous variables more subtle changes in risk can be detected, enhancing suitability for longitudinal patient management.

10

Addition of albumin, WBC, and BMI enhanced discrimination of the Index, and provided interesting insights. After age, albumin is the single most important marker of general health in the model. Low serum albumin may be associated with multiple HIV-related conditions (e.g. poor nutritional status, inflammation, nephropathy, and liver disease). We suspect that albumin is particularly important as an added indication of liver disease, which is increasingly common among those aging with HIV. In VACS Index 1.0 liver injury was only ascertained with FIB-4 and an indicator for HCV infection. Albumin measures liver synthetic function, thus enhancing detection of injury. We chose not to include hospitalization as a predictor because we want to use the Index to predict future hospitalization. Also hospitalization can be considered a downstream event in the causal pathway between VACS Index components and death. Inclusion would obfuscate associations with validated predictors. Finally, varying reasons for hospitalization have different associations with mortality.

VACS Index 2.0 is a stronger predictor than 1.0. Despite having similar ranges of scores, the hazard ratio for 5-year, all-cause mortality increased from 1.221 (1.216-1.227) per 5 points with VACS Index 1.0, to 1.307 (1.300-1.314) per 5 points with VACS Index 2.0. VACS Index 2.0 is better able to identify high-risk patients with 6 months of follow-up. In the 10th decile on KM plots, estimated 6-month survival in VACS patients decreased from 61% with VACS Index 1.0 to 51% with VACS Index 2.0. In ART-CC this change was 74% to 59%.

Interestingly, VACS Index 2.0 had higher discrimination in validation (ART-CC) than in development (VACS). This was also observed in validation of VACS Index 1.0 in ART-CC [5]. There are several possible explanations. First, follow up time in ART-CC is shorter. All else equal, proximal deaths are easier to predict than distant deaths. Second, ART-CC subjects are younger and discrimination is slightly better among those under 50 years. Finally, the index is not designed to detect risk of unnatural deaths, such as suicide, accident, or overdose. Such deaths are more common in veteran populations [33, 34].

In prognostic modelling important subgroups may be underrepresented, such as women in VACS. Therefore, it is important to demonstrate in discrimination within these groups. We found superior discrimination with VACS Index 2.0 in all subgroups (including women) and among each of the nine participating cohorts in ART-CC. These observations offer strong evidence that improved discrimination of VACS Index 2.0 will generalize to new populations. It also suggests that the strong associations previously demonstrated with VACS Index 1.0 and biomarkers of inflammation [16, 35-37], hospitalization and medical intensive care unit admission [38], myocardial infarction [7], neurocognitive performance [9, 10], and fragility fractures [8, 39] will hold for 2.0.

Of note, improvement in discrimination from VACS Index 1.0 to 2.0 was unusually large in cohort F, increasing from 0.790 (95% CI 0.744, 0.835) to 0.873 (0.841, 0.906). We think this is due to missing data leading to selection of sicker patients with higher short-term mortality. Only 5% of visits had complete data. Selecting people with both hemoglobin and albumin likely sampled some of the sickest subjects likely to die over a short interval of time. In fact, 40% of deaths occurred in the first 6 months, 10% higher (absolute) than any other cohort. Increased discrimination from VACS Index 1.0 to 2.0 was greatest for shorter follow-up times (Figure 1c).

The original VACS Index has been increasingly used in a variety of research, public health, and clinical settings. Since March 2013, online calculators (https://vacs.med.yale.edu; https://www.mdcalc.com/veterans-aging-cohort-study-vacs-index)) have been accessed >80,000 times. The Index has been used as a risk adjuster in observational studies [25, 40]. Two ongoing NIH funded, alcohol intervention trials and the AIDS Clinical Trials Group use the VACS Index in randomized trials [41]. Independent groups are using the Index as a measure of frailty or severity of illness [10, 36, 37, 42-50]. Additionally, the Index is being used in surveillance. The Public Health-Seattle & King County, HIV/STD Program and the Washington State Department of Health use the Index to monitor burden of disease among PWH. Several

health systems have incorporated the index as a tool within their EHR for patient management. VACS Index 2.0 will enhance utility for all these applications.

An important limitation of VACS Index 2.0 is that we have not incorporated prognostic implications of HCV cure. Although patients treated for HCV were excluded from development sample, and most follow-up in validation sample is before widespread availability of DAAs, treatment of HCV may still have influenced our findings. In future work we hope to address this limitation once adequate mortality data are available among PWH treated for HCV co-infection. Another limitation is that we could only consider nadir CD4 as observed within the VA EHR, without being sure it is truly the lowest prior to ART initiation Missing data may also be a concern. We only randomly selected visit dates when patients had complete data within the prior 180 days. Nonetheless we found consistent results across all cohorts regardless of the proportion of visits with complete data. Finally, we have yet to conduct analyses determining calibration of VACS Index 2.0. As with the original index, we plan to conduct this analysis in an even broader array of cohorts in the coming months.

In conclusion, VACS Index 2.0 is highly predictive of risk of all-cause mortality among those on treatment for HIV infection. With use of continuous variables, it is now better suited to application for individual patients. With addition of parameters readily obtained during routine clinical practice it is more discriminating than the original VACS Index. Its superior discrimination is robust across development and validation sets, among important clinical subgroups, and among individual cohorts.

Acknowledgements

We thank all patients, doctors, and study nurses associated with the participating cohort studies.

Role of the authors: J.P.T., A.C.J. and J.A.C.S. designed the study. J.P.T. performed the analysis and wrote the first draft. A.C.J. and J.A.C.S. made major revisions. All member of the writing group contributed to editing the manuscript and reviewed and approved the submission.

- 1. Wong, C., et al., *Multimorbidity Among Persons Living with Human Immunodeficiency Virus in the United States.* Clin Infect Dis, 2018. **66**(8): p. 1230-1238.
- 2. Hogg, R.S., et al., *Health-adjusted life expectancy in HIV-positive and HIV-negative men and women in British Columbia, Canada: a population-based observational cohort study.* Lancet HIV, 2017. **4**(6): p. e270-e276.
- 3. Park, L.S., et al., Association of Viral Suppression With Lower AIDS-Defining and Non-AIDS-Defining Cancer Incidence in HIV-Infected Veterans: A Prospective Cohort Study. Ann Intern Med, 2018.
- 4. Althoff, K.N., et al., Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. Clin. Infect. Dis., 2015. **60**(4): p. 627-38.
- 5. Tate, J.P., et al., An internationally generalizable risk index for mortality after one year of antiretroviral therapy. AIDS, 2013. **27**(4): p. 563-72.
- 6. Akgun, K.M., et al., *Risk factors for hospitalization and medical intensive care unit (MICU)* admission among HIV infected Veterans. J. Acquir. Immune. Defic. Syndr., 2013. **62**(1): p. 52-9.
- 7. Salinas, J.L., et al., *Baseline, Time-Updated, and Cumulative HIV Care Metrics for Predicting* Acute Myocardial Infarction and All-Cause Mortality. Clin Infect Dis, 2016. **63**(11): p. 1423-1430.
- 8. Womack, J.A., et al., *Physiologic frailty and fragility fracture in HIV-infected male veterans.* Clin. Infect. Dis., 2013. **56**(10): p. 1498-504.
- 9. Marquine, M.J., et al., *The Veterans Aging Cohort Study (VACS) Index and Neurocognitive Change: A Longitudinal Study.* Clin Infect Dis, 2016. **63**(5): p. 694-702.
- 10. Marquine, M.J., et al., *The Veterans Aging Cohort Study Index is Associated With Concurrent Risk for Neurocognitive Impairment.* J. Acquir. Immune. Defic. Syndr., 2014. **65**(2): p. 190-197.
- 11. Donnino, M.W., et al., *APACHE II scoring to predict outcome in post-cardiac arrest.* Resuscitation, 2013. **84**(5): p. 651-6.
- 12. Richards, G., et al., *CURB-65, PSI, and APACHE II to assess mortality risk in patients with severe sepsis and community acquired pneumonia in PROWESS.* J Intensive Care Med, 2011. **26**(1): p. 34-40.
- 13. Lee, H., et al., *Efficacy of the APACHE II score at ICU discharge in predicting post-ICU mortality and ICU readmission in critically ill surgical patients.* Anaesth Intensive Care, 2015. **43**(2): p. 175-86.
- 14. Kieszak, S.M., et al., *A comparison of the Charlson comorbidity index derived from medical record data and administrative billing data.* J Clin Epidemiol, 1999. **52**(2): p. 137-42.
- 15. Tate, J., M. Freiberg, and J. AC. *Do Risk Factors for Cardiovascular Disease Improve VACS Index Prediction of All Cause Mortality?* in 16th International Workshop on HIV Observational Databases (IWHOD). 2012. Athens, Greece.
- 16. Duffau, P., et al., Association of immune-activation and senescence markers with non-AIDSdefining comorbidities in HIV-suppressed patients. AIDS, 2015. **29**(16): p. 2099-108.
- 17. Trickey, A., et al., CD4:CD8 Ratio and CD8 Count as Prognostic Markers for Mortality in Human Immunodeficiency Virus-Infected Patients on Antiretroviral Therapy: The Antiretroviral Therapy Cohort Collaboration (ART-CC). Clin Infect Dis, 2017. **65**(6): p. 959-966.
- 18. Lang, J., et al., Serum albumin and short-term risk for mortality and cardiovascular disease among HIV-infected veterans. Aids, 2013. **27**(8): p. 1339-43.
- 19. Mehta, S.H., et al., *Serum albumin as a prognostic indicator for HIV disease progression.* AIDS Res Hum Retroviruses, 2006. **22**(1): p. 14-21.
- 20. Siedner, M.J. and P.W. Hunt, All About the Albumin? Prognostic Capacity of Serum Albumin in Patients With Treated HIV Infection. J Infect Dis, 2018. **217**(3): p. 347-349.
- 21. Ronit, A., et al., Serum Albumin as a Prognostic Marker for Serious Non-AIDS Endpoints in the Strategic Timing of Antiretroviral Treatment (START) Study. J Infect Dis, 2018. **217**(3): p. 405-412.
- 22. Sunyer, J., et al., *Longitudinal relation between smoking and white blood cells*. Am J Epidemiol, 1996. **144**(8): p. 734-41.
- 23. Madjid, M., et al., *Leukocyte count and coronary heart disease: implications for risk assessment.* J Am Coll Cardiol, 2004. **44**(10): p. 1945-56.
- 24. Sharma, A., et al., *Relationship between Body Mass Index and Mortality in HIV-Infected HAART Users in the Women's Interagency HIV Study.* PLoS One, 2015. **10**(12): p. e0143740.

- 25. Yuh, B., et al., *Weight change after antiretroviral therapy and mortality*. Clin Infect Dis, 2015. **60**(12): p. 1852-9.
- 26. Fultz, S.L., et al., *Development and verification of a "virtual" cohort using the National VA Health Information System.* Med. Care, 2006. **44**(8 Suppl 2): p. S25-S30.
- 27. Fisher, S.G., et al., *Mortality ascertainment in the veteran population: alternatives to the national death index.* American Journal of Epidemiology, 1995. **141**(3): p. 242-250.
- 28. Sohn, M.W., et al., *Accuracy and completeness of mortality data in the Department of Veterans Affairs.* Popul Health Metr, 2006. **4**: p. 2.
- 29. Sterling, R.K., et al., *Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection.* Hepatology, 2006. **43**(6): p. 1317-1325.
- 30. Levey, A.S., et al., *A new equation to estimate glomerular filtration rate.* Ann Intern Med, 2009. **150**(9): p. 604-12.
- 31. May, M.T., et al., *Cohort profile: Antiretroviral Therapy Cohort Collaboration (ART-CC).* Int J Epidemiol, 2014. **43**(3): p. 691-702.
- 32. Justice, A.C., K.E. Covinsky, and J.A. Berlin, Assessing the generalizability of prognostic information. Ann Intern Med, 1999. **130**(6): p. 515-524.
- 33. Simkus K, V.L., Pedlar D., Veteran Suicide Mortality Study (1976 to 2012), in Veterans Affairs Canada, 2017.
- 34. Weiner, J., et al., *Military veteran mortality following a survived suicide attempt.* BMC Public Health, 2011. **11**: p. 374.
- 35. Justice, A.C., et al., *Does an index composed of clinical data reflect effects of inflammation, coagulation, and monocyte activation on mortality among those aging with HIV?* Clin. Infect. Dis., 2012. **54**(7): p. 984-994.
- 36. Williams, B., et al., SCD14 and SCD163 Levels Are Correlated with VACS Index Scores: Initial Data from the Blunted Immune Recovery in CORE Patients with HIV (BIRCH) Cohort. AIDS Res Hum Retroviruses, 2016. **32**(2): p. 144-147.
- 37. Mooney, S., et al., *Elevated Biomarkers of Inflammation and Coagulation in Patients with HIV Are Associated with Higher Framingham and VACS Risk Index Scores.* PLoS One, 2015. **10**(12): p. e0144312.
- Akgun, K.M., et al., Medical ICU admission diagnoses and outcomes in human immunodeficiency virus-infected and virus-uninfected veterans in the combination antiretroviral era. Crit. Care. Med., 2013. 41(6): p. 1458-67.
- 39. Yin, M.T., et al., *Fracture prediction with modified-FRAX in older HIV-infected and uninfected men.* J Acquir Immune Defic Syndr, 2016.
- 40. Justice, A.C., et al., *Nonantiretroviral polypharmacy and adverse health outcomes among HIV-infected and uninfected individuals.* AIDS, 2018. **32**(6): p. 739-749.
- 41. Tashima, K.T., et al., *Mortality among HIV+ Participants Randomized to Omit NRTIs vs. Add NRTIs in OPTIONS (ACTG A5241).* 21st Conference on Retroviruses and Opportunistic Infections (CROI), 2014.
- 42. Robinson-Papp, J. and S.K. Sharma, *Autonomic neuropathy in HIV is unrecognized and associated with medical morbidity.* AIDS Patient Care STDS., 2013. **27**(10): p. 539-43.
- 43. Adeyemi, O. and B. Livak, *Higher Veterans Aging Cohort Study (VACS) index scores in HIVpositive adults with CD4 counts <200 cells/mm3 despite viral suppression.* J. Acquir. Immune. Defic. Syndr., 2013. **63**(2): p. e78-81.
- 44. Furuya-Kanamori, L., M.D. Kelly, and S.J. McKenzie, *Co-morbidity, ageing and predicted mortality in antiretroviral treated Australian men: a quantitative analysis.* PLoS. One., 2013. **8**(10): p. e78403.
- 45. Huggan, P.J., et al., Presentation and outcome amongst older Singaporeans living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS): does age alone drive excess mortality? Ann. Acad. Med. Singapore, 2012. **41**(12): p. 581-6.
- 46. Marquine, M.J., et al., *The impact of ethnicity/race on the association between the Veterans Aging Cohort Study (VACS) Index and neurocognitive function among HIV-infected persons.* J Neurovirol, 2016. **22**(4): p. 442-454.
- 47. Escota, G., et al., *The VACS Index is an effective tool to assess baseline frailty status in a contemporary cohort of HIV-infected persons.* AIDS Res Hum Retroviruses. **31**(3): p. 313-7.

- 48. Cohen, M.H., et al., *Gender-Related Risk Factors Improve Mortality Predictive Ability of VACS Index Among HIV-Infected Women.* J Acquir Immune Defic Syndr, 2015. **70**(5): p. 538-44.
- 49. Erlandson, K.M., et al., *Functional impairment is associated with low bone and muscle mass among persons aging with HIV infection.* J.Acquir.Immune.Defic.Syndr., 2013. **63**(2): p. 209-215.
- 50. Erlandson, K.M., et al., *Relationship of physical function and quality of life among persons aging with HIV infection.* AIDS, 2014. **28**(13): p. 1939-43.

		VACS	ART-CC				
	(N	= 28390)	(N	= 12109)			
Random visit date							
2000-2004	6587	(23)	1307	(11)			
2005-2009	7753	(27)	4744	(39)			
2010-2014	14050	(49)	6058	(50)			
ART Initiation							
1996-1998	7929	(28)	1696	(14)			
1999-2002	6454	(23)	3282	(27)			
2003-2007	6510	(23)	3958	(33)			
2008-2014	7497	(26)	3173	(26)			
Years on ART							
Median (IQR)	4.2	(2.2-7.6)	4.2	(2.2-7.4)			
Age (years)							
Median (IQR)	52	(46-59)	43	(36-49)			
Male	27696	(98)	8972	(74)			
Race							
White	11576	(41)	6840	(56)			
Black	13722	(48)	1403	(12)			
Hispanic	2225	(8)	255	(2)			
Other/unknown	867	(3)	3611	(30)			
CD4 cell count (cells/ul)						
Median (IQR)	435	(249-643)	500	(335-690)			
HIV-1 RNA <= 500 copi	es/mL						
	21561	(76)	10650	(88)			
Hemoglobin (g/dl)							
Median (IQR)	14.0	(12.8-15.1)	14.3	(13.0-15.3)			
FIB-4							
<1.45	15782	(56)	8994	(74)			
1.45-3.25	9722	(34)	2459	(20)			
>3.25	2886	(10)	656	(5)			
eGFR (ml/min)							
Median (IQR)	90	(73-105)	101	(87-113)			
Hepatitis C infection	5523	(19)	1803	(15)			
Albumin (g/dl)							
Median (IQR)	4.0	(3.7-4.3)	4.3	(4.0-4.5)			
White blood count (k/r	nl)						
Median (IQR)	5.5	(4.3-6.9)	5.8	(4.7-7.2)			
Body mass index, kg/m	1 ²						
Median (IQR)	25.3	(22.4-28.7)	24.2	(21.7-27.2)			
Low-risk*	6907	(24)	7303	(60)			

Table 1. Characteristics of patients at a randomly selected visit date between 2000 and 2014, after a minimum of 1 year of antiretroviral therapy, in the development sample (VACS) and validation sample (ART-CC).

*Age <50 years, CD4 >= 200, and HIV-1 RNA <= 500

Figure 1. Discrimination of 5-year, all-cause mortality, for VACS Index 1.0 (left) and VACS Index 2.0 (right): a. VACS, ART-CC and individual ART-CC cohorts. LT50 = ART-CC, complete data available for less than 50% of eligible, GE50= ART-CC, complete data available for at least 50% of eligible; b. VACS; c. ART-CC

Figure 2. Kaplan-Meier plots for all-cause mortality by decile of risk according to VACS Index 1.0 and VACS Index 2.0, in development sample, VACS (a and b) and validation sample, ART-CC (c and d). Further detail available in Appendix Table 4.

Figure 3. Discrimination of 5-year, all-cause mortality, for VACS Index 1.0 (left) and VACS Index 2.0 (right), in combined VACS and ART-CC data subgroups. Low-Risk = age <50 years, CD4 count \geq 200 cells/µl, and HIV-RNA \leq 500 copies/mL. High-Risk = all others.

Figure 4. All-cause mortality rates during 5 years of follow-up by VACS Index 2.0 score. a. Low risk patients (age <50 years, CD4 <u>>200 cells/ml</u>, HIV-1 RNA <u><500 copies/mL</u>), b. High risk patients (all others).

Appendix Table 1. VACS Index 2.0 Cox proportional hazards model, for 5-year, all-cause mortality, estimated in Veterans Aging Cohort Study, varying length of last value carried forward (LVCF).

	Main analysis LVCF 180 days						Sensitivity LVCF 1 year					
Ν	28390				28830							
deaths	7293						7479					
Parameter	- PE	SE	χ^2	р	HR	(95% CI)	PE	SE	χ^2	р	HR (95% CI)	
Age (years	s), censoi	red at 30)-75, (centered	at (age	-50)						
X	0.056	0.012	22	<.0001	1.06	(1.03-1.08)	0.058	0.012	24	<.0001	1.06 (1.04-1.09)	
X ²	-0.004	0.004	2	0.22	1.00	(0.99-1.00)	-0.006	0.004	3	0.11	0.99 (0.99-1.00)	
X ³	0.005	0.001	29	<.0001	1.01	(1.00-1.01)	0.005	0.001	30	<.0001	1.01 (1.00-1.01)	
CD4 cell count (cells/ml), censored at 0-1000, as In (1000-CD4)												
Х	-0.056	0.025	5	0.03	0.95	(0.90-0.99)	-0.048	0.025	4	0.05	0.95 (0.91-1.00)	
X ²	-0.153	0.023	46	<.0001	0.86	(0.82-0.90)	-0.149	0.023	43	<.0001	0.86 (0.82-0.90)	
X ³	0.024	0.002	94	<.0001	1.02	(1.02-1.03)	0.023	0.002	86	<.0001	1.02 (1.02-1.03)	
HIV-1 RNA	(log cop	ies/ml)	, cens	ored at 1	.3- 5.0,	centered at (lo	ogVL - 2)					
Х	0.513	0.033	247	<.0001	1.67	(1.57-1.78)	0.518	0.032	257	<.0001	1.68 (1.58-1.79)	
X ²	-0.422	0.041	109	<.0001	0.66	(0.61-0.71)	-0.412	0.040	106	<.0001	0.66 (0.61-0.72)	
X ³	0.098	0.011	77	<.0001	1.10	(1.08-1.13)	0.095	0.011	73	<.0001	1.10 (1.08-1.12)	
Hemoglob	in (g/dl),	, censor	ed at	9-16, cen	tered a	nt (14 - hemogl	obin)					
X	-0.134	0.011	141	<.0001	0.88	(0.86-0.89)	-0.132	0.011	142	<.0001	0.88 (0.86-0.90)	
X ²	0.026	0.006	16	<.0001	1.03	(1.01-1.04)	0.026	0.006	17	<.0001	1.03 (1.01-1.04)	
X ³	0.005	0.001	10	0.002	1.01	(1.00-1.01)	0.004	0.001	10	0.002	1.00 (1.00-1.01)	
FIB-4, cens	sored at .	5 -7.5										
Х	0.220	0.028	62	<.0001	1.25	(1.18-1.32)	0.213	0.028	59	<.0001	1.24 (1.17-1.31)	
X ²	-0.009	0.003	7	0.008	0.99	(0.99-1.00)	-0.008	0.003	7	0.0106	0.99 (0.99-1.00)	
eGFR (ml/	min), cei	nsored a	at 0-1	80,*								
X1	-0.031	0.028	1	0.28	0.97	(0.92-1.03)	-0.014	0.028	0	0.61	0.99 (0.93-1.04)	
X2	-0.077	0.045	3	0.0917	0.93	(0.85-1.01)	-0.107	0.045	6	0.0174	0.90 (0.82-0.98)	
X3	0.106	0.027	16	<.0001	1.11	(1.06-1.17)	0.131	0.026	25	<.0001	1.14 (1.08-1.20)	
X4	0.133	0.034	15	0.0001	1.14	(1.07-1.22)	0.093	0.033	8	0.0054	1.10 (1.03-1.17)	
Hepatitis (co-infe	ction										
Yes	0.342	0.028	147	<.0001	1.41	(1.33-1.49)	0.350	0.028	160	<.0001	1.42 (1.35-1.50)	
Albumin (g/dl), cer	nsored a	at 2-5,	centered	d at (alk	oumin - 4)						
Х	-0.443	0.034	165	<.0001	0.64	(0.60-0.69)	-0.467	0.034	189	<.0001	0.63 (0.59-0.67)	
X ²	0.104	0.051	4	0.04	1.11	(1.00-1.23)	0.141	0.050	8	0.01	1.15 (1.04-1.27)	
X ³	0.028	0.027	1	0.30	1.03	(0.98-1.08)	0.055	0.026	4	0.04	1.06 (1.00-1.11)	
White blo	od count	(k/ml),	cens	ored at 2.	5-11, ce	entered at (WE	BC - 5.5)					
Х	0.126	0.011	130	<.0001	1.13	(1.11-1.16)	0.125	0.011	132	<.0001	1.13 (1.11-1.16)	
X ²	0.020	0.004	30	<.0001	1.02	(1.01-1.03)	0.021	0.004	35	<.0001	1.02 (1.01-1.03)	
X ³	-0.004	0.001	23	<.0001	1.00	(0.99-1.00)	-0.005	0.001	27	<.0001	1.00 (0.99-1.00)	
Body mass	index , k	.g/m2, c	enso	red at 15-	35 <i>,</i> cen	tered at (BMI -	25)					
Х	-0.055	0.003	388	<.0001	0.95	(0.94-0.95)	-0.055	0.003	407	<.0001	0.95 (0.94-0.95)	
X ²	0.004	0.000	62	<.0001	1.00	(1.00-1.01)	0.004	0.000	62	<.0001	1.00 (1.00-1.00)	

*X1 = eGFR/10, X2 = (eGFR-35)/10, X3 = (eGFR-65)/10, X4 = (eGFR-115)/10.

Predictor	Median	Range of plausible values*									
Age (years)											
Value	52	30	35	40	45	50	55	60	65	70	75
Score	**	32	38	41	43	44	45	47	49	53	59
CD4 cell cour	nt (cells/ml)										
Value	435	10	100	200	300	400	500	600	700	800	900
Score	**	55	53	51	48	45	43	40	37	34	32
HIV-1 RNA (le	og copies/mL)										
Value	1.7	1.3	1.5	1.8	2.0	2.5	3.0	3.5	4.0	4.5	5
Score	**	37	41	46	48	51	52	51	50	51	55
Hemoglobin	(g/dl)										
Value	14	9	9.5	10	10.5	11	12	13	14	15	16
Score	**	58	58	57	55	54	51	47	44	42	42
FIB-4											
Value	1.34	0.50	1.00	1.45	2.00	3.25	4.00	5.00	6.00	7.00	7.50
Score	**	41	43	45	47	51	53	56	58	60	61
eGFR (ml/mi	n)										
Value	90	0	20	40	60	80	100	120	140	160	180
Score	**	53	51	49	45	44	44	46	51	55	60
Hepatitis C c	o-infection										
Value	No	Yes									
Score	**	51									
Albumin (g/c	11)										
Value	4	2.00	2.25	2.50	2.75	3.00	3.25	3.5	4.00	4.50	5.00
Score	**	65	62	59	57	54	52	49	44	41	39
White blood	coun t (k/ml										
Value	5.5	2.5	3	4	5	6	7	8	9	10	11
Score	**	43	42	42	43	46	49	51	54	55	55
Body mass ir	ndex (kg/m2)										
Value	25.3	15	17	18	20	22	24	26	28	30	35
Score	**	62	57	55	51	48	46	44	42	41	41

Appendix Table 2. Range of plausible values and associated VACS Index 2.0 score, setting all other predictors to their median value.

* Clinically meaningful values between lowest and highest values used in development model. **Score = 44 when all values are set to their median and Hepatitis C is set to no.

						Ris	sk of all-cause		
			VA	CS Index		mortality, per 5 point			
_	N	Deaths	Median	25th	75th	1st	99th	HR	(95% CI)
VACS	28,390	7,293	51	39	66	15	111	1.31	(1.30-1.31)
ART-CC	12,109	722	41	33	52	14	97	1.37	(1.35-1.39)
А	1,011	40	41	31	52	14	91	1.41	(1.32-1.52)
В	944	95	42	34	53	17	98	1.38	(1.31-1.44)
С	1,872	112	35	27	46	11	93	1.37	(1.32-1.42)
D	1,509	78	44	36	54	18	89	1.38	(1.31-1.45)
E	863	73	42	33	54	15	104	1.34	(1.28-1.41)
F	1,899	111	42	34	53	17	102	1.38	(1.33-1.43)
G	2,231	120	42	34	54	16	94	1.40	(1.34-1.46)
Н	891	53	44	34	54	19	103	1.34	(1.27-1.42)
<u> </u>	889	40	41	33	50	17	95	1.40	(1.30-1.51)

Appendix Table 3. Number at risk, number of deaths, distribution of VACS Index 2.0 scores, and all-cause mortality hazard ratio (HR) per 5 points, in the development sample (VACS) and validation sample (ART-CC), overall and by individual cohort (A-I).

Appendix Table 4. Number at risk, number of deaths, distribution of VACS Index 2.0 scores, and all-cause mortality hazard ratio (HR) per 5 points, in the development sample (VACS) and validation sample (ART-CC), overall and by individual cohort (A-I).

N Died Survival Left Died Survival Left Died Survival Left Vaces ample Vaces 348 1706 2833 199 98% 1043 732 82% 2325 1 10646 12 100% 1673 113 99% 16633 120 92% 5247 737 82% 2325 3 3249 21 99% 2228 122 96% 1027 225 93% 3005 737 63% 488 1 1264 28 98% 143 197 92% 121 264 63% 1003 718 48% 427 7 1268 30 98% 1237 148 88% 119 242 81% 1025 716 40% 328 80% 328 730 13% 464 9 962 41 96 95% 1217 103 876 </th <th></th> <th></th> <th></th> <th>30 days</th> <th></th> <th colspan="2">6 months</th> <th></th> <th>1 year</th> <th></th> <th></th> <th colspan="3">5 years</th>				30 days		6 months			1 year			5 years			
VACS sample VACS index 1.0 7293 7293 1 10546 1.2 100% 10634 113 99% 10533 199 98% 1047 732 92% 5247 2 4763 17 100% 4745 109 98% 4653 220 95% 4543 737 82% 2325 3 349 21 99% 222 921 141 94% 2027 93% 203 733 75% 1469 4 2239 927 99% 1221 144 94% 2077 233 90% 2005 77.7 63% 898 729 45% 723 729 45% 733 33 62% 592 728 21% 147 226 63% 638 730 83% 733 370 62% 592 728 21% 732 729 93% 556 2 24275 16 100% 4259		Ν	Died	Survival	Left	Died	Survival	Left	Died	Survival	Left	Died	Survival	Left	
Overal 2839 348 1706 2833 7293 Decile VACSInder.10 1 10046 12 1004 1013 199 984 4633 29 924 4225 3 3249 21 1994 2228 122 964 1027 225 934 3003 2005 775 646 898 4633 220 988 1411 944 907 223 975 974 634 499 4 229 978 994 1214 944 9077 233 706 636 716 454 498 907 233 706 636 716 454 498 907 233 730	VACS sampl	e													
Decile VACS Index 1 1 10646 12 1004 721 2025 2925 2927 2997 233 2997 233 2997 233 2907 233 2907 233 2907 233 2907 233 2907 233 290 <th col<="" td=""><td>Overall</td><td>28390</td><td>348</td><td></td><td></td><td>1706</td><td></td><td></td><td>2833</td><td></td><td></td><td>7293</td><td></td><td></td></th>	<td>Overall</td> <td>28390</td> <td>348</td> <td></td> <td></td> <td>1706</td> <td></td> <td></td> <td>2833</td> <td></td> <td></td> <td>7293</td> <td></td> <td></td>	Overall	28390	348			1706			2833			7293		
VACS Index 1.0 U 1004 121 100% 4745 109 99% 4653 220 99% 4543 737 82% 2325 3 3249 21 99% 3228 122 99% 4653 220 99% 4543 737 82% 2325 4 2239 77 99% 211 141 94% 207 225 97% 1005 737 85% 808 5 1864 28 98% 143 97% 1221 260 86% 1603 716 40% 353 8 1083 44 99% 1237 148 88% 1119 242 81% 1026 716 40% 353 9 965 41 96% 920 226 76% 733 730 62% 731 744 28% 204 7 1287 106 100% 4237 105 96%<	Decile														
1 10646 12 100% 10634 113 99% 1053 199 99% 10447 732 92% 5227 2 4763 127 100% 4745 109 98% 4653 220 99% 4543 723 82% 2225 3 3249 21 99% 2211 144 94% 2007 233 90% 2005 737 63% 888 5 164 28 99% 1217 206 86% 1003 715 69% 723 300 90% 205 75% 148 88% 119 242 81% 1026 716 40% 328 720 42% 124 10 100 67 98 827 733 370 62% 592 728 93% 5266 2 4275 16 100% 12371 100 99% 1216 729 93% 5266 2 2475 16 100% 4299 96 88% 179 120	VACS Index	1.0													
2 4763 17 100% 4745 100 98% 4633 220 99% 4533 773 82% 1252 3 3249 21 99% 3228 122 96% 3127 225 39% 3023 773 82% 4888 5 1864 228 98% 1435 140 92% 1272 260 86% 1603 718 58% 477 7 1268 30 98% 1237 148 88% 1119 242 81% 1006 716 40% 333 8 1083 45 99% 1033 215 80% 867 351 66% 731 743 226% 204 9 952 41 996% 921 226 76% 733 370 62% 733 370 62% 733 370 62% 733 730 72% 426% 737 730 72% 426% 737 730 72% 426% 737 7114 209%	1	10646	12	100%	10634	113	99%	10533	199	98%	10447	732	92%	5247	
3 3249 21 99% 3228 122 96% 3127 225 93% 3023 73 75% 64% 898 5 1844 28 98% 1215 144 94% 2097 233 90% 1003 718 58% 700 6 1603 718 58% 709 45% 477 7 1268 30 98% 1237 148 88% 110 1026 716 45% 427 9 962 41 96% 920 226 76% 733 370 62% 592 728 21% 137 10 867 98 870 333 61% 531 469 469 469 469 73 98% 556 2 4275 16 100% 4227 100 99% 1281 185 99% 1279 93% 556 23 730 81% 730 81% 730 81% 730 81% 730 81% 730 81% 730 <td>2</td> <td>4763</td> <td>17</td> <td>100%</td> <td>4745</td> <td>109</td> <td>98%</td> <td>4653</td> <td>220</td> <td>95%</td> <td>4543</td> <td>737</td> <td>82%</td> <td>2325</td>	2	4763	17	100%	4745	109	98%	4653	220	95%	4543	737	82%	2325	
4 2239 27 99% 2211 141 94% 2077 233 90% 2005 737 63% 898 5 1864 28 98% 1835 140 92% 1722 260 86% 1003 718 58% 700 7 1268 30 98% 1237 148 88% 119 242 81% 1026 716 40% 323 8 1033 45 55% 1033 215 80% 8731 730 13% 64 VACS 98 88% 763 335 61% 51 68% 729 93% 5586 2 4275 10 100% 4259 96 98% 4179 195 95% 12196 729 93% 5586 3 2853 24 99% 2827 105 96% 5747 220 92% 513 730 72% 44% 437 3 2853 24 99% 1371 140 <t< td=""><td>3</td><td>3249</td><td>21</td><td>99%</td><td>3228</td><td>122</td><td>96%</td><td>3127</td><td>225</td><td>93%</td><td>3023</td><td>723</td><td>75%</td><td>1469</td></t<>	3	3249	21	99%	3228	122	96%	3127	225	93%	3023	723	75%	1469	
S 1864 28 98% 1835 140 92% 1722 260 86% 1603 718 58% 700 6 1449 29 98% 1119 157 89% 121 264 82% 1130 1026 713 448 82% 111 1026 713 28 204 9 962 41 95% 103 215 80% 867 351 68% 731 743 28% 204 9 962 41 90% 1231 100 99% 1281 185 99% 1216 729 93% 5586 2 4275 16 100% 12371 100 99% 1221 729 729 93% 5586 2 4275 16 100% 429 96% 747 20 92% 107 110 93% 120 79 93% 5586 3 1597 23 99% 1573 110 90% 1213 720 72%	4	2239	27	99%	2211	141	94%	2097	233	90%	2005	737	63%	898	
6 1449 29 98% 1419 157 99% 1291 264 82% 1185 779 45% 427 7 1268 30 98% 1237 148 88% 119 442 81% 1026 716 40% 333 9 962 41 96% 920 226 76% 733 370 62% 992 728 21% 137 10 867 98 88% 763 335 61% 531 469 46% 398 730 13% 64 VACS Index 2.0 - - - - - 99% 12196 729 81% 2324 3 2853 24 99% 2271 105 99% 1297 90% 121 730 729 81% 533 61 130 729 81% 593 61 130 729 81% 593 61 130 729 140 99% 121 730 130 729 14% 637 </td <td>5</td> <td>1864</td> <td>28</td> <td>98%</td> <td>1835</td> <td>140</td> <td>92%</td> <td>1722</td> <td>260</td> <td>86%</td> <td>1603</td> <td>718</td> <td>58%</td> <td>700</td>	5	1864	28	98%	1835	140	92%	1722	260	86%	1603	718	58%	700	
7 1268 30 98% 127 148 88% 1119 242 91% 1026 716 40% 333 8 1083 45 99% 1033 215 80% 867 331 66% 731 743 228% 204 9 962 41 99% 202 226 76% 733 370 62% 592 728 21% 113 10 867 98 88% 763 335 61% 531 469 46% 398 730 13% 64 VACS Index Z.J 10 100% 4257 100 99% 1281 185 99% 170 729 81% 3224 3 2853 24 99% 2014 108 95% 1919 207 90% 1821 730 61% 878 5 1391 19 99% 131 140 90% 1249 260 81% 1130 729 44% 437 7 1149	6	1449	29	98%	1419	157	89%	1291	264	82%	1185	729	45%	427	
8 1083 45 95% 103 215 80% 827 125 126 127 126 127 126 127 126 127 126 127 126 127 126 126 127	7	1268	30	98%	1237	148	88%	1119	242	81%	1026	716	40%	353	
3 962 41 96% 203 125 76% 733 370 62% 592 728 21% 137 10 867 98 88% 763 335 61% 531 469 46% 398 730 13% 64 VACS Index 2.0 1 12851 100 100% 12371 100 99% 1216 729 93% 5366 3 2853 24 99% 2227 105 96% 2747 220 92% 1633 729 41% 593 5 1597 23 99% 1371 140 99% 1241 130 779 44% 437 7 1149 19 99% 137 140 90% 1249 260 81% 1130 729 44% 437 7 1149 19 99% 137 80% 812 324 866 127 295%	8	1083	45	95%	1033	215	80%	867	351	68%	731	743	28%	204	
Jo B67 98 88% 763 325 61% 531 469 46% 388 730 13% 64 VACS Index 2.0 1 12381 10 100% 12371 100 99% 12281 185 99% 1216 729 93% 5586 2 4275 16 100% 4259 96 98% 4179 196 55% 6037 707 728 18% 730 728 14% 2244 4 2029 14 99% 2014 108 95% 1919 207 90% 1821 730 61% 878 5 1597 23 99% 1573 116 93% 1440 213 87% 1333 729 44% 437 7 1149 19 99% 1712 203 203 80% 812 337 55% 491 729 15% 893 10 1	9	962	41	96%	920	226	76%	733	370	62%	592	778	20%	137	
XACS Index 2.0 YACS Index 2.1 YACS Index 2.1 YACS Index 2.1 YACS Index 2.2 1 12381 10 100% 12371 100 99% 12281 185 99% 12196 729 813% 2324 3 2853 24 99% 2827 105 96% 2747 220 92% 2633 730 61% 878 5 1597 23 99% 1573 116 93% 1480 213 87% 1383 729 511% 593 6 1391 19 99% 1371 140 90% 1249 260 81% 1130 729 44% 427 7 1149 19 99% 827 264 70% 623 397 55% 491 729 15% 95 10 811 127 84% 678 399 51% 411 526 35% 285 730 8% 411 ART-CSample 192 100 100% 4443	10	867	08	88%	763	220	61%	521	469	46%	302	720	13%	64	
VACS Index J.	10	007	50	0070	705	333	01/0	551	405	40/0	550	750	13/0	04	
1 12381 10 100% 12371 100 99% 12281 185 99% 12196 729 93% 5586 2 4225 16 100% 4259 96 98% 4179 196 95% 4079 729 81% 2324 3 2853 24 99% 2827 105 96% 2747 220 92% 2633 730 72% 1405 4 2029 14 99% 1371 140 90% 1249 260 811 1130 729 44% 437 7 1149 99% 1371 140 90% 1249 260 811 1130 729 43% 437 7 1149 198 128 127 264 70% 623 397 55% 491 729 25% 183 9 888 61 93% 827 264 70% 623 397 55% 491 729 15% 64 95% 66 68	VACS Index	20													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	17201	10	100%	10071	100	00%	12201	105	00%	12106	720	02%	EE96	
2 42/3 100 4239 94 44/3 130 930 44/3 120 940 729 64% 720 64% 720 61% 728 140 4 2029 14 99% 2014 108 95% 1919 207 90% 1821 730 61% 878 5 1597 23 99% 1371 140 90% 1249 260 81% 1130 729 51% 593 6 1391 19 98% 1128 175 85% 974 305 73% 844 729 33% 279 8 1016 35 96% 979 203 80% 812 324 68% 691 729 25% 183 9 888 61 93% 827 264 70% 623 397 55% 491 729 15% 95 10 100 811 1526 35% 285 730 8% 41 11 120	1	12301	10	100%	12371	100	9970 000/	4170	105	99%	12190	729	9370 010/	2224	
3 2833 24 99% 227 1005 90% 274 203 730 730 61% 878 4 2029 14 99% 2014 108 95% 1919 207 90% 1821 730 61% 878 5 1597 23 99% 1573 116 93% 1480 213 87% 1383 729 51% 593 6 1391 19 99% 1371 140 90% 1249 260 81% 1130 729 44% 437 7 1149 19 98% 1128 175 85% 974 305 73% 844 729 25% 183 9 888 61 93% 827 264 70% 623 397 55% 491 729 15% 95 10 811 1209 47 192 318 722 730 8% 41 ART-CC sample 100% 4789	2	4275	10	100%	4259	90 105	96%	41/9	190	95%	4079	729	01%	2524	
4 2009 14 99% 2014 100 99% 121 700 1621 730 1621 730 1621 730 1621 730 1621 730 1621 730 1621 730 1621 730 1383 729 51% 593 503 593 121 140 90% 1249 260 81% 1130 729 44% 437 7 1149 19 98% 1128 175 85% 974 305 73% 844 729 13% 729 15% 183 9 888 61 93% 827 264 70% 623 397 55% 491 729 15% 411 ART-CC sample Overall 12109 47 192 318 722 25% 64 411 720 93% 131 138 10 90% 1745 64 95% 694 3 1824 5 100% 4789 10 100% 4443	3	2853	24	99%	2827	105	96%	2/4/	220	92%	2033	730	72%	1405	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2029	14	99%	2014	108	95%	1919	207	90%	1821	730	51%	8/8	
b 199 99% 131 140 90% 1249 200 81% 1130 729 34% 327 7 1149 19 98% 1128 175 85% 974 305 73% 844 729 33% 327 9 888 61 93% 827 264 70% 623 397 55% 491 729 25% 183 9 888 61 93% 827 264 70% 623 397 55% 491 729 25% 41 ART-CC sample	5	1597	23	99%	15/3	116	93%	1480	213	8/%	1383	729	51%	593	
1 149 19 98% 11/5 175 85% 9/4 305 73% 844 729 33% 178 8 1016 35 96% 979 203 80% 812 324 66% 691 729 25% 183 9 888 61 93% 827 264 70% 623 397 55% 491 729 15% 95 10 811 127 84% 678 399 51% 411 526 35% 285 730 8% 411 ART-CC sample Overall 12109 47 192 318 722 75% 649 95% 694 1 4824 2 100% 4789 10 100% 1428 19 99% 1745 64 95% 694 3 1824 5 100% 1800 16 99% 1688 31 98% 1539 82 94% 610 4 1148	6	1391	19	99%	13/1	140	90%	1249	260	81%	1130	729	44%	437	
8 1016 35 96% 979 203 80% 812 324 65% 691 729 25% 183 9 888 61 93% 827 264 70% 623 397 55% 491 729 15% 95 10 811 127 84% 678 399 51% 411 526 35% 285 730 8% 41 ART-CC sample Overall 12109 47 192 318 722 97% 1398 2 2087 1 00% 2065 8 100% 1928 19 99% 1745 64 95% 694 4 1148 1 100% 1800 16 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 258 6 492 4 98% 350 24 93% <td< td=""><td>/</td><td>1149</td><td>19</td><td>98%</td><td>1128</td><td>1/5</td><td>85%</td><td>9/4</td><td>305</td><td>/3%</td><td>844</td><td>729</td><td>33%</td><td>2/9</td></td<>	/	1149	19	98%	1128	1/5	85%	9/4	305	/3%	844	729	33%	2/9	
9 888 61 93% 827 264 70% 623 397 55% 491 7.99 15% 95 10 811 127 84% 678 399 51% 411 526 35% 285 730 8% 41 ART-CC sample Overall 12109 47 192 318 722 722 9% 3915 72 97% 1398 694 2 2087 1 100% 2065 8 100% 1928 19 99% 1745 64 95% 694 3 1824 5 100% 1800 16 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 288 6 492 4 99% 485	8	1016	35	96%	979	203	80%	812	324	68%	691	729	25%	183	
10 811 127 84% 678 399 51% 411 526 35% 285 730 8% 41 ART-CC sample Overall 12109 47 192 318 722 Decile VACS Index 1.0 1 4824 2 100% 4789 10 100% 4443 23 99% 3915 72 97% 1398 2 2087 1 100% 2065 8 100% 1928 19 99% 1745 64 95% 694 3 1824 5 100% 1800 16 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 258 6 492 4 99% 4485 21 95% 428 35 92% 376 72 81% 149 7 362 7 98%	9	888	61	93%	827	264	/0%	623	397	55%	491	/29	15%	95	
ART-CC sample 1210 47 192 318 722 VACS Index 1.0 1 00% 443 23 99% 3915 72 97% 1398 2 2087 1 100% 4789 0.0 100% 4443 23 99% 3915 72 97% 1398 2 2087 1 100% 1208 109 199% 1745 64 95% 690 4 1148 1 100% 1138 10 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 68 91% 394 7 362 7 98% 350 24 93% 300 36 89% 254 73 87% 252% 433 9 196 9 95% 186 26 86%	10	811	127	84%	678	399	51%	411	526	35%	285	730	8%	41	
ART-CC sample 12109 47 192 318 722 Decile 5 5 5 5 5 5 5 72 97% 1398 VACS Index 1.0 1 00% 4789 10 100% 4443 23 99% 3915 72 97% 1398 2 2087 1 100% 2065 8 100% 1928 19 99% 1745 64 95% 694 3 1824 5 100% 1800 16 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 258 6 492 4 98% 202 21 89% 300 36 89% 254 73 71% 82 8 206 4 98% 202															
Overall 12109 47 192 318 722 Decile VACS Index 1.0 1 4824 2 100% 4789 10 100% 4443 23 99% 3915 72 97% 1398 2 2087 1 100% 2065 8 100% 1928 19 99% 1745 64 95% 694 3 1824 5 100% 1800 16 99% 1688 31 98% 1539 82 94% 610 4 1148 1 100% 1138 10 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 258 6 492 4 99% 426 35 92% 376 72 81% 149 7 362 7	ART-CC sam	ple													
Decile VACS Index 1.0 1 4824 2 100% 4789 10 100% 4443 23 99% 3915 72 97% 1398 2 2087 1 100% 2065 8 100% 1928 19 99% 1745 64 95% 694 3 1824 5 100% 1800 16 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 258 6 492 4 99% 485 21 95% 428 35 92% 376 72 81% 149 7 362 7 98% 350 24 93% 300 36 89% 254 73 71% 82 8 206 4	Overall	12109	47			192			318			722			
VACS Index 1.0 1 4824 2 100% 4789 10 100% 4443 23 99% 3915 72 97% 1398 2 2087 1 100% 2065 8 100% 1928 19 99% 1745 64 95% 694 3 1824 5 100% 1800 16 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 1816 20 97% 739 31 96% 670 75 87% 258 6 492 4 99% 485 21 95% 428 35 92% 376 72 81% 149 7 362 7 98% 350 24 93% 300 36 89% 254 73 71% 82 8 206 4 98% 202 21 89% 169 32 83% 141 71 53% 39 9 196 <td>Decile</td> <td></td>	Decile														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VACS Index	1.0													
2 2087 1 100% 2065 8 100% 1928 19 99% 1745 64 95% 694 3 1824 5 100% 1800 16 99% 1688 31 98% 1539 82 94% 610 4 1148 1 100% 1138 10 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 258 6 492 4 99% 485 21 95% 428 35 92% 376 72 81% 149 7 362 7 98% 350 24 93% 300 36 89% 254 73 71% 82 8 206 4 98% 202 21 89% 169 32 83% 141 71 53% 39 9 196 9 95%	1	4824	2	100%	4789	10	100%	4443	23	99%	3915	72	97%	1398	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2087	1	100%	2065	8	100%	1928	19	99%	1745	64	95%	694	
4 1148 1 100% 1138 10 99% 1057 20 98% 960 68 91% 394 5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 258 6 492 4 99% 485 21 95% 428 35 92% 376 72 81% 149 7 362 7 98% 350 24 93% 300 36 89% 254 73 71% 82 8 206 4 98% 202 21 89% 169 32 83% 141 71 53% 39 9 196 9 95% 186 26 86% 153 46 74% 120 72 52% 43 10 146 12 91% 130 36 74% 97 45 67% 78 73 98% 1559 2 2397 1 100%	3	1824	5	100%	1800	16	99%	1688	31	98%	1539	82	94%	610	
5 824 2 100% 816 20 97% 739 31 96% 670 75 87% 258 6 492 4 99% 485 21 95% 428 35 92% 376 72 81% 149 7 362 7 98% 350 24 93% 300 36 89% 254 73 71% 82 8 206 4 98% 202 21 89% 169 32 83% 141 71 53% 39 9 196 9 95% 186 26 86% 153 46 74% 120 72 52% 43 10 146 12 91% 130 36 74% 97 45 67% 78 73 35% 19 VACS Index 2.0 ***********************************	4	1148	1	100%	1138	10	99%	1057	20	98%	960	68	91%	394	
6 492 4 99% 485 21 95% 428 35 92% 376 72 81% 149 7 362 7 98% 350 24 93% 300 36 89% 254 73 71% 82 8 206 4 98% 202 21 89% 169 32 83% 141 71 53% 39 9 196 9 95% 186 26 86% 153 46 74% 120 72 52% 43 10 146 12 91% 130 36 74% 97 45 67% 78 73 35% 19 VACS Index 2.0 2.0 1 100% 5785 10 100% 5356 27 99% 4662 73 98% 1559 2 2397 1 100% 2379 10 100% 2224 16 99% 2051 72 95% 865 3 1247 3	5	824	2	100%	816	20	97%	739	31	96%	670	75	87%	258	
7 362 7 98% 350 24 93% 300 36 89% 254 73 71% 82 8 206 4 98% 202 21 89% 169 32 83% 141 71 53% 39 9 196 9 95% 186 26 86% 153 46 74% 120 72 52% 43 10 146 12 91% 130 36 74% 97 45 67% 78 73 35% 19 VACS Index 2.0 VACS Index 2.0 1 5838 1 100% 5785 10 100% 5356 27 99% 4662 73 98% 1559 2 2397 1 100% 2379 10 100% 2224 16 99% 2051 72 92% 4865 3 1247 3 100% 876 12 99% 812 24 97% 755 71	6	492	4	99%	485	21	95%	428	35	92%	376	72	81%	149	
8 206 4 98% 202 21 89% 169 32 83% 141 71 53% 39 9 196 9 95% 186 26 86% 153 46 74% 120 72 52% 43 10 146 12 91% 130 36 74% 97 45 67% 78 73 35% 19 VACS Index 2.0 1 5838 1 100% 5785 10 100% 5356 27 99% 4662 73 98% 1559 2 2397 1 100% 2379 10 100% 2224 16 99% 2051 72 92% 486 3 1247 3 100% 1240 14 99% 1169 26 98% 1070 72 92% 489 4 884 1 100% 876 12 99% 812 24 97% 755 71 89% 335	7	362	7	98%	350	24	93%	300	36	89%	254	73	71%	82	
9 196 9 95% 186 26 86% 153 46 74% 120 72 52% 43 10 146 12 91% 130 36 74% 97 45 67% 78 73 35% 19 VACS Index 2.0 1 5838 1 100% 5785 10 100% 5356 27 99% 4662 73 98% 1559 2 2397 1 100% 2379 10 100% 2224 16 99% 2051 72 95% 865 3 1247 3 100% 1240 14 99% 1169 26 98% 1070 72 92% 489 4 884 1 100% 876 12 99% 812 24 97% 755 71 89% 335 5 618 4 99% 609 12 98% 557 29 95% 501 73 83% 197	8	206	4	98%	202	21	89%	169	32	83%	141	71	53%	39	
10 146 12 91% 130 36 74% 97 45 67% 78 73 35% 19 VACS Index 2.0 1 5838 1 100% 5785 10 100% 5356 27 99% 4662 73 98% 1559 2 2397 1 100% 2379 10 100% 2224 16 99% 2051 72 95% 865 3 1247 3 100% 1240 14 99% 1169 26 98% 1070 72 92% 489 4 884 1 100% 876 12 99% 812 24 97% 755 71 89% 335 5 618 4 99% 609 12 98% 557 29 95% 501 73 83% 197 6 359 1 100% 355 19 94% 305 28 91% 267 73 69% 83 7 311<	9	196	9	95%	186	26	86%	153	46	74%	120	72	52%	43	
VACS Index 2.0 1 5838 1 100% 5785 10 100% 5356 27 99% 4662 73 98% 1559 2 2397 1 100% 2379 10 100% 2224 16 99% 2051 72 95% 865 3 1247 3 100% 1240 14 99% 1169 26 98% 1070 72 92% 489 4 884 1 100% 876 12 99% 812 24 97% 755 71 89% 335 5 618 4 99% 609 12 98% 557 29 95% 501 73 83% 197 6 359 1 100% 355 19 94% 305 28 91% 267 73 69% 83 7 311 3 99% 302 22 92% 255 38 86% 213 72 69% 84 8<	10	146	12	91%	130	36	74%	97	45	67%	78	73	35%	19	
VACS Index 2.0 1 5838 1 100% 5785 10 100% 5356 27 99% 4662 73 98% 1559 2 2397 1 100% 2379 10 100% 2224 16 99% 2051 72 95% 865 3 1247 3 100% 1240 14 99% 1169 26 98% 1070 72 92% 489 4 884 1 100% 876 12 99% 812 24 97% 755 71 89% 335 5 618 4 99% 609 12 98% 557 29 95% 501 73 83% 197 6 359 1 100% 355 19 94% 305 28 91% 267 73 69% 83 7 311 3 99% 302 22 92% 255 38 86% 213 72 69% 84 8															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VACS Index	2.0													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	5838	1	100%	5785	10	100%	5356	27	99%	4662	73	98%	1559	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2397	1	100%	2379	10	100%	2224	16	99%	2051	72	95%	865	
4 884 1 100% 876 12 99% 812 24 97% 755 71 89% 335 5 618 4 99% 609 12 98% 557 29 95% 501 73 83% 197 6 359 1 100% 355 19 94% 305 28 91% 267 73 69% 83 7 311 3 99% 302 22 92% 255 38 86% 213 72 69% 84 8 190 6 97% 182 20 89% 159 33 81% 133 72 52% 46 9 151 11 92% 139 29 80% 109 44 69% 88 71 37% 15 10 114 16 85% 95 44 69% 15 51% 47 72 35% 15	3	1247	3	100%	1240	14	99%	1169	26	98%	1070	72	92%	489	
5 618 4 99% 609 12 98% 557 29 95% 501 73 83% 197 6 359 1 100% 355 19 94% 305 28 91% 267 73 69% 83 7 311 3 99% 302 22 92% 255 38 86% 213 72 69% 84 8 190 6 97% 182 20 89% 159 33 81% 133 72 52% 46 9 151 11 92% 139 29 80% 109 44 69% 88 71 37% 15 10 114 16 85% 95 44 69% 51 47 73 25% 15	4	884	1	100%	876	12	99%	812	24	97%	755	71	89%	335	
6 359 1 100% 355 19 94% 305 28 91% 267 73 69% 83 7 311 3 99% 302 22 92% 255 38 86% 213 72 69% 84 8 190 6 97% 182 20 89% 159 33 81% 133 72 52% 46 9 151 11 92% 139 29 80% 109 44 69% 88 71 37% 15 10 114 16 85% 95 46 50% 61 53 51% 47 72 25% 46	5	618	4	99%	609	12	98%	557	29	95%	501	73	83%	197	
7 311 3 99% 302 22 92% 255 38 86% 213 72 69% 84 8 190 6 97% 182 20 89% 159 33 81% 133 72 52% 46 9 151 11 92% 139 29 80% 109 44 69% 88 71 37% 15 10 114 16 85% 95 44 50% 61 53 51% 47 72 25% 15	6	359	1	100%	355	19	94%	305	28	91%	267	73	69%	83	
8 190 6 97% 182 20 89% 159 33 81% 133 72 52% 46 9 151 11 92% 139 29 80% 109 44 69% 88 71 37% 15 10 114 16 85% 95 44 50% 61 53 51% 47 73 35% 15	7	311	3	99%	302	22	92%	255	38	86%	213	72	69%	84	
9 151 11 92% 139 29 80% 109 44 69% 88 71 37% 15 10 114 16 85% 95 44 50% 61 53 51% 47 73 35% 15	8	190	6	97%	182	20	89%	159	33	81%	133	72	52%	46	
10 114 16 9500 0E 44 5000 61 52 510 47 72 72 750 15	- 9	151	11	92%	139	29	80%	109	44	69%	88	71	37%	15	
10 114 10 05% 55 44 55% 01 55 51% 47 75 25% 15	10	114	16	85%	95	44	59%	61	53	51%	47	73	25%	15	

Appendix Figure 1. Model development in VACS Cohort comparing model fit using Akaike's information criterion (AIC) and discrimination using Harrell's c-statistic